10
1
mirror of https://github.com/pfloos/quack synced 2025-01-10 13:08:19 +01:00

creating routines for pCCD

This commit is contained in:
Pierre-Francois Loos 2024-09-03 09:03:17 +02:00
parent 6a6078ac7e
commit 6a829f0cad
5 changed files with 421 additions and 289 deletions

View File

@ -30,7 +30,7 @@ subroutine pCCD(dotest,maxIt,thresh,max_diis,nBas,nOrb,nC,nO,nV,nR, &
! Local variables ! Local variables
integer :: mu,nu integer :: mu,nu
integer :: p,q,r,s,t,u,w integer :: p,q,r,s
integer :: pq,rs integer :: pq,rs
integer :: i,j,a,b integer :: i,j,a,b
@ -61,18 +61,12 @@ subroutine pCCD(dotest,maxIt,thresh,max_diis,nBas,nOrb,nC,nO,nV,nR, &
double precision,allocatable :: rdm1(:,:) double precision,allocatable :: rdm1(:,:)
double precision,allocatable :: rdm2(:,:,:,:) double precision,allocatable :: rdm2(:,:,:,:)
double precision,allocatable :: xOO(:,:)
double precision,allocatable :: xVV(:,:)
double precision,allocatable :: xOV(:,:)
double precision :: tr_1rdm
double precision :: tr_2rdm
double precision :: E1,E2 double precision :: E1,E2
double precision,allocatable :: c(:,:) double precision,allocatable :: c(:,:)
double precision,allocatable :: h(:,:) double precision,allocatable :: h(:,:)
double precision,allocatable :: ERI_MO(:,:,:,:) double precision,allocatable :: ERI_MO(:,:,:,:)
double precision,allocatable :: grad(:) double precision,allocatable :: grad(:)
double precision,allocatable :: tmp(:,:,:,:)
double precision,allocatable :: hess(:,:) double precision,allocatable :: hess(:,:)
double precision,allocatable :: hessInv(:,:) double precision,allocatable :: hessInv(:,:)
double precision,allocatable :: Kap(:,:) double precision,allocatable :: Kap(:,:)
@ -84,8 +78,6 @@ subroutine pCCD(dotest,maxIt,thresh,max_diis,nBas,nOrb,nC,nO,nV,nR, &
double precision,allocatable :: err_diis(:,:) double precision,allocatable :: err_diis(:,:)
double precision,allocatable :: t2_diis(:,:) double precision,allocatable :: t2_diis(:,:)
double precision,allocatable :: z2_diis(:,:) double precision,allocatable :: z2_diis(:,:)
double precision,external :: trace_matrix
double precision,external :: Kronecker_delta
! Hello world ! Hello world
@ -393,203 +385,18 @@ subroutine pCCD(dotest,maxIt,thresh,max_diis,nBas,nOrb,nC,nO,nV,nR, &
!--------------------------! !--------------------------!
allocate(rdm1(N,N),rdm2(N,N,N,N)) allocate(rdm1(N,N),rdm2(N,N,N,N))
