10
1
mirror of https://github.com/pfloos/quack synced 2025-01-05 10:59:38 +01:00
This commit is contained in:
Pierre-Francois Loos 2020-06-01 11:35:17 +02:00
parent a02bebdd88
commit 030435f90c
12 changed files with 500 additions and 338 deletions

1
GoDuck
View File

@ -12,7 +12,6 @@ then
cp examples/molecule."$1" input/molecule cp examples/molecule."$1" input/molecule
cp examples/basis."$1"."$2" input/basis cp examples/basis."$1"."$2" input/basis
cp basis/"$2" input/basis.qcaml cp basis/"$2" input/basis.qcaml
cp examples/basis."$1"."$2" input/weight
# ./bin/IntPak # ./bin/IntPak
./bin/QuAcK ./bin/QuAcK
fi fi

View File

@ -1,92 +1,71 @@
1 14 1 9
S 8 S 8
1 11420.0000000 0.0005230 1 9046.0000000 0.0007000
2 1712.0000000 0.0040450 2 1357.0000000 0.0053890
3 389.3000000 0.0207750 3 309.3000000 0.0274060
4 110.0000000 0.0807270 4 87.7300000 0.1032070
5 35.5700000 0.2330740 5 28.5600000 0.2787230
6 12.5400000 0.4335010 6 10.2100000 0.4485400
7 4.6440000 0.3474720 7 3.8380000 0.2782380
8 0.5118000 -0.0085080 8 0.7466000 0.0154400
S 8 S 8
1 11420.0000000 -0.0001150 1 9046.0000000 -0.0001530
2 1712.0000000 -0.0008950 2 1357.0000000 -0.0012080
3 389.3000000 -0.0046240 3 309.3000000 -0.0059920
4 110.0000000 -0.0185280 4 87.7300000 -0.0245440
5 35.5700000 -0.0573390 5 28.5600000 -0.0674590
6 12.5400000 -0.1320760 6 10.2100000 -0.1580780
7 4.6440000 -0.1725100 7 3.8380000 -0.1218310
8 0.5118000 0.5999440 8 0.7466000 0.5490030
S 1 S 1
1 1.2930000 1.0000000 1 0.2248000 1.0000000
S 1 S 1
1 0.1787000 1.0000000 1 0.0612400 1.0000000
S 1
1 0.0576000 1.0000000
P 3 P 3
1 26.6300000 0.0146700 1 13.5500000 0.0399190
2 5.9480000 0.0917640 2 2.9170000 0.2171690
3 1.7420000 0.2986830 3 0.7973000 0.5103190
P 1 P 1
1 0.5550000 1.0000000 1 0.2185000 1.0000000
P 1 P 1
1 0.1725000 1.0000000 1 0.0561100 1.0000000
P 1
1 0.0491000 1.0000000
D 1 D 1
1 1.6540000 1.0000000 1 0.8170000 1.0000000
D 1 D 1
1 0.4690000 1.0000000 1 0.2300000 1.0000000
D 1 2 9
1 0.1510000 1.0000000
F 1
1 1.0930000 1.0000000
F 1
1 0.3640000 1.0000000
2 14
S 8 S 8
1 11420.0000000 0.0005230 1 9046.0000000 0.0007000
2 1712.0000000 0.0040450 2 1357.0000000 0.0053890
3 389.3000000 0.0207750 3 309.3000000 0.0274060
4 110.0000000 0.0807270 4 87.7300000 0.1032070
5 35.5700000 0.2330740 5 28.5600000 0.2787230
6 12.5400000 0.4335010 6 10.2100000 0.4485400
7 4.6440000 0.3474720 7 3.8380000 0.2782380
8 0.5118000 -0.0085080 8 0.7466000 0.0154400
S 8 S 8
1 11420.0000000 -0.0001150 1 9046.0000000 -0.0001530
2 1712.0000000 -0.0008950 2 1357.0000000 -0.0012080
3 389.3000000 -0.0046240 3 309.3000000 -0.0059920
4 110.0000000 -0.0185280 4 87.7300000 -0.0245440
5 35.5700000 -0.0573390 5 28.5600000 -0.0674590
6 12.5400000 -0.1320760 6 10.2100000 -0.1580780
7 4.6440000 -0.1725100 7 3.8380000 -0.1218310
8 0.5118000 0.5999440 8 0.7466000 0.5490030
S 1 S 1
1 1.2930000 1.0000000 1 0.2248000 1.0000000
S 1 S 1
1 0.1787000 1.0000000 1 0.0612400 1.0000000
S 1
1 0.0576000 1.0000000
P 3 P 3
1 26.6300000 0.0146700 1 13.5500000 0.0399190
2 5.9480000 0.0917640 2 2.9170000 0.2171690
3 1.7420000 0.2986830 3 0.7973000 0.5103190
P 1 P 1
1 0.5550000 1.0000000 1 0.2185000 1.0000000
P 1 P 1
1 0.1725000 1.0000000 1 0.0561100 1.0000000
P 1
1 0.0491000 1.0000000
D 1 D 1
1 1.6540000 1.0000000 1 0.8170000 1.0000000
D 1 D 1
1 0.4690000 1.0000000 1 0.2300000 1.0000000
D 1
1 0.1510000 1.0000000
F 1
1 1.0930000 1.0000000
F 1
1 0.3640000 1.0000000

