mirror of
https://github.com/pfloos/quack
synced 2025-01-03 10:05:49 +01:00
OK with GGA exchange functionals
This commit is contained in:
parent
a97b1881b7
commit
44dfbef766
@ -4,13 +4,13 @@
|
||||
# Hartree = 0
|
||||
# LDA = 1: S51,CC-S51
|
||||
# GGA = 2: B88,G96,PBE
|
||||
# Hybrid = 4
|
||||
# Hybrid = 4: B3LYP,PBE0
|
||||
# Hartree-Fock = 666
|
||||
2 PBE
|
||||
2 B88
|
||||
# correlation rung:
|
||||
# Hartree = 0
|
||||
# Hartree = 0: H
|
||||
# LDA = 1: VWN5,eVWN5
|
||||
# GGA = 2:
|
||||
# GGA = 2: LYP,PBE
|
||||
# Hybrid = 4:
|
||||
# Hartree-Fock = 666
|
||||
0 H
|
||||
|
@ -1,5 +1,5 @@
|
||||
# RHF UHF KS MOM
|
||||
F F T F
|
||||
T F T F
|
||||
# MP2* MP3 MP2-F12
|
||||
F F F
|
||||
# CCD DCD CCSD CCSD(T)
|
||||
|
@ -5,7 +5,7 @@
|
||||
# CC: maxSCF thresh DIIS n_diis
|
||||
64 0.00001 T 5
|
||||
# spin: TDA singlet triplet spin_conserved spin_flip
|
||||
T T T T T
|
||||
F T T T T
|
||||
# GF: maxSCF thresh DIIS n_diis lin eta renorm
|
||||
256 0.00001 T 5 T 0.0 3
|
||||
# GW/GT: maxSCF thresh DIIS n_diis lin eta COHSEX SOSEX TDA_W G0W GW0
|
||||
|
@ -16,7 +16,7 @@ subroutine UB88_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: alpha,beta
|
||||
double precision :: alpha,b
|
||||
double precision :: r,g,x
|
||||
|
||||
! Output variables
|
||||
@ -26,7 +26,7 @@ subroutine UB88_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
! Coefficients for B88 GGA exchange functional
|
||||
|
||||
alpha = -(3d0/2d0)*(3d0/(4d0*pi))**(1d0/3d0)
|
||||
beta = 0.0042d0
|
||||
b = 0.0042d0
|
||||
|
||||
! Compute GGA exchange energy
|
||||
|
||||
@ -40,8 +40,7 @@ subroutine UB88_gga_exchange_energy(nGrid,weight,rho,drho,Ex)
|
||||
g = drho(1,iG)**2 + drho(2,iG)**2 + drho(3,iG)**2
|
||||
x = sqrt(g)/r**(4d0/3d0)
|
||||
|
||||
Ex = Ex + weight(iG)*alpha*r**(4d0/3d0) &
|
||||
- weight(iG)*beta*x**2*r**(4d0/3d0)/(1d0 + 6d0*beta*x*asinh(x))
|
||||
Ex = Ex + weight(iG)*r**(4d0/3d0)*(alpha - b*x**2/(1d0 + 6d0*b*x*asinh(x)))
|
||||
|
||||
end if
|
||||
|
||||
|
@ -18,8 +18,9 @@ subroutine UB88_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
! Local variables
|
||||
|
||||
integer :: mu,nu,iG
|
||||
double precision :: alpha,beta
|
||||
double precision :: r,g,vAO,gAO
|
||||
double precision :: alpha,b
|
||||
double precision :: vAO,gAO
|
||||
double precision :: r,g,x,dxdr,dxdg,f
|
||||
|
||||
! Output variables
|
||||
|
||||
@ -28,7 +29,7 @@ subroutine UB88_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
! Coefficients for B88 GGA exchange functional
|
||||
|
||||
alpha = -(3d0/2d0)*(3d0/(4d0*pi))**(1d0/3d0)
|
||||
beta = 0.0042d0
|
||||
b = 0.0042d0
|
||||
|
||||
! Compute GGA exchange matrix in the AO basis
