10
1
mirror of https://github.com/pfloos/quack synced 2025-01-03 01:55:57 +01:00

Merge branch 'master' of github.com:pfloos/QuAcK

This commit is contained in:
Pierre-Francois Loos 2024-12-16 15:32:36 +01:00
commit a9ee0cfb32
51 changed files with 3670 additions and 264 deletions

3
.gitignore vendored
View File

@ -1,3 +1,6 @@
*.slurm
*.mod
*.so
*.o
*.
__pycache__

View File

@ -6,6 +6,8 @@ import pyscf
from pyscf import gto
import numpy as np
import subprocess
import time
#Find the value of the environnement variable QUACK_ROOT. If not present we use the current repository
if "QUACK_ROOT" not in os.environ:
@ -22,7 +24,10 @@ parser.add_argument('-b', '--basis', type=str, required=True, help='Name of the
parser.add_argument('--bohr', default='Angstrom', action='store_const', const='Bohr', help='By default QuAcK assumes that the xyz files are in Angstrom. Add this argument if your xyz file is in Bohr.')
parser.add_argument('-c', '--charge', type=int, default=0, help='Total charge of the molecule. Specify negative charges with "m" instead of the minus sign, for example m1 instead of -1. Default is 0')
parser.add_argument('--cartesian', default=False, action='store_true', help='Add this option if you want to use cartesian basis functions.')
parser.add_argument('--print_2e', default=False, action='store_true', help='Add this option if you want to print 2e-integrals.')
parser.add_argument('--print_2e', default=True, action='store_true', help='If True, print 2e-integrals to disk.')
parser.add_argument('--formatted_2e', default=False, action='store_true', help='Add this option if you want to print formatted 2e-integrals.')
parser.add_argument('--mmap_2e', default=False, action='store_true', help='If True, avoid using DRAM when generating 2e-integrals.')
parser.add_argument('--aosym_2e', default=False, action='store_true', help='If True, use 8-fold symmetry 2e-integrals.')
parser.add_argument('-fc', '--frozen_core', type=bool, default=False, help='Freeze core MOs. Default is false')
parser.add_argument('-m', '--multiplicity', type=int, default=1, help='Spin multiplicity. Default is 1 therefore singlet')
parser.add_argument('--working_dir', type=str, default=QuAcK_dir, help='Set a working directory to run the calculation.')
@ -38,6 +43,9 @@ multiplicity=args.multiplicity
xyz=args.xyz + '.xyz'
cartesian=args.cartesian
print_2e=args.print_2e
formatted_2e=args.formatted_2e
mmap_2e=args.mmap_2e
aosym_2e=args.aosym_2e
working_dir=args.working_dir
#Read molecule
@ -59,6 +67,7 @@ mol = gto.M(
basis = input_basis,
charge = charge,
spin = multiplicity - 1
# symmetry = True # Enable symmetry
)
#Fix the unit for the lengths
@ -129,33 +138,57 @@ write_matrix_to_file(y,norb,working_dir+'/int/y.dat')
subprocess.call(['rm', '-f', working_dir + '/int/z.dat'])
write_matrix_to_file(z,norb,working_dir+'/int/z.dat')
eri_ao = mol.intor('int2e')
def write_tensor_to_file(tensor,size,file,cutoff=1e-15):
f = open(file, 'w')
def write_tensor_to_file(tensor,size,file_name,cutoff=1e-15):
f = open(file_name, 'w')
for i in range(size):
for j in range(i,size):
for k in range(i,size):
for l in range(j,size):
if abs(tensor[i][k][j][l]) > cutoff:
#f.write(str(i+1)+' '+str(j+1)+' '+str(k+1)+' '+str(l+1)+' '+"{:.16E}".format(tensor[i][k][j][l]))
f.write(str(i+1)+' '+str(j+1)+' '+str(k+1)+' '+str(l+1)+' '+"{:.16E}".format(tensor[i][k][j][l]))
f.write('\n')
f.close()
# Write two-electron integrals
if print_2e:
# (formatted)
subprocess.call(['rm', '-f', working_dir + '/int/ERI.dat'])
write_tensor_to_file(eri_ao, norb, working_dir + '/int/ERI.dat')
else:
# (binary)
subprocess.call(['rm', '-f', working_dir + '/int/ERI.bin'])
# chem -> phys notation
eri_ao = eri_ao.transpose(0, 2, 1, 3)
f = open(working_dir + '/int/ERI.bin', 'w')
eri_ao.tofile(working_dir + '/int/ERI.bin')
f.close()
# Write two-electron integrals to HD
ti_2e = time.time()
if formatted_2e:
output_file_path = working_dir + '/int/ERI.dat'
subprocess.call(['rm', '-f', output_file_path])
eri_ao = mol.intor('int2e')
write_tensor_to_file(eri_ao, norb, output_file_path)
if aosym_2e:
output_file_path = working_dir + '/int/ERI_chem.bin'
subprocess.call(['rm', '-f', output_file_path])
eri_ao = mol.intor('int2e', aosym='s8')
f = open(output_file_path, 'w')
eri_ao.tofile(output_file_path)
f.close()
else:
output_file_path = working_dir + '/int/ERI.bin'
subprocess.call(['rm', '-f', output_file_path])
if(mmap_2e):
# avoid using DRAM
eri_shape = (norb, norb, norb, norb)
eri_mmap = np.memmap(output_file_path, dtype='float64', mode='w+', shape=eri_shape)
mol.intor('int2e', out=eri_mmap)
for i in range(norb):
eri_mmap[i, :, :, :] = eri_mmap[i, :, :, :].transpose(1, 0, 2)
eri_mmap.flush()
del eri_mmap
else:
eri_ao = mol.intor('int2e').transpose(0, 2, 1, 3) # chem -> phys
f = open(output_file_path, 'w')
eri_ao.tofile(output_file_path)
f.close()
te_2e = time.time()
print("Wall time for writing 2e-integrals to disk: {:.3f} seconds".format(te_2e - ti_2e))
sys.stdout.flush()
#Execute the QuAcK fortran program

4
input/hpc_flags Normal file
View File

@ -0,0 +1,4 @@
# if True (T), switch to HPC mode
F
# if True (T), use GPU
F

View File

@ -13,3 +13,5 @@ esac
export QUACK_ROOT="$( cd $QUACK_ROOT; pwd -P )"
export PATH="${QUACK_ROOT}/bin:$PATH"
export LD_LIBRARY_PATH="${QUACK_ROOT}/src/cuda/build:$LD_LIBRARY_PATH"

View File

@ -32,3 +32,147 @@ subroutine Hartree_matrix_AO_basis(nBas,P,G,H)
end do
end subroutine
! ---
subroutine Hartree_matrix_AO_basis_hpc(nBas, ERI_size, P, ERI_chem, H)
implicit none
integer, intent(in) :: nBas
integer*8, intent(in) :: ERI_size
double precision, intent(in) :: P(nBas,nBas)
double precision, intent(in) :: ERI_chem(ERI_size)
double precision, intent(out) :: H(nBas,nBas)
integer*8 :: mu, nu, la, si, nBas8
integer*8 :: nunu, lala, nula, lasi, numu
integer*8 :: nunu0, lala0
integer*8 :: nunununu, nunulala, nununula, nunulasi
integer*8 :: lalanunu, lasinunu, numulala, lalanumu
integer*8 :: numunula, numulasi, lasinumu, nununumu
integer*8 :: nunununu0, numunumu0
nBas8 = int(nBas, kind=8)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE (nu, la, si, mu, &
!$OMP nunu0, nunu, nula, lala0, lala, lasi, numu, &
!$OMP nunununu0, nunununu, nununula, numulala, numunula, &
!$OMP nunulala, lalanunu, lalanumu, nunulasi, lasinunu, &
!$OMP numunumu0, nununumu, numulasi, lasinumu) &
!$OMP SHARED (nBas8, H, P, ERI_chem)
!$OMP DO
do nu = 1, nBas8
nunu0 = shiftr(nu * (nu - 1), 1)
nunu = nunu0 + nu
nunununu0 = shiftr(nunu * (nunu - 1), 1)
nunununu = nunununu0 + nunu
H(nu,nu) = P(nu,nu) * ERI_chem(nunununu)
do la = 1, nu - 1
lala0 = shiftr(la * (la - 1), 1)
lala = lala0 + la
nunulala = nunununu0 + lala
H(nu,nu) = H(nu,nu) + P(la,la) * ERI_chem(nunulala)
nula = nunu0 + la
nununula = nunununu0 + nula
H(nu,nu) = H(nu,nu) + 2.d0 * P(la,nu) * ERI_chem(nununula)
do si = 1, la - 1
lasi = lala0 + si
nunulasi = nunununu0 + lasi
H(nu,nu) = H(nu,nu) + 2.d0 * P(si,la) * ERI_chem(nunulasi)
enddo
enddo
do la = nu + 1, nBas8
lala0 = shiftr(la * (la - 1), 1)
lala = lala0 + la
lalanunu = shiftr(lala * (lala - 1), 1) + nunu
H(nu,nu) = H(nu,nu) + P(la,la) * ERI_chem(lalanunu)
do si = 1, la - 1
lasi = lala0 + si
lasinunu = shiftr(lasi * (lasi - 1), 1) + nunu
H(nu,nu) = H(nu,nu) + 2.d0 * P(si,la) * ERI_chem(lasinunu)
enddo
enddo
do mu = 1, nu - 1
numu = nunu0 + mu
numunumu0 = shiftr(numu * (numu - 1), 1)
nununumu = nunununu0 + numu
H(mu,nu) = p(nu,nu) * ERI_chem(nununumu)
do la = 1, nu - 1
lala = shiftr(la * (la - 1), 1) + la
numulala = numunumu0 + lala
H(mu,nu) = H(mu,nu) + p(la,la) * ERI_chem(numulala)
enddo
do la = nu + 1, nBas8
lala = shiftr(la * (la - 1), 1) + la
lalanumu = shiftr(lala * (lala - 1), 1) + numu
H(mu,nu) = H(mu,nu) + p(la,la) * ERI_chem(lalanumu)
enddo
do la = 1, mu
nula = nunu0 + la
numunula = numunumu0 + nula
H(mu,nu) = H(mu,nu) + 2.d0 * P(la,nu) * ERI_chem(numunula)
enddo
do la = mu + 1, nu - 1
nula = nunu0 + la
numunula = shiftr(nula * (nula - 1), 1) + numu
H(mu,nu) = H(mu,nu) + 2.d0 * P(la,nu) * ERI_chem(numunula)
enddo
do la = 2, nu - 1
lala0 = shiftr(la * (la - 1), 1)
do si = 1, la - 1
lasi = lala0 + si
numulasi = numunumu0 + lasi
H(mu,nu) = H(mu,nu) + 2.d0 * P(si,la) * ERI_chem(numulasi)
enddo
enddo
do la = nu + 1, nBas8
lala0 = shiftr(la * (la - 1), 1)
do si = 1, la - 1
lasi = lala0 + si
lasinumu = shiftr(lasi * (lasi - 1), 1) + numu
H(mu,nu) = H(mu,nu) + 2.d0 * P(si,la) * ERI_chem(lasinumu)
enddo
enddo
enddo ! mu
enddo ! nu
!$OMP END DO
!$OMP END PARALLEL
do nu = 1, nBas8
do mu = nu+1, nBas8
H(mu,nu) = H(nu,mu)
enddo
enddo
return
end subroutine
! ---

View File

@ -31,3 +31,200 @@ subroutine exchange_matrix_AO_basis(nBas,P,ERI,K)
end do
end subroutine
! ---
subroutine exchange_matrix_AO_basis_hpc(nBas, ERI_size, P, ERI_chem, K)
implicit none
integer, intent(in) :: nBas
integer*8, intent(in) :: ERI_size
double precision, intent(in) :: P(nBas,nBas)
double precision, intent(in) :: ERI_chem(ERI_size)
double precision, intent(out) :: K(nBas,nBas)
integer*8 :: mu, nu, la, si, nBas8
integer*8 :: nunu, nula, lanu, lasi, nusi, sinu
integer*8 :: numu, mumu, mula, lamu, musi, simu
integer*8 :: nunu0, lala0, mumu0
integer*8 :: nunununu, nulanula, lanulanu, nulanusi
integer*8 :: munulasi, lanunusi, lanusinu, numumumu
integer*8 :: nulamula, nulalamu, lanulamu, nulamusi
integer*8 :: nulasimu, lanumusi, lanusimu, simunula
integer*8 :: simulanu, nulanula0, lanulanu0
nBas8 = int(nBas, kind=8)
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (nu, si, la, mu, &
!$OMP nunu0, nunu, lanu, numu, mumu0, mumu, simu, lala0, nula, &
!$OMP nunununu, nulanula, lanulanu, lanulanu0, nulanula0, &
!$OMP nulanusi, lanulamu, lanunusi, lanusinu , numumumu, &
!$OMP nulamula, nulalamu, lanumusi, lanusimu, nulamusi, &
!$OMP nulasimu, simunula, simulanu) &
!$OMP SHARED (nBas8, P, ERI_chem, K)
!$OMP DO
do nu = 1, nBas8
nunu0 = shiftr(nu * (nu - 1), 1)
nunu = nunu0 + nu
nunununu = shiftr(nunu * (nunu - 1), 1) + nunu
K(nu,nu) = -P(nu,nu) * ERI_chem(nunununu)
do la = 1, nu - 1
nula = nunu0 + la
nulanula = shiftr(nula * (nula - 1), 1) + nula
K(nu,nu) = K(nu,nu) - P(la,la) * ERI_chem(nulanula)
enddo
do la = nu + 1, nBas8
lanu = shiftr(la * (la - 1), 1) + nu
lanulanu = shiftr(lanu * (lanu - 1), 1) + lanu
K(nu,nu) = K(nu,nu) - P(la,la) * ERI_chem(lanulanu)
enddo
do la = 1, nu
nula = nunu0 + la
nulanula0 = shiftr(nula * (nula - 1), 1)
do si = 1, la - 1
nulanusi = nulanula0 + nunu0 + si
K(nu,nu) = K(nu,nu) - 2.d0 * P(si,la) * ERI_chem(nulanusi)
enddo
enddo
do la = nu + 1, nBas8
lanu = shiftr(la * (la - 1), 1) + nu
lanulanu0 = shiftr(lanu * (lanu - 1), 1)
do si = 1, nu
lanunusi = lanulanu0 + nunu0 + si
K(nu,nu) = K(nu,nu) - 2.d0 * P(si,la) * ERI_chem(lanunusi)
enddo
do si = nu + 1, la - 1
lanusinu = lanulanu0 + shiftr(si * (si - 1), 1) + nu
K(nu,nu) = K(nu,nu) - 2.d0 * P(si,la) * ERI_chem(lanusinu)
enddo
enddo
do mu = 1, nu - 1
numu = nunu0 + mu
mumu0 = shiftr(mu * (mu - 1), 1)
mumu = mumu0 + mu
numumumu = shiftr(numu * (numu - 1), 1) + mumu
K(mu,nu) = - P(mu,mu) * ERI_chem(numumumu)
do la = 1, mu - 1
nula = nunu0 + la
nulamula = shiftr(nula * (nula - 1), 1) + mumu0 + la
K(mu,nu) = K(mu,nu) - P(la,la) * ERI_chem(nulamula)
enddo
do la = mu + 1, nu
nula = nunu0 + la
nulalamu = shiftr(nula * (nula - 1), 1) + shiftr(la * (la - 1), 1) + mu
K(mu,nu) = K(mu,nu) - P(la,la) * ERI_chem(nulalamu)
enddo
do la = nu + 1, nBas8
lala0 = shiftr(la * (la - 1), 1)
lanu = lala0 + nu
lanulamu = shiftr(lanu * (lanu - 1), 1) + lala0 + mu
K(mu,nu) = K(mu,nu) - P(la,la) * ERI_chem(lanulamu)
enddo
do la = 1, mu
nula = nunu0 + la
nulanula0 = shiftr(nula * (nula - 1), 1)
do si = 1, la - 1
nulamusi = nulanula0 + mumu0 + si
K(mu,nu) = K(mu,nu) - P(si,la) * ERI_chem(nulamusi)
enddo
enddo
do la = mu + 1, nu
nula = nunu0 + la
nulanula0 = shiftr(nula * (nula - 1), 1)
do si = 1, mu
nulamusi = nulanula0 + mumu0 + si
K(mu,nu) = K(mu,nu) - P(si,la) * ERI_chem(nulamusi)
enddo
do si = mu + 1, la - 1
nulasimu = nulanula0 + shiftr(si * (si - 1), 1) + mu
K(mu,nu) = K(mu,nu) - P(si,la) * ERI_chem(nulasimu)
enddo
enddo
do la = nu + 1, nBas8
lanu = shiftr(la * (la - 1), 1) + nu
lanulanu0 = shiftr(lanu * (lanu - 1), 1)
do si = 1, mu
lanumusi = lanulanu0 + mumu0 + si
K(mu,nu) = K(mu,nu) - P(si,la) * ERI_chem(lanumusi)
enddo
do si = mu + 1, la - 1
lanusimu = lanulanu0 + shiftr(si * (si - 1), 1) + mu
K(mu,nu) = K(mu,nu) - P(si,la) * ERI_chem(lanusimu)
enddo
enddo
do la = 1, mu
nula = nunu0 + la
nulanula0 = shiftr(nula * (nula - 1), 1)
do si = la + 1, mu
nulamusi = nulanula0 + mumu0 + si
K(mu,nu) = K(mu,nu) - P(si,la) * ERI_chem(nulamusi)
enddo
do si = mu + 1, nu - 1
nulasimu = nulanula0 + shiftr(si * (si - 1), 1) + mu
K(mu,nu) = K(mu,nu) - P(si,la) * ERI_chem(nulasimu)
enddo
do si = nu, nBas8
simu = shiftr(si * (si - 1), 1) + mu
simunula = shiftr(simu * (simu - 1), 1) + nula
K(mu,nu) = K(mu,nu) - P(si,la) * ERI_chem(simunula)
enddo
enddo
do la = mu + 1, nu
nula = nunu0 + la
nulanula0 = shiftr(nula * (nula - 1), 1)
do si = la + 1, nu
nulasimu = nulanula0 + shiftr(si * (si - 1), 1) + mu
K(mu,nu) = K(mu,nu) - P(si,la) * ERI_chem(nulasimu)
enddo
do si = nu + 1, nBas8
simu = shiftr(si * (si - 1), 1) + mu
simunula = shiftr(simu * (simu - 1), 1) + nula
K(mu,nu) = K(mu,nu) - P(si,la) * ERI_chem(simunula)
enddo
enddo
do la = nu + 1, nBas8
lanu = shiftr(la * (la - 1), 1) + nu
do si = la + 1, nBas8
simu = shiftr(si * (si - 1), 1) + mu
simulanu = shiftr(simu * (simu - 1), 1) + lanu
K(mu,nu) = K(mu,nu) - P(si,la) * ERI_chem(simulanu)
enddo
enddo
enddo ! mu
enddo ! nu
!$OMP END DO
!$OMP END PARALLEL
do nu = 1, nBas8
do mu = nu+1, nBas8
K(mu,nu) = K(nu,mu)
enddo
enddo
return
end subroutine
! ---

