mirror of
https://github.com/pfloos/quack
synced 2024-12-22 12:23:42 +01:00
fix merge
This commit is contained in:
commit
0b4abc2d91
@ -15,7 +15,7 @@
|
||||
# G0W0* evGW* qsGW* ufG0W0 ufGW
|
||||
F F F F F
|
||||
# G0T0 evGT qsGT
|
||||
T F F
|
||||
T F F
|
||||
# MCMP2
|
||||
F
|
||||
# * unrestricted version available
|
||||
|
@ -5,7 +5,7 @@
|
||||
# CC: maxSCF thresh DIIS n_diis
|
||||
64 0.00001 T 5
|
||||
# spin: TDA singlet triplet spin_conserved spin_flip
|
||||
F T T T T
|
||||
T T T T T
|
||||
# GF: maxSCF thresh DIIS n_diis lin eta renorm reg
|
||||
256 0.00001 T 5 T 0.0 3 F
|
||||
# GW: maxSCF thresh DIIS n_diis lin eta COHSEX SOSEX TDA_W G0W GW0 reg
|
||||
|
@ -1,4 +1,4 @@
|
||||
2
|
||||
|
||||
H 0. 0. 0.
|
||||
H 0. 0. 0.741
|
||||
H 0. 0. 1.0
|
||||
|
@ -106,6 +106,7 @@ subroutine UG0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn, &
|
||||
Omega2aa(nHaa),X2aa(nPaa,nHaa),Y2aa(nHaa,nHaa), &
|
||||
rho1aa(nBas,nBas,nPaa),rho2aa(nBas,nBas,nHaa), &
|
||||
Omega1bb(nPbb),X1bb(nPbb,nPbb),Y1bb(nHbb,nPbb), &
|
||||
Omega2bb(nPbb),X2bb(nPbb,nPbb),Y2bb(nHbb,nPbb), &
|
||||
rho1bb(nBas,nBas,nPbb),rho2bb(nBas,nBas,nHbb), &
|
||||
SigX(nBas,nspin),SigT(nBas,nspin),Z(nBas,nspin))
|
||||
|
||||
@ -114,16 +115,16 @@ subroutine UG0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn, &
|
||||
!----------------------------------------------
|
||||
|
||||
ispin = 1
|
||||
iblock = 1
|
||||
iblock = 3
|
||||
! iblock = 1
|
||||
|
||||
! Compute linear response
|
||||
|
||||
call unrestricted_linear_response_pp(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb, &
|
||||
nP_sc,nHaa,nHab,nHbb,nH_sc,1d0,eHF,ERI_aaaa, &
|
||||
nPab,nHaa,nHab,nHbb,nHab,1d0,eHF,ERI_aaaa, &
|
||||
ERI_aabb,ERI_bbbb,Omega1ab,X1ab,Y1ab, &
|
||||
Omega2ab,X2ab,Y2ab,EcRPA(ispin))
|
||||
|
||||
|
||||
! EcRPA(ispin) = 1d0*EcRPA(ispin)
|
||||
|
||||
call print_excitation('pp-RPA (N+2)',iblock,nPab,Omega1ab(:))
|
||||
@ -134,16 +135,15 @@ subroutine UG0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn, &
|
||||
!----------------------------------------------
|
||||
|
||||
ispin = 2
|
||||
iblock = 2
|
||||
iblock = 4
|
||||
|
||||
! Compute linear response
|
||||
|
||||
call unrestricted_linear_response_pp(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb, &
|
||||
nP_sf,nHaa,nHab,nHbb,nH_sc,1d0,eHF,ERI_aaaa, &
|
||||
nPaa,nHaa,nHab,nHbb,nHaa,1d0,eHF,ERI_aaaa, &
|
||||
ERI_aabb,ERI_bbbb,Omega1aa,X1aa,Y1aa, &
|
||||
Omega2aa,X2aa,Y2aa,EcRPA(ispin))
|
||||
|
||||
|
||||
|
||||
! EcRPA(ispin) = 2d0*EcRPA(ispin)
|
||||
! EcRPA(ispin) = 3d0*EcRPA(ispin)
|
||||
|
||||
@ -155,16 +155,15 @@ subroutine UG0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn, &
|
||||
!----------------------------------------------
|
||||
|
||||
ispin = 2
|
||||
iblock = 3
|
||||
iblock = 7
|
||||
|
||||
! Compute linear response
|
||||
|
||||
call unrestricted_linear_response_pp(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb, &
|
||||
nP_sc,nHaa,nHab,nHbb,nH_sf,1d0,eHF,ERI_aaaa, &
|
||||
nPbb,nHaa,nHab,nHbb,nHbb,1d0,eHF,ERI_aaaa, &
|
||||
ERI_aabb,ERI_bbbb,Omega1bb,X1bb,Y1bb, &
|
||||
Omega2bb,X2bb,Y2bb,EcRPA(ispin))
|
||||
|
||||
|
||||
! EcRPA(ispin) = 2d0*EcRPA(ispin)
|
||||
! EcRPA(ispin) = 3d0*EcRPA(ispin)
|
||||
|
||||
@ -180,44 +179,38 @@ subroutine UG0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn, &
|
||||
Z(:,:) = 0d0
|
||||
|
||||
!alpha-beta block
|
||||
ispin = 1
|
||||
iblock = 1
|
||||
|
||||
iblock = 3
|
||||
|
||||
call unrestricted_excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nHab,nPab, &
|
||||
ERI_aaaa,ERI_aabb,ERI_bbbb,X1ab,Y1ab, &
|
||||
rho1ab,X2ab,Y2ab,rho2ab)
|
||||
|
||||
call unrestricted_self_energy_Tmatrix_diag(ispin,eta,nBas,nC,nO,nV,nR,nHab,nPab,eHF, &
|
||||
Omega1ab,rho1ab,Omega2ab,rho2ab,EcGM,SigT)
|
||||
|
||||
call unrestricted_renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nHab,nPab,eHF, &
|
||||
Omega1ab,rho1ab,Omega2ab,rho2ab,Z)
|
||||
!alpha-alpha block
|
||||
ispin = 2
|
||||
iblock = 2
|
||||
|
||||
iblock = 4
|
||||
|
||||
call unrestricted_excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nHaa,nPaa, &
|
||||
ERI_aaaa,ERI_aabb,ERI_bbbb,X1aa,Y1aa, &
|
||||
rho1aa,X2aa,Y2aa,rho2aa)
|