|
||||
|
||||
@ -42,19 +43,27 @@ subroutine UB88_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
g = drho(1,iG)**2 + drho(2,iG)**2 + drho(3,iG)**2
|
||||
vAO = weight(iG)*AO(mu,iG)*AO(nu,iG)
|
||||
Fx(mu,nu) = Fx(mu,nu) &
|
||||
+ vAO*(4d0/3d0*r**(1d0/3d0)*(alpha - beta*g**(3d0/4d0)/r**2) &
|
||||
+ 2d0*beta*g**(3d0/4d0)/r**(5d0/3d0))
|
||||
|
||||
g = drho(1,iG)**2 + drho(2,iG)**2 + drho(3,iG)**2
|
||||
x = sqrt(g)/r**(4d0/3d0)
|
||||
dxdr = - 4d0*sqrt(g)/(3d0*r**(7d0/3d0))/x
|
||||
dxdg = + 1d0/(2d0*sqrt(g)*r**(4d0/3d0))/x
|
||||
|
||||
f = b*x**2/(1d0 + 6d0*b*x*asinh(x))
|
||||
|
||||
Fx(mu,nu) = Fx(mu,nu) + vAO*( &
|
||||
4d0/3d0*r**(1d0/3d0)*(alpha - f) &
|
||||
- 2d0*r**(4d0/3d0)*dxdr*f &
|
||||
+ r**(4d0/3d0)*dxdr*(6d0*b*x*asinh(x) + 6d0*b*x**2/sqrt(1d0+x**2))*f/(1d0 + 6d0*b*x*asinh(x)) )
|
||||
|
||||
gAO = drho(1,iG)*(dAO(1,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(1,nu,iG)) &
|
||||
+ drho(2,iG)*(dAO(2,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(2,nu,iG)) &
|
||||
+ drho(3,iG)*(dAO(3,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(3,nu,iG))
|
||||
|
||||
gAO = weight(iG)*gAO
|
||||
|
||||
Fx(mu,nu) = Fx(mu,nu) - 2d0*gAO*3d0/4d0*beta*g**(-1d0/4d0)/r**(2d0/3d0)
|
||||
Fx(mu,nu) = Fx(mu,nu) + 2d0*gAO*r**(4d0/3d0)*dxdg*( &
|
||||
- 2d0*f + (6d0*b*x*asinh(x) + 6d0*b*x**2/sqrt(1d0+x**2))*f/(1d0 + 6d0*b*x*asinh(x)) )
|
||||
|
||||
end if
|
||||
|
||||
|
73
src/eDFT/ULYP_gga_correlation_energy.f90
Normal file
73
src/eDFT/ULYP_gga_correlation_energy.f90
Normal file
@ -0,0 +1,73 @@
|
||||
subroutine ULYP_gga_correlation_energy(nGrid,weight,rho,drho,Ec)
|
||||
|
||||
! Compute unrestricted LYP GGA correlation energy
|
||||
|
||||
implicit none
|
||||
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
double precision,intent(in) :: rho(nGrid,nspin)
|
||||
double precision,intent(in) :: drho(ncart,nGrid,nspin)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: iG
|
||||
double precision :: ra,rb,r
|
||||
double precision :: ga,gab,gb,g
|
||||
|
||||
double precision :: a,b,c,d
|
||||
double precision :: Cf,omega,delta
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision :: Ec(nsp)
|
||||
|
||||
! Parameters of the functional
|
||||
|
||||
a = 0.04918d0
|
||||
b = 0.132d0
|
||||
c = 0.2533d0
|
||||
d = 0.349d0
|
||||
|
||||
Cf = 3d0/10d0*(3d0*pi**2)**(2d0/3d0)
|
||||
|
||||
! Initialization
|
||||
|
||||
Ec(:) = 0d0
|
||||
|
||||
do iG=1,nGrid
|
||||
|
||||
ra = max(0d0,rho(iG,1))
|
||||
rb = max(0d0,rho(iG,2))
|
||||
r = ra + rb
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
ga = drho(1,iG,1)**2 + drho(2,iG,1)**2 + drho(3,iG,1)**2
|
||||