allocate(xOO(O,O),xVV(V,V),xOV(O,V))
xOO(:,:) = matmul(t2,transpose(z2)) call pCCD_rdm(O,V,N,ENuc,h,ERI_MO,t2,z2,rdm1,rdm2)
xVV(:,:) = matmul(transpose(z2),t2)
xOV(:,:) = matmul(t2,matmul(transpose(z2),t2))
! Form 1RDM
rdm1(:,:) = 0d0
do i=1,O
rdm1(i,i) = 2d0*(1d0 - xOO(i,i))
end do
do a=1,V
rdm1(O+a,O+a) = 2d0*xVV(a,a)
end do
! Check 1RDM
tr_1rdm = trace_matrix(N,rdm1)
write(*,'(A25,F16.10)') ' --> Trace of the 1RDM = ',tr_1rdm
if( abs(dble(2*O) - tr_1rdm) > thresh ) &
write(*,*) ' !!! Your 1RDM seems broken !!! '
write(*,*)
! write(*,*) '1RDM is diagonal at the pCCD level:'
! call matout(N,N,rdm1)
! Form 2RM
rdm2(:,:,:,:) = 0d0
! iijj
do i=1,O
do j=1,O
rdm2(i,i,j,j) = 2d0*xOO(i,j)
end do
end do
! iiaa
do i=1,O
do a=1,V
rdm2(i,i,O+a,O+a) = 2d0*(t2(i,a) + xOV(i,a) - 2d0*t2(i,a)*(xVV(a,a) + xOO(i,i) - t2(i,a)*z2(i,a)))
end do
end do
! aaii
do i=1,O
do a=1,V
rdm2(O+a,O+a,i,i) = 2d0*z2(i,a)
end do
end do
! aabb
do a=1,V
do b=1,V
rdm2(O+a,O+a,O+b,O+b) = 2d0*xVV(a,b)
end do
end do
! ijij
do i=1,O
do j=1,O
rdm2(i,j,i,j) = 4d0*(1d0 - xOO(i,i) - xOO(j,j))
end do
end do
! ijji
do i=1,O
do j=1,O
rdm2(i,j,j,i) = - 2d0*(1d0 - xOO(i,i) - xOO(j,j))
end do
end do
! iiii
do i=1,O
rdm2(i,i,i,i) = 2d0*(1d0 - xOO(i,i))
end do
! iaia
do i=1,O
do a=1,V
rdm2(i,O+a,i,O+a) = 4d0*(xVV(a,a) - t2(i,a)*z2(i,a))
end do
end do
! iaai
do i=1,O
do a=1,V
rdm2(i,O+a,O+a,i) = - 2d0*(xVV(a,a) - t2(i,a)*z2(i,a))
end do
end do
! aiai
do i=1,O
do a=1,V
rdm2(O+a,i,O+a,i) = 4d0*(xVV(a,a) - t2(i,a)*z2(i,a))
end do
end do
! aiia
do i=1,O
do a=1,V
rdm2(O+a,i,i,O+a) = - 2d0*(xVV(a,a) - t2(i,a)*z2(i,a))
end do
end do
! abab
do a=1,V
rdm2(O+a,O+a,O+a,O+a) = 2d0*xVV(a,a)
end do
! Check 2RDM
tr_2rdm = trace_matrix(N**2,rdm2)
write(*,'(A25,F16.10)') ' --> Trace of the 2RDM = ',tr_2rdm
if( abs(dble(2*O*(2*O-1)) - tr_2rdm) > thresh ) &
write(*,*) ' !!! Your 2RDM seems broken !!! '
write(*,*)
! write(*,*) '2RDM is not diagonal at the pCCD level:'
! call matout(N**2,N**2,rdm2)
deallocate(xOO,xVV,xOV)
deallocate(t2,z2) deallocate(t2,z2)
! Compute electronic energy
E1 = 0d0
E2 = 0d0
do p=1,N
do q=1,N
E1 = E1 + rdm1(p,q)*h(p,q)
do r=1,N
do s=1,N
E2 = E2 + rdm2(p,q,r,s)*ERI_MO(p,q,r,s)
end do
end do
end do
end do
E2 = 0.5d0*E2
write(*,'(A25,F16.10)') ' One-electron energy = ',E1
write(*,'(A25,F16.10)') ' Two-electron energy = ',E2
write(*,'(A25,F16.10)') ' Electronic energy = ',E1 + E2
