10
1
mirror of https://github.com/pfloos/quack synced 2024-11-03 20:53:53 +01:00

individual energies seems to work

This commit is contained in:
Pierre-Francois Loos 2021-11-29 23:32:49 +01:00
parent 851ac5eb46
commit b9cf1fe6d5
17 changed files with 325 additions and 509 deletions

View File

@ -31,7 +31,7 @@
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# Ensemble weights: wEns(1),...,wEns(nEns-1)
0.75 0.0 0.0
1.00 0.0 0.0
# Ncentered ?
F
# Parameters for CC weight-dependent exchange functional

View File

@ -1,4 +1,4 @@
subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rhow,rho,Cx_choice,doNcentered,kappa,Ex)
subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rhow,Cx_choice,doNcentered,Ex)
! Compute the unrestricted version of the curvature-corrected exchange functional
@ -14,17 +14,14 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid)
double precision,intent(in) :: rho(nGrid)
integer,intent(in) :: Cx_choice
logical,intent(in) :: doNcentered
double precision,intent(in) :: kappa
! Local variables
integer :: iG
double precision :: r,rI
double precision :: e_p,dedr
double precision :: Exrr,ExrI,ExrrI
double precision :: r
double precision :: dedr
double precision :: a1,b1,c1,d1,w1
double precision :: a2,b2,c2,d2,w2
@ -34,11 +31,6 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho
double precision,intent(out) :: Ex
! External variable
double precision,external :: electron_number
! Defining enhancements factor for weight-dependent functionals
if(doNcentered) then
@ -105,44 +97,19 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho
! Compute LDA exchange matrix in the AO basis
Ex = 0d0
Exrr = 0d0
ExrI = 0d0
ExrrI = 0d0
do iG=1,nGrid
r = max(0d0,rhow(iG))
rI = max(0d0,rho(iG))
if(r > threshold) then
e_p = Cx*r**(1d0/3d0)
dedr = 1d0/3d0*Cx*r**(-2d0/3d0)
Exrr = Exrr - weight(iG)*dedr*r*r
if(rI > threshold) then
ExrI = ExrI + weight(iG)*e_p*rI
ExrrI = ExrrI + weight(iG)*dedr*r*rI
endif
Ex = Ex - weight(iG)*dedr*r*r
endif
enddo
! De-scaling for N-centered ensemble
if(doNcentered) then
Exrr = kappa*Exrr
ExrI = kappa*ExrI
endif
Ex = Exrr + ExrI + ExrrI
end subroutine UCC_lda_exchange_individual_energy

View File

@ -1,4 +1,4 @@
subroutine US51_lda_exchange_individual_energy(nGrid,weight,rhow,rho,doNcentered,kappa,Ex)
subroutine US51_lda_exchange_individual_energy(nGrid,weight,rhow,Ex)
! Compute the restricted version of Slater's LDA exchange individual energy
@ -10,16 +10,12 @@ subroutine US51_lda_exchange_individual_energy(nGrid,weight,rhow,rho,doNcentered
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid)
double precision,intent(in) :: rho(nGrid)
logical,intent(in) :: doNcentered
double precision,intent(in) :: kappa
! Local variables
integer :: iG
double precision :: r,rI
double precision :: e,dedr
double precision :: Exrr,ExrI,ExrrI
double precision :: r
double precision :: dedr
! Output variables
@ -27,42 +23,19 @@ subroutine US51_lda_exchange_individual_energy(nGrid,weight,rhow,rho,doNcentered
! Compute LDA exchange matrix in the AO basis
Exrr = 0d0
ExrI = 0d0
ExrrI = 0d0
Ex = 0d0
do iG=1,nGrid
r = max(0d0,rhow(iG))
rI = max(0d0,rho(iG))
if(r > threshold) then
e = CxLSDA*r**(1d0/3d0)
dedr = 1d0/3d0*CxLSDA*r**(-2d0/3d0)
Exrr = Exrr - weight(iG)*dedr*r*r
if(rI > threshold) then
ExrI = ExrI + weight(iG)*e*rI
ExrrI = ExrrI + weight(iG)*dedr*r*rI
endif
Ex = Ex - weight(iG)*dedr*r*r
endif
enddo
! De-scaling for N-centered ensemble
if(doNcentered) then
Exrr = kappa*Exrr
ExrI = kappa*ExrI
endif
Ex = Exrr + ExrI + ExrrI
end subroutine US51_lda_exchange_individual_energy

