mirror of
https://github.com/pfloos/quack
synced 2025-01-03 18:16:03 +01:00
problem minus sign
This commit is contained in:
parent
96207d9c58
commit
9a0c7bfac7
@ -1,4 +1,4 @@
|
||||
subroutine Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,Ap,Am,Bp,Bm)
|
||||
subroutine Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,A_dyn,B_dyn)
|
||||
|
||||
! Compute the dynamic part of the Bethe-Salpeter equation matrices
|
||||
|
||||
@ -18,24 +18,18 @@ subroutine Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,O
|
||||
! Local variables
|
||||
|
||||
integer :: maxS
|
||||
double precision :: chi_A,chi_B,eps
|
||||
double precision :: chi_Ap,chi_Am,chi_Bp,chi_Bm
|
||||
double precision :: eps_Ap,eps_Am,eps_Bp,eps_Bm
|
||||
double precision :: chi_A,chi_B,eps,eps_A,eps_B
|
||||
integer :: i,j,a,b,ia,jb,kc
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Ap(nS,nS)
|
||||
double precision,intent(out) :: Am(nS,nS)
|
||||
double precision,intent(out) :: Bp(nS,nS)
|
||||
double precision,intent(out) :: Bm(nS,nS)
|
||||
double precision,intent(out) :: A_dyn(nS,nS)
|
||||
double precision,intent(out) :: B_dyn(nS,nS)
|
||||
|
||||
! Initialization
|
||||
|
||||
Ap(:,:) = 0d0
|
||||
Am(:,:) = 0d0
|
||||
Bp(:,:) = 0d0
|
||||
Bm(:,:) = 0d0
|
||||
A_dyn(:,:) = 0d0
|
||||
B_dyn(:,:) = 0d0
|
||||
|
||||
! Number of poles taken into account
|
||||
|
||||
@ -63,45 +57,31 @@ subroutine Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,O
|
||||
|
||||
enddo
|
||||
|
||||
Ap(ia,jb) = Ap(ia,jb) - 4d0*lambda*chi_A
|
||||
Am(ia,jb) = Am(ia,jb) - 4d0*lambda*chi_A
|
||||
Bp(ia,jb) = Bp(ia,jb) - 4d0*lambda*chi_B
|
||||
Bm(ia,jb) = Bm(ia,jb) - 4d0*lambda*chi_B
|
||||
A_dyn(ia,jb) = A_dyn(ia,jb) - 4d0*lambda*chi_A
|
||||
B_dyn(ia,jb) = B_dyn(ia,jb) - 4d0*lambda*chi_B
|
||||
|
||||
chi_Ap = 0d0
|
||||
chi_Am = 0d0
|
||||
chi_Bp = 0d0
|
||||
chi_Bm = 0d0
|
||||
chi_A = 0d0
|
||||
chi_B = 0d0
|
||||
|
||||
do kc=1,maxS
|
||||
|
||||
eps_Ap = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
|
||||
eps_Am = (- OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
|
||||
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*(+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_Ap
|
||||
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*(- OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_Am
|
||||
eps_A = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
|
||||
chi_A = chi_A + rho(i,j,kc)*rho(a,b,kc)*(+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_A
|
||||
|
||||
eps_Ap = (+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
|
||||
eps_Am = (- OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
|
||||
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*(+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_Ap
|
||||
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*(- OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_Am
|
||||
eps_A = (+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
|
||||
chi_A = chi_A + rho(i,j,kc)*rho(a,b,kc)*(+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_A
|
||||
|
||||
eps_Bp = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
|
||||
eps_Bm = (- OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
|
||||
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*(+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps_Bp
|
||||
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*(- OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps_Bm
|
||||
eps_B = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
|
||||
