mirror of
https://github.com/pfloos/quack
synced 2025-01-10 21:18:23 +01:00
remove so GT routines
This commit is contained in:
parent
8c0a682aed
commit
91954dba8d
@ -1,78 +0,0 @@
|
||||
subroutine Bethe_Salpeter_Tmatrix_so(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,Om1,X1,Y1,Om2,X2,Y2,rho1,rho2, &
|
||||
ERI,eT,eGT,EcBSE)
|
||||
|
||||
! Compute the Bethe-Salpeter excitation energies with the T-matrix kernel
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: eta
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC
|
||||
integer,intent(in) :: nO
|
||||
integer,intent(in) :: nV
|
||||
integer,intent(in) :: nR
|
||||
integer,intent(in) :: nS
|
||||
|
||||
integer,intent(in) :: nOO
|
||||
integer,intent(in) :: nVV
|
||||
|
||||
double precision,intent(in) :: eT(nBas)
|
||||
double precision,intent(in) :: eGT(nBas)
|
||||
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||||
|
||||
double precision,intent(in) :: Om1(nVV)
|
||||
double precision,intent(in) :: X1(nVV,nVV)
|
||||
double precision,intent(in) :: Y1(nOO,nVV)
|
||||
double precision,intent(in) :: Om2(nOO)
|
||||
double precision,intent(in) :: X2(nVV,nOO)
|
||||
double precision,intent(in) :: Y2(nOO,nOO)
|
||||
double precision,intent(in) :: rho1(nBas,nBas,nVV)
|
||||
double precision,intent(in) :: rho2(nBas,nBas,nOO)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: ispin
|
||||
|
||||
double precision :: EcRPA
|
||||
double precision,allocatable :: TA(:,:),TB(:,:)
|
||||
double precision,allocatable :: OmBSE(:)
|
||||
double precision,allocatable :: XpY_BSE(:,:)
|
||||
double precision,allocatable :: XmY_BSE(:,:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: EcBSE
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(TA(nS,nS),TB(nS,nS),OmBSE(nS),XpY_BSE(nS,nS),XmY_BSE(nS,nS))
|
||||
|
||||
!------------------!
|
||||
! Compute T-matrix !
|
||||
!------------------!
|
||||
|
||||
ispin = 4
|
||||
|
||||
call ppLR(ispin,.false.,nBas,nC,nO,nV,nR,nOO,nVV,1d0,eT,ERI,Om1,X1,Y1,Om2,X2,Y2,EcRPA)
|
||||
|
||||
call static_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,1d0,Om1,rho1,Om2,rho2,TA)
|
||||
call static_Tmatrix_B(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,1d0,Om1,rho1,Om2,rho2,TB)
|
||||
|
||||
!------------------!
|
||||
! Singlet manifold !
|
||||
!------------------!
|
||||
|
||||
ispin = 3
|
||||
EcBSE = 0d0
|
||||
|
||||
! Compute BSE singlet excitation energies
|
||||
|
||||
call linear_response_BSE(ispin,.false.,.false.,.true.,eta,nBas,nC,nO,nV,nR,nS,1d0,eGT,ERI,TA,TB, &
|
||||
EcBSE,OmBSE,XpY_BSE,XmY_BSE)
|
||||
|
||||
call print_excitation('BSE@GT ',ispin,nS,OmBSE)
|
||||
|
||||
end subroutine
|
@ -1,80 +0,0 @@
|
||||
subroutine excitation_density_Tmatrix_so(nBas,nC,nO,nV,nR,nOO,nVV,ERI,X1,Y1,rho1,X2,Y2,rho2)
|
||||
|
||||
! Compute excitation densities for T-matrix self-energy
|
||||
|
||||
implicit none
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nBas,nC,nO,nV,nR,nOO,nVV
|
||||
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: X1(nVV,nVV)
|
||||
double precision,intent(in) :: Y1(nOO,nVV)
|
||||
double precision,intent(in) :: X2(nVV,nOO)
|
||||
double precision,intent(in) :: Y2(nOO,nOO)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: j,k,l
|
||||
integer :: b,c,d
|
||||
integer :: p,q
|
||||
integer :: ab,cd,ij,kl
|
||||
double precision,external :: Kronecker_delta
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: rho1(nBas,nBas,nVV)
|
||||
double precision,intent(out) :: rho2(nBas,nBAs,nOO)
|
||||
|
||||
! Initialization
|
||||
|
||||
rho1(:,:,:) = 0d0
|
||||
rho2(:,:,:) = 0d0
|
||||
|
||||
do p=nC+1,nBas-nR
|
