mirror of
https://github.com/pfloos/quack
synced 2024-12-22 12:23:42 +01:00
CC-B88 kappa in DD and many other things
This commit is contained in:
commit
5b436558ed
14
input/dft
14
input/dft
@ -19,25 +19,25 @@
|
||||
# Number of states in ensemble (nEns)
|
||||
4
|
||||
# occupation numbers
|
||||
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
|
||||
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
|
||||
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
||||
# Ensemble weights: wEns(1),...,wEns(nEns-1)
|
||||
1.0 0. 0.0
|
||||
1 0.0 0.0
|
||||
# Ncentered ?
|
||||
F
|
||||
# Parameters for CC weight-dependent exchange functional
|
||||
4
|
||||
0.60601 -0.0631565 -0.0289751 0.00244785
|
||||
-1.28842 -0.173117 0.0900511 -0.0118975
|
||||
-0.718713,-0.133321,0.226288,-0.250718
|
||||
-0.525899,0.687216,-0.13866,-0.0226579
|
||||
0.0 0.0 0.0 0.0
|
||||
# choice of UCC exchange coefficient : 1 for Cx1, 2 for Cx2, 3 for Cx1*Cx2
|
||||
1
|
||||
|
@ -1,5 +1,5 @@
|
||||
# RHF UHF KS MOM
|
||||
F F T F
|
||||
F F T F
|
||||
# MP2* MP3 MP2-F12
|
||||
F F F
|
||||
# CCD pCCD DCD CCSD CCSD(T)
|
||||
@ -11,9 +11,9 @@
|
||||
# RPA* RPAx* crRPA ppRPA
|
||||
F F F F
|
||||
# G0F2* evGF2* qsGF2* G0F3 evGF3
|
||||
F F F F F
|
||||
F F F F F
|
||||
# G0W0* evGW* qsGW* ufG0W0 ufGW
|
||||
F F F F F
|
||||
F F F F F
|
||||
# G0T0 evGT qsGT
|
||||
F F F
|
||||
# MCMP2
|
||||
|
@ -1,11 +1,11 @@
|
||||
# HF: maxSCF thresh DIIS n_diis guess_type ortho_type mix_guess stability
|
||||
1024 0.00001 T 5 1 1 T F
|
||||
1024 0.00001 T 2 1 1 F F
|
||||
# MP:
|
||||
|
||||
# CC: maxSCF thresh DIIS n_diis
|
||||
64 0.00001 T 5
|
||||
# spin: TDA singlet triplet spin_conserved spin_flip
|
||||
F T F T T
|
||||
F T T T T
|
||||
# GF: maxSCF thresh DIIS n_diis lin eta renorm reg
|
||||
256 0.00001 T 5 T 0.0 3 F
|
||||
# GW: maxSCF thresh DIIS n_diis lin eta COHSEX SOSEX TDA_W G0W GW0 reg
|
||||
|
@ -1,4 +1,4 @@
|
||||
2
|
||||
|
||||
H 0. 0. 0.
|
||||
H 0. 0. 2.000000
|
||||
|
||||
H 0.0 0.0 0.0
|
||||
H 0.0 0.0 0.7
|
||||
|
@ -96,7 +96,7 @@ subroutine CID(singlet_manifold,triplet_manifold,nBasin,nCin,nOin,nVin,nRin,ERIi
|
||||
|
||||
H(ishift+1,jshift+1) = E0
|
||||
|
||||
print*,'00 block done...'
|
||||
print*,'00 block done...'
|
||||
|
||||
! 0D blocks
|
||||
|
||||
@ -193,7 +193,7 @@ subroutine CID(singlet_manifold,triplet_manifold,nBasin,nCin,nOin,nVin,nRin,ERIi
|
||||
end do
|
||||
end do
|
||||
|
||||
print*,'DD block done...'
|
||||
print*,'DD block done...'
|
||||
|
||||
write(*,*)
|
||||
write(*,*) 'Diagonalizing CID matrix...'
|
||||
|
@ -86,7 +86,7 @@ subroutine CISD(singlet_manifold,triplet_manifold,nBasin,nCin,nOin,nVin,nRin,ERI
|
||||
write(*,*) 'nH = ',nH
|
||||
write(*,*)
|
||||
|
||||
maxH = min(nH,21)
|
||||
maxH = min(nH,41)
|
||||
|
||||
! Memory allocation
|
||||
|
||||
@ -99,7 +99,7 @@ subroutine CISD(singlet_manifold,triplet_manifold,nBasin,nCin,nOin,nVin,nRin,ERI
|
||||
|
||||
H(ishift+1,jshift+1) = E0
|
||||
|
||||
print*,'00 block done...'
|
||||
print*,'00 block done...'
|
||||
|
||||
! 0S blocks
|
||||
|
||||
@ -172,7 +172,7 @@ subroutine CISD(singlet_manifold,triplet_manifold,nBasin,nCin,nOin,nVin,nRin,ERI
|
||||
end do
|
||||
end do
|
||||
|
||||
print*,'SS block done...'
|
||||
print*,'SS block done...'
|
||||
|
||||
! SD blocks
|
||||
|
||||
@ -285,7 +285,7 @@ subroutine CISD(singlet_manifold,triplet_manifold,nBasin,nCin,nOin,nVin,nRin,ERI
|
||||
end do
|
||||
end do
|
||||
|
||||
print*,'DD block done...'
|
||||
print*,'DD block done...'
|
||||
|
||||
write(*,*)
|
||||
write(*,*) 'Diagonalizing CISD matrix...'
|
||||
|
@ -70,6 +70,7 @@ subroutine evGF2(BSE,TDA,dBSE,dTDA,evDyn,maxSCF,thresh,max_diis,singlet,triplet,
|
||||
error_diis(:,:) = 0d0
|
||||
eGF2(:) = eHF(:)
|
||||
eOld(:) = eHF(:)
|
||||
rcond = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main SCF loop
|
||||
|
@ -102,6 +102,7 @@ subroutine evUGF2(maxSCF,thresh,max_diis,BSE,TDA,dBSE,dTDA,evDyn,spin_conserved,
|
||||
eGF2(:,:) = eHF(:,:)
|
||||
eOld(:,:) = eHF(:,:)
|
||||
Z(:,:) = 1d0
|
||||
rcond(:) = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main loop
|
||||
|
@ -94,6 +94,8 @@ subroutine qsGF2(maxSCF,thresh,max_diis,BSE,TDA,dBSE,dTDA,evDyn,singlet,triplet,
|
||||
|
||||
nBasSq = nBas*nBas
|
||||
|
||||
print*,maxSCF
|
||||
|
||||
! TDA
|
||||
|
||||
if(TDA) then
|
||||
@ -119,7 +121,7 @@ subroutine qsGF2(maxSCF,thresh,max_diis,BSE,TDA,dBSE,dTDA,evDyn,singlet,triplet,
|
||||
c(:,:) = cHF(:,:)
|
||||
F_diis(:,:) = 0d0
|
||||
error_diis(:,:) = 0d0
|
||||
rcond = 1d0
|
||||
rcond = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main loop
|
||||
|
@ -135,7 +135,7 @@ subroutine qsUGF2(maxSCF,thresh,max_diis,BSE,TDA,dBSE,dTDA,evDyn,spin_conserved,
|
||||
c(:,:,:) = cHF(:,:,:)
|
||||
F_diis(:,:,:) = 0d0
|
||||
error_diis(:,:,:) = 0d0
|
||||
rcond = 1d0
|
||||
rcond(:) = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main loop
|
||||
|
@ -58,7 +58,8 @@ subroutine Bethe_Salpeter_Tmatrix(TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet,eta,
|
||||
integer :: iblock
|
||||
|
||||
double precision :: EcRPA(nspin)
|
||||
double precision,allocatable :: TA(:,:),TB(:,:)
|
||||
double precision,allocatable :: TAs(:,:),TBs(:,:)
|
||||
double precision,allocatable :: TAt(:,:),TBt(:,:)
|
||||
double precision,allocatable :: OmBSE(:,:)
|
||||
double precision,allocatable :: XpY_BSE(:,:,:)
|
||||
double precision,allocatable :: XmY_BSE(:,:,:)
|
||||
@ -69,16 +70,12 @@ subroutine Bethe_Salpeter_Tmatrix(TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet,eta,
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(TA(nS,nS),TB(nS,nS),OmBSE(nS,nspin),XpY_BSE(nS,nS,nspin),XmY_BSE(nS,nS,nspin))
|
||||
allocate(TAs(nS,nS),TBs(nS,nS),TAt(nS,nS),TBt(nS,nS), &
|
||||
OmBSE(nS,nspin),XpY_BSE(nS,nS,nspin),XmY_BSE(nS,nS,nspin))
|
||||
|
||||
! Initialize T matrix
|
||||
|
||||
TA(:,:) = 0d0
|
||||
TB(:,:) = 0d0
|
||||
|
||||
!----------------------------------------------
|
||||
! Compute T-matrix for alpha-beta block
|
||||
!----------------------------------------------
|
||||
!---------------------------------------!
|
||||
! Compute T-matrix for alpha-beta block !
|
||||
!---------------------------------------!
|
||||
|
||||
ispin = 1
|
||||
iblock = 3
|
||||
@ -88,17 +85,17 @@ subroutine Bethe_Salpeter_Tmatrix(TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet,eta,
|
||||
|
||||
! call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI,X1s,Y1s,rho1s,X2s,Y2s,rho2s)
|
||||
|
||||
call static_Tmatrix_A(ispin,eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,1d0,ERI,Omega1s,rho1s,Omega2s,rho2s,TA)
|
||||
if(.not.TDA) call static_Tmatrix_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,1d0,ERI,Omega1s,rho1s,Omega2s,rho2s,TB)
|
||||
call static_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,1d0,Omega1s,rho1s,Omega2s,rho2s,TAs)
|
||||
if(.not.TDA) call static_Tmatrix_B(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,1d0,Omega1s,rho1s,Omega2s,rho2s,TBs)
|
||||
|
||||
! print*,'aa block of TA'
|
||||
! call matout(nS,nS,TA)
|
||||
! print*,'aa block of TB'
|
||||
! call matout(nS,nS,TB)
|
||||
! print*,'ab block of TA'
|
||||
! call matout(nS,nS,TAs)
|
||||
! print*,'ab block of TB'
|
||||
! call matout(nS,nS,TBs)
|
||||
|
||||
!----------------------------------------------
|
||||
! Compute T-matrix for alpha-alpha block
|
||||
!----------------------------------------------
|
||||
!----------------------------------------!
|
||||
! Compute T-matrix for alpha-alpha block !
|
||||
!----------------------------------------!
|
||||
|
||||
ispin = 2
|
||||
iblock = 4
|
||||
@ -108,17 +105,17 @@ subroutine Bethe_Salpeter_Tmatrix(TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet,eta,
|
||||
|
||||
! call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI,X1t,Y1t,rho1t,X2t,Y2t,rho2t)
|
||||
|
||||
call static_Tmatrix_A(ispin,eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,1d0,ERI,Omega1t,rho1t,Omega2t,rho2t,TA)
|
||||
if(.not.TDA) call static_Tmatrix_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,1d0,ERI,Omega1t,rho1t,Omega2t,rho2t,TB)
|
||||
call static_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,1d0,Omega1t,rho1t,Omega2t,rho2t,TAt)
|
||||
if(.not.TDA) call static_Tmatrix_B(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,1d0,Omega1t,rho1t,Omega2t,rho2t,TBt)
|
||||
|
||||
! print*,'aa+ab block of TA'
|
||||
! call matout(nS,nS,TA)
|
||||
! print*,'aa+ab block of TB'
|
||||
! call matout(nS,nS,TB)
|
||||
! print*,'aa block of TA'
|
||||
! call matout(nS,nS,TAt)
|
||||
! print*,'aa block of TB'
|
||||
! call matout(nS,nS,TBt)
|
||||
|
||||
!-------------------
|
||||
! Singlet manifold
|
||||
!-------------------
|
||||
!------------------!
|
||||
! Singlet manifold !
|
||||
!------------------!
|
||||
|
||||
if(singlet) then
|
||||
|
||||
@ -127,39 +124,37 @@ subroutine Bethe_Salpeter_Tmatrix(TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet,eta,
|
||||
|
||||
! Compute BSE singlet excitation energies
|
||||
|
||||
call linear_response_Tmatrix(ispin,.false.,TDA,eta,nBas,nC,nO,nV,nR,nS,1d0,eGT,ERI,TA,TB, &
|
||||
call linear_response_Tmatrix(ispin,.false.,TDA,eta,nBas,nC,nO,nV,nR,nS,1d0,eGT,ERI,TAt+TAs,TBt+TBs, &
|
||||
EcBSE(ispin),OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
|
||||
|
||||
call print_excitation('BSE@GT ',ispin,nS,OmBSE(:,ispin))
|
||||
call print_transition_vectors(.true.,nBas,nC,nO,nV,nR,nS,dipole_int, &
|
||||
OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
|
||||
|
||||
!-------------------------------------------------
|
||||
! Compute the dynamical screening at the BSE level
|
||||
!-------------------------------------------------
|
||||
|
||||
if(dBSE) then
|
||||
|
||||
|
||||
! Compute dynamic correction for BSE via perturbation theory (iterative or renormalized)
|
||||
|
||||
|
||||
if(evDyn) then
|
||||
|
||||
|
||||
print*, ' Iterative dynamical correction for BSE@GT NYI'
|
||||
! call Bethe_Salpeter_dynamic_perturbation_iterative(dTDA,eta,nBas,nC,nO,nV,nR,nS,eGW,dipole_int,OmRPA,rho_RPA, &
|
||||
! OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
|
||||
else
|
||||
|
||||
call Bethe_Salpeter_Tmatrix_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,Omega1s,Omega2s,rho1s,rho2s, &
|
||||
eT,eGT,dipole_int,OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
|
||||
|
||||
call Bethe_Salpeter_Tmatrix_dynamic_perturbation(ispin,dTDA,eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,nOOt,nVVt, &
|
||||
Omega1s,Omega2s,Omega1t,Omega2t,rho1s,rho2s,rho1t,rho2t,eT,eGT, &
|
||||
dipole_int,OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin), &
|
||||
TAs,TBs,TAt,TBt)
|
||||
end if
|
||||
|
||||
|
||||
end if
|
||||
|
||||
end if
|
||||
|
||||
!-------------------
|
||||
! Triplet manifold
|
||||
!-------------------
|
||||
!------------------!
|
||||
! Triplet manifold !
|
||||
!------------------!