||||
|
||||
call unrestricted_self_energy_Tmatrix_diag(ispin,eta,nBas,nC,nO,nV,nR,nHaa,nPaa,eHF, &
|
||||
Omega1aa,rho1aa,Omega2aa,rho2aa,EcGM,SigT)
|
||||
|
||||
call unrestricted_renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nHaa,nPaa,eHF, &
|
||||
Omega1aa,rho1aa,Omega2aa,rho2aa,Z)
|
||||
!beta-beta block
|
||||
ispin = 2
|
||||
iblock = 3
|
||||
!beta-beta block
|
||||
|
||||
iblock = 7
|
||||
|
||||
call unrestricted_excitation_density_Tmatrix(iblock,nBas,nC,nO,nV,nR,nHbb,nPbb, &
|
||||
ERI_aaaa,ERI_aabb,ERI_bbbb,X1bb,Y1bb, &
|
||||
rho1bb,X2bb,Y2bb,rho2bb)
|
||||
|
||||
call unrestricted_self_energy_Tmatrix_diag(ispin,eta,nBas,nC,nO,nV,nR,nHbb,nPbb,eHF, &
|
||||
Omega1bb,rho1bb,Omega2bb,rho2bb,EcGM,SigT)
|
||||
call unrestricted_self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nHaa,nHab,nHbb,nPaa,&
|
||||
nPab,nPbb,eHF,Omega1aa,Omega1ab,Omega1bb,&
|
||||
rho1aa,rho1ab,rho1bb,Omega2aa,Omega2ab,&
|
||||
Omega2bb,rho2aa,rho2ab,rho2bb,EcGM,SigT)
|
||||
|
||||
call unrestricted_renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nHbb,nPbb,eHF, &
|
||||
Omega1bb,rho1bb,Omega2bb,rho2bb,Z)
|
||||
call unrestricted_renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nHaa,nHab,nHbb,&
|
||||
nPaa,nPab,nPbb,eHF,Omega1aa,Omega1ab,&
|
||||
Omega1bb,rho1aa,rho1ab,rho1bb, &
|
||||
Omega2aa,Omega2ab,Omega2bb,rho2aa, &
|
||||
rho2ab,rho2bb,Z)
|
||||
|
||||
|
||||
Z(:,:) = 1d0/(1d0 - Z(:,:))
|
||||
@ -241,7 +234,7 @@ subroutine UG0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn, &
|
||||
|
||||
! call matout(nBas,1,SigX)
|
||||
! call matout(nBas,1,Vxc)
|
||||
|
||||
! call matout(nBas,1,eG0T0(:,1))
|
||||
else
|
||||
|
||||
eG0T0(:,:) = eHF(:,:) + SigX(:,:) + SigT(:,:) - Vxc(:,:)
|
||||
@ -257,20 +250,20 @@ subroutine UG0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn, &
|
||||
!alpha-beta block
|
||||
|
||||
ispin = 1
|
||||
iblock = 1
|
||||
iblock = 3
|
||||
|
||||
call unrestricted_linear_response_pp(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb, &
|
||||
nP_sc,nHaa,nHab,nHbb,nH_sc,1d0,eG0T0,ERI_aaaa, &
|
||||
nPab,nHaa,nHab,nHbb,nHab,1d0,eG0T0,ERI_aaaa, &
|
||||
ERI_aabb,ERI_bbbb,Omega1ab,X1ab,Y1ab, &
|
||||
Omega2ab,X2ab,Y2ab,EcRPA(ispin))
|
||||
|
||||
!alpha-alpha block
|
||||
|
||||
ispin = 2
|
||||
iblock = 2
|
||||
iblock = 4
|
||||
|
||||
call unrestricted_linear_response_pp(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb, &
|
||||
nP_sc,nHaa,nHab,nHbb,nH_sc,1d0,eG0T0,ERI_aaaa, &
|
||||
nPaa,nHaa,nHab,nHbb,nHaa,1d0,eG0T0,ERI_aaaa, &
|
||||
ERI_aabb,ERI_bbbb,Omega1aa,X1aa,Y1aa, &
|
||||
Omega2aa,X2aa,Y2aa,EcRPA(ispin))
|
||||
|
||||
@ -278,10 +271,10 @@ subroutine UG0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn, &
|
||||
|
||||
!beta-beta block
|
||||
|
||||
iblock = 3
|
||||
iblock = 7
|
||||
|
||||
call unrestricted_linear_response_pp(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb, &
|
||||
nP_sc,nHaa,nHab,nHbb,nH_sc,1d0,eG0T0,ERI_aaaa, &
|
||||
nPbb,nHaa,nHab,nHbb,nHbb,1d0,eG0T0,ERI_aaaa, &
|
||||
ERI_aabb,ERI_bbbb,Omega1bb,X1bb,Y1bb, &
|
||||
Omega2bb,X2bb,Y2bb,EcRPA(ispin))
|
||||
|
||||
@ -290,7 +283,7 @@ subroutine UG0T0(doACFDT,exchange_kernel,doXBS,BSE,TDA_T,TDA,dBSE,dTDA,evDyn, &
|
||||
EcRPA(1) = EcRPA(1) - EcRPA(2)
|
||||
EcRPA(2) = 3d0*EcRPA(2)
|
||||
|
||||
! call print_G0T0(nBas,nO,eHF,ENuc,ERHF,SigT,Z,eG0T0,EcGM,EcRPA)
|
||||
call print_UG0T0(nBas,nO,eHF,ENuc,EUHF,SigT,Z,eG0T0,EcGM,EcRPA)
|
||||
|
||||
! Free memory
|
||||
|
||||
|
69
src/GT/print_UG0T0.f90
Normal file
69
src/GT/print_UG0T0.f90
Normal file
@ -0,0 +1,69 @@
|
||||
subroutine print_UG0T0(nBas,nO,eHF,ENuc,EUHF,SigT,Z,eGT,EcGM,EcRPA)
|
||||
|
||||
! Print one-electron energies and other stuff for UG0T0
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
integer,intent(in) :: nBas
|
||||
integer,intent(in) :: nO(nspin)
|
||||
double precision,intent(in) :: ENuc
|
||||
double precision,intent(in) :: EUHF
|
||||
double precision,intent(in) :: EcGM
|
||||
double precision,intent(in) :: EcRPA(nspin)
|
||||
double precision,intent(in) :: eHF(nBas,nspin)
|
||||
double precision,intent(in) :: SigT(nBas,nspin)
|
||||
double precision,intent(in) :: Z(nBas,nspin)
|
||||