View File

@ -0,0 +1,44 @@
module cu_quack_module
use, intrinsic :: iso_c_binding
implicit none
interface
! ---
subroutine ph_drpa_tda_sing(nO, nBas, nS, eps, ERI, &
Omega, XpY) bind(C, name = "ph_drpa_tda_sing")
import c_int, c_double
integer(c_int), intent(in), value :: nO, nBas, nS
real(c_double), intent(in) :: eps(nBas)
real(c_double), intent(in) :: ERI(nBas,nBas,nBas,nBas)
real(c_double), intent(out) :: Omega(nS)
real(c_double), intent(out) :: XpY(nS,nS)
end subroutine ph_drpa_tda_sing
! ---
subroutine ph_drpa_sing(nO, nBas, nS, eps, ERI, &
Omega, XpY, XmY) bind(C, name = "ph_drpa_sing")
import c_int, c_double
integer(c_int), intent(in), value :: nO, nBas, nS
real(c_double), intent(in) :: eps(nBas)
real(c_double), intent(in) :: ERI(nBas,nBas,nBas,nBas)
real(c_double), intent(out) :: Omega(nS)
real(c_double), intent(out) :: XpY(nS,nS)
real(c_double), intent(out) :: XmY(nS,nS)
end subroutine ph_drpa_sing
! ---
end interface
end module cu_quack_module

311
src/HF/RHF_hpc.f90 Normal file
View File

@ -0,0 +1,311 @@
subroutine RHF_hpc(working_dir,dotest,maxSCF,thresh,max_diis,guess_type,level_shift,nNuc,ZNuc,rNuc,ENuc, &
nBas,nOrb,nO,S,T,V,Hc,dipole_int,X,ERHF,eHF,c,P,F)
! Perform restricted Hartree-Fock calculation
implicit none
include 'parameters.h'
! Input variables
character(len=256),intent(in) :: working_dir
logical,intent(in) :: dotest
integer,intent(in) :: maxSCF
integer,intent(in) :: max_diis
integer,intent(in) :: guess_type
double precision,intent(in) :: thresh
double precision,intent(in) :: level_shift
integer,intent(in) :: nBas
integer,intent(in) :: nOrb
integer,intent(in) :: nO
integer,intent(in) :: nNuc
double precision,intent(in) :: ZNuc(nNuc)
double precision,intent(in) :: rNuc(nNuc,ncart)
double precision,intent(in) :: ENuc
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nOrb)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
! Local variables
integer :: ii, jj
integer :: nSCF
integer :: nBas_Sq
integer :: n_diis
integer*8 :: ERI_size
double precision :: t1, t2
double precision :: diff, diff_loc
double precision :: ET
double precision :: EV
double precision :: EJ
double precision :: EK
double precision :: dipole(ncart)
double precision :: Conv
double precision :: rcond
double precision,external :: trace_matrix
double precision,allocatable :: err(:,:)
double precision,allocatable :: err_diis(:,:)
double precision,allocatable :: F_diis(:,:)
double precision,allocatable :: J(:,:)
double precision,allocatable :: K(:,:)
double precision,allocatable :: cp(:,:)
double precision,allocatable :: Fp(:,:)
double precision,allocatable :: ERI_chem(:)
double precision,allocatable :: ERI_phys(:,:,:,:), J_deb(:,:), K_deb(:,:)
double precision,allocatable :: tmp1(:,:), FX(:,:)
! Output variables
double precision,intent(out) :: ERHF
double precision,intent(out) :: eHF(nOrb)
double precision,intent(inout):: c(nBas,nOrb)
double precision,intent(out) :: P(nBas,nBas)
double precision,intent(out) :: F(nBas,nBas)
! Hello world
write(*,*)
write(*,*)'****************************************'
write(*,*)'* Restricted HF Calculation (HPC mode) *'
write(*,*)'****************************************'
write(*,*)
! Useful quantities
nBas_Sq = nBas*nBas
! Memory allocation
allocate(J(nBas,nBas))
allocate(K(nBas,nBas))
allocate(err(nBas,nBas))
allocate(cp(nOrb,nOrb))
allocate(Fp(nOrb,nOrb))
allocate(err_diis(nBas_Sq,max_diis))
allocate(F_diis(nBas_Sq,max_diis))
allocate(tmp1(nBas,nBas))
allocate(FX(nBas,nOrb))
! Guess coefficients and density matrix
call mo_guess(nBas,nOrb,guess_type,S,Hc,X,c)
call dgemm('N', 'T', nBas, nBas, nO, 2.d0, &
c(1,1), nBas, c(1,1), nBas, &
0.d0, P(1,1), nBas)
ERI_size = shiftr(nBas * (nBas + 1), 1)
ERI_size = shiftr(ERI_size * (ERI_size + 1), 1)
allocate(ERI_chem(ERI_size))
call read_2e_integrals_hpc(working_dir, ERI_size, ERI_chem)
!call wall_time(t1)
!call Hartree_matrix_AO_basis_hpc(nBas, ERI_size, P, ERI_chem, J)
!call wall_time(t2)
!print*, " J built in (sec):", (t2-t1)
!call wall_time(t1)
!call exchange_matrix_AO_basis_hpc(nBas, ERI_size, P, ERI_chem, K)
!call wall_time(t2)
!print*, " K built in (sec):", (t2-t1)
!allocate(ERI_phys(nBas,nBas,nBas,nBas))
!allocate(J_deb(nBas,nBas))
!allocate(K_deb(nBas,nBas))
!call read_2e_integrals(working_dir, nBas, ERI_phys)
!call wall_time(t1)
!call Hartree_matrix_AO_basis(nBas, P, ERI_phys, J_deb)
!call wall_time(t2)
!print*, " J_deb built in (sec):", (t2-t1)
!call wall_time(t1)
!call exchange_matrix_AO_basis(nBas, P, ERI_phys, K_deb)
!call wall_time(t2)
!print*, " K_deb built in (sec):", (t2-t1)
!print*, "max error on J = ", maxval(dabs(J - J_deb))
!diff = 0.d0
!do ii = 1, nBas
! do jj = 1, nBas
! diff_loc = dabs(J(jj,ii) - J_deb(jj,ii))
! if(diff_loc .gt. 1d-10) then
! print*, 'error in J on: ', jj, ii
! print*, J(jj,ii), J_deb(jj,ii)
! stop
! endif
! diff = diff + diff_loc
! enddo
!enddo
!print*, 'total diff on J = ', diff
!print*, "max error on K = ", maxval(dabs(K - K_deb))
!diff = 0.d0
!do ii = 1, nBas
! do jj = 1, nBas
! diff_loc = dabs(K(jj,ii) - K_deb(jj,ii))
! if(diff_loc .gt. 1d-10) then
! print*, 'error in K on: ', jj, ii
! print*, K(jj,ii), K_deb(jj,ii)
! stop
! endif
! diff = diff + diff_loc
! enddo
!enddo
!print*, 'total diff on K = ', diff
!stop
! Initialization
n_diis = 0
F_diis(:,:) = 0d0
err_diis(:,:) = 0d0
rcond = 0d0
Conv = 1d0
nSCF = 0
!------------------------------------------------------------------------
! Main SCF loop
!------------------------------------------------------------------------
write(*,*)
write(*,*)'-----------------------------------------------------------------------------'
write(*,'(1X,A1,1X,A3,1X,A1,1X,A16,1X,A1,1X,A16,1X,A1,1X,A16,1X,A1,1X,A10,1X,A1,1X)') &
'|','#','|','E(RHF)','|','EJ(RHF)','|','EK(RHF)','|','Conv','|'
write(*,*)'-----------------------------------------------------------------------------'
do while(Conv > thresh .and. nSCF < maxSCF)
! Increment
nSCF = nSCF + 1
! Build Fock matrix
call Hartree_matrix_AO_basis_hpc (nBas, ERI_size, P(1,1), ERI_chem(1), J(1,1))
call exchange_matrix_AO_basis_hpc(nBas, ERI_size, P(1,1), ERI_chem(1), K(1,1))
F(:,:) = Hc(:,:) + J(:,:) + 0.5d0*K(:,:)
! Check convergence
call dgemm("N", "N", nBas, nBas, nBas, 1.d0, &
S(1,1), nBas, P(1,1), nBas, &
0.d0, tmp1(1,1), nBas)
call dgemm("N", "N", nBas, nBas, nBas, 1.d0, &
tmp1(1,1), nBas, F(1,1), nBas, &
0.d0, err(1,1), nBas)
call dgemm("N", "T", nBas, nBas, nBas, 1.d0, &
F(1,1), nBas, tmp1(1,1), nBas, &
-1.d0, err(1,1), nBas)
!err = matmul(F, matmul(P, S)) - matmul(matmul(S, P), F)
if(nSCF > 1) Conv = maxval(abs(err))
! Kinetic energy
call dgemm("N", "N", nBas, nBas, nBas, 1.d0, &
P(1,1), nBas, T(1,1), nBas, &
0.d0, tmp1(1,1), nBas)
ET = trace_matrix(nBas, tmp1(1,1))
! Potential energy
call dgemm("N", "N", nBas, nBas, nBas, 1.d0, &
P(1,1), nBas, V(1,1), nBas, &
0.d0, tmp1(1,1), nBas)
EV = trace_matrix(nBas, tmp1(1,1))
! Hartree energy
call dgemm("N", "N", nBas, nBas, nBas, 1.d0, &
P(1,1), nBas, J(1,1), nBas, &
0.d0, tmp1(1,1), nBas)
EJ = 0.5d0*trace_matrix(nBas, tmp1(1,1))
! Exchange energy
call dgemm("N", "N", nBas, nBas, nBas, 1.d0, &
P(1,1), nBas, K(1,1), nBas, &
0.d0, tmp1(1,1), nBas)
EK = 0.25d0*trace_matrix(nBas, tmp1(1,1))
! Total energy
ERHF = ET + EV + EJ + EK
! DIIS extrapolation
if(max_diis > 1) then
n_diis = min(n_diis+1,max_diis)
call DIIS_extrapolation(rcond,nBas_Sq,nBas_Sq,n_diis,err_diis,F_diis,err,F)
endif
! Level shift
if(level_shift > 0d0 .and. Conv > thresh) then
call level_shifting(level_shift,nBas,nOrb,nO,S,c,F)
endif
! Diagonalize Fock matrix
call dgemm("N", "N", nBas, nOrb, nBas, 1.d0, &
F(1,1), nBas, X(1,1), nBas, &
0.d0, FX(1,1), nBas)
call dgemm("T", "N", nOrb, nOrb, nBas, 1.d0, &
X(1,1), nBas, FX(1,1), nBas, &
0.d0, Fp(1,1), nOrb)
!Fp = matmul(transpose(X), matmul(F, X))
cp(:,:) = Fp(:,:)
call diagonalize_matrix(nOrb,cp,eHF)
!c = matmul(X, cp)
call dgemm("N", "N", nBas, nOrb, nOrb, 1.d0, &
X(1,1), nBas, cp(1,1), nOrb, &
0.d0, c(1,1), nBas)
! Density matrix
call dgemm('N', 'T', nBas, nBas, nO, 2.d0, &
c(1,1), nBas, c(1,1), nBas, &
0.d0, P(1,1), nBas)
! Dump results
write(*,'(1X,A1,1X,I3,1X,A1,1X,F16.10,1X,A1,1X,F16.10,1X,A1,1X,F16.10,1X,A1,1X,E10.2,1X,A1,1X)') &
'|',nSCF,'|',ERHF + ENuc,'|',EJ,'|',EK,'|',Conv,'|'
end do
write(*,*)'-----------------------------------------------------------------------------'
!------------------------------------------------------------------------
! End of SCF loop
!------------------------------------------------------------------------
! Did it actually converge?
if(nSCF == maxSCF) then
write(*,*)
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)' Convergence failed '
write(*,*)'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
write(*,*)
deallocate(J,K,err,cp,Fp,err_diis,F_diis)
deallocate(tmp1, FX, ERI_chem)
stop
end if
! Compute dipole moments
call dipole_moment(nBas,P,nNuc,ZNuc,rNuc,dipole_int,dipole)
call print_RHF(nBas,nOrb,nO,eHF,c,ENuc,ET,EV,EJ,EK,ERHF,dipole)
! Testing zone
if(dotest) then
call dump_test_value('R','RHF energy',ERHF)
call dump_test_value('R','RHF HOMO energy',eHF(nO))
call dump_test_value('R','RHF LUMO energy',eHF(nO+1))
call dump_test_value('R','RHF dipole moment',norm2(dipole))
end if
deallocate(J,K,err,cp,Fp,err_diis,F_diis)
deallocate(tmp1, FX, ERI_chem)
end subroutine

View File

@ -15,6 +15,7 @@ subroutine phLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
! Local variables
double precision :: trace_matrix
double precision :: t1, t2
double precision,allocatable :: ApB(:,:)
double precision,allocatable :: AmB(:,:)
double precision,allocatable :: AmBSq(:,:)
@ -29,9 +30,7 @@ subroutine phLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
double precision,intent(out) :: XpY(nS,nS)
double precision,intent(out) :: XmY(nS,nS)
! Memory allocation
allocate(ApB(nS,nS),AmB(nS,nS),AmBSq(nS,nS),AmBIv(nS,nS),Z(nS,nS),tmp(nS,nS))
! Tamm-Dancoff approximation
@ -44,6 +43,8 @@ subroutine phLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
else
allocate(ApB(nS,nS),AmB(nS,nS),AmBSq(nS,nS),AmBIv(nS,nS),Z(nS,nS),tmp(nS,nS))
ApB(:,:) = Aph(:,:) + Bph(:,:)
AmB(:,:) = Aph(:,:) - Bph(:,:)
@ -81,6 +82,8 @@ subroutine phLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
! XmY = matmul(transpose(Z),AmBIv)
! call DA(nS,1d0*sqrt(Om),XmY)
deallocate(ApB,AmB,AmBSq,AmBIv,Z,tmp)
end if
! Compute the RPA correlation energy

View File

@ -7,28 +7,31 @@ subroutine phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,e,ERI,Aph)
! Input variables
logical,intent(in) :: dRPA
integer,intent(in) :: ispin
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: lambda
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
logical,intent(in) :: dRPA
integer,intent(in) :: ispin
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: lambda
double precision,intent(in) :: e(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
! Local variables
double precision :: delta_dRPA
double precision,external :: Kronecker_delta
double precision :: delta_dRPA
double precision,external :: Kronecker_delta
integer :: i,j,a,b,ia,jb
integer :: i,j,a,b,ia,jb
integer :: nn,jb0
logical :: i_eq_j
double precision :: ct1,ct2
! Output variables
double precision,intent(out) :: Aph(nS,nS)
double precision,intent(out) :: Aph(nS,nS)
! Direct RPA
@ -39,22 +42,49 @@ subroutine phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,e,ERI,Aph)
if(ispin == 1) then
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
nn = nBas - nR - nO
ct1 = 2d0 * lambda
ct2 = - (1d0 - delta_dRPA) * lambda
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE (i, a, j, b, i_eq_j, ia, jb0, jb) &
!$OMP SHARED (nC, nO, nR, nBas, nn, ct1, ct2, e, ERI, Aph)
!$OMP DO COLLAPSE(2)
do i = nC+1, nO
do a = nO+1, nBas-nR
ia = a - nO + (i - nC - 1) * nn
Aph(ia,jb) = (e(a) - e(i))*Kronecker_delta(i,j)*Kronecker_delta(a,b) &
+ 2d0*lambda*ERI(i,b,a,j) - (1d0 - delta_dRPA)*lambda*ERI(i,b,j,a)
do j = nC+1, nO
i_eq_j = i == j
jb0 = (j - nC - 1) * nn - nO
end do
end do
end do
end do
do b = nO+1, nBas-nR
jb = b + jb0
Aph(ia,jb) = ct1 * ERI(b,i,j,a) + ct2 * ERI(b,j,a,i)
if(i_eq_j) then
if(a == b) Aph(ia,jb) = Aph(ia,jb) + e(a) - e(i)
endif
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!ia = 0
!do i=nC+1,nO
! do a=nO+1,nBas-nR
! ia = ia + 1
! jb = 0
! do j=nC+1,nO
! do b=nO+1,nBas-nR
! jb = jb + 1
! Aph(ia,jb) = (e(a) - e(i))*Kronecker_delta(i,j)*Kronecker_delta(a,b) &
! + 2d0*lambda*ERI(i,b,a,j) - (1d0 - delta_dRPA)*lambda*ERI(i,b,j,a)
! end do
! end do
! end do
!end do
end if
@ -62,22 +92,48 @@ subroutine phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,e,ERI,Aph)
if(ispin == 2) then
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
nn = nBas - nR - nO
ct2 = - (1d0 - delta_dRPA) * lambda
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE (i, a, j, b, i_eq_j, ia, jb0, jb) &
!$OMP SHARED (nC, nO, nR, nBas, nn, ct2, e, ERI, Aph)
!$OMP DO COLLAPSE(2)
do i = nC+1, nO
do a = nO+1, nBas-nR
ia = a - nO + (i - nC - 1) * nn
Aph(ia,jb) = (e(a) - e(i))*Kronecker_delta(i,j)*Kronecker_delta(a,b) &
- (1d0 - delta_dRPA)*lambda*ERI(i,b,j,a)
do j = nC+1, nO
i_eq_j = i == j
jb0 = (j - nC - 1) * nn - nO
end do
end do
end do
end do
do b = nO+1, nBas-nR
jb = b + jb0
Aph(ia,jb) = ct2 * ERI(b,j,a,i)
if(i_eq_j) then
if(a == b) Aph(ia,jb) = Aph(ia,jb) + e(a) - e(i)
endif
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! ia = 0
! do i=nC+1,nO
! do a=nO+1,nBas-nR
! ia = ia + 1
! jb = 0
! do j=nC+1,nO
! do b=nO+1,nBas-nR
! jb = jb + 1
! Aph(ia,jb) = (e(a) - e(i))*Kronecker_delta(i,j)*Kronecker_delta(a,b) &
! - (1d0 - delta_dRPA)*lambda*ERI(i,b,j,a)
! end do
! end do
! end do
! end do
end if