View File

@ -1,4 +1,4 @@
subroutine UVWN3_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcentered,kappa,Ec)
subroutine UVWN3_lda_correlation_individual_energy(nGrid,weight,rhow,doNcentered,Ec)
! Compute VWN3 LDA correlation potential
@ -11,9 +11,7 @@ subroutine UVWN3_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid,nspin)
double precision,intent(in) :: rho(nGrid,nspin)
logical,intent(in) :: doNcentered
double precision,intent(in) :: kappa
! Local variables
@ -54,187 +52,187 @@ subroutine UVWN3_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
! Initialization
Ec(:) = 0d0
Ecrr(:) = 0d0
EcrI(:) = 0d0
EcrrI(:) = 0d0
! Ec(:) = 0d0
! Ecrr(:) = 0d0
! EcrI(:) = 0d0
! EcrrI(:) = 0d0
do iG=1,nGrid
! do iG=1,nGrid
ra = max(0d0,rhow(iG,1))
rb = max(0d0,rhow(iG,2))
raI = max(0d0,rho(iG,1))
rbI = max(0d0,rho(iG,2))
! ra = max(0d0,rhow(iG,1))
! rb = max(0d0,rhow(iG,2))
! raI = max(0d0,rho(iG,1))
! rbI = max(0d0,rho(iG,2))
!
! spin-up contribution
!
! r = ra
! rI = raI
r = ra
rI = raI
! if(r > threshold) then
if(r > threshold) then
! rs = (4d0*pi*r/3d0)**(-1d0/3d0)
! x = sqrt(rs)
!
! x_f = x*x + b_f*x + c_f
! xx0_f = x0_f*x0_f + b_f*x0_f + c_f
! q_f = sqrt(4d0*c_f - b_f*b_f)
!
! ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
! - b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
!
! drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
! dxdrs = 0.5d0/sqrt(rs)
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
x = sqrt(rs)
! dxdx_f = 2d0*x + b_f
x_f = x*x + b_f*x + c_f
xx0_f = x0_f*x0_f + b_f*x0_f + c_f
q_f = sqrt(4d0*c_f - b_f*b_f)
! decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
! - b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
- b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
! decdr_f = drsdr*dxdrs*decdx_f
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
dxdrs = 0.5d0/sqrt(rs)
! Ecrr(1) = Ecrr(1) - weight(iG)*decdr_f*r*r
dxdx_f = 2d0*x + b_f
! if(rI > threshold) then
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
! EcrI(1) = EcrI(1) + weight(iG)*ec_f*rI
! EcrrI(1) = EcrrI(1) + weight(iG)*decdr_f*r*rI
!
! end if
decdr_f = drsdr*dxdrs*decdx_f
Ecrr(1) = Ecrr(1) - weight(iG)*decdr_f*r*r
if(rI > threshold) then
EcrI(1) = EcrI(1) + weight(iG)*ec_f*rI
EcrrI(1) = EcrrI(1) + weight(iG)*decdr_f*r*rI
end if
end if
! end if
! up-down contribution
!
! r = ra + rb
! rI = raI + rbI
r = ra + rb
rI = raI + rbI
! if(r > threshold) then
if(r > threshold) then
! rs = (4d0*pi*r/3d0)**(-1d0/3d0)
! z = (ra - rb)/r
! x = sqrt(rs)
!
! fz = (1d0 + z)**(4d0/3d0) + (1d0 - z)**(4d0/3d0) - 2d0
! fz = fz/(2d0*(2d0**(1d0/3d0) - 1d0))
!
! d2fz = 4d0/(9d0*(2**(1d0/3d0) - 1d0))
!
! x_p = x*x + b_p*x + c_p
! x_f = x*x + b_f*x + c_f
! x_a = x*x + b_a*x + c_a
!
! xx0_p = x0_p*x0_p + b_p*x0_p + c_p
! xx0_f = x0_f*x0_f + b_f*x0_f + c_f
! xx0_a = x0_a*x0_a + b_a*x0_a + c_a
!
! q_p = sqrt(4d0*c_p - b_p*b_p)
! q_f = sqrt(4d0*c_f - b_f*b_f)
! q_a = sqrt(4d0*c_a - b_a*b_a)
!
! ec_p = a_p*( log(x**2/x_p) + 2d0*b_p/q_p*atan(q_p/(2d0*x + b_p)) &
! - b_p*x0_p/xx0_p*( log((x - x0_p)**2/x_p) + 2d0*(b_p + 2d0*x0_p)/q_p*atan(q_p/(2d0*x + b_p)) ) )
!
! ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
! - b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
!
! ec_a = a_a*( log(x**2/x_a) + 2d0*b_a/q_a*atan(q_a/(2d0*x + b_a)) &
! - b_a*x0_a/xx0_a*( log((x - x0_a)**2/x_a) + 2d0*(b_a + 2d0*x0_a)/q_a*atan(q_a/(2d0*x + b_a)) ) )
!
! ec_z = ec_p + ec_a*fz/d2fz*(1d0-z**4) + (ec_f - ec_p)*fz*z**4
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
z = (ra - rb)/r
x = sqrt(rs)
! dzdr = (1d0 - z)/r
! dfzdz = (4d0/3d0)*((1d0 + z)**(1d0/3d0) - (1d0 - z)**(1d0/3d0))/(2d0*(2d0**(1d0/3d0) - 1d0))
! dfzdr = dzdr*dfzdz
fz = (1d0 + z)**(4d0/3d0) + (1d0 - z)**(4d0/3d0) - 2d0
fz = fz/(2d0*(2d0**(1d0/3d0) - 1d0))
! drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
! dxdrs = 0.5d0/sqrt(rs)
d2fz = 4d0/(9d0*(2**(1d0/3d0) - 1d0))
! dxdx_p = 2d0*x + b_p
! dxdx_f = 2d0*x + b_f
! dxdx_a = 2d0*x + b_a
x_p = x*x + b_p*x + c_p
x_f = x*x + b_f*x + c_f
x_a = x*x + b_a*x + c_a
! decdx_p = a_p*( 2d0/x - 4d0*b_p/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p &
! - b_p*x0_p/xx0_p*( 2/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
xx0_p = x0_p*x0_p + b_p*x0_p + c_p
xx0_f = x0_f*x0_f + b_f*x0_f + c_f
xx0_a = x0_a*x0_a + b_a*x0_a + c_a
! decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
! - b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
q_p = sqrt(4d0*c_p - b_p*b_p)