View File

@ -1,92 +1,174 @@
1 14 1 14
S 8 S 8
1 11420.0000000 0.0005230 1 8236.0000000 0.0005310
2 1712.0000000 0.0040450 2 1235.0000000 0.0041080
3 389.3000000 0.0207750 3 280.8000000 0.0210870
4 110.0000000 0.0807270 4 79.2700000 0.0818530
5 35.5700000 0.2330740 5 25.5900000 0.2348170
6 12.5400000 0.4335010 6 8.9970000 0.4344010
7 4.6440000 0.3474720 7 3.3190000 0.3461290
8 0.5118000 -0.0085080 8 0.3643000 -0.0089830
S 8 S 8
1 11420.0000000 -0.0001150 1 8236.0000000 -0.0001130
2 1712.0000000 -0.0008950 2 1235.0000000 -0.0008780
3 389.3000000 -0.0046240 3 280.8000000 -0.0045400
4 110.0000000 -0.0185280 4 79.2700000 -0.0181330
5 35.5700000 -0.0573390 5 25.5900000 -0.0557600
6 12.5400000 -0.1320760 6 8.9970000 -0.1268950
7 4.6440000 -0.1725100 7 3.3190000 -0.1703520
8 0.5118000 0.5999440 8 0.3643000 0.5986840
S 1 S 1
1 1.2930000 1.0000000 1 0.9059000 1.0000000
S 1 S 1
1 0.1787000 1.0000000 1 0.1285000 1.0000000
S 1 S 1
1 0.0576000 1.0000000 1 0.0440200 1.0000000
P 3 P 3
1 26.6300000 0.0146700 1 18.7100000 0.0140310
2 5.9480000 0.0917640 2 4.1330000 0.0868660
3 1.7420000 0.2986830 3 1.2000000 0.2902160
P 1 P 1
1 0.5550000 1.0000000 1 0.3827000 1.0000000
P 1 P 1
1 0.1725000 1.0000000 1 0.1209000 1.0000000
P 1 P 1
1 0.0491000 1.0000000 1 0.0356900 1.0000000
D 1 D 1
1 1.6540000 1.0000000 1 1.0970000 1.0000000
D 1 D 1
1 0.4690000 1.0000000 1 0.3180000 1.0000000
D 1 D 1
1 0.1510000 1.0000000 1 0.1000000 1.0000000
F 1 F 1
1 1.0930000 1.0000000 1 0.7610000 1.0000000
F 1 F 1
1 0.3640000 1.0000000 1 0.2680000 1.0000000
2 14 2 14
S 8 S 8
1 11420.0000000 0.0005230 1 8236.0000000 0.0005310
2 1712.0000000 0.0040450 2 1235.0000000 0.0041080
3 389.3000000 0.0207750 3 280.8000000 0.0210870
4 110.0000000 0.0807270 4 79.2700000 0.0818530
5 35.5700000 0.2330740 5 25.5900000 0.2348170
6 12.5400000 0.4335010 6 8.9970000 0.4344010
7 4.6440000 0.3474720 7 3.3190000 0.3461290
8 0.5118000 -0.0085080 8 0.3643000 -0.0089830
S 8 S 8
1 11420.0000000 -0.0001150 1 8236.0000000 -0.0001130
2 1712.0000000 -0.0008950 2 1235.0000000 -0.0008780
3 389.3000000 -0.0046240 3 280.8000000 -0.0045400