write(*,'(A25,F16.10)') ' Total energy = ',E1 + E2 + ENuc
write(*,*)
!--------------------------! !--------------------------!
! Compute orbital gradient ! ! Compute orbital gradient !
!--------------------------! !--------------------------!
allocate(grad(N**2)) allocate(grad(N**2))
grad(:) = 0d0 call pCCD_orbital_gradient(O,V,N,h,ERI_MO,rdm1,rdm2,grad)
pq = 0
do p=1,N
do q=1,N
pq = pq + 1
do r=1,N
grad(pq) = grad(pq) + h(r,p)*rdm1(r,q) - h(q,r)*rdm1(p,r)
end do
do r=1,N
do s=1,N
do t=1,N
grad(pq) = grad(pq) + (ERI_MO(r,s,p,t)*rdm2(r,s,q,t) - ERI_MO(q,t,r,s)*rdm2(p,t,r,s))
end do
end do
end do
end do
end do
write(*,*) 'Orbital gradient at the pCCD level:'
call matout(N,N,grad)
write(*,*)
! Check convergence of orbital optimization ! Check convergence of orbital optimization
@ -606,86 +413,11 @@ subroutine pCCD(dotest,maxIt,thresh,max_diis,nBas,nOrb,nC,nO,nV,nR, &
! Compute orbital Hessian ! ! Compute orbital Hessian !
!-------------------------! !-------------------------!
allocate(hess(N**2,N**2),tmp(N,N,N,N)) allocate(hess(N**2,N**2))
tmp(:,:,:,:) = 0d0 call pCCD_orbital_hessian(O,V,N,h,ERI_MO,rdm1,rdm2,hess)
do p=1,N deallocate(rdm1,rdm2)
do q=1,N
do r=1,N
do s=1,N
tmp(p,q,r,s) = - h(s,p)*rdm1(r,q) - h(q,r)*rdm1(p,s)
do u=1,N
tmp(p,q,r,s) = tmp(p,q,r,s) + 0.5d0*( &
Kronecker_delta(q,r)*(h(u,p)*rdm1(u,s) + h(s,u)*rdm1(p,u)) &
+ Kronecker_delta(p,s)*(h(u,r)*rdm1(u,q) + h(q,u)*rdm1(r,u)) )
end do
do u=1,N
do w=1,N
tmp(p,q,r,s) = tmp(p,q,r,s) + ERI_MO(u,w,p,r)*rdm2(u,w,q,s) + ERI_MO(q,s,u,w)*rdm2(p,r,u,w)
end do
end do
do t=1,N
do u=1,N
tmp(p,q,r,s) = tmp(p,q,r,s) - ( &
ERI_MO(s,t,p,u)*rdm2(r,t,q,u) + ERI_MO(t,s,p,u)*rdm2(t,r,q,u) &
+ ERI_MO(q,u,r,t)*rdm2(p,u,s,t) + ERI_MO(q,u,t,r)*rdm2(p,u,t,s) )
end do
end do
do t=1,N
do u=1,N
do w=1,N
tmp(p,q,r,s) = tmp(p,q,r,s) + 0.5d0*( &
Kronecker_delta(q,r)*(ERI_MO(u,w,p,t)*rdm2(u,w,s,t) + ERI_MO(s,t,u,w)*rdm2(p,t,u,w)) &
+ Kronecker_delta(p,s)*(ERI_MO(q,t,u,w)*rdm2(r,t,u,w) + ERI_MO(u,w,r,t)*rdm2(u,w,q,t)) )
end do
end do
end do
end do
end do
end do
end do
! Flatten Hessian matrix and add permutations
pq = 0
do p=1,N
do q=1,N
pq = pq + 1
rs = 0
do r=1,N
do s=1,N
rs = rs + 1
hess(pq,rs) = tmp(p,r,q,s) - tmp(r,p,q,s) - tmp(p,r,s,q) + tmp(r,p,s,q)
!! hess(pq,rs) = tmp(p,q,r,s) - tmp(q,p,r,s) - tmp(p,q,s,r) + tmp(q,p,s,r)
end do
end do
end do
end do
deallocate(rdm1,rdm2,tmp)
allocate(hessInv(N**2,N**2)) allocate(hessInv(N**2,N**2))