q_f = sqrt(4d0*c_f - b_f*b_f)
q_a = sqrt(4d0*c_a - b_a*b_a)
! decdx_a = a_a*( 2d0/x - 4d0*b_a/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a &
! - b_a*x0_a/xx0_a*( 2/(x-x0_a) - 4d0*(b_a+2d0*x0_a)/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a ) )
ec_p = a_p*( log(x**2/x_p) + 2d0*b_p/q_p*atan(q_p/(2d0*x + b_p)) &
- b_p*x0_p/xx0_p*( log((x - x0_p)**2/x_p) + 2d0*(b_p + 2d0*x0_p)/q_p*atan(q_p/(2d0*x + b_p)) ) )
! decdr_p = drsdr*dxdrs*decdx_p
! decdr_f = drsdr*dxdrs*decdx_f
! decdr_a = drsdr*dxdrs*decdx_a
ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
- b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
! decdr = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdr/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdr*z**3 &
! + (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdr*z**4 + 4d0*(ec_f - ec_p)*fz*dzdr*z**3
ec_a = a_a*( log(x**2/x_a) + 2d0*b_a/q_a*atan(q_a/(2d0*x + b_a)) &
- b_a*x0_a/xx0_a*( log((x - x0_a)**2/x_a) + 2d0*(b_a + 2d0*x0_a)/q_a*atan(q_a/(2d0*x + b_a)) ) )
! Ecrr(2) = Ecrr(2) - weight(iG)*decdr*r*r
ec_z = ec_p + ec_a*fz/d2fz*(1d0-z**4) + (ec_f - ec_p)*fz*z**4
! if(rI > threshold) then
dzdr = (1d0 - z)/r
dfzdz = (4d0/3d0)*((1d0 + z)**(1d0/3d0) - (1d0 - z)**(1d0/3d0))/(2d0*(2d0**(1d0/3d0) - 1d0))
dfzdr = dzdr*dfzdz
! EcrI(2) = EcrI(2) + weight(iG)*ec_z*rI
! EcrrI(2) = EcrrI(2) + weight(iG)*decdr*r*rI
!
! end if
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
dxdrs = 0.5d0/sqrt(rs)
dxdx_p = 2d0*x + b_p
dxdx_f = 2d0*x + b_f
dxdx_a = 2d0*x + b_a
decdx_p = a_p*( 2d0/x - 4d0*b_p/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p &
- b_p*x0_p/xx0_p*( 2/(x-x0_p) - 4d0*(b_p+2d0*x0_p)/( (b_p+2d0*x)**2 + q_p**2) - dxdx_p/x_p ) )
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
decdx_a = a_a*( 2d0/x - 4d0*b_a/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a &
- b_a*x0_a/xx0_a*( 2/(x-x0_a) - 4d0*(b_a+2d0*x0_a)/( (b_a+2d0*x)**2 + q_a**2) - dxdx_a/x_a ) )
decdr_p = drsdr*dxdrs*decdx_p
decdr_f = drsdr*dxdrs*decdx_f
decdr_a = drsdr*dxdrs*decdx_a
decdr = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdr/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdr*z**3 &
+ (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdr*z**4 + 4d0*(ec_f - ec_p)*fz*dzdr*z**3
Ecrr(2) = Ecrr(2) - weight(iG)*decdr*r*r
if(rI > threshold) then
EcrI(2) = EcrI(2) + weight(iG)*ec_z*rI
EcrrI(2) = EcrrI(2) + weight(iG)*decdr*r*rI
end if
end if
! end if
! spin-down contribution
!
! r = rb
! rI = rbI
!
! if(r > threshold) then
r = rb
rI = rbI
! rs = (4d0*pi*r/3d0)**(-1d0/3d0)
! x = sqrt(rs)
if(r > threshold) then
! x_f = x*x + b_f*x + c_f
! xx0_f = x0_f*x0_f + b_f*x0_f + c_f
! q_f = sqrt(4d0*c_f - b_f*b_f)
rs = (4d0*pi*r/3d0)**(-1d0/3d0)
x = sqrt(rs)
! ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
! - b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
x_f = x*x + b_f*x + c_f
xx0_f = x0_f*x0_f + b_f*x0_f + c_f
q_f = sqrt(4d0*c_f - b_f*b_f)
! drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
! dxdrs = 0.5d0/sqrt(rs)
ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
- b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
! dxdx_f = 2d0*x + b_f
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
dxdrs = 0.5d0/sqrt(rs)
! decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
! - b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
dxdx_f = 2d0*x + b_f
! decdr_f = drsdr*dxdrs*decdx_f
decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
- b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
! Ecrr(3) = Ecrr(3) - weight(iG)*decdr_f*r*r
decdr_f = drsdr*dxdrs*decdx_f
! if(rI > threshold) then
Ecrr(3) = Ecrr(3) - weight(iG)*decdr_f*r*r
! EcrI(3) = EcrI(3) + weight(iG)*ec_f*rI
! EcrrI(3) = EcrrI(3) + weight(iG)*decdr_f*r*rI
if(rI > threshold) then
! end if
EcrI(3) = EcrI(3) + weight(iG)*ec_f*rI
EcrrI(3) = EcrrI(3) + weight(iG)*decdr_f*r*rI
! end if
end if
! end do
end if
end do
Ecrr(2) = Ecrr(2) - Ecrr(1) - Ecrr(3)
EcrI(2) = EcrI(2) - EcrI(1) - EcrI(3)
EcrrI(2) = EcrrI(2) - EcrrI(1) - EcrrI(3)
! Ecrr(2) = Ecrr(2) - Ecrr(1) - Ecrr(3)
! EcrI(2) = EcrI(2) - EcrI(1) - EcrI(3)
! EcrrI(2) = EcrrI(2) - EcrrI(1) - EcrrI(3)
! De-scaling for N-centered ensemble
if(doNcentered) then
! if(doNcentered) then
Ecrr(:) = kappa*Ecrr(:)
EcrI(:) = kappa*EcrI(:)
! Ecrr(:) = kappa*Ecrr(:)
! EcrI(:) = kappa*EcrI(:)
endif
! endif
Ec(:) = Ecrr(:) + EcrI(:) + EcrrI(:)
! Ec(:) = Ecrr(:) + EcrI(:) + EcrrI(:)
end subroutine UVWN3_lda_correlation_individual_energy