|
||||
|
||||
if(triplet) then
|
||||
|
||||
@ -168,32 +163,29 @@ subroutine Bethe_Salpeter_Tmatrix(TDA_T,TDA,dBSE,dTDA,evDyn,singlet,triplet,eta,
|
||||
|
||||
! Compute BSE triplet excitation energies
|
||||
|
||||
call linear_response_Tmatrix(ispin,.false.,TDA,eta,nBas,nC,nO,nV,nR,nS,1d0,eGT,ERI,TA,TB, &
|
||||
call linear_response_Tmatrix(ispin,.false.,TDA,eta,nBas,nC,nO,nV,nR,nS,1d0,eGT,ERI,TAt-TAs,TBt-TBs, &
|
||||
EcBSE(ispin),OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
|
||||
call print_excitation('BSE@GT ',ispin,nS,OmBSE(:,ispin))
|
||||
call print_transition_vectors(.false.,nBas,nC,nO,nV,nR,nS,dipole_int, &
|
||||
OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
|
||||
|
||||
!-------------------------------------------------
|
||||
! Compute the dynamical screening at the BSE level
|
||||
!-------------------------------------------------
|
||||
|
||||
if(dBSE) then
|
||||
|
||||
|
||||
! Compute dynamic correction for BSE via perturbation theory (iterative or renormalized)
|
||||
|
||||
|
||||
if(evDyn) then
|
||||
|
||||
|
||||
|
||||
print*, ' Iterative dynamical correction for BSE@GT NYI'
|
||||
! call Bethe_Salpeter_dynamic_perturbation_iterative(dTDA,eta,nBas,nC,nO,nV,nR,nS,eGW,dipole_int,OmRPA,rho_RPA, &
|
||||
! OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
|
||||
else
|
||||
|
||||
call Bethe_Salpeter_Tmatrix_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,Omega1t,Omega2t,rho1t,rho2t, &
|
||||
eT,eGT,dipole_int,OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
|
||||
|
||||
call Bethe_Salpeter_Tmatrix_dynamic_perturbation(ispin,dTDA,eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,nOOt,nVVt, &
|
||||
Omega1s,Omega2s,Omega1t,Omega2t,rho1s,rho2s,rho1t,rho2t,eT,eGT, &
|
||||
dipole_int,OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin), &
|
||||
TAs,TBs,TAt,TBt)
|
||||
end if
|
||||
|
||||
|
||||
end if
|
||||
|
||||
end if
|
||||
|
@ -1,5 +1,7 @@
|
||||
subroutine Bethe_Salpeter_Tmatrix_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,Omega1,Omega2,rho1,rho2, &
|
||||
eT,eGT,dipole_int,OmBSE,XpY,XmY)
|
||||
subroutine Bethe_Salpeter_Tmatrix_dynamic_perturbation(ispin,dTDA,eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,nOOt,nVVt, &
|
||||
Omega1s,Omega2s,Omega1t,Omega2t,rho1s,rho2s,rho1t,rho2t,eT,eGT, &
|
||||
dipole_int,OmBSE,XpY,XmY,TAs,TBs,TAt,TBt)
|
||||
|
||||
! Compute dynamical effects via perturbation theory for BSE@GT
|
||||
|
||||
implicit none
|
||||
@ -7,6 +9,7 @@ subroutine Bethe_Salpeter_Tmatrix_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: ispin
|
||||
logical,intent(in) :: dTDA
|
||||
double precision,intent(in) :: eta
|
||||
integer,intent(in) :: nBas
|
||||
@ -16,8 +19,10 @@ subroutine Bethe_Salpeter_Tmatrix_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR
|
||||
integer,intent(in) :: nR
|
||||
integer,intent(in) :: nS
|
||||
|
||||
integer,intent(in) :: nOO
|
||||
integer,intent(in) :: nVV
|
||||
integer,intent(in) :: nOOs
|
||||
integer,intent(in) :: nVVs
|
||||
integer,intent(in) :: nOOt
|
||||
integer,intent(in) :: nVVt
|
||||
|
||||
double precision,intent(in) :: eT(nBas)
|
||||
double precision,intent(in) :: eGT(nBas)
|
||||
@ -26,16 +31,25 @@ subroutine Bethe_Salpeter_Tmatrix_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR
|
||||
double precision,intent(in) :: XpY(nS,nS)
|
||||
double precision,intent(in) :: XmY(nS,nS)
|
||||
|
||||
double precision,intent(in) :: Omega1(nVV)
|
||||
double precision,intent(in) :: Omega2(nOO)
|
||||
double precision,intent(in) :: rho1(nBas,nBas,nVV)
|
||||
double precision,intent(in) :: rho2(nBas,nBas,nOO)
|
||||
double precision,intent(in) :: Omega1s(nVVs)
|
||||
double precision,intent(in) :: Omega2s(nOOs)
|
||||
double precision,intent(in) :: rho1s(nBas,nBas,nVVs)
|
||||
double precision,intent(in) :: rho2s(nBas,nBas,nOOs)
|
||||
double precision,intent(in) :: Omega1t(nVVt)
|
||||
double precision,intent(in) :: Omega2t(nOOt)
|
||||
double precision,intent(in) :: rho1t(nBas,nBas,nVVt)
|
||||
double precision,intent(in) :: rho2t(nBas,nBas,nOOt)
|
||||
|
||||
double precision,intent(in) :: TAs(nS,nS)
|
||||
double precision,intent(in) :: TBs(nS,nS)
|
||||
double precision,intent(in) :: TAt(nS,nS)
|
||||
double precision,intent(in) :: TBt(nS,nS)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: ia
|
||||
|
||||
integer,parameter :: maxS = 10
|
||||
integer :: maxS = 10
|
||||
double precision :: gapGT
|
||||
|
||||
double precision,allocatable :: OmDyn(:)
|
||||
@ -43,30 +57,63 @@ subroutine Bethe_Salpeter_Tmatrix_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR
|
||||
double precision,allocatable :: X(:)
|
||||
double precision,allocatable :: Y(:)
|
||||
|
||||
double precision,allocatable :: Ap_dyn(:,:)
|
||||
double precision,allocatable :: ZAp_dyn(:,:)
|
||||
double precision,allocatable :: dTAs(:,:)
|
||||
double precision,allocatable :: ZAs(:,:)
|
||||
|
||||
double precision,allocatable :: Bp_dyn(:,:)
|
||||
double precision,allocatable :: ZBp_dyn(:,:)
|
||||
|
||||
double precision,allocatable :: Am_dyn(:,:)
|
||||
double precision,allocatable :: ZAm_dyn(:,:)
|
||||
|
||||
double precision,allocatable :: Bm_dyn(:,:)
|
||||
double precision,allocatable :: ZBm_dyn(:,:)
|
||||
double precision,allocatable :: dTAt(:,:)
|
||||
double precision,allocatable :: ZAt(:,:)
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(OmDyn(nS),ZDyn(nS),X(nS),Y(nS),Ap_dyn(nS,nS),ZAp_dyn(nS,nS))
|
||||
|
||||
if(.not.dTDA) allocate(Am_dyn(nS,nS),ZAm_dyn(nS,nS),Bp_dyn(nS,nS),ZBp_dyn(nS,nS),Bm_dyn(nS,nS),ZBm_dyn(nS,nS))
|
||||
maxS = min(nS,maxS)
|
||||
allocate(OmDyn(maxS),ZDyn(maxS),X(nS),Y(nS),dTAs(nS,nS),ZAs(nS,nS),dTAt(nS,nS),ZAt(nS,nS))
|
||||
|
||||
if(dTDA) then
|
||||
write(*,*)
|
||||
write(*,*) '*** dynamical TDA activated ***'
|
||||
write(*,*)
|
||||
else
|
||||
print*, ' Beyond-TDA dynamical correction for BSE@GT NYI'
|
||||
return
|
||||
end if
|
||||
|
||||
OmDyn(:) = 0d0
|
||||
ZDyn(:) = 0d0
|
||||
|
||||
do ia=1,maxS
|
||||
|
||||
! Compute dynamical T-matrix for alpha-beta block
|
||||
|
||||
call dynamic_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOOs,nVVs,1d0,eGT,Omega1s,Omega2s,rho1s,rho2s,OmBSE(ia),dTAs,ZAs)
|
||||
|
||||
! Compute dynamical T-matrix for alpha-beta block
|
||||
|
||||
call dynamic_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOOt,nVVt,1d0,eGT,Omega1t,Omega2t,rho1t,rho2t,OmBSE(ia),dTAt,ZAt)
|
||||
|
||||
X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:))
|
||||
Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:))
|
||||
|
||||
! First-order correction
|
||||
|
||||
if(ispin == 1) then
|
||||
ZDyn(ia) = - dot_product(X,matmul(ZAt+ZAs,X))
|
||||
OmDyn(ia) = - dot_product(X,matmul(dTAt+dTAs,X)) + dot_product(X,matmul(TAt+TAs,X))
|
||||
end if
|
||||
|
||||
if(ispin == 2) then
|
||||
ZDyn(ia) = - dot_product(X,matmul(ZAt-ZAs,X))
|
||||
OmDyn(ia) = - dot_product(X,matmul(dTAt-dTAs,X)) + dot_product(X,matmul(TAt-TAs,X))
|
||||
end if
|
||||
|
||||
ZDyn(ia) = 1d0/(1d0 - ZDyn(ia))
|
||||
OmDyn(ia) = ZDyn(ia)*OmDyn(ia)
|
||||
|
||||
end do
|
||||
|
||||
!--------------!
|
||||
! Dump results !
|
||||
!--------------!
|
||||
|
||||
gapGT = eGT(nO+1) - eGT(nO)
|
||||
|
||||
write(*,*) '---------------------------------------------------------------------------------------------------'
|
||||
@ -77,54 +124,11 @@ subroutine Bethe_Salpeter_Tmatrix_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR
|
||||
write(*,'(2X,A5,1X,A20,1X,A20,1X,A20,1X,A20)') '#','Static (eV)','Dynamic (eV)','Correction (eV)','Renorm. (eV)'
|
||||
write(*,*) '---------------------------------------------------------------------------------------------------'
|
||||
|
||||
do ia=1,min(nS,maxS)
|
||||
|
||||
X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:))
|
||||
Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:))
|
||||
|
||||
! First-order correction
|
||||
|
||||
if(dTDA) then
|
||||
|
||||
! Resonant part of the BSE correction for dynamical TDA
|
||||
|
||||
call dynamic_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,1d0,eGT,Omega1,Omega2,rho1,rho2,OmBSE(ia),Ap_dyn,Zap_dyn)
|
||||
|
||||
ZDyn(ia) = dot_product(X,matmul(ZAp_dyn,X))
|
||||
OmDyn(ia) = dot_product(X,matmul( Ap_dyn,X))
|
||||
|
||||
else
|
||||
|
||||
print*, ' Beyond-TDA dynamical correction for BSE@GT NYI'
|
||||
! Resonant and anti-resonant part of the BSE correction
|
||||
|
||||
! call dynamic_Tmatrix_TAB(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,1d0,eGT,Omega1,Omega2,rho1,rho2,OmBSE(ia), &
|
||||
! Ap_dyn,Am_dyn,Bp_dyn,Bm_dyn)
|
||||
|
||||
! Renormalization factor of the resonant and anti-resonant parts
|
||||
|
||||
! call dynamic_Tmatrix_ZAB(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,1d0,eGT,Omega1,Omega2,rho1,rho2,OmBSE(ia), &
|
||||
! ZAp_dyn,ZAm_dyn,ZBp_dyn,ZBm_dyn)
|
||||
|
||||
ZDyn(ia) = dot_product(X,matmul(ZAp_dyn,X)) &
|
||||
- dot_product(Y,matmul(ZAm_dyn,Y)) &
|
||||
+ dot_product(X,matmul(ZBp_dyn,Y)) &
|
||||
- dot_product(Y,matmul(ZBm_dyn,X))
|
||||
|
||||
OmDyn(ia) = dot_product(X,matmul(Ap_dyn,X)) &
|
||||
- dot_product(Y,matmul(Am_dyn,Y)) &
|
||||
+ dot_product(X,matmul(Bp_dyn,Y)) &
|
||||
- dot_product(Y,matmul(Bm_dyn,X))
|
||||
|
||||
end if
|
||||
|
||||
ZDyn(ia) = 1d0/(1d0 - ZDyn(ia))
|
||||
OmDyn(ia) = ZDyn(ia)*OmDyn(ia)
|
||||
|
||||
do ia=1,maxS
|
||||
write(*,'(2X,I5,5X,F15.6,5X,F15.6,5X,F15.6,5X,F15.6)') &
|
||||
ia,OmBSE(ia)*HaToeV,(OmBSE(ia)+OmDyn(ia))*HaToeV,OmDyn(ia)*HaToeV,ZDyn(ia)
|
||||
|
||||
end do
|
||||
|
||||
write(*,*) '---------------------------------------------------------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
|
@ -48,6 +48,7 @@ subroutine G0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn,sing
|
||||
double precision :: EcRPA(nspin)
|
||||
double precision :: EcBSE(nspin)
|
||||
double precision :: EcAC(nspin)
|
||||
double precision :: EcGM
|
||||
double precision,allocatable :: Omega1s(:),Omega1t(:)
|
||||
double precision,allocatable :: X1s(:,:),X1t(:,:)
|
||||
double precision,allocatable :: Y1s(:,:),Y1t(:,:)
|
||||
@ -60,11 +61,6 @@ subroutine G0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn,sing
|
||||
double precision,allocatable :: SigT(:)
|
||||
double precision,allocatable :: Z(:)
|
||||
|
||||
double precision,allocatable :: Omega(:,:)
|
||||
double precision,allocatable :: XpY(:,:,:)
|
||||
double precision,allocatable :: XmY(:,:,:)
|
||||
double precision,allocatable :: rho(:,:,:,:)
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: eG0T0(nBas)
|
||||
@ -81,6 +77,8 @@ subroutine G0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn,sing
|
||||
|
||||
nOOs = nO*nO
|
||||
nVVs = nV*nV
|
||||
! nOOs = nO*(nO + 1)/2
|
||||
! nVVs = nV*(nV + 1)/2
|
||||
|
||||
nOOt = nO*(nO - 1)/2
|
||||
nVVt = nV*(nV - 1)/2
|
||||
@ -101,6 +99,7 @@ subroutine G0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn,sing
|
||||
|
||||
ispin = 1
|
||||
iblock = 3
|
||||
! iblock = 1
|
||||
|
||||
! Compute linear response
|
||||
|
||||
@ -109,8 +108,8 @@ subroutine G0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn,sing
|
||||
|
||||
! EcRPA(ispin) = 1d0*EcRPA(ispin)
|
||||
|
||||
! call print_excitation('pp-RPA (N+2)',iblock,nVVs,Omega1s(:))
|
||||
! call print_excitation('pp-RPA (N-2)',iblock,nOOs,Omega2s(:))
|
||||
call print_excitation('pp-RPA (N+2)',iblock,nVVs,Omega1s(:))
|
||||
call print_excitation('pp-RPA (N-2)',iblock,nOOs,Omega2s(:))
|
||||
|
||||
!----------------------------------------------
|
||||
! alpha-alpha block
|
||||
@ -127,35 +126,52 @@ subroutine G0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn,sing
|
||||
! EcRPA(ispin) = 2d0*EcRPA(ispin)
|
||||
! EcRPA(ispin) = 3d0*EcRPA(ispin)
|
||||
|
||||
! call print_excitation('pp-RPA (N+2)',iblock,nVVt,Omega1t(:))
|
||||
! call print_excitation('pp-RPA (N-2)',iblock,nOOt,Omega2t(:))
|
||||
call print_excitation('pp-RPA (N+2)',iblock,nVVt,Omega1t(:))
|
||||
call print_excitation('pp-RPA (N-2)',iblock,nOOt,Omega2t(:))
|
||||
|
||||
!----------------------------------------------
|
||||
! Compute T-matrix version of the self-energy
|
||||
!----------------------------------------------
|
||||
|
||||
EcGM = 0d0
|
||||
SigT(:) = 0d0
|
||||
Z(:) = 0d0
|
||||
|
||||
iblock = 3
|
||||
iblock = 3
|
||||
! iblock = 1
|
||||
|
||||
call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI_MO,X1s,Y1s,rho1s,X2s,Y2s,rho2s)
|
||||
|
||||
call self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF,Omega1s,rho1s,Omega2s,rho2s,SigT)
|
||||
if(regularize) then
|
||||
|
||||
call renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF,Omega1s,rho1s,Omega2s,rho2s,Z)
|
||||
call regularized_self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF,Omega1s,rho1s,Omega2s,rho2s,EcGM,SigT)
|
||||
call regularized_renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF,Omega1s,rho1s,Omega2s,rho2s,Z)
|
||||
|
||||
iblock = 4
|
||||
else
|
||||
|
||||
call self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF,Omega1s,rho1s,Omega2s,rho2s,EcGM,SigT)
|
||||
call renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eHF,Omega1s,rho1s,Omega2s,rho2s,Z)
|
||||
|
||||
end if
|
||||
|
||||
iblock = 4
|
||||
|
||||
call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI_MO,X1t,Y1t,rho1t,X2t,Y2t,rho2t)
|
||||
|
||||
call self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF,Omega1t,rho1t,Omega2t,rho2t,SigT)
|
||||
if(regularize) then
|
||||
|
||||
call renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF,Omega1t,rho1t,Omega2t,rho2t,Z)
|
||||
call regularized_self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF,Omega1t,rho1t,Omega2t,rho2t,EcGM,SigT)
|
||||
call regularized_renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF,Omega1t,rho1t,Omega2t,rho2t,Z)
|
||||
|
||||
else
|
||||
|
||||
call self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF,Omega1t,rho1t,Omega2t,rho2t,EcGM,SigT)
|
||||
call renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eHF,Omega1t,rho1t,Omega2t,rho2t,Z)
|
||||
|
||||
end if
|
||||
|
||||
Z(:) = 1d0/(1d0 - Z(:))
|
||||
|
||||
|
||||
!----------------------------------------------
|
||||
! Compute the exchange part of the self-energy
|
||||
!----------------------------------------------
|
||||
@ -184,6 +200,8 @@ subroutine G0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn,sing
|
||||
|
||||
ispin = 1
|
||||
iblock = 3
|
||||
! iblock = 1
|
||||
|
||||
call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOs,nVVs,1d0,eG0T0,ERI_MO, &
|
||||
Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,EcRPA(ispin))
|
||||
ispin = 2
|
||||
@ -194,7 +212,7 @@ subroutine G0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn,sing
|
||||
EcRPA(1) = EcRPA(1) - EcRPA(2)
|
||||
EcRPA(2) = 3d0*EcRPA(2)
|
||||
|
||||
call print_G0T0(nBas,nO,eHF,ENuc,ERHF,SigT,Z,eG0T0,EcRPA)
|
||||
call print_G0T0(nBas,nO,eHF,ENuc,ERHF,SigT,Z,eG0T0,EcGM,EcRPA)
|
||||
|
||||
! Perform BSE calculation
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine dynamic_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,eGT,Omega1,Omega2,rho1,rho2,OmBSE,A_dyn,ZA_dyn)
|
||||
