mirror of
https://github.com/pfloos/quack
synced 2025-01-03 10:05:49 +01:00
non dTDA
This commit is contained in:
parent
a02bebdd88
commit
030435f90c
1
GoDuck
1
GoDuck
@ -12,7 +12,6 @@ then
|
||||
cp examples/molecule."$1" input/molecule
|
||||
cp examples/basis."$1"."$2" input/basis
|
||||
cp basis/"$2" input/basis.qcaml
|
||||
cp examples/basis."$1"."$2" input/weight
|
||||
# ./bin/IntPak
|
||||
./bin/QuAcK
|
||||
fi
|
||||
|
125
input/basis
125
input/basis
@ -1,92 +1,71 @@
|
||||
1 14
|
||||
1 9
|
||||
S 8
|
||||
1 11420.0000000 0.0005230
|
||||
2 1712.0000000 0.0040450
|
||||
3 389.3000000 0.0207750
|
||||
4 110.0000000 0.0807270
|
||||
5 35.5700000 0.2330740
|
||||
6 12.5400000 0.4335010
|
||||
7 4.6440000 0.3474720
|
||||
8 0.5118000 -0.0085080
|
||||
1 9046.0000000 0.0007000
|
||||
2 1357.0000000 0.0053890
|
||||
3 309.3000000 0.0274060
|
||||
4 87.7300000 0.1032070
|
||||
5 28.5600000 0.2787230
|
||||
6 10.2100000 0.4485400
|
||||
7 3.8380000 0.2782380
|
||||
8 0.7466000 0.0154400
|
||||
S 8
|
||||
1 11420.0000000 -0.0001150
|
||||
2 1712.0000000 -0.0008950
|
||||
3 389.3000000 -0.0046240
|
||||
4 110.0000000 -0.0185280
|
||||
5 35.5700000 -0.0573390
|
||||
6 12.5400000 -0.1320760
|
||||
7 4.6440000 -0.1725100
|
||||
8 0.5118000 0.5999440
|
||||
1 9046.0000000 -0.0001530
|
||||
2 1357.0000000 -0.0012080
|
||||
3 309.3000000 -0.0059920
|
||||
4 87.7300000 -0.0245440
|
||||
5 28.5600000 -0.0674590
|
||||
6 10.2100000 -0.1580780
|
||||
7 3.8380000 -0.1218310
|
||||
8 0.7466000 0.5490030
|
||||
S 1
|
||||
1 1.2930000 1.0000000
|
||||
1 0.2248000 1.0000000
|
||||
S 1
|
||||
1 0.1787000 1.0000000
|
||||
S 1
|
||||
1 0.0576000 1.0000000
|
||||
1 0.0612400 1.0000000
|
||||
P 3
|
||||
1 26.6300000 0.0146700
|
||||
2 5.9480000 0.0917640
|
||||
3 1.7420000 0.2986830
|
||||
1 13.5500000 0.0399190
|
||||
2 2.9170000 0.2171690
|
||||
3 0.7973000 0.5103190
|
||||
P 1
|
||||
1 0.5550000 1.0000000
|
||||
1 0.2185000 1.0000000
|
||||
P 1
|
||||
1 0.1725000 1.0000000
|
||||
P 1
|
||||
1 0.0491000 1.0000000
|
||||
1 0.0561100 1.0000000
|
||||
D 1
|
||||
1 1.6540000 1.0000000
|
||||
1 0.8170000 1.0000000
|
||||
D 1
|
||||
1 0.4690000 1.0000000
|
||||
D 1
|
||||
1 0.1510000 1.0000000
|
||||
F 1
|
||||
1 1.0930000 1.0000000
|
||||
F 1
|
||||
1 0.3640000 1.0000000
|
||||
2 14
|
||||
1 0.2300000 1.0000000
|
||||
2 9
|
||||
S 8
|
||||
1 11420.0000000 0.0005230
|
||||
2 1712.0000000 0.0040450
|
||||
3 389.3000000 0.0207750
|
||||
4 110.0000000 0.0807270
|
||||
5 35.5700000 0.2330740
|
||||
6 12.5400000 0.4335010
|
||||
7 4.6440000 0.3474720
|
||||
8 0.5118000 -0.0085080
|
||||
1 9046.0000000 0.0007000
|
||||
2 1357.0000000 0.0053890
|
||||
3 309.3000000 0.0274060
|
||||
4 87.7300000 0.1032070
|
||||
5 28.5600000 0.2787230
|
||||
6 10.2100000 0.4485400
|
||||
7 3.8380000 0.2782380
|
||||
8 0.7466000 0.0154400
|
||||
S 8
|
||||
1 11420.0000000 -0.0001150
|
||||
2 1712.0000000 -0.0008950
|
||||
3 389.3000000 -0.0046240
|
||||
4 110.0000000 -0.0185280
|
||||
5 35.5700000 -0.0573390
|
||||
6 12.5400000 -0.1320760
|
||||
7 4.6440000 -0.1725100
|
||||
8 0.5118000 0.5999440
|
||||
1 9046.0000000 -0.0001530
|
||||
2 1357.0000000 -0.0012080
|
||||
3 309.3000000 -0.0059920
|
||||
4 87.7300000 -0.0245440
|
||||
5 28.5600000 -0.0674590
|
||||
6 10.2100000 -0.1580780
|
||||
7 3.8380000 -0.1218310
|
||||
8 0.7466000 0.5490030
|
||||
S 1
|
||||
1 1.2930000 1.0000000
|
||||
1 0.2248000 1.0000000
|
||||
S 1
|
||||
1 0.1787000 1.0000000
|
||||
S 1
|
||||
1 0.0576000 1.0000000
|
||||
1 0.0612400 1.0000000
|
||||
P 3
|
||||
1 26.6300000 0.0146700
|
||||
2 5.9480000 0.0917640
|
||||