4 110.0000000 -0.0185280 4 79.2700000 -0.0181330
5 35.5700000 -0.0573390 5 25.5900000 -0.0557600
6 12.5400000 -0.1320760 6 8.9970000 -0.1268950
7 4.6440000 -0.1725100 7 3.3190000 -0.1703520
8 0.5118000 0.5999440 8 0.3643000 0.5986840
S 1 S 1
1 1.2930000 1.0000000 1 0.9059000 1.0000000
S 1 S 1
1 0.1787000 1.0000000 1 0.1285000 1.0000000
S 1 S 1
1 0.0576000 1.0000000 1 0.0440200 1.0000000
P 3 P 3
1 26.6300000 0.0146700 1 18.7100000 0.0140310
2 5.9480000 0.0917640 2 4.1330000 0.0868660
3 1.7420000 0.2986830 3 1.2000000 0.2902160
P 1 P 1
1 0.5550000 1.0000000 1 0.3827000 1.0000000
P 1 P 1
1 0.1725000 1.0000000 1 0.1209000 1.0000000
P 1 P 1
1 0.0491000 1.0000000 1 0.0356900 1.0000000
D 1 D 1
1 1.6540000 1.0000000 1 1.0970000 1.0000000
D 1 D 1
1 0.4690000 1.0000000 1 0.3180000 1.0000000
D 1 D 1
1 0.1510000 1.0000000 1 0.1000000 1.0000000
F 1 F 1
1 1.0930000 1.0000000 1 0.7610000 1.0000000
F 1 F 1
1 0.3640000 1.0000000 1 0.2680000 1.0000000
3 9
S 3
1 33.8700000 0.0060680
2 5.0950000 0.0453080
3 1.1590000 0.2028220
S 1
1 0.3258000 1.0000000
S 1
1 0.1027000 1.0000000
S 1
1 0.0252600 1.0000000
P 1
1 1.4070000 1.0000000
P 1
1 0.3880000 1.0000000
P 1
1 0.1020000 1.0000000
D 1
1 1.0570000 1.0000000
D 1
1 0.2470000 1.0000000
4 9
S 3
1 33.8700000 0.0060680
2 5.0950000 0.0453080
3 1.1590000 0.2028220
S 1
1 0.3258000 1.0000000
S 1
1 0.1027000 1.0000000
S 1
1 0.0252600 1.0000000
P 1
1 1.4070000 1.0000000
P 1
1 0.3880000 1.0000000
P 1
1 0.1020000 1.0000000
D 1
1 1.0570000 1.0000000
D 1
1 0.2470000 1.0000000
5 9
S 3
1 33.8700000 0.0060680
2 5.0950000 0.0453080
3 1.1590000 0.2028220
S 1
1 0.3258000 1.0000000
S 1
1 0.1027000 1.0000000
S 1
1 0.0252600 1.0000000
P 1
1 1.4070000 1.0000000
P 1
1 0.3880000 1.0000000
P 1
1 0.1020000 1.0000000
D 1
1 1.0570000 1.0000000
D 1
1 0.2470000 1.0000000
6 9
S 3
1 33.8700000 0.0060680
2 5.0950000 0.0453080
3 1.1590000 0.2028220
S 1
1 0.3258000 1.0000000
S 1
1 0.1027000 1.0000000
S 1
1 0.0252600 1.0000000
P 1
1 1.4070000 1.0000000
P 1
1 0.3880000 1.0000000
P 1
1 0.1020000 1.0000000
D 1
1 1.0570000 1.0000000
D 1
1 0.2470000 1.0000000