subroutine dynamic_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,eGT,Omega1,Omega2,rho1,rho2,OmBSE,TA,ZA)
|
||||
|
||||
! Compute the dynamic part of the Bethe-Salpeter equation matrices for GT
|
||||
|
||||
@ -36,13 +36,13 @@ subroutine dynamic_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,eGT,Omega1,O
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: A_dyn(nS,nS)
|
||||
double precision,intent(out) :: ZA_dyn(nS,nS)
|
||||
double precision,intent(out) :: TA(nS,nS)
|
||||
double precision,intent(out) :: ZA(nS,nS)
|
||||
|
||||
! Initialization
|
||||
|
||||
A_dyn(:,:) = 0d0
|
||||
ZA_dyn(:,:) = 0d0
|
||||
TA(:,:) = 0d0
|
||||
ZA(:,:) = 0d0
|
||||
|
||||
! Build dynamic A matrix
|
||||
|
||||
@ -58,44 +58,30 @@ subroutine dynamic_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,eGT,Omega1,O
|
||||
chi = 0d0
|
||||
|
||||
do cd=1,nVV
|
||||
eps = - Omega1(cd)
|
||||
chi = chi + rho1(i,b,cd)*rho1(j,a,cd)*eps/(eps**2 + eta**2)
|
||||
eps = + OmBSE - Omega1(cd) + (eGT(i) + eGT(j))
|
||||
chi = chi + rho1(i,b,cd)*rho1(a,j,cd)*eps/(eps**2 + eta**2)
|
||||
end do
|
||||
|
||||
do kl=1,nOO
|
||||
eps = + Omega2(kl)
|
||||
chi = chi + rho2(i,b,kl)*rho2(j,a,kl)*eps/(eps**2 + eta**2)
|
||||
eps = + OmBSE + Omega2(kl) - (eGT(a) + eGT(b))
|
||||
chi = chi + rho2(i,b,kl)*rho2(a,j,kl)*eps/(eps**2 + eta**2)
|
||||
end do
|
||||
|
||||
A_dyn(ia,jb) = A_dyn(ia,jb) - lambda*chi
|
||||
TA(ia,jb) = TA(ia,jb) - lambda*chi
|
||||
|
||||
chi = 0d0
|
||||
|
||||
do cd=1,nVV
|
||||
eps = + OmBSE - Omega1(cd) + (eGT(i) + eGT(j))
|
||||
chi = chi + rho1(i,b,cd)*rho1(j,a,cd)*eps/(eps**2 + eta**2)
|
||||
chi = chi + rho1(i,b,cd)*rho1(a,j,cd)*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
||||
end do
|
||||
|
||||
do kl=1,nOO
|
||||
eps = + OmBSE + Omega2(kl) - (eGT(a) + eGT(b))
|
||||
chi = chi + rho2(i,b,kl)*rho2(j,a,kl)*eps/(eps**2 + eta**2)
|
||||
chi = chi + rho2(i,b,kl)*rho2(a,j,kl)*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
||||
end do
|
||||
|
||||
A_dyn(ia,jb) = A_dyn(ia,jb) + 1d0*lambda*chi
|
||||
|
||||
chi = 0d0
|
||||
|
||||
do cd=1,nVV
|
||||
eps = + OmBSE - Omega1(cd) + (eGT(i) + eGT(j))
|
||||
chi = chi + rho1(i,b,cd)*rho1(j,a,cd)*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
||||
end do
|
||||
|
||||
do kl=1,nOO
|
||||
eps = + OmBSE + Omega2(kl) - (eGT(a) + eGT(b))
|
||||
chi = chi + rho2(i,b,kl)*rho2(j,a,kl)*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
||||
end do
|
||||
|
||||
ZA_dyn(ia,jb) = ZA_dyn(ia,jb) - 1d0*lambda*chi
|
||||
ZA(ia,jb) = ZA(ia,jb) + lambda*chi
|
||||
|
||||
end do
|
||||
end do
|
||||
|
91
src/GT/dynamic_Tmatrix_B.f90
Normal file
91
src/GT/dynamic_Tmatrix_B.f90
Normal file
@ -0,0 +1,91 @@
|
||||
subroutine dynamic_Tmatrix_B(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,eGT,Omega1,Omega2,rho1,rho2,OmBSE,TB,ZB)
|
||||
|
||||
! Compute the off-diagonal dynamic part of the Bethe-Salpeter equation matrices for GT
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision,intent(in) :: eta
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC
|
||||
integer,intent(in) :: nO
|
||||
integer,intent(in) :: nV
|
||||
integer,intent(in) :: nR
|
||||
integer,intent(in) :: nS
|
||||
|
||||
integer,intent(in) :: nOO
|
||||
integer,intent(in) :: nVV
|
||||
|
||||
double precision,intent(in) :: lambda
|
||||
double precision,intent(in) :: eGT(nBas)
|
||||
double precision,intent(in) :: OmBSE
|
||||
|
||||
|
||||
double precision,intent(in) :: Omega1(nVV)
|
||||
double precision,intent(in) :: Omega2(nOO)
|
||||
double precision,intent(in) :: rho1(nBas,nBas,nVV)
|
||||
double precision,intent(in) :: rho2(nBas,nBas,nOO)
|
||||
|
||||
! Local variables
|
||||
|
||||
double precision :: chi
|
||||
double precision :: eps
|
||||
integer :: i,j,a,b,ia,jb,cd,kl
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: TB(nS,nS)
|
||||
double precision,intent(out) :: ZB(nS,nS)
|
||||
|
||||
! Initialization
|
||||
|
||||
TB(:,:) = 0d0
|
||||
ZB(:,:) = 0d0
|
||||
|
||||
! Build dynamic A matrix
|
||||
|
||||
ia = 0
|
||||
do i=nC+1,nO
|
||||
do a=nO+1,nBas-nR
|
||||
ia = ia + 1
|
||||
jb = 0
|
||||
do j=nC+1,nO
|
||||
do b=nO+1,nBas-nR
|
||||
jb = jb + 1
|
||||
|
||||
chi = 0d0
|
||||
|
||||
do cd=1,nVV
|
||||
eps = + OmBSE - Omega1(cd) + (eGT(i) + eGT(b))
|
||||
chi = chi + rho1(i,j,cd)*rho1(b,a,cd)*eps/(eps**2 + eta**2)
|
||||
end do
|
||||
|
||||
do kl=1,nOO
|
||||
eps = + OmBSE + Omega2(kl) - (eGT(a) + eGT(j))
|
||||
chi = chi + rho2(i,j,kl)*rho2(b,a,kl)*eps/(eps**2 + eta**2)
|
||||
end do
|
||||
|
||||
TB(ia,jb) = TB(ia,jb) + lambda*chi
|
||||
|
||||
chi = 0d0
|
||||
|
||||
do cd=1,nVV
|
||||
eps = + OmBSE - Omega1(cd) + (eGT(i) + eGT(b))
|
||||
chi = chi + rho1(i,j,cd)*rho1(b,a,cd)*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
||||
end do
|
||||
|
||||
do kl=1,nOO
|
||||
eps = + OmBSE + Omega2(kl) - (eGT(a) + eGT(j))
|
||||
chi = chi + rho2(i,a,kl)*rho2(b,a,kl)*(eps**2 - eta**2)/(eps**2 + eta**2)**2
|
||||
end do
|
||||
|
||||
ZB(ia,jb) = ZB(ia,jb) - lambda*chi
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine dynamic_Tmatrix_B
|
@ -46,7 +46,6 @@ subroutine evGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS, &
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: linear_mixing
|
||||
integer :: nSCF
|
||||
integer :: n_diis
|
||||
double precision :: rcond
|
||||
@ -55,6 +54,7 @@ subroutine evGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS, &
|
||||
integer :: iblock
|
||||
integer :: nOOs,nOOt
|
||||
integer :: nVVs,nVVt
|
||||
double precision :: EcGM
|
||||
double precision :: EcRPA(nspin)
|
||||
double precision :: EcBSE(nspin)
|
||||
double precision :: EcAC(nspin)
|
||||
@ -117,6 +117,7 @@ subroutine evGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS, &
|
||||
eGT(:) = eG0T0(:)
|
||||
eOld(:) = eGT(:)
|
||||
Z(:) = 1d0
|
||||
rcond = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main loop
|
||||
@ -148,10 +149,14 @@ subroutine evGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS, &
|
||||
call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOt,nVVt,1d0,eGT,ERI_MO, &
|
||||
Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,EcRPA(ispin))
|
||||
|
||||
EcRPA(1) = EcRPA(1) - EcRPA(2)
|
||||
EcRPA(2) = 3d0*EcRPA(2)
|
||||
|
||||
!----------------------------------------------
|
||||
! Compute T-matrix version of the self-energy
|
||||
!----------------------------------------------
|
||||
|
||||
EcGM = 0d0
|
||||
SigT(:) = 0d0
|
||||
Z(:) = 0d0
|
||||
|
||||
@ -161,7 +166,7 @@ subroutine evGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS, &
|
||||
X1s,Y1s,rho1s,X2s,Y2s,rho2s)
|
||||
|
||||
call self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT, &
|
||||
Omega1s,rho1s,Omega2s,rho2s,SigT)
|
||||
Omega1s,rho1s,Omega2s,rho2s,EcGM,SigT)
|
||||
|
||||
call renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT, &
|
||||
Omega1s,rho1s,Omega2s,rho2s,Z)
|
||||
@ -172,7 +177,7 @@ subroutine evGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS, &
|
||||
X1t,Y1t,rho1t,X2t,Y2t,rho2t)
|
||||
|
||||
call self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT, &
|
||||
Omega1t,rho1t,Omega2t,rho2t,SigT)
|
||||
Omega1t,rho1t,Omega2t,rho2t,EcGM,SigT)
|
||||
|
||||
call renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT, &
|
||||
Omega1t,rho1t,Omega2t,rho2t,Z)
|
||||
@ -195,7 +200,7 @@ subroutine evGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS, &
|
||||
! Dump results
|
||||
!----------------------------------------------
|
||||
|
||||
call print_evGT(nBas,nO,nSCF,Conv,eHF,SigT,Z,eGT)
|
||||
call print_evGT(nBas,nO,nSCF,Conv,eHF,ENuc,ERHF,SigT,Z,eGT,EcGM,EcRPA)
|
||||
|
||||
! DIIS extrapolation
|
||||
|
||||
@ -219,29 +224,6 @@ subroutine evGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS, &
|
||||
! End main loop
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Compute the ppRPA correlation energy
|
||||
|
||||
ispin = 1
|
||||
iblock = 3
|
||||
call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOs,nVVs,1d0,eGT,ERI_MO, &
|
||||
Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,EcRPA(ispin))
|
||||
ispin = 2
|
||||
iblock = 4
|
||||
call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOt,nVVt,1d0,eGT,ERI_MO, &
|
||||
Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,EcRPA(ispin))
|
||||
EcRPA(1) = EcRPA(1) - EcRPA(2)
|
||||
EcRPA(2) = 3d0*EcRPA(2)
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@evGT correlation energy (singlet) =',EcRPA(1)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@evGT correlation energy (triplet) =',EcRPA(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@evGT correlation energy =',EcRPA(1) + EcRPA(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@evGT total energy =',ENuc + ERHF + EcRPA(1) + EcRPA(2)
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
|
||||
! Perform BSE calculation
|
||||
|
||||
if(BSE) then
|
||||
|
@ -22,8 +22,8 @@ subroutine excitation_density_Tmatrix(ispin,nBas,nC,nO,nV,nR,nOO,nVV,ERI,X1,Y1,r
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: k,l
|
||||
integer :: c,d
|
||||
integer :: i,j,k,l
|
||||
integer :: a,b,c,d
|
||||
integer :: p,q
|
||||
integer :: ab,cd,ij,kl
|
||||
double precision,external :: Kronecker_delta
|
||||
@ -47,45 +47,71 @@ subroutine excitation_density_Tmatrix(ispin,nBas,nC,nO,nV,nR,nOO,nVV,ERI,X1,Y1,r
|
||||
do p=nC+1,nBas-nR
|
||||
do q=nC+1,nBas-nR
|
||||
|
||||
do ab=1,nVV
|
||||
! do ab=1,nVV
|
||||
ab = 0
|
||||
do a=nO+1,nBas-nR
|
||||
do b=a,nBas-nR
|
||||
ab = ab + 1
|
||||
|
||||
cd = 0
|
||||
do c=nO+1,nBas-nR
|
||||
! do d=nO+1,c
|
||||
do d=c,nBas-nR
|
||||
cd = cd + 1
|
||||
rho1(p,q,ab) = rho1(p,q,ab) + ERI(p,q,c,d)*X1(cd,ab)
|
||||
rho1(p,q,ab) = rho1(p,q,ab) &
|
||||
+ (1d0*ERI(p,q,c,d) + 0d0*ERI(p,q,d,c))*X1(cd,ab)
|
||||
! + ERI(p,q,c,d)*X1(cd,ab)/sqrt((1d0 + Kronecker_delta(c,d)))
|
||||
! + (ERI(p,q,c,d) + ERI(p,q,d,c))*X1(cd,ab)/sqrt((1d0 + Kronecker_delta(a,b))*(1d0 + Kronecker_delta(c,d)))
|
||||
end do
|
||||
end do
|
||||
|
||||
kl = 0
|
||||
do k=nC+1,nO
|
||||
! do l=nC+1,k
|
||||
do l=k,nO
|
||||
kl = kl + 1
|
||||
rho1(p,q,ab) = rho1(p,q,ab) + ERI(p,q,k,l)*Y1(kl,ab)
|
||||
rho1(p,q,ab) = rho1(p,q,ab) &
|
||||
+ (1d0*ERI(p,q,k,l) + 0d0*ERI(p,q,l,k))*Y1(kl,ab)
|
||||
! + ERI(p,q,k,l)*Y1(kl,ab)/sqrt((1d0 + Kronecker_delta(k,l)))
|
||||
! + (ERI(p,q,k,l) + ERI(p,q,l,k))*Y1(kl,ab)/sqrt((1d0 + Kronecker_delta(a,b))*(1d0 + Kronecker_delta(k,l)))
|
||||
end do
|
||||
end do
|
||||
|
||||
end do
|
||||
end do
|
||||
|
||||
do ij=1,nOO
|
||||
! do ij=1,nOO
|
||||
ij = 0
|
||||
do i=nC+1,nO
|
||||
do j=i,nO
|
||||
ij = ij + 1
|
||||
|
||||
cd = 0
|
||||
do c=nO+1,nBas-nR
|
||||
! do d=nO+1,c
|
||||
do d=c,nBas-nR
|
||||
cd = cd + 1
|
||||
rho2(p,q,ij) = rho2(p,q,ij) + ERI(p,q,c,d)*X2(cd,ij)
|
||||
rho2(p,q,ij) = rho2(p,q,ij) &
|
||||
+ (1d0*ERI(p,q,c,d) + 0d0*ERI(p,q,d,c))*X2(cd,ij)
|
||||
! + ERI(p,q,c,d)*X2(cd,ij)/sqrt((1d0 + Kronecker_delta(c,d)))
|
||||
! + (ERI(p,q,c,d) + ERI(p,q,d,c))*X2(cd,ij)/sqrt((1d0 + Kronecker_delta(i,j))*(1d0 + Kronecker_delta(c,d)))
|
||||
end do
|
||||
end do
|
||||
|
||||
kl = 0
|
||||
do k=nC+1,nO
|
||||
! do l=nC+1,k
|
||||
do l=k,nO
|
||||
kl = kl + 1
|
||||
rho2(p,q,ij) = rho2(p,q,ij) + ERI(p,q,k,l)*Y2(kl,ij)
|
||||
rho2(p,q,ij) = rho2(p,q,ij) &
|
||||
+ (1d0*ERI(p,q,k,l) + 0d0*ERI(p,q,l,k))*Y2(kl,ij)
|
||||
! + ERI(p,q,k,l)*Y2(kl,ij)/sqrt((1d0 + Kronecker_delta(k,l)))
|
||||
! + (ERI(p,q,k,l) + ERI(p,q,l,k))*Y2(kl,ij)/sqrt((1d0 + Kronecker_delta(i,j))*(1d0 + Kronecker_delta(k,l)))
|
||||
end do
|
||||
end do
|
||||
|
||||
end do
|
||||
end do
|
||||
|
||||
end do
|
||||
end do
|
||||
|
@ -1,13 +1,15 @@
|
||||
subroutine print_G0T0(nBas,nO,eHF,ENuc,ERHF,SigT,Z,eGT,EcRPA)
|
||||
subroutine print_G0T0(nBas,nO,eHF,ENuc,ERHF,SigT,Z,eGT,EcGM,EcRPA)
|
||||
|
||||
! Print one-electron energies and other stuff for G0T0
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
integer,intent(in) :: nBas,nO
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nO
|
||||
double precision,intent(in) :: ENuc
|
||||
double precision,intent(in) :: ERHF
|
||||
double precision,intent(in) :: EcGM
|
||||
double precision,intent(in) :: EcRPA(nspin)
|
||||
double precision,intent(in) :: eHF(nBas)
|
||||
double precision,intent(in) :: SigT(nBas)
|
||||
@ -50,10 +52,12 @@ subroutine print_G0T0(nBas,nO,eHF,ENuc,ERHF,SigT,Z,eGT,EcRPA)
|
||||
write(*,'(2X,A50,F15.6,A3)') 'G0T0 LUMO energy (eV) =',eGT(LUMO)*HaToeV,' eV'
|
||||
write(*,'(2X,A50,F15.6,A3)') 'G0T0 HOMO-LUMO gap (eV) =',Gap*HaToeV,' eV'
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,'(2X,A50,F20.10,A3)') 'Tr@RPA@G0T0 correlation energy (singlet) =',EcRPA(1),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') 'Tr@RPA@G0T0 correlation energy (triplet) =',EcRPA(2),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') 'Tr@RPA@G0T0 correlation energy =',EcRPA(1) + EcRPA(2),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') 'Tr@RPA@G0T0 total energy =',ENuc + ERHF + EcRPA(1) + EcRPA(2),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' Tr@ppRPA@G0T0 correlation energy (singlet) =',EcRPA(1),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' Tr@ppRPA@G0T0 correlation energy (triplet) =',EcRPA(2),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' Tr@ppRPA@G0T0 correlation energy =',EcRPA(1) + EcRPA(2),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' Tr@ppRPA@G0T0 total energy =',ENuc + ERHF + EcRPA(1) + EcRPA(2),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' GM@G0T0 correlation energy =',EcGM,' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' GM@G0T0 total energy =',ENuc + ERHF + EcGM,' au'
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine print_evGT(nBas,nO,nSCF,Conv,eHF,SigT,Z,eGT)
|
||||
subroutine print_evGT(nBas,nO,nSCF,Conv,eHF,ENuc,ERHF,SigT,Z,eGT,EcGM,EcRPA)
|
||||
|
||||
! Print one-electron energies and other stuff for evGT
|
||||
|
||||
@ -10,6 +10,10 @@ subroutine print_evGT(nBas,nO,nSCF,Conv,eHF,SigT,Z,eGT)
|
||||
integer,intent(in) :: nSCF
|
||||
double precision,intent(in) :: Conv
|
||||
double precision,intent(in) :: eHF(nBas)
|
||||
double precision,intent(in) :: ENuc
|
||||
double precision,intent(in) :: ERHF
|
||||
double precision,intent(in) :: EcGM
|
||||
double precision,intent(in) :: EcRPA(nspin)
|
||||
double precision,intent(in) :: SigT(nBas)
|
||||
double precision,intent(in) :: Z(nBas)
|
||||
double precision,intent(in) :: eGT(nBas)
|
||||
@ -49,6 +53,13 @@ subroutine print_evGT(nBas,nO,nSCF,Conv,eHF,SigT,Z,eGT)
|
||||
write(*,'(2X,A30,F15.6)') 'evGT LUMO energy (eV):',eGT(LUMO)*HaToeV
|
||||
write(*,'(2X,A30,F15.6)') 'evGT HOMO-LUMO gap (eV):',Gap*HaToeV
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' Tr@ppRPA@G0T0 correlation energy (singlet) =',EcRPA(1),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' Tr@ppRPA@G0T0 correlation energy (triplet) =',EcRPA(2),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' Tr@ppRPA@G0T0 correlation energy =',EcRPA(1) + EcRPA(2),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' Tr@ppRPA@G0T0 total energy =',ENuc + ERHF + EcRPA(1) + EcRPA(2),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' GM@G0T0 correlation energy =',EcGM,' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' GM@G0T0 total energy =',ENuc + ERHF + EcGM,' au'