double precision,intent(in) :: eGT(nBas,nspin)
|
||||
|
||||
integer :: p
|
||||
integer :: ispin
|
||||
double precision :: HOMO(nspin)
|
||||
double precision :: LUMO(nspin)
|
||||
double precision :: Gap(nspin)
|
||||
|
||||
! HOMO and LUMO
|
||||
do ispin=1,nspin
|
||||
if(nO(ispin) > 0) then
|
||||
HOMO(ispin) = eGT(nO(ispin),ispin)
|
||||
LUMO(ispin) = eGT(nO(ispin)+1,ispin)
|
||||
Gap(ispin) = LUMO(ispin) - HOMO(ispin)
|
||||
else
|
||||
HOMO(ispin) = 0d0
|
||||
LUMO(ispin) = eGT(1,ispin)
|
||||
Gap(ispin) = 0d0
|
||||
end if
|
||||
end do
|
||||
|
||||
! Dump results
|
||||
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,*)' Unrestricted one-shot G0T0 calculation (T-matrix self-energy) '
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,'(1X,A1,1X,A3,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X,A15,1X,A1,1X)') &
|
||||
'|','#','|','e_HF (eV)','|','Sigma_T (eV)','|','Z','|','e_QP (eV)','|'
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
|
||||
do p=1,nBas
|
||||
write(*,'(A1,I3,A1,2F15.6,A1,2F15.6,A1,2F15.6,A1,2F15.6,A1)') &
|
||||
'|',p,'|',eHF(p,1)*HaToeV,eHF(p,2)*HaToeV,'|',SigT(p,1)*HaToeV,SigT(p,2)*HaToeV,'|', &
|
||||
Z(p,1),Z(p,2),'|',eGT(p,1)*HaToeV,eGT(p,2)*HaToeV,'|'
|
||||
enddo
|
||||
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,'(2X,A50,F15.6,A3)') 'UG0T0 HOMO energy (eV) =',maxval(HOMO(:))*HaToeV,' eV'
|
||||
write(*,'(2X,A50,F15.6,A3)') 'UG0T0 LUMO energy (eV) =',minval(LUMO(:))*HaToeV,' eV'
|
||||
write(*,'(2X,A50,F15.6,A3)') 'UG0T0 HOMO-LUMO gap (eV) =',(minval(LUMO(:))-maxval(HOMO(:)))*HaToeV,' eV'
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' Tr@ppRPA@UG0T0 correlation energy (singlet) =',EcRPA(1),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' Tr@ppRPA@UG0T0 correlation energy (triplet) =',EcRPA(2),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' Tr@ppRPA@UG0T0 correlation energy =',EcRPA(1) + EcRPA(2),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' Tr@ppRPA@UG0T0 total energy =',ENuc + EUHF + EcRPA(1) + EcRPA(2),' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' GM@UG0T0 correlation energy =',EcGM,' au'
|
||||
write(*,'(2X,A50,F20.10,A3)') ' GM@UG0T0 total energy =',ENuc + EUHF + EcGM,' au'
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
write(*,*)
|
||||
|
||||
end subroutine print_UG0T0
|
||||
|
||||
|
@ -52,7 +52,7 @@ subroutine unrestricted_excitation_density_Tmatrix(ispin,nBas,nC,nO,nV,nR,nH,nP,
|
||||
do ab=1,nP
|
||||
cd = 0
|
||||
do c=nO(1)+1,nBas-nR(1)
|
||||
do d=nO(2),nBas-nR(1)
|
||||
do d=nO(2)+1,nBas-nR(1)
|
||||
cd = cd + 1
|
||||
|
||||
rho1(p,q,ab) = rho1(p,q,ab) &
|
||||
|
@ -1,4 +1,8 @@
|
||||
subroutine unrestricted_renormalization_factor_Tmatrix(ispin,eta,nBas,nC,nO,nV,nR,nH,nP,e,Omega1,rho1,Omega2,rho2,Z)
|
||||
subroutine unrestricted_renormalization_factor_Tmatrix(eta,nBas,nC,nO,nV,nR,nHaa,nHab,nHbb, &
|
||||
nPaa,nPab,nPbb,e,Omega1aa,Omega1ab, &
|
||||
Omega1bb,rho1aa,rho1ab,rho1bb, &
|
||||
Omega2aa,Omega2ab,Omega2bb,rho2aa, &
|
||||
rho2ab,rho2bb,Z)
|
||||
|
||||
! Compute renormalization factor of the T-matrix self-energy
|
||||
|
||||
@ -9,13 +13,15 @@ subroutine unrestricted_renormalization_factor_Tmatrix(ispin,eta,nBas,nC,nO,nV,n
|
||||
|
||||
double precision,intent(in) :: eta
|
||||
integer,intent(in) :: nBas,nC(nspin),nO(nspin),nV(nspin),nR(nspin)
|
||||
integer,intent(in) :: nH,ispin
|
||||
integer,intent(in) :: nP
|
||||
integer,intent(in) :: nHaa,nHab,nHbb
|
||||
integer,intent(in) :: nPaa,nPab,nPbb
|
||||
double precision,intent(in) :: e(nBas,nspin)
|
||||
double precision,intent(in) :: Omega1(nP)
|
||||
double precision,intent(in) :: rho1(nBas,nBas,nP,nspin)
|
||||
double precision,intent(in) :: Omega2(nH)
|
||||
double precision,intent(in) :: rho2(nBas,nBas,nH,nspin)
|
||||
double precision,intent(in) :: Omega1aa(nPaa),Omega1ab(nPab),Omega1bb(nPbb)
|
||||
double precision,intent(in) :: rho1aa(nBas,nBas,nPaa),rho1ab(nBas,nBas,nPab)
|
||||
double precision,intent(in) :: rho1bb(nBas,nBas,nPbb)
|
||||
double precision,intent(in) :: Omega2aa(nHaa),Omega2ab(nHab),Omega2bb(nHbb)
|
||||
double precision,intent(in) :: rho2aa(nBas,nBas,nHaa),rho2ab(nBas,nBas,nHab)
|
||||
double precision,intent(in) :: rho2bb(nBas,nBas,nHbb)