View File

@ -0,0 +1,61 @@
subroutine pCCD_orbital_gradient(O,V,N,h,ERI_MO,rdm1,rdm2,grad)
! Compute the orbital gradient at the pCCD level
implicit none
! Input variables
integer,intent(in) :: O
integer,intent(in) :: V
integer,intent(in) :: N
double precision,intent(in) :: h(N,N)
double precision,intent(in) :: ERI_MO(N,N,N,N)
double precision,intent(in) :: rdm1(N,N)
double precision,intent(in) :: rdm2(N,N,N,N)
! Local variables
integer :: p,q,r,s,t
integer :: pq
logical,parameter :: debug = .false.
! Output variables
double precision,intent(out) :: grad(N**2)
! Compute gradient
grad(:) = 0d0
pq = 0
do p=1,N
do q=1,N
pq = pq + 1
do r=1,N
grad(pq) = grad(pq) + h(r,p)*rdm1(r,q) - h(q,r)*rdm1(p,r)
end do
do r=1,N
do s=1,N
do t=1,N
grad(pq) = grad(pq) + (ERI_MO(r,s,p,t)*rdm2(r,s,q,t) - ERI_MO(q,t,r,s)*rdm2(p,t,r,s))
end do
end do
end do
end do
end do
if(debug) then
write(*,*) 'Orbital gradient at the pCCD level:'
call matout(N,N,grad)
write(*,*)
end if
end

View File

@ -0,0 +1,121 @@
subroutine pCCD_orbital_hessian(O,V,N,h,ERI_MO,rdm1,rdm2,hess)
! Compute the orbital hessian at the pCCD level
implicit none
! Input variables
integer,intent(in) :: O
integer,intent(in) :: V
integer,intent(in) :: N
double precision,intent(in) :: h(N,N)
double precision,intent(in) :: ERI_MO(N,N,N,N)
double precision,intent(in) :: rdm1(N,N)
double precision,intent(in) :: rdm2(N,N,N,N)
! Local variables
integer :: p,q,r,s,t,u,w
integer :: pq,rs
logical,parameter :: debug = .false.
double precision,allocatable :: tmp(:,:,:,:)
double precision,external :: Kronecker_delta
! Output variables
double precision,intent(out) :: hess(N**2,N**2)
! Compute intermediate array
allocate(tmp(N,N,N,N))
tmp(:,:,:,:) = 0d0
do p=1,N
do q=1,N
do r=1,N
do s=1,N
tmp(p,q,r,s) = - h(s,p)*rdm1(r,q) - h(q,r)*rdm1(p,s)
do u=1,N
tmp(p,q,r,s) = tmp(p,q,r,s) + 0.5d0*( &
Kronecker_delta(q,r)*(h(u,p)*rdm1(u,s) + h(s,u)*rdm1(p,u)) &
+ Kronecker_delta(p,s)*(h(u,r)*rdm1(u,q) + h(q,u)*rdm1(r,u)) )
end do
do u=1,N
do w=1,N
tmp(p,q,r,s) = tmp(p,q,r,s) + ERI_MO(u,w,p,r)*rdm2(u,w,q,s) + ERI_MO(q,s,u,w)*rdm2(p,r,u,w)
end do
end do
do t=1,N
do u=1,N
tmp(p,q,r,s) = tmp(p,q,r,s) - ( &
ERI_MO(s,t,p,u)*rdm2(r,t,q,u) + ERI_MO(t,s,p,u)*rdm2(t,r,q,u) &
+ ERI_MO(q,u,r,t)*rdm2(p,u,s,t) + ERI_MO(q,u,t,r)*rdm2(p,u,t,s) )
end do
end do
do t=1,N
do u=1,N
do w=1,N
tmp(p,q,r,s) = tmp(p,q,r,s) + 0.5d0*( &
Kronecker_delta(q,r)*(ERI_MO(u,w,p,t)*rdm2(u,w,s,t) + ERI_MO(s,t,u,w)*rdm2(p,t,u,w)) &
+ Kronecker_delta(p,s)*(ERI_MO(q,t,u,w)*rdm2(r,t,u,w) + ERI_MO(u,w,r,t)*rdm2(u,w,q,t)) )
end do
end do
end do
end do
end do
end do
end do
! Flatten Hessian matrix and add permutations
pq = 0
do p=1,N
do q=1,N
pq = pq + 1
rs = 0
do r=1,N
do s=1,N
rs = rs + 1
hess(pq,rs) = tmp(p,r,q,s) - tmp(r,p,q,s) - tmp(p,r,s,q) + tmp(r,p,s,q)
! hess(pq,rs) = tmp(p,q,r,s) - tmp(q,p,r,s) - tmp(p,q,s,r) + tmp(q,p,s,r)
end do
end do
end do
end do
if(debug) then
write(*,*) 'Orbital Hessian at the pCCD level:'
call matout(N**2,N**2,hess)
write(*,*)
end if
end

