10
1
mirror of https://github.com/pfloos/quack synced 2024-09-27 12:00:50 +02:00

QP search for SRG done

This commit is contained in:
Pierre-Francois Loos 2024-09-11 20:35:07 +02:00
parent 04a42701e2
commit bf77863d6c
24 changed files with 351 additions and 49 deletions

View File

@ -140,7 +140,7 @@ subroutine GG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA
write(*,*) ' *** Quasiparticle energies obtained by root search *** '
write(*,*)
call GGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eHF,eGW,Z)
call GGW_QP_graph(doSRG,eta,flow,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eHF,eGW,Z)
end if

View File

@ -1,4 +1,4 @@
subroutine GGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
subroutine GGW_QP_graph(doSRG,eta,flow,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
! Compute the graphical solution of the QP equation
@ -14,7 +14,9 @@ subroutine GGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
integer,intent(in) :: nR
integer,intent(in) :: nS
logical,intent(in) :: doSRG
double precision,intent(in) :: eta
double precision,intent(in) :: flow
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
@ -28,7 +30,8 @@ subroutine GGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
integer :: nIt
integer,parameter :: maxIt = 64
double precision,parameter :: thresh = 1d-6
double precision,external :: GGW_SigC,GGW_dSigC
double precision,external :: GGW_Re_SigC,GGW_Re_dSigC
double precision,external :: GGW_SRG_Re_SigC,GGW_SRG_Re_dSigC
double precision :: SigC,dSigC
double precision :: f,df
double precision :: w
@ -54,8 +57,18 @@ subroutine GGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
nIt = nIt + 1
SigC = GGW_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
dSigC = GGW_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
if(doSRG) then
SigC = GGW_SRG_Re_SigC(p,w,flow,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
dSigC = GGW_SRG_Re_dSigC(p,w,flow,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
else
SigC = GGW_Re_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
dSigC = GGW_Re_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
end if
f = w - eHF(p) - SigC
df = 1d0/(1d0 - dSigC)

View File

@ -1,4 +1,4 @@
double precision function GGW_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
double precision function GGW_Re_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Compute diagonal of the correlation part of the self-energy
@ -27,7 +27,7 @@ double precision function GGW_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Initialize
GGW_SigC = 0d0
GGW_Re_SigC = 0d0
! Occupied part of the correlation self-energy
@ -35,7 +35,7 @@ double precision function GGW_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do m=1,nS
eps = w - e(i) + Om(m)
num = rho(p,i,m)**2
GGW_SigC = GGW_SigC + num*eps/(eps**2 + eta**2)
GGW_Re_SigC = GGW_Re_SigC + num*eps/(eps**2 + eta**2)
end do
end do
@ -45,7 +45,7 @@ double precision function GGW_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do m=1,nS
eps = w - e(a) - Om(m)
num = rho(p,a,m)**2
GGW_SigC = GGW_SigC + num*eps/(eps**2 + eta**2)
GGW_Re_SigC = GGW_Re_SigC + num*eps/(eps**2 + eta**2)
end do
end do

View File

@ -1,4 +1,4 @@
double precision function UGW_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
double precision function GGW_Re_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Compute the derivative of the correlation part of the self-energy
@ -27,7 +27,7 @@ double precision function UGW_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Initialize
UGW_dSigC = 0d0
GGW_Re_dSigC = 0d0
! Occupied part of the correlation self-energy
@ -35,7 +35,7 @@ double precision function UGW_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do m=1,nS
eps = w - e(i) + Om(m)
num = rho(p,i,m)**2
UGW_dSigC = UGW_dSigC - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
GGW_Re_dSigC = GGW_Re_dSigC - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
@ -45,7 +45,7 @@ double precision function UGW_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do m=1,nS
eps = w - e(a) - Om(m)
num = rho(p,a,m)**2
UGW_dSigC = UGW_dSigC - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
GGW_Re_dSigC = GGW_Re_dSigC - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do