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
end subroutine print_evGT
|
||||
|
@ -48,9 +48,9 @@ subroutine print_qsGT(nBas,nO,nSCF,Conv,thresh,eHF,eGT,c,SigC,Z,ENuc,ET,EV,EJ,Ex
|
||||
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
if(nSCF < 10) then
|
||||
write(*,'(1X,A21,I1,A1,I1,A12)')' Self-consistent qsG',nSCF,'W',nSCF,' calculation'
|
||||
write(*,'(1X,A21,I1,A1,I1,A12)')' Self-consistent qsG',nSCF,'T',nSCF,' calculation'
|
||||
else
|
||||
write(*,'(1X,A21,I2,A1,I2,A12)')' Self-consistent qsG',nSCF,'W',nSCF,' calculation'
|
||||
write(*,'(1X,A21,I2,A1,I2,A12)')' Self-consistent qsG',nSCF,'T',nSCF,' calculation'
|
||||
endif
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X)') &
|
||||
@ -70,10 +70,10 @@ subroutine print_qsGT(nBas,nO,nSCF,Conv,thresh,eHF,eGT,c,SigC,Z,ENuc,ET,EV,EJ,Ex
|
||||
write(*,'(2X,A30,F15.6,A3)') 'qsGT LUMO energy:',eGT(LUMO)*HaToeV,' eV'
|
||||
write(*,'(2X,A30,F15.6,A3)') 'qsGT HOMO-LUMO gap :',Gap*HaToeV,' eV'
|
||||
write(*,*)'-------------------------------------------'
|
||||
write(*,'(2X,A30,F15.6,A3)') ' qsGT total energy:',ENuc + EqsGT,' au'
|
||||
write(*,'(2X,A30,F15.6,A3)') ' qsGT exchange energy:',Ex,' au'
|
||||
write(*,'(2X,A30,F15.6,A3)') ' GM@qsGT correlation energy:',EcGM,' au'
|
||||
write(*,'(2X,A30,F15.6,A3)') 'RPA@qsGT correlation energy:',sum(EcRPA(:)),' au'
|
||||
write(*,'(2X,A30,F15.6,A3)') ' qsGT total energy:',ENuc + EqsGT,' au'
|
||||
write(*,'(2X,A30,F15.6,A3)') ' qsGT exchange energy:',Ex,' au'
|
||||
write(*,'(2X,A30,F15.6,A3)') ' GM@qsGT correlation energy:',EcGM,' au'
|
||||
write(*,'(2X,A30,F15.6,A3)') 'ppRPA@qsGT correlation energy:',sum(EcRPA(:)),' au'
|
||||
write(*,*)'-------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
|
@ -70,7 +70,6 @@ subroutine qsGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,BSE,TDA_T,T
|
||||
integer :: nOOs,nOOt
|
||||
integer :: nVVs,nVVt
|
||||
|
||||
logical :: print_W = .false.
|
||||
double precision,allocatable :: error_diis(:,:)
|
||||
double precision,allocatable :: F_diis(:,:)
|
||||
double precision,allocatable :: c(:,:)
|
||||
@ -160,7 +159,7 @@ subroutine qsGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,BSE,TDA_T,T
|
||||
c(:,:) = cHF(:,:)
|
||||
F_diis(:,:) = 0d0
|
||||
error_diis(:,:) = 0d0
|
||||
rcond = 1d0
|
||||
rcond = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main loop
|
||||
@ -198,8 +197,12 @@ subroutine qsGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,BSE,TDA_T,T
|
||||
call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOt,nVVt,1d0,eGT,ERI_MO, &
|
||||
Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,EcRPA(ispin))
|
||||
|
||||
EcRPA(1) = EcRPA(1) - EcRPA(2)
|
||||
EcRPA(2) = 3d0*EcRPA(2)
|
||||
|
||||
! Compute correlation part of the self-energy
|
||||
|
||||
EcGM = 0d0
|
||||
SigT(:,:) = 0d0
|
||||
Z(:) = 0d0
|
||||
|
||||
@ -208,22 +211,47 @@ subroutine qsGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,BSE,TDA_T,T
|
||||
call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOs,nVVs,ERI_MO, &
|
||||
X1s,Y1s,rho1s,X2s,Y2s,rho2s)
|
||||
|
||||
call self_energy_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT, &
|
||||
Omega1s,rho1s,Omega2s,rho2s,SigT)
|
||||
if(regularize) then
|
||||
|
||||
call renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT, &
|
||||
Omega1s,rho1s,Omega2s,rho2s,Z)
|
||||
call regularized_self_energy_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT, &
|
||||
Omega1s,rho1s,Omega2s,rho2s,EcGM,SigT)
|
||||
|
||||
call regularized_renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT, &
|
||||
Omega1s,rho1s,Omega2s,rho2s,Z)
|
||||
|
||||
else
|
||||
|
||||
call self_energy_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT, &
|
||||
Omega1s,rho1s,Omega2s,rho2s,EcGM,SigT)
|
||||
|
||||
call renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOs,nVVs,eGT, &
|
||||
Omega1s,rho1s,Omega2s,rho2s,Z)
|
||||
|
||||
end if
|
||||
|
||||
iblock = 4
|
||||
|
||||
call excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nOOt,nVVt,ERI_MO, &
|
||||
X1t,Y1t,rho1t,X2t,Y2t,rho2t)
|
||||
|
||||
call self_energy_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT, &
|
||||
Omega1t,rho1t,Omega2t,rho2t,SigT)
|
||||
if(regularize) then
|
||||
|
||||
call renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT, &
|
||||
Omega1t,rho1t,Omega2t,rho2t,Z)
|
||||
call self_energy_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT, &
|
||||
Omega1t,rho1t,Omega2t,rho2t,EcGM,SigT)
|
||||
|
||||
call renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT, &
|
||||
Omega1t,rho1t,Omega2t,rho2t,Z)
|
||||
|
||||
else
|
||||
|
||||
|
||||
call regularized_self_energy_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT, &
|
||||
Omega1t,rho1t,Omega2t,rho2t,EcGM,SigT)
|
||||
|
||||
call regularized_renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nOOt,nVVt,eGT, &
|
||||
Omega1t,rho1t,Omega2t,rho2t,Z)
|
||||
|
||||
end if
|
||||
|
||||
Z(:) = 1d0/(1d0 - Z(:))
|
||||
|
||||
@ -302,28 +330,6 @@ subroutine qsGT(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,BSE,TDA_T,T
|
||||
! End main loop
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
! Compute the ppRPA correlation energy
|
||||
|
||||
ispin = 1
|
||||
iblock = 3
|
||||
call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOs,nVVs,1d0,eGT,ERI_MO, &
|
||||
Omega1s,X1s,Y1s,Omega2s,X2s,Y2s,EcRPA(ispin))
|
||||
ispin = 2
|
||||
iblock = 4
|
||||
call linear_response_pp(iblock,TDA_T,nBas,nC,nO,nV,nR,nOOt,nVVt,1d0,eGT,ERI_MO, &
|
||||
Omega1t,X1t,Y1t,Omega2t,X2t,Y2t,EcRPA(ispin))
|
||||
EcRPA(1) = EcRPA(1) - EcRPA(2)
|
||||
EcRPA(2) = 3d0*EcRPA(2)
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@qsGT correlation energy (singlet) =',EcRPA(1)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@qsGT correlation energy (triplet) =',EcRPA(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@qsGT correlation energy =',EcRPA(1) + EcRPA(2)
|
||||
write(*,'(2X,A50,F20.10)') 'Tr@ppRPA@qsGT total energy =',ENuc + ERHF + EcRPA(1) + EcRPA(2)
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
! Did it actually converge?
|
||||
|
||||
if(nSCF == maxSCF+1) then
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine self_energy_Tmatrix(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,Omega2,rho2,SigT)
|
||||
subroutine self_energy_Tmatrix(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,Omega2,rho2,EcGM,SigT)
|
||||
|
||||
! Compute the correlation part of the T-matrix self-energy
|
||||
|
||||
@ -23,12 +23,13 @@ subroutine self_energy_Tmatrix(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,Omega2
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,a,p,q,cd,kl
|
||||
integer :: i,j,a,b,p,q,cd,kl
|
||||
double precision :: eps
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(inout) :: SigT(nBas,nBas)
|
||||
double precision,intent(inout):: EcGM
|
||||
double precision,intent(inout):: SigT(nBas,nBas)
|
||||
|
||||
!----------------------------------------------
|
||||
! Occupied part of the T-matrix self-energy
|
||||
@ -46,7 +47,7 @@ subroutine self_energy_Tmatrix(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,Omega2
|
||||
enddo
|
||||
|
||||
!----------------------------------------------
|
||||
! Virtual part of the T-matrix self-energy
|
||||
! Virtual part of the T-matrix self-energy
|
||||
!----------------------------------------------
|
||||
|
||||
do p=nC+1,nBas-nR
|
||||
@ -60,4 +61,26 @@ subroutine self_energy_Tmatrix(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,Omega2
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!----------------------------------------------
|
||||
! Galitskii-Migdal correlation energy
|
||||
!----------------------------------------------
|
||||
|
||||
do i=nC+1,nO
|
||||
do j=nC+1,nO
|
||||
do cd=1,nVV
|
||||
eps = e(i) + e(j) - Omega1(cd)
|
||||
EcGM = EcGM + rho1(i,j,cd)*rho1(i,j,cd)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do a=nO+1,nBas-nR
|
||||
do b=nO+1,nBas-nR
|
||||
do kl=1,nOO
|
||||
eps = e(a) + e(b) - Omega2(kl)
|
||||
EcGM = EcGM - rho2(a,b,kl)*rho2(a,b,kl)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine self_energy_Tmatrix
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,Omega2,rho2,SigT)
|
||||
subroutine self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,Omega2,rho2,EcGM,SigT)
|
||||
|
||||
! Compute diagonal of the correlation part of the T-matrix self-energy
|
||||
|
||||
@ -23,11 +23,12 @@ subroutine self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,O
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: i,a,p,cd,kl
|
||||
integer :: i,j,a,b,p,cd,kl
|
||||
double precision :: eps
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(inout) :: EcGM
|
||||
double precision,intent(inout) :: SigT(nBas)
|
||||
|
||||
!----------------------------------------------
|
||||
@ -56,4 +57,26 @@ subroutine self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nOO,nVV,e,Omega1,rho1,O
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!----------------------------------------------
|
||||
! Galitskii-Migdal correlation energy
|
||||
!----------------------------------------------
|
||||
|
||||
do i=nC+1,nO
|
||||
do j=nC+1,nO
|
||||
do cd=1,nVV
|
||||
eps = e(i) + e(j) - Omega1(cd)
|
||||
EcGM = EcGM + rho1(i,j,cd)*rho1(i,j,cd)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do a=nO+1,nBas-nR
|
||||
do b=nO+1,nBas-nR
|
||||
do kl=1,nOO
|
||||
eps = e(a) + e(b) - Omega2(kl)
|
||||
EcGM = EcGM - rho2(a,b,kl)*rho2(a,b,kl)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine self_energy_Tmatrix_diag
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine static_Tmatrix_A(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Omega1,rho1,Omega2,rho2,TA)
|
||||
subroutine static_Tmatrix_A(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,Omega1,rho1,Omega2,rho2,TA)
|
||||
|
||||
! Compute the OOVV block of the static T-matrix for the resonant block
|
||||
|
||||
@ -7,7 +7,6 @@ subroutine static_Tmatrix_A(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Ome
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: ispin
|
||||
double precision,intent(in) :: eta
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC
|
||||
@ -18,7 +17,6 @@ subroutine static_Tmatrix_A(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Ome
|
||||
integer,intent(in) :: nOO
|
||||
integer,intent(in) :: nVV
|
||||
double precision,intent(in) :: lambda
|
||||
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: Omega1(nVV)
|
||||
double precision,intent(in) :: rho1(nBas,nBas,nVV)
|
||||
double precision,intent(in) :: Omega2(nOO)
|
||||
@ -34,6 +32,8 @@ subroutine static_Tmatrix_A(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Ome
|
||||
|
||||
double precision,intent(out) :: TA(nS,nS)
|
||||
|
||||
TA(:,:) = 0d0
|
||||
|
||||
ia = 0
|
||||
do i=nC+1,nO
|
||||
do a=nO+1,nBas-nR
|
||||
@ -46,13 +46,13 @@ subroutine static_Tmatrix_A(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Ome
|
||||
chi = 0d0
|
||||
|
||||
do cd=1,nVV
|
||||
eps = - Omega1(cd)
|
||||
eps = + Omega1(cd)
|
||||
! chi = chi + lambda*rho1(i,j,cd)*rho1(a,b,cd)*eps/(eps**2 + eta**2)
|
||||
chi = chi + rho1(i,b,cd)*rho1(a,j,cd)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
|
||||
do kl=1,nOO
|
||||
eps = + Omega2(kl)
|
||||
eps = - Omega2(kl)
|
||||
! chi = chi - lambda*rho2(i,j,kl)*rho2(a,b,kl)*eps/(eps**2 + eta**2)
|
||||
chi = chi + rho2(i,b,kl)*rho2(a,j,kl)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine static_Tmatrix_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Omega1,rho1,Omega2,rho2,TB)
|
||||
subroutine static_Tmatrix_B(eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,Omega1,rho1,Omega2,rho2,TB)
|
||||
|
||||
! Compute the OVVO block of the static T-matrix for the coupling block
|
||||
|
||||
@ -7,7 +7,6 @@ subroutine static_Tmatrix_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Ome
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: ispin
|
||||
double precision,intent(in) :: eta
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nC
|
||||
@ -18,7 +17,6 @@ subroutine static_Tmatrix_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Ome
|
||||
integer,intent(in) :: nOO
|
||||
integer,intent(in) :: nVV
|
||||
double precision,intent(in) :: lambda
|
||||
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
||||
double precision,intent(in) :: Omega1(nVV)
|
||||
double precision,intent(in) :: rho1(nBas,nBas,nVV)
|
||||
double precision,intent(in) :: Omega2(nOO)
|
||||
@ -34,6 +32,8 @@ subroutine static_Tmatrix_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Ome
|
||||
|
||||
double precision,intent(out) :: TB(nS,nS)
|
||||
|
||||
TB(:,:) = 0d0
|
||||
|
||||
ia = 0
|
||||
do i=nC+1,nO
|
||||
do a=nO+1,nBas-nR
|
||||
@ -46,13 +46,13 @@ subroutine static_Tmatrix_B(ispin,eta,nBas,nC,nO,nV,nR,nS,nOO,nVV,lambda,ERI,Ome
|
||||
chi = 0d0
|
||||
|
||||
do cd=1,nVV
|
||||
eps = - Omega1(cd)
|
||||
eps = + Omega1(cd)
|
||||
! chi = chi + lambda*rho1(i,b,cd)*rho1(a,j,cd)*Omega1(cd)/Omega1(cd)**2 + eta**2
|
||||
chi = chi + rho1(i,j,cd)*rho1(a,b,cd)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
|
||||
do kl=1,nOO
|
||||
eps = + Omega2(kl)
|
||||
eps = - Omega2(kl)
|
||||
! chi = chi + lambda*rho2(i,b,kl)*rho2(a,j,kl)*Omega2(kl)/Omega2(kl)**2 + eta**2
|
||||
chi = chi + rho2(i,j,kl)*rho2(a,b,kl)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
|
@ -29,7 +29,7 @@ subroutine Bethe_Salpeter_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR,nS,eW,e
|
||||
|
||||
integer :: ia
|
||||
|
||||
integer,parameter :: maxS = 10
|
||||
integer :: maxS = 10
|
||||
double precision :: gapGW
|
||||
|
||||
double precision,allocatable :: OmDyn(:)
|
||||
@ -51,7 +51,8 @@ subroutine Bethe_Salpeter_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR,nS,eW,e
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(OmDyn(nS),ZDyn(nS),X(nS),Y(nS),Ap_dyn(nS,nS),ZAp_dyn(nS,nS))
|
||||
maxS = min(nS,maxS)
|
||||
allocate(OmDyn(maxS),ZDyn(maxS),X(nS),Y(nS),Ap_dyn(nS,nS),ZAp_dyn(nS,nS))
|
||||
|
||||
if(.not.dTDA) allocate(Am_dyn(nS,nS),ZAm_dyn(nS,nS),Bp_dyn(nS,nS),ZBp_dyn(nS,nS),Bm_dyn(nS,nS),ZBm_dyn(nS,nS))
|
||||
|
||||
@ -71,7 +72,7 @@ subroutine Bethe_Salpeter_dynamic_perturbation(dTDA,eta,nBas,nC,nO,nV,nR,nS,eW,e
|
||||
write(*,'(2X,A5,1X,A20,1X,A20,1X,A20,1X,A20)') '#','Static (eV)','Dynamic (eV)','Correction (eV)','Renorm. (eV)'
|
||||
write(*,*) '---------------------------------------------------------------------------------------------------'
|
||||
|
||||
do ia=1,min(nS,maxS)
|
||||
do ia=1,maxS
|
||||
|
||||
X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:))
|
||||
Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:))
|
||||
|
@ -132,21 +132,25 @@ subroutine UG0W0(doACFDT,exchange_kernel,doXBS,COHSEX,BSE,TDA_W,TDA,dBSE,dTDA,ev
|
||||
|
||||
call unrestricted_excitation_density(nBas,nC,nO,nR,nS_aa,nS_bb,nS_sc,ERI_aaaa,ERI_aabb,ERI_bbbb,XpY_RPA,rho_RPA)
|
||||
|
||||
!---------------------!