View File

@ -1,4 +1,4 @@
subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcentered,kappa,Ec)
subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,doNcentered,LZc)
! Compute VWN5 LDA correlation potential
@ -11,9 +11,7 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid,nspin)
double precision,intent(in) :: rho(nGrid,nspin)
logical,intent(in) :: doNcentered
double precision,intent(in) :: kappa
! Local variables
@ -23,17 +21,13 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
double precision :: a_f,x0_f,xx0_f,b_f,c_f,x_f,q_f
double precision :: a_a,x0_a,xx0_a,b_a,c_a,x_a,q_a
double precision :: dfzdz,dxdrs,dxdx_p,dxdx_f,dxdx_a,decdx_p,decdx_f,decdx_a
double precision :: dzdra,dzdrb,dfzdra,dfzdrb,drsdr,decdr_p,decdr_f,decdr_a,decdra,decdrb,decdr
double precision :: dzdra,dzdrb,dfzdra,dfzdrb,drsdr,decdr_p,decdr_f,decdr_a,decdra,decdrb
double precision :: ec_z,ec_p,ec_f,ec_a
double precision :: fz,d2fz
double precision :: Ecrr(nsp)
double precision :: EcrI(nsp)
double precision :: EcrrI(nsp)
! Output variables
double precision :: Ec(nsp)
double precision :: LZc(nspin)
! Parameters of the functional
@ -54,56 +48,14 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
! Initialization
Ec(:) = 0d0
Ecrr(:) = 0d0
EcrI(:) = 0d0
EcrrI(:) = 0d0
LZc(:) = 0d0
do iG=1,nGrid
ra = max(0d0,rhow(iG,1))
rb = max(0d0,rhow(iG,2))
raI = max(0d0,rho(iG,1))
rbI = max(0d0,rho(iG,2))
r = ra + rb
rI = raI + rbI
! spin-up contribution
! if(r > threshold) then
! rs = (4d0*pi*r/3d0)**(-1d0/3d0)
! x = sqrt(rs)
!
! x_f = x*x + b_f*x + c_f
! xx0_f = x0_f*x0_f + b_f*x0_f + c_f
! q_f = sqrt(4d0*c_f - b_f*b_f)
!
! ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
! - b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
!
! drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
! dxdrs = 0.5d0/sqrt(rs)
! dxdx_f = 2d0*x + b_f
! decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
! - b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
! decdr_f = drsdr*dxdrs*decdx_f
! Ecrr(1) = Ecrr(1) - weight(iG)*decdr_f*r*r
! if(rI > threshold) then
! EcrI(1) = EcrI(1) + weight(iG)*ec_f*rI
! EcrrI(1) = EcrrI(1) + weight(iG)*decdr_f*r*rI
! end if
!
! end if
! up-down contribution
@ -143,12 +95,6 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
dfzdz = (4d0/3d0)*((1d0 + z)**(1d0/3d0) - (1d0 - z)**(1d0/3d0))/(2d0*(2d0**(1d0/3d0) - 1d0))
dzdra = + (1d0 - z)/r
dfzdra = dzdra*dfzdz
dzdrb = - (1d0 + z)/r
dfzdrb = dzdrb*dfzdz
drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
dxdrs = 0.5d0/sqrt(rs)
@ -169,77 +115,32 @@ subroutine UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcent
decdr_f = drsdr*dxdrs*decdx_f
decdr_a = drsdr*dxdrs*decdx_a
if(ra > threshold) then
dzdra = + (1d0 - z)/r
dfzdra = dzdra*dfzdz
decdra = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdra/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdra*z**3 &
+ (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdra*z**4 + 4d0*(ec_f - ec_p)*fz*dzdra*z**3
LZc(1) = LZc(1) - weight(iG)*decdra*ra*r
end if
if(rb > threshold) then
dzdrb = - (1d0 + z)/r
dfzdrb = dzdrb*dfzdz
decdrb = decdr_p + decdr_a*fz/d2fz*(1d0-z**4) + ec_a*dfzdrb/d2fz*(1d0-z**4) - 4d0*ec_a*fz/d2fz*dzdrb*z**3 &
+ (decdr_f - decdr_p)*fz*z**4 + (ec_f - ec_p)*dfzdrb*z**4 + 4d0*(ec_f - ec_p)*fz*dzdrb*z**3
decdr = 0d0
if(ra > threshold) decdr = decdr + decdra
if(rb > threshold) decdr = decdr + decdrb
Ecrr(2) = Ecrr(2) - weight(iG)*decdr*r*r
if(rI > threshold) then
EcrI(2) = EcrI(2) + weight(iG)*ec_z*rI
EcrrI(2) = EcrrI(2) + weight(iG)*decdr*r*rI
LZc(2) = LZc(2) - weight(iG)*decdrb*rb*r
end if
end if
! spin-down contribution
! if(r > threshold) then
! rs = (4d0*pi*r/3d0)**(-1d0/3d0)
! x = sqrt(rs)
! x_f = x*x + b_f*x + c_f
! xx0_f = x0_f*x0_f + b_f*x0_f + c_f
! q_f = sqrt(4d0*c_f - b_f*b_f)
! ec_f = a_f*( log(x**2/x_f) + 2d0*b_f/q_f*atan(q_f/(2d0*x + b_f)) &
! - b_f*x0_f/xx0_f*( log((x - x0_f)**2/x_f) + 2d0*(b_f + 2d0*x0_f)/q_f*atan(q_f/(2d0*x + b_f)) ) )
! drsdr = - (36d0*pi)**(-1d0/3d0)*r**(-4d0/3d0)
! dxdrs = 0.5d0/sqrt(rs)
! dxdx_f = 2d0*x + b_f
! decdx_f = a_f*( 2d0/x - 4d0*b_f/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f &
! - b_f*x0_f/xx0_f*( 2/(x-x0_f) - 4d0*(b_f+2d0*x0_f)/( (b_f+2d0*x)**2 + q_f**2) - dxdx_f/x_f ) )
! decdr_f = drsdr*dxdrs*decdx_f
! Ecrr(3) = Ecrr(3) - weight(iG)*decdr_f*r*r
! if(rI > threshold) then
! EcrI(3) = EcrI(3) + weight(iG)*ec_f*rI
! EcrrI(3) = EcrrI(3) + weight(iG)*decdr_f*r*rI
! end if
! end if
end do
Ecrr(2) = Ecrr(2) - Ecrr(1) - Ecrr(3)
EcrI(2) = EcrI(2) - EcrI(1) - EcrI(3)
EcrrI(2) = EcrrI(2) - EcrrI(1) - EcrrI(3)
! De-scaling for N-centered ensemble
if(doNcentered) then
Ecrr(:) = kappa*Ecrr(:)
EcrI(:) = kappa*EcrI(:)
endif
Ec(:) = Ecrr(:) + EcrI(:) + EcrrI(:)
end subroutine UVWN5_lda_correlation_individual_energy