3 1.7420000 0.2986830
|
||||
1 13.5500000 0.0399190
|
||||
2 2.9170000 0.2171690
|
||||
3 0.7973000 0.5103190
|
||||
P 1
|
||||
1 0.5550000 1.0000000
|
||||
1 0.2185000 1.0000000
|
||||
P 1
|
||||
1 0.1725000 1.0000000
|
||||
P 1
|
||||
1 0.0491000 1.0000000
|
||||
1 0.0561100 1.0000000
|
||||
D 1
|
||||
1 1.6540000 1.0000000
|
||||
1 0.8170000 1.0000000
|
||||
D 1
|
||||
1 0.4690000 1.0000000
|
||||
D 1
|
||||
1 0.1510000 1.0000000
|
||||
F 1
|
||||
1 1.0930000 1.0000000
|
||||
F 1
|
||||
1 0.3640000 1.0000000
|
||||
|
||||
1 0.2300000 1.0000000
|
||||
|
||||
|
206
input/weight
206
input/weight
@ -1,92 +1,174 @@
|
||||
1 14
|
||||
S 8
|
||||
1 11420.0000000 0.0005230
|
||||
2 1712.0000000 0.0040450
|
||||
3 389.3000000 0.0207750
|
||||
4 110.0000000 0.0807270
|
||||
5 35.5700000 0.2330740
|
||||
6 12.5400000 0.4335010
|
||||
7 4.6440000 0.3474720
|
||||
8 0.5118000 -0.0085080
|
||||
1 8236.0000000 0.0005310
|
||||
2 1235.0000000 0.0041080
|
||||
3 280.8000000 0.0210870
|
||||
4 79.2700000 0.0818530
|
||||
5 25.5900000 0.2348170
|
||||
6 8.9970000 0.4344010
|
||||
7 3.3190000 0.3461290
|
||||
8 0.3643000 -0.0089830
|
||||
S 8
|
||||
1 11420.0000000 -0.0001150
|
||||
2 1712.0000000 -0.0008950
|
||||
3 389.3000000 -0.0046240
|
||||
4 110.0000000 -0.0185280
|
||||
5 35.5700000 -0.0573390
|
||||
6 12.5400000 -0.1320760
|
||||
7 4.6440000 -0.1725100
|
||||
8 0.5118000 0.5999440
|
||||
1 8236.0000000 -0.0001130
|
||||
2 1235.0000000 -0.0008780
|
||||
3 280.8000000 -0.0045400
|
||||
4 79.2700000 -0.0181330
|
||||
5 25.5900000 -0.0557600
|
||||
6 8.9970000 -0.1268950
|
||||
7 3.3190000 -0.1703520
|
||||
8 0.3643000 0.5986840
|
||||
S 1
|
||||
1 1.2930000 1.0000000
|
||||
1 0.9059000 1.0000000
|
||||
S 1
|
||||
1 0.1787000 1.0000000
|
||||
1 0.1285000 1.0000000
|
||||
S 1
|
||||
1 0.0576000 1.0000000
|
||||
1 0.0440200 1.0000000
|
||||
P 3
|
||||
1 26.6300000 0.0146700
|
||||
2 5.9480000 0.0917640
|
||||
3 1.7420000 0.2986830
|
||||
1 18.7100000 0.0140310
|
||||
2 4.1330000 0.0868660
|
||||
3 1.2000000 0.2902160
|
||||
P 1
|
||||
1 0.5550000 1.0000000
|
||||
1 0.3827000 1.0000000
|
||||
P 1
|
||||
1 0.1725000 1.0000000
|
||||
1 0.1209000 1.0000000
|
||||
P 1
|
||||
1 0.0491000 1.0000000
|
||||
1 0.0356900 1.0000000
|
||||
D 1
|
||||
1 1.6540000 1.0000000
|
||||
1 1.0970000 1.0000000
|
||||
D 1
|
||||
1 0.4690000 1.0000000
|
||||
1 0.3180000 1.0000000
|
||||
D 1
|
||||
1 0.1510000 1.0000000
|
||||
1 0.1000000 1.0000000
|
||||
F 1
|
||||
1 1.0930000 1.0000000
|
||||
1 0.7610000 1.0000000
|
||||
F 1
|
||||
1 0.3640000 1.0000000
|
||||
1 0.2680000 1.0000000
|
||||
2 14
|
||||
S 8
|
||||
1 11420.0000000 0.0005230
|
||||
2 1712.0000000 0.0040450
|
||||
3 389.3000000 0.0207750
|
||||
4 110.0000000 0.0807270
|
||||
5 35.5700000 0.2330740
|
||||
6 12.5400000 0.4335010
|
||||
7 4.6440000 0.3474720
|
||||
8 0.5118000 -0.0085080
|
||||
1 8236.0000000 0.0005310
|
||||
2 1235.0000000 0.0041080
|
||||
3 280.8000000 0.0210870
|
||||
4 79.2700000 0.0818530
|
||||
5 25.5900000 0.2348170
|
||||
6 8.9970000 0.4344010
|
||||
7 3.3190000 0.3461290
|
||||
8 0.3643000 -0.0089830
|
||||
S 8
|
||||
1 11420.0000000 -0.0001150
|
||||
2 1712.0000000 -0.0008950
|
||||
3 389.3000000 -0.0046240
|
||||
4 110.0000000 -0.0185280
|
||||
5 35.5700000 -0.0573390
|
||||
6 12.5400000 -0.1320760
|
||||
7 4.6440000 -0.1725100
|
||||
8 0.5118000 0.5999440
|
||||
1 8236.0000000 -0.0001130
|
||||
2 1235.0000000 -0.0008780
|
||||
3 280.8000000 -0.0045400
|
||||
4 79.2700000 -0.0181330
|
||||
5 25.5900000 -0.0557600
|
||||
6 8.9970000 -0.1268950
|
||||
7 3.3190000 -0.1703520
|
||||
8 0.3643000 0.5986840