gb = drho(1,iG,2)**2 + drho(2,iG,2)**2 + drho(3,iG,2)**2
|
||||
gab = drho(1,iG,1)*drho(1,iG,2) + drho(2,iG,1)*drho(2,iG,2) + drho(3,iG,1)*drho(3,iG,2)
|
||||
g = ga + gab + gb
|
||||
|
||||
omega = exp(-c*r**(-1d0/3d0))/(1d0 + d*r**(-1d0/3d0))*r**(-11d0/3d0)
|
||||
delta = c*r**(-1d0/3d0) + d*r**(-1d0/3d0)/(1d0 + d*r**(-1d0/3d0))
|
||||
|
||||
Ec(2) = Ec(2) - weight(iG)*4d0*a/(1d0 + d*r**(-1d0/3d0))*ra*rb/r &
|
||||
- weight(iG)*a*b*omega*ra*rb*( &
|
||||
2d0**(11d0/3d0)*Cf*(ra**(8d0/3d0) + rb**(8d0/3d0)) &
|
||||
+ (47d0/18d0 - 7d0*delta/18d0)*g &
|
||||
- (5d0/2d0 - delta/18d0)*(ga + gb) &
|
||||
- (delta - 11d0)/9d0*(ra/r*ga + rb/r*gb) ) &
|
||||
- weight(iG)*a*b*omega*( &
|
||||
- 2d0*r**2/3d0*g &
|
||||
+ (2d0*r**2/3d0 - ra**2)*gb &
|
||||
+ (2d0*r**2/3d0 - rb**2)*ga )
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
|
||||
end subroutine ULYP_gga_correlation_energy
|
85
src/eDFT/ULYP_gga_correlation_potential.f90
Normal file
85
src/eDFT/ULYP_gga_correlation_potential.f90
Normal file
@ -0,0 +1,85 @@
|
||||
subroutine ULYP_gga_correlation_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fc)
|
||||
|
||||
! Compute LYP correlation potential
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nGrid
|
||||
double precision,intent(in) :: weight(nGrid)
|
||||
integer,intent(in) :: nBas
|
||||
double precision,intent(in) :: AO(nBas,nGrid)
|
||||
double precision,intent(in) :: dAO(ncart,nBas,nGrid)
|
||||
double precision,intent(in) :: rho(nGrid,nspin)
|
||||
double precision,intent(in) :: drho(ncart,nGrid,nspin)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: mu,nu,iG
|
||||
double precision :: vAO,gaAO,gbAO
|
||||
double precision :: ra,rb,r
|
||||
double precision :: ga,gab,gb,g
|
||||
|
||||
double precision :: a,b,c,d
|
||||
double precision :: Cf,omega,delta
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Fc(nBas,nBas)
|
||||
|
||||
! Prameter of the functional
|
||||
|
||||
a = 0.04918d0
|
||||
b = 0.132d0
|
||||
c = 0.2533d0
|
||||
d = 0.349d0
|
||||
|
||||
Cf = 3d0/10d0*(3d0*pi**2)**(2d0/3d0)
|
||||
|
||||
! Compute matrix elements in the AO basis
|
||||
|
||||
Fc(:,:) = 0d0
|
||||
|
||||
do mu=1,nBas
|
||||
do nu=1,nBas
|
||||
do iG=1,nGrid
|
||||
|
||||
ra = max(0d0,rho(iG,1))
|
||||
rb = max(0d0,rho(iG,2))
|
||||
r = ra + rb
|
||||
|
||||
if(r > threshold) then
|
||||
|
||||
ga = drho(1,iG,1)**2 + drho(2,iG,1)**2 + drho(3,iG,1)**2
|
||||
gb = drho(1,iG,2)**2 + drho(2,iG,2)**2 + drho(3,iG,2)**2
|
||||
gab = drho(1,iG,1)*drho(1,iG,2) + drho(2,iG,1)*drho(2,iG,2) + drho(3,iG,1)*drho(3,iG,2)
|
||||
g = ga + gab + gb
|
||||
|
||||
omega = exp(-c*r**(-1d0/3d0))/(1d0 + d*r**(-1d0/3d0))*r**(-11d0/3d0)