View File

@ -69,8 +69,18 @@ subroutine ACFDT_correlation_energy(ispin,exchange_kernel,nBas,nC,nO,nV,nR,nS,ER
! Compute Tr(K x P_lambda) ! Compute Tr(K x P_lambda)
X(:,:) = 0.5d0*(XpY(:,:) + XmY(:,:)) ! X(:,:) = 0.5d0*(XpY(:,:) + XmY(:,:))
Y(:,:) = 0.5d0*(XpY(:,:) - XmY(:,:)) ! Y(:,:) = 0.5d0*(XpY(:,:) - XmY(:,:))
! print*,'X'
! call matout(nS,nS,X)
! print*,'Y'
! call matout(nS,nS,Y)
! print*,'Ap'
! call matout(nS,nS,Ap)
! print*,'Bp'
! call matout(nS,nS,Bp)
EcAC = trace_matrix(nS,matmul(X,matmul(Bp,transpose(Y))) + matmul(Y,matmul(Bp,transpose(X)))) & EcAC = trace_matrix(nS,matmul(X,matmul(Bp,transpose(Y))) + matmul(Y,matmul(Bp,transpose(X)))) &
+ trace_matrix(nS,matmul(X,matmul(Ap,transpose(X))) + matmul(Y,matmul(Ap,transpose(Y)))) & + trace_matrix(nS,matmul(X,matmul(Ap,transpose(X))) + matmul(Y,matmul(Ap,transpose(Y)))) &

View File

@ -26,6 +26,7 @@ subroutine Bethe_Salpeter(TDA,singlet_manifold,triplet_manifold,eta, &
! Local variables ! Local variables
logical :: evDyn = .false. logical :: evDyn = .false.
logical :: W_BSE = .false.
integer :: ispin integer :: ispin
double precision,allocatable :: OmBSE(:,:) double precision,allocatable :: OmBSE(:,:)
double precision,allocatable :: XpY_BSE(:,:,:) double precision,allocatable :: XpY_BSE(:,:,:)
@ -39,7 +40,8 @@ subroutine Bethe_Salpeter(TDA,singlet_manifold,triplet_manifold,eta, &
! Memory allocation ! Memory allocation
allocate(OmBSE(nS,nspin),XpY_BSE(nS,nS,nspin),XmY_BSE(nS,nS,nspin),rho_BSE(nBas,nBas,nS,nspin)) allocate(OmBSE(nS,nspin),XpY_BSE(nS,nS,nspin),XmY_BSE(nS,nS,nspin))
if(W_BSE) allocate(rho_BSE(nBas,nBas,nS,nspin))
!------------------- !-------------------
! Singlet manifold ! Singlet manifold
@ -63,7 +65,10 @@ subroutine Bethe_Salpeter(TDA,singlet_manifold,triplet_manifold,eta, &
call linear_response(ispin,.true.,TDA,.true.,eta,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI, & call linear_response(ispin,.true.,TDA,.true.,eta,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI, &
rho_RPA(:,:,:,ispin),EcBSE(ispin),OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin)) rho_RPA(:,:,:,ispin),EcBSE(ispin),OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
call print_excitation('BSE ',ispin,nS,OmBSE(:,ispin)) call print_excitation('BSE ',ispin,nS,OmBSE(:,ispin))
! call excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_BSE(:,:,ispin),rho_BSE(:,:,:,ispin))
! Compute the dynamical screening at the BSE level
if(W_BSE) call excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_BSE(:,:,ispin),rho_BSE(:,:,:,ispin))
! Compute dynamic correction for BSE via perturbation theory ! Compute dynamic correction for BSE via perturbation theory
@ -73,12 +78,18 @@ subroutine Bethe_Salpeter(TDA,singlet_manifold,triplet_manifold,eta, &
XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_RPA(:,:,:,ispin)) XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_RPA(:,:,:,ispin))
else else
if(W_BSE) then
call Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW(:),OmRPA(:,ispin),OmBSE(:,ispin), &
XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_BSE(:,:,:,ispin))
else
call Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW(:),OmRPA(:,ispin),OmBSE(:,ispin), & call Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW(:),OmRPA(:,ispin),OmBSE(:,ispin), &
XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_RPA(:,:,:,ispin)) XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_RPA(:,:,:,ispin))
end if end if
end if end if
end if
!------------------- !-------------------
! Triplet manifold ! Triplet manifold
!------------------- !-------------------
@ -101,7 +112,10 @@ subroutine Bethe_Salpeter(TDA,singlet_manifold,triplet_manifold,eta, &
call linear_response(ispin,.true.,TDA,.true.,eta,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI, & call linear_response(ispin,.true.,TDA,.true.,eta,nBas,nC,nO,nV,nR,nS,1d0,eGW,ERI, &
rho_RPA(:,:,:,ispin),EcBSE(ispin),OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin)) rho_RPA(:,:,:,ispin),EcBSE(ispin),OmBSE(:,ispin),XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin))
call print_excitation('BSE ',ispin,nS,OmBSE(:,ispin)) call print_excitation('BSE ',ispin,nS,OmBSE(:,ispin))
! call excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_BSE(:,:,ispin),rho_BSE(:,:,:,ispin))
! Compute the dynamical screening at the BSE level
if(W_BSE) call excitation_density(nBas,nC,nO,nR,nS,ERI,XpY_BSE(:,:,ispin),rho_BSE(:,:,:,ispin))
! Compute dynamic correction for BSE via perturbation theory ! Compute dynamic correction for BSE via perturbation theory
@ -111,10 +125,16 @@ subroutine Bethe_Salpeter(TDA,singlet_manifold,triplet_manifold,eta, &
XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_RPA(:,:,:,ispin)) XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_RPA(:,:,:,ispin))
else else
if(W_BSE) then
call Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW(:),OmRPA(:,ispin),OmBSE(:,ispin), &
XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_BSE(:,:,:,ispin))
else
call Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW(:),OmRPA(:,ispin),OmBSE(:,ispin), & call Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW(:),OmRPA(:,ispin),OmBSE(:,ispin), &
XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_RPA(:,:,:,ispin)) XpY_BSE(:,:,ispin),XmY_BSE(:,:,ispin),rho_RPA(:,:,:,ispin))
end if end if
end if end if
end if
end subroutine Bethe_Salpeter end subroutine Bethe_Salpeter

