10
1
mirror of https://github.com/pfloos/quack synced 2024-12-23 12:55:25 +01:00

working on collinearity test

This commit is contained in:
Pierre-Francois Loos 2023-11-14 16:57:47 +01:00
parent 74079b2920
commit 5ebe76056d

View File

@ -37,6 +37,15 @@ subroutine print_GHF(nBas,nBas2,nO,e,C,P,ENuc,ET,EV,EJ,EK,EHF,dipole)
double precision,allocatable :: Pba(:,:) double precision,allocatable :: Pba(:,:)
double precision,allocatable :: Pbb(:,:) double precision,allocatable :: Pbb(:,:)
double precision,allocatable :: Mx(:,:)
double precision,allocatable :: My(:,:)
double precision,allocatable :: Mz(:,:)
double precision,allocatable :: PP(:,:)
double precision :: T(3,3)
double precision :: vec(3,3)
double precision :: val(3)
double precision :: lambda
double precision,external :: trace_matrix double precision,external :: trace_matrix
logical :: dump_orb = .false. logical :: dump_orb = .false.
@ -49,43 +58,82 @@ subroutine print_GHF(nBas,nBas2,nO,e,C,P,ENuc,ET,EV,EJ,EK,EHF,dipole)
! Density matrices ! Density matrices
allocate(Paa(nBas2,nBas2),Pab(nBas2,nBas2),Pba(nBas2,nBas2),Pbb(nBas2,nBas2)) allocate(Paa(nBas,nBas),Pab(nBas,nBas),Pba(nBas,nBas),Pbb(nBas,nBas))
Paa(:,:) = P( 1:nBas , 1:nBas ) Paa(:,:) = P( 1:nBas , 1:nBas )
Pab(:,:) = P( 1:nBas ,nBas+1:nBas2) Pab(:,:) = P( 1:nBas ,nBas+1:nBas2)
Pba(:,:) = P(nBas+1:nBas2, 1:nBas ) Pba(:,:) = P(nBas+1:nBas2, 1:nBas )
Pbb(:,:) = P(nBas+1:nBas2,nBas+1:nBas2) Pbb(:,:) = P(nBas+1:nBas2,nBas+1:nBas2)
allocate(Ca(nBas,nBas2),Cb(nBas,nBas2)) ! allocate(Ca(nBas,nBas2),Cb(nBas,nBas2))
Ca(:,:) = C( 1:nBas ,1:nBas2) ! Ca(:,:) = C( 1:nBas ,1:nBas2)
Cb(:,:) = C(nBas+1:nBas2,1:nBas2) ! Cb(:,:) = C(nBas+1:nBas2,1:nBas2)
! Compute expectation values of S^2 (WRONG!) ! Compute expectation values of S^2 (WRONG!)
Sx2 = 0.25d0*trace_matrix(nBas,Paa+Pbb) + 0.25d0*trace_matrix(nBas,Pab+Pba)**2 ! Sx2 = 0.25d0*trace_matrix(nBas,Paa+Pbb) + 0.25d0*trace_matrix(nBas,Pab+Pba)**2
do mu=1,nBas ! do mu=1,nBas
do nu=1,nBas ! do nu=1,nBas
Sx2 = Sx2 - 0.5d0*(Paa(mu,nu)*Pbb(nu,mu) + Pab(mu,nu)*Pab(nu,mu)) ! Sx2 = Sx2 - 0.5d0*(Paa(mu,nu)*Pbb(nu,mu) + Pab(mu,nu)*Pab(nu,mu))
end do ! end do
end do ! end do
Sy2 = 0.25d0*trace_matrix(nBas,Paa+Pbb) - 0.25d0*trace_matrix(nBas,Pab+Pba)**2 ! Sy2 = 0.25d0*trace_matrix(nBas,Paa+Pbb) - 0.25d0*trace_matrix(nBas,Pab+Pba)**2
do mu=1,nBas ! do mu=1,nBas
do nu=1,nBas ! do nu=1,nBas
Sy2 = Sy2 - 0.5d0*(Paa(mu,nu)*Pbb(nu,mu) - Pab(mu,nu)*Pab(nu,mu)) ! Sy2 = Sy2 - 0.5d0*(Paa(mu,nu)*Pbb(nu,mu) - Pab(mu,nu)*Pab(nu,mu))
end do ! end do
end do ! end do
Sz2 = 0.25d0*trace_matrix(nBas,Paa+Pbb) + 0.25d0*trace_matrix(nBas,Pab-Pba)**2 ! Sz2 = 0.25d0*trace_matrix(nBas,Paa+Pbb) + 0.25d0*trace_matrix(nBas,Pab-Pba)**2
do mu=1,nBas ! do mu=1,nBas
do nu=1,nBas ! do nu=1,nBas
Sz2 = Sz2 - 0.25d0*(Paa(mu,nu)*Pbb(nu,mu) - Pab(mu,nu)*Pab(nu,mu)) ! Sz2 = Sz2 - 0.25d0*(Paa(mu,nu)*Pbb(nu,mu) - Pab(mu,nu)*Pab(nu,mu))
Sz2 = Sz2 + 0.25d0*(Pab(mu,nu)*Pba(nu,mu) - Pba(mu,nu)*Pab(nu,mu)) ! Sz2 = Sz2 + 0.25d0*(Pab(mu,nu)*Pba(nu,mu) - Pba(mu,nu)*Pab(nu,mu))
end do ! end do
end do ! end do
!
! S2 = Sx2 + Sy2 + Sz2
S2 = Sx2 + Sy2 + Sz2 ! Checl collinearity and coplanarity
allocate(PP(nBas,nBas),Mx(nBas,nBas),My(nBas,nBas),Mz(nBas,nBas))
PP(:,:) = 0.5d0*(Paa(:,:) + Pbb(:,:))
Mx(:,:) = 0.5d0*(Pba(:,:) + Pab(:,:))
My(:,:) = 0.5d0*(Pba(:,:) - Pab(:,:))
Mz(:,:) = 0.5d0*(Paa(:,:) - Pbb(:,:))
T(1,1) = trace_matrix(nBas,matmul(Mx,transpose(Mx)))
T(1,2) = trace_matrix(nBas,matmul(Mx,transpose(My)))
T(1,3) = trace_matrix(nBas,matmul(Mx,transpose(Mz)))
T(2,1) = trace_matrix(nBas,matmul(My,transpose(Mx)))
T(2,2) = trace_matrix(nBas,matmul(My,transpose(My)))
T(2,3) = trace_matrix(nBas,matmul(My,transpose(Mz)))
T(3,1) = trace_matrix(nBas,matmul(Mz,transpose(Mx)))
T(3,2) = trace_matrix(nBas,matmul(Mz,transpose(My)))
T(3,3) = trace_matrix(nBas,matmul(Mz,transpose(Mz)))
print*,'Value of Tr(P - P^2)'
lambda = trace_matrix(nBas,PP - matmul(PP,transpose(PP)))
print*,lambda
print*,'Eigenvalues of T'
vec(:,:) = T(:,:)
call diagonalize_matrix(3,vec,val)
print*,val
T(1,1) = - T(1,1) + lambda
T(2,2) = - T(2,2) + lambda
T(3,3) = - T(3,3) + lambda
print*,'Eigenvalues of A'
vec(:,:) = T(:,:)
call diagonalize_matrix(3,vec,val)
print*,val
deallocate(PP,Mx,My,Mz)
! Dump results ! Dump results