|
||||
S 1
|
||||
1 1.2930000 1.0000000
|
||||
1 0.9059000 1.0000000
|
||||
S 1
|
||||
1 0.1787000 1.0000000
|
||||
1 0.1285000 1.0000000
|
||||
S 1
|
||||
1 0.0576000 1.0000000
|
||||
1 0.0440200 1.0000000
|
||||
P 3
|
||||
1 26.6300000 0.0146700
|
||||
2 5.9480000 0.0917640
|
||||
3 1.7420000 0.2986830
|
||||
1 18.7100000 0.0140310
|
||||
2 4.1330000 0.0868660
|
||||
3 1.2000000 0.2902160
|
||||
P 1
|
||||
1 0.5550000 1.0000000
|
||||
1 0.3827000 1.0000000
|
||||
P 1
|
||||
1 0.1725000 1.0000000
|
||||
1 0.1209000 1.0000000
|
||||
P 1
|
||||
1 0.0491000 1.0000000
|
||||
1 0.0356900 1.0000000
|
||||
D 1
|
||||
1 1.6540000 1.0000000
|
||||
1 1.0970000 1.0000000
|
||||
D 1
|
||||
1 0.4690000 1.0000000
|
||||
1 0.3180000 1.0000000
|
||||
D 1
|
||||
1 0.1510000 1.0000000
|
||||
1 0.1000000 1.0000000
|
||||
F 1
|
||||
1 1.0930000 1.0000000
|
||||
1 0.7610000 1.0000000
|
||||
F 1
|
||||
1 0.3640000 1.0000000
|
||||
|
||||
|
||||
1 0.2680000 1.0000000
|
||||
3 9
|
||||
S 3
|
||||
1 33.8700000 0.0060680
|
||||
2 5.0950000 0.0453080
|
||||
3 1.1590000 0.2028220
|
||||
S 1
|
||||
1 0.3258000 1.0000000
|
||||
S 1
|
||||
1 0.1027000 1.0000000
|
||||
S 1
|
||||
1 0.0252600 1.0000000
|
||||
P 1
|
||||
1 1.4070000 1.0000000
|
||||
P 1
|
||||
1 0.3880000 1.0000000
|
||||
P 1
|
||||
1 0.1020000 1.0000000
|
||||
D 1
|
||||
1 1.0570000 1.0000000
|
||||
D 1
|
||||
1 0.2470000 1.0000000
|
||||
4 9
|
||||
S 3
|
||||
1 33.8700000 0.0060680
|
||||
2 5.0950000 0.0453080
|
||||
3 1.1590000 0.2028220
|
||||
S 1
|
||||
1 0.3258000 1.0000000
|
||||
S 1
|
||||
1 0.1027000 1.0000000
|
||||
S 1
|
||||
1 0.0252600 1.0000000
|
||||
P 1
|
||||
1 1.4070000 1.0000000
|
||||
P 1
|
||||
1 0.3880000 1.0000000
|
||||
P 1
|
||||
1 0.1020000 1.0000000
|
||||
D 1
|
||||
1 1.0570000 1.0000000
|
||||
D 1
|
||||
1 0.2470000 1.0000000
|
||||
5 9
|
||||
S 3
|
||||
1 33.8700000 0.0060680
|
||||
2 5.0950000 0.0453080
|
||||
3 1.1590000 0.2028220
|
||||
S 1
|
||||
1 0.3258000 1.0000000
|
||||
S 1
|
||||
1 0.1027000 1.0000000
|
||||
S 1
|
||||
1 0.0252600 1.0000000
|
||||
P 1
|
||||
1 1.4070000 1.0000000
|
||||
P 1
|
||||
1 0.3880000 1.0000000
|
||||
P 1
|
||||
1 0.1020000 1.0000000
|
||||
D 1
|
||||
1 1.0570000 1.0000000
|
||||
D 1
|
||||
1 0.2470000 1.0000000
|
||||
6 9
|
||||
S 3
|
||||
1 33.8700000 0.0060680
|
||||
2 5.0950000 0.0453080
|
||||
3 1.1590000 0.2028220
|
||||
S 1
|
||||
1 0.3258000 1.0000000
|
||||
S 1
|
||||
1 0.1027000 1.0000000
|
||||
S 1
|
||||
1 0.0252600 1.0000000
|
||||
P 1
|
||||
1 1.4070000 1.0000000
|
||||
P 1
|
||||
1 0.3880000 1.0000000
|
||||
P 1
|
||||
1 0.1020000 1.0000000
|
||||
D 1
|
||||
1 1.0570000 1.0000000
|
||||
D 1
|
||||
1 0.2470000 1.0000000
|
||||
|
@ -69,8 +69,18 @@ subroutine ACFDT_correlation_energy(ispin,exchange_kernel,nBas,nC,nO,nV,nR,nS,ER
|
||||
|
||||
! Compute Tr(K x P_lambda)
|
||||
|
||||
X(:,:) = 0.5d0*(XpY(:,:) + XmY(:,:))
|
||||
Y(:,:) = 0.5d0*(XpY(:,:) - XmY(:,:))
|
||||
! X(:,:) = 0.5d0*(XpY(:,:) + XmY(:,:))
|
||||
! Y(:,:) = 0.5d0*(XpY(:,:) - XmY(:,:))
|
||||
|
||||
! print*,'X'
|
||||
! call matout(nS,nS,X)
|
||||
! print*,'Y'
|
||||
! call matout(nS,nS,Y)
|
||||
|
||||
! print*,'Ap'
|
||||
! call matout(nS,nS,Ap)
|
||||
! print*,'Bp'
|
||||
! call matout(nS,nS,Bp)
|
||||
|
||||
EcAC = trace_matrix(nS,matmul(X,matmul(Bp,transpose(Y))) + matmul(Y,matmul(Bp,transpose(X)))) &
|
||||
+ trace_matrix(nS,matmul(X,matmul(Ap,transpose(X))) + matmul(Y,matmul(Ap,transpose(Y)))) &
|
||||
|
@ -26,6 +26,7 @@ subroutine Bethe_Salpeter(TDA,singlet_manifold,triplet_manifold,eta, &
|
||||
! Local variables
|
||||
|
||||
logical :: evDyn = .false.