View File

@ -1,4 +1,4 @@
double precision function RGW_SRG_ReSigC(p,w,s,nBas,nC,nO,nV,nR,nS,e,Om,rho)
double precision function GGW_SRG_Re_SigC(p,w,s,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Compute diagonal of the correlation part of the self-energy
@ -27,15 +27,15 @@ double precision function RGW_SRG_ReSigC(p,w,s,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Initialize
RGW_SRG_ReSigC = 0d0
GGW_SRG_Re_SigC = 0d0
! Occupied part of the correlation self-energy
do i=nC+1,nO
do m=1,nS
Dpim = w - e(i) + Om(m)
RGW_SRG_ReSigC = RGW_SRG_ReSigC &
+ 2d0*rho(p,i,m)**2*(1d0-exp(-2d0*s*Dpim*Dpim))/Dpim
GGW_SRG_Re_SigC = GGW_SRG_Re_SigC &
+ rho(p,i,m)**2*(1d0-exp(-2d0*s*Dpim*Dpim))/Dpim
end do
end do
@ -44,8 +44,8 @@ double precision function RGW_SRG_ReSigC(p,w,s,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do a=nO+1,nBas-nR
do m=1,nS
Dpam = w - e(a) - Om(m)
RGW_SRG_ReSigC = RGW_SRG_ReSigC &
+ 2d0*rho(p,a,m)**2*(1d0-exp(-2d0*s*Dpam*Dpam))/Dpam
GGW_SRG_Re_SigC = GGW_SRG_Re_SigC &
+ rho(p,a,m)**2*(1d0-exp(-2d0*s*Dpam*Dpam))/Dpam
end do
end do

View File

@ -0,0 +1,53 @@
double precision function GGW_SRG_Re_dSigC(p,w,s,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Compute the derivative of the correlation part of the self-energy
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: p
double precision,intent(in) :: w
double precision,intent(in) :: s
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
integer :: i,a,m
double precision :: Dpim,Dpam
! Initialize
GGW_SRG_Re_dSigC = 0d0
! Occupied part of the correlation self-energy
do i=nC+1,nO
do m=1,nS
Dpim = w - e(i) + Om(m)
GGW_SRG_Re_dSigC = GGW_SRG_Re_dSigC &
- rho(p,i,m)**2*(1d0-exp(-2d0*s*Dpim*Dpim))/Dpim**2
end do
end do
! Virtual part of the correlation self-energy
do a=nO+1,nBas-nR
do m=1,nS
Dpam = w - e(a) - Om(m)
GGW_SRG_Re_dSigC = GGW_SRG_Re_dSigC &
- rho(p,a,m)**2*(1d0-exp(-2d0*s*Dpam*Dpam))/Dpam**2
end do
end do
end function

View File

@ -146,7 +146,7 @@ subroutine RG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,TDA_W,TDA
write(*,*) ' *** Quasiparticle energies obtained by root search *** '
write(*,*)
call RGW_QP_graph(eta,nOrb,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eHF,eGW,Z)
call RGW_QP_graph(doSRG,eta,flow,nOrb,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eHF,eGW,Z)
end if

View File

@ -1,4 +1,4 @@
subroutine RGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
subroutine RGW_QP_graph(doSRG,eta,flow,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
! Compute the graphical solution of the QP equation
@ -14,7 +14,9 @@ subroutine RGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
integer,intent(in) :: nR
integer,intent(in) :: nS
logical,intent(in) :: doSRG
double precision,intent(in) :: eta
double precision,intent(in) :: flow
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
@ -28,7 +30,8 @@ subroutine RGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
integer :: nIt
integer,parameter :: maxIt = 64
double precision,parameter :: thresh = 1d-6
double precision,external :: RGW_ReSigC,RGW_RedSigC
double precision,external :: RGW_Re_SigC,RGW_Re_dSigC
double precision,external :: RGW_SRG_Re_SigC,RGW_SRG_Re_dSigC
double precision :: SigC,dSigC
double precision :: f,df
double precision :: w
@ -54,8 +57,18 @@ subroutine RGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
nIt = nIt + 1
SigC = RGW_ReSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
dSigC = RGW_RedSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
if(doSRG) then
SigC = RGW_SRG_Re_SigC(p,w,flow,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
dSigC = RGW_SRG_Re_dSigC(p,w,flow,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
else
SigC = RGW_Re_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
dSigC = RGW_Re_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
end if
f = w - eHF(p) - SigC
df = 1d0/(1d0 - dSigC)
w = w - df*f