|
||||
! Compute self-energy !
|
||||
!---------------------!
|
||||
!------------------------------------------------!
|
||||
! Compute self-energy and renormalization factor !
|
||||
!------------------------------------------------!
|
||||
|
||||
do is=1,nspin
|
||||
call self_energy_exchange_diag(nBas,cHF(:,:,is),PHF(:,:,is),ERI,SigX(:,is))
|
||||
end do
|
||||
|
||||
call unrestricted_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,SigC,EcGM)
|
||||
if(regularize) then
|
||||
|
||||
!--------------------------------!
|
||||
! Compute renormalization factor !
|
||||
!--------------------------------!
|
||||
call unrestricted_regularized_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_regularized_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,Z)
|
||||
|
||||
call unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,Z)
|
||||
else
|
||||
|
||||
call unrestricted_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,Z)
|
||||
|
||||
end if
|
||||
|
||||
!-----------------------------------!
|
||||
! Solve the quasi-particle equation !
|
||||
|
@ -139,6 +139,7 @@ subroutine evGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,COHSEX,BSE,
|
||||
eGW(:) = eG0W0(:)
|
||||
eOld(:) = eGW(:)
|
||||
Z(:) = 1d0
|
||||
rcond = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main loop
|
||||
|
@ -153,6 +153,7 @@ subroutine evUGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,COHSEX,BSE
|
||||
eGW(:,:) = eG0W0(:,:)
|
||||
eOld(:,:) = eGW(:,:)
|
||||
Z(:,:) = 1d0
|
||||
rcond(:) = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main loop
|
||||
@ -166,7 +167,7 @@ subroutine evUGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,COHSEX,BSE
|
||||
|
||||
call unrestricted_linear_response(ispin,.true.,TDA_W,.false.,eta,nBas,nC,nO,nV,nR,nS_aa,nS_bb,nS_sc,nS_sc,1d0, &
|
||||
eGW,ERI_aaaa,ERI_aabb,ERI_bbbb,OmRPA,rho_RPA,EcRPA,OmRPA,XpY_RPA,XmY_RPA)
|
||||
endif
|
||||
end if
|
||||
|
||||
!----------------------!
|
||||
! Excitation densities !
|
||||
@ -180,15 +181,33 @@ subroutine evUGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,COHSEX,BSE
|
||||
|
||||
if(G0W) then
|
||||
|
||||
call unrestricted_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,Z)
|
||||
if(regularize) then
|
||||
|
||||
call unrestricted_regularized_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_regularized_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,Z)
|
||||
|
||||
else
|
||||
|
||||
call unrestricted_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,Z)
|
||||
|
||||
end if
|
||||
|
||||
else
|
||||
|
||||
call unrestricted_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,OmRPA,rho_RPA,Z)
|
||||
if(regularize) then
|
||||
|
||||
endif
|
||||
call unrestricted_regularized_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_regularized_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,OmRPA,rho_RPA,Z)
|
||||
|
||||
else
|
||||
|
||||
call unrestricted_self_energy_correlation_diag(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,OmRPA,rho_RPA,Z)
|
||||
|
||||
end if
|
||||
|
||||
end if
|
||||
|
||||
!-----------------------------------!
|
||||
! Solve the quasi-particle equation !
|
||||
@ -222,7 +241,7 @@ subroutine evUGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,COHSEX,BSE
|
||||
|
||||
if(minval(rcond(:)) < 1d-15) n_diis = 0
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
! Save quasiparticles energy for next cycle
|
||||
|
||||
@ -253,7 +272,7 @@ subroutine evUGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,COHSEX,BSE
|
||||
|
||||
stop
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
! Deallocate memory
|
||||
|
||||
@ -316,6 +335,6 @@ subroutine evUGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,COHSEX,BSE
|
||||
|
||||
end if
|
||||
|
||||
endif
|
||||
end if
|
||||
|
||||
end subroutine evUGW
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine print_qsUGW(nBas,nO,nSCF,Conv,thresh,eHF,eGW,cGW,PGW,Ov,T,V,J,K, &
|
||||
subroutine print_qsUGW(nBas,nO,nSCF,Conv,thresh,eHF,eGW,cGW,Ov, &
|
||||
ENuc,ET,EV,EJ,Ex,EcGM,EcRPA,EqsGW,SigC,Z,dipole)
|
||||
|
||||
! Print one-electron energies and other stuff for qsUGW
|
||||
@ -24,12 +24,7 @@ subroutine print_qsUGW(nBas,nO,nSCF,Conv,thresh,eHF,eGW,cGW,PGW,Ov,T,V,J,K, &
|
||||
double precision,intent(in) :: eHF(nBas,nspin)
|
||||
double precision,intent(in) :: eGW(nBas,nspin)
|
||||
double precision,intent(in) :: cGW(nBas,nBas,nspin)
|
||||
double precision,intent(in) :: PGW(nBas,nBas,nspin)
|
||||
double precision,intent(in) :: Ov(nBas,nBas)
|
||||
double precision,intent(in) :: T(nBas,nBas)
|
||||
double precision,intent(in) :: V(nBas,nBas)
|
||||
double precision,intent(in) :: J(nBas,nBas,nspin)
|
||||
double precision,intent(in) :: K(nBas,nBas,nspin)
|
||||
double precision,intent(in) :: SigC(nBas,nBas,nspin)
|
||||
double precision,intent(in) :: Z(nBas,nspin)
|
||||
double precision,intent(in) :: dipole(ncart)
|
||||
|
@ -153,7 +153,7 @@ subroutine qsGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,COHSEX,BSE,
|
||||
c(:,:) = cHF(:,:)
|
||||
F_diis(:,:) = 0d0
|
||||
error_diis(:,:) = 0d0
|
||||
rcond = 1d0
|
||||
rcond = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main loop
|
||||
|
@ -166,7 +166,7 @@ subroutine qsUGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,COHSEX,BSE
|
||||
c(:,:,:) = cHF(:,:,:)
|
||||
F_diis(:,:,:) = 0d0
|
||||
error_diis(:,:,:) = 0d0
|
||||
rcond = 1d0
|
||||
rcond(:) = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main loop
|
||||
@ -227,13 +227,31 @@ subroutine qsUGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,COHSEX,BSE
|
||||
|
||||
if(G0W) then
|
||||
|
||||
call unrestricted_self_energy_correlation(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,Z)
|
||||
if(regularize) then
|
||||
|
||||
call unrestricted_regularized_self_energy_correlation(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_regularized_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,Z)
|
||||
|
||||
else
|
||||
|
||||
call unrestricted_self_energy_correlation(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eHF,OmRPA,rho_RPA,Z)
|
||||
|
||||
end if
|
||||
|
||||
else
|
||||
|
||||
call unrestricted_self_energy_correlation(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,OmRPA,rho_RPA,Z)
|
||||
if(regularize) then
|
||||
|
||||
call unrestricted_regularized_self_energy_correlation(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_regularized_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,OmRPA,rho_RPA,Z)
|
||||
|
||||
else
|
||||
|
||||
call unrestricted_self_energy_correlation(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,OmRPA,rho_RPA,SigC,EcGM)
|
||||
call unrestricted_renormalization_factor(eta,nBas,nC,nO,nV,nR,nS_sc,eGW,OmRPA,rho_RPA,Z)
|
||||
|
||||
end if
|
||||
|
||||
endif
|
||||
|
||||
@ -348,7 +366,7 @@ subroutine qsUGW(maxSCF,thresh,max_diis,doACFDT,exchange_kernel,doXBS,COHSEX,BSE
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
call dipole_moment(nBas,P(:,:,1)+P(:,:,2),nNuc,ZNuc,rNuc,dipole_int_AO,dipole)
|
||||
call print_qsUGW(nBas,nO,nSCF,Conv,thresh,eHF,eGW,c,P,S,T,V,J,K,ENuc,ET,EV,EJ,Ex,EcGM,EcRPA,EqsGW,SigCp,Z,dipole)
|
||||
call print_qsUGW(nBas,nO,nSCF,Conv,thresh,eHF,eGW,c,S,ENuc,ET,EV,EJ,Ex,EcGM,EcRPA,EqsGW,SigCp,Z,dipole)
|
||||
|
||||
enddo
|
||||
!------------------------------------------------------------------------
|
||||
|
@ -28,8 +28,8 @@ subroutine self_energy_correlation(COHSEX,eta,nBas,nC,nO,nV,nR,nS,e,Omega,rho,Ec
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: SigC(nBas,nBas)
|
||||
double precision,intent(out) :: EcGM
|
||||
double precision,intent(out) :: SigC(nBas,nBas)
|
||||
|
||||
! Initialize
|
||||
|
||||
@ -102,7 +102,7 @@ subroutine self_energy_correlation(COHSEX,eta,nBas,nC,nO,nV,nR,nS,e,Omega,rho,Ec
|
||||
end do
|
||||
end do
|
||||
|
||||
! GM correlation energy
|
||||
! Galitskii-Migdal correlation energy
|
||||
|
||||
EcGM = 0d0
|
||||
do i=nC+1,nO
|
||||
|
@ -33,6 +33,10 @@ subroutine ufG0W0(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF)
|
||||
double precision,allocatable :: eGW(:)
|
||||
double precision,allocatable :: Z(:)
|
||||
|
||||
logical :: verbose = .true.
|
||||
double precision,parameter :: cutoff1 = 0.01d0
|
||||
double precision,parameter :: cutoff2 = 0.01d0
|
||||
|
||||
! Output variables
|
||||
|
||||
! Hello world
|
||||
@ -183,9 +187,8 @@ subroutine ufG0W0(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF)
|
||||
! Compute weights !
|
||||
!-----------------!
|
||||
|
||||
Z(:) = 0d0
|
||||
do s=1,nH
|
||||
Z(s) = Z(s) + cGW(1,s)**2
|
||||
Z(s) = cGW(1,s)**2
|
||||
end do
|
||||
|
||||
!--------------!