|
||||
logical :: W_BSE = .false.
|
||||
integer :: ispin
|
||||
double precision,allocatable :: OmBSE(:,:)
|
||||
double precision,allocatable :: XpY_BSE(:,:,:)
|
||||
@ -39,7 +40,8 @@ subroutine Bethe_Salpeter(TDA,singlet_manifold,triplet_manifold,eta, &
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(OmBSE(nS,nspin),XpY_BSE(nS,nS,nspin),XmY_BSE(nS,nS,nspin),rho_BSE(nBas,nBas,nS,nspin))
|
||||
allocate(OmBSE(nS,nspin),XpY_BSE(nS,nS,nspin),XmY_BSE(nS,nS,nspin))
|
||||
if(W_BSE) allocate(rho_BSE(nBas,nBas,nS,nspin))
|
||||
|
||||
!-------------------
|
||||
! Singlet manifold
|
||||
@ -63,7 +65,10 @@ subroutine Bethe_Salpeter(TDA,singlet_manifold,triplet_manifold,eta, &
|
||||
call linear_response(ispin,.true.,TDA,.true.,eta,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI, &
|
||||
rho_RPA(:,:,:,ispin),EcBSE(ispin),OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
|
||||
call print_excitation('BSE ',ispin,nS,OmBSE(:,ispin))
|
||||
! call excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_BSE(:,:,ispin),rho_BSE(:,:,:,ispin))
|
||||
|
||||
! Compute the dynamical screening at the BSE level
|
||||
|
||||
if(W_BSE) call excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_BSE(:,:,ispin),rho_BSE(:,:,:,ispin))
|
||||
|
||||
! Compute dynamic correction for BSE via perturbation theory
|
||||
|
||||
@ -73,12 +78,18 @@ subroutine Bethe_Salpeter(TDA,singlet_manifold,triplet_manifold,eta, &
|
||||
XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_RPA(:,:,:,ispin))
|
||||
else
|
||||
|
||||
if(W_BSE) then
|
||||
call Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW(:),OmRPA(:,ispin),OmBSE(:,ispin), &
|
||||
XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_BSE(:,:,:,ispin))
|
||||
else
|
||||
call Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW(:),OmRPA(:,ispin),OmBSE(:,ispin), &
|
||||
XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_RPA(:,:,:,ispin))
|
||||
end if
|
||||
|
||||
end if
|
||||
|
||||
end if
|
||||
|
||||
!-------------------
|
||||
! Triplet manifold
|
||||
!-------------------
|
||||
@ -101,7 +112,10 @@ subroutine Bethe_Salpeter(TDA,singlet_manifold,triplet_manifold,eta, &
|
||||
call linear_response(ispin,.true.,TDA,.true.,eta,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI, &
|
||||
rho_RPA(:,:,:,ispin),EcBSE(ispin),OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
|
||||
call print_excitation('BSE ',ispin,nS,OmBSE(:,ispin))
|
||||
! call excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_BSE(:,:,ispin),rho_BSE(:,:,:,ispin))
|
||||
|
||||
! Compute the dynamical screening at the BSE level
|
||||
|
||||
if(W_BSE) call excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_BSE(:,:,ispin),rho_BSE(:,:,:,ispin))
|
||||
|
||||
! Compute dynamic correction for BSE via perturbation theory
|
||||
|
||||
@ -111,10 +125,16 @@ subroutine Bethe_Salpeter(TDA,singlet_manifold,triplet_manifold,eta, &
|
||||
XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_RPA(:,:,:,ispin))
|
||||
else
|
||||
|
||||
if(W_BSE) then
|
||||
call Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW(:),OmRPA(:,ispin),OmBSE(:,ispin), &
|
||||
XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_BSE(:,:,:,ispin))
|
||||
else
|
||||
call Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW(:),OmRPA(:,ispin),OmBSE(:,ispin), &
|
||||
XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_RPA(:,:,:,ispin))
|
||||
end if
|
||||
|
||||
end if
|
||||
|
||||
end if
|
||||
|
||||
end subroutine Bethe_Salpeter
|
||||
|
111
src/QuAcK/Bethe_Salpeter_AB_matrix_dynamic.f90
Normal file
111
src/QuAcK/Bethe_Salpeter_AB_matrix_dynamic.f90
Normal file
@ -0,0 +1,111 @@
|
||||
subroutine Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,Ap,Am,Bp,Bm)
|
||||
|
||||
! Compute the dynamic part of the Bethe-Salpeter equation matrices
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
|
||||
double precision,intent(in) :: eta
|
||||
double precision,intent(in) :: lambda
|
||||
double precision,intent(in) :: eGW(nBas)
|
||||
double precision,intent(in) :: OmRPA(nS)
|
||||
double precision,intent(in) :: OmBSE
|
||||
double precision,intent(in) :: rho(nBas,nBas,nS)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: maxS
|
||||
double precision :: chi_A,chi_B,eps
|
||||
double precision :: chi_Ap,chi_Am,chi_Bp,chi_Bm
|
||||
double precision :: eps_Ap,eps_Am,eps_Bp,eps_Bm
|
||||
integer :: i,j,a,b,ia,jb,kc
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: Ap(nS,nS)
|
||||
double precision,intent(out) :: Am(nS,nS)
|
||||
double precision,intent(out) :: Bp(nS,nS)
|
||||
double precision,intent(out) :: Bm(nS,nS)
|
||||
|
||||
! Initialization
|
||||
|
||||
Ap(:,:) = 0d0
|
||||
Am(:,:) = 0d0
|
||||
Bp(:,:) = 0d0
|
||||
Bm(:,:) = 0d0
|
||||
|
||||
! Number of poles taken into account
|
||||
|
||||
maxS = nS
|
||||
|
||||
! Build dynamic A matrix
|
||||
|
||||
ia = 0
|
||||
do i=nC+1,nO
|
||||
do a=nO+1,nBas-nR
|
||||