View File

@ -1,4 +1,4 @@
double precision function RGW_ReSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
double precision function RGW_Re_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Compute diagonal of the correlation part of the self-energy
@ -27,7 +27,7 @@ double precision function RGW_ReSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Initialize
RGW_ReSigC = 0d0
RGW_Re_SigC = 0d0
! Occupied part of the correlation self-energy
@ -35,7 +35,7 @@ double precision function RGW_ReSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do m=1,nS
eps = w - e(i) + Om(m)
num = 2d0*rho(p,i,m)**2
RGW_ReSigC = RGW_ReSigC + num*eps/(eps**2 + eta**2)
RGW_Re_SigC = RGW_Re_SigC + num*eps/(eps**2 + eta**2)
end do
end do
@ -45,7 +45,7 @@ double precision function RGW_ReSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do m=1,nS
eps = w - e(a) - Om(m)
num = 2d0*rho(p,a,m)**2
RGW_ReSigC = RGW_ReSigC + num*eps/(eps**2 + eta**2)
RGW_Re_SigC = RGW_Re_SigC + num*eps/(eps**2 + eta**2)
end do
end do

View File

@ -1,4 +1,4 @@
double precision function RGW_RedSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
double precision function RGW_Re_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Compute the derivative of the correlation part of the self-energy
@ -27,7 +27,7 @@ double precision function RGW_RedSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Initialize
RGW_RedSigC = 0d0
RGW_Re_dSigC = 0d0
! Occupied part of the correlation self-energy
@ -35,7 +35,7 @@ double precision function RGW_RedSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do m=1,nS
eps = w - e(i) + Om(m)
num = 2d0*rho(p,i,m)**2
RGW_RedSigC = RGW_RedSigC - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
RGW_Re_dSigC = RGW_Re_dSigC - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
@ -45,7 +45,7 @@ double precision function RGW_RedSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do m=1,nS
eps = w - e(a) - Om(m)
num = 2d0*rho(p,a,m)**2
RGW_RedSigC = RGW_RedSigC - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
RGW_Re_dSigC = RGW_Re_dSigC - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do

View File

@ -0,0 +1,52 @@
double precision function RGW_SRG_Re_SigC(p,w,s,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Compute diagonal of the correlation part of the self-energy
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: p
double precision,intent(in) :: w
double precision,intent(in) :: s
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
integer :: i,a,m
double precision :: Dpim,Dpam
! Initialize
RGW_SRG_Re_SigC = 0d0
! Occupied part of the correlation self-energy
do i=nC+1,nO
do m=1,nS
Dpim = w - e(i) + Om(m)
RGW_SRG_Re_SigC = RGW_SRG_Re_SigC &
+ 2d0*rho(p,i,m)**2*(1d0-exp(-2d0*s*Dpim*Dpim))/Dpim
end do
end do
! Virtual part of the correlation self-energy
do a=nO+1,nBas-nR
do m=1,nS
Dpam = w - e(a) - Om(m)
RGW_SRG_Re_SigC = RGW_SRG_Re_SigC &
+ 2d0*rho(p,a,m)**2*(1d0-exp(-2d0*s*Dpam*Dpam))/Dpam
end do
end do
end function

View File

@ -0,0 +1,53 @@
double precision function RGW_SRG_Re_dSigC(p,w,s,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Compute the derivative of the correlation part of the self-energy
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: p
double precision,intent(in) :: w
double precision,intent(in) :: s
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
integer :: i,a,m
double precision :: Dpim,Dpam
! Initialize
RGW_SRG_Re_dSigC = 0d0
! Occupied part of the correlation self-energy
do i=nC+1,nO
do m=1,nS
Dpim = w - e(i) + Om(m)
RGW_SRG_Re_dSigC = RGW_SRG_Re_dSigC &
- 2d0*rho(p,i,m)**2*(1d0-exp(-2d0*s*Dpim*Dpim))/Dpim**2
end do
end do
! Virtual part of the correlation self-energy
do a=nO+1,nBas-nR
do m=1,nS
Dpam = w - e(a) - Om(m)
RGW_SRG_Re_dSigC = RGW_SRG_Re_dSigC &
- 2d0*rho(p,a,m)**2*(1d0-exp(-2d0*s*Dpam*Dpam))/Dpam**2
end do
end do
end function