View File

@ -7,20 +7,22 @@ subroutine phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,ERI,Bph)
! Input variables
logical,intent(in) :: dRPA
integer,intent(in) :: ispin,nBas,nC,nO,nV,nR,nS
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
logical,intent(in) :: dRPA
integer,intent(in) :: ispin,nBas,nC,nO,nV,nR,nS
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
! Local variables
double precision :: delta_dRPA
double precision :: delta_dRPA
integer :: i,j,a,b,ia,jb
integer :: i,j,a,b,ia,jb
integer :: nn,jb0
double precision :: ct1,ct2
! Output variables
double precision,intent(out) :: Bph(nS,nS)
double precision,intent(out) :: Bph(nS,nS)
! Direct RPA
@ -31,21 +33,44 @@ subroutine phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,ERI,Bph)
if(ispin == 1) then
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
nn = nBas - nR - nO
ct1 = 2d0 * lambda
ct2 = - (1d0 - delta_dRPA) * lambda
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE (i, a, j, b, ia, jb0, jb) &
!$OMP SHARED (nC, nO, nR, nBas, nn, ct1, ct2, ERI, Bph)
!$OMP DO COLLAPSE(2)
do i = nC+1, nO
do a = nO+1, nBas-nR
ia = a - nO + (i - nC - 1) * nn
Bph(ia,jb) = 2d0*lambda*ERI(i,j,a,b) - (1d0 - delta_dRPA)*lambda*ERI(i,j,b,a)
do j = nC+1, nO
jb0 = (j - nC - 1) * nn - nO
end do
end do
end do
end do
do b = nO+1, nBas-nR
jb = b + jb0
Bph(ia,jb) = ct1 * ERI(b,i,j,a) + ct2 * ERI(b,j,i,a)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!ia = 0
!do i=nC+1,nO
! do a=nO+1,nBas-nR
! ia = ia + 1
! jb = 0
! do j=nC+1,nO
! do b=nO+1,nBas-nR
! jb = jb + 1
! Bph(ia,jb) = 2d0*lambda*ERI(i,j,a,b) - (1d0 - delta_dRPA)*lambda*ERI(i,j,b,a)
! end do
! end do
! end do
!end do
end if
@ -53,21 +78,43 @@ subroutine phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,ERI,Bph)
if(ispin == 2) then
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
nn = nBas - nR - nO
ct2 = - (1d0 - delta_dRPA) * lambda
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE (i, a, j, b, ia, jb0, jb) &
!$OMP SHARED (nC, nO, nR, nBas, nn, ct2, ERI, Bph)
!$OMP DO COLLAPSE(2)
do i = nC+1, nO
do a = nO+1, nBas-nR
ia = a - nO + (i - nC - 1) * nn
Bph(ia,jb) = - (1d0 - delta_dRPA)*lambda*ERI(i,j,b,a)
do j = nC+1, nO
jb0 = (j - nC - 1) * nn - nO
end do
end do
end do
end do
do b = nO+1, nBas-nR
jb = b + jb0
Bph(ia,jb) = ct2 * ERI(b,j,i,a)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! ia = 0
! do i=nC+1,nO
! do a=nO+1,nBas-nR
! ia = ia + 1
! jb = 0
! do j=nC+1,nO
! do b=nO+1,nBas-nR
! jb = jb + 1
! Bph(ia,jb) = - (1d0 - delta_dRPA)*lambda*ERI(i,j,b,a)
! end do
! end do
! end do
! end do
end if

View File

@ -32,8 +32,8 @@ subroutine ppLR_C(ispin,nOrb,nC,nO,nV,nR,nVV,lambda,e,ERI,Cpp)
! Define the chemical potential
! eF = e(nO) + e(nO+1)
eF = 0d0
eF = e(nO) + e(nO+1)
! eF = 0d0
! Build C matrix for the singlet manifold

View File

@ -30,8 +30,8 @@ subroutine ppLR_D(ispin,nOrb,nC,nO,nV,nR,nOO,lambda,e,ERI,Dpp)
! Define the chemical potential
! eF = e(nO) + e(nO+1)
eF = 0d0
eF = e(nO) + e(nO+1)
! eF = 0d0
! Build the D matrix for the singlet manifold

View File

@ -1,17 +1,19 @@
subroutine GQuAcK(dotest,doGHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
dodrCCD,dorCCD,docrCCD,dolCCD,dophRPA,dophRPAx,docrRPA,doppRPA, &
doG0W0,doevGW,doqsGW,doG0F2,doevGF2,doqsGF2,doG0T0pp,doevGTpp,doqsGTpp, &
nNuc,nBas,nC,nO,nV,nR,ENuc,ZNuc,rNuc,S,T,V,Hc,X,dipole_int_AO,ERI_AO, &
maxSCF_HF,max_diis_HF,thresh_HF,level_shift,guess_type,mix,reg_MP, &
maxSCF_CC,max_diis_CC,thresh_CC, &
TDA,maxSCF_GF,max_diis_GF,thresh_GF,lin_GF,reg_GF,eta_GF, &
maxSCF_GW,max_diis_GW,thresh_GW,TDA_W,lin_GW,reg_GW,eta_GW, &
maxSCF_GT,max_diis_GT,thresh_GT,TDA_T,lin_GT,reg_GT,eta_GT, &
subroutine GQuAcK(working_dir,dotest,doGHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
dodrCCD,dorCCD,docrCCD,dolCCD,dophRPA,dophRPAx,docrRPA,doppRPA, &
doG0W0,doevGW,doqsGW,doG0F2,doevGF2,doqsGF2,doG0T0pp,doevGTpp,doqsGTpp, &
nNuc,nBas,nC,nO,nV,nR,ENuc,ZNuc,rNuc,S,T,V,Hc,X,dipole_int_AO, &
maxSCF_HF,max_diis_HF,thresh_HF,level_shift,guess_type,mix,reg_MP, &
maxSCF_CC,max_diis_CC,thresh_CC, &
TDA,maxSCF_GF,max_diis_GF,thresh_GF,lin_GF,reg_GF,eta_GF, &
maxSCF_GW,max_diis_GW,thresh_GW,TDA_W,lin_GW,reg_GW,eta_GW, &
maxSCF_GT,max_diis_GT,thresh_GT,TDA_T,lin_GT,reg_GT,eta_GT, &
dophBSE,dophBSE2,doppBSE,dBSE,dTDA,doACFDT,exchange_kernel,doXBS)
implicit none
include 'parameters.h'
character(len=256),intent(in) :: working_dir
logical,intent(in) :: dotest
logical,intent(in) :: doGHF
@ -41,7 +43,6 @@ subroutine GQuAcK(dotest,doGHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,do
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nBas)
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
integer,intent(in) :: maxSCF_HF,max_diis_HF
double precision,intent(in) :: thresh_HF,level_shift,mix
@ -86,9 +87,11 @@ subroutine GQuAcK(dotest,doGHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,do
double precision :: start_GW ,end_GW ,t_GW
double precision :: start_GT ,end_GT ,t_GT
double precision :: start_int, end_int, t_int
double precision,allocatable :: cHF(:,:),eHF(:),PHF(:,:),FHF(:,:)
double precision :: EGHF
double precision,allocatable :: dipole_int_MO(:,:,:)
double precision,allocatable :: ERI_AO(:,:,:,:)
double precision,allocatable :: ERI_MO(:,:,:,:)
double precision,allocatable :: ERI_tmp(:,:,:,:)
double precision,allocatable :: Ca(:,:),Cb(:,:)
@ -112,6 +115,17 @@ subroutine GQuAcK(dotest,doGHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,do
allocate(cHF(nBas2,nBas2),eHF(nBas2),PHF(nBas2,nBas2),FHF(nBas2,nBas2), &
dipole_int_MO(nBas2,nBas2,ncart),ERI_MO(nBas2,nBas2,nBas2,nBas2))
allocate(ERI_AO(nBas,nBas,nBas,nBas))
call wall_time(start_int)
call read_2e_integrals(working_dir,nBas,ERI_AO)
call wall_time(end_int)
t_int = end_int - start_int
write(*,*)
write(*,'(A65,1X,F9.3,A8)') 'Total wall time for reading 2e-integrals =',t_int,' seconds'
write(*,*)
!---------------------!
! Hartree-Fock module !
!---------------------!

View File

@ -32,7 +32,6 @@ program QuAcK
double precision,allocatable :: Hc(:,:)
double precision,allocatable :: X(:,:),X_tmp(:,:)
double precision,allocatable :: dipole_int_AO(:,:,:)
double precision,allocatable :: ERI_AO(:,:,:,:)
double precision,allocatable :: Uvec(:,:), Uval(:)
double precision :: start_QuAcK,end_QuAcK,t_QuAcK
@ -44,6 +43,9 @@ program QuAcK
logical :: reg_MP
logical :: switch_hpc
logical :: use_gpu
integer :: maxSCF_CC,max_diis_CC
double precision :: thresh_CC
@ -134,6 +136,12 @@ program QuAcK
doACFDT,exchange_kernel,doXBS, &
dophBSE,dophBSE2,doppBSE,dBSE,dTDA)
!------------------!
! Hardware !
!------------------!
call read_hpc_flags(working_dir,switch_hpc,use_gpu)
!------------------------------------!
! Read input information !
!------------------------------------!
@ -168,21 +176,19 @@ program QuAcK
allocate(T(nBas,nBas))
allocate(V(nBas,nBas))
allocate(Hc(nBas,nBas))
allocate(ERI_AO(nBas,nBas,nBas,nBas))
allocate(dipole_int_AO(nBas,nBas,ncart))
! Read integrals
call wall_time(start_int)
call read_integrals(working_dir,nBas,S,T,V,Hc,ERI_AO)
call read_1e_integrals(working_dir,nBas,S,T,V,Hc)
call read_dipole_integrals(working_dir,nBas,dipole_int_AO)
call wall_time(end_int)
t_int = end_int - start_int
write(*,*)
write(*,'(A65,1X,F9.3,A8)') 'Total wall time for reading integrals = ',t_int,' seconds'
write(*,'(A65,1X,F9.3,A8)') 'Total wall time for reading 1e-integrals = ',t_int,' seconds'
write(*,*)
! Compute orthogonalization matrix
@ -218,29 +224,44 @@ program QuAcK
! Restricted QuAcK branch !
!-------------------------!
if(doRQuAcK) &
call RQuAcK(doRtest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
dodrCCD,dorCCD,docrCCD,dolCCD,doCIS,doCIS_D,doCID,doCISD,doFCI,dophRPA,dophRPAx,docrRPA,doppRPA, &
doG0F2,doevGF2,doqsGF2,doufG0F02,doG0F3,doevGF3,doG0W0,doevGW,doqsGW,doufG0W0,doufGW, &
doG0T0pp,doevGTpp,doqsGTpp,doufG0T0pp,doG0T0eh,doevGTeh,doqsGTeh, &
nNuc,nBas,nOrb,nC,nO,nV,nR,ENuc,ZNuc,rNuc, &
S,T,V,Hc,X,dipole_int_AO,ERI_AO,maxSCF_HF,max_diis_HF,thresh_HF,level_shift, &
guess_type,mix,reg_MP,maxSCF_CC,max_diis_CC,thresh_CC,spin_conserved,spin_flip,TDA, &
maxSCF_GF,max_diis_GF,renorm_GF,thresh_GF,lin_GF,reg_GF,eta_GF,maxSCF_GW,max_diis_GW,thresh_GW, &
TDA_W,lin_GW,reg_GW,eta_GW,maxSCF_GT,max_diis_GT,thresh_GT,TDA_T,lin_GT,reg_GT,eta_GT, &
dophBSE,dophBSE2,doppBSE,dBSE,dTDA,doACFDT,exchange_kernel,doXBS)
if(doRQuAcK) then
if(switch_hpc) then
call RQuAcK_hpc(working_dir,use_gpu,doRtest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
dodrCCD,dorCCD,docrCCD,dolCCD,doCIS,doCIS_D,doCID,doCISD,doFCI,dophRPA,dophRPAx,docrRPA,doppRPA, &
doG0F2,doevGF2,doqsGF2,doufG0F02,doG0F3,doevGF3,doG0W0,doevGW,doqsGW,doufG0W0,doufGW, &
doG0T0pp,doevGTpp,doqsGTpp,doufG0T0pp,doG0T0eh,doevGTeh,doqsGTeh, &
nNuc,nBas,nOrb,nC,nO,nV,nR,ENuc,ZNuc,rNuc, &
S,T,V,Hc,X,dipole_int_AO,maxSCF_HF,max_diis_HF,thresh_HF,level_shift, &
guess_type,mix,reg_MP,maxSCF_CC,max_diis_CC,thresh_CC,spin_conserved,spin_flip,TDA, &
maxSCF_GF,max_diis_GF,renorm_GF,thresh_GF,lin_GF,reg_GF,eta_GF,maxSCF_GW,max_diis_GW,thresh_GW, &
TDA_W,lin_GW,reg_GW,eta_GW,maxSCF_GT,max_diis_GT,thresh_GT,TDA_T,lin_GT,reg_GT,eta_GT, &
dophBSE,dophBSE2,doppBSE,dBSE,dTDA,doACFDT,exchange_kernel,doXBS)
else
call RQuAcK(working_dir,use_gpu,doRtest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
dodrCCD,dorCCD,docrCCD,dolCCD,doCIS,doCIS_D,doCID,doCISD,doFCI,dophRPA,dophRPAx,docrRPA,doppRPA, &
doG0F2,doevGF2,doqsGF2,doufG0F02,doG0F3,doevGF3,doG0W0,doevGW,doqsGW,doufG0W0,doufGW, &
doG0T0pp,doevGTpp,doqsGTpp,doufG0T0pp,doG0T0eh,doevGTeh,doqsGTeh, &
nNuc,nBas,nOrb,nC,nO,nV,nR,ENuc,ZNuc,rNuc, &
S,T,V,Hc,X,dipole_int_AO,maxSCF_HF,max_diis_HF,thresh_HF,level_shift, &
guess_type,mix,reg_MP,maxSCF_CC,max_diis_CC,thresh_CC,spin_conserved,spin_flip,TDA, &
maxSCF_GF,max_diis_GF,renorm_GF,thresh_GF,lin_GF,reg_GF,eta_GF,maxSCF_GW,max_diis_GW,thresh_GW, &
TDA_W,lin_GW,reg_GW,eta_GW,maxSCF_GT,max_diis_GT,thresh_GT,TDA_T,lin_GT,reg_GT,eta_GT, &
dophBSE,dophBSE2,doppBSE,dBSE,dTDA,doACFDT,exchange_kernel,doXBS)
endif
endif
!---------------------------!
! Unrestricted QuAcK branch !
!---------------------------!
if(doUQuAcK) &
call UQuAcK(doUtest,doUHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
call UQuAcK(working_dir,doUtest,doUHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
dodrCCD,dorCCD,docrCCD,dolCCD,doCIS,doCIS_D,doCID,doCISD,doFCI,dophRPA,dophRPAx,docrRPA,doppRPA, &
doG0F2,doevGF2,doqsGF2,doufG0F02,doG0F3,doevGF3,doG0W0,doevGW,doqsGW,doufG0W0,doufGW, &
doG0T0pp,doevGTpp,doqsGTpp,doufG0T0pp,doG0T0eh,doevGTeh,doqsGTeh, &
nNuc,nBas,nC,nO,nV,nR,ENuc,ZNuc,rNuc, &
S,T,V,Hc,X,dipole_int_AO,ERI_AO,maxSCF_HF,max_diis_HF,thresh_HF,level_shift, &
S,T,V,Hc,X,dipole_int_AO,maxSCF_HF,max_diis_HF,thresh_HF,level_shift, &
guess_type,mix,reg_MP,maxSCF_CC,max_diis_CC,thresh_CC,spin_conserved,spin_flip,TDA, &
maxSCF_GF,max_diis_GF,renorm_GF,thresh_GF,lin_GF,reg_GF,eta_GF,maxSCF_GW,max_diis_GW,thresh_GW, &
TDA_W,lin_GW,reg_GW,eta_GW,maxSCF_GT,max_diis_GT,thresh_GT,TDA_T,lin_GT,reg_GT,eta_GT, &
@ -250,10 +271,10 @@ program QuAcK
! Generalized QuAcK branch !
!--------------------------!
if(doGQuAcK) &
call GQuAcK(doGtest,doGHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
call GQuAcK(working_dir,doGtest,doGHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
dodrCCD,dorCCD,docrCCD,dolCCD,dophRPA,dophRPAx,docrRPA,doppRPA, &
doG0W0,doevGW,doqsGW,doG0F2,doevGF2,doqsGF2,doG0T0pp,doevGTpp,doqsGTpp, &
nNuc,nBas,sum(nC),sum(nO),sum(nV),sum(nR),ENuc,ZNuc,rNuc,S,T,V,Hc,X,dipole_int_AO,ERI_AO, &
nNuc,nBas,sum(nC),sum(nO),sum(nV),sum(nR),ENuc,ZNuc,rNuc,S,T,V,Hc,X,dipole_int_AO, &
maxSCF_HF,max_diis_HF,thresh_HF,level_shift,guess_type,mix,reg_MP, &
maxSCF_CC,max_diis_CC,thresh_CC,TDA,maxSCF_GF,max_diis_GF,thresh_GF,lin_GF,reg_GF,eta_GF, &
maxSCF_GW,max_diis_GW,thresh_GW,TDA_W,lin_GW,reg_GW,eta_GW, &
@ -282,4 +303,10 @@ program QuAcK
write(*,'(A65,1X,F9.3,A8)') 'Total wall time for QuAcK = ',t_QuAcK,' seconds'
write(*,*)
deallocate(S)
deallocate(T)
deallocate(V)
deallocate(Hc)
deallocate(dipole_int_AO)
end program