ia = ia + 1
|
||||
jb = 0
|
||||
do j=nC+1,nO
|
||||
do b=nO+1,nBas-nR
|
||||
jb = jb + 1
|
||||
|
||||
chi_A = 0d0
|
||||
chi_B = 0d0
|
||||
|
||||
do kc=1,maxS
|
||||
|
||||
eps = OmRPA(kc)**2 + eta**2
|
||||
chi_A = chi_A + rho(i,j,kc)*rho(a,b,kc)*OmRPA(kc)/eps
|
||||
chi_B = chi_B + rho(i,b,kc)*rho(a,j,kc)*OmRPA(kc)/eps
|
||||
|
||||
enddo
|
||||
|
||||
Ap(ia,jb) = Ap(ia,jb) - 4d0*lambda*chi_A
|
||||
Am(ia,jb) = Am(ia,jb) - 4d0*lambda*chi_A
|
||||
Bp(ia,jb) = Bp(ia,jb) - 4d0*lambda*chi_B
|
||||
Bm(ia,jb) = Bm(ia,jb) - 4d0*lambda*chi_B
|
||||
|
||||
chi_Ap = 0d0
|
||||
chi_Am = 0d0
|
||||
chi_Bp = 0d0
|
||||
chi_Bm = 0d0
|
||||
|
||||
do kc=1,maxS
|
||||
|
||||
eps_Ap = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
|
||||
eps_Am = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
|
||||
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*(+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_Ap
|
||||
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*(+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_Am
|
||||
|
||||
eps_Ap = (+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
|
||||
eps_Am = (+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
|
||||
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*(+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_Ap
|
||||
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*(+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_Am
|
||||
|
||||
eps_Bp = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
|
||||
eps_Bm = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
|
||||
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*(+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bp
|
||||
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*(+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bm
|
||||
|
||||
eps_Bp = (+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
|
||||
eps_Bm = (+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
|
||||
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*(+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bp
|
||||
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*(+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bm
|
||||
|
||||
enddo
|
||||
|
||||
Ap(ia,jb) = Ap(ia,jb) - 2d0*lambda*chi_Ap
|
||||
Am(ia,jb) = Am(ia,jb) - 2d0*lambda*chi_Am
|
||||
|
||||
Bp(ia,jb) = Bp(ia,jb) - 2d0*lambda*chi_Bp
|
||||
Bm(ia,jb) = Bm(ia,jb) - 2d0*lambda*chi_Bm
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine Bethe_Salpeter_AB_matrix_dynamic
|
@ -1,76 +0,0 @@
|
||||
subroutine Bethe_Salpeter_B_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,B_dyn)
|
||||
|
||||
! Compute the dynamic part of the Bethe-Salpeter equation matrices
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
|
||||
double precision,intent(in) :: eta
|
||||
double precision,intent(in) :: lambda
|
||||
double precision,intent(in) :: eGW(nBas)
|
||||
double precision,intent(in) :: OmRPA(nS)
|
||||
double precision,intent(in) :: OmBSE
|
||||
double precision,intent(in) :: rho(nBas,nBas,nS)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: maxS
|
||||
double precision :: chi
|
||||
double precision :: eps
|
||||
integer :: i,j,a,b,ia,jb,kc
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: B_dyn(nS,nS)
|
||||
|
||||
! Initialization
|
||||
|
||||
B_dyn(:,:) = 0d0
|
||||
|
||||
! Number of poles taken into account
|
||||
|
||||
maxS = nS
|
||||
|
||||
! Build dynamic A matrix
|
||||
|
||||
ia = 0
|
||||
do i=nC+1,nO
|
||||
do a=nO+1,nBas-nR
|
||||
ia = ia + 1
|
||||
jb = 0
|
||||
do j=nC+1,nO
|
||||
do b=nO+1,nBas-nR
|
||||
jb = jb + 1
|
||||
|
||||
chi = 0d0
|
||||
do kc=1,maxS
|
||||
|
||||
eps = OmRPA(kc)**2 + eta**2
|
||||
chi = chi + rho(i,b,kc)*rho(a,j,kc)*OmRPA(kc)/eps
|
||||
|
||||
enddo
|
||||
|
||||
B_dyn(ia,jb) = B_dyn(ia,jb) - 4d0*lambda*chi
|
||||
|
||||
chi = 0d0
|
||||
do kc=1,maxS
|
||||
|
||||
eps = (OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
|
||||
chi = chi + rho(i,b,kc)*rho(a,j,kc)*(OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps
|
||||
|
||||
eps = (OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
|
||||
chi = chi + rho(i,b,kc)*rho(a,j,kc)*(OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps
|
||||
|
||||
enddo
|
||||
|
||||
B_dyn(ia,jb) = B_dyn(ia,jb) - 2d0*lambda*chi
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine Bethe_Salpeter_B_matrix_dynamic
|
94
src/QuAcK/Bethe_Salpeter_ZAB_matrix_dynamic.f90
Normal file
94
src/QuAcK/Bethe_Salpeter_ZAB_matrix_dynamic.f90
Normal file
@ -0,0 +1,94 @@
|
||||
subroutine Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,ZAp,ZAm,ZBp,ZBm)
|
||||
|
||||
! Compute the dynamic part of the Bethe-Salpeter equation matrices
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
|
||||
double precision,intent(in) :: eta
|
||||
double precision,intent(in) :: lambda
|
||||
double precision,intent(in) :: eGW(nBas)
|
||||
double precision,intent(in) :: OmRPA(nS)