View File

@ -76,9 +76,6 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
double precision,allocatable :: rho(:,:,:)
double precision,allocatable :: drho(:,:,:,:)
double precision :: E(nEns)
double precision :: Om(nEns)
integer :: ispin,iEns,iBas
! Output variables
@ -382,14 +379,6 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
end if
!!!!!
! do iEns=1,nEns
! print*,'occnum=',occnum(1,1,iEns),occnum(2,1,iEns),occnum(1,2,iEns),occnum(2,2,iEns)
! print*,'nel up and down and total=', electron_number(nGrid,weight,&
! rho(:,1,iEns)),electron_number(nGrid,weight,rho(:,2,iEns)),sum(nEl(:))
! end do
!!!!!
! Compute final KS energy
call dipole_moment(nBas,Pw(:,:,1)+Pw(:,:,2),nNuc,ZNuc,rNuc,dipole_int,dipole)
@ -404,7 +393,6 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
!------------------------------------------------------------------------
call unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
AO,dAO,T,V,ERI,ENuc,eps,Pw,rhow,drhow,J,Fx,FxHF,Fc,P,rho,drho,Ew,E,Om,occnum, &
Cx_choice,doNcentered)
AO,dAO,T,V,ERI,ENuc,eps,Pw,rhow,drhow,J,Fx,FxHF,Fc,P,rho,drho,Ew,occnum,Cx_choice,doNcentered)
end subroutine eDFT_UKS

View File

@ -55,66 +55,66 @@ subroutine print_unrestricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,
! Kinetic energy
!------------------------------------------------------------------------
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A60)') ' INDIVIDUAL KINETIC ENERGIES'
write(*,'(A60)') '-------------------------------------------------'
do iEns=1,nEns
write(*,'(A40,I2,A2,F16.10,A3)') ' Kinetic energy state ',iEns,': ',sum(ET(:,iEns)),' au'
end do
write(*,'(A60)') '-------------------------------------------------'
write(*,*)
! write(*,'(A60)') '-------------------------------------------------'
! write(*,'(A60)') ' INDIVIDUAL KINETIC ENERGIES'
! write(*,'(A60)') '-------------------------------------------------'
! do iEns=1,nEns
! write(*,'(A40,I2,A2,F16.10,A3)') ' Kinetic energy state ',iEns,': ',sum(ET(:,iEns)),' au'
! end do
! write(*,'(A60)') '-------------------------------------------------'
! write(*,*)
!------------------------------------------------------------------------
! Potential energy
!------------------------------------------------------------------------
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A60)') ' INDIVIDUAL POTENTIAL ENERGIES'
write(*,'(A60)') '-------------------------------------------------'
do iEns=1,nEns
write(*,'(A40,I2,A2,F16.10,A3)') ' Potential energy state ',iEns,': ',sum(EV(:,iEns)),' au'
end do
write(*,'(A60)') '-------------------------------------------------'
write(*,*)
! write(*,'(A60)') '-------------------------------------------------'
! write(*,'(A60)') ' INDIVIDUAL POTENTIAL ENERGIES'
! write(*,'(A60)') '-------------------------------------------------'
! do iEns=1,nEns
! write(*,'(A40,I2,A2,F16.10,A3)') ' Potential energy state ',iEns,': ',sum(EV(:,iEns)),' au'
! end do
! write(*,'(A60)') '-------------------------------------------------'
! write(*,*)
!------------------------------------------------------------------------
! Hartree energy
!------------------------------------------------------------------------
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A60)') ' INDIVIDUAL HARTREE ENERGIES'
write(*,'(A60)') '-------------------------------------------------'
do iEns=1,nEns
write(*,'(A40,I2,A2,F16.10,A3)') ' Hartree energy state ',iEns,': ',sum(EJ(:,iEns)),' au'
end do
write(*,'(A60)') '-------------------------------------------------'
write(*,*)
! write(*,'(A60)') '-------------------------------------------------'
! write(*,'(A60)') ' INDIVIDUAL HARTREE ENERGIES'
! write(*,'(A60)') '-------------------------------------------------'
! do iEns=1,nEns
! write(*,'(A40,I2,A2,F16.10,A3)') ' Hartree energy state ',iEns,': ',sum(EJ(:,iEns)),' au'
! end do
! write(*,'(A60)') '-------------------------------------------------'
! write(*,*)
!------------------------------------------------------------------------
! Exchange energy
!------------------------------------------------------------------------
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A60)') ' INDIVIDUAL EXCHANGE ENERGIES'
write(*,'(A60)') '-------------------------------------------------'
do iEns=1,nEns
write(*,'(A40,I2,A2,F16.10,A3)') ' Exchange energy state ',iEns,': ',sum(Ex(:,iEns)),' au'
end do
write(*,'(A60)') '-------------------------------------------------'
write(*,*)
! write(*,'(A60)') '-------------------------------------------------'
! write(*,'(A60)') ' INDIVIDUAL EXCHANGE ENERGIES'
! write(*,'(A60)') '-------------------------------------------------'
! do iEns=1,nEns
! write(*,'(A40,I2,A2,F16.10,A3)') ' Exchange energy state ',iEns,': ',sum(Ex(:,iEns)),' au'
! end do
! write(*,'(A60)') '-------------------------------------------------'
! write(*,*)
!------------------------------------------------------------------------
! Correlation energy
!------------------------------------------------------------------------
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A60)') ' INDIVIDUAL CORRELATION ENERGIES'
write(*,'(A60)') '-------------------------------------------------'
do iEns=1,nEns
write(*,'(A40,I2,A2,F16.10,A3)') ' Correlation energy state ',iEns,': ',sum(Ec(:,iEns)),' au'
end do
write(*,'(A60)') '-------------------------------------------------'
write(*,*)
! write(*,'(A60)') '-------------------------------------------------'
! write(*,'(A60)') ' INDIVIDUAL CORRELATION ENERGIES'
! write(*,'(A60)') '-------------------------------------------------'
! do iEns=1,nEns
! write(*,'(A40,I2,A2,F16.10,A3)') ' Correlation energy state ',iEns,': ',sum(Ec(:,iEns)),' au'
! end do
! write(*,'(A60)') '-------------------------------------------------'
! write(*,*)
!------------------------------------------------------------------------
! Auxiliary energies
@ -179,18 +179,18 @@ subroutine print_unrestricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,
write(*,'(A60)') '-------------------------------------------------'
write(*,'(A60)') ' ENERGY DIFFERENCES FROM INDIVIDUAL ENERGIES '
write(*,'(A60)') '-------------------------------------------------'
do iEns=1,nEns
write(*,'(A40,I2,A2,F16.10,A3)') ' Individual energy state ',iEns,': ',E(iEns) + ENuc,' au'
end do
write(*,'(A60)') '-------------------------------------------------'
! do iEns=1,nEns
! write(*,'(A40,I2,A2,F16.10,A3)') ' Individual energy state ',iEns,': ',E(iEns) + ENuc,' au'
! end do
! write(*,'(A60)') '-------------------------------------------------'
do iEns=2,nEns
write(*,'(A40,I2,A1,F16.10,A3)') ' Energy difference 1 -> ',iEns,':',Om(iEns), ' au'
write(*,*)
write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(iEns), ' au'
write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(iEns), ' au'
write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(iEns), ' au'
write(*,*)
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(iEns), ' au'
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(iEns), ' au'
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(iEns), ' au'
! write(*,*)
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(iEns), ' au'
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(iEns), ' au'
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(iENs),' au'
@ -200,10 +200,10 @@ subroutine print_unrestricted_individual_energy(nEns,ENuc,Ew,ET,EV,EJ,Ex,Ec,Exc,
write(*,'(A40,I2,A1,F16.10,A3)') ' Energy difference 1 -> ',iEns,':',Om(iEns)*HaToeV, ' eV'
write(*,*)
write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(iEns)*HaToeV, ' eV'
write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(iEns)*HaToeV, ' eV'
write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(iEns)*HaToeV, ' eV'
write(*,*)
! write(*,'(A44, F16.10,A3)') ' x energy contribution : ',Omx(iEns)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' c energy contribution : ',Omc(iEns)*HaToeV, ' eV'
! write(*,'(A44, F16.10,A3)') ' xc energy contribution : ',Omxc(iEns)*HaToeV, ' eV'
! write(*,*)
write(*,'(A44, F16.10,A3)') ' x ensemble derivative : ',OmxDD(iEns)*HaToeV, ' eV'
write(*,'(A44, F16.10,A3)') ' c ensemble derivative : ',OmcDD(iEns)*HaToeV, ' eV'
write(*,'(A44, F16.10,A3)') ' xc ensemble derivative : ',OmxcDD(iEns)*HaToeV,' eV'