View File

@ -1,12 +1,12 @@
subroutine RQuAcK(dotest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
dodrCCD,dorCCD,docrCCD,dolCCD,doCIS,doCIS_D,doCID,doCISD,doFCI,dophRPA,dophRPAx,docrRPA,doppRPA, &
doG0F2,doevGF2,doqsGF2,doufG0F02,doG0F3,doevGF3,doG0W0,doevGW,doqsGW,doufG0W0,doufGW, &
doG0T0pp,doevGTpp,doqsGTpp,doufG0T0pp,doG0T0eh,doevGTeh,doqsGTeh, &
nNuc,nBas,nOrb,nC,nO,nV,nR,ENuc,ZNuc,rNuc, &
S,T,V,Hc,X,dipole_int_AO,ERI_AO,maxSCF_HF,max_diis_HF,thresh_HF,level_shift, &
guess_type,mix,reg_MP,maxSCF_CC,max_diis_CC,thresh_CC,singlet,triplet,TDA, &
maxSCF_GF,max_diis_GF,renorm_GF,thresh_GF,lin_GF,reg_GF,eta_GF,maxSCF_GW,max_diis_GW,thresh_GW, &
TDA_W,lin_GW,reg_GW,eta_GW,maxSCF_GT,max_diis_GT,thresh_GT,TDA_T,lin_GT,reg_GT,eta_GT, &
subroutine RQuAcK(working_dir,use_gpu,dotest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
dodrCCD,dorCCD,docrCCD,dolCCD,doCIS,doCIS_D,doCID,doCISD,doFCI,dophRPA,dophRPAx,docrRPA,doppRPA, &
doG0F2,doevGF2,doqsGF2,doufG0F02,doG0F3,doevGF3,doG0W0,doevGW,doqsGW,doufG0W0,doufGW, &
doG0T0pp,doevGTpp,doqsGTpp,doufG0T0pp,doG0T0eh,doevGTeh,doqsGTeh, &
nNuc,nBas,nOrb,nC,nO,nV,nR,ENuc,ZNuc,rNuc, &
S,T,V,Hc,X,dipole_int_AO,maxSCF_HF,max_diis_HF,thresh_HF,level_shift, &
guess_type,mix,reg_MP,maxSCF_CC,max_diis_CC,thresh_CC,singlet,triplet,TDA, &
maxSCF_GF,max_diis_GF,renorm_GF,thresh_GF,lin_GF,reg_GF,eta_GF,maxSCF_GW,max_diis_GW,thresh_GW, &
TDA_W,lin_GW,reg_GW,eta_GW,maxSCF_GT,max_diis_GT,thresh_GT,TDA_T,lin_GT,reg_GT,eta_GT, &
dophBSE,dophBSE2,doppBSE,dBSE,dTDA,doACFDT,exchange_kernel,doXBS)
! Restricted branch of QuAcK
@ -14,6 +14,10 @@ subroutine RQuAcK(dotest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,d
implicit none
include 'parameters.h'
character(len=256),intent(in) :: working_dir
logical,intent(in) :: use_gpu
logical,intent(in) :: dotest
logical,intent(in) :: doRHF,doROHF
@ -44,7 +48,6 @@ subroutine RQuAcK(dotest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,d
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nOrb)
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
integer,intent(in) :: maxSCF_HF,max_diis_HF
double precision,intent(in) :: thresh_HF,level_shift,mix
@ -92,12 +95,14 @@ subroutine RQuAcK(dotest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,d
double precision :: start_GW ,end_GW ,t_GW
double precision :: start_GT ,end_GT ,t_GT
double precision :: start_int, end_int, t_int
double precision,allocatable :: eHF(:)
double precision,allocatable :: cHF(:,:)
double precision,allocatable :: PHF(:,:)
double precision,allocatable :: FHF(:,:)
double precision :: ERHF
double precision,allocatable :: dipole_int_MO(:,:,:)
double precision,allocatable :: ERI_AO(:,:,:,:)
double precision,allocatable :: ERI_MO(:,:,:,:)
integer :: ixyz
integer :: nS
@ -119,6 +124,15 @@ subroutine RQuAcK(dotest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,d
allocate(dipole_int_MO(nOrb,nOrb,ncart))
allocate(ERI_MO(nOrb,nOrb,nOrb,nOrb))
allocate(ERI_AO(nBas,nBas,nBas,nBas))
call wall_time(start_int)
call read_2e_integrals(working_dir,nBas,ERI_AO)
call wall_time(end_int)
t_int = end_int - start_int
write(*,*)
write(*,'(A65,1X,F9.3,A8)') 'Total wall time for reading 2e-integrals =',t_int,' seconds'
write(*,*)
!---------------------!
! Hartree-Fock module !
!---------------------!
@ -274,7 +288,7 @@ subroutine RQuAcK(dotest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,d
if(doRPA) then
call wall_time(start_RPA)
call RRPA(dotest,dophRPA,dophRPAx,docrRPA,doppRPA,TDA,doACFDT,exchange_kernel,singlet,triplet, &
call RRPA(use_gpu,dotest,dophRPA,dophRPAx,docrRPA,doppRPA,TDA,doACFDT,exchange_kernel,singlet,triplet, &
nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,dipole_int_MO,eHF)
call wall_time(end_RPA)
@ -348,4 +362,13 @@ subroutine RQuAcK(dotest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,d
end if
deallocate(eHF)
deallocate(cHF)
deallocate(PHF)
deallocate(FHF)
deallocate(dipole_int_MO)
deallocate(ERI_MO)
deallocate(ERI_AO)
end subroutine

353
src/QuAcK/RQuAcK_hpc.f90 Normal file
View File

@ -0,0 +1,353 @@
subroutine RQuAcK_hpc(working_dir,use_gpu,dotest,doRHF,doROHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
dodrCCD,dorCCD,docrCCD,dolCCD,doCIS,doCIS_D,doCID,doCISD,doFCI,dophRPA,dophRPAx,docrRPA,doppRPA, &
doG0F2,doevGF2,doqsGF2,doufG0F02,doG0F3,doevGF3,doG0W0,doevGW,doqsGW,doufG0W0,doufGW, &
doG0T0pp,doevGTpp,doqsGTpp,doufG0T0pp,doG0T0eh,doevGTeh,doqsGTeh, &
nNuc,nBas,nOrb,nC,nO,nV,nR,ENuc,ZNuc,rNuc, &
S,T,V,Hc,X,dipole_int_AO,maxSCF_HF,max_diis_HF,thresh_HF,level_shift, &
guess_type,mix,reg_MP,maxSCF_CC,max_diis_CC,thresh_CC,singlet,triplet,TDA, &
maxSCF_GF,max_diis_GF,renorm_GF,thresh_GF,lin_GF,reg_GF,eta_GF,maxSCF_GW,max_diis_GW,thresh_GW, &
TDA_W,lin_GW,reg_GW,eta_GW,maxSCF_GT,max_diis_GT,thresh_GT,TDA_T,lin_GT,reg_GT,eta_GT, &
dophBSE,dophBSE2,doppBSE,dBSE,dTDA,doACFDT,exchange_kernel,doXBS)
! Restricted branch of QuAcK
implicit none
include 'parameters.h'
character(len=256),intent(in) :: working_dir
logical,intent(in) :: use_gpu
logical,intent(in) :: dotest
logical,intent(in) :: doRHF,doROHF
logical,intent(in) :: dostab
logical,intent(in) :: dosearch
logical,intent(in) :: doMP2,doMP3
logical,intent(in) :: doCCD,dopCCD,doDCD,doCCSD,doCCSDT
logical,intent(in) :: dodrCCD,dorCCD,docrCCD,dolCCD
logical,intent(in) :: doCIS,doCIS_D,doCID,doCISD,doFCI
logical,intent(in) :: dophRPA,dophRPAx,docrRPA,doppRPA
logical,intent(in) :: doG0F2,doevGF2,doqsGF2,doufG0F02,doG0F3,doevGF3
logical,intent(in) :: doG0W0,doevGW,doqsGW,doufG0W0,doufGW
logical,intent(in) :: doG0T0pp,doevGTpp,doqsGTpp,doufG0T0pp
logical,intent(in) :: doG0T0eh,doevGTeh,doqsGTeh
integer,intent(in) :: nNuc,nBas,nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
double precision,intent(in) :: ENuc
double precision,intent(in) :: ZNuc(nNuc),rNuc(nNuc,ncart)
double precision,intent(in) :: S(nBas,nBas)
double precision,intent(in) :: T(nBas,nBas)
double precision,intent(in) :: V(nBas,nBas)
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nOrb)
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
integer,intent(in) :: maxSCF_HF,max_diis_HF
double precision,intent(in) :: thresh_HF,level_shift,mix
integer,intent(in) :: guess_type
logical,intent(in) :: reg_MP
integer,intent(in) :: maxSCF_CC,max_diis_CC
double precision,intent(in) :: thresh_CC
logical,intent(in) :: singlet
logical,intent(in) :: triplet
logical,intent(in) :: TDA
integer,intent(in) :: maxSCF_GF,max_diis_GF,renorm_GF
double precision,intent(in) :: thresh_GF
logical,intent(in) :: lin_GF,reg_GF
double precision,intent(in) :: eta_GF
integer,intent(in) :: maxSCF_GW,max_diis_GW
double precision,intent(in) :: thresh_GW
logical,intent(in) :: TDA_W,lin_GW,reg_GW
double precision,intent(in) :: eta_GW
integer,intent(in) :: maxSCF_GT,max_diis_GT
double precision,intent(in) :: thresh_GT
logical,intent(in) :: TDA_T,lin_GT,reg_GT
double precision,intent(in) :: eta_GT
logical,intent(in) :: dophBSE,dophBSE2,doppBSE,dBSE,dTDA
logical,intent(in) :: doACFDT,exchange_kernel,doXBS
! Local variables
logical :: doMP,doCC,doCI,doRPA,doGF,doGW,doGT
double precision :: start_HF ,end_HF ,t_HF
double precision :: start_stab ,end_stab ,t_stab
double precision :: start_AOtoMO ,end_AOtoMO ,t_AOtoMO
double precision :: start_MP ,end_MP ,t_MP
double precision :: start_CC ,end_CC ,t_CC
double precision :: start_CI ,end_CI ,t_CI
double precision :: start_RPA ,end_RPA ,t_RPA
double precision :: start_GF ,end_GF ,t_GF
double precision :: start_GW ,end_GW ,t_GW
double precision :: start_GT ,end_GT ,t_GT
double precision :: start_int, end_int, t_int
double precision,allocatable :: eHF(:)
double precision,allocatable :: cHF(:,:)
double precision,allocatable :: PHF(:,:)
double precision,allocatable :: FHF(:,:)
double precision :: ERHF
integer :: ixyz
integer :: nS
write(*,*)
write(*,*) '*****************************************'
write(*,*) '* Restricted Branch of QuAcK (HPC mode) *'
write(*,*) '*****************************************'
write(*,*)
!-------------------!
! Memory allocation !
!-------------------!
allocate(eHF(nOrb))
allocate(cHF(nBas,nOrb))
allocate(PHF(nBas,nBas))
allocate(FHF(nBas,nBas))
!---------------------!
! Hartree-Fock module !
!---------------------!
if(doRHF) then
call wall_time(start_HF)
call RHF_hpc(working_dir,dotest,maxSCF_HF,thresh_HF,max_diis_HF,guess_type,level_shift,nNuc,ZNuc,rNuc,ENuc, &
nBas,nOrb,nO,S,T,V,Hc,dipole_int_AO,X,ERHF,eHF,cHF,PHF,FHF)
call wall_time(end_HF)
t_HF = end_HF - start_HF
write(*,'(A65,1X,F9.3,A8)') 'Total wall time for RHF = ',t_HF,' seconds'
write(*,*)
end if
! if(doROHF) then
!
! call wall_time(start_HF)
! call ROHF(dotest,maxSCF_HF,thresh_HF,max_diis_HF,guess_type,mix,level_shift,nNuc,ZNuc,rNuc,ENuc, &
! nBas,nOrb,nO,S,T,V,Hc,ERI_AO,dipole_int_AO,X,ERHF,eHF,cHF,PHF,FHF)
! call wall_time(end_HF)
!
! t_HF = end_HF - start_HF
! write(*,'(A65,1X,F9.3,A8)') 'Total wall time for ROHF = ',t_HF,' seconds'
! write(*,*)
!
! end if
!
!!----------------------------------!
!! AO to MO integral transformation !
!!----------------------------------!
!
! call wall_time(start_AOtoMO)
!
! write(*,*)
! write(*,*) 'AO to MO transformation... Please be patient'
! write(*,*)
!
! ! Read and transform dipole-related integrals
!
! do ixyz=1,ncart
! call AOtoMO(nBas,nOrb,cHF,dipole_int_AO(1,1,ixyz),dipole_int_MO(1,1,ixyz))
! end do
!
! ! 4-index transform
!
! call AOtoMO_ERI_RHF(nBas,nOrb,cHF,ERI_AO,ERI_MO)
!
! call wall_time(end_AOtoMO)
!
! t_AOtoMO = end_AOtoMO - start_AOtoMO
! write(*,'(A65,1X,F9.3,A8)') 'Total wall time for AO to MO transformation = ',t_AOtoMO,' seconds'
! write(*,*)
!
!!-----------------------------------!
!! Stability analysis of HF solution !
!!-----------------------------------!
!
! nS = (nO - nC)*(nV - nR)
!
! if(dostab) then
!
! call wall_time(start_stab)
! call RHF_stability(nOrb,nC,nO,nV,nR,nS,eHF,ERI_MO)
! call wall_time(end_stab)
!
! t_stab = end_stab - start_stab
! write(*,'(A65,1X,F9.3,A8)') 'Total wall time for stability analysis = ',t_stab,' seconds'
! write(*,*)
!
! end if
!
! if(dosearch) then
!
! call wall_time(start_stab)
! call RHF_search(maxSCF_HF,thresh_HF,max_diis_HF,guess_type,level_shift,nNuc,ZNuc,rNuc,ENuc, &
! nBas,nOrb,nC,nO,nV,nR,S,T,V,Hc,ERI_AO,ERI_MO,dipole_int_AO,dipole_int_MO,X, &
! ERHF,eHF,cHF,PHF,FHF)
! call wall_time(end_stab)
!
! t_stab = end_stab - start_stab
! write(*,'(A65,1X,F9.3,A8)') 'Total wall time for stability analysis = ',t_stab,' seconds'
! write(*,*)
!
! end if
!
!!-----------------------!
!! Moller-Plesset module !
!!-----------------------!
!
! doMP = doMP2 .or. doMP3
!
! if(doMP) then
!
! call wall_time(start_MP)
! call RMP(dotest,doMP2,doMP3,reg_MP,nOrb,nC,nO,nV,nR,ERI_MO,ENuc,ERHF,eHF)
! call wall_time(end_MP)
!
! t_MP = end_MP - start_MP
! write(*,'(A65,1X,F9.3,A8)') 'Total wall time for MP = ',t_MP,' seconds'
! write(*,*)
!
! end if
!
!!------------------------!
!! Coupled-cluster module !
!!------------------------!
!
! doCC = doCCD .or. dopCCD .or. doDCD .or. doCCSD .or. doCCSDT .or. &
! dodrCCD .or. dorCCD .or. docrCCD .or. dolCCD
!
! if(doCC) then
!
! call wall_time(start_CC)
! call RCC(dotest,doCCD,dopCCD,doDCD,doCCSD,doCCSDT,dodrCCD,dorCCD,docrCCD,dolCCD, &
! maxSCF_CC,thresh_CC,max_diis_CC,nBas,nOrb,nC,nO,nV,nR,Hc,ERI_AO,ERI_MO, &
! ENuc,ERHF,eHF,cHF,PHF,FHF)
! call wall_time(end_CC)
!
! t_CC = end_CC - start_CC
! write(*,'(A65,1X,F9.3,A8)') 'Total wall time for CC = ',t_CC,' seconds'
! write(*,*)
!
! end if
!
!!----------------------------------!
!! Configuration interaction module !
!!----------------------------------!
!
! doCI = doCIS .or. doCID .or. doCISD .or. doFCI
!
! if(doCI) then
!
! call wall_time(start_CI)
! call RCI(dotest,doCIS,doCIS_D,doCID,doCISD,doFCI,singlet,triplet,nOrb, &
! nC,nO,nV,nR,nS,ERI_MO,dipole_int_MO,eHF,ERHF)
! call wall_time(end_CI)
!
! t_CI = end_CI - start_CI
! write(*,'(A65,1X,F9.3,A8)') 'Total wall time for CI = ',t_CI,' seconds'
! write(*,*)
!
! end if
!
!!-----------------------------------!
!! Random-phase approximation module !
!!-----------------------------------!
!
! doRPA = dophRPA .or. dophRPAx .or. docrRPA .or. doppRPA
!
! if(doRPA) then
!
! call wall_time(start_RPA)
! call RRPA(use_gpu,dotest,dophRPA,dophRPAx,docrRPA,doppRPA,TDA,doACFDT,exchange_kernel,singlet,triplet, &
! nOrb,nC,nO,nV,nR,nS,ENuc,ERHF,ERI_MO,dipole_int_MO,eHF)
! call wall_time(end_RPA)
!
! t_RPA = end_RPA - start_RPA
! write(*,'(A65,1X,F9.3,A8)') 'Total wall time for RPA = ',t_RPA,' seconds'
! write(*,*)
!
! end if
!
!!-------------------------!
!! Green's function module !
!!-------------------------!
!
! doGF = doG0F2 .or. doevGF2 .or. doqsGF2 .or. doufG0F02 .or. doG0F3 .or. doevGF3
!
! if(doGF) then
!
! call wall_time(start_GF)
! call RGF(dotest,doG0F2,doevGF2,doqsGF2,doufG0F02,doG0F3,doevGF3,renorm_GF,maxSCF_GF, &
! thresh_GF,max_diis_GF,dophBSE,doppBSE,TDA,dBSE,dTDA,singlet,triplet,lin_GF, &
! eta_GF,reg_GF,nNuc,ZNuc,rNuc,ENuc,nBas,nOrb,nC,nO,nV,nR,nS,ERHF, &
! S,X,T,V,Hc,ERI_AO,ERI_MO,dipole_int_AO,dipole_int_MO,PHF,cHF,eHF)
! call wall_time(end_GF)
!
! t_GF = end_GF - start_GF
! write(*,'(A65,1X,F9.3,A8)') 'Total wall time for GF2 = ',t_GF,' seconds'
! write(*,*)
!
! end if
!
!!-----------!
!! GW module !
!!-----------!
!
! doGW = doG0W0 .or. doevGW .or. doqsGW .or. doufG0W0 .or. doufGW
!
! if(doGW) then
!
! call wall_time(start_GW)
! call RGW(dotest,doG0W0,doevGW,doqsGW,doufG0W0,doufGW,maxSCF_GW,thresh_GW,max_diis_GW, &
! doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,doppBSE,TDA_W,TDA,dBSE,dTDA,singlet,triplet, &
! lin_GW,eta_GW,reg_GW,nNuc,ZNuc,rNuc,ENuc,nBas,nOrb,nC,nO,nV,nR,nS,ERHF,S,X,T, &
! V,Hc,ERI_AO,ERI_MO,dipole_int_AO,dipole_int_MO,PHF,cHF,eHF)
! call wall_time(end_GW)
!
! t_GW = end_GW - start_GW
! write(*,'(A65,1X,F9.3,A8)') 'Total wall time for GW = ',t_GW,' seconds'
! write(*,*)
!
! end if
!
!!-----------------!
!! T-matrix module !
!!-----------------!
!
! doGT = doG0T0pp .or. doevGTpp .or. doqsGTpp .or. doufG0T0pp .or. doG0T0eh .or. doevGTeh .or. doqsGTeh
!
! if(doGT) then
!
! call wall_time(start_GT)
! call RGT(dotest,doG0T0pp,doevGTpp,doqsGTpp,doufG0T0pp,doG0T0eh,doevGTeh,doqsGTeh, &
! maxSCF_GT,thresh_GT,max_diis_GT,doACFDT,exchange_kernel,doXBS,dophBSE,dophBSE2,doppBSE, &
! TDA_T,TDA,dBSE,dTDA,singlet,triplet,lin_GT,eta_GT,reg_GT,nNuc,ZNuc,rNuc,ENuc, &
! nBas,nOrb,nC,nO,nV,nR,nS,ERHF,S,X,T,V,Hc,ERI_AO,ERI_MO,dipole_int_AO, &
! dipole_int_MO,PHF,cHF,eHF)
! call wall_time(end_GT)
!
! t_GT = end_GT - start_GT
! write(*,'(A65,1X,F9.3,A8)') 'Total wall time for GT = ',t_GT,' seconds'
! write(*,*)
!
! end if
return
end subroutine

