mirror of
https://github.com/pfloos/quack
synced 2024-11-04 21:23:55 +01:00
fix bug in RMFL20
This commit is contained in:
parent
9e8eeb4522
commit
af9660b004
@ -41,9 +41,7 @@ subroutine RMFL20_lda_correlation_derivative_discontinuity(nEns,wEns,nGrid,weigh
|
||||
! Compute correlation energy for ground, singly-excited and doubly-excited states
|
||||
|
||||
do iEns=1,nEns
|
||||
|
||||
call restricted_elda_correlation_energy(aMFL(:,iEns),nGrid,weight(:),rhow(:),dEcdw(iEns))
|
||||
|
||||
end do
|
||||
|
||||
EcDD(:) = 0d0
|
||||
|
@ -50,17 +50,10 @@ subroutine RMFL20_lda_correlation_energy(nEns,wEns,nGrid,weight,rho,Ec)
|
||||
|
||||
call RVWN5_lda_correlation_energy(nGrid,weight(:),rho(:),EcLDA)
|
||||
|
||||
if(LDA_centered) then
|
||||
do iEns=1,nEns
|
||||
EceLDA(iEns) = EceLDA(iEns) + EcLDA - EceLDA(1)
|
||||
end do
|
||||
end if
|
||||
if(LDA_centered) EceLDA(:) = EceLDA(:) + EcLDA - EceLDA(1)
|
||||
|
||||
! Weight-denpendent functional for ensembles
|
||||
|
||||
Ec = 0d0
|
||||
do iEns=1,nEns
|
||||
Ec = Ec + wEns(iEns)*EceLDA(iEns)
|
||||
end do
|
||||
Ec = dot_product(wEns(:),EceLDA(:))
|
||||
|
||||
end subroutine RMFL20_lda_correlation_energy
|
||||
|
@ -50,17 +50,10 @@ subroutine RMFL20_lda_correlation_individual_energy(nEns,wEns,nGrid,weight,rhow,
|
||||
|
||||
call RVWN5_lda_correlation_individual_energy(nGrid,weight(:),rhow(:),rho(:),EcLDA)
|
||||
|
||||
if(LDA_centered) then
|
||||
do iEns=1,nEns
|
||||
EceLDA(iEns) = EceLDA(iEns) + EcLDA - EceLDA(1)
|
||||
end do
|
||||
end if
|
||||
if(LDA_centered) EceLDA(:) = EceLDA(:) + EcLDA - EceLDA(1)
|
||||
|
||||
! Weight-denpendent functional for ensembles
|
||||
|
||||
Ec = 0d0
|
||||
do iEns=1,nEns
|
||||
Ec = Ec + wEns(iEns)*EceLDA(iEns)
|
||||
enddo
|
||||
Ec = dot_product(wEns(:),EceLDA(:))
|
||||
|
||||
end subroutine RMFL20_lda_correlation_individual_energy
|
||||
|
@ -44,7 +44,7 @@ include 'parameters.h'
|
||||
! Compute correlation energy for ground, singly-excited and doubly-excited states
|
||||
|
||||
do iEns=1,nEns
|
||||
call restricted_elda_correlation_potential(nEns,aMFL(:,iEns),nGrid,weight,nBas,AO,rho,FceLDA(:,:,iEns))
|
||||
call restricted_elda_correlation_potential(aMFL(:,iEns),nGrid,weight,nBas,AO,rho,FceLDA(:,:,iEns))
|
||||
end do
|
||||
|
||||
! LDA-centered functional
|
||||
|
@ -16,7 +16,8 @@ subroutine RMFL20_lda_exchange_derivative_discontinuity(nEns,wEns,nGrid,weight,r
|
||||
! Local variables
|
||||
|
||||
integer :: iEns,jEns
|
||||
double precision :: Cx(nEns)
|
||||
integer :: iG
|
||||
double precision :: r
|
||||
double precision :: dExdw(nEns)
|
||||
double precision,external :: Kronecker_delta
|
||||
|
||||
@ -24,15 +25,19 @@ subroutine RMFL20_lda_exchange_derivative_discontinuity(nEns,wEns,nGrid,weight,r
|
||||
|
||||
double precision,intent(out) :: ExDD(nEns)
|
||||
|
||||
! Weight-dependent Cx coefficient for RMFL20 exchange functional
|
||||
|
||||
Cx(1) = Cx0
|
||||
Cx(2) = Cx1
|
||||
|
||||
! Compute correlation energy for ground- and doubly-excited states
|
||||
|
||||
do iEns=1,nEns
|
||||
call restricted_elda_exchange_energy(nEns,Cx(iEns),nGrid,weight(:),rhow(:),dExdw(iEns))
|
||||
dExdw(:) = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rhow(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
dExdw(1) = dExdw(1) + weight(iG)*Cx0*r**(4d0/3d0)
|
||||