chi_B = chi_B + rho(i,b,kc)*rho(a,j,kc)*(+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps_B
|
||||
|
||||
eps_Bp = (+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
|
||||
eps_Bm = (- OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
|
||||
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*(+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bp
|
||||
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*(- OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bm
|
||||
eps_B = (+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
|
||||
chi_B = chi_B + rho(i,b,kc)*rho(a,j,kc)*(+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_B
|
||||
|
||||
enddo
|
||||
|
||||
Ap(ia,jb) = Ap(ia,jb) - 2d0*lambda*chi_Ap
|
||||
Am(ia,jb) = Am(ia,jb) - 2d0*lambda*chi_Am
|
||||
A_dyn(ia,jb) = A_dyn(ia,jb) - 2d0*lambda*chi_A
|
||||
|
||||
Bp(ia,jb) = Bp(ia,jb) - 2d0*lambda*chi_Bp
|
||||
Bm(ia,jb) = Bm(ia,jb) - 2d0*lambda*chi_Bm
|
||||
B_dyn(ia,jb) = B_dyn(ia,jb) - 2d0*lambda*chi_B
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,ZAp,ZAm,ZBp,ZBm)
|
||||
subroutine Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,ZA,ZB)
|
||||
|
||||
! Compute the dynamic part of the Bethe-Salpeter equation matrices
|
||||
|
||||
@ -18,23 +18,19 @@ subroutine Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,
|
||||
! Local variables
|
||||
|
||||
integer :: maxS
|
||||
double precision :: chi_Ap,chi_Am,chi_Bp,chi_Bm
|
||||
double precision :: eps_Ap,eps_Am,eps_Bp,eps_Bm
|
||||
double precision :: chi_A,chi_B
|
||||
double precision :: eps_A,eps_B
|
||||
integer :: i,j,a,b,ia,jb,kc
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: ZAp(nS,nS)
|
||||
double precision,intent(out) :: ZAm(nS,nS)
|
||||
double precision,intent(out) :: ZBp(nS,nS)
|
||||
double precision,intent(out) :: ZBm(nS,nS)
|
||||
double precision,intent(out) :: ZA(nS,nS)
|
||||
double precision,intent(out) :: ZB(nS,nS)
|
||||
|
||||
! Initialization
|
||||
|
||||
ZAp(:,:) = 0d0
|
||||
ZAm(:,:) = 0d0
|
||||
ZBp(:,:) = 0d0
|
||||
ZBm(:,:) = 0d0
|
||||
ZA(:,:) = 0d0
|
||||
ZB(:,:) = 0d0
|
||||
|
||||
! Number of poles taken into account
|
||||
|
||||
@ -51,40 +47,28 @@ subroutine Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,
|
||||
do b=nO+1,nBas-nR
|
||||
jb = jb + 1
|
||||
|
||||
chi_Ap = 0d0
|
||||
chi_Am = 0d0
|
||||
chi_Bp = 0d0
|
||||
chi_Bm = 0d0
|
||||
chi_A = 0d0
|
||||
chi_B = 0d0
|
||||
|
||||
do kc=1,maxS
|
||||
|
||||
eps_Ap = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
|
||||
eps_Am = (- OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
|
||||
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*((+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_Ap)**2
|
||||
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*((- OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_Am)**2
|
||||
eps_A = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
|
||||
chi_A = chi_A + rho(i,j,kc)*rho(a,b,kc)*((+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_A)**2
|
||||
|
||||
eps_Ap = (+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
|
||||
eps_Am = (- OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
|
||||
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*((+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_Ap)**2
|
||||
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*((- OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_Am)**2
|
||||
eps_A = (+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
|
||||
chi_A = chi_A + rho(i,j,kc)*rho(a,b,kc)*((+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_A)**2