View File

@ -1,9 +1,9 @@
subroutine UQuAcK(dotest,doUHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
subroutine UQuAcK(working_dir,dotest,doUHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,doCCSD,doCCSDT, &
dodrCCD,dorCCD,docrCCD,dolCCD,doCIS,doCIS_D,doCID,doCISD,doFCI,dophRPA,dophRPAx,docrRPA,doppRPA, &
doG0F2,doevGF2,doqsGF2,doufG0F02,doG0F3,doevGF3,doG0W0,doevGW,doqsGW,doufG0W0,doufGW, &
doG0T0pp,doevGTpp,doqsGTpp,doufG0T0pp,doG0T0eh,doevGTeh,doqsGTeh, &
nNuc,nBas,nC,nO,nV,nR,ENuc,ZNuc,rNuc, &
S,T,V,Hc,X,dipole_int_AO,ERI_AO,maxSCF_HF,max_diis_HF,thresh_HF,level_shift, &
S,T,V,Hc,X,dipole_int_AO,maxSCF_HF,max_diis_HF,thresh_HF,level_shift, &
guess_type,mix,reg_MP,maxSCF_CC,max_diis_CC,thresh_CC,spin_conserved,spin_flip,TDA, &
maxSCF_GF,max_diis_GF,renorm_GF,thresh_GF,lin_GF,reg_GF,eta_GF,maxSCF_GW,max_diis_GW,thresh_GW, &
TDA_W,lin_GW,reg_GW,eta_GW,maxSCF_GT,max_diis_GT,thresh_GT,TDA_T,lin_GT,reg_GT,eta_GT, &
@ -12,6 +12,8 @@ subroutine UQuAcK(dotest,doUHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,do
implicit none
include 'parameters.h'
character(len=256),intent(in) :: working_dir
logical,intent(in) :: dotest
logical,intent(in) :: doUHF
@ -42,7 +44,6 @@ subroutine UQuAcK(dotest,doUHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,do
double precision,intent(in) :: Hc(nBas,nBas)
double precision,intent(in) :: X(nBas,nBas)
double precision,intent(in) :: dipole_int_AO(nBas,nBas,ncart)
double precision,intent(in) :: ERI_AO(nBas,nBas,nBas,nBas)
integer,intent(in) :: maxSCF_HF,max_diis_HF
double precision,intent(in) :: thresh_HF,level_shift,mix
@ -90,10 +91,12 @@ subroutine UQuAcK(dotest,doUHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,do
double precision :: start_GW ,end_GW ,t_GW
double precision :: start_GT ,end_GT ,t_GT
double precision :: start_int, end_int, t_int
double precision,allocatable :: cHF(:,:,:),eHF(:,:),PHF(:,:,:),FHF(:,:,:)
double precision :: EUHF
double precision,allocatable :: dipole_int_aa(:,:,:),dipole_int_bb(:,:,:)
double precision,allocatable :: ERI_aaaa(:,:,:,:),ERI_aabb(:,:,:,:),ERI_bbbb(:,:,:,:)
double precision,allocatable :: ERI_AO(:,:,:,:)
integer :: ixyz
integer :: nS(nspin)
@ -112,6 +115,15 @@ subroutine UQuAcK(dotest,doUHF,dostab,dosearch,doMP2,doMP3,doCCD,dopCCD,doDCD,do
ERI_aaaa(nBas,nBas,nBas,nBas),ERI_aabb(nBas,nBas,nBas,nBas), &
ERI_bbbb(nBas,nBas,nBas,nBas))
allocate(ERI_AO(nBas,nBas,nBas,nBas))
call wall_time(start_int)
call read_2e_integrals(working_dir,nBas,ERI_AO)
call wall_time(end_int)
t_int = end_int - start_int
write(*,*)
write(*,'(A65,1X,F9.3,A8)') 'Total wall time for reading 2e-integrals =',t_int,' seconds'
write(*,*)
!---------------------!
! Hartree-Fock module !
!---------------------!

View File

@ -0,0 +1,39 @@
subroutine read_hpc_flags(working_dir, switch_hpc, use_gpu)
implicit none
character(len=256), intent(in) :: working_dir
logical, intent(out) :: switch_hpc
logical, intent(out) :: use_gpu
character(len=1) :: ans
integer :: ios
character(len=256) :: file_path
file_path = trim(working_dir) // '/input/hpc_flags'
open(unit=1, file=file_path, status='old', action='read', iostat=ios)
if(ios /= 0) then
switch_hpc = .False.
use_gpu = .False.
else
switch_hpc = .False.
use_gpu = .False.
read(1,*)
read(1,*) ans
if(ans == 'T') switch_hpc = .true.
read(1,*)
read(1,*) ans
if(ans == 'T') use_gpu = .true.
endif
close(unit=1)
end subroutine

View File

@ -1,4 +1,4 @@
subroutine RRPA(dotest,dophRPA,dophRPAx,docrRPA,doppRPA,TDA,doACFDT,exchange_kernel,singlet,triplet, &
subroutine RRPA(use_gpu,dotest,dophRPA,dophRPAx,docrRPA,doppRPA,TDA,doACFDT,exchange_kernel,singlet,triplet, &
nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
! Random-phase approximation module
@ -8,6 +8,8 @@ subroutine RRPA(dotest,dophRPA,dophRPAx,docrRPA,doppRPA,TDA,doACFDT,exchange_ker
! Input variables
logical,intent(in) :: use_gpu
logical,intent(in) :: dotest
logical,intent(in) :: dophRPA
@ -43,7 +45,11 @@ subroutine RRPA(dotest,dophRPA,dophRPAx,docrRPA,doppRPA,TDA,doACFDT,exchange_ker
if(dophRPA) then
call wall_time(start_RPA)
call phRRPA(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
if (use_gpu) then
call phRRPA_GPU(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
else
call phRRPA(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
endif
call wall_time(end_RPA)
t_RPA = end_RPA - start_RPA

View File

@ -8,37 +8,39 @@ subroutine phRRPA(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC,nO,
! Input variables
logical,intent(in) :: dotest
logical,intent(in) :: dotest
logical,intent(in) :: TDA
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: singlet
logical,intent(in) :: triplet
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
logical,intent(in) :: TDA
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: singlet
logical,intent(in) :: triplet
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
! Local variables
integer :: ispin
logical :: dRPA
double precision :: lambda
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
double precision,allocatable :: Om(:)
double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:)
integer :: ia
integer :: ispin
logical :: dRPA
double precision :: t1, t2
double precision :: lambda
double precision,allocatable :: Aph(:,:)
double precision,allocatable :: Bph(:,:)
double precision,allocatable :: Om(:)
double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:)
double precision :: EcRPA(nspin)
double precision :: EcRPA(nspin)
! Hello world
@ -71,10 +73,17 @@ subroutine phRRPA(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC,nO,
ispin = 1
!call wall_time(t1)
call phLR_A(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,eHF,ERI,Aph)
if(.not.TDA) call phLR_B(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,ERI,Bph)
call phLR(TDA,nS,Aph,Bph,EcRPA(ispin),Om,XpY,XmY)
!call wall_time(t2)
!print *, "wall time for dRPA on CPU (sec) = ", t2 - t1
!do ia = 1, nS
! write(112, *) Om(ia)
!enddo
!stop
call print_excitation_energies('phRPA@RHF','singlet',nS,Om)
call phLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)

190
src/RPA/phRRPA_GPU.f90 Normal file
View File

@ -0,0 +1,190 @@
#ifdef USE_GPU
subroutine phRRPA_GPU(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
use cu_quack_module
implicit none
include 'parameters.h'
include 'quadrature.h'
logical,intent(in) :: dotest
logical,intent(in) :: TDA
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: singlet
logical,intent(in) :: triplet
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
integer :: i, a, ia
integer :: ispin
logical :: dRPA
double precision :: t1, t2
integer, allocatable :: iorder(:)
double precision,allocatable :: Om(:)
double precision,allocatable :: XpY(:,:)
double precision,allocatable :: XmY(:,:)
double precision :: EcRPA(nspin)
write(*,*)
write(*,*)'******************************************'
write(*,*)'* Restricted ph-RPA Calculation (on GPU) *'
write(*,*)'******************************************'
write(*,*)
if(TDA) then
write(*,*) 'Tamm-Dancoff approximation activated!'
write(*,*)
end if
! Initialization
dRPA = .true.
EcRPA(:) = 0d0
allocate(Om(nS), XpY(nS,nS), XmY(nS,nS))
if(singlet) then
if(TDA) then
!print*, 'start diag on GPU:'
!call wall_time(t1)
call ph_drpa_tda_sing(nO, nBas, nS, eHF(1), ERI(1,1,1,1), Om(1), XpY(1,1))
!call wall_time(t2)
!print*, 'diag time on GPU (sec):', t2 - t1
XmY(:,:) = XpY(:,:)
else
!call wall_time(t1)
call ph_drpa_sing(nO, nBas, nS, eHF(1), ERI(1,1,1,1), Om(1), XpY(1,1), XmY(1,1))
!call wall_time(t2)
!print *, "wall time for dRPA on GPU (sec) = ", t2 - t1
!do ia = 1, nS
! write(111, *) Om(ia)
!enddo
!stop
endif
! TODO
XpY(:,:) = transpose(XpY(:,:))
XmY(:,:) = transpose(XmY(:,:))
call print_excitation_energies('phRPA@RHF','singlet',nS,Om)
call phLR_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)
endif
if(triplet) then
XpY(:,:) = 0.d0
allocate(iorder(nS))
ia = 0
do i = nC+1, nO
do a = nO+1, nBas-nR
ia = ia + 1
iorder(ia) = ia
Om(ia) = eHF(a) - eHF(i)
XpY(ia,ia) = 1.d0
enddo
enddo
call quick_sort(Om(1), iorder(1), nS)
deallocate(iorder)
XmY(:,:) = XpY(:,:)
call print_excitation_energies('phRPA@RHF','triplet',nS,Om)
call phLR_transition_vectors(.false.,nBas,nC,nO,nV,nR,nS,dipole_int,Om,XpY,XmY)
endif
deallocate(Om, XpY, XmY)
! TODO
! init EcRPA
if(exchange_kernel) then
EcRPA(1) = 0.5d0*EcRPA(1)
EcRPA(2) = 1.5d0*EcRPA(2)
endif
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'Tr@phRPA@RHF correlation energy (singlet) = ',EcRPA(1),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@phRPA@RHF correlation energy (triplet) = ',EcRPA(2),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@phRPA@RHF correlation energy = ',sum(EcRPA),' au'
write(*,'(2X,A50,F20.10,A3)') 'Tr@phRPA@RHF total energy = ',ENuc + ERHF + sum(EcRPA),' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
! Compute the correlation energy via the adiabatic connection
if(doACFDT) then
! TODO
call phACFDT(exchange_kernel,dRPA,TDA,singlet,triplet,nBas,nC,nO,nV,nR,nS,ERI,eHF,EcRPA)
write(*,*)
write(*,*)'-------------------------------------------------------------------------------'
write(*,'(2X,A50,F20.10,A3)') 'AC@phRPA@RHF correlation energy (singlet) = ',EcRPA(1),' au'
write(*,'(2X,A50,F20.10,A3)') 'AC@phRPA@RHF correlation energy (triplet) = ',EcRPA(2),' au'
write(*,'(2X,A50,F20.10,A3)') 'AC@phRPA@RHF correlation energy = ',sum(EcRPA),' au'
write(*,'(2X,A50,F20.10,A3)') 'AC@phRPA@RHF total energy = ',ENuc + ERHF + sum(EcRPA),' au'
write(*,*)'-------------------------------------------------------------------------------'
write(*,*)
endif
if(dotest) then
call dump_test_value('R','phRPA correlation energy (on GPU)',sum(EcRPA))
endif
end subroutine
#else
subroutine phRRPA_GPU(dotest,TDA,doACFDT,exchange_kernel,singlet,triplet,nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,dipole_int,eHF)
implicit none
include 'parameters.h'
include 'quadrature.h'
logical,intent(in) :: dotest
logical,intent(in) :: TDA
logical,intent(in) :: doACFDT
logical,intent(in) :: exchange_kernel
logical,intent(in) :: singlet
logical,intent(in) :: triplet
integer,intent(in) :: nBas
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: ENuc
double precision,intent(in) :: ERHF
double precision,intent(in) :: eHF(nBas)
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
double precision,intent(in) :: dipole_int(nBas,nBas,ncart)
print*, "compile with USE_GPU FLAG!"
stop
end
#endif

44
src/cuda/Makefile Normal file
View File

@ -0,0 +1,44 @@
NVCC = nvcc
NVFLAGS = -O2 --compiler-options '-O2 -Wall -fPIC'
CC = gcc
CFLAGS = -O2 -Wall -g -fPIC
FC = gfortran
FFLAGS = -O2 -Wall -g -fPIC
SRC_DIR = src
INC_DIR = include
BLD_DIR = build
$(shell mkdir -p $(BLD_DIR))
CU_SRC = $(wildcard $(SRC_DIR)/*.cu)
CU_OBJ = $(CU_SRC:$(SRC_DIR)/%.cu=$(BLD_DIR)/%.o)
C_SRC = $(wildcard $(SRC_DIR)/*.c)
C_OBJ = $(C_SRC:$(SRC_DIR)/%.c=$(BLD_DIR)/%.o)
F_SRC = #$(SRC_DIR)/cu_quack_module.f90
F_OBJ = #$(BLD_DIR)/cu_quack_module.o
OUTPUT_LIB = $(BLD_DIR)/libcuquack.so
all: $(OUTPUT_LIB)
$(OUTPUT_LIB): $(CU_OBJ) $(C_OBJ) $(F_OBJ)
$(CC) -shared -o $(OUTPUT_LIB) $(CU_OBJ) $(C_OBJ) $(F_OBJ)
$(BLD_DIR)/%.o: $(SRC_DIR)/%.cu
$(NVCC) $(NVFLAGS) -c -o $@ $< -I$(INC_DIR)
$(BLD_DIR)/%.o: $(SRC_DIR)/%.c
$(CC) $(CFLAGS) -c -o $@ $< -I$(INC_DIR)
$(F_OBJ): $(F_SRC)
$(FC) $(FFLAGS) -c -o $@ $< -J$(BLD_DIR)
.PHONY: clean
clean:
rm $(BLD_DIR)/*

View File

@ -0,0 +1,22 @@
#ifndef MY_LINALG
#define MY_LINALG
extern void A_plus_B_in_A(int n, double *A, double *B);
extern void A_minus_twoB_in_B(int n, double *A, double *B);
extern void A_D_At(int n, double *A, double *D, double *R);
extern void A_Dinv_At(int n, double *A, double *D, double *R);
extern void A_D_inplace(int n, double *A, double *D);
extern void A_Dinv_inplace(int n, double *A, double *D);
extern void A_D_in_B(int n, double *A, double *D, double *B);
extern void A_Dinv_in_B(int n, double *A, double *D, double *B);
extern void elementwise_dsqrt(int nS, double *A, double *A_Sq);
extern void elementwise_dsqrt_inplace(int nS, double *A);
extern void diag_dn_dsyevd(int n, int *info, double *W, double *A);
#endif

11
src/cuda/include/ph_rpa.h Normal file
View File

@ -0,0 +1,11 @@
#ifndef PH_RPA
#define PH_RPA
extern void ph_dRPA_A_sing(int nO, int nV, int nBas, int nS, double *eps, double *ERI, double *A);
extern void ph_dRPA_B_sing(int nO, int nV, int nBas, int nS, double *ERI, double *B);
extern void ph_dRPA_ApB_sing(int nO, int nV, int nBas, int nS, double *eps, double *ERI, double *ApB);
extern void ph_dRPA_AmB_sing(int nO, int nV, int nBas, int nS, double *eps, double *ERI, double *AmB);
#endif

9
src/cuda/include/utils.h Normal file
View File

@ -0,0 +1,9 @@
#ifndef UTILS
#define UTILS
extern void check_Cuda_Errors(cudaError_t err, const char *msg, const char *file, int line);
extern void check_Cublas_Errors(cublasStatus_t status, const char *msg, const char *file, int line);
extern void check_Cusolver_Errors(cusolverStatus_t status, const char *msg, const char *file, int line);
#endif

64
src/cuda/src/a_d_at.cu Normal file
View File

@ -0,0 +1,64 @@
#include <stdio.h>
__global__ void A_D_At_kernel(int n, double *A, double *D, double *R) {
int i, j;
int k;
int in, ij;
int kn;
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
while(i < n) {
in = i * n;
while(j < n) {
ij = in + j;
R[ij] = 0.0;
k = 0;
while(k < n) {
kn = k * n;
R[ij] += D[k] * A[i + kn] * A[j + kn];
k ++;
} // k
j += blockDim.y * gridDim.y;
} // j
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void A_D_At(int n, double *A, double *D, double *R) {
int sBlocks = 32;
int nBlocks = (n + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching A_D_At_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
A_D_At_kernel<<<dimGrid, dimBlock>>>(n, A, D, R);
}