dExdw(2) = dExdw(2) + weight(iG)*Cx1*r**(4d0/3d0)
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
ExDD(:) = 0d0
|
||||
|
@ -33,16 +33,18 @@ subroutine RMFL20_lda_exchange_energy(nEns,wEns,nGrid,weight,rho,Ex)
|
||||
Cxw = wEns(1)*Cx0 + wEns(2)*Cx1
|
||||
end if
|
||||
|
||||
! Cxw = CxLDA + (Cx1 - Cx0)*wEns(2)*(cos(2d0*pi*wEns(2)) + 1d0)
|
||||
|
||||
! Compute LDA exchange energy
|
||||
|
||||
Ex = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
Ex = Ex + weight(iG)*Cxw*r**(4d0/3d0)
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine RMFL20_lda_exchange_energy
|
||||
|
@ -34,8 +34,6 @@ subroutine RMFL20_lda_exchange_individual_energy(nEns,wEns,nGrid,weight,rhow,rho
|
||||
Cxw = wEns(1)*Cx0 + wEns(2)*Cx1
|
||||
end if
|
||||
|
||||
! Cxw = CxLDA + (Cx1 - Cx0)*wEns(2)*(cos(2d0*pi*wEns(2)) + 1d0)
|
||||
|
||||
! Compute LDA exchange matrix in the AO basis
|
||||
|
||||
Ex = 0d0
|
||||
|
@ -34,11 +34,10 @@ subroutine RMFL20_lda_exchange_potential(nEns,wEns,nGrid,weight,nBas,AO,rho,Fx)
|
||||
Cxw = wEns(1)*Cx0 + wEns(2)*Cx1
|
||||
end if
|
||||
|
||||
! Cxw = CxLDA + (Cx1 - Cx0)*wEns(2)*(cos(2d0*pi*wEns(2)) + 1d0)
|
||||
|
||||
! Compute LDA exchange matrix in the AO basis
|
||||
|
||||
Fx(:,:) = 0d0
|
||||
|
||||
do mu=1,nBas
|
||||
do nu=1,nBas
|
||||
do iG=1,nGrid
|
||||
|
@ -1,5 +1,5 @@
|
||||
subroutine allocate_grid(nNuc,ZNuc,rNuc,nShell,TotAngMomShell,ExpShell,max_ang_mom,min_exponent,max_exponent, &
|
||||
radial_precision,nRad,nAng,nGrid)
|
||||
subroutine allocate_grid(nNuc,ZNuc,max_ang_mom,min_exponent,max_exponent, &
|
||||
radial_precision,nAng,nGrid)
|
||||
|
||||
! Allocate quadrature grid with numgrid (Radovan Bast)
|
||||
|
||||
@ -13,18 +13,12 @@ subroutine allocate_grid(nNuc,ZNuc,rNuc,nShell,TotAngMomShell,ExpShell,max_ang_m
|
||||
|
||||
integer,intent(in) :: nNuc
|
||||
double precision,intent(in) :: ZNuc(nNuc)
|
||||
double precision,intent(in) :: rNuc(nNuc,ncart)
|
||||
|
||||
integer,intent(in) :: nShell
|
||||
integer,intent(in) :: TotAngMomShell(maxShell)
|
||||
double precision,intent(in) :: ExpShell(maxShell,maxK)
|
||||
|
||||
integer,intent(in) :: max_ang_mom(nNuc)
|
||||
double precision,intent(in) :: min_exponent(nNuc,maxL+1)
|
||||
double precision,intent(in) :: max_exponent(nNuc)
|
||||
|
||||
double precision :: radial_precision
|
||||
integer,intent(in) :: nRad
|
||||
integer,intent(in) :: nAng
|
||||
|
||||
! Local variables
|
||||
@ -33,9 +27,7 @@ subroutine allocate_grid(nNuc,ZNuc,rNuc,nShell,TotAngMomShell,ExpShell,max_ang_m
|
||||
|
||||
integer :: min_num_angular_points
|
||||
integer :: max_num_angular_points
|
||||
integer :: num_points
|
||||
|
||||
integer :: center_index
|
||||
type(c_ptr) :: context
|
||||
|
||||
! Output variables
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine build_grid(nNuc,ZNuc,rNuc,nShell,TotAngMomShell,ExpShell,max_ang_mom,min_exponent,max_exponent, &
|
||||
subroutine build_grid(nNuc,ZNuc,rNuc,max_ang_mom,min_exponent,max_exponent, &
|
||||
radial_precision,nRad,nAng,nGrid,weight,root)
|
||||
|
||||
! Compute quadrature grid with numgrid (Radovan Bast)
|
||||
@ -15,10 +15,6 @@ subroutine build_grid(nNuc,ZNuc,rNuc,nShell,TotAngMomShell,ExpShell,max_ang_mom,
|
||||
double precision,intent(in) :: ZNuc(nNuc)
|
||||
double precision,intent(in) :: rNuc(nNuc,ncart)
|
||||
|
||||