|
||||
@ -207,6 +210,64 @@ subroutine ufG0W0(nBas,nC,nO,nV,nR,nS,ENuc,ERHF,ERI,eHF)
|
||||
write(*,*)'-------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
if(verbose) then
|
||||
|
||||
do s=1,nH
|
||||
|
||||
if(Z(s) > cutoff1) then
|
||||
|
||||
write(*,*)'*************************************************************'
|
||||
write(*,'(1X,A20,I3,A6,I3)')'Vector for orbital ',p,' and #',s
|
||||
write(*,'(1X,A7,F10.6,A13,F10.6,1X)')' e_QP = ',eGW(s)*HaToeV,' eV and Z = ',Z(s)
|
||||
write(*,*)'*************************************************************'
|
||||
write(*,'(1X,A20,1X,A20,1X,A15,1X)') &
|
||||
' Configuration ',' Coefficient ',' Weight '
|
||||
write(*,*)'*************************************************************'
|
||||
|
||||
if(p <= nO) &
|
||||
write(*,'(1X,A7,I3,A16,1X,F15.6,1X,F15.6)') &
|
||||
' (',p,') ',cGW(1,s),cGW(1,s)**2
|
||||
if(p > nO) &
|
||||
write(*,'(1X,A16,I3,A7,1X,F15.6,1X,F15.6)') &
|
||||
' (',p,') ',cGW(1,s),cGW(1,s)**2
|
||||
|
||||
klc = 0
|
||||
do k=nC+1,nO
|
||||
do l=nC+1,nO
|
||||
do c=nO+1,nBas-nR
|
||||
|
||||
klc = klc + 1
|
||||
! if(abs(cGW(1+klc,s)) > cutoff2) &
|
||||
write(*,'(1X,A3,I3,A1,I3,A6,I3,A7,1X,F15.6,1X,F15.6)') &
|
||||
' (',k,',',l,') -> (',c,') ',cGW(1+klc,s),cGW(1+klc,s)**2
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
kcd = 0
|
||||
do k=nC+1,nO
|
||||
do c=nO+1,nBas-nR
|
||||
do d=nO+1,nBas-nR
|
||||
|
||||
kcd = kcd + 1
|
||||
! if(abs(cGW(1+n2h1p+kcd,s)) > cutoff2) &
|
||||
write(*,'(1X,A7,I3,A6,I3,A1,I3,A3,1X,F15.6,1X,F15.6)') &
|
||||
' (',k,') -> (',c,',',d,') ',cGW(1+n2h1p+kcd,s),cGW(1+n2h1p+kcd,s)**2
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
write(*,*)'*************************************************************'
|
||||
write(*,*)
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
end subroutine ufG0W0
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_self_energy_correlation(eta,nBas,nC,nO,nV,nR,nSt,e,Omega,rho,SigC,EcGM)
|
||||
subroutine unrestricted_regularized_self_energy_correlation(eta,nBas,nC,nO,nV,nR,nSt,e,Omega,rho,SigC,EcGM)
|
||||
|
||||
! Compute diagonal of the correlation part of the self-energy
|
||||
|
||||
@ -130,4 +130,4 @@ subroutine unrestricted_self_energy_correlation(eta,nBas,nC,nO,nV,nR,nSt,e,Omega
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine unrestricted_self_energy_correlation
|
||||
end subroutine unrestricted_regularized_self_energy_correlation
|
||||
|
@ -94,6 +94,7 @@ subroutine RHF(maxSCF,thresh,max_diis,guess_type,nNuc,ZNuc,rNuc,ENuc,nBas,nO,S,T
|
||||
error_diis(:,:) = 0d0
|
||||
Conv = 1d0
|
||||
nSCF = 0
|
||||
rcond = 0d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main SCF loop
|
||||
@ -204,6 +205,6 @@ subroutine RHF(maxSCF,thresh,max_diis,guess_type,nNuc,ZNuc,rNuc,ENuc,nBas,nO,S,T
|
||||
|
||||
! Compute Vx for post-HF calculations
|
||||
|
||||
call exchange_potential(nBas,c,K,Vx)
|
||||
call mo_fock_exchange_potential(nBas,c,K,Vx)
|
||||
|
||||
end subroutine RHF
|
||||
|
@ -253,7 +253,7 @@ subroutine UHF(maxSCF,thresh,max_diis,guess_type,mix,nNuc,ZNuc,rNuc,ENuc,nBas,nO
|
||||
! Compute Vx for post-HF calculations
|
||||
|
||||
do ispin=1,nspin
|
||||
call exchange_potential(nBas,c(:,:,ispin),K(:,:,ispin),Vx(:,ispin))
|
||||
call mo_fock_exchange_potential(nBas,c(:,:,ispin),K(:,:,ispin),Vx(:,ispin))
|
||||
end do
|
||||
|
||||
end subroutine UHF
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine exchange_potential(nBas,c,Fx,Vx)
|
||||
subroutine mo_fock_exchange_potential(nBas,c,Fx,Vx)
|
||||
|
||||
! Compute the exchange potential in the MO basis
|
||||
|
||||
@ -31,4 +31,4 @@ subroutine exchange_potential(nBas,c,Fx,Vx)
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine exchange_potential
|
||||
end subroutine mo_fock_exchange_potential
|
@ -42,14 +42,13 @@ subroutine linear_response_Tmatrix(ispin,dRPA,TDA,eta,nBas,nC,nO,nV,nR,nS,lambda
|
||||
|
||||
call linear_response_A_matrix(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,e,ERI,A)
|
||||
|
||||
if(ispin == 1) A(:,:) = A(:,:) + A_BSE(:,:)
|
||||
if(ispin == 2) A(:,:) = A(:,:) - A_BSE(:,:)
|
||||
|
||||
! print*,'A'
|
||||
! call matout(nS,nS,A)
|
||||
! print*,'TA'
|
||||
! call matout(nS,nS,A_BSE)
|
||||
|
||||
A(:,:) = A(:,:) - A_BSE(:,:)
|
||||
|
||||
! Tamm-Dancoff approximation
|
||||
|
||||
if(TDA) then
|
||||
@ -64,13 +63,12 @@ subroutine linear_response_Tmatrix(ispin,dRPA,TDA,eta,nBas,nC,nO,nV,nR,nS,lambda
|
||||
|
||||
call linear_response_B_matrix(ispin,dRPA,nBas,nC,nO,nV,nR,nS,lambda,ERI,B)
|
||||
|
||||
if(ispin == 1) B(:,:) = B(:,:) + B_BSE(:,:)
|
||||
if(ispin == 2) B(:,:) = B(:,:) - B_BSE(:,:)
|
||||
! print*,'B'
|
||||
! call matout(nS,nS,B)
|
||||
! print*,'TB'
|
||||
! call matout(nS,nS,B_BSE)
|
||||
|
||||
! print*,'B'
|
||||
! call matout(nS,nS,B)
|
||||
! print*,'TB'
|
||||
! call matout(nS,nS,B_BSE)
|
||||
B(:,:) = B(:,:) - B_BSE(:,:)
|
||||
|
||||
! Build A + B and A - B matrices
|
||||
|
||||
|
@ -451,8 +451,10 @@ program QuAcK
|
||||
ket1 = 1
|
||||
ket2 = 1
|
||||
call AOtoMO_integral_transform(bra1,bra2,ket1,ket2,nBas,cHF,ERI_AO,ERI_MO)
|
||||
|
||||
F_MO(:,:) = F_AO(:,:)
|
||||
call AOtoMO_transform(nBas,cHF,F_MO)
|
||||
|
||||
end if
|
||||
|
||||
end if
|
||||
|
@ -30,7 +30,7 @@ subroutine read_methods(doRHF,doUHF,doKS,doMOM, &
|
||||
|
||||
! Local variables
|
||||
|
||||
character(len=1) :: answer1,answer2,answer3,answer4,answer5,answer6,answer7
|
||||
character(len=1) :: answer1,answer2,answer3,answer4,answer5
|
||||
|
||||
! Open file with method specification
|
||||
|
||||
|
@ -195,15 +195,15 @@ subroutine read_options(maxSCF_HF,thresh_HF,DIIS_HF,n_diis_HF,guess_type,ortho_t
|
||||
if(answer8 == 'T') regGW = .true.
|
||||
if(.not.DIIS_GW) n_diis_GW = 1
|
||||
|
||||
! Read GF options
|
||||
! Read GT options
|
||||
|
||||
maxSCF_GF = 64
|
||||
thresh_GF = 1d-5
|
||||
DIIS_GF = .false.
|
||||
n_diis_GF = 5
|
||||
linGF = .false.
|
||||
eta_GF = 0d0
|
||||
regGF = .false.
|
||||
maxSCF_GT = 64
|
||||
thresh_GT = 1d-5
|
||||
DIIS_GT = .false.
|
||||
n_diis_GT = 5
|
||||
linGT = .false.
|
||||
eta_GT = 0d0
|
||||
regGT = .false.
|
||||
TDA_T = .false.
|
||||
|
||||
read(1,*)
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine UB88_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
subroutine B88_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
|
||||
! Compute Becke's 88 GGA exchange energy
|
||||
|
||||
@ -45,4 +45,4 @@ subroutine UB88_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
|
||||
end do
|
||||
|
||||
end subroutine UB88_gga_exchange_energy
|
||||
end subroutine B88_gga_exchange_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UB88_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
subroutine B88_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
|
||||
! Compute Becke's GGA exchange potential
|
||||
|
||||
@ -70,4 +70,4 @@ subroutine UB88_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine UB88_gga_exchange_potential
|
||||
end subroutine B88_gga_exchange_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine UC16_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
subroutine C16_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
|
||||
! Compute unrestricted Chachiyo's LDA correlation energy
|
||||
|
||||
@ -90,4 +90,4 @@ subroutine UC16_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
|
||||
Ec(2) = Ec(2) - Ec(1) - Ec(3)
|
||||
|
||||
end subroutine UC16_lda_correlation_energy
|
||||
end subroutine C16_lda_correlation_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UC16_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
subroutine C16_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
|
||||
! Compute unrestricted LDA correlation potential
|
||||
|
||||
@ -128,4 +128,4 @@ include 'parameters.h'
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine UC16_lda_correlation_potential
|
||||
end subroutine C16_lda_correlation_potential
|
@ -1,5 +1,6 @@
|
||||
subroutine UCC_lda_exchange_derivative_discontinuity(nEns,wEns,nCC,aCC,nGrid,weight,rhow,Cx_choice,doNcentered,&
|
||||
kappa,ExDD)
|
||||
subroutine CC_lda_exchange_derivative_discontinuity(nEns,wEns,nCC,aCC,nGrid,weight,rhow,Cx_choice,&
|
||||
doNcentered,kappa,ExDD)
|
||||
|
||||
|
||||
! Compute the unrestricted version of the curvature-corrected exchange ensemble derivative
|
||||
|
||||
@ -152,26 +153,18 @@ subroutine UCC_lda_exchange_derivative_discontinuity(nEns,wEns,nCC,aCC,nGrid,wei
|
||||
|
||||
ExDD(:) = 0d0
|
||||
|
||||
if (doNcentered) then
|
||||
do iEns=1,nEns
|
||||
do jEns=2,nEns
|
||||
|
||||
do iEns=1,nEns
|
||||
do jEns=2,nEns
|
||||
if(doNcentered) then
|
||||
|
||||
ExDD(iEns) = ExDD(iEns) + (Kronecker_delta(iEns,jEns) - kappa(iEns)* wEns(jEns))*dExdw(jEns)
|
||||
ExDD(iEns) = ExDD(iEns) + (Kronecker_delta(iEns,jEns) - kappa(iEns)*wEns(jEns))*dExdw(jEns)
|
||||
else
|
||||
|
||||
ExDD(iEns) = ExDD(iEns) + (Kronecker_delta(iEns,jEns) - wEns(jEns))*dExdw(jEns)
|
||||
end if
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
else
|
||||
|
||||
do iEns=1,nEns
|
||||
do jEns=2,nEns
|
||||
|
||||
ExDD(iEns) = ExDD(iEns) + (Kronecker_delta(iEns,jEns) - wEns(jEns))*dExdw(jEns)
|
||||
|
||||
end do
|
||||
end do
|
||||
|
||||
endif
|
||||
|
||||
end subroutine UCC_lda_exchange_derivative_discontinuity
|
||||
end subroutine CC_lda_exchange_derivative_discontinuity
|
@ -1,4 +1,4 @@
|
||||
subroutine UCC_lda_exchange_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho,Cx_choice,doNcentered,Ex)
|
||||
subroutine CC_lda_exchange_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho,Cx_choice,doNcentered,Ex)
|
||||
|
||||
! Compute the unrestricted version of the curvature-corrected exchange functional
|
||||
|
||||
@ -107,4 +107,4 @@ subroutine UCC_lda_exchange_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho,Cx_choice,
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine UCC_lda_exchange_energy
|
||||
end subroutine CC_lda_exchange_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rhow,rho,Cx_choice,doNcentered,LZx,Ex)
|
||||
subroutine CC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rhow,rho,Cx_choice,doNcentered,LZx,Ex)
|
||||
|
||||
|
||||
! Compute the unrestricted version of the curvature-corrected exchange functional
|
||||
@ -128,4 +128,4 @@ subroutine UCC_lda_exchange_individual_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine UCC_lda_exchange_individual_energy
|
||||
end subroutine CC_lda_exchange_individual_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UCC_lda_exchange_potential(nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,rho,Cx_choice,doNcentered,Fx)
|
||||
subroutine CC_lda_exchange_potential(nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,rho,Cx_choice,doNcentered,Fx)
|
||||
|
||||
! Compute the unrestricted version of the curvature-corrected exchange potential
|
||||
|
||||
@ -116,4 +116,4 @@ subroutine UCC_lda_exchange_potential(nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,rho
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine UCC_lda_exchange_potential
|
||||
end subroutine CC_lda_exchange_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine UG96_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
subroutine G96_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
|
||||
! Compute Gill's 96 GGA exchange energy
|
||||
|
||||
@ -45,4 +45,4 @@ subroutine UG96_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
|
||||
end do
|
||||
|
||||
end subroutine UG96_gga_exchange_energy
|
||||
end subroutine G96_gga_exchange_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UG96_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
subroutine G96_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
|
||||
! Compute Gill's GGA exchange poential
|
||||
|
||||
@ -61,4 +61,4 @@ subroutine UG96_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine UG96_gga_exchange_potential
|
||||
end subroutine G96_gga_exchange_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine ULYP_gga_correlation_energy(nGrid,weight,rho,drho,Ec)
|
||||
subroutine LYP_gga_correlation_energy(nGrid,weight,rho,drho,Ec)
|
||||
|
||||
! Compute unrestricted LYP GGA correlation energy
|
||||
|
||||
@ -70,4 +70,4 @@ subroutine ULYP_gga_correlation_energy(nGrid,weight,rho,drho,Ec)
|
||||
|
||||
end do
|
||||
|
||||
end subroutine ULYP_gga_correlation_energy
|
||||
end subroutine LYP_gga_correlation_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine ULYP_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
subroutine LYP_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
|
||||
! Compute LYP correlation potential
|
||||
|
||||
@ -153,4 +153,4 @@ subroutine ULYP_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine ULYP_gga_correlation_potential
|
||||
end subroutine LYP_gga_correlation_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine UPBE_gga_correlation_energy(nGrid,weight,rho,drho,Ec)
|
||||
subroutine PBE_gga_correlation_energy(nGrid,weight,rho,drho,Ec)
|
||||
|
||||
! Compute unrestricted PBE GGA correlation energy
|
||||
|
||||
@ -169,4 +169,4 @@ subroutine UPBE_gga_correlation_energy(nGrid,weight,rho,drho,Ec)
|
||||
Ec(2) = Ec(2) - Ec(1) - Ec(3)
|
||||
|
||||
|
||||
end subroutine UPBE_gga_correlation_energy
|
||||
end subroutine PBE_gga_correlation_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UPBE_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
subroutine PBE_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
|
||||
! Compute LYP correlation potential
|
||||
|
||||
@ -36,7 +36,7 @@ subroutine UPBE_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
|
||||
! Compute matrix elements in the AO basis
|
||||
|
||||
call UPW92_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
call PW92_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
|
||||
do mu=1,nBas
|
||||
do nu=1,nBas
|
||||
@ -85,4 +85,4 @@ subroutine UPBE_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine UPBE_gga_correlation_potential
|
||||
end subroutine PBE_gga_correlation_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine UPBE_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
subroutine PBE_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
|
||||
! Compute PBE GGA exchange energy
|
||||
|
||||
@ -46,4 +46,4 @@ subroutine UPBE_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
|
||||
end do
|
||||
|
||||
end subroutine UPBE_gga_exchange_energy
|
||||
end subroutine PBE_gga_exchange_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UPBE_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
subroutine PBE_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
|
||||
! Compute PBE GGA exchange potential
|
||||
|
||||
@ -64,4 +64,4 @@ subroutine UPBE_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine UPBE_gga_exchange_potential
|
||||
end subroutine PBE_gga_exchange_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine UPW92_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
subroutine PW92_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
|
||||
! Compute unrestricted PW92 LDA correlation energy
|
||||
|
||||
@ -117,4 +117,4 @@ subroutine UPW92_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
|
||||
Ec(2) = Ec(2) - Ec(1) - Ec(3)
|
||||
|
||||
end subroutine UPW92_lda_correlation_energy
|
||||
end subroutine PW92_lda_correlation_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UPW92_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
subroutine PW92_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
|
||||
! Compute unrestricted PW92 LDA correlation potential
|
||||
|
||||
@ -182,4 +182,4 @@ subroutine UPW92_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine UPW92_lda_correlation_potential
|
||||
end subroutine PW92_lda_correlation_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine US51_lda_exchange_energy(nGrid,weight,rho,Ex)
|
||||
subroutine S51_lda_exchange_energy(nGrid,weight,rho,Ex)
|
||||
|
||||
! Compute Slater's LDA exchange energy
|
||||
|
||||
@ -31,4 +31,4 @@ subroutine US51_lda_exchange_energy(nGrid,weight,rho,Ex)
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine US51_lda_exchange_energy
|
||||
end subroutine S51_lda_exchange_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine US51_lda_exchange_individual_energy(nEns,nGrid,weight,rhow,rho,LZx,Ex)
|
||||
subroutine S51_lda_exchange_individual_energy(nEns,nGrid,weight,rhow,rho,LZx,Ex)
|
||||
|
||||
! Compute the restricted version of Slater's LDA exchange individual energy
|
||||
|
||||
@ -58,4 +58,4 @@ subroutine US51_lda_exchange_individual_energy(nEns,nGrid,weight,rhow,rho,LZx,Ex
|
||||
|
||||
enddo
|
||||
|
||||
end subroutine US51_lda_exchange_individual_energy
|
||||
end subroutine S51_lda_exchange_individual_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine US51_lda_exchange_potential(nGrid,weight,nBas,AO,rho,Fx)
|
||||
subroutine S51_lda_exchange_potential(nGrid,weight,nBas,AO,rho,Fx)
|
||||
|
||||
! Compute Slater's LDA exchange potential
|
||||
|
||||
@ -42,4 +42,4 @@ subroutine US51_lda_exchange_potential(nGrid,weight,nBas,AO,rho,Fx)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine US51_lda_exchange_potential
|
||||
end subroutine S51_lda_exchange_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine UVWN3_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
subroutine VWN3_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
|
||||
! Compute unrestricted VWN3 LDA correlation energy
|
||||
|
||||
@ -134,4 +134,4 @@ subroutine UVWN3_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