218
src/CC/pCCD_rdm.f90 Normal file
View File

@ -0,0 +1,218 @@
subroutine pCCD_rdm(O,V,N,ENuc,h,ERI_MO,t2,z2,rdm1,rdm2)
! Compute the 1RDM and 2RDM at the pCCD level
implicit none
! Input variables
integer,intent(in) :: O
integer,intent(in) :: V
integer,intent(in) :: N
double precision,intent(in) :: ENuc
double precision,intent(in) :: h(N,N)
double precision,intent(in) :: ERI_MO(N,N,N,N)
double precision,intent(in) :: t2(O,V)
double precision,intent(in) :: z2(O,V)
! Local variables
integer :: p,q,r,s
integer :: i,j,a,b
logical,parameter :: debug = .false.
double precision,parameter :: thresh = 1d-6
double precision :: tr_1rdm
double precision :: tr_2rdm
double precision :: E1
double precision :: E2
double precision,allocatable :: xOO(:,:)
double precision,allocatable :: xVV(:,:)
double precision,allocatable :: xOV(:,:)
double precision,external :: trace_matrix
! Output variables
double precision,intent(out) :: rdm1(N,N)
double precision,intent(out) :: rdm2(N,N,N,N)
! Allocate memory
allocate(xOO(O,O),xVV(V,V),xOV(O,V))
! Build intermediates
xOO(:,:) = matmul(t2,transpose(z2))
xVV(:,:) = matmul(transpose(z2),t2)
xOV(:,:) = matmul(t2,matmul(transpose(z2),t2))
! Form 1RDM
rdm1(:,:) = 0d0
do i=1,O
rdm1(i,i) = 2d0*(1d0 - xOO(i,i))
end do
do a=1,V
rdm1(O+a,O+a) = 2d0*xVV(a,a)
end do
! Check 1RDM
tr_1rdm = trace_matrix(N,rdm1)
write(*,'(A25,F16.10)') ' --> Trace of the 1RDM = ',tr_1rdm
if( abs(dble(2*O) - tr_1rdm) > thresh ) &
write(*,*) ' !!! Your 1RDM seems broken !!! '
write(*,*)
if(debug) then
write(*,*) '1RDM is diagonal at the pCCD level:'
call matout(N,N,rdm1)
end if
! Form 2RM
rdm2(:,:,:,:) = 0d0
! iijj
do i=1,O
do j=1,O
rdm2(i,i,j,j) = 2d0*xOO(i,j)
end do
end do
! iiaa
do i=1,O
do a=1,V
rdm2(i,i,O+a,O+a) = 2d0*(t2(i,a) + xOV(i,a) - 2d0*t2(i,a)*(xVV(a,a) + xOO(i,i) - t2(i,a)*z2(i,a)))
end do
end do
! aaii
do i=1,O
do a=1,V
rdm2(O+a,O+a,i,i) = 2d0*z2(i,a)
end do
end do
! aabb
do a=1,V
do b=1,V
rdm2(O+a,O+a,O+b,O+b) = 2d0*xVV(a,b)
end do
end do
! ijij
do i=1,O
do j=1,O
rdm2(i,j,i,j) = 4d0*(1d0 - xOO(i,i) - xOO(j,j))
end do
end do
! ijji
do i=1,O
do j=1,O
rdm2(i,j,j,i) = - 2d0*(1d0 - xOO(i,i) - xOO(j,j))
end do
end do
! iiii
do i=1,O
rdm2(i,i,i,i) = 2d0*(1d0 - xOO(i,i))
end do
! iaia
do i=1,O
do a=1,V