integer,intent(in) :: nShell
|
||||
integer,intent(in) :: TotAngMomShell(maxShell)
|
||||
double precision,intent(in) :: ExpShell(maxShell,maxK)
|
||||
|
||||
integer,intent(in) :: max_ang_mom(nNuc)
|
||||
double precision,intent(in) :: min_exponent(nNuc,maxL+1)
|
||||
double precision,intent(in) :: max_exponent(nNuc)
|
||||
|
@ -136,14 +136,13 @@ program eDFT
|
||||
call read_grid(SGn,radial_precision,nRad,nAng,nGrid)
|
||||
! nGrid = nRad*nAng
|
||||
|
||||
call allocate_grid(nNuc,ZNuc,rNuc,nShell,TotAngMomShell,ExpShell,max_ang_mom,min_exponent,max_exponent, &
|
||||
radial_precision,nRad,nAng,nGrid)
|
||||
call allocate_grid(nNuc,ZNuc,max_ang_mom,min_exponent,max_exponent,radial_precision,nAng,nGrid)
|
||||
|
||||
allocate(root(ncart,nGrid),weight(nGrid))
|
||||
|
||||
! call quadrature_grid(nRad,nAng,nGrid,root,weight)
|
||||
|
||||
call build_grid(nNuc,ZNuc,rNuc,nShell,TotAngMomShell,ExpShell,max_ang_mom,min_exponent,max_exponent, &
|
||||
call build_grid(nNuc,ZNuc,rNuc,max_ang_mom,min_exponent,max_exponent, &
|
||||
radial_precision,nRad,nAng,nGrid,weight,root)
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
|
@ -31,8 +31,8 @@ subroutine elda_correlation_individual_energy(nEns,aLF,nGrid,weight,rhow,rho,Ec)
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
ra = max(0d0,rho(iG,1))
|
||||
rb = max(0d0,rho(iG,2))
|
||||
ra = max(0d0,rhow(iG,1))
|
||||
rb = max(0d0,rhow(iG,2))
|
||||
|
||||
raI = max(0d0,rho(iG,1))
|
||||
rbI = max(0d0,rho(iG,2))
|
||||
|
@ -31,11 +31,8 @@ subroutine restricted_elda_correlation_energy(aMFL,nGrid,weight,rho,Ec)
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
e = aMFL(1)/(1d0 + aMFL(2)*r**(-1d0/6d0) + aMFL(3)*r**(-1d0/3d0))
|
||||
|
||||
Ec = Ec + weight(iG)*e*r
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
@ -31,7 +31,7 @@ subroutine restricted_elda_correlation_individual_energy(nEns,aLF,nGrid,weight,r
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
r = max(0d0,rhow(iG))
|
||||
rI = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold .and. rI > threshold) then
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine restricted_elda_correlation_potential(nEns,aMFL,nGrid,weight,nBas,AO,rho,Fc)
|
||||
subroutine restricted_elda_correlation_potential(aMFL,nGrid,weight,nBas,AO,rho,Fc)
|
||||
|
||||
! Compute LDA correlation energy of 2-glomium for various states
|
||||
|
||||
@ -7,7 +7,6 @@ subroutine restricted_elda_correlation_potential(nEns,aMFL,nGrid,weight,nBas,AO,
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: aMFL(3)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
|
@ -1,42 +0,0 @@
|
||||
subroutine restricted_elda_exchange_energy(nEns,Cx,nGrid,weight,rho,Ex)
|
||||
|
||||
! Compute the restricted LDA exchange energy of 2-glomium for various states
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: Cx
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: r
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Ex
|
||||
|
||||
|
||||
! Compute eLDA exchange energy
|
||||
|
||||
Ex = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
r = max(0d0,rho(iG))
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
Ex = Ex + weight(iG)*Cx*r**(4d0/3d0)
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
end subroutine restricted_elda_exchange_energy
|
Loading…
Reference in New Issue
Block a user