|
||||
double precision,intent(in) :: OmBSE
|
||||
double precision,intent(in) :: rho(nBas,nBas,nS)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: maxS
|
||||
double precision :: chi_Ap,chi_Am,chi_Bp,chi_Bm
|
||||
double precision :: eps_Ap,eps_Am,eps_Bp,eps_Bm
|
||||
integer :: i,j,a,b,ia,jb,kc
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: ZAp(nS,nS)
|
||||
double precision,intent(out) :: ZAm(nS,nS)
|
||||
double precision,intent(out) :: ZBp(nS,nS)
|
||||
double precision,intent(out) :: ZBm(nS,nS)
|
||||
|
||||
! Initialization
|
||||
|
||||
ZAp(:,:) = 0d0
|
||||
ZAm(:,:) = 0d0
|
||||
ZBp(:,:) = 0d0
|
||||
ZBm(:,:) = 0d0
|
||||
|
||||
! Number of poles taken into account
|
||||
|
||||
maxS = nS
|
||||
|
||||
! Build dynamic A matrix
|
||||
|
||||
ia = 0
|
||||
do i=nC+1,nO
|
||||
do a=nO+1,nBas-nR
|
||||
ia = ia + 1
|
||||
jb = 0
|
||||
do j=nC+1,nO
|
||||
do b=nO+1,nBas-nR
|
||||
jb = jb + 1
|
||||
|
||||
chi_Ap = 0d0
|
||||
chi_Am = 0d0
|
||||
chi_Bp = 0d0
|
||||
chi_Bm = 0d0
|
||||
|
||||
do kc=1,maxS
|
||||
|
||||
eps_Ap = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
|
||||
eps_Am = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
|
||||
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*((+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_Ap)**2
|
||||
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*((+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_Am)**2
|
||||
|
||||
eps_Ap = (+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
|
||||
eps_Am = (+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
|
||||
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*((+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_Ap)**2
|
||||
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*((+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_Am)**2
|
||||
|
||||
eps_Bp = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
|
||||
eps_Bm = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
|
||||
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*((+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps_Bp)**2
|
||||
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*((+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps_Bm)**2
|
||||
|
||||
eps_Bp = (+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
|
||||
eps_Bm = (+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
|
||||
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*((+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bp)**2
|
||||
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*((+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bm)**2
|
||||
|
||||
enddo
|
||||
|
||||
ZAp(ia,jb) = ZAp(ia,jb) + 2d0*lambda*chi_Ap
|
||||
ZAm(ia,jb) = ZAm(ia,jb) + 2d0*lambda*chi_Am
|
||||
|
||||
ZBp(ia,jb) = ZBp(ia,jb) + 2d0*lambda*chi_Bp
|
||||
ZBm(ia,jb) = ZBm(ia,jb) + 2d0*lambda*chi_Bm
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine Bethe_Salpeter_ZAB_matrix_dynamic
|
@ -1,66 +0,0 @@
|
||||
subroutine Bethe_Salpeter_ZB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,ZB_dyn)
|
||||
|
||||
! Compute the dynamic part of the Bethe-Salpeter equation matrices
|
||||
|
||||
implicit none
|
||||
include 'parameters.h'
|
||||
|
||||
! Input variables
|
||||
|
||||
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
|
||||
double precision,intent(in) :: eta
|
||||
double precision,intent(in) :: lambda
|
||||
double precision,intent(in) :: eGW(nBas)
|
||||
double precision,intent(in) :: OmRPA(nS)
|
||||
double precision,intent(in) :: OmBSE
|
||||
double precision,intent(in) :: rho(nBas,nBas,nS)
|
||||
|
||||
! Local variables
|
||||
|
||||
integer :: maxS
|
||||
double precision :: chi
|
||||
double precision :: eps
|
||||
integer :: i,j,a,b,ia,jb,kc
|
||||
|
||||
! Output variables
|
||||
|
||||
double precision,intent(out) :: ZB_dyn(nS,nS)
|
||||
|
||||
! Initialization
|
||||
|
||||
ZB_dyn(:,:) = 0d0
|
||||
|
||||
! Number of poles taken into account
|
||||
|
||||
maxS = nS
|
||||
|
||||
! Build dynamic A matrix
|
||||
|
||||
ia = 0
|
||||
do i=nC+1,nO
|
||||
do a=nO+1,nBas-nR
|
||||
ia = ia + 1
|
||||
jb = 0
|
||||
do j=nC+1,nO
|
||||
do b=nO+1,nBas-nR
|
||||
jb = jb + 1
|
||||
|
||||
chi = 0d0
|
||||
do kc=1,maxS
|
||||
|
||||
eps = (OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
|
||||
chi = chi + rho(i,b,kc)*rho(a,j,kc)*((OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps)**2
|
||||
|
||||
eps = (OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
|
||||
chi = chi + rho(i,b,kc)*rho(a,j,kc)*((OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps)**2
|
||||
|
||||
enddo
|
||||
|
||||
ZB_dyn(ia,jb) = ZB_dyn(ia,jb) + 2d0*lambda*chi
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine Bethe_Salpeter_ZB_matrix_dynamic
|
@ -25,7 +25,7 @@ subroutine Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW,O
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: TDA_dyn = .true.