||||
do q=nC+1,nBas-nR
|
||||
|
||||
do ab=1,nVV
|
||||
|
||||
cd = 0
|
||||
do c=nO+1,nBas-nR
|
||||
do d=c+1,nBas-nR
|
||||
cd = cd + 1
|
||||
rho1(p,q,ab) = rho1(p,q,ab) + (ERI(p,q,c,d) - ERI(p,q,d,c))*X1(cd,ab)
|
||||
end do
|
||||
end do
|
||||
|
||||
kl = 0
|
||||
do k=nC+1,nO
|
||||
do l=k+1,nO
|
||||
kl = kl + 1
|
||||
rho1(p,q,ab) = rho1(p,q,ab) + (ERI(p,q,k,l) - ERI(p,q,l,k))*Y1(kl,ab)
|
||||
end do
|
||||
end do
|
||||
|
||||
end do
|
||||
|
||||
do ij=1,nOO
|
||||
|
||||
cd = 0
|
||||
do c=nO+1,nBas-nR
|
||||
do d=c+1,nBas-nR
|
||||
cd = cd + 1
|
||||
rho2(p,q,ij) = rho2(p,q,ij) + (ERI(p,q,c,d) - ERI(p,q,d,c))*X2(cd,ij)
|
||||
end do
|
||||
end do
|
||||
|
||||
kl = 0
|
||||
do k=nC+1,nO
|
||||
do l=k+1,nO
|
||||
kl = kl + 1
|
||||
rho2(p,q,ij) = rho2(p,q,ij) + (ERI(p,q,k,l) - ERI(p,q,l,k))*Y2(kl,ij)
|
||||
end do
|
||||
end do
|
||||
|
||||
end do
|
||||
end do
|
||||
|
||||
end do
|
||||
|
||||
end subroutine excitation_density_Tmatrix_so
|
@ -1,63 +0,0 @@
|
||||
subroutine renormalization_factor_Tmatrix_so(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,Omega2,rho2,Z)
|
||||
|
||||
! Compute renormalization factor of the T-matrix self-energy
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: eta
|
||||
integer,intent(in) :: nBas,nC,nO,nV,nR
|
||||
integer,intent(in) :: nOO
|
||||
integer,intent(in) :: nVV
|
||||
double precision,intent(in) :: e(nBas)
|
||||
double precision,intent(in) :: Omega1(nVV)
|
||||
double precision,intent(in) :: rho1(nBas,nBas,nVV)
|
||||
double precision,intent(in) :: Omega2(nOO)
|
||||
double precision,intent(in) :: rho2(nBas,nBas,nOO)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,j,k,l,a,b,c,d,p,cd,kl
|
||||
double precision :: eps
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Z(nBas)
|
||||
|
||||
! Initialize
|
||||
|
||||
Z(:) = 0d0
|
||||
|
||||
!----------------------------------------------
|
||||
! T-matrix renormalization factor in the spinorbital basis
|
||||
!----------------------------------------------
|
||||
|
||||
! Occupied part of the T-matrix self-energy
|
||||
|
||||
do p=nC+1,nBas-nR
|
||||
do i=nC+1,nO
|
||||
do cd=1,nVV
|
||||
eps = e(p) + e(i) - Omega1(cd)
|
||||
Z(p) = Z(p) + (rho1(p,i,cd)/eps)**2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Virtual part of the T-matrix self-energy
|
||||
|
||||
do p=nC+1,nBas-nR
|
||||
do a=nO+1,nBas-nR
|
||||
do kl=1,nOO
|
||||
eps = e(p) + e(a) - Omega2(kl)
|
||||
Z(p) = Z(p) + (rho2(p,a,kl)/eps)**2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Compute renormalization factor from derivative of SigT
|
||||
|
||||
Z(:) = 1d0/(1d0 + Z(:))
|
||||
|
||||
end subroutine renormalization_factor_Tmatrix_so
|
@ -1,63 +0,0 @@
|
||||
subroutine self_energy_Tmatrix_diag_so(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,Omega2,rho2,SigT)
|
||||
|
||||
! Compute diagonal of the correlation part of the T-matrix self-energy
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: eta
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC
|
||||
integer,intent(in) :: nO
|
||||
integer,intent(in) :: nV
|
||||
integer,intent(in) :: nR
|
||||
integer,intent(in) :: nOO
|
||||
integer,intent(in) :: nVV
|
||||
double precision,intent(in) :: e(nBas)
|
||||
double precision,intent(in) :: Omega1(nVV)
|
||||
double precision,intent(in) :: rho1(nBas,nBas,nVV)
|
||||
double precision,intent(in) :: Omega2(nOO)
|
||||
double precision,intent(in) :: rho2(nBas,nBas,nOO)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,j,k,l,a,b,c,d,p,cd,kl
|
||||
double precision :: eps
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: SigT(nBas)
|