|
||||
|
||||
! Local variables
|
||||
|
||||
@ -25,57 +31,81 @@ subroutine unrestricted_renormalization_factor_Tmatrix(ispin,eta,nBas,nC,nO,nV,n
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Z(nBas,nspin)
|
||||
|
||||
! Occupied part of the T-matrix self-energy
|
||||
|
||||
if(ispin==1) then
|
||||
|
||||
do p=nC(1)+1,nBas-nR(1)
|
||||
do i=nC(1)+1,nO(1)
|
||||
do cd=1,nP
|
||||
eps = e(p,1) + e(i,1) - Omega1(cd)
|
||||
Z(p,1) = Z(p,1) - rho1(p,i,cd,1)**2*(eps/(eps**2 + eta**2))**2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Virtual part of the T-matrix self-energy
|
||||
|
||||
do p=nC(1)+1,nBas-nR(1)
|
||||
do a=nO(1)+1,nBas-nR(1)
|
||||
do kl=1,nH
|
||||
eps = e(p,1) + e(a,1) - Omega2(kl)
|
||||
Z(p,1) = Z(p,1) - rho2(p,a,kl,1)**2*(eps/(eps**2 + eta**2))**2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end if
|
||||
!spin up part
|
||||
|
||||
! Occupied part of the T-matrix self-energy
|
||||
|
||||
if(ispin==2) then
|
||||
|
||||
do p=nC(2)+1,nBas-nR(2)
|
||||
do i=nC(2)+1,nO(2)
|
||||
do cd=1,nP
|
||||
eps = e(p,2) + e(i,2) - Omega1(cd)
|
||||
Z(p,2) = Z(p,2) - rho1(p,i,cd,2)**2*(eps/(eps**2 + eta**2))**2
|
||||
enddo
|
||||
do p=nC(1)+1,nBas-nR(1)
|
||||
do i=nC(1)+1,nO(1)
|
||||
do cd=1,nPaa
|
||||
eps = e(p,1) + e(i,1) - Omega1aa(cd)
|
||||
Z(p,1) = Z(p,1) - rho1aa(p,i,cd)**2*(eps/(eps**2 + eta**2))**2
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i=nC(1)+1,nO(1)
|
||||
do cd=1,nPab
|
||||
eps = e(p,1) + e(i,1) - Omega1ab(cd)
|
||||
Z(p,1) = Z(p,1) - rho1ab(p,i,cd)**2*(eps/(eps**2 + eta**2))**2
|
||||
end do
|
||||
end do
|
||||
enddo
|
||||
|
||||
! Virtual part of the T-matrix self-energy
|
||||
|
||||
do p=nC(2)+1,nBas-nR(2)
|
||||
do a=nO(2)+1,nBas-nR(2)
|
||||
do kl=1,nH
|
||||
eps = e(p,2) + e(a,2) - Omega2(kl)
|
||||
Z(p,2) = Z(p,2) - rho2(p,a,kl,2)**2*(eps/(eps**2 + eta**2))**2
|
||||
enddo
|
||||
do p=nC(1)+1,nBas-nR(1)
|
||||
do a=nO(1)+1,nBas-nR(1)
|
||||
do kl=1,nHaa
|
||||
eps = e(p,1) + e(a,1) - Omega2aa(kl)
|
||||
Z(p,1) = Z(p,1) - rho2aa(p,a,kl)**2*(eps/(eps**2 + eta**2))**2
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end if
|
||||
do a=nO(2)+1,nBas-nR(2)
|
||||
do kl=1,nHab
|
||||
eps = e(p,1) + e(a,1) - Omega2ab(kl)
|
||||
Z(p,1) = Z(p,1) - rho2ab(p,a,kl)**2*(eps/(eps**2 + eta**2))**2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!spin down part
|
||||
|
||||
! Occupied part of the T-matrix self-energy
|
||||
|
||||
do p=nC(2)+1,nBas-nR(2)
|
||||
do i=nC(2)+1,nO(2)
|
||||
do cd=1,nPbb
|
||||
eps = e(p,2) + e(i,2) - Omega1bb(cd)
|
||||
Z(p,2) = Z(p,2) - rho1bb(p,i,cd)**2*(eps/(eps**2 + eta**2))**2
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i=nC(1)+1,nO(1)
|
||||
do cd=1,nPab
|
||||
eps = e(p,2) + e(i,2) - Omega1ab(cd)
|
||||
Z(p,2) = Z(p,2) - rho1ab(p,i,cd)**2*(eps/(eps**2 + eta**2))**2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Virtual part of the T-matrix self-energy
|
||||
|
||||
do p=nC(2)+1,nBas-nR(2)
|
||||
do a=nO(2)+1,nBas-nR(2)
|
||||
do kl=1,nHbb
|
||||
eps = e(p,2) + e(a,2) - Omega2bb(kl)
|
||||
Z(p,2) = Z(p,2) - rho2bb(p,a,kl)**2*(eps/(eps**2 + eta**2))**2
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do a=nO(1)+1,nBas-nR(1)
|
||||
do kl=1,nHab
|
||||
eps = e(p,2) + e(a,2) - Omega2ab(kl)
|
||||
Z(p,2) = Z(p,2) - rho2ab(p,a,kl)**2*(eps/(eps**2 + eta**2))**2
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine unrestricted_renormalization_factor_Tmatrix
|
||||
|
@ -1,4 +1,7 @@
|
||||
subroutine unrestricted_self_energy_Tmatrix_diag(ispin,eta,nBas,nC,nO,nV,nR,nH,nP,e,Omega1,rho1,Omega2,rho2,EcGM,SigT)
|
||||
subroutine unrestricted_self_energy_Tmatrix_diag(eta,nBas,nC,nO,nV,nR,nHaa,nHab,nHbb,nPaa,&
|
||||
nPab,nPbb,e,Omega1aa,Omega1ab,Omega1bb,&
|
||||
rho1aa,rho1ab,rho1bb,Omega2aa,Omega2ab,&
|
||||
Omega2bb,rho2aa,rho2ab,rho2bb,EcGM,SigT)
|
||||
|
||||
! Compute diagonal of the correlation part of the T-matrix self-energy
|
||||
|
||||
@ -13,13 +16,15 @@ subroutine unrestricted_self_energy_Tmatrix_diag(ispin,eta,nBas,nC,nO,nV,nR,nH,n
|
||||
integer,intent(in) :: nO(nspin)
|
||||
integer,intent(in) :: nV(nspin)
|
||||
integer,intent(in) :: nR(nspin)
|
||||
integer,intent(in) :: nH,ispin
|
||||
integer,intent(in) :: nP
