10
1
mirror of https://github.com/pfloos/quack synced 2024-09-27 20:11:05 +02:00

phGLR subroutines

This commit is contained in:
Pierre-Francois Loos 2024-09-06 21:35:42 +02:00
parent b9da29a020
commit 27f14363c7
3 changed files with 191 additions and 0 deletions

82
src/LR/phGLR.f90 Normal file
View File

@ -0,0 +1,82 @@
subroutine phGLR(TDA,nS,Aph,Bph,EcRPA,Om,XpY,XmY)
! Compute linear response
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: TDA
integer,intent(in) :: nS
double precision,intent(in) :: Aph(nS,nS)
double precision,intent(in) :: Bph(nS,nS)
! Local variables
double precision :: trace_matrix
double precision,allocatable :: ApB(:,:)
double precision,allocatable :: AmB(:,:)
double precision,allocatable :: AmBSq(:,:)
double precision,allocatable :: AmBIv(:,:)
double precision,allocatable :: Z(:,:)
double precision,allocatable :: tmp(:,:)
! Output variables
double precision,intent(out) :: EcRPA
double precision,intent(out) :: Om(nS)
double precision,intent(out) :: XpY(nS,nS)
double precision,intent(out) :: XmY(nS,nS)
! Memory allocation
allocate(ApB(nS,nS),AmB(nS,nS),AmBSq(nS,nS),AmBIv(nS,nS),Z(nS,nS),tmp(nS,nS))
! Tamm-Dancoff approximation
if(TDA) then
XpY(:,:) = Aph(:,:)
call diagonalize_matrix(nS,XpY,Om)
XpY(:,:) = transpose(XpY(:,:))
XmY(:,:) = XpY(:,:)
else
ApB(:,:) = Aph(:,:) + Bph(:,:)
AmB(:,:) = Aph(:,:) - Bph(:,:)
! Diagonalize linear response matrix
call diagonalize_matrix(nS,AmB,Om)
if(minval(Om) < 0d0) &
call print_warning('You may have instabilities in linear response: A-B is not positive definite!!')
call ADAt(nS,AmB,1d0*dsqrt(Om),AmBSq)
call ADAt(nS,AmB,1d0/dsqrt(Om),AmBIv)
call dgemm('N','N',nS,nS,nS,1d0,ApB,size(ApB,1),AmBSq,size(AmBSq,1),0d0,tmp,size(tmp,1))
call dgemm('N','N',nS,nS,nS,1d0,AmBSq,size(AmBSq,1),tmp,size(tmp,1),0d0,Z,size(Z,1))
call diagonalize_matrix(nS,Z,Om)
if(minval(Om) < 0d0) &
call print_warning('You may have instabilities in linear response: negative excitations!!')
Om = sqrt(Om)
call dgemm('T','N',nS,nS,nS,1d0,Z,size(Z,1),AmBSq,size(AmBSq,1),0d0,XpY,size(XpY,1))
call DA(nS,1d0/dsqrt(Om),XpY)
call dgemm('T','N',nS,nS,nS,1d0,Z,size(Z,1),AmBIv,size(AmBIv,1),0d0,XmY,size(XmY,1))
call DA(nS,1d0*dsqrt(Om),XmY)
end if
! Compute the RPA correlation energy
EcRPA = 0.5d0*(sum(Om) - trace_matrix(nS,Aph))
end subroutine

56
src/LR/phGLR_A.f90 Normal file
View File

@ -0,0 +1,56 @@
subroutine phRLR_A(dRPA,nOrb,nC,nO,nV,nR,nS,lambda,e,ERI,Aph)
! Compute resonant block of the ph channel
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dRPA
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: lambda
double precision,intent(in) :: e(nOrb)
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
! Local variables
double precision :: delta_dRPA
double precision,external :: Kronecker_delta
integer :: i,j,a,b,ia,jb
! Output variables
double precision,intent(out) :: Aph(nS,nS)
! Direct RPA
delta_dRPA = 0d0
if(dRPA) delta_dRPA = 1d0
! Build A matrix for spin orbitals
ia = 0
do i=nC+1,nO
do a=nO+1,nOrb-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nOrb-nR
jb = jb + 1
Aph(ia,jb) = (e(a) - e(i))*Kronecker_delta(i,j)*Kronecker_delta(a,b) &
+ lambda*ERI(i,b,a,j) - (1d0 - delta_dRPA)*lambda*ERI(i,b,j,a)
end do
end do
end do
end do
end subroutine

53
src/LR/phGLR_B.f90 Normal file
View File

@ -0,0 +1,53 @@
subroutine phGLR_B(dRPA,nOrb,nC,nO,nV,nR,nS,lambda,ERI,Bph)
! Compute the coupling block of the ph channel
implicit none
include 'parameters.h'
! Input variables
logical,intent(in) :: dRPA
integer,intent(in) :: nOrb
integer,intent(in) :: nC
integer,intent(in) :: nO
integer,intent(in) :: nV
integer,intent(in) :: nR
integer,intent(in) :: nS
double precision,intent(in) :: lambda
double precision,intent(in) :: ERI(nOrb,nOrb,nOrb,nOrb)
! Local variables
double precision :: delta_dRPA
integer :: i,j,a,b,ia,jb
! Output variables
double precision,intent(out) :: Bph(nS,nS)
! Direct RPA
delta_dRPA = 0d0
if(dRPA) delta_dRPA = 1d0
! Build B matrix for spin orbitals
ia = 0
do i=nC+1,nO
do a=nO+1,nOrb-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nOrb-nR
jb = jb + 1
Bph(ia,jb) = lambda*ERI(i,j,a,b) - (1d0 - delta_dRPA)*lambda*ERI(i,j,b,a)
end do
end do
end do
end do
end subroutine