|
||||
Ec(2) = Ec(2) - Ec(1) - Ec(3)
|
||||
|
||||
end subroutine UVWN3_lda_correlation_energy
|
||||
end subroutine VWN3_lda_correlation_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UVWN3_lda_correlation_individual_energy(nEns,nGrid,weight,rhow,rho,doNcentered,LZc,Ec)
|
||||
subroutine VWN3_lda_correlation_individual_energy(nEns,nGrid,weight,rhow,rho,doNcentered,LZc,Ec)
|
||||
|
||||
! Compute VWN3 LDA correlation potential
|
||||
|
||||
@ -178,4 +178,4 @@ subroutine UVWN3_lda_correlation_individual_energy(nEns,nGrid,weight,rhow,rho,do
|
||||
|
||||
end do
|
||||
|
||||
end subroutine UVWN3_lda_correlation_individual_energy
|
||||
end subroutine VWN3_lda_correlation_individual_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UVWN3_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
subroutine VWN3_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
|
||||
! Compute unrestricted VWN3 LDA correlation potential
|
||||
|
||||
@ -193,4 +193,4 @@ subroutine UVWN3_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine UVWN3_lda_correlation_potential
|
||||
end subroutine VWN3_lda_correlation_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine UVWN5_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
subroutine VWN5_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
|
||||
! Compute unrestricted VWN5 LDA correlation energy
|
||||
|
||||
@ -134,4 +134,4 @@ subroutine UVWN5_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
|
||||
Ec(2) = Ec(2) - Ec(1) - Ec(3)
|
||||
|
||||
end subroutine UVWN5_lda_correlation_energy
|
||||
end subroutine VWN5_lda_correlation_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UVWN5_lda_correlation_individual_energy(nEns,nGrid,weight,rhow,rho,LZc,Ec)
|
||||
subroutine VWN5_lda_correlation_individual_energy(nEns,nGrid,weight,rhow,rho,LZc,Ec)
|
||||
|
||||
! Compute VWN5 LDA correlation potential
|
||||
|
||||
@ -181,4 +181,4 @@ subroutine UVWN5_lda_correlation_individual_energy(nEns,nGrid,weight,rhow,rho,LZ
|
||||
|
||||
end do
|
||||
|
||||
end subroutine UVWN5_lda_correlation_individual_energy
|
||||
end subroutine VWN5_lda_correlation_individual_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UVWN5_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
subroutine VWN5_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
|
||||
! Compute unrestricted VWN5 LDA correlation potential
|
||||
|
||||
@ -190,4 +190,4 @@ subroutine UVWN5_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine UVWN5_lda_correlation_potential
|
||||
end subroutine VWN5_lda_correlation_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine UW38_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
subroutine W38_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
|
||||
! Compute the unrestricted version of the Wigner's LDA correlation energy
|
||||
|
||||
@ -49,4 +49,4 @@ subroutine UW38_lda_correlation_energy(nGrid,weight,rho,Ec)
|
||||
|
||||
Ec(2) = -4d0*a*Ec(2)
|
||||
|
||||
end subroutine UW38_lda_correlation_energy
|
||||
end subroutine W38_lda_correlation_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UW38_lda_correlation_individual_energy(nGrid,weight,rhow,rho,Ec)
|
||||
subroutine W38_lda_correlation_individual_energy(nGrid,weight,rhow,rho,Ec)
|
||||
|
||||
! Compute the unrestricted version of the Wigner's LDA individual energy
|
||||
|
||||
@ -59,4 +59,4 @@ subroutine UW38_lda_correlation_individual_energy(nGrid,weight,rhow,rho,Ec)
|
||||
|
||||
Ec(2) = -4d0*a*Ec(2)
|
||||
|
||||
end subroutine UW38_lda_correlation_individual_energy
|
||||
end subroutine W38_lda_correlation_individual_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine UW38_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
subroutine W38_lda_correlation_potential(nGrid,weight,nBas,AO,rho,Fc)
|
||||
|
||||
! Compute the unrestricted version of the Wigner's LDA correlation potential
|
||||
|
||||
@ -73,4 +73,4 @@ include 'parameters.h'
|
||||
|
||||
Fc(:,:,:) = -4d0*a*Fc(:,:,:)
|
||||
|
||||
end subroutine UW38_lda_correlation_potential
|
||||
end subroutine W38_lda_correlation_potential
|
@ -1,5 +1,4 @@
|
||||
subroutine allocate_grid(nNuc,ZNuc,max_ang_mom,min_exponent,max_exponent, &
|
||||
radial_precision,nAng,nGrid)
|
||||
subroutine allocate_grid(nNuc,ZNuc,max_ang_mom,min_exponent,max_exponent,radial_precision,nAng,nGrid)
|
||||
|
||||
! Allocate quadrature grid with numgrid (Radovan Bast)
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_auxiliary_energy(nBas,nEns,eps,occnum,Eaux)
|
||||
subroutine auxiliary_energy(nBas,nEns,eps,occnum,Eaux)
|
||||
|
||||
! Compute the auxiliary KS energies
|
||||
|
||||
@ -52,4 +52,4 @@ subroutine unrestricted_auxiliary_energy(nBas,nEns,eps,occnum,Eaux)
|
||||
|
||||
end do
|
||||
|
||||
end subroutine unrestricted_auxiliary_energy
|
||||
end subroutine auxiliary_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_correlation_derivative_discontinuity(rung,DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ec)
|
||||
subroutine correlation_derivative_discontinuity(rung,DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ec)
|
||||
|
||||
! Compute the correlation part of the derivative discontinuity
|
||||
|
||||
@ -34,26 +34,26 @@ subroutine unrestricted_correlation_derivative_discontinuity(rung,DFA,nEns,wEns,
|
||||
|
||||
case(1)
|
||||
|
||||
call unrestricted_lda_correlation_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,Ec)
|
||||
call lda_correlation_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,Ec)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
case(2)
|
||||
|
||||
call unrestricted_gga_correlation_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,Ec)
|
||||
call gga_correlation_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,Ec)
|
||||
|
||||
! MGGA functionals
|
||||
|
||||
case(3)
|
||||
|
||||
call unrestricted_mgga_correlation_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,Ec)
|
||||
call mgga_correlation_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,Ec)
|
||||
|
||||
! Hybrid functionals
|
||||
|
||||
case(4)
|
||||
|
||||
call unrestricted_hybrid_correlation_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,Ec)
|
||||
call hybrid_correlation_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,Ec)
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_correlation_derivative_discontinuity
|
||||
end subroutine correlation_derivative_discontinuity
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_correlation_energy(rung,DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
subroutine correlation_energy(rung,DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
|
||||
! Compute the unrestricted version of the correlation energy
|
||||
|
||||
@ -34,26 +34,26 @@ subroutine unrestricted_correlation_energy(rung,DFA,nEns,wEns,nGrid,weight,rho,d
|
||||
|
||||
case(1)
|
||||
|
||||
call unrestricted_lda_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,Ec)
|
||||
call lda_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,Ec)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
case(2)
|
||||
|
||||
call unrestricted_gga_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
call gga_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
|
||||
! MGGA functionals
|
||||
|
||||
case(3)
|
||||
|
||||
call unrestricted_mgga_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
call mgga_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
|
||||
! Hybrid functionals
|
||||
|
||||
case(4)
|
||||
|
||||
call unrestricted_hybrid_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
call hybrid_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_correlation_energy
|
||||
end subroutine correlation_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns,wEns,nGrid,weight, &
|
||||
subroutine correlation_individual_energy(rung,DFA,LDA_centered,nEns,wEns,nGrid,weight, &
|
||||
rhow,drhow,rho,drho,LZc,Ec)
|
||||
|
||||
! Compute the correlation energy of individual states
|
||||
@ -37,7 +37,7 @@ subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns
|
||||
|
||||
case(1)
|
||||
|
||||
call unrestricted_lda_correlation_individual_energy(DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,rho,LZc,Ec)
|
||||
call lda_correlation_individual_energy(DFA,LDA_centered,nEns,wEns,nGrid,weight,rhow,rho,LZc,Ec)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
@ -55,8 +55,8 @@ subroutine unrestricted_correlation_individual_energy(rung,DFA,LDA_centered,nEns
|
||||
|
||||
case(4)
|
||||
|
||||
call unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,LZc,Ec)
|
||||
call hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,LZc,Ec)
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_correlation_individual_energy
|
||||
end subroutine correlation_individual_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_correlation_potential(rung,DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
subroutine correlation_potential(rung,DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
|
||||
! Compute the correlation potential
|
||||
|
||||
@ -43,26 +43,26 @@ subroutine unrestricted_correlation_potential(rung,DFA,nEns,wEns,nGrid,weight,nB
|
||||
|
||||
case(1)
|
||||
|
||||
call unrestricted_lda_correlation_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,rho,Fc)
|
||||
call lda_correlation_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,rho,Fc)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
case(2)
|
||||
|
||||
call unrestricted_gga_correlation_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
call gga_correlation_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
|
||||
! MGGA functionals
|
||||
|
||||
case(3)
|
||||
|
||||
call unrestricted_mgga_correlation_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
call mgga_correlation_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
|
||||
! Hybrid functionals
|
||||
|
||||
case(4)
|
||||
|
||||
call unrestricted_hybrid_correlation_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
call hybrid_correlation_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_correlation_potential
|
||||
end subroutine correlation_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_density_matrix(nBas,nEns,c,P,occnum)
|
||||
subroutine density_matrix(nBas,nEns,c,P,occnum)
|
||||
|
||||
! Calculate density matrices
|
||||
|
||||
@ -45,4 +45,4 @@ subroutine unrestricted_density_matrix(nBas,nEns,c,P,occnum)
|
||||
|
||||
|
||||
|
||||
end subroutine unrestricted_density_matrix
|
||||
end subroutine density_matrix
|
@ -163,6 +163,7 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
|
||||
n_diis = 0
|
||||
F_diis(:,:,:) = 0d0
|
||||
err_diis(:,:,:) = 0d0
|
||||
rcond(:) = 1d0
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! Main SCF loop
|
||||
@ -184,7 +185,7 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
|
||||
! Compute density matrix
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
call unrestricted_density_matrix(nBas,nEns,c(:,:,:),P(:,:,:,:),occnum(:,:,:))
|
||||
call density_matrix(nBas,nEns,c(:,:,:),P(:,:,:,:),occnum(:,:,:))
|
||||
|
||||
! Weight-dependent density matrix
|
||||
|
||||
@ -236,20 +237,20 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
|
||||
! Compute Hartree potential
|
||||
|
||||
do ispin=1,nspin
|
||||
call unrestricted_hartree_potential(nBas,Pw(:,:,ispin),ERI,J(:,:,ispin))
|
||||
call hartree_potential(nBas,Pw(:,:,ispin),ERI,J(:,:,ispin))
|
||||
end do
|
||||
|
||||
! Compute exchange potential
|
||||
|
||||
do ispin=1,nspin
|
||||
call unrestricted_exchange_potential(x_rung,x_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
|
||||
call exchange_potential(x_rung,x_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
|
||||
Pw(:,:,ispin),ERI,AO,dAO,rhow(:,ispin),drhow(:,:,ispin), &
|
||||
Cx_choice,doNcentered,Fx(:,:,ispin),FxHF(:,:,ispin))
|
||||
end do
|
||||
|
||||
! Compute correlation potential
|
||||
|
||||
call unrestricted_correlation_potential(c_rung,c_DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rhow,drhow,Fc)
|
||||
call correlation_potential(c_rung,c_DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rhow,drhow,Fc)
|
||||
|
||||
! Build Fock operator
|
||||
|
||||
@ -268,7 +269,7 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
|
||||
! DIIS extrapolation
|
||||
|
||||
n_diis = min(n_diis+1,max_diis)
|
||||
if(minval(rcond(:)) > 1d-7) then
|
||||
if(minval(rcond(:)) > 1d-15) then
|
||||
do ispin=1,nspin
|
||||
call DIIS_extrapolation(rcond(ispin),nBasSq,nBasSq,n_diis, &
|
||||
err_diis(:,:,ispin),F_diis(:,:,ispin),err(:,:,ispin),F(:,:,ispin))
|
||||
@ -314,19 +315,19 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
|
||||
|
||||
! Hartree energy
|
||||
|
||||
call unrestricted_hartree_energy(nBas,Pw,J,EH)
|
||||
call hartree_energy(nBas,Pw,J,EH)
|
||||
|
||||
! Exchange energy
|
||||
|
||||
do ispin=1,nspin
|
||||
call unrestricted_exchange_energy(x_rung,x_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
|
||||
call exchange_energy(x_rung,x_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
|
||||
Pw(:,:,ispin),FxHF(:,:,ispin),rhow(:,ispin),drhow(:,:,ispin), &
|
||||
Cx_choice,doNcentered,Ex(ispin))
|
||||
end do
|
||||
|
||||
! Correlation energy
|
||||
|
||||
call unrestricted_correlation_energy(c_rung,c_DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ec)
|
||||
call correlation_energy(c_rung,c_DFA,nEns,wEns,nGrid,weight,rhow,drhow,Ec)
|
||||
|
||||
! Total energy
|
||||
|
||||
@ -346,6 +347,9 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
|
||||
end do
|
||||
write(*,*)'------------------------------------------------------------------------------------------'
|
||||
|
||||
! print*,'Ensemble energy:',Ew + ENuc,'au'
|
||||
|
||||
|
||||
!------------------------------------------------------------------------
|
||||
! End of SCF loop
|
||||
!------------------------------------------------------------------------
|
||||
@ -377,7 +381,7 @@ subroutine eDFT_UKS(x_rung,x_DFA,c_rung,c_DFA,nEns,wEns,nCC,aCC,nGrid,weight,max
|
||||
! Compute individual energies from ensemble energy
|
||||
!------------------------------------------------------------------------
|
||||
|
||||
call unrestricted_individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
|
||||
call individual_energy(x_rung,x_DFA,c_rung,c_DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
|
||||
AO,dAO,T,V,ERI,ENuc,eKS,Pw,rhow,drhow,J,Fx,FxHF,Fc,P,rho,drho,occnum,Cx_choice,doNcentered,Ew)
|
||||
|
||||
end subroutine eDFT_UKS
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_exchange_derivative_discontinuity(rung,DFA,nEns,wEns,nCC,aCC,nGrid,weight,rhow,drhow,&
|
||||
subroutine exchange_derivative_discontinuity(rung,DFA,nEns,wEns,nCC,aCC,nGrid,weight,rhow,drhow,&
|
||||
Cx_choice,doNcentered,kappa,ExDD)
|
||||
|
||||
! Compute the exchange part of the derivative discontinuity
|
||||
@ -22,10 +22,10 @@ subroutine unrestricted_exchange_derivative_discontinuity(rung,DFA,nEns,wEns,nCC
|
||||
logical,intent(in) :: doNcentered
|
||||
double precision,intent(in) :: kappa(nEns)
|
||||
|
||||
! Local variables
|
||||
!Local variables
|
||||
|
||||
|
||||
! Output variables
|
||||
!Output variables
|
||||
|
||||
double precision,intent(out) :: ExDD(nEns)
|
||||
|
||||
@ -41,27 +41,27 @@ subroutine unrestricted_exchange_derivative_discontinuity(rung,DFA,nEns,wEns,nCC
|
||||
|
||||
case(1)
|
||||
|
||||
call unrestricted_lda_exchange_derivative_discontinuity(DFA,nEns,wEns(:),nCC,aCC,nGrid,weight(:),&
|
||||
call lda_exchange_derivative_discontinuity(DFA,nEns,wEns(:),nCC,aCC,nGrid,weight(:),&
|
||||
rhow(:),Cx_choice,doNcentered,kappa,ExDD(:))
|
||||
! GGA functionals
|
||||
|
||||
case(2)
|
||||
|
||||
call unrestricted_gga_exchange_derivative_discontinuity(DFA,nEns,wEns(:),nGrid,weight(:),rhow(:),drhow(:,:),ExDD(:))
|
||||
call gga_exchange_derivative_discontinuity(DFA,nEns,wEns(:),nGrid,weight(:),rhow(:),drhow(:,:),ExDD(:))
|
||||
|
||||
! MGGA functionals
|
||||
|
||||
case(3)
|
||||
|
||||
call unrestricted_mgga_exchange_derivative_discontinuity(DFA,nEns,wEns(:),nGrid,weight(:),rhow(:),drhow(:,:),ExDD(:))
|
||||
call mgga_exchange_derivative_discontinuity(DFA,nEns,wEns(:),nGrid,weight(:),rhow(:),drhow(:,:),ExDD(:))
|
||||
|
||||
! Hybrid functionals
|
||||
|
||||
case(4)
|
||||
|
||||
call unrestricted_hybrid_exchange_derivative_discontinuity(DFA,nEns,wEns(:),nCC,aCC,nGrid,weight(:),&
|
||||
call hybrid_exchange_derivative_discontinuity(DFA,nEns,wEns(:),nCC,aCC,nGrid,weight(:),&
|
||||
rhow(:),Cx_choice,doNcentered,ExDD(:))
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_exchange_derivative_discontinuity
|
||||
end subroutine exchange_derivative_discontinuity
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_exchange_energy(rung,DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,P,FxHF, &
|
||||
subroutine exchange_energy(rung,DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,P,FxHF, &
|
||||
rho,drho,Cx_choice,doNcentered,Ex)
|
||||
|
||||
! Compute the exchange energy
|
||||
@ -43,27 +43,27 @@ subroutine unrestricted_exchange_energy(rung,DFA,LDA_centered,nEns,wEns,nCC,aCC,
|
||||
|
||||
case(1)
|
||||
|
||||
call unrestricted_lda_exchange_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,rho,Cx_choice,doNcentered,Ex)
|
||||
call lda_exchange_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,rho,Cx_choice,doNcentered,Ex)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
case(2)
|
||||
|
||||
call unrestricted_gga_exchange_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ex)