View File

@ -1,5 +1,4 @@
subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho, &
doNcentered,kappa,Ec)
subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,drhow,doNcentered,LZc)
! Compute the correlation energy of individual states
@ -17,19 +16,16 @@ subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid,nspin)
double precision,intent(in) :: drhow(ncart,nGrid,nspin)
double precision,intent(in) :: rho(nGrid,nspin)
double precision,intent(in) :: drho(ncart,nGrid,nspin)
logical,intent(in) :: doNcentered
double precision,intent(in) :: kappa
! Local variables
double precision :: EcLDA(nsp)
double precision :: EcGGA(nsp)
double precision :: LZcLDA(nspin)
double precision :: LZcGGA(nspin)
! Output variables
double precision,intent(out) :: Ec(nsp)
double precision,intent(out) :: LZc(nspin)
select case (rung)
@ -37,14 +33,13 @@ subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns
case(0)
Ec(:) = 0d0
LZc(:) = 0d0
! LDA functionals
case(1)
call unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,rho, &
doNcentered,kappa,Ec)
call unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,doNcentered,LZc)
! GGA functionals
@ -62,7 +57,7 @@ subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns
case(4)
call unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,Ec)
call unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,LZc)
end select

View File

@ -1,5 +1,5 @@
subroutine unrestricted_exchange_individual_energy(rung,DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
ERI,Pw,P,rhow,drhow,rho,drho,Cx_choice,doNcentered,kappa,Ex)
ERI,Pw,rhow,drhow,Cx_choice,doNcentered,Ex)
! Compute the exchange individual energy
@ -20,14 +20,10 @@ subroutine unrestricted_exchange_individual_energy(rung,DFA,LDA_centered,nEns,wE
integer,intent(in) :: nBas
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: Pw(nBas,nBas)
double precision,intent(in) :: P(nBas,nBas)
double precision,intent(in) :: rhow(nGrid)
double precision,intent(in) :: drhow(ncart,nGrid)
double precision,intent(in) :: rho(nGrid)
double precision,intent(in) :: drho(ncart,nGrid)
integer,intent(in) :: Cx_choice
logical,intent(in) :: doNcentered
double precision,intent(in) :: kappa
! Output variables
@ -46,25 +42,25 @@ subroutine unrestricted_exchange_individual_energy(rung,DFA,LDA_centered,nEns,wE
case(1)
call unrestricted_lda_exchange_individual_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,&
rhow,rho,Cx_choice,doNcentered,kappa,Ex)
rhow,Cx_choice,doNcentered,Ex)
! GGA functionals
case(2)
call unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,Ex)
call unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ex)
! MGGA functionals
case(3)
call unrestricted_mgga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,Ex)
call unrestricted_mgga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ex)
! Hybrid functionals
case(4)
call unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,nBas,ERI,Pw,P,rhow,drhow,rho,drho,Ex)
call unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,nBas,ERI,Pw,rhow,drhow,Ex)
end select

View File

@ -1,4 +1,4 @@
subroutine unrestricted_fock_exchange_individual_energy(nBas,Pw,P,ERI,Ex)
subroutine unrestricted_fock_exchange_individual_energy(nBas,Pw,ERI,Ex)
! Compute the HF individual energy in the unrestricted formalism
@ -8,7 +8,6 @@ subroutine unrestricted_fock_exchange_individual_energy(nBas,Pw,P,ERI,Ex)
integer,intent(in) :: nBas
double precision,intent(in) :: Pw(nBas,nBas)
double precision,intent(in) :: P(nBas,nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
! Local variables
@ -26,7 +25,6 @@ subroutine unrestricted_fock_exchange_individual_energy(nBas,Pw,P,ERI,Ex)
call unrestricted_fock_exchange_potential(nBas,Pw,ERI,Fx)
Ex = trace_matrix(nBas,matmul(P ,Fx)) &
- 0.5d0*trace_matrix(nBas,matmul(Pw,Fx))
Ex = - 0.5d0*trace_matrix(nBas,matmul(Pw,Fx))
end subroutine unrestricted_fock_exchange_individual_energy