View File

@ -0,0 +1,111 @@
subroutine Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,Ap,Am,Bp,Bm)
! Compute the dynamic part of the Bethe-Salpeter equation matrices
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: eGW(nBas)
double precision,intent(in) :: OmRPA(nS)
double precision,intent(in) :: OmBSE
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
integer :: maxS
double precision :: chi_A,chi_B,eps
double precision :: chi_Ap,chi_Am,chi_Bp,chi_Bm
double precision :: eps_Ap,eps_Am,eps_Bp,eps_Bm
integer :: i,j,a,b,ia,jb,kc
! Output variables
double precision,intent(out) :: Ap(nS,nS)
double precision,intent(out) :: Am(nS,nS)
double precision,intent(out) :: Bp(nS,nS)
double precision,intent(out) :: Bm(nS,nS)
! Initialization
Ap(:,:) = 0d0
Am(:,:) = 0d0
Bp(:,:) = 0d0
Bm(:,:) = 0d0
! Number of poles taken into account
maxS = nS
! Build dynamic A matrix
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
chi_A = 0d0
chi_B = 0d0
do kc=1,maxS
eps = OmRPA(kc)**2 + eta**2
chi_A = chi_A + rho(i,j,kc)*rho(a,b,kc)*OmRPA(kc)/eps
chi_B = chi_B + rho(i,b,kc)*rho(a,j,kc)*OmRPA(kc)/eps
enddo
Ap(ia,jb) = Ap(ia,jb) - 4d0*lambda*chi_A
Am(ia,jb) = Am(ia,jb) - 4d0*lambda*chi_A
Bp(ia,jb) = Bp(ia,jb) - 4d0*lambda*chi_B
Bm(ia,jb) = Bm(ia,jb) - 4d0*lambda*chi_B
chi_Ap = 0d0
chi_Am = 0d0
chi_Bp = 0d0
chi_Bm = 0d0
do kc=1,maxS
eps_Ap = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
eps_Am = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*(+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_Ap
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*(+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_Am
eps_Ap = (+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
eps_Am = (+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*(+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_Ap
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*(+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_Am
eps_Bp = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
eps_Bm = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*(+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bp
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*(+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bm
eps_Bp = (+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
eps_Bm = (+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*(+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bp
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*(+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bm
enddo
Ap(ia,jb) = Ap(ia,jb) - 2d0*lambda*chi_Ap
Am(ia,jb) = Am(ia,jb) - 2d0*lambda*chi_Am
Bp(ia,jb) = Bp(ia,jb) - 2d0*lambda*chi_Bp
Bm(ia,jb) = Bm(ia,jb) - 2d0*lambda*chi_Bm
enddo
enddo
enddo
enddo
end subroutine Bethe_Salpeter_AB_matrix_dynamic