rdm2(i,O+a,i,O+a) = 4d0*(xVV(a,a) - t2(i,a)*z2(i,a))
end do
end do
! iaai
do i=1,O
do a=1,V
rdm2(i,O+a,O+a,i) = - 2d0*(xVV(a,a) - t2(i,a)*z2(i,a))
end do
end do
! aiai
do i=1,O
do a=1,V
rdm2(O+a,i,O+a,i) = 4d0*(xVV(a,a) - t2(i,a)*z2(i,a))
end do
end do
! aiia
do i=1,O
do a=1,V
rdm2(O+a,i,i,O+a) = - 2d0*(xVV(a,a) - t2(i,a)*z2(i,a))
end do
end do
! abab
do a=1,V
rdm2(O+a,O+a,O+a,O+a) = 2d0*xVV(a,a)
end do
! Check 2RDM
tr_2rdm = trace_matrix(N**2,rdm2)
write(*,'(A25,F16.10)') ' --> Trace of the 2RDM = ',tr_2rdm
if( abs(dble(2*O*(2*O-1)) - tr_2rdm) > thresh ) &
write(*,*) ' !!! Your 2RDM seems broken !!! '
write(*,*)
if(debug) then
write(*,*) '2RDM is not diagonal at the pCCD level:'
call matout(N**2,N**2,rdm2)
endif
deallocate(xOO,xVV,xOV)
! Compute electronic energy
E1 = 0d0
E2 = 0d0
do p=1,N
do q=1,N
E1 = E1 + rdm1(p,q)*h(p,q)
do r=1,N
do s=1,N
E2 = E2 + rdm2(p,q,r,s)*ERI_MO(p,q,r,s)
end do
end do
end do
end do
E2 = 0.5d0*E2
write(*,'(A25,F16.10)') ' One-electron energy = ',E1
write(*,'(A25,F16.10)') ' Two-electron energy = ',E2
write(*,'(A25,F16.10)') ' Electronic energy = ',E1 + E2
write(*,'(A25,F16.10)') ' Total energy = ',E1 + E2 + ENuc
write(*,*)
end

View File

@ -125,16 +125,16 @@ program QuAcK
doACFDT,exchange_kernel,doXBS, & doACFDT,exchange_kernel,doXBS, &
dophBSE,dophBSE2,doppBSE,dBSE,dTDA) dophBSE,dophBSE2,doppBSE,dBSE,dTDA)
!-----------------------------------------------! !------------------------------------!
! Read input information ! ! Read input information !
!-----------------------------------------------! !------------------------------------!
! nC = number of core orbitals ! ! nC = number of core orbitals !
! nO = number of occupied orbitals ! ! nO = number of occupied orbitals !
! nV = number of virtual orbitals (see below) ! ! nV = number of virtual orbitals !
! nR = number of Rydberg orbitals ! ! nR = number of Rydberg orbitals !
! nBas = number of basis functions ! ! nBas = number of basis functions !
! nOrb = number of orbitals ! ! nOrb = number of orbitals !
!-----------------------------------------------! !------------------------------------!
call read_molecule(nNuc,nO,nC,nR) call read_molecule(nNuc,nO,nC,nR)
allocate(ZNuc(nNuc),rNuc(nNuc,ncart)) allocate(ZNuc(nNuc),rNuc(nNuc,ncart))