57
src/cuda/src/a_d_in_b.cu Normal file
View File

@ -0,0 +1,57 @@
#include <stdio.h>
__global__ void A_D_in_B_kernel(int n, double *A, double *D, double *B) {
int i, j;
int in, ji;
double tmp;
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
while(i < n) {
in = i * n;
tmp = D[i];
while(j < n) {
ji = in + j;
B[ji] = A[ji] * tmp;
j += blockDim.y * gridDim.y;
} // j
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void A_D_in_B(int n, double *A, double *D, double *B) {
int sBlocks = 32;
int nBlocks = (n + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching A_D_in_B_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
A_D_in_B_kernel<<<dimGrid, dimBlock>>>(n, A, D, B);
}

View File

@ -0,0 +1,57 @@
#include <stdio.h>
__global__ void A_D_inplace_kernel(int n, double *A, double *D) {
int i, j;
int in, ji;
double tmp;
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
while(i < n) {
in = i * n;
tmp = D[i];
while(j < n) {
ji = in + j;
A[ji] = A[ji] * tmp;
j += blockDim.y * gridDim.y;
} // j
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void A_D_inplace(int n, double *A, double *D) {
int sBlocks = 32;
int nBlocks = (n + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching A_D_inplace_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
A_D_inplace_kernel<<<dimGrid, dimBlock>>>(n, A, D);
}

64
src/cuda/src/a_dinv_at.cu Normal file
View File

@ -0,0 +1,64 @@
#include <stdio.h>
__global__ void A_Dinv_At_kernel(int n, double *A, double *D, double *R) {
int i, j;
int k;
int in, ij;
int kn;
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
while(i < n) {
in = i * n;
while(j < n) {
ij = in + j;
R[ij] = 0.0;
k = 0;
while(k < n) {
kn = k * n;
R[ij] += D[k] * A[i + kn] * A[j + kn] / (D[k] + 1e-12);
k ++;
} // k
j += blockDim.y * gridDim.y;
} // j
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void A_Dinv_At(int n, double *A, double *D, double *R) {
int sBlocks = 32;
int nBlocks = (n + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching A_Dinv_At_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
A_Dinv_At_kernel<<<dimGrid, dimBlock>>>(n, A, D, R);
}

View File

@ -0,0 +1,57 @@
#include <stdio.h>
__global__ void A_Dinv_in_B_kernel(int n, double *A, double *D, double *B) {
int i, j;
int in, ji;
double tmp;
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
while(i < n) {
in = i * n;
tmp = 1.0 / D[i];
while(j < n) {
ji = in + j;
B[ji] = A[ji] * tmp;
j += blockDim.y * gridDim.y;
} // j
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void A_Dinv_in_B(int n, double *A, double *D, double *B) {
int sBlocks = 32;
int nBlocks = (n + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching A_Dinv_in_B_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
A_Dinv_in_B_kernel<<<dimGrid, dimBlock>>>(n, A, D, B);
}

View File

@ -0,0 +1,57 @@
#include <stdio.h>
__global__ void A_Dinv_inplace_kernel(int n, double *A, double *D) {
int i, j;
int in, ji;
double tmp;
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
while(i < n) {
in = i * n;
tmp = 1.0 / (1e-12 + D[i]);
while(j < n) {
ji = in + j;
A[ji] = A[ji] * tmp;
j += blockDim.y * gridDim.y;
} // j
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void A_Dinv_inplace(int n, double *A, double *D) {
int sBlocks = 32;
int nBlocks = (n + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching A_Dinv_inplace_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
A_Dinv_inplace_kernel<<<dimGrid, dimBlock>>>(n, A, D);
}

View File

@ -0,0 +1,52 @@
#include <stdio.h>
__global__ void A_minus_twoB_in_B_kernel(int n, double *A, double *B) {
int i, j;
int in, ji;
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
while(i < n) {
in = i * n;
while(j < n) {
ji = in + j;
B[ji] = A[ji] - 2.0 * B[ji];
j += blockDim.y * gridDim.y;
} // j
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void A_minus_twoB_in_B(int n, double *A, double *B) {
int sBlocks = 32;
int nBlocks = (n + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching A_minus_twoB_in_B_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
A_minus_twoB_in_B_kernel<<<dimGrid, dimBlock>>>(n, A, B);
}

View File

@ -0,0 +1,52 @@
#include <stdio.h>
__global__ void A_plus_B_in_A_kernel(int n, double *A, double *B) {
int i, j;
int in, ji;
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
while(i < n) {
in = i * n;
while(j < n) {
ji = in + j;
A[ji] = A[ji] + B[ji];
j += blockDim.y * gridDim.y;
} // j
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void A_plus_B_in_A(int n, double *A, double *B) {
int sBlocks = 32;
int nBlocks = (n + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching A_plus_B_in_A_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
A_plus_B_in_A_kernel<<<dimGrid, dimBlock>>>(n, A, B);
}

View File

@ -0,0 +1,42 @@
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>
extern "C" void diag_dn_dsyevd(int n, int *info, double *W, double *A) {
cusolverDnHandle_t cusolverH = NULL;
cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // Compute eigenvalues and eigenvectors
cublasFillMode_t uplo = CUBLAS_FILL_MODE_UPPER; // Upper triangular part of the matrix is stored
//cublasFillMode_t uplo = CUBLAS_FILL_MODE_LOWER; // Upper triangular part of the matrix is stored
int lwork = 0;
double *work = NULL;
//check_Cusolver_Errors(cusolverDnCreate(&cusolverH), "cusolverDnCreate", __FILE__, __LINE__);
cusolverDnCreate(&cusolverH);
// Query workspace size
//check_Cusolver_Errors(cusolverDnDsyevd_bufferSize(cusolverH, jobz, uplo, n, A, n, W, &lwork),
// "cusolverDnDsyevd_bufferSize", __FILE__, __LINE__);
//check_Cuda_Errors(cudaMalloc((void**)&work, sizeof(double) * lwork),
// "cudaMemcpy", __FILE__, __LINE__);
cusolverDnDsyevd_bufferSize(cusolverH, jobz, uplo, n, A, n, W, &lwork);
cudaMalloc((void**)&work, sizeof(double) * lwork);
// Compute eigenvalues and eigenvectors
//check_Cusolver_Errors(cusolverDnDsyevd(cusolverH, jobz, uplo, n, A, n, W, work, lwork, info),
// "cusolverDnDsyevd", __FILE__, __LINE__);
cusolverDnDsyevd(cusolverH, jobz, uplo, n, A, n, W, work, lwork, info);
// Clean up
//check_Cuda_Errors(cudaFree(work), "cudaFree", __FILE__, __LINE__);
//check_Cusolver_Errors(cusolverDnDestroy(cusolverH), "cusolverDnDestroy", __FILE__, __LINE__);
cudaFree(work);
cusolverDnDestroy(cusolverH);
}

View File

@ -0,0 +1,51 @@
#include <stdio.h>
#include <math.h>
__global__ void elementwise_dsqrt_kernel(int nS, double *A, double *A_Sq) {
int i;
i = blockIdx.x * blockDim.x + threadIdx.x;
while(i < nS) {
if(A[i] > 0.0) {
A_Sq[i] = sqrt(A[i]);
} else {
A_Sq[i] = sqrt(-A[i]);
}
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void elementwise_dsqrt(int nS, double *A, double *A_Sq) {
int sBlocks = 32;
int nBlocks = (nS + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, 1, 1);
dim3 dimBlock(sBlocks, 1, 1);
printf("lunching elementwise_dsqrt_kernel with %d blocks and %d threads/block\n",
nBlocks, sBlocks);
elementwise_dsqrt_kernel<<<dimGrid, dimBlock>>>(nS, A, A_Sq);
}

View File

@ -0,0 +1,51 @@
#include <stdio.h>
#include <math.h>
__global__ void elementwise_dsqrt_inplace_kernel(int n, double *A) {
int i;
i = blockIdx.x * blockDim.x + threadIdx.x;
while(i < n) {
if(A[i] > 0.0) {
A[i] = sqrt(A[i]);
} else {
A[i] = sqrt(-A[i]);
}
i += blockDim.x * gridDim.x;
} // i
}
extern "C" void elementwise_dsqrt_inplace(int n, double *A) {
int sBlocks = 32;
int nBlocks = (n + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, 1, 1);
dim3 dimBlock(sBlocks, 1, 1);
printf("lunching elementwise_dsqrt_inplace_kernel with %d blocks and %d threads/block\n",
nBlocks, sBlocks);
elementwise_dsqrt_inplace_kernel<<<dimGrid, dimBlock>>>(n, A);
}

View File

@ -0,0 +1,95 @@
#include <stdio.h>
__global__ void ph_dRPA_A_sing_kernel(int nO, int nV, int nBas, int nS, double *eps, double *ERI, double *A) {
int i, j, a, b;
int aa, bb;
long long nVS;
long long nBas2, nBas3;
long long i_A0, i_A1, i_A2, i_A3;
long long i_I0, i_I1, i_I2, i_I3;
bool a_eq_b;
nVS = (long long) nV * (long long) nS;
nBas2 = (long long) nBas * (long long) nBas;
nBas3 = nBas2 * (long long) nBas;
aa = blockIdx.x * blockDim.x + threadIdx.x;
bb = blockIdx.y * blockDim.y + threadIdx.y;
while(aa < nV) {
a = aa + nO;
i_A0 = (long long) aa * (long long) nS;
i_I0 = (long long) a * nBas2;
while(bb < nV) {
b = bb + nO;
a_eq_b = a == b;
i_A1 = i_A0 + (long long) bb;
i_I1 = i_I0 + (long long) b * (long long) nBas;
i = 0;
while(i < nO) {
i_A2 = i_A1 + (long long) i * nVS;
i_I2 = i_I1 + (long long) i;
j = 0;
while(j < nO) {
i_A3 = i_A2 + (long long) j * (long long) nV;
i_I3 = i_I2 + (long long) j * nBas3;
A[i_A3] = 2.0 * ERI[i_I3];
if(a_eq_b && (i==j)) {
A[i_A3] += eps[a] - eps[i];
}
j ++;
} // j
i ++;
} // i
bb += blockDim.y * gridDim.y;
} // bb
aa += blockDim.x * gridDim.x;
} // aa
}
extern "C" void ph_dRPA_A_sing(int nO, int nV, int nBas, int nS, double *eps, double *ERI, double *A) {
int sBlocks = 32;
int nBlocks = (nV + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
//dim3 dimGrid(nBlocks, 1, 1);
//dim3 dimBlock(sBlocks, 1, 1);
printf("lunching ph_dRPA_A_sing_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
ph_dRPA_A_sing_kernel<<<dimGrid, dimBlock>>>(nO, nV, nBas, nS, eps, ERI, A);
}

View File

@ -0,0 +1,77 @@
#include <stdio.h>
__global__ void ph_dRPA_A_trip_kernel(int nO, int nV, int nBas, int nS, double *eps, double *A) {
int i, j, a, b;
int aa, bb;
int nVS;
int i_A0, i_A1, i_A2;
nVS = nV * nS;
aa = blockIdx.x * blockDim.x + threadIdx.x;
bb = blockIdx.y * blockDim.y + threadIdx.y;
while(aa < nV) {
a = aa + nO;
i_A0 = aa * nS;
while(bb < nV) {
b = bb + nO;
i_A1 = i_A0 + bb;
i = 0;
while(i < nO) {
i_A2 = i_A1 + i * nVS;
j = 0;
while(j < nO) {
A[i_A2 + j * nV] = 0.0;
if((a==b) && (i==j)) {
A[i_A2 + j * nV] += eps[a] - eps[i];
}
j ++;
} // j
i ++;
} // i
bb += blockDim.y * gridDim.y;
} // bb
aa += blockDim.x * gridDim.x;
} // aa
}
extern "C" void ph_dRPA_A_trip(int nO, int nV, int nBas, int nS, double *eps, double *A) {
int sBlocks = 32;
int nBlocks = (nV + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching ph_dRPA_A_trip_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
ph_dRPA_A_trip_kernel<<<dimGrid, dimBlock>>>(nO, nV, nBas, nS, eps, A);
}

View File

@ -0,0 +1,99 @@
#include <stdio.h>
__global__ void ph_dRPA_AmB_sing_kernel(int nO, int nV, int nBas, int nS,
double *eps, double *ERI, double *AmB) {
int i, j, a, b;
int aa, bb;
long long i_A0, i_A1, i_A2, i_A3;
long long i_I0, i_I1, i_I2, i_I3;
long long i_J1, i_J2, i_J3;
long long nVS;
long long nBas2, nBas3;
bool a_eq_b;
nVS = (long long) nV * (long long) nS;
nBas2 = (long long) nBas * (long long) nBas;
nBas3 = nBas2 * (long long) nBas;
aa = blockIdx.x * blockDim.x + threadIdx.x;
bb = blockIdx.y * blockDim.y + threadIdx.y;
while(aa < nV) {
a = aa + nO;
i_A0 = (long long) aa * (long long) nS;
i_I0 = (long long) a * nBas2;
while(bb < nV) {
b = bb + nO;
a_eq_b = a == b;
i_A1 = i_A0 + (long long) bb;
i_I1 = i_I0 + (long long) b * (long long) nBas;
i_J1 = i_I0 + (long long) b * nBas3;
i = 0;
while(i < nO) {
i_A2 = i_A1 + (long long) i * nVS;
i_I2 = i_I1 + (long long) i;
i_J2 = i_J1 + (long long) i;
j = 0;
while(j < nO) {
i_A3 = i_A2 + (long long) j * nV;
i_I3 = i_I2 + (long long) j * nBas3;
i_J3 = i_J2 + (long long) j * (long long) nBas;
AmB[i_A3] = 2.0 * (ERI[i_I3] - ERI[i_J3]);
if(a_eq_b && (i==j)) {
AmB[i_A3] += eps[a] - eps[i];
}
j ++;
} // j
i ++;
} // i
bb += blockDim.y * gridDim.y;
} // bb
aa += blockDim.x * gridDim.x;
} // aa
}
extern "C" void ph_dRPA_AmB_sing(int nO, int nV, int nBas, int nS, double *eps, double *ERI, double *AmB) {
int sBlocks = 32;
int nBlocks = (nV + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching ph_dRPA_AmB_sing_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
ph_dRPA_AmB_sing_kernel<<<dimGrid, dimBlock>>>(nO, nV, nBas, nS, eps, ERI, AmB);
}

View File

@ -0,0 +1,102 @@
#include <stdio.h>
__global__ void ph_dRPA_ApB_sing_kernel(int nO, int nV, int nBas, int nS,
double *eps, double *ERI, double *ApB) {
long i, j, a, b;
long aa, bb;
int i_A0, i_A1, i_A2, i_A3;
int i_I0, i_I1, i_I2;
int i_J1, i_J2;
int nVS;
int nBas2;
long long i_I3, i_J3;
long long nBas3;
bool a_eq_b;
nVS = nV * nS;
nBas2 = nBas * nBas;
nBas3 = (long long) nBas2 * (long long) nBas;
aa = blockIdx.x * blockDim.x + threadIdx.x;
bb = blockIdx.y * blockDim.y + threadIdx.y;
while(aa < nV) {
a = aa + nO;
i_A0 = aa * nS;
i_I0 = a * nBas2;
while(bb < nV) {
b = bb + nO;
a_eq_b = a == b;
i_A1 = i_A0 + bb;
i_I1 = i_I0 + b * nBas;
i_J1 = a + b * nBas;
i = 0;
while(i < nO) {
i_A2 = i_A1 + i * nVS;
i_I2 = i_I1 + i;
i_J2 = i_J1 + i * nBas2;
j = 0;
while(j < nO) {
i_A3 = i_A2 + j * nV;
i_I3 = i_I2 + (long long) j * nBas3;
i_J3 = i_J2 + (long long) j * nBas3;
ApB[i_A3] = 2.0 * (ERI[i_I3] + ERI[i_J3]);
if(a_eq_b && (i==j)) {
ApB[i_A3] += eps[a] - eps[i];
}
j ++;
} // j
i ++;
} // i
bb += blockDim.y * gridDim.y;
} // bb
aa += blockDim.x * gridDim.x;
} // aa
}
extern "C" void ph_dRPA_ApB_sing(int nO, int nV, int nBas, int nS, double *eps, double *ERI, double *ApB) {
int sBlocks = 32;
int nBlocks = (nV + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching ph_dRPA_ApB_sing_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
ph_dRPA_ApB_sing_kernel<<<dimGrid, dimBlock>>>(nO, nV, nBas, nS, eps, ERI, ApB);
}

View File

@ -0,0 +1,87 @@
#include <stdio.h>
__global__ void ph_dRPA_B_sing_kernel(int nO, int nV, int nBas, int nS, double *ERI, double *B) {
int i, j, a, b;
int aa, bb;
long long nVS;
long long nBas2, nBas3;
long long i_B0, i_B1, i_B2, i_B3;
long long i_I0, i_I1, i_I2, i_I3;
nVS = (long long) nV * (long long) nS;
nBas2 = (long long) nBas * (long long) nBas;
nBas3 = nBas2 * (long long) nBas;
aa = blockIdx.x * blockDim.x + threadIdx.x;
bb = blockIdx.y * blockDim.y + threadIdx.y;
while(aa < nV) {
a = aa + nO;
i_B0 = (long long) aa * (long long) nS;
i_I0 = (long long) a * nBas2;
while(bb < nV) {
b = bb + nO;
i_B1 = i_B0 + (long long) bb;
i_I1 = i_I0 + (long long) b * nBas3;
i = 0;
while(i < nO) {
i_B2 = i_B1 + (long long) i * nVS;
i_I2 = i_I1 + (long long) i;
j = 0;
while(j < nO) {
i_B3 = i_B2 + (long long) j * (long long) nV;
i_I3 = i_I2 + (long long) j * (long long) nBas;
B[i_B3] = 2.0 * ERI[i_I3];
j ++;
} // j
i ++;
} // i
bb += blockDim.y * gridDim.y;
} // bb
aa += blockDim.x * gridDim.x;
} // aa
}
extern "C" void ph_dRPA_B_sing(int nO, int nV, int nBas, int nS, double *ERI, double *B) {
int sBlocks = 32;
int nBlocks = (nV + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching ph_dRPA_B_sing_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
ph_dRPA_B_sing_kernel<<<dimGrid, dimBlock>>>(nO, nV, nBas, nS, ERI, B);
}