|
||||
|
||||
eps_Bp = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
|
||||
eps_Bm = (- OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
|
||||
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*((+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps_Bp)**2
|
||||
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*((- OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps_Bm)**2
|
||||
eps_B = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
|
||||
chi_B = chi_B + rho(i,b,kc)*rho(a,j,kc)*((+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps_B)**2
|
||||
|
||||
eps_Bp = (+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
|
||||
eps_Bm = (- OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
|
||||
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*((+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bp)**2
|
||||
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*((- OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bm)**2
|
||||
eps_B = (+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
|
||||
chi_B = chi_B + rho(i,b,kc)*rho(a,j,kc)*((+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_B)**2
|
||||
|
||||
enddo
|
||||
|
||||
ZAp(ia,jb) = ZAp(ia,jb) + 2d0*lambda*chi_Ap
|
||||
ZAm(ia,jb) = ZAm(ia,jb) - 2d0*lambda*chi_Am
|
||||
ZA(ia,jb) = ZA(ia,jb) + 2d0*lambda*chi_A
|
||||
|
||||
ZBp(ia,jb) = ZBp(ia,jb) + 2d0*lambda*chi_Bp
|
||||
ZBm(ia,jb) = ZBm(ia,jb) - 2d0*lambda*chi_Bm
|
||||
ZB(ia,jb) = ZB(ia,jb) + 2d0*lambda*chi_B
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
@ -35,21 +35,17 @@ subroutine Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW,O
|
||||
double precision,allocatable :: X(:)
|
||||
double precision,allocatable :: Y(:)
|
||||
|
||||
double precision,allocatable :: Ap_dyn(:,:)
|
||||
double precision,allocatable :: Am_dyn(:,:)
|
||||
double precision,allocatable :: ZAp_dyn(:,:)
|
||||
double precision,allocatable :: ZAm_dyn(:,:)
|
||||
double precision,allocatable :: A_dyn(:,:)
|
||||
double precision,allocatable :: ZA_dyn(:,:)
|
||||
|
||||
double precision,allocatable :: Bp_dyn(:,:)
|
||||
double precision,allocatable :: Bm_dyn(:,:)
|
||||
double precision,allocatable :: ZBp_dyn(:,:)
|
||||
double precision,allocatable :: ZBm_dyn(:,:)
|
||||
double precision,allocatable :: B_dyn(:,:)
|
||||
double precision,allocatable :: ZB_dyn(:,:)
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(OmDyn(nS),ZDyn(nS),X(nS),Y(nS),Ap_dyn(nS,nS),ZAp_dyn(nS,nS))
|
||||
allocate(OmDyn(nS),ZDyn(nS),X(nS),Y(nS),A_dyn(nS,nS),ZA_dyn(nS,nS))
|
||||
|
||||
if(.not.dTDA) allocate(Am_dyn(nS,nS),ZAm_dyn(nS,nS),Bp_dyn(nS,nS),Bm_dyn(nS,nS),ZBp_dyn(nS,nS),ZBm_dyn(nS,nS))
|
||||
if(.not.dTDA) allocate(B_dyn(nS,nS),ZB_dyn(nS,nS))
|
||||
|
||||
gapGW = eGW(nO+1) - eGW(nO)
|
||||
|
||||
@ -70,36 +66,38 @@ subroutine Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW,O
|
||||
|
||||
! Resonant part of the BSE correction for dynamical TDA
|
||||
|
||||
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),Ap_dyn(:,:))
|
||||
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
||||
A_dyn(:,:))
|
||||
|
||||
! Renormalization factor of the resonant parts for dynamical TDA
|
||||
|
||||
call Bethe_Salpeter_ZA_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),ZAp_dyn(:,:))
|
||||
call Bethe_Salpeter_ZA_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
||||
ZA_dyn(:,:))
|
||||
|
||||
ZDyn(ia) = dot_product(X(:),matmul(ZAp_dyn(:,:),X(:)))
|
||||
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:)))
|
||||
ZDyn(ia) = dot_product(X(:),matmul(ZA_dyn(:,:),X(:)))