|
||||
delta = c*r**(-1d0/3d0) + d*r**(-1d0/3d0)/(1d0 + d*r**(-1d0/3d0))
|
||||
|
||||
vAO = weight(iG)*AO(mu,iG)*AO(nu,iG)
|
||||
|
||||
Fc(mu,nu) = Fc(mu,nu) + vAO
|
||||
|
||||
gaAO = drho(1,iG,1)*(dAO(1,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(1,nu,iG)) &
|
||||
+ drho(2,iG,1)*(dAO(2,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(2,nu,iG)) &
|
||||
+ drho(3,iG,1)*(dAO(3,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(3,nu,iG))
|
||||
gaAO = weight(iG)*gaAO
|
||||
|
||||
gbAO = drho(1,iG,2)*(dAO(1,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(1,nu,iG)) &
|
||||
+ drho(2,iG,2)*(dAO(2,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(2,nu,iG)) &
|
||||
+ drho(3,iG,2)*(dAO(3,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(3,nu,iG))
|
||||
gbAO = weight(iG)*gbAO
|
||||
|
||||
Fc(mu,nu) = Fc(mu,nu) + 2d0*gaAO + gbAO
|
||||
|
||||
end if
|
||||
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
end subroutine ULYP_gga_correlation_potential
|
@ -55,7 +55,6 @@ subroutine UPBE_gga_exchange_potential(nGrid,weight,nBas,AO,dAO,rho,drho,Fx)
|
||||
gAO = drho(1,iG)*(dAO(1,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(1,nu,iG)) &
|
||||
+ drho(2,iG)*(dAO(2,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(2,nu,iG)) &
|
||||
+ drho(3,iG)*(dAO(3,mu,iG)*AO(nu,iG) + AO(mu,iG)*dAO(3,nu,iG))
|
||||
|
||||
gAO = weight(iG)*gAO
|
||||
|
||||
Fx(mu,nu) = Fx(mu,nu) + 2d0*gAO*alpha*r**(-4d0/3d0)*mupbe/(1d0 + mupbe*s2/kappa)**2
|
||||
|
@ -1,6 +1,6 @@
|
||||
subroutine unrestricted_gga_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,drho,Ec)
|
||||
|
||||
! Compute unrstricted GGA correlation energy
|
||||
! Compute unrestricted GGA correlation energy
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
@ -24,19 +24,17 @@ subroutine unrestricted_gga_correlation_energy(DFA,nEns,wEns,nGrid,weight,rho,dr
|
||||
|
||||
double precision :: Ec(nsp)
|
||||
|
||||
! Coefficients for ??? GGA exchange functional
|
||||
select case (DFA)
|
||||
|
||||
! Compute GGA exchange energy
|
||||
case ('LYP')
|
||||
|
||||
Ec(:) = 0d0
|
||||
call ULYP_gga_correlation_energy(nGrid,weight,rho,drho,Ec)
|
||||
|
||||
do iG=1,nGrid
|
||||
case default
|
||||
|
||||
ra = rho(iG,1)
|
||||
rb = rho(iG,2)
|
||||
ga = drho(1,iG,1)**2 + drho(2,iG,1)**2 + drho(3,iG,1)**2
|
||||
gb = drho(1,iG,2)**2 + drho(2,iG,2)**2 + drho(3,iG,2)**2
|
||||
call print_warning('!!! GGA correlation energy not available !!!')
|
||||
stop
|
||||
|
||||
enddo
|
||||
end select
|
||||
|
||||
end subroutine unrestricted_gga_correlation_energy
|
||||
|
Loading…
Reference in New Issue
Block a user