View File

@ -0,0 +1,72 @@
#include <stdio.h>
__global__ void ph_dRPA_B_trip_kernel(int nO, int nV, int nBas, int nS, double *B) {
int i, j;
int aa, bb;
int nVS;
int i_B0, i_B1, i_B2;
nVS = nV * nS;
aa = blockIdx.x * blockDim.x + threadIdx.x;
bb = blockIdx.y * blockDim.y + threadIdx.y;
while(aa < nV) {
i_B0 = aa * nS;
while(bb < nV) {
i_B1 = i_B0 + bb;
i = 0;
while(i < nO) {
i_B2 = i_B1 + i * nVS;
j = 0;
while(j < nO) {
B[i_B2 + j * nV] = 0.0;
j ++;
} // j
i ++;
} // i
bb += blockDim.y * gridDim.y;
} // bb
aa += blockDim.x * gridDim.x;
} // aa
}
extern "C" void ph_dRPA_B_trip(int nO, int nV, int nBas, int nS, double *B) {
int sBlocks = 32;
int nBlocks = (nV + sBlocks - 1) / sBlocks;
dim3 dimGrid(nBlocks, nBlocks, 1);
dim3 dimBlock(sBlocks, sBlocks, 1);
printf("lunching ph_dRPA_B_trip_kernel with %dx%d blocks and %dx%d threads/block\n",
nBlocks, nBlocks, sBlocks, sBlocks);
ph_dRPA_B_trip_kernel<<<dimGrid, dimBlock>>>(nO, nV, nBas, nS, B);
}

307
src/cuda/src/ph_drpa_sing.c Normal file
View File

@ -0,0 +1,307 @@
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <stdlib.h>
#include <stdio.h>
#include <cublas_v2.h>
#include <cusolverDn.h>
#include "utils.h"
#include "ph_rpa.h"
#include "my_linalg.h"
void ph_drpa_sing(int nO, int nBas, int nS, double *h_eps, double *h_ERI,
double *h_Omega, double *h_XpY, double *h_XmY) {
double *d_eps = NULL;
double *d_ERI = NULL;
int nV = nBas - nO;
long long nBas_long = (long long) nBas;
long long nBas4 = nBas_long * nBas_long * nBas_long * nBas_long;
long long nS_long = (long long) nS;
long long nS2 = nS_long * nS_long;
cublasHandle_t handle;
const double alpha=1.0, beta=0.0;
float elapsedTime;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
check_Cuda_Errors(cudaMalloc((void**)&d_eps, nBas * sizeof(double)),
"cudaMalloc", __FILE__, __LINE__);
check_Cuda_Errors(cudaMalloc((void**)&d_ERI, nBas4 * sizeof(double)),
"cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0);
check_Cuda_Errors(cudaMemcpy(d_eps, h_eps, nBas * sizeof(double), cudaMemcpyHostToDevice),
"cudaMemcpy", __FILE__, __LINE__);
check_Cuda_Errors(cudaMemcpy(d_ERI, h_ERI, nBas4 * sizeof(double), cudaMemcpyHostToDevice),
"cudaMemcpy", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on CPU->GPU transfer = %f msec\n", elapsedTime);
// construct A+B & A-B
double *d_ApB = NULL;
double *d_AmB = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_ApB, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
check_Cuda_Errors(cudaMalloc((void**)&d_AmB, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0);
ph_dRPA_ApB_sing(nO, nV, nBas, nS, d_eps, d_ERI, d_ApB);
ph_dRPA_AmB_sing(nO, nV, nBas, nS, d_eps, d_ERI, d_AmB);
//ph_dRPA_A_sing(nO, nV, nBas, nS, d_eps, d_ERI, d_ApB);
//ph_dRPA_B_sing(nO, nV, nBas, nS, d_ERI, d_AmB);
//check_Cuda_Errors(cudaDeviceSynchronize(), "cudaDeviceSynchronize", __FILE__, __LINE__);
//A_plus_B_in_A(nS, d_ApB, d_AmB);
//check_Cuda_Errors(cudaDeviceSynchronize(), "cudaDeviceSynchronize", __FILE__, __LINE__);
//A_minus_twoB_in_B(nS, d_ApB, d_AmB);
check_Cuda_Errors(cudaGetLastError(), "cudaGetLastError", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on AmB & ApB = %f msec\n", elapsedTime);
// free memory
check_Cuda_Errors(cudaDeviceSynchronize(), "cudaDeviceSynchronize", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_eps), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_ERI), "cudaFree", __FILE__, __LINE__);
// diagonalize A-B
int *d_info1 = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_info1, sizeof(int)), "cudaMalloc", __FILE__, __LINE__);
double *d_Omega = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_Omega, nS * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0);
diag_dn_dsyevd(nS, d_info1, d_Omega, d_AmB);
check_Cuda_Errors(cudaGetLastError(), "cudaGetLastError", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on diag AmB = %f msec\n", elapsedTime);
// d_Omega <-- d_Omega^{0.5}
// TODO: nb of <= 0 elements
cudaEventRecord(start, 0);
elementwise_dsqrt_inplace(nS, d_Omega);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on elementwise_dsqrt_inplace %f msec\n", elapsedTime);
// d_AmBSq = d_AmB (d_Omega)^{+0.5} (d_AmB)^T
// d_AmBSqInv = d_AmB (d_Omega)^{-0.5} (d_AmB)^T
double *d_AmBSq = NULL;
double *d_AmBSqInv = NULL;
double *d_tmp1 = NULL;
double *d_tmp2 = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_AmBSq, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
check_Cuda_Errors(cudaMalloc((void**)&d_AmBSqInv, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
check_Cuda_Errors(cudaMalloc((void**)&d_tmp1, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
check_Cuda_Errors(cudaMalloc((void**)&d_tmp2, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
check_Cublas_Errors(cublasCreate(&handle), "cublasCreate", __FILE__, __LINE__);
cudaEventRecord(start, 0);
// naive way
//A_D_At(nS, d_AmB, d_Omega, d_AmBSq);
//A_Dinv_At(nS, d_AmB, d_Omega, d_AmBSqInv);
A_D_in_B(nS, d_AmB, d_Omega, d_tmp1);
A_Dinv_in_B(nS, d_AmB, d_Omega, d_tmp2);
check_Cuda_Errors(cudaDeviceSynchronize(), "cudaDeviceSynchronize", __FILE__, __LINE__);
check_Cublas_Errors(cublasDgemm(handle,
CUBLAS_OP_N, CUBLAS_OP_T,
nS, nS, nS,
&alpha,
d_tmp1, nS,
d_AmB, nS,
&beta,
d_AmBSq, nS),
"cublasDgemm", __FILE__, __LINE__);
check_Cublas_Errors(cublasDgemm(handle,
CUBLAS_OP_N, CUBLAS_OP_T,
nS, nS, nS,
&alpha,
d_tmp2, nS,
d_AmB, nS,
&beta,
d_AmBSqInv, nS),
"cublasDgemm", __FILE__, __LINE__);
check_Cuda_Errors(cudaGetLastError(), "cudaGetLastError", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on d_AmBSq & d_AmBSqInv = %f msec\n", elapsedTime);
check_Cuda_Errors(cudaDeviceSynchronize(), "cudaDeviceSynchronize", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_tmp1), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_tmp2), "cudaFree", __FILE__, __LINE__);
// Dgemm
cudaEventRecord(start, 0);
// X + Y
check_Cublas_Errors(cublasDgemm(handle,
CUBLAS_OP_N, CUBLAS_OP_N,
nS, nS, nS,
&alpha,
d_ApB, nS,
d_AmBSq, nS,
&beta,
d_AmB, nS),
"cublasDgemm", __FILE__, __LINE__);
check_Cuda_Errors(cudaDeviceSynchronize(), "cudaDeviceSynchronize", __FILE__, __LINE__);
// X - Y
check_Cublas_Errors(cublasDgemm(handle,
CUBLAS_OP_N, CUBLAS_OP_N,
nS, nS, nS,
&alpha,
d_AmBSq, nS,
d_AmB, nS,
&beta,
d_ApB, nS),
"cublasDgemm", __FILE__, __LINE__);
check_Cublas_Errors(cublasDestroy(handle), "cublasDestroy", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on cublasDgemm = %f msec\n", elapsedTime);
// diagonalize
int *d_info2 = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_info2, sizeof(int)), "cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0);
diag_dn_dsyevd(nS, d_info2, d_Omega, d_ApB);
check_Cuda_Errors(cudaGetLastError(), "cudaGetLastError", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on diag ApB = %f msec\n", elapsedTime);
// d_Omega <-- d_Omega^{0.5}
// TODO: nb of <= 0 elements
cudaEventRecord(start, 0);
elementwise_dsqrt_inplace(nS, d_Omega);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on elementwise_dsqrt_inplace %f msec\n", elapsedTime);
// Dgemm
cudaEventRecord(start, 0);
check_Cublas_Errors(cublasCreate(&handle), "cublasCreate", __FILE__, __LINE__);
// X + Y
check_Cublas_Errors(cublasDgemm(handle,
CUBLAS_OP_T, CUBLAS_OP_N,
nS, nS, nS,
&alpha,
d_ApB, nS,
d_AmBSq, nS,
&beta,
d_AmB, nS),
"cublasDgemm", __FILE__, __LINE__);
check_Cuda_Errors(cudaDeviceSynchronize(), "cudaDeviceSynchronize", __FILE__, __LINE__);
// X - Y
check_Cublas_Errors(cublasDgemm(handle,
CUBLAS_OP_T, CUBLAS_OP_N,
nS, nS, nS,
&alpha,
d_ApB, nS,
d_AmBSqInv, nS,
&beta,
d_AmBSq, nS),
"cublasDgemm", __FILE__, __LINE__);
check_Cublas_Errors(cublasDestroy(handle), "cublasDestroy", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on cublasDgemm = %f msec\n", elapsedTime);
cudaEventRecord(start, 0);
elementwise_dsqrt(nS, d_Omega, d_AmBSq); // avoid addition memory allocation
A_Dinv_inplace(nS, d_AmB, d_AmBSq); // X + Y
A_D_inplace(nS, d_ApB, d_AmBSq); // X - Y
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on final X+Y and X-Y trans = %f msec\n", elapsedTime);
// transfer data to CPU
cudaEventRecord(start, 0);
check_Cuda_Errors(cudaMemcpy(h_XpY, d_AmB, nS2 * sizeof(double), cudaMemcpyDeviceToHost),
"cudaMemcpy", __FILE__, __LINE__);
check_Cuda_Errors(cudaMemcpy(h_XmY, d_ApB, nS2 * sizeof(double), cudaMemcpyDeviceToHost),
"cudaMemcpy", __FILE__, __LINE__);
check_Cuda_Errors(cudaMemcpy(h_Omega, d_Omega, nS * sizeof(double), cudaMemcpyDeviceToHost),
"cudaMemcpy", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on GPU -> CPU transfer = %f msec\n", elapsedTime);
check_Cuda_Errors(cudaFree(d_info1), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_info2), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_ApB), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_AmB), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_AmBSq), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_AmBSqInv), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_Omega), "cudaFree", __FILE__, __LINE__);
}

View File

@ -0,0 +1,114 @@
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <stdlib.h>
#include <stdio.h>
#include <cublas_v2.h>
#include <cusolverDn.h>
#include "utils.h"
#include "ph_rpa.h"
#include "my_linalg.h"
/*
*
* Y = 0 ==> X+Y = X-Y = X
*
*/
void ph_drpa_tda_sing(int nO, int nBas, int nS, double *h_eps, double *h_ERI,
double *h_Omega, double *h_X) {
double *d_eps = NULL;
double *d_ERI = NULL;
int nV = nBas - nO;
long long nS_long = (long long) nS;
long long nS2 = nS_long * nS_long;
long long nBas_long = (long long) nBas;
long long nBas4 = nBas_long * nBas_long * nBas_long * nBas_long;
float elapsedTime;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
//printf("nO = %d, nBas = %d, nS = %d\n", nO, nBas, nS);
//printf("nBas4 = %lld\n", nBas4);
check_Cuda_Errors(cudaMalloc((void**)&d_eps, nBas * sizeof(double)),
"cudaMalloc", __FILE__, __LINE__);
check_Cuda_Errors(cudaMalloc((void**)&d_ERI, nBas4 * sizeof(double)),
"cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0);
check_Cuda_Errors(cudaMemcpy(d_eps, h_eps, nBas * sizeof(double), cudaMemcpyHostToDevice),
"cudaMemcpy", __FILE__, __LINE__);
check_Cuda_Errors(cudaMemcpy(d_ERI, h_ERI, nBas4 * sizeof(double), cudaMemcpyHostToDevice),
"cudaMemcpy", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on CPU->GPU transfer = %f msec\n", elapsedTime);
// construct A
double *d_A = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_A, nS2 * sizeof(double)), "cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0);
ph_dRPA_A_sing(nO, nV, nBas, nS, d_eps, d_ERI, d_A);
check_Cuda_Errors(cudaGetLastError(), "cudaGetLastError", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on A kernel = %f msec\n", elapsedTime);
check_Cuda_Errors(cudaFree(d_eps), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_ERI), "cudaFree", __FILE__, __LINE__);
// diagonalize A
int *d_info = NULL;
double *d_Omega = NULL;
check_Cuda_Errors(cudaMalloc((void**)&d_info, sizeof(int)),
"cudaMalloc", __FILE__, __LINE__);
check_Cuda_Errors(cudaMalloc((void**)&d_Omega, nS * sizeof(double)),
"cudaMalloc", __FILE__, __LINE__);
cudaEventRecord(start, 0);
diag_dn_dsyevd(nS, d_info, d_Omega, d_A);
check_Cuda_Errors(cudaGetLastError(), "cudaGetLastError", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on diagonalization = %f msec\n", elapsedTime);
//int info_gpu = 0;
cudaEventRecord(start, 0);
//check_Cuda_Errors(cudaMemcpy(&info_gpu, d_info, sizeof(int), cudaMemcpyDeviceToHost),
// "cudaMemcpy", __FILE__, __LINE__);
//if (info_gpu != 0) {
// printf("Error: diag_dn_dsyevd returned error code %d\n", info_gpu);
// exit(EXIT_FAILURE);
//}
check_Cuda_Errors(cudaMemcpy(h_X, d_A, nS2 * sizeof(double), cudaMemcpyDeviceToHost),
"cudaMemcpy", __FILE__, __LINE__);
check_Cuda_Errors(cudaMemcpy(h_Omega, d_Omega, nS * sizeof(double), cudaMemcpyDeviceToHost),
"cudaMemcpy", __FILE__, __LINE__);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time elapsed on GPU -> CPU transfer = %f msec\n", elapsedTime);
check_Cuda_Errors(cudaFree(d_info), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_A), "cudaFree", __FILE__, __LINE__);
check_Cuda_Errors(cudaFree(d_Omega), "cudaFree", __FILE__, __LINE__);
}

125
src/cuda/src/utils.cu Normal file
View File

@ -0,0 +1,125 @@
#include <cuda_runtime.h>
#include <cuda.h>
#include <stdio.h>
#include <cublas_v2.h>
#include <cstring>
#include <cusolverDn.h>
extern "C" void check_Cuda_Errors(cudaError_t err, const char* msg, const char* file, int line) {
if (err != cudaSuccess) {
printf("CUDA Error in %s at line %d\n", file, line);
printf("%s - %s\n", msg, cudaGetErrorString(err));
exit(0);
}
}
const char* cublas_Get_Error_String(cublasStatus_t status) {
switch (status) {
case CUBLAS_STATUS_SUCCESS:
return "CUBLAS_STATUS_SUCCESS";
case CUBLAS_STATUS_NOT_INITIALIZED:
return "CUBLAS_STATUS_NOT_INITIALIZED";
case CUBLAS_STATUS_ALLOC_FAILED:
return "CUBLAS_STATUS_ALLOC_FAILED";
case CUBLAS_STATUS_INVALID_VALUE:
return "CUBLAS_STATUS_INVALID_VALUE";
case CUBLAS_STATUS_ARCH_MISMATCH:
return "CUBLAS_STATUS_ARCH_MISMATCH";
case CUBLAS_STATUS_MAPPING_ERROR:
return "CUBLAS_STATUS_MAPPING_ERROR";
case CUBLAS_STATUS_EXECUTION_FAILED:
return "CUBLAS_STATUS_EXECUTION_FAILED";
case CUBLAS_STATUS_INTERNAL_ERROR:
return "CUBLAS_STATUS_INTERNAL_ERROR";
case CUBLAS_STATUS_NOT_SUPPORTED:
return "CUBLAS_STATUS_NOT_SUPPORTED";
case CUBLAS_STATUS_LICENSE_ERROR:
return "CUBLAS_STATUS_LICENSE_ERROR";
}
return "UNKNOWN CUBLAS ERROR";
}
extern "C" void check_Cublas_Errors(cublasStatus_t status, const char* msg, const char* file, int line) {
const char* err = cublas_Get_Error_String(status);
if (strcmp(err, "CUBLAS_STATUS_SUCCESS") != 0) {
printf("CUBLAS Error in %s at line %d\n", file, line);
printf("%s - %s\n", msg, err);
exit(0);
}
}
const char* cusolver_Get_Error_String(cusolverStatus_t status) {
switch (status) {
case CUSOLVER_STATUS_SUCCESS:
return "CUSOLVER_STATUS_SUCCESS";
case CUSOLVER_STATUS_NOT_INITIALIZED:
return "CUSOLVER_STATUS_NOT_INITIALIZED";
case CUSOLVER_STATUS_ALLOC_FAILED:
return "CUSOLVER_STATUS_ALLOC_FAILED";
case CUSOLVER_STATUS_INVALID_VALUE:
return "CUSOLVER_STATUS_INVALID_VALUE";
case CUSOLVER_STATUS_ARCH_MISMATCH:
return "CUSOLVER_STATUS_ARCH_MISMATCH";
case CUSOLVER_STATUS_MAPPING_ERROR:
return "CUSOLVER_STATUS_MAPPING_ERROR";
case CUSOLVER_STATUS_EXECUTION_FAILED:
return "CUSOLVER_STATUS_EXECUTION_FAILED";
case CUSOLVER_STATUS_INTERNAL_ERROR:
return "CUSOLVER_STATUS_INTERNAL_ERROR";
case CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED:
return "CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED";
case CUSOLVER_STATUS_NOT_SUPPORTED:
return "CUSOLVER_STATUS_NOT_SUPPORTED";
case CUSOLVER_STATUS_ZERO_PIVOT:
return "CUSOLVER_STATUS_ZERO_PIVOT";
case CUSOLVER_STATUS_INVALID_LICENSE:
return "CUSOLVER_STATUS_INVALID_LICENSE";
case CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED:
return "CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED";
case CUSOLVER_STATUS_IRS_PARAMS_INVALID:
return "CUSOLVER_STATUS_IRS_PARAMS_INVALID";
case CUSOLVER_STATUS_IRS_PARAMS_INVALID_PREC:
return "CUSOLVER_STATUS_IRS_PARAMS_INVALID_PREC";
case CUSOLVER_STATUS_IRS_PARAMS_INVALID_REFINE:
return "CUSOLVER_STATUS_IRS_PARAMS_INVALID_REFINE";
case CUSOLVER_STATUS_IRS_PARAMS_INVALID_MAXITER:
return "CUSOLVER_STATUS_IRS_PARAMS_INVALID_MAXITER";
case CUSOLVER_STATUS_IRS_INTERNAL_ERROR:
return "CUSOLVER_STATUS_IRS_INTERNAL_ERROR";
case CUSOLVER_STATUS_IRS_NOT_SUPPORTED:
return "CUSOLVER_STATUS_IRS_NOT_SUPPORTED";
case CUSOLVER_STATUS_IRS_OUT_OF_RANGE:
return "CUSOLVER_STATUS_IRS_OUT_OF_RANGE";
case CUSOLVER_STATUS_IRS_NRHS_NOT_SUPPORTED_FOR_REFINE_GMRES:
return "CUSOLVER_STATUS_IRS_NRHS_NOT_SUPPORTED_FOR_REFINE_GMRES";
case CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED:
return "CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED";
case CUSOLVER_STATUS_IRS_INFOS_NOT_DESTROYED:
return "CUSOLVER_STATUS_IRS_INFOS_NOT_DESTROYED";
case CUSOLVER_STATUS_IRS_MATRIX_SINGULAR:
return "CUSOLVER_STATUS_IRS_MATRIX_SINGULAR";
case CUSOLVER_STATUS_INVALID_WORKSPACE:
return "CUSOLVER_STATUS_INVALID_WORKSPACE";
default:
return "UNKNOWN CUSOLVER ERROR";
}
}
extern "C" void check_Cusolver_Errors(cusolverStatus_t status, const char* msg, const char* file, int line) {
const char* err = cusolver_Get_Error_String(status);
if (status != CUSOLVER_STATUS_SUCCESS) {
printf("CUSOLVER Error in %s at line %d\n", file, line);
printf("%s - %s\n", msg, err);
exit(EXIT_FAILURE);
}
}