|
||||
logical :: dTDA = .false.
|
||||
integer :: ia
|
||||
integer,parameter :: maxS = 10
|
||||
double precision :: gapGW
|
||||
@ -34,16 +34,22 @@ subroutine Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW,O
|
||||
double precision,allocatable :: ZDyn(:)
|
||||
double precision,allocatable :: X(:)
|
||||
double precision,allocatable :: Y(:)
|
||||
double precision,allocatable :: A_dyn(:,:)
|
||||
double precision,allocatable :: B_dyn(:,:)
|
||||
double precision,allocatable :: ZA_dyn(:,:)
|
||||
double precision,allocatable :: ZB_dyn(:,:)
|
||||
|
||||
double precision,allocatable :: Ap_dyn(:,:)
|
||||
double precision,allocatable :: Am_dyn(:,:)
|
||||
double precision,allocatable :: ZAp_dyn(:,:)
|
||||
double precision,allocatable :: ZAm_dyn(:,:)
|
||||
|
||||
double precision,allocatable :: Bp_dyn(:,:)
|
||||
double precision,allocatable :: Bm_dyn(:,:)
|
||||
double precision,allocatable :: ZBp_dyn(:,:)
|
||||
double precision,allocatable :: ZBm_dyn(:,:)
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(OmDyn(nS),ZDyn(nS),X(nS),Y(nS),A_dyn(nS,nS),ZA_dyn(nS,nS))
|
||||
allocate(OmDyn(nS),ZDyn(nS),X(nS),Y(nS),Ap_dyn(nS,nS),ZAp_dyn(nS,nS))
|
||||
|
||||
if(.not.TDA_dyn) allocate(B_dyn(nS,nS),ZB_dyn(nS,nS))
|
||||
if(.not.dTDA) allocate(Am_dyn(nS,nS),ZAm_dyn(nS,nS),Bp_dyn(nS,nS),Bm_dyn(nS,nS),ZBp_dyn(nS,nS),ZBm_dyn(nS,nS))
|
||||
|
||||
gapGW = eGW(nO+1) - eGW(nO)
|
||||
|
||||
@ -58,40 +64,42 @@ subroutine Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW,O
|
||||
X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:))
|
||||
Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:))
|
||||
|
||||
! Resonant part of the BSE correction
|
||||
|
||||
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),A_dyn(:,:))
|
||||
|
||||
! Renormalization factor of the resonant part
|
||||
|
||||
call Bethe_Salpeter_ZA_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),ZA_dyn(:,:))
|
||||
|
||||
! First-order correction
|
||||
|
||||
if(TDA_dyn) then
|
||||
if(dTDA) then
|
||||
|
||||
ZDyn(ia) = dot_product(X(:),matmul(ZA_dyn(:,:),X(:)))
|
||||
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:)))
|
||||
! Resonant part of the BSE correction for dynamical TDA
|
||||
|
||||
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),Ap_dyn(:,:))
|
||||
|
||||
! Renormalization factor of the resonant parts for dynamical TDA
|
||||
|
||||
call Bethe_Salpeter_ZA_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),ZAp_dyn(:,:))
|
||||
|
||||
ZDyn(ia) = dot_product(X(:),matmul(ZAp_dyn(:,:),X(:)))
|
||||
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:)))
|
||||
|
||||
else
|
||||
|
||||
! Anti-resonant part of the BSE correction
|
||||
! Resonant and anti-resonant part of the BSE correction
|
||||
|
||||
call Bethe_Salpeter_B_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),B_dyn(:,:))
|
||||
call Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
||||
Ap_dyn(:,:),Am_dyn(:,:),Bp_dyn(:,:),Bm_dyn(:,:))
|
||||
|
||||
! Renormalization factor of the anti-resonant part
|
||||
! Renormalization factor of the resonant and anti-resonant parts
|
||||
|
||||
call Bethe_Salpeter_ZB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),ZB_dyn(:,:))
|
||||
call Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
|
||||
ZAp_dyn(:,:),ZAm_dyn(:,:),ZBp_dyn(:,:),ZBm_dyn(:,:))
|
||||
|
||||
ZDyn(ia) = dot_product(X(:),matmul(ZA_dyn(:,:),X(:))) &
|
||||
- dot_product(Y(:),matmul(ZA_dyn(:,:),Y(:))) &
|
||||
+ dot_product(X(:),matmul(ZB_dyn(:,:),Y(:))) &
|
||||
- dot_product(Y(:),matmul(ZB_dyn(:,:),X(:)))
|
||||
ZDyn(ia) = dot_product(X(:),matmul(ZAp_dyn(:,:),X(:))) &
|
||||
- dot_product(Y(:),matmul(ZAm_dyn(:,:),Y(:))) &
|
||||
+ dot_product(X(:),matmul(ZBp_dyn(:,:),Y(:))) &
|
||||
- dot_product(Y(:),matmul(ZBm_dyn(:,:),X(:)))
|
||||
|
||||
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:))) &
|
||||
- dot_product(Y(:),matmul(A_dyn(:,:),Y(:))) &
|
||||
+ dot_product(X(:),matmul(B_dyn(:,:),Y(:))) &
|
||||
- dot_product(Y(:),matmul(B_dyn(:,:),X(:)))
|
||||
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:))) &
|
||||
- dot_product(Y(:),matmul(Am_dyn(:,:),Y(:))) &
|
||||
+ dot_product(X(:),matmul(Bp_dyn(:,:),Y(:))) &
|
||||
- dot_product(Y(:),matmul(Bm_dyn(:,:),X(:)))
|
||||
|
||||
end if
|
||||
|
||||
|
@ -25,7 +25,7 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
|
||||
|
||||
! Local variables
|
||||
|
||||
logical :: TDA_dyn = .true.