|
||||
integer,intent(in) :: nHaa,nHab,nHbb
|
||||
integer,intent(in) :: nPaa,nPab,nPbb
|
||||
double precision,intent(in) :: e(nBas,nspin)
|
||||
double precision,intent(in) :: Omega1(nP)
|
||||
double precision,intent(in) :: rho1(nBas,nBas,nP,nspin)
|
||||
double precision,intent(in) :: Omega2(nH)
|
||||
double precision,intent(in) :: rho2(nBas,nBas,nH,nspin)
|
||||
double precision,intent(in) :: Omega1aa(nPaa),Omega1ab(nPab),Omega1bb(nPbb)
|
||||
double precision,intent(in) :: rho1aa(nBas,nBas,nPaa),rho1ab(nBas,nBas,nPab)
|
||||
double precision,intent(in) :: rho1bb(nBas,nBas,nPbb)
|
||||
double precision,intent(in) :: Omega2aa(nHaa),Omega2ab(nHab),Omega2bb(nHbb)
|
||||
double precision,intent(in) :: rho2aa(nBas,nBas,nHaa),rho2ab(nBas,nBas,nHab)
|
||||
double precision,intent(in) :: rho2bb(nBas,nBas,nHbb)
|
||||
|
||||
! Local variables
|
||||
|
||||
@ -35,113 +40,162 @@ subroutine unrestricted_self_energy_Tmatrix_diag(ispin,eta,nBas,nC,nO,nV,nR,nH,n
|
||||
! Occupied part of the T-matrix self-energy
|
||||
!----------------------------------------------
|
||||
|
||||
if(ispin==1) then
|
||||
!spin up part
|
||||
|
||||
do p=nC(1)+1,nBas-nR(1)
|
||||
do i=nC(1)+1,nO(1)
|
||||
do cd=1,nP
|
||||
eps = e(p,1) + e(i,1) - Omega1(cd)
|
||||
SigT(p,1) = SigT(p,1) + rho1(p,i,cd,1)**2*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
do p=nC(1)+1,nBas-nR(1)
|
||||
do i=nC(1)+1,nO(1)
|
||||
do cd=1,nPaa
|
||||
eps = e(p,1) + e(i,1) - Omega1aa(cd)
|
||||
SigT(p,1) = SigT(p,1) + rho1aa(p,i,cd)**2*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end if
|
||||
do i=nC(2)+1,nO(2)
|
||||
do cd=1,nPab
|
||||
eps = e(p,1) + e(i,1) - Omega1ab(cd)
|
||||
SigT(p,1) = SigT(p,1) + rho1ab(p,i,cd)**2*eps/(eps**2 + eta**2)
|
||||
end do
|
||||
end do
|
||||
enddo
|
||||
|
||||
!beta part
|
||||
!spin down part
|
||||
|
||||
if(ispin==2) then
|
||||
|
||||
do p=nC(2)+1,nBas-nR(2)
|
||||
do i=nC(2)+1,nO(2)
|
||||
do cd=1,nP
|
||||
eps = e(p,2) + e(i,2) - Omega1(cd)
|
||||
SigT(p,2) = SigT(p,2) + rho1(p,i,cd,2)**2*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
do p=nC(2)+1,nBas-nR(2)
|
||||
do i=nC(2)+1,nO(2)
|
||||
do cd=1,nPbb
|
||||
eps = e(p,2) + e(i,2) - Omega1bb(cd)
|
||||
SigT(p,2) = SigT(p,2) + rho1bb(p,i,cd)**2*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end if
|
||||
|
||||
do i=nC(2)+1,nO(2)
|
||||
do cd=1,nPab
|
||||
eps = e(p,2) + e(i,2) - Omega1ab(cd)
|
||||
SigT(p,2) = SigT(p,2) + rho1ab(p,i,cd)**2*eps/(eps**2 + eta**2)
|
||||
end do
|
||||
end do
|
||||
enddo
|
||||
|
||||
!----------------------------------------------
|
||||
! Virtual part of the T-matrix self-energy
|
||||
!----------------------------------------------
|
||||
|
||||
!alpha part
|
||||
! spin up part
|
||||
|
||||
if(ispin==1) then
|
||||
|
||||
do p=nC(1)+1,nBas-nR(1)
|
||||
do a=nO(1)+1,nBas-nR(1)
|
||||
do kl=1,nH
|
||||
eps = e(p,1) + e(a,1) - Omega2(kl)
|
||||
SigT(p,1) = SigT(p,1) + rho2(p,a,kl,1)**2*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end if
|
||||
|
||||
!alpha part
|
||||
|
||||
if(ispin==2) then
|
||||
|
||||
do p=nC(2)+1,nBas-nR(2)
|
||||
do a=nO(2)+1,nBas-nR(2)
|
||||
do kl=1,nH
|
||||
eps = e(p,2) + e(a,2) - Omega2(kl)
|
||||
SigT(p,2) = SigT(p,2) + rho2(p,a,kl,2)**2*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end if
|
||||
|
||||
!----------------------------------------------
|
||||
! Galitskii-Migdal correlation energy
|
||||
!----------------------------------------------
|
||||
if(ispin==1) then
|
||||
|
||||
do i=nC(1)+1,nO(1)
|
||||
do j=nC(1)+1,nO(1)
|
||||
do cd=1,nP
|
||||
eps = e(i,1) + e(j,1) - Omega1(cd)
|
||||
EcGM(1) = EcGM(1) + rho1(i,j,cd,1)*rho1(i,j,cd,1)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do p=nC(1)+1,nBas-nR(1)
|
||||
do a=nO(1)+1,nBas-nR(1)
|
||||
do b=nO(1)+1,nBas-nR(1)
|
||||
do kl=1,nH
|
||||
eps = e(a,1) + e(b,1) - Omega2(kl)
|
||||
EcGM(1) = EcGM(1) - rho2(a,b,kl,1)*rho2(a,b,kl,1)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
do kl=1,nHaa
|
||||
eps = e(p,1) + e(a,1) - Omega2aa(kl)
|
||||
SigT(p,1) = SigT(p,1) + rho2aa(p,a,kl)**2*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
|
||||
do a=nO(1)+1,nBas-nR(1)
|
||||
do kl=1,nHab
|
||||
eps = e(p,1) + e(a,1) - Omega2ab(kl)