View File

@ -1,4 +1,4 @@
subroutine unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,Ex)
subroutine unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ex)
! Compute GGA exchange energy for individual states
@ -14,8 +14,6 @@ subroutine unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weigh
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid)
double precision,intent(in) :: drhow(ncart,nGrid)
double precision,intent(in) :: rho(nGrid)
double precision,intent(in) :: drho(ncart,nGrid)
! Output variables

View File

@ -1,4 +1,4 @@
subroutine unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,Ec)
subroutine unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ec)
! Compute the hybrid correlation energy for individual states
@ -14,8 +14,6 @@ subroutine unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid)
double precision,intent(in) :: drhow(ncart,nGrid)
double precision,intent(in) :: rho(nGrid)
double precision,intent(in) :: drho(ncart,nGrid)
! Output variables

View File

@ -1,4 +1,4 @@
subroutine unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,nBas,ERI,Pw,P,rhow,drhow,rho,drho,Ex)
subroutine unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,nBas,ERI,Pw,rhow,drhow,Ex)
! Compute the hybrid exchange energy for individual states
@ -14,13 +14,10 @@ subroutine unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,we
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid)
double precision,intent(in) :: drhow(ncart,nGrid)
double precision,intent(in) :: rho(nGrid)
double precision,intent(in) :: drho(ncart,nGrid)
integer,intent(in) :: nBas
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: Pw(nBas,nBas)
double precision,intent(in) :: P(nBas,nBas)
! Output variables
@ -32,7 +29,7 @@ subroutine unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,we
case (1)
call unrestricted_fock_exchange_individual_energy(nBas,Pw,P,ERI,Ex)
call unrestricted_fock_exchange_individual_energy(nBas,Pw,ERI,Ex)
case default

View File

@ -1,5 +1,5 @@
subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,dAO, &
T,V,ERI,ENuc,eps,Pw,rhow,drhow,J,Fx,FxHF,Fc,P,rho,drho,Ew,E,Om,occnum,&
T,V,ERI,ENuc,eps,Pw,rhow,drhow,J,Fx,FxHF,Fc,P,rho,drho,Ew,occnum,&
Cx_choice,doNcentered)
! Compute unrestricted individual energies as well as excitation energies
@ -40,7 +40,7 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
double precision,intent(in) :: Fx(nBas,nBas,nspin)
double precision,intent(in) :: FxHF(nBas,nBas,nspin)
double precision,intent(in) :: Fc(nBas,nBas,nspin)
double precision :: Ew
double precision,intent(in) :: Ew
double precision,intent(in) :: occnum(nBas,nspin,nEns)
integer,intent(in) :: Cx_choice
logical,intent(in) :: doNcentered
@ -54,6 +54,10 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
double precision :: Ex(nspin,nEns)
double precision :: Ec(nsp,nEns)
double precision :: Exc(nEns)
double precision :: LZH(nspin)
double precision :: LZx(nspin)
double precision :: LZc(nspin)
double precision :: LZHxc(nspin)
double precision :: Eaux(nspin,nEns)
double precision :: ExDD(nspin,nEns)
@ -70,14 +74,12 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
double precision,allocatable :: nEl(:)
double precision,allocatable :: kappa(:)
double precision :: E(nEns)
double precision :: Om(nEns)
double precision,external :: electron_number
! Output variables
double precision,intent(out) :: E(nEns)
double precision,intent(out) :: Om(nEns)
! Compute scaling factor for N-centered ensembles
allocate(nEl(nEns),kappa(nEns))
@ -95,83 +97,91 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
! Kinetic energy
!------------------------------------------------------------------------
do ispin=1,nspin
do iEns=1,nEns
ET(ispin,iEns) = trace_matrix(nBas,matmul(P(:,:,ispin,iEns),T(:,:)))
end do
end do
! do ispin=1,nspin
! do iEns=1,nEns
! ET(ispin,iEns) = trace_matrix(nBas,matmul(P(:,:,ispin,iEns),T(:,:)))
! end do
! end do
!------------------------------------------------------------------------
! Potential energy
!------------------------------------------------------------------------
do iEns=1,nEns
do ispin=1,nspin
EV(ispin,iEns) = trace_matrix(nBas,matmul(P(:,:,ispin,iEns),V(:,:)))
end do
end do
! do iEns=1,nEns
! do ispin=1,nspin
! EV(ispin,iEns) = trace_matrix(nBas,matmul(P(:,:,ispin,iEns),V(:,:)))
! end do
! end do
!------------------------------------------------------------------------
! Individual Hartree energy
!------------------------------------------------------------------------
do iEns=1,nEns
! do iEns=1,nEns
! do ispin=1,nspin
! call hartree_coulomb(nBas,Pw(:,:,ispin),ERI,J(:,:,ispin))
! end do
! if(doNcentered) then
!
! EJ(1,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,1))) &
! - 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
!
! EJ(2,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,2))) &
! + kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,1))) &
! - 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2))) &
! - 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,1)))
!
! EJ(3,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,2))) &
! - 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
! else
! EJ(1,iEns) = trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,1))) &
! - 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
! EJ(2,iEns) = trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,2))) &
! + trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,1))) &
! - 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2))) &
! - 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,1)))
! EJ(3,iEns) = trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,2))) &
! - 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
! end if
! end do
!------------------------------------------------------------------------
! Individual Hartree energy
!------------------------------------------------------------------------
do ispin=1,nspin
call hartree_coulomb(nBas,Pw(:,:,ispin),ERI,J(:,:,ispin))
end do
if(doNcentered) then
EJ(1,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,1))) &
- 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
EJ(2,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,2))) &
+ kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,1))) &
- 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2))) &
- 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,1)))
EJ(3,iEns) = kappa(iEns)*trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,2))) &
- 0.5d0*kappa(iEns)*kappa(iEns)*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
else
EJ(1,iEns) = trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,1))) &
- 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
EJ(2,iEns) = trace_matrix(nBas,matmul(P(:,:,1,iEns),J(:,:,2))) &
+ trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,1))) &
- 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,2))) &
- 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,1)))
EJ(3,iEns) = trace_matrix(nBas,matmul(P(:,:,2,iEns),J(:,:,2))) &
- 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,2),J(:,:,2)))
end if
LZH(ispin) = -0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1)+Pw(:,:,2),J(:,:,ispin)))
end do
!------------------------------------------------------------------------
! Individual exchange energy
!------------------------------------------------------------------------
do iEns=1,nEns
do ispin=1,nspin
call unrestricted_exchange_individual_energy(x_rung,x_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,ERI, &
Pw(:,:,ispin),P(:,:,ispin,iEns),rhow(:,ispin),drhow(:,:,ispin), &
rho(:,ispin,iEns),drho(:,:,ispin,iEns),Cx_choice,doNcentered,kappa(iEns), &
Ex(ispin,iEns))
end do
Pw(:,:,ispin),rhow(:,ispin),drhow(:,:,ispin),Cx_choice,doNcentered, &
LZx(ispin))
end do
!------------------------------------------------------------------------
! Individual correlation energy
!------------------------------------------------------------------------
do iEns=1,nEns
call unrestricted_correlation_individual_energy(c_rung,c_DFA,LDA_centered,nEns,wEns,nGrid,weight, &
rhow,drhow,rho(:,:,iEns),drho(:,:,:,iEns),doNcentered,kappa(iEns),Ec(:,iEns))
end do
call unrestricted_correlation_individual_energy(c_rung,c_DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,drhow,doNcentered,LZc)
!------------------------------------------------------------------------
! Individual exchange-correlation energy
!------------------------------------------------------------------------
print*,LZc
LZHxc(:) = LZH(:) + LZx(:) + LZc(:)
!------------------------------------------------------------------------
! Compute auxiliary energies
@ -199,10 +209,14 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
! Total energy
!------------------------------------------------------------------------
! do iEns=1,nEns
! Exc(iEns) = sum(Ex(:,iEns)) + sum(Ec(:,iEns))
! E(iEns) = sum(ET(:,iEns)) + sum(EV(:,iEns)) + sum(EJ(:,iEns)) &
! + sum(Ex(:,iEns)) + sum(Ec(:,iEns)) + sum(ExcDD(:,iEns))
! end do
do iEns=1,nEns
Exc(iEns) = sum(Ex(:,iEns)) + sum(Ec(:,iEns))
E(iEns) = sum(ET(:,iEns)) + sum(EV(:,iEns)) + sum(EJ(:,iEns)) &
+ sum(Ex(:,iEns)) + sum(Ec(:,iEns)) + sum(ExcDD(:,iEns))
E(iEns) = sum(Eaux(:,iEns)) + sum(LZHxc(:)) + sum(ExcDD(:,iEns))
end do
!------------------------------------------------------------------------
@ -212,9 +226,9 @@ subroutine unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered
do iEns=1,nEns
Om(iEns) = E(iEns) - E(1)
Omx(iEns) = sum(Ex(:,iEns)) - sum(Ex(:,1))
Omc(iEns) = sum(Ec(:,iEns)) - sum(Ec(:,1))
Omxc(iEns) = Exc(iEns) - Exc(1)
! Omx(iEns) = sum(Ex(:,iEns)) - sum(Ex(:,1))
! Omc(iEns) = sum(Ec(:,iEns)) - sum(Ec(:,1))
! Omxc(iEns) = Exc(iEns) - Exc(1)
Omaux(iEns) = sum(Eaux(:,iEns)) - sum(Eaux(:,1))