|
||||
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:)))
|
||||
|
||||
else
|
||||
|
||||
! Resonant and anti-resonant part of the BSE correction
|
||||
|
||||
call Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
||||
Ap_dyn(:,:),Am_dyn(:,:),Bp_dyn(:,:),Bm_dyn(:,:))
|
||||
A_dyn(:,:),B_dyn(:,:))
|
||||
|
||||
! Renormalization factor of the resonant and anti-resonant parts
|
||||
|
||||
call Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
||||
ZAp_dyn(:,:),ZAm_dyn(:,:),ZBp_dyn(:,:),ZBm_dyn(:,:))
|
||||
ZA_dyn(:,:),ZB_dyn(:,:))
|
||||
|
||||
ZDyn(ia) = dot_product(X(:),matmul(ZAp_dyn(:,:),X(:))) &
|
||||
- dot_product(Y(:),matmul(ZAm_dyn(:,:),Y(:))) &
|
||||
+ dot_product(X(:),matmul(ZBp_dyn(:,:),Y(:))) &
|
||||
- dot_product(Y(:),matmul(ZBm_dyn(:,:),X(:)))
|
||||
ZDyn(ia) = dot_product(X(:),matmul(ZA_dyn(:,:),X(:))) &
|
||||
- dot_product(Y(:),matmul(ZA_dyn(:,:),Y(:))) &
|
||||
+ dot_product(X(:),matmul(ZB_dyn(:,:),Y(:))) &
|
||||
- dot_product(Y(:),matmul(ZB_dyn(:,:),X(:)))
|
||||
|
||||
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:))) &
|
||||
- dot_product(Y(:),matmul(Am_dyn(:,:),Y(:))) &
|
||||
+ dot_product(X(:),matmul(Bp_dyn(:,:),Y(:))) &
|
||||
- dot_product(Y(:),matmul(Bm_dyn(:,:),X(:)))
|
||||
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:))) &
|
||||
- dot_product(Y(:),matmul(A_dyn(:,:),Y(:))) &
|
||||
+ dot_product(X(:),matmul(B_dyn(:,:),Y(:))) &
|
||||
- dot_product(Y(:),matmul(B_dyn(:,:),X(:)))
|
||||
|
||||
end if
|
||||
|
||||
|
@ -40,16 +40,14 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
|
||||
double precision,allocatable :: OmOld(:)
|
||||
double precision,allocatable :: X(:)
|
||||
double precision,allocatable :: Y(:)
|
||||
double precision,allocatable :: Ap_dyn(:,:)
|
||||
double precision,allocatable :: Am_dyn(:,:)
|
||||
double precision,allocatable :: Bp_dyn(:,:)
|
||||
double precision,allocatable :: Bm_dyn(:,:)
|
||||
double precision,allocatable :: A_dyn(:,:)
|
||||
double precision,allocatable :: B_dyn(:,:)
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(OmDyn(nS),OmOld(nS),X(nS),Y(nS),Ap_dyn(nS,nS))
|
||||
allocate(OmDyn(nS),OmOld(nS),X(nS),Y(nS),A_dyn(nS,nS))
|
||||
|
||||
if(.not.dTDA) allocate(Am_dyn(nS,nS),Bp_dyn(nS,nS),Bm_dyn(nS,nS))
|
||||
if(.not.dTDA) allocate(B_dyn(nS,nS))
|
||||
|
||||
gapGW = eGW(nO+1) - eGW(nO)
|
||||
|
||||
@ -84,21 +82,22 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
|
||||
|
||||
! Resonant part of the BSE correction
|
||||
|
||||
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:),Ap_dyn(:,:))
|
||||
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:), &
|
||||
A_dyn(:,:))
|
||||
|
||||
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:)))
|
||||
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:)))
|
||||
|
||||
else
|
||||
|
||||
! Anti-resonant part of the BSE correction
|
||||
|
||||
call Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:), &
|
||||
Ap_dyn(:,:),Am_dyn(:,:),Bp_dyn(:,:),Bm_dyn(:,:))
|
||||
A_dyn(:,:),B_dyn(:,:))
|
||||
|
||||
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:))) &
|
||||
- dot_product(Y(:),matmul(Am_dyn(:,:),Y(:))) &
|
||||
+ dot_product(X(:),matmul(Bp_dyn(:,:),Y(:))) &
|
||||
- dot_product(Y(:),matmul(Bm_dyn(:,:),X(:)))
|
||||
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:))) &
|
||||
- dot_product(Y(:),matmul(A_dyn(:,:),Y(:))) &
|
||||
+ dot_product(X(:),matmul(B_dyn(:,:),Y(:))) &
|
||||
- dot_product(Y(:),matmul(B_dyn(:,:),X(:)))
|
||||
|
||||
end if
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user