|
||||
logical :: dTDA = .true.
|
||||
integer :: ia
|
||||
integer,parameter :: maxS = 10
|
||||
double precision :: gapGW
|
||||
@ -40,16 +40,16 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
|
||||
double precision,allocatable :: OmOld(:)
|
||||
double precision,allocatable :: X(:)
|
||||
double precision,allocatable :: Y(:)
|
||||
double precision,allocatable :: A_dyn(:,:)
|
||||
double precision,allocatable :: B_dyn(:,:)
|
||||
double precision,allocatable :: ZA_dyn(:,:)
|
||||
double precision,allocatable :: ZB_dyn(:,:)
|
||||
double precision,allocatable :: Ap_dyn(:,:)
|
||||
double precision,allocatable :: Am_dyn(:,:)
|
||||
double precision,allocatable :: Bp_dyn(:,:)
|
||||
double precision,allocatable :: Bm_dyn(:,:)
|
||||
|
||||
! Memory allocation
|
||||
|
||||
allocate(OmDyn(nS),OmOld(nS),X(nS),Y(nS),A_dyn(nS,nS))
|
||||
allocate(OmDyn(nS),OmOld(nS),X(nS),Y(nS),Ap_dyn(nS,nS))
|
||||
|
||||
if(.not.TDA_dyn) allocate(B_dyn(nS,nS))
|
||||
if(.not.dTDA) allocate(Am_dyn(nS,nS),Bp_dyn(nS,nS),Bm_dyn(nS,nS))
|
||||
|
||||
gapGW = eGW(nO+1) - eGW(nO)
|
||||
|
||||
@ -78,26 +78,27 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
|
||||
X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:))
|
||||
Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:))
|
||||
|
||||
! Resonant part of the BSE correction
|
||||
|
||||
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:),A_dyn(:,:))
|
||||
|
||||
! First-order correction
|
||||
|
||||
if(TDA_dyn) then
|
||||
if(dTDA) then
|
||||
|
||||
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:)))
|
||||
! Resonant part of the BSE correction
|
||||
|
||||
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:),Ap_dyn(:,:))
|
||||
|
||||
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:)))
|
||||
|
||||
else
|
||||
|
||||
! Anti-resonant part of the BSE correction
|
||||
|
||||
call Bethe_Salpeter_B_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:),B_dyn(:,:))
|
||||
call Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:), &
|
||||
Ap_dyn(:,:),Am_dyn(:,:),Bp_dyn(:,:),Bm_dyn(:,:))
|
||||
|
||||
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:))) &
|
||||
- dot_product(Y(:),matmul(A_dyn(:,:),Y(:))) &
|
||||
+ dot_product(X(:),matmul(B_dyn(:,:),Y(:))) &
|
||||
- dot_product(Y(:),matmul(B_dyn(:,:),X(:)))
|
||||
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:))) &
|
||||
- dot_product(Y(:),matmul(Am_dyn(:,:),Y(:))) &
|
||||
+ dot_product(X(:),matmul(Bp_dyn(:,:),Y(:))) &
|
||||
- dot_product(Y(:),matmul(Bm_dyn(:,:),X(:)))
|
||||
|
||||
end if
|
||||
|
||||
|
@ -13,7 +13,7 @@ subroutine orthogonalization_matrix(ortho_type,nBas,S,X)
|
||||
|
||||
logical :: debug
|
||||
double precision,allocatable :: UVec(:,:),Uval(:)
|
||||
double precision,parameter :: thresh = 1d-8
|
||||
double precision,parameter :: thresh = 1d-6
|
||||
|
||||
integer :: i
|
||||
|
||||
@ -45,7 +45,7 @@ subroutine orthogonalization_matrix(ortho_type,nBas,S,X)
|
||||
|
||||
if(Uval(i) < thresh) then
|
||||
|
||||
write(*,*) 'Eigenvalue',i,'is very small in Lowdin orthogonalization = ',Uval(i)
|
||||
write(*,*) 'Eigenvalue',i,' is very small in Lowdin orthogonalization = ',Uval(i)
|
||||
|
||||
endif
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user