||||
|
||||
! Initialize
|
||||
|
||||
SigT(:) = 0d0
|
||||
|
||||
!----------------------------------------------
|
||||
! T-matrix self-energy in the spinorbital basis
|
||||
!----------------------------------------------
|
||||
|
||||
! Occupied part of the T-matrix self-energy
|
||||
|
||||
do p=nC+1,nBas-nR
|
||||
do i=nC+1,nO
|
||||
do cd=1,nVV
|
||||
eps = e(p) + e(i) - Omega1(cd)
|
||||
SigT(p) = SigT(p) + rho1(p,i,cd)**2/eps
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Virtual part of the T-matrix self-energy
|
||||
|
||||
do p=nC+1,nBas-nR
|
||||
do a=nO+1,nBas-nR
|
||||
do kl=1,nOO
|
||||
eps = e(p) + e(a) - Omega2(kl)
|
||||
SigT(p) = SigT(p) + rho2(p,a,kl)**2/eps
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine self_energy_Tmatrix_diag_so
|
@ -1,123 +0,0 @@
|
||||
subroutine soG0T0(eta,nBas,nC,nO,nV,nR,ENuc,ERHF,ERI,eHF)
|
||||
|
||||
! Perform G0W0 calculation with a T-matrix self-energy (G0T0) in the spinorbital basis
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: eta
|
||||
|
||||
integer,intent(in) :: nBas,nC,nO,nV,nR
|
||||
double precision,intent(in) :: ENuc
|
||||
double precision,intent(in) :: ERHF
|
||||
double precision,intent(in) :: eHF(nBas)
|
||||
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: ispin
|
||||
integer :: nOO
|
||||
integer :: nVV
|
||||
double precision :: EcRPA
|
||||
double precision :: EcGM
|
||||
double precision :: EcBSE
|
||||
integer :: nBas2,nC2,nO2,nV2,nR2,nS2
|
||||
double precision,allocatable :: Omega1(:)
|
||||
double precision,allocatable :: X1(:,:)
|
||||
double precision,allocatable :: Y1(:,:)
|
||||
double precision,allocatable :: rho1(:,:,:)
|
||||
double precision,allocatable :: Omega2(:)
|
||||
double precision,allocatable :: X2(:,:)
|
||||
double precision,allocatable :: Y2(:,:)
|
||||
double precision,allocatable :: rho2(:,:,:)
|
||||
double precision,allocatable :: SigT(:)
|
||||
double precision,allocatable :: Z(:)
|
||||
double precision,allocatable :: eG0T0(:)
|
||||
double precision,allocatable :: seHF(:)
|
||||
double precision,allocatable :: sERI(:,:,:,:)
|
||||
|
||||
! Hello world
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'************************************************'
|
||||
write(*,*)'| One-shot soG0T0 calculation |'
|
||||
write(*,*)'************************************************'
|
||||
write(*,*)
|
||||
|
||||
! Define occupied and virtual spaces
|
||||
|
||||
nBas2 = 2*nBas
|
||||
nO2 = 2*nO
|
||||
nV2 = 2*nV
|
||||
nC2 = 2*nC
|
||||
nR2 = 2*nR
|
||||
nS2 = nO2*nV2
|
||||
|
||||
|
||||
! Spatial to spin orbitals
|
||||
|
||||
allocate(seHF(nBas2),sERI(nBas2,nBas2,nBas2,nBas2))
|
||||
|
||||
call spatial_to_spin_MO_energy(nBas,eHF,nBas2,seHF)
|
||||
call spatial_to_spin_ERI(nBas,ERI,nBas2,sERI)
|
||||
|
||||
! Dimensions of the rr-RPA linear reponse matrices
|
||||
|
||||
nOO = nO2*(nO2 - 1)/2
|
||||
nVV = nV2*(nV2 - 1)/2
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(Omega1(nVV),X1(nVV,nVV),Y1(nOO,nVV), &
|
||||
Omega2(nOO),X2(nVV,nOO),Y2(nOO,nOO), &
|
||||
rho1(nBas2,nBas2,nVV),rho2(nBas2,nBas2,nOO), &
|
||||
eG0T0(nBas2),SigT(nBas2),Z(nBas2))
|
||||
|
||||
!----------------------------------------------
|
||||
! Spinorbital basis
|
||||
!----------------------------------------------
|
||||
|
||||
ispin = 4
|
||||
|
||||
! Compute linear response
|
||||
|
||||
call ppLR(ispin,.false.,nBas2,nC2,nO2,nV2,nR2,nOO,nVV,1d0,seHF,sERI,Omega1,X1,Y1,Omega2,X2,Y2,EcRPA)
|
||||
|
||||
call print_excitation('pp-RPA (N+2)',ispin,nVV,Omega1)
|
||||
call print_excitation('pp-RPA (N-2)',ispin,nOO,Omega2)
|
||||
|
||||