View File

@ -1,76 +0,0 @@
subroutine Bethe_Salpeter_B_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,B_dyn)
! Compute the dynamic part of the Bethe-Salpeter equation matrices
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: eGW(nBas)
double precision,intent(in) :: OmRPA(nS)
double precision,intent(in) :: OmBSE
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
integer :: maxS
double precision :: chi
double precision :: eps
integer :: i,j,a,b,ia,jb,kc
! Output variables
double precision,intent(out) :: B_dyn(nS,nS)
! Initialization
B_dyn(:,:) = 0d0
! Number of poles taken into account
maxS = nS
! Build dynamic A matrix
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
chi = 0d0
do kc=1,maxS
eps = OmRPA(kc)**2 + eta**2
chi = chi + rho(i,b,kc)*rho(a,j,kc)*OmRPA(kc)/eps
enddo
B_dyn(ia,jb) = B_dyn(ia,jb) - 4d0*lambda*chi
chi = 0d0
do kc=1,maxS
eps = (OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
chi = chi + rho(i,b,kc)*rho(a,j,kc)*(OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps
eps = (OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
chi = chi + rho(i,b,kc)*rho(a,j,kc)*(OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps
enddo
B_dyn(ia,jb) = B_dyn(ia,jb) - 2d0*lambda*chi
enddo
enddo
enddo
enddo
end subroutine Bethe_Salpeter_B_matrix_dynamic

View File

@ -0,0 +1,94 @@
subroutine Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,ZAp,ZAm,ZBp,ZBm)
! Compute the dynamic part of the Bethe-Salpeter equation matrices
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: eGW(nBas)
double precision,intent(in) :: OmRPA(nS)
double precision,intent(in) :: OmBSE
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
integer :: maxS
double precision :: chi_Ap,chi_Am,chi_Bp,chi_Bm
double precision :: eps_Ap,eps_Am,eps_Bp,eps_Bm
integer :: i,j,a,b,ia,jb,kc
! Output variables
double precision,intent(out) :: ZAp(nS,nS)
double precision,intent(out) :: ZAm(nS,nS)
double precision,intent(out) :: ZBp(nS,nS)
double precision,intent(out) :: ZBm(nS,nS)
! Initialization
ZAp(:,:) = 0d0
ZAm(:,:) = 0d0
ZBp(:,:) = 0d0
ZBm(:,:) = 0d0
! Number of poles taken into account
maxS = nS
! Build dynamic A matrix
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
chi_Ap = 0d0
chi_Am = 0d0
chi_Bp = 0d0
chi_Bm = 0d0
do kc=1,maxS
eps_Ap = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
eps_Am = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))**2 + eta**2
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*((+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_Ap)**2
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*((+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(j)))/eps_Am)**2
eps_Ap = (+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
eps_Am = (+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))**2 + eta**2
chi_Ap = chi_Ap + rho(i,j,kc)*rho(a,b,kc)*((+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_Ap)**2
chi_Am = chi_Am + rho(i,j,kc)*rho(a,b,kc)*((+ OmBSE - OmRPA(kc) - (eGW(b) - eGW(i)))/eps_Am)**2
eps_Bp = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
eps_Bm = (+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*((+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps_Bp)**2
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*((+ OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps_Bm)**2
eps_Bp = (+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
eps_Bm = (+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
chi_Bp = chi_Bp + rho(i,b,kc)*rho(a,j,kc)*((+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bp)**2
chi_Bm = chi_Bm + rho(i,b,kc)*rho(a,j,kc)*((+ OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps_Bm)**2
enddo
ZAp(ia,jb) = ZAp(ia,jb) + 2d0*lambda*chi_Ap
ZAm(ia,jb) = ZAm(ia,jb) + 2d0*lambda*chi_Am
ZBp(ia,jb) = ZBp(ia,jb) + 2d0*lambda*chi_Bp
ZBm(ia,jb) = ZBm(ia,jb) + 2d0*lambda*chi_Bm
enddo
enddo
enddo
enddo
end subroutine Bethe_Salpeter_ZAB_matrix_dynamic