View File

@ -3,13 +3,13 @@ import os
import sys
import subprocess
DEBUG=False
try:
DEBUG = sys.argv[1] == "debug"
except:
pass
import argparse
parser = argparse.ArgumentParser(description='This script generate the compilation files for QuAcK.')
parser.add_argument('-d', '--debug', action='store_true', help='Debug mode. Default is false.')
parser.add_argument('-u', '--use-gpu', action='store_true', help='Use GPU. Default is false.')
args = parser.parse_args()
DEBUG = args.debug
USE_GPU = args.use_gpu
if "QUACK_ROOT" not in os.environ:
@ -36,7 +36,7 @@ def check_compiler_exists(compiler):
compile_gfortran_mac = """
FC = gfortran
AR = libtool -static -o
FFLAGS = -I$IDIR -J$IDIR -fbacktrace -g -Wall -Wno-unused-variable -Wno-unused -Wno-unused-dummy-argument -Wuninitialized -Wmaybe-uninitialized -O3 -march=native
FFLAGS = -I$IDIR -J$IDIR -cpp -fbacktrace -g -Wall -Wno-unused-variable -Wno-unused -Wno-unused-dummy-argument -Wuninitialized -Wmaybe-uninitialized -O3 -march=native
CC = gcc
CXX = g++
LAPACK=-lblas -llapack
@ -47,7 +47,7 @@ FIX_ORDER_OF_LIBS=
compile_gfortran_mac_debug = """
FC = gfortran
AR = libtool -static -o
FFLAGS = -I$IDIR -J$IDIR -fbacktrace -Wall -Wno-unused-variable -g -fcheck=all -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant
FFLAGS = -I$IDIR -J$IDIR -cpp -fbacktrace -Wall -Wno-unused-variable -g -fcheck=all -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant
CC = gcc
CXX = g++
LAPACK=-lblas -llapack
@ -58,7 +58,7 @@ FIX_ORDER_OF_LIBS=
compile_gfortran_linux_debug = """
FC = gfortran
AR = ar crs
FFLAGS = -I$IDIR -J$IDIR -fbacktrace -Wall -g -fcheck=all -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant
FFLAGS = -I$IDIR -J$IDIR -cpp -fbacktrace -Wall -g -fcheck=all -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant
CC = gcc
CXX = g++
LAPACK=-lblas -llapack
@ -81,9 +81,9 @@ elif sys.platform.lower() == "linux" or os.path.exists('/proc/version'):
else:
if check_compiler_exists('ifort'):
compiler = """
FC = ifort -qmkl=parallel -qopenmp
FC = ifort -mkl=parallel -qopenmp
AR = ar crs
FFLAGS = -I$IDIR -module $IDIR -traceback -g -Ofast -xHost
FFLAGS = -I$IDIR -module $IDIR -fpp -traceback -g -Ofast -xHost
CC = icc
CXX = icpc
LAPACK=
@ -94,10 +94,12 @@ FIX_ORDER_OF_LIBS=-Wl,--start-group
compiler = """
FC = gfortran -fopenmp
AR = ar crs
FFLAGS = -I$IDIR -J$IDIR -fbacktrace -g -Wall -Wno-unused-variable -Wno-unused -Wno-unused-dummy-argument -Wuninitialized -Wmaybe-uninitialized -O3 -march=native
FFLAGS = -I$IDIR -J$IDIR -cpp -fbacktrace -g -Wall -Wno-unused-variable -Wno-unused -Wno-unused-dummy-argument -Wuninitialized -Wmaybe-uninitialized -O3 -march=native
CC = gcc
CXX = g++
LAPACK=-lblas -llapack
# uncomment for TURPAN
#LAPACK=-larmpl_lp64_mp
STDCXX=-lstdc++
FIX_ORDER_OF_LIBS=-Wl,--start-group
"""
@ -109,6 +111,23 @@ else:
print("Unknown platform. Only Linux and Darwin are supported.")
sys.exit(-1)
if USE_GPU:
compiler_tmp = compiler.strip().split('\n')
compiler_tmp[0] += " -L{}/src/cuda/build -lcuquack -lcudart -lcublas -lcusolver".format(QUACK_ROOT)
compiler_exe = '\n'.join(compiler_tmp)
compiler_tmp = compiler.strip().split('\n')
compiler_tmp[2] += " -DUSE_GPU"
compiler_lib = '\n'.join(compiler_tmp)
compiler_main = compiler_lib
else:
compiler_exe = compiler
compiler_lib = compiler
compiler_main = compiler
header = """#
# This file was automatically generated. Do not modify this file.
# To change compiling options, make the modifications in
@ -163,7 +182,7 @@ rule git_clone
build_in_lib_dir = "\n".join([
header,
compiler,
compiler_lib,
rule_fortran,
rule_build_lib,
])
@ -171,20 +190,26 @@ build_in_lib_dir = "\n".join([
build_in_exe_dir = "\n".join([
header,
compiler,
compiler_exe,
rule_fortran,
rule_build_exe,
])
build_main = "\n".join([
header,
compiler,
compiler_main,
rule_git_clone,
])
exe_dirs = [ "QuAcK"]
exe_dirs = ["QuAcK"]
lib_dirs = list(filter(lambda x: os.path.isdir(x) and \
x not in exe_dirs, os.listdir(".")))
x not in ["cuda"] and \
x not in exe_dirs, os.listdir(".")))
if(USE_GPU):
i = lib_dirs.index("GPU")
lib_dirs[0], lib_dirs[i] = lib_dirs[i], lib_dirs[0]
else:
lib_dirs.remove("GPU")
def create_ninja_in_libdir(directory):
def write_rule(f, source_file, replace):

View File

@ -1,6 +1,6 @@
subroutine read_integrals(working_dir,nBas_AOs,S,T,V,Hc,G)
subroutine read_1e_integrals(working_dir,nBas_AOs,S,T,V,Hc)
! Read one- and two-electron integrals from files
! Read one-electron integrals from files
implicit none
include 'parameters.h'
@ -13,9 +13,8 @@ subroutine read_integrals(working_dir,nBas_AOs,S,T,V,Hc,G)
! Local variables
logical :: debug
integer :: mu,nu,la,si
double precision :: Ov,Kin,Nuc,ERI
double precision :: lambda
integer :: mu,nu
double precision :: Ov,Kin,Nuc
! Output variables
@ -23,26 +22,21 @@ subroutine read_integrals(working_dir,nBas_AOs,S,T,V,Hc,G)
double precision,intent(out) :: T(nBas_AOs,nBas_AOs)
double precision,intent(out) :: V(nBas_AOs,nBas_AOs)
double precision,intent(out) :: Hc(nBas_AOs,nBas_AOs)
double precision,intent(out) :: G(nBas_AOs,nBas_AOs,nBas_AOs,nBas_AOs)
integer :: status, ios
integer :: ios
character(len=256) :: file_path
! Open file with integrals
debug = .false.
lambda = 1d0
print*, 'Scaling integrals by ',lambda
! ---
! Read overlap integrals
file_path = trim(working_dir) // '/int/Ov.dat'
open(unit=8, file=file_path, status='old', action='read', iostat=status)
if(status /= 0) then
open(unit=8, file=file_path, status='old', action='read', iostat=ios)
if(ios /= 0) then
print *, "Error opening file: ", file_path
stop
else
@ -60,8 +54,8 @@ subroutine read_integrals(working_dir,nBas_AOs,S,T,V,Hc,G)
! Read kinetic integrals
file_path = trim(working_dir) // '/int/Kin.dat'
open(unit=9, file=file_path, status='old', action='read', iostat=status)
if(status /= 0) then
open(unit=9, file=file_path, status='old', action='read', iostat=ios)
if(ios /= 0) then
print *, "Error opening file: ", file_path
stop
else
@ -79,8 +73,8 @@ subroutine read_integrals(working_dir,nBas_AOs,S,T,V,Hc,G)
! Read nuclear integrals
file_path = trim(working_dir) // '/int/Nuc.dat'
open(unit=10, file=file_path, status='old', action='read', iostat=status)
if(status /= 0) then
open(unit=10, file=file_path, status='old', action='read', iostat=ios)
if(ios /= 0) then
print *, "Error opening file: ", file_path
stop
else
@ -99,37 +93,6 @@ subroutine read_integrals(working_dir,nBas_AOs,S,T,V,Hc,G)
! Define core Hamiltonian
Hc(:,:) = T(:,:) + V(:,:)
! Read 2e-integrals
! ! formatted file
! open(unit=11, file='int/ERI.dat')
! G(:,:,:,:) = 0d0
! do
! read(11,*,end=11) mu, nu, la, si, ERI
! ERI = lambda*ERI
! G(mu,nu,la,si) = ERI ! <12|34>
! G(la,nu,mu,si) = ERI ! <32|14>
! G(mu,si,la,nu) = ERI ! <14|32>
! G(la,si,mu,nu) = ERI ! <34|12>
! G(si,mu,nu,la) = ERI ! <41|23>
! G(nu,la,si,mu) = ERI ! <23|41>
! G(nu,mu,si,la) = ERI ! <21|43>
! G(si,la,nu,mu) = ERI ! <43|21>
! end do
! 11 close(unit=11)
! binary file
file_path = trim(working_dir) // '/int/ERI.bin'
open(unit=11, file=file_path, status='old', action='read', form='unformatted', access='stream', iostat=status)
if(status /= 0) then
print *, "Error opening file: ", file_path
stop
else
read(11) G
endif
close(unit=11)
! Print results
if(debug) then
@ -148,15 +111,6 @@ subroutine read_integrals(working_dir,nBas_AOs,S,T,V,Hc,G)
write(*,'(A28)') '----------------------'
call matout(nBas_AOs,nBas_AOs,V)
write(*,*)
write(*,'(A28)') '----------------------'
write(*,'(A28)') 'Electron repulsion integrals'
write(*,'(A28)') '----------------------'
do la=1,nBas_AOs
do si=1,nBas_AOs
call matout(nBas_AOs, nBas_AOs, G(1,1,la,si))
end do
end do
write(*,*)
end if
end subroutine

View File

@ -0,0 +1,110 @@
subroutine read_2e_integrals(working_dir,nBas_AOs,G)
! Read two-electron integrals from files
implicit none
! Input variables
integer,intent(in) :: nBas_AOs
character(len=256),intent(in) :: working_dir
! Local variables
logical :: debug
integer :: mu,nu,la,si
double precision :: ERI
double precision :: lambda
! Output variables
double precision,intent(out) :: G(nBas_AOs,nBas_AOs,nBas_AOs,nBas_AOs)
integer :: ios
character(len=256) :: file_path
! Open file with integrals
debug = .false.
lambda = 1d0
print*, 'Scaling integrals by ',lambda
! Read 2e-integrals
! ! formatted file
! open(unit=11, file='int/ERI.dat')
! G(:,:,:,:) = 0d0
! do
! read(11,*,end=11) mu, nu, la, si, ERI
! ERI = lambda*ERI
! G(mu,nu,la,si) = ERI ! <12|34>
! G(la,nu,mu,si) = ERI ! <32|14>
! G(mu,si,la,nu) = ERI ! <14|32>
! G(la,si,mu,nu) = ERI ! <34|12>
! G(si,mu,nu,la) = ERI ! <41|23>
! G(nu,la,si,mu) = ERI ! <23|41>
! G(nu,mu,si,la) = ERI ! <21|43>
! G(si,la,nu,mu) = ERI ! <43|21>
! end do
! 11 close(unit=11)
! binary file
file_path = trim(working_dir) // '/int/ERI.bin'
open(unit=11, file=file_path, status='old', action='read', form='unformatted', access='stream', iostat=ios)
if(ios /= 0) then
print *, "Error opening file: ", file_path
stop
else
read(11) G
endif
close(unit=11)
G = G * lambda
! Print results
if(debug) then
write(*,'(A28)') '----------------------'
write(*,'(A28)') 'Electron repulsion integrals'
write(*,'(A28)') '----------------------'
do la=1,nBas_AOs
do si=1,nBas_AOs
call matout(nBas_AOs, nBas_AOs, G(1,1,la,si))
end do
end do
write(*,*)
end if
end subroutine
! ---
subroutine read_2e_integrals_hpc(working_dir, ERI_size, ERI_chem)
implicit none
character(len=256), intent(in) :: working_dir
integer*8, intent(in) :: ERI_size
double precision, intent(out) :: ERI_chem(ERI_size)
integer :: ios
character(len=256) :: file_path
file_path = trim(working_dir) // '/int/ERI_chem.bin'
open(unit=11, file=file_path, status='old', action='read', form='unformatted', access='stream', iostat=ios)
if(ios /= 0) then
print *, "Error opening file: ", file_path
stop
else
read(11) ERI_chem
endif
close(unit=11)
return
end subroutine
! ---

View File

@ -20,7 +20,7 @@ subroutine read_dipole_integrals(working_dir,nBas,R)
double precision,intent(out) :: R(nBas,nBas,ncart)
integer :: status, ios
integer :: ios
character(len=256) :: file_path
@ -29,9 +29,9 @@ subroutine read_dipole_integrals(working_dir,nBas,R)
R(:,:,:) = 0d0
file_path = trim(working_dir) // '/int/x.dat'
open(unit=21, file=file_path, status='old', action='read', iostat=status)
open(unit=21, file=file_path, status='old', action='read', iostat=ios)
if(status /= 0) then
if(ios /= 0) then
print *, "Error opening file: ", file_path
stop
@ -39,7 +39,7 @@ subroutine read_dipole_integrals(working_dir,nBas,R)
else
do
read(21,*,iostat=ios) mu,nu,Dip
read(21, '(I7, I7, E25.17)', iostat=ios) mu, nu, Dip
if(ios /= 0) exit
R(mu,nu,1) = Dip
R(nu,mu,1) = Dip
@ -52,9 +52,9 @@ subroutine read_dipole_integrals(working_dir,nBas,R)
! ---
file_path = trim(working_dir) // '/int/y.dat'
open(unit=22, file=file_path, status='old', action='read', iostat=status)
open(unit=22, file=file_path, status='old', action='read', iostat=ios)
if(status /= 0) then
if(ios /= 0) then
print *, "Error opening file: ", file_path
stop
@ -62,7 +62,7 @@ subroutine read_dipole_integrals(working_dir,nBas,R)
else
do
read(22,*,iostat=ios) mu,nu,Dip
read(22, '(I7, I7, E25.17)', iostat=ios) mu, nu, Dip
if(ios /= 0) exit
R(mu,nu,2) = Dip
R(nu,mu,2) = Dip
@ -75,9 +75,9 @@ subroutine read_dipole_integrals(working_dir,nBas,R)
! ---
file_path = trim(working_dir) // '/int/z.dat'
open(unit=23, file=file_path, status='old', action='read', iostat=status)
open(unit=23, file=file_path, status='old', action='read', iostat=ios)
if(status /= 0) then
if(ios /= 0) then
print *, "Error opening file: ", file_path
stop
@ -85,7 +85,7 @@ subroutine read_dipole_integrals(working_dir,nBas,R)
else
do
read(23,*,iostat=ios) mu,nu,Dip
read(23, '(I7, I7, E25.17)', iostat=ios) mu, nu, Dip
if(ios /= 0) exit
R(mu,nu,3) = Dip
R(nu,mu,3) = Dip

View File

@ -909,3 +909,35 @@ end
! ---
integer*8 function Yoshimine_4ind(a, b, c, d)
implicit none
integer*8, intent(in) :: a, b, c, d
integer*8, external :: Yoshimine_2ind
Yoshimine_4ind = Yoshimine_2ind(Yoshimine_2ind(a, b), &
Yoshimine_2ind(c, d))
return
end
! ---
integer*8 function Yoshimine_2ind(a, b)
implicit none
integer*8, intent(in) :: a, b
if(a > b) then
!Yoshimine_2ind = (a * (a - 1)) / 2 + b
Yoshimine_2ind = shiftr(a * (a - 1), 1) + b
else
!Yoshimine_2ind = (b * (b - 1)) / 2 + a
Yoshimine_2ind = shiftr(b * (b - 1), 1) + a
endif
return
end
! ---