! Compute excitation densities for the T-matrix
|
||||
|
||||
call excitation_density_Tmatrix_so(nBas2,nC2,nO2,nV2,nR2,nOO,nVV,sERI,X1,Y1,rho1,X2,Y2,rho2)
|
||||
|
||||
!----------------------------------------------
|
||||
! Compute T-matrix version of the self-energy
|
||||
!----------------------------------------------
|
||||
|
||||
call self_energy_Tmatrix_diag_so(eta,nBas2,nC2,nO2,nV2,nR2,nOO,nVV,seHF, &
|
||||
Omega1,rho1,Omega2,rho2,SigT)
|
||||
|
||||
! Compute renormalization factor for T-matrix self-energy
|
||||
|
||||
call renormalization_factor_Tmatrix_so(eta,nBas2,nC2,nO2,nV2,nR2,nOO,nVV,seHF, &
|
||||
Omega1,rho1,Omega2,rho2,Z)
|
||||
|
||||
!----------------------------------------------
|
||||
! Solve the quasi-particle equation
|
||||
!----------------------------------------------
|
||||
|
||||
eG0T0(:) = seHF(:) + Z(:)*SigT(:)
|
||||
|
||||
!----------------------------------------------
|
||||
! Dump results
|
||||
!----------------------------------------------
|
||||
|
||||
call print_G0T0(nBas2,nO2,seHF,ENuc,ERHF,SigT,Z,eG0T0,EcGM,EcRPA)
|
||||
|
||||
|
||||
call Bethe_Salpeter_Tmatrix_so(eta,nBas2,nC2,nO2,nV2,nR2,nS2,nOO,nVV,Omega1,X1,Y1,Omega2,X2,Y2,rho1,rho2, &
|
||||
sERI,seHF,eG0T0,EcBSE)
|
||||
|
||||
end subroutine soG0T0
|
@ -1,4 +1,4 @@
|
||||
subroutine ppLR(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Omega1,X1,Y1,Omega2,X2,Y2,EcRPA)
|
||||
subroutine ppLR(TDA,nBas,nOO,nVV,Om1,X1,Y1,Om2,X2,Y2,EcRPA)
|
||||
|
||||
! Compute the p-p channel of the linear response: see Scuseria et al. JCP 139, 104113 (2013)
|
||||
|
||||
@ -7,18 +7,12 @@ subroutine ppLR(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Omega1,X1,Y1,Ome
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: ispin
|
||||
logical,intent(in) :: TDA
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC
|
||||
integer,intent(in) :: nO
|
||||
integer,intent(in) :: nV
|
||||
integer,intent(in) :: nR
|
||||
integer,intent(in) :: nOO
|
||||
integer,intent(in) :: nVV
|
||||
double precision,intent(in) :: lambda
|
||||
double precision,intent(in) :: e(nBas)
|
||||
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: B(nVV,nOO)
|
||||
double precision,intent(in) :: C(nVV,nVV)
|
||||
double precision,intent(in) :: D(nOO,nOO)
|
||||
|
||||
! Local variables
|
||||
|
||||
@ -27,28 +21,24 @@ subroutine ppLR(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Omega1,X1,Y1,Ome
|
||||
double precision :: trace_matrix
|
||||
double precision :: EcRPA1
|
||||
double precision :: EcRPA2
|
||||
double precision,allocatable :: B(:,:)
|
||||
double precision,allocatable :: C(:,:)
|
||||
double precision,allocatable :: D(:,:)
|
||||
double precision,allocatable :: M(:,:)
|
||||
double precision,allocatable :: Z(:,:)
|
||||
double precision,allocatable :: Omega(:)
|
||||
double precision,allocatable :: Om(:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Omega1(nVV)
|
||||
double precision,intent(out) :: Om1(nVV)
|
||||
double precision,intent(out) :: X1(nVV,nVV)
|
||||
double precision,intent(out) :: Y1(nOO,nVV)
|
||||
double precision,intent(out) :: Omega2(nOO)
|
||||
double precision,intent(out) :: Om2(nOO)
|
||||
double precision,intent(out) :: X2(nVV,nOO)
|
||||
double precision,intent(out) :: Y2(nOO,nOO)
|
||||
double precision,intent(out) :: EcRPA
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(B(nVV,nOO),C(nVV,nVV),D(nOO,nOO),M(nOO+nVV,nOO+nVV),Z(nOO+nVV,nOO+nVV),Omega(nOO+nVV))
|
||||
!write(*,*) 'nOO', nOO
|
||||
!write(*,*) 'nVV', nVV
|
||||
allocate(M(nOO+nVV,nOO+nVV),Z(nOO+nVV,nOO+nVV),Om(nOO+nVV))
|
||||
|
||||
!-------------------------------------------------!