|
||||
call gga_exchange_energy(DFA,nEns,wEns,nCC,aCC,nGrid,weight,rho,drho,Cx_choice,Ex)
|
||||
|
||||
! MGGA functionals
|
||||
|
||||
case(3)
|
||||
|
||||
call unrestricted_mgga_exchange_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ex)
|
||||
call mgga_exchange_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ex)
|
||||
|
||||
! Hybrid functionals
|
||||
|
||||
case(4)
|
||||
|
||||
call unrestricted_hybrid_exchange_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,P,FxHF, &
|
||||
call hybrid_exchange_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,P,FxHF, &
|
||||
rho,drho,Cx_choice,doNcentered,Ex)
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_exchange_energy
|
||||
end subroutine exchange_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_exchange_individual_energy(rung,DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
|
||||
subroutine exchange_individual_energy(rung,DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas, &
|
||||
ERI,Pw,rhow,drhow,P,rho,drho,Cx_choice,doNcentered,LZx,Ex)
|
||||
|
||||
! Compute the exchange individual energy
|
||||
@ -45,27 +45,27 @@ subroutine unrestricted_exchange_individual_energy(rung,DFA,LDA_centered,nEns,wE
|
||||
|
||||
case(1)
|
||||
|
||||
call unrestricted_lda_exchange_individual_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,&
|
||||
call lda_exchange_individual_energy(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,&
|
||||
rhow,rho,Cx_choice,doNcentered,LZx,Ex)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
case(2)
|
||||
|
||||
call unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,LZx,Ex)
|
||||
call gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,LZx,Ex)
|
||||
|
||||
! MGGA functionals
|
||||
|
||||
case(3)
|
||||
|
||||
call unrestricted_mgga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,LZx,Ex)
|
||||
call mgga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,LZx,Ex)
|
||||
|
||||
! Hybrid functionals
|
||||
|
||||
case(4)
|
||||
|
||||
call unrestricted_hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,nBas,ERI,Pw,rhow,drhow,P,rho,drho,LZx,Ex)
|
||||
call hybrid_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,nBas,ERI,Pw,rhow,drhow,P,rho,drho,LZx,Ex)
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_exchange_individual_energy
|
||||
end subroutine exchange_individual_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_exchange_potential(rung,DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,P, &
|
||||
subroutine exchange_potential(rung,DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,P, &
|
||||
ERI,AO,dAO,rho,drho,Cx_choice,doNcentered,Fx,FxHF)
|
||||
|
||||
! Compute the exchange potential
|
||||
@ -52,28 +52,29 @@ subroutine unrestricted_exchange_potential(rung,DFA,LDA_centered,nEns,wEns,nCC,a
|
||||
|
||||
case(1)
|
||||
|
||||
call unrestricted_lda_exchange_potential(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,rho,&
|
||||
call lda_exchange_potential(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,rho,&
|
||||
Cx_choice,doNcentered,Fx)
|
||||
|
||||
! GGA functionals
|
||||
|
||||
case(2)
|
||||
|
||||
call unrestricted_gga_exchange_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
call gga_exchange_potential(DFA,nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,dAO,rho,drho,&
|
||||
Cx_choice,Fx)
|
||||
|
||||
! MGGA functionals
|
||||
|
||||
case(3)
|
||||
|
||||
call unrestricted_mgga_exchange_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
call mgga_exchange_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
|
||||
! Hybrid functionals
|
||||
|
||||
case(4)
|
||||
|
||||
call unrestricted_hybrid_exchange_potential(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,P, &
|
||||
call hybrid_exchange_potential(DFA,LDA_centered,nEns,wEns,nCC,aCC,nGrid,weight,nBas,P, &
|
||||
ERI,AO,dAO,rho,drho,Cx_choice,doNcentered,Fx,FxHF)
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_exchange_potential
|
||||
end subroutine exchange_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_fock_exchange_energy(nBas,P,Fx,Ex)
|
||||
subroutine fock_exchange_energy(nBas,P,Fx,Ex)
|
||||
|
||||
! Compute the (exact) Fock exchange energy
|
||||
|
||||
@ -22,4 +22,4 @@ subroutine unrestricted_fock_exchange_energy(nBas,P,Fx,Ex)
|
||||
|
||||
Ex = 0.5d0*trace_matrix(nBas,matmul(P,Fx))
|
||||
|
||||
end subroutine unrestricted_fock_exchange_energy
|
||||
end subroutine fock_exchange_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_fock_exchange_individual_energy(nBas,nEns,Pw,P,ERI,LZx,Ex)
|
||||
subroutine fock_exchange_individual_energy(nBas,nEns,Pw,P,ERI,LZx,Ex)
|
||||
|
||||
! Compute the HF individual energy in the unrestricted formalism
|
||||
|
||||
@ -32,7 +32,7 @@ subroutine unrestricted_fock_exchange_individual_energy(nBas,nEns,Pw,P,ERI,LZx,E
|
||||
|
||||
do ispin=1,nspin
|
||||
|
||||
call unrestricted_fock_exchange_potential(nBas,Pw(:,:,ispin),ERI,Fx(:,:,ispin))
|
||||
call fock_exchange_potential(nBas,Pw(:,:,ispin),ERI,Fx(:,:,ispin))
|
||||
|
||||
LZx(ispin) = - 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,ispin),Fx(:,:,ispin)))
|
||||
|
||||
@ -43,4 +43,4 @@ subroutine unrestricted_fock_exchange_individual_energy(nBas,nEns,Pw,P,ERI,LZx,E
|
||||
end do
|
||||
|
||||
|
||||
end subroutine unrestricted_fock_exchange_individual_energy
|
||||
end subroutine fock_exchange_individual_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_fock_exchange_potential(nBas,P,ERI,Fx)
|
||||
subroutine fock_exchange_potential(nBas,P,ERI,Fx)
|
||||
|
||||
! Compute the Fock exchange potential
|
||||
|
||||
@ -31,4 +31,4 @@ subroutine unrestricted_fock_exchange_potential(nBas,P,ERI,Fx)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine unrestricted_fock_exchange_potential
|
||||
end subroutine fock_exchange_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_gga_correlation_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,Ec)
|
||||
subroutine gga_correlation_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,Ec)
|
||||
|
||||
! Compute the correlation GGA part of the derivative discontinuity
|
||||
|
||||
@ -41,4 +41,4 @@ subroutine unrestricted_gga_correlation_derivative_discontinuity(DFA,nEns,wEns,n
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_gga_correlation_derivative_discontinuity
|
||||
end subroutine gga_correlation_derivative_discontinuity
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_gga_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
subroutine gga_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
|
||||
! Compute unrestricted GGA correlation energy
|
||||
|
||||
@ -28,11 +28,11 @@ subroutine unrestricted_gga_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,dr
|
||||
|
||||
case (1)
|
||||
|
||||
call ULYP_gga_correlation_energy(nGrid,weight,rho,drho,Ec)
|
||||
call LYP_gga_correlation_energy(nGrid,weight,rho,drho,Ec)
|
||||
|
||||
case (2)
|
||||
|
||||
call UPBE_gga_correlation_energy(nGrid,weight,rho,drho,Ec)
|
||||
call PBE_gga_correlation_energy(nGrid,weight,rho,drho,Ec)
|
||||
|
||||
case default
|
||||
|
||||
@ -41,4 +41,4 @@ subroutine unrestricted_gga_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,dr
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_gga_correlation_energy
|
||||
end subroutine gga_correlation_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_gga_correlation_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
subroutine gga_correlation_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
|
||||
! Compute unrestricted GGA correlation potential
|
||||
|
||||
@ -30,11 +30,11 @@ subroutine unrestricted_gga_correlation_potential(DFA,nEns,wEns,nGrid,weight,nBa
|
||||
|
||||
case (1)
|
||||
|
||||
call ULYP_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
call LYP_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
|
||||
case (2)
|
||||
|
||||
call UPBE_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
call PBE_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
|
||||
case default
|
||||
|
||||
@ -43,4 +43,4 @@ subroutine unrestricted_gga_correlation_potential(DFA,nEns,wEns,nGrid,weight,nBa
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_gga_correlation_potential
|
||||
end subroutine gga_correlation_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_gga_exchange_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,drhow,ExDD)
|
||||
subroutine gga_exchange_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,drhow,ExDD)
|
||||
|
||||
! Compute the exchange GGA part of the derivative discontinuity
|
||||
|
||||
@ -45,4 +45,4 @@ subroutine unrestricted_gga_exchange_derivative_discontinuity(DFA,nEns,wEns,nGri
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_gga_exchange_derivative_discontinuity
|
||||
end subroutine gga_exchange_derivative_discontinuity
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_gga_exchange_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ex)
|
||||
subroutine gga_exchange_energy(DFA,nEns,wEns,nCC,aCC,nGrid,weight,rho,drho,Cx_choice,Ex)
|
||||
|
||||
! Select GGA exchange functional for energy calculation
|
||||
|
||||
@ -11,11 +11,15 @@ subroutine unrestricted_gga_exchange_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,
|
||||
integer,intent(in) :: DFA
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nCC
|
||||
double precision,intent(in) :: aCC(nCC,nEns-1)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
double precision,intent(in) :: drho(ncart,nGrid)
|
||||
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ex
|
||||
@ -24,15 +28,20 @@ subroutine unrestricted_gga_exchange_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,
|
||||
|
||||
case (1)
|
||||
|
||||
call UG96_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
call G96_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
|
||||
case (2)
|
||||
|
||||
call UB88_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
call B88_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
|
||||
case (3)
|
||||
|
||||
call UPBE_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
call PBE_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
|
||||
case (4)
|
||||
|
||||
call CC_B88_gga_exchange_energy(nEns,wEns,nCC,aCC,nGrid,weight,rho,drho,&
|
||||
Cx_choice,Ex)
|
||||
|
||||
case default
|
||||
|
||||
@ -41,4 +50,4 @@ subroutine unrestricted_gga_exchange_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_gga_exchange_energy
|
||||
end subroutine gga_exchange_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,LZx,Ex)
|
||||
subroutine gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weight,rhow,drhow,rho,drho,LZx,Ex)
|
||||
|
||||
! Compute GGA exchange energy for individual states
|
||||
|
||||
@ -33,4 +33,4 @@ subroutine unrestricted_gga_exchange_individual_energy(DFA,nEns,wEns,nGrid,weigh
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_gga_exchange_individual_energy
|
||||
end subroutine gga_exchange_individual_energy
|
@ -1,4 +1,5 @@
|
||||
subroutine unrestricted_gga_exchange_potential(DFA,nEns,wEns,nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
subroutine gga_exchange_potential(DFA,nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,dAO,&
|
||||
rho,drho,Cx_choice,Fx)
|
||||
|
||||
! Select GGA exchange functional for potential calculation
|
||||
|
||||
@ -10,6 +11,8 @@ subroutine unrestricted_gga_exchange_potential(DFA,nEns,wEns,nGrid,weight,nBas,A
|
||||
integer,intent(in) :: DFA
|
||||
integer,intent(in) :: nEns
|
||||
double precision,intent(in) :: wEns(nEns)
|
||||
integer,intent(in) :: nCC
|
||||
double precision,intent(in) :: aCC(nCC,nEns-1)
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
integer,intent(in) :: nBas
|
||||
@ -17,6 +20,7 @@ subroutine unrestricted_gga_exchange_potential(DFA,nEns,wEns,nGrid,weight,nBas,A
|
||||
double precision,intent(in) :: dAO(3,nBas,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid)
|
||||
double precision,intent(in) :: drho(3,nGrid)
|
||||
integer,intent(in) :: Cx_choice
|
||||
|
||||
! Output variables
|
||||
|
||||
@ -28,15 +32,20 @@ subroutine unrestricted_gga_exchange_potential(DFA,nEns,wEns,nGrid,weight,nBas,A
|
||||
|
||||
case (1)
|
||||
|
||||
call UG96_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
call G96_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
|
||||
case (2)
|
||||
|
||||
call UB88_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
call B88_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
|
||||
case (3)
|
||||
|
||||
call UPBE_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
call PBE_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
|
||||
case (4)
|
||||
|
||||
call CC_B88_gga_exchange_potential(nEns,wEns,nCC,aCC,nGrid,weight,nBas,AO,dAO,rho,drho,&
|
||||
Cx_choice,Fx)
|
||||
|
||||
case default
|
||||
|
||||
@ -45,4 +54,4 @@ subroutine unrestricted_gga_exchange_potential(DFA,nEns,wEns,nGrid,weight,nBas,A
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_gga_exchange_potential
|
||||
end subroutine gga_exchange_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_hartree_energy(nBas,P,J,EH)
|
||||
subroutine hartree_energy(nBas,P,J,EH)
|
||||
|
||||
! Compute the unrestricted version of the Hartree energy
|
||||
|
||||
@ -26,4 +26,4 @@ subroutine unrestricted_hartree_energy(nBas,P,J,EH)
|
||||
+ 0.5d0*trace_matrix(nBas,matmul(P(:,:,2),J(:,:,1)))
|
||||
EH(3) = 0.5d0*trace_matrix(nBas,matmul(P(:,:,2),J(:,:,2)))
|
||||
|
||||
end subroutine unrestricted_hartree_energy
|
||||
end subroutine hartree_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_hartree_individual_energy(nBas,nEns,Pw,P,ERI,LZH,EH)
|
||||
subroutine hartree_individual_energy(nBas,nEns,Pw,P,ERI,LZH,EH)
|
||||
|
||||
! Compute the hartree contribution to the individual energies
|
||||
|
||||
@ -35,7 +35,7 @@ subroutine unrestricted_hartree_individual_energy(nBas,nEns,Pw,P,ERI,LZH,EH)
|
||||
EH(:,:) = 0.d0
|
||||
|
||||
do ispin=1,nspin
|
||||
call unrestricted_hartree_potential(nBas,Pw(:,:,ispin),ERI,J(:,:,ispin))
|
||||
call hartree_potential(nBas,Pw(:,:,ispin),ERI,J(:,:,ispin))
|
||||
end do
|
||||
|
||||
LZH(1) = - 0.5d0*trace_matrix(nBas,matmul(Pw(:,:,1),J(:,:,1)))
|
||||
@ -52,4 +52,4 @@ subroutine unrestricted_hartree_individual_energy(nBas,nEns,Pw,P,ERI,LZH,EH)
|
||||
|
||||
end do
|
||||
|
||||
end subroutine unrestricted_hartree_individual_energy
|
||||
end subroutine hartree_individual_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_hartree_potential(nBas,P,ERI,J)
|
||||
subroutine hartree_potential(nBas,P,ERI,J)
|
||||
|
||||
! Compute the unrestricted version of the Hartree potential
|
||||
|
||||
@ -30,4 +30,4 @@ subroutine unrestricted_hartree_potential(nBas,P,ERI,J)
|
||||
enddo
|
||||
|
||||
|
||||
end subroutine unrestricted_hartree_potential
|
||||
end subroutine hartree_potential
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_hybrid_correlation_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,Ec)
|
||||
subroutine hybrid_correlation_derivative_discontinuity(DFA,nEns,wEns,nGrid,weight,rhow,Ec)
|
||||
|
||||
! Compute the correlation hybrid part of the derivative discontinuity
|
||||
|
||||
@ -43,4 +43,4 @@ subroutine unrestricted_hybrid_correlation_derivative_discontinuity(DFA,nEns,wEn
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_hybrid_correlation_derivative_discontinuity
|
||||
end subroutine hybrid_correlation_derivative_discontinuity
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_hybrid_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
subroutine hybrid_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
|
||||
! Compute the unrestricted version of the correlation energy for hybrid functionals
|
||||
|
||||
@ -35,18 +35,18 @@ subroutine unrestricted_hybrid_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho
|
||||
|
||||
aC = 0.81d0
|
||||
|
||||
call unrestricted_lda_correlation_energy(3,nEns,wEns,nGrid,weight,rho,EcLDA)
|
||||
call unrestricted_gga_correlation_energy(1,nEns,wEns,nGrid,weight,rho,drho,EcGGA)
|
||||
call lda_correlation_energy(3,nEns,wEns,nGrid,weight,rho,EcLDA)
|
||||
call gga_correlation_energy(1,nEns,wEns,nGrid,weight,rho,drho,EcGGA)
|
||||
|
||||
Ec(:) = EcLDA(:) + aC*(EcGGA(:) - EcLDA(:))
|
||||
|
||||
case(3)
|
||||
|
||||
call unrestricted_gga_correlation_energy(1,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
call gga_correlation_energy(1,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
|
||||
case(4)
|
||||
|
||||
call unrestricted_gga_correlation_energy(2,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
call gga_correlation_energy(2,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
|
||||
case default
|
||||
|
||||
@ -55,4 +55,4 @@ subroutine unrestricted_hybrid_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_hybrid_correlation_energy
|
||||
end subroutine hybrid_correlation_energy
|
@ -1,4 +1,4 @@
|
||||
subroutine unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid,weight, &
|
||||
subroutine hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid,weight, &
|
||||
rhow,drhow,rho,drho,LZc,Ec)
|
||||
|
||||
! Compute the hybrid correlation energy for individual states
|
||||
@ -39,4 +39,4 @@ subroutine unrestricted_hybrid_correlation_individual_energy(DFA,nEns,wEns,nGrid
|
||||
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_hybrid_correlation_individual_energy
|
||||
end subroutine hybrid_correlation_individual_energy
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user