View File

@ -1,5 +1,4 @@
subroutine unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,rho, &
doNcentered,kappa,Ec)
subroutine unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,doNcentered,LZc)
! Compute LDA correlation energy for individual states
@ -15,13 +14,11 @@ subroutine unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid,nspin)
double precision,intent(in) :: rho(nGrid,nspin)
logical,intent(in) :: doNcentered
double precision,intent(in) :: kappa
! Output variables
double precision :: Ec(nsp)
double precision :: LZc(nspin)
! Select correlation functional
@ -37,11 +34,11 @@ subroutine unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,
case (3)
call UVWN3_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcentered,kappa,Ec)
call UVWN3_lda_correlation_individual_energy(nGrid,weight,rhow,doNcentered,LZc)
case (4)
call UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,rho,doNcentered,kappa,Ec)
call UVWN5_lda_correlation_individual_energy(nGrid,weight,rhow,doNcentered,LZc)
case default

View File

@ -1,5 +1,5 @@
subroutine unrestricted_lda_exchange_individual_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,rhow,rho,&
Cx_choice,doNcentered,kappa,Ex)
subroutine unrestricted_lda_exchange_individual_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,rhow,&
Cx_choice,doNcentered,Ex)
! Compute LDA exchange energy for individual states
@ -17,10 +17,8 @@ subroutine unrestricted_lda_exchange_individual_energy(DFA,LDA_centered,nEns,wEn
integer,intent(in) :: nGrid
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid)
double precision,intent(in) :: rho(nGrid)
integer,intent(in) :: Cx_choice
logical,intent(in) :: doNcentered
double precision,intent(in) :: kappa
! Output variables
@ -33,12 +31,12 @@ subroutine unrestricted_lda_exchange_individual_energy(DFA,LDA_centered,nEns,wEn
case (1)
call US51_lda_exchange_individual_energy(nGrid,weight,rhow,rho,doNcentered,kappa,Ex)
call US51_lda_exchange_individual_energy(nGrid,weight,rhow,Ex)
case (2)
call UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rhow,rho,&
Cx_choice,doNcentered,kappa,Ex)
call UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rhow, &
Cx_choice,doNcentered,Ex)
case default

View File

@ -1,4 +1,4 @@
subroutine unrestricted_mgga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,Ex)
subroutine unrestricted_mgga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ex)
! Compute MGGA exchange energy for individual states
@ -14,8 +14,6 @@ subroutine unrestricted_mgga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weig
double precision,intent(in) :: weight(nGrid)
double precision,intent(in) :: rhow(nGrid)
double precision,intent(in) :: drhow(ncart,nGrid)
double precision,intent(in) :: rho(nGrid)
double precision,intent(in) :: drho(ncart,nGrid)
! Output variables