View File

@ -1,66 +0,0 @@
subroutine Bethe_Salpeter_ZB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,lambda,eGW,OmRPA,OmBSE,rho,ZB_dyn)
! Compute the dynamic part of the Bethe-Salpeter equation matrices
implicit none
include 'parameters.h'
! Input variables
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
double precision,intent(in) :: eta
double precision,intent(in) :: lambda
double precision,intent(in) :: eGW(nBas)
double precision,intent(in) :: OmRPA(nS)
double precision,intent(in) :: OmBSE
double precision,intent(in) :: rho(nBas,nBas,nS)
! Local variables
integer :: maxS
double precision :: chi
double precision :: eps
integer :: i,j,a,b,ia,jb,kc
! Output variables
double precision,intent(out) :: ZB_dyn(nS,nS)
! Initialization
ZB_dyn(:,:) = 0d0
! Number of poles taken into account
maxS = nS
! Build dynamic A matrix
ia = 0
do i=nC+1,nO
do a=nO+1,nBas-nR
ia = ia + 1
jb = 0
do j=nC+1,nO
do b=nO+1,nBas-nR
jb = jb + 1
chi = 0d0
do kc=1,maxS
eps = (OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))**2 + eta**2
chi = chi + rho(i,b,kc)*rho(a,j,kc)*((OmBSE - OmRPA(kc) - (eGW(j) - eGW(i)))/eps)**2
eps = (OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))**2 + eta**2
chi = chi + rho(i,b,kc)*rho(a,j,kc)*((OmBSE - OmRPA(kc) - (eGW(a) - eGW(b)))/eps)**2
enddo
ZB_dyn(ia,jb) = ZB_dyn(ia,jb) + 2d0*lambda*chi
enddo
enddo
enddo
enddo
end subroutine Bethe_Salpeter_ZB_matrix_dynamic