|
||||
! Solve the p-p eigenproblem !
|
||||
!-------------------------------------------------!
|
||||
@ -59,20 +49,15 @@ subroutine ppLR(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Omega1,X1,Y1,Ome
|
||||
! !
|
||||
!-------------------------------------------------!
|
||||
|
||||
! Build B, C and D matrices for the pp channel
|
||||
|
||||
call ppLR_C(ispin,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,C)
|
||||
call ppLR_D(ispin,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,D)
|
||||
|
||||
if(TDA) then
|
||||
|
||||
X1(:,:) = +C(:,:)
|
||||
Y1(:,:) = 0d0
|
||||
if(nVV > 0) call diagonalize_matrix(nVV,X1,Omega1)
|
||||
if(nVV > 0) call diagonalize_matrix(nVV,X1,Om1)
|
||||
|
||||
X2(:,:) = 0d0
|
||||
Y2(:,:) = -D(:,:)
|
||||
if(nOO > 0) call diagonalize_matrix(nOO,Y2,Omega2)
|
||||
if(nOO > 0) call diagonalize_matrix(nOO,Y2,Om2)
|
||||
|
||||
else
|
||||
|
||||
@ -90,19 +75,19 @@ subroutine ppLR(ispin,TDA,nBas,nC,nO,nV,nR,nOO,nVV,lambda,e,ERI,Omega1,X1,Y1,Ome
|
||||
|
||||
! Diagonalize the p-p matrix
|
||||
|
||||
if(nOO+nVV > 0) call diagonalize_general_matrix(nOO+nVV,M,Omega,Z)
|
||||
if(nOO+nVV > 0) call diagonalize_general_matrix(nOO+nVV,M,Om,Z)
|
||||
|
||||
! Split the various quantities in p-p and h-h parts
|
||||
|
||||
call sort_ppRPA(nOO,nVV,Omega(:),Z(:,:),Omega1(:),X1(:,:),Y1(:,:),Omega2(:),X2(:,:),Y2(:,:))
|
||||
call sort_ppRPA(nOO,nVV,Om(:),Z(:,:),Om1(:),X1(:,:),Y1(:,:),Om2(:),X2(:,:),Y2(:,:))
|
||||
|
||||
end if
|
||||
|
||||
! Compute the RPA correlation energy
|
||||
|
||||
EcRPA = 0.5d0*( sum(Omega1(:)) - sum(Omega2(:)) - trace_matrix(nVV,C(:,:)) - trace_matrix(nOO,D(:,:)) )
|
||||
EcRPA1 = +sum(Omega1(:)) - trace_matrix(nVV,C(:,:))
|
||||
EcRPA2 = -sum(Omega2(:)) - trace_matrix(nOO,D(:,:))
|
||||
EcRPA = 0.5d0*( sum(Om1(:)) - sum(Om2(:)) - trace_matrix(nVV,C(:,:)) - trace_matrix(nOO,D(:,:)) )
|
||||
EcRPA1 = +sum(Om1(:)) - trace_matrix(nVV,C(:,:))
|
||||
EcRPA2 = -sum(Om2(:)) - trace_matrix(nOO,D(:,:))
|
||||
|
||||
if(abs(EcRPA - EcRPA1) > 1d-6 .or. abs(EcRPA - EcRPA2) > 1d-6) &
|
||||
print*,'!!! Issue in pp-RPA linear reponse calculation RPA1 != RPA2 !!!'
|
||||
|
Loading…
Reference in New Issue
Block a user