View File

@ -164,7 +164,7 @@ subroutine UG0W0(dotest,doACFDT,exchange_kernel,doXBS,dophBSE,TDA_W,TDA,dBSE,dTD
if(is==1) write(*,*)' Spin-up orbitals '
if(is==2) write(*,*)' Spin-down orbitals '
call UGW_QP_graph(eta,nBas,nC(is),nO(is),nV(is),nR(is),nSt,eHF(:,is), &
call UGW_QP_graph(doSRG,eta,flow,nBas,nC(is),nO(is),nV(is),nR(is),nSt,eHF(:,is), &
Om,rho(:,:,:,is),eGWlin(:,is),eHF(:,is),eGW(:,is),Z(:,is))
end do

View File

@ -1,4 +1,4 @@
subroutine UGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
subroutine UGW_QP_graph(doSRG,eta,flow,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
! Compute the graphical solution of the QP equation
@ -14,7 +14,9 @@ subroutine UGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
integer,intent(in) :: nR
integer,intent(in) :: nS
logical,intent(in) :: doSRG
double precision,intent(in) :: eta
double precision,intent(in) :: flow
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS,nspin)
@ -28,7 +30,8 @@ subroutine UGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
integer :: nIt
integer,parameter :: maxIt = 64
double precision,parameter :: thresh = 1d-6
double precision,external :: UGW_SigC,UGW_dSigC
double precision,external :: UGW_Re_SigC,UGW_Re_dSigC
double precision,external :: UGW_SRG_Re_SigC,UGW_SRG_Re_dSigC
double precision :: SigC,dSigC
double precision :: f,df
double precision :: w
@ -54,8 +57,18 @@ subroutine UGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eGWlin,eOld,eGW,Z)
nIt = nIt + 1
SigC = UGW_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
dSigC = UGW_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
if(doSRG) then
SigC = UGW_SRG_Re_SigC(p,w,flow,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
dSigC = UGW_SRG_Re_dSigC(p,w,flow,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
else
SigC = UGW_Re_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
dSigC = UGW_Re_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,eOld,Om,rho)
end if
f = w - eHF(p) - SigC
df = 1d0/(1d0 - dSigC)

View File

@ -1,4 +1,4 @@
double precision function UGW_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
double precision function UGW_Re_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Compute diagonal of the correlation part of the self-energy
@ -27,7 +27,7 @@ double precision function UGW_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Initialize
UGW_SigC = 0d0
UGW_Re_SigC = 0d0
! Occupied part of the correlation self-energy
@ -35,7 +35,7 @@ double precision function UGW_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do m=1,nS
eps = w - e(i) + Om(m)
num = rho(p,i,m)**2
UGW_SigC = UGW_SigC + num*eps/(eps**2 + eta**2)
UGW_Re_SigC = UGW_Re_SigC + num*eps/(eps**2 + eta**2)
end do
end do
@ -45,7 +45,7 @@ double precision function UGW_SigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do m=1,nS
eps = w - e(a) - Om(m)
num = rho(p,a,m)**2
UGW_SigC = UGW_SigC + num*eps/(eps**2 + eta**2)
UGW_Re_SigC = UGW_Re_SigC + num*eps/(eps**2 + eta**2)
end do
end do

View File

@ -1,4 +1,4 @@
double precision function GGW_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
double precision function UGW_Re_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Compute the derivative of the correlation part of the self-energy
@ -27,7 +27,7 @@ double precision function GGW_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Initialize
GGW_dSigC = 0d0
UGW_Re_dSigC = 0d0
! Occupied part of the correlation self-energy
@ -35,7 +35,7 @@ double precision function GGW_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do m=1,nS
eps = w - e(i) + Om(m)
num = rho(p,i,m)**2
GGW_dSigC = GGW_dSigC - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
UGW_Re_dSigC = UGW_Re_dSigC - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do
@ -45,7 +45,7 @@ double precision function GGW_dSigC(p,w,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
do m=1,nS
eps = w - e(a) - Om(m)
num = rho(p,a,m)**2
GGW_dSigC = GGW_dSigC - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
UGW_Re_dSigC = UGW_Re_dSigC - num*(eps**2 - eta**2)/(eps**2 + eta**2)**2
end do
end do