View File

@ -25,7 +25,7 @@ subroutine Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW,O
! Local variables ! Local variables
logical :: TDA_dyn = .true. logical :: dTDA = .false.
integer :: ia integer :: ia
integer,parameter :: maxS = 10 integer,parameter :: maxS = 10
double precision :: gapGW double precision :: gapGW
@ -34,16 +34,22 @@ subroutine Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW,O
double precision,allocatable :: ZDyn(:) double precision,allocatable :: ZDyn(:)
double precision,allocatable :: X(:) double precision,allocatable :: X(:)
double precision,allocatable :: Y(:) double precision,allocatable :: Y(:)
double precision,allocatable :: A_dyn(:,:)
double precision,allocatable :: B_dyn(:,:) double precision,allocatable :: Ap_dyn(:,:)
double precision,allocatable :: ZA_dyn(:,:) double precision,allocatable :: Am_dyn(:,:)
double precision,allocatable :: ZB_dyn(:,:) double precision,allocatable :: ZAp_dyn(:,:)
double precision,allocatable :: ZAm_dyn(:,:)
double precision,allocatable :: Bp_dyn(:,:)
double precision,allocatable :: Bm_dyn(:,:)
double precision,allocatable :: ZBp_dyn(:,:)
double precision,allocatable :: ZBm_dyn(:,:)
! Memory allocation ! Memory allocation
allocate(OmDyn(nS),ZDyn(nS),X(nS),Y(nS),A_dyn(nS,nS),ZA_dyn(nS,nS)) allocate(OmDyn(nS),ZDyn(nS),X(nS),Y(nS),Ap_dyn(nS,nS),ZAp_dyn(nS,nS))
if(.not.TDA_dyn) allocate(B_dyn(nS,nS),ZB_dyn(nS,nS)) if(.not.dTDA) allocate(Am_dyn(nS,nS),ZAm_dyn(nS,nS),Bp_dyn(nS,nS),Bm_dyn(nS,nS),ZBp_dyn(nS,nS),ZBm_dyn(nS,nS))
gapGW = eGW(nO+1) - eGW(nO) gapGW = eGW(nO+1) - eGW(nO)
@ -58,40 +64,42 @@ subroutine Bethe_Salpeter_dynamic_perturbation(TDA,eta,nBas,nC,nO,nV,nR,nS,eGW,O
X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:)) X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:))
Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:)) Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:))
! Resonant part of the BSE correction
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),A_dyn(:,:))
! Renormalization factor of the resonant part
call Bethe_Salpeter_ZA_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),ZA_dyn(:,:))
! First-order correction ! First-order correction
if(TDA_dyn) then if(dTDA) then
ZDyn(ia) = dot_product(X(:),matmul(ZA_dyn(:,:),X(:))) ! Resonant part of the BSE correction for dynamical TDA
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:)))
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),Ap_dyn(:,:))
! Renormalization factor of the resonant parts for dynamical TDA
call Bethe_Salpeter_ZA_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),ZAp_dyn(:,:))
ZDyn(ia) = dot_product(X(:),matmul(ZAp_dyn(:,:),X(:)))
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:)))
else else
! Anti-resonant part of the BSE correction ! Resonant and anti-resonant part of the BSE correction
call Bethe_Salpeter_B_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),B_dyn(:,:)) call Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
Ap_dyn(:,:),Am_dyn(:,:),Bp_dyn(:,:),Bm_dyn(:,:))
! Renormalization factor of the anti-resonant part ! Renormalization factor of the resonant and anti-resonant parts
call Bethe_Salpeter_ZB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:),ZB_dyn(:,:)) call Bethe_Salpeter_ZAB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmBSE(ia),rho(:,:,:), &
ZAp_dyn(:,:),ZAm_dyn(:,:),ZBp_dyn(:,:),ZBm_dyn(:,:))
ZDyn(ia) = dot_product(X(:),matmul(ZA_dyn(:,:),X(:))) & ZDyn(ia) = dot_product(X(:),matmul(ZAp_dyn(:,:),X(:))) &
- dot_product(Y(:),matmul(ZA_dyn(:,:),Y(:))) & - dot_product(Y(:),matmul(ZAm_dyn(:,:),Y(:))) &
+ dot_product(X(:),matmul(ZB_dyn(:,:),Y(:))) & + dot_product(X(:),matmul(ZBp_dyn(:,:),Y(:))) &
- dot_product(Y(:),matmul(ZB_dyn(:,:),X(:))) - dot_product(Y(:),matmul(ZBm_dyn(:,:),X(:)))
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:))) & OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:))) &
- dot_product(Y(:),matmul(A_dyn(:,:),Y(:))) & - dot_product(Y(:),matmul(Am_dyn(:,:),Y(:))) &
+ dot_product(X(:),matmul(B_dyn(:,:),Y(:))) & + dot_product(X(:),matmul(Bp_dyn(:,:),Y(:))) &
- dot_product(Y(:),matmul(B_dyn(:,:),X(:))) - dot_product(Y(:),matmul(Bm_dyn(:,:),X(:)))
end if end if

View File

@ -25,7 +25,7 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
! Local variables ! Local variables
logical :: TDA_dyn = .true. logical :: dTDA = .true.
integer :: ia integer :: ia
integer,parameter :: maxS = 10 integer,parameter :: maxS = 10
double precision :: gapGW double precision :: gapGW
@ -40,16 +40,16 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
double precision,allocatable :: OmOld(:) double precision,allocatable :: OmOld(:)
double precision,allocatable :: X(:) double precision,allocatable :: X(:)
double precision,allocatable :: Y(:) double precision,allocatable :: Y(:)
double precision,allocatable :: A_dyn(:,:) double precision,allocatable :: Ap_dyn(:,:)
double precision,allocatable :: B_dyn(:,:) double precision,allocatable :: Am_dyn(:,:)
double precision,allocatable :: ZA_dyn(:,:) double precision,allocatable :: Bp_dyn(:,:)
double precision,allocatable :: ZB_dyn(:,:) double precision,allocatable :: Bm_dyn(:,:)
! Memory allocation ! Memory allocation
allocate(OmDyn(nS),OmOld(nS),X(nS),Y(nS),A_dyn(nS,nS)) allocate(OmDyn(nS),OmOld(nS),X(nS),Y(nS),Ap_dyn(nS,nS))
if(.not.TDA_dyn) allocate(B_dyn(nS,nS)) if(.not.dTDA) allocate(Am_dyn(nS,nS),Bp_dyn(nS,nS),Bm_dyn(nS,nS))