|
||||
SigT(p,1) = SigT(p,1) + rho2ab(p,a,kl)**2*eps/(eps**2 + eta**2)
|
||||
end do
|
||||
end do
|
||||
enddo
|
||||
|
||||
end if
|
||||
!spin down part
|
||||
|
||||
if(ispin==2) then
|
||||
|
||||
do i=nC(2)+1,nO(2)
|
||||
do j=nC(2)+1,nO(2)
|
||||
do cd=1,nP
|
||||
eps = e(i,2) + e(j,2) - Omega1(cd)
|
||||
EcGM(2) = EcGM(2) + rho1(i,j,cd,2)*rho1(i,j,cd,2)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
do p=nC(2)+1,nBas-nR(2)
|
||||
do a=nO(2)+1,nBas-nR(2)
|
||||
do kl=1,nHbb
|
||||
eps = e(p,2) + e(a,2) - Omega2bb(kl)
|
||||
SigT(p,2) = SigT(p,2) + rho2bb(p,a,kl)**2*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do a=nO(2)+1,nBas-nR(2)
|
||||
do b=nO(2)+1,nBas-nR(2)
|
||||
do kl=1,nH
|
||||
eps = e(a,2) + e(b,2) - Omega2(kl)
|
||||
EcGM(2) = EcGM(2) - rho2(a,b,kl,2)*rho2(a,b,kl,2)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
do kl=1,nHab
|
||||
eps = e(p,2) + e(a,2) - Omega2ab(kl)
|
||||
SigT(p,2) = SigT(p,2) + rho2ab(p,a,kl)**2*eps/(eps**2 + eta**2)
|
||||
end do
|
||||
end do
|
||||
enddo
|
||||
|
||||
|
||||
|
||||
!----------------------------------------------
|
||||
! Galitskii-Migdal correlation energy
|
||||
!----------------------------------------------
|
||||
|
||||
!spin up part
|
||||
|
||||
do i=nC(1)+1,nO(1)
|
||||
do j=nC(1)+1,nO(1)
|
||||
do cd=1,nPaa
|
||||
eps = e(i,1) + e(j,1) - Omega1aa(cd)
|
||||
EcGM(1) = EcGM(1) + rho1aa(i,j,cd)*rho1aa(i,j,cd)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i=nC(1)+1,nO(1)
|
||||
do j=nC(2)+1,nO(2)
|
||||
do cd=1,nPab
|
||||
eps = e(i,1) + e(j,1) - Omega1ab(cd)
|
||||
EcGM(1) = EcGM(1) + rho1ab(i,j,cd)*rho1ab(i,j,cd)*eps/(eps**2 + eta**2)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
end if
|
||||
do a=nO(1)+1,nBas-nR(1)
|
||||
do b=nO(1)+1,nBas-nR(1)
|
||||
do kl=1,nHaa
|
||||
eps = e(a,1) + e(b,1) - Omega2aa(kl)
|
||||
EcGM(1) = EcGM(1) - rho2aa(a,b,kl)*rho2aa(a,b,kl)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do a=nO(1)+1,nBas-nR(1)
|
||||
do b=nO(1)+1,nBas-nR(1)
|
||||
do kl=1,nHab
|
||||
eps = e(a,1) + e(b,1) - Omega2ab(kl)
|
||||
EcGM(1) = EcGM(1) - rho2ab(a,b,kl)*rho2ab(a,b,kl)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! spin down part
|
||||
|
||||
do i=nC(2)+1,nO(2)
|
||||
do j=nC(2)+1,nO(2)
|
||||
do cd=1,nPbb
|
||||
eps = e(i,2) + e(j,2) - Omega1bb(cd)
|
||||
EcGM(2) = EcGM(2) + rho1bb(i,j,cd)*rho1bb(i,j,cd)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i=nC(1)+1,nO(1)
|
||||
do j=nC(2)+1,nO(2)
|
||||
do cd=1,nPab
|
||||
eps = e(i,2) + e(j,2) - Omega1ab(cd)
|
||||
EcGM(2) = EcGM(2) + rho1ab(i,j,cd)*rho1ab(i,j,cd)*eps/(eps**2 + eta**2)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
do a=nO(1)+1,nBas-nR(1)
|
||||
do b=nO(2)+1,nBas-nR(2)
|
||||
do kl=1,nHab
|
||||
eps = e(a,2) + e(b,2) - Omega2ab(kl)
|
||||
EcGM(2) = EcGM(2) - rho2ab(a,b,kl)*rho2ab(a,b,kl)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do a=nO(2)+1,nBas-nR(2)
|
||||
do b=nO(2)+1,nBas-nR(2)
|
||||
do kl=1,nHbb
|
||||
eps = e(a,2) + e(b,2) - Omega2bb(kl)
|
||||
EcGM(2) = EcGM(2) - rho2bb(a,b,kl)*rho2bb(a,b,kl)*eps/(eps**2 + eta**2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine unrestricted_self_energy_Tmatrix_diag
|
||||
|
@ -20,9 +20,10 @@ subroutine print_excitation(method,ispin,nS,Omega)
|
||||
if(ispin == 1) spin_manifold = 'singlet'
|
||||
if(ispin == 2) spin_manifold = 'triplet'
|
||||
if(ispin == 3) spin_manifold = 'alpha-beta'
|
||||
if(ispin == 4) spin_manifold = 'alpha-alpha'
|
||||
if(ispin == 4) spin_manifold = 'alpha-alpha'
|
||||
if(ispin == 5) spin_manifold = 'spin-conserved'
|
||||
if(ispin == 6) spin_manifold = 'spin-flip'
|
||||
if(ispin == 7) spin_manifold = 'beta-beta'
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'-------------------------------------------------------------'
|
||||
|
@ -41,11 +41,7 @@ subroutine unrestricted_linear_response_B_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nP
|
||||
|
||||
eF = 0d0
|
||||
|
||||
!-----------------------------------------------
|
||||
! Build B matrix for spin-conserved transitions
|
||||
!-----------------------------------------------
|
||||
|
||||
if(ispin == 1) then
|
||||
if(ispin == 3) then
|
||||
|
||||
! abab block