View File

@ -0,0 +1,52 @@
double precision function UGW_SRG_Re_SigC(p,w,s,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Compute diagonal of the correlation part of the self-energy
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: p
double precision,intent(in) :: w
double precision,intent(in) :: s
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
integer :: i,a,m
double precision :: Dpim,Dpam
! Initialize
UGW_SRG_Re_SigC = 0d0
! Occupied part of the correlation self-energy
do i=nC+1,nO
do m=1,nS
Dpim = w - e(i) + Om(m)
UGW_SRG_Re_SigC = UGW_SRG_Re_SigC &
+ rho(p,i,m)**2*(1d0-exp(-2d0*s*Dpim*Dpim))/Dpim
end do
end do
! Virtual part of the correlation self-energy
do a=nO+1,nBas-nR
do m=1,nS
Dpam = w - e(a) - Om(m)
UGW_SRG_Re_SigC = UGW_SRG_Re_SigC &
+ rho(p,a,m)**2*(1d0-exp(-2d0*s*Dpam*Dpam))/Dpam
end do
end do
end function

View File

@ -0,0 +1,53 @@
double precision function UGW_SRG_Re_dSigC(p,w,s,eta,nBas,nC,nO,nV,nR,nS,e,Om,rho)
! Compute the derivative of the correlation part of the self-energy
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: p
double precision,intent(in) :: w
double precision,intent(in) :: s
double precision,intent(in) :: eta
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: Om(nS)
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
integer :: i,a,m
double precision :: Dpim,Dpam
! Initialize
UGW_SRG_Re_dSigC = 0d0
! Occupied part of the correlation self-energy
do i=nC+1,nO
do m=1,nS
Dpim = w - e(i) + Om(m)
UGW_SRG_Re_dSigC = UGW_SRG_Re_dSigC &
- rho(p,i,m)**2*(1d0-exp(-2d0*s*Dpim*Dpim))/Dpim**2
end do
end do
! Virtual part of the correlation self-energy
do a=nO+1,nBas-nR
do m=1,nS
Dpam = w - e(a) - Om(m)
UGW_SRG_Re_dSigC = UGW_SRG_Re_dSigC &
- rho(p,a,m)**2*(1d0-exp(-2d0*s*Dpam*Dpam))/Dpam**2
end do
end do
end function

View File

@ -146,7 +146,7 @@ subroutine evGGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
write(*,*) ' *** Quasiparticle energies obtained by root search *** '
write(*,*)
call GGW_QP_graph(eta,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eOld,eOld,eGW,Z)
call GGW_QP_graph(doSRG,eta,flow,nBas,nC,nO,nV,nR,nS,eHF,Om,rho,eOld,eOld,eGW,Z)
end if

View File

@ -151,7 +151,7 @@ subroutine evRGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,dop
write(*,*) ' *** Quasiparticle energies obtained by root search *** '
write(*,*)
call RGW_QP_graph(eta,nOrb,nC,nO,nV,nR,nS,eHF,Om,rho,eOld,eOld,eGW,Z)
call RGW_QP_graph(doSRG,eta,flow,nOrb,nC,nO,nV,nR,nS,eHF,Om,rho,eOld,eOld,eGW,Z)
end if

View File

@ -181,7 +181,7 @@ subroutine evUGW(dotest,maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,BSE
if(is==1) write(*,*)' Spin-up orbitals '
if(is==2) write(*,*)' Spin-down orbitals '
call UGW_QP_graph(eta,nBas,nC(is),nO(is),nV(is),nR(is),nSt,eHF(:,is), &
call UGW_QP_graph(doSRG,eta,flow,nBas,nC(is),nO(is),nV(is),nR(is),nSt,eHF(:,is), &
Om,rho(:,:,:,is),eOld(:,is),eOld(:,is),eGW(:,is),Z(:,is))
end do