|
||||
|
||||
@ -67,11 +63,8 @@ subroutine unrestricted_linear_response_B_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nP
|
||||
|
||||
end if
|
||||
|
||||
!-----------------------------------------------
|
||||
! Build B matrix for spin-flip transitions
|
||||
!-----------------------------------------------
|
||||
|
||||
if(ispin == 2) then
|
||||
if(ispin == 4) then
|
||||
|
||||
! aaaa block
|
||||
|
||||
@ -92,7 +85,7 @@ subroutine unrestricted_linear_response_B_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nP
|
||||
end do
|
||||
end if
|
||||
|
||||
if (ispin == 3) then
|
||||
if (ispin == 7) then
|
||||
|
||||
! bbbb block
|
||||
|
||||
|
@ -37,11 +37,8 @@ subroutine unrestricted_linear_response_C_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nP
|
||||
|
||||
|
||||
eF = 0d0
|
||||
!-----------------------------------------------
|
||||
! Build C matrix for spin-conserved transitions
|
||||
!-----------------------------------------------
|
||||
|
||||
if(ispin == 1) then
|
||||
if(ispin == 3) then
|
||||
|
||||
! abab block
|
||||
|
||||
@ -62,11 +59,7 @@ subroutine unrestricted_linear_response_C_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nP
|
||||
|
||||
end if
|
||||
|
||||
!-----------------------------------------------
|
||||
! Build C matrix for spin-flip transitions
|
||||
!-----------------------------------------------
|
||||
|
||||
if(ispin == 2) then
|
||||
if(ispin == 4) then
|
||||
|
||||
! aaaa block
|
||||
|
||||
@ -90,7 +83,7 @@ subroutine unrestricted_linear_response_C_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nP
|
||||
end if
|
||||
|
||||
|
||||
if (ispin == 3) then
|
||||
if (ispin == 7) then
|
||||
|
||||
! bbbb block
|
||||
|
||||
|
@ -38,11 +38,7 @@ subroutine unrestricted_linear_response_D_pp(ispin,nBas,nC,nO,nV,nR,nHaa,nHab,nH
|
||||
|
||||
eF = 0d0
|
||||
|
||||
!-----------------------------------------------
|
||||
! Build D matrix for spin-conserved transitions
|
||||
!-----------------------------------------------
|
||||
|
||||
if(ispin == 1) then
|
||||
if(ispin == 3) then
|
||||
|
||||
! abab block
|
||||
|
||||
@ -63,12 +59,7 @@ subroutine unrestricted_linear_response_D_pp(ispin,nBas,nC,nO,nV,nR,nHaa,nHab,nH
|
||||
|
||||
end if
|
||||
|
||||
|
||||
!-----------------------------------------------
|
||||
! Build D matrix for spin-flip transitions
|
||||
!-----------------------------------------------
|
||||
|
||||
if(ispin == 2) then
|
||||
if(ispin == 4) then
|
||||
|
||||
! aaaa block
|
||||
|
||||
@ -91,7 +82,7 @@ subroutine unrestricted_linear_response_D_pp(ispin,nBas,nC,nO,nV,nR,nHaa,nHab,nH
|
||||
end do
|
||||
end if
|
||||
|
||||
if (ispin == 3) then
|
||||
if (ispin == 7) then
|
||||
|
||||
! bbbb block
|
||||
|
||||
|
@ -65,8 +65,8 @@ subroutine unrestricted_linear_response_pp(ispin,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,
|
||||
call unrestricted_linear_response_C_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nPt,&
|
||||
lambda,e,ERI_aaaa,ERI_aabb,ERI_bbbb,C)
|
||||
|
||||
call unrestricted_linear_response_B_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nPt,nHaa,&
|
||||
nHab,nHbb,nHt,lambda,ERI_aaaa,ERI_aabb,&
|
||||
call unrestricted_linear_response_B_pp(ispin,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,nPt,&
|
||||
nHaa,nHab,nHbb,nHt,lambda,ERI_aaaa,ERI_aabb,&
|
||||
ERI_bbbb,B)
|
||||
|
||||
call unrestricted_linear_response_D_pp(ispin,nBas,nC,nO,nV,nR,nHaa,nHab,nHbb,nHt,&
|
||||
@ -90,7 +90,7 @@ subroutine unrestricted_linear_response_pp(ispin,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,
|
||||
|
||||
call sort_ppRPA(nHt,nPt,Omega(:),Z(:,:),Omega1(:),X1(:,:),Y1(:,:),Omega2(:),X2(:,:),&
|
||||
Y2(:,:))
|
||||
|
||||
|
||||
! Compute the RPA correlation energy
|
||||
|
||||
EcRPA = 0.5d0*( sum(Omega1(:)) - sum(Omega2(:)) - trace_matrix(nPt,C(:,:)) &
|
||||
@ -99,5 +99,5 @@ subroutine unrestricted_linear_response_pp(ispin,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,
|
||||
EcRPA2 = -sum(Omega2(:)) - trace_matrix(nHt,D(:,:))
|
||||
if(abs(EcRPA - EcRPA1) > 1d-6 .or. abs(EcRPA - EcRPA2) > 1d-6) &
|
||||
print*,'!!! Issue in pp-RPA linear reponse calculation RPA1 != RPA2 !!!'
|
||||
|
||||
|
||||
end subroutine unrestricted_linear_response_pp
|
||||
|
@ -51,82 +51,75 @@ subroutine ppURPA(TDA,doACFDT,spin_conserved,spin_flip,nBas,nC,nO,nV,nR,ENuc,EUH
|
||||
Ec_ppURPA(:) = 0d0
|
||||
EcAC(:) = 0d0
|
||||
|
||||
! Spin-conserved manifold
|
||||
!alpha-beta block
|
||||
|
||||
if(spin_conserved) then
|
||||
ispin = 1
|
||||
iblock = 3
|
||||
|
||||
ispin = 1
|
||||
iblock = 1
|
||||
nPab = nV(1)*nV(2)
|
||||
nHab = nO(1)*nO(2)
|
||||
|
||||
!Spin-conserved quantities
|
||||
|
||||
nPab = nV(1)*nV(2)
|
||||
nHab = nO(1)*nO(2)
|
||||
|
||||
nP_sc = nPab
|
||||
nH_sc = nHab
|
||||
nP_sc = nPab
|
||||
nH_sc = nHab
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(Omega1sc(nP_sc),X1sc(nP_sc,nP_sc),Y1sc(nH_sc,nP_sc), &
|
||||
Omega2sc(nH_sc),X2sc(nP_sc,nH_sc),Y2sc(nH_sc,nH_sc))
|
||||
allocate(Omega1sc(nP_sc),X1sc(nP_sc,nP_sc),Y1sc(nH_sc,nP_sc), &
|
||||
Omega2sc(nH_sc),X2sc(nP_sc,nH_sc),Y2sc(nH_sc,nH_sc))
|
||||
|
||||
call unrestricted_linear_response_pp(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb, &
|
||||
nP_sc,nHaa,nHab,nHbb,nH_sc,1d0,e,ERI_aaaa, &
|
||||
ERI_aabb,ERI_bbbb,Omega1sc,X1sc,Y1sc, &
|
||||
Omega2sc,X2sc,Y2sc,Ec_ppURPA(ispin))
|
||||
call unrestricted_linear_response_pp(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb, &
|
||||
nP_sc,nHaa,nHab,nHbb,nH_sc,1d0,e,ERI_aaaa, &
|
||||
ERI_aabb,ERI_bbbb,Omega1sc,X1sc,Y1sc, &
|
||||
Omega2sc,X2sc,Y2sc,Ec_ppURPA(ispin))
|
||||
|
||||
call print_excitation('pp-RPA (N+2)',5,nP_sc,Omega1sc)
|
||||
call print_excitation('pp-RPA (N-2)',5,nH_sc,Omega2sc)
|
||||
call print_excitation('pp-RPA (N+2)',iblock,nP_sc,Omega1sc)
|
||||
call print_excitation('pp-RPA (N-2)',iblock,nH_sc,Omega2sc)
|
||||
|
||||
endif
|
||||
!alpha-alpha block
|
||||
|
||||
! Spin-flip manifold
|
||||
ispin = 2
|
||||
iblock = 4
|
||||
|
||||
if(spin_flip) then
|
||||
nPaa = nV(1)*(nV(1)-1)/2
|
||||
nPbb = nV(2)*(nV(2)-1)/2
|
||||
|
||||
ispin = 2
|
||||
iblock = 2
|
||||
nP_sf = nPaa
|
||||
|
||||
!Spin-flip quantities
|
||||
nHaa = nO(1)*(nO(1)-1)/2
|
||||
nHbb = nO(2)*(nO(2)-1)/2
|
||||
|
||||
nPaa = nV(1)*(nV(1)-1)/2
|
||||
nPbb = nV(2)*(nV(2)-1)/2
|
||||
nH_sf = nHaa
|
||||
|
||||
nP_sf = nPaa
|
||||
allocate(Omega1sf(nP_sf),X1sf(nP_sf,nP_sf),Y1sf(nH_sf,nP_sf), &
|
||||
Omega2sf(nH_sf),X2sf(nP_sf,nH_sf),Y2sf(nH_sf,nH_sf))
|
||||
|
||||
nHaa = nO(1)*(nO(1)-1)/2
|
||||
nHbb = nO(2)*(nO(2)-1)/2
|
||||
call unrestricted_linear_response_pp(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb, &
|
||||
nP_sf,nHaa,nHab,nHbb,nH_sf,1d0,e,ERI_aaaa, &
|
||||
ERI_aabb,ERI_bbbb,Omega1sf,X1sf,Y1sf, &
|
||||
Omega2sf,X2sf,Y2sf,Ec_ppURPA(ispin))
|
||||
|
||||
nH_sf = nHaa
|
||||
call print_excitation('pp-RPA (N+2)',iblock,nP_sf,Omega1sf)
|
||||
call print_excitation('pp-RPA (N-2)',iblock,nH_sf,Omega2sf)
|
||||
|
||||
allocate(Omega1sf(nP_sf),X1sf(nP_sf,nP_sf),Y1sf(nH_sf,nP_sf), &
|
||||
Omega2sf(nH_sf),X2sf(nP_sf,nH_sf),Y2sf(nH_sf,nH_sf))
|
||||
deallocate(Omega1sf,X1sf,Y1sf,Omega2sf,X2sf,Y2sf)
|
||||
|
||||
call unrestricted_linear_response_pp(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb, &
|
||||
nP_sf,nHaa,nHab,nHbb,nH_sf,1d0,e,ERI_aaaa, &
|
||||
ERI_aabb,ERI_bbbb,Omega1sf,X1sf,Y1sf, &
|
||||
Omega2sf,X2sf,Y2sf,Ec_ppURPA(ispin))
|
||||
!beta-beta block
|
||||
|
||||
deallocate(Omega1sf,X1sf,Y1sf,Omega2sf,X2sf,Y2sf)
|
||||
iblock = 7
|
||||
|
||||
iblock = 3
|
||||
nP_sf = nPbb
|
||||
nH_sf = nHbb
|
||||
|
||||
nP_sf = nPbb
|
||||
nH_sf = nHbb
|
||||
allocate(Omega1sf(nP_sf),X1sf(nP_sf,nP_sf),Y1sf(nH_sf,nP_sf), &
|
||||
Omega2sf(nH_sf),X2sf(nP_sf,nH_sf),Y2sf(nH_sf,nH_sf))
|
||||
|
||||
allocate(Omega1sf(nP_sf),X1sf(nP_sf,nP_sf),Y1sf(nH_sf,nP_sf), &
|
||||
Omega2sf(nH_sf),X2sf(nP_sf,nH_sf),Y2sf(nH_sf,nH_sf))
|
||||
call unrestricted_linear_response_pp(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,&
|
||||
nP_sf,nHaa,nHab,nHbb,nH_sf,1d0,e,ERI_aaaa,&
|
||||
ERI_aabb,ERI_bbbb,Omega1sf,X1sf,Y1sf,&
|
||||
Omega2sf,X2sf,Y2sf,Ec_ppURPA(ispin))
|
||||
|
||||
call unrestricted_linear_response_pp(iblock,TDA,nBas,nC,nO,nV,nR,nPaa,nPab,nPbb,&
|
||||
nP_sf,nHaa,nHab,nHbb,nH_sf,1d0,e,ERI_aaaa,&
|
||||
ERI_aabb,ERI_bbbb,Omega1sf,X1sf,Y1sf,&
|
||||
Omega2sf,X2sf,Y2sf,Ec_ppURPA(ispin))
|
||||
|
||||
call print_excitation('pp-RPA (N+2)',6,nP_sf,Omega1sf)
|
||||
call print_excitation('pp-RPA (N-2)',6,nH_sf,Omega2sf)
|
||||
|
||||
endif
|
||||
call print_excitation('pp-RPA (N+2)',iblock,nP_sf,Omega1sf)
|
||||
call print_excitation('pp-RPA (N-2)',iblock,nH_sf,Omega2sf)
|
||||
|
||||
write(*,*)
|
||||
write(*,*)'-------------------------------------------------------------------------------'
|
||||
@ -159,5 +152,4 @@ subroutine ppURPA(TDA,doACFDT,spin_conserved,spin_flip,nBas,nC,nO,nV,nR,ENuc,EUH
|
||||
|
||||
! end if
|
||||
|
||||
|
||||
end subroutine ppURPA
|
||||
|
Loading…
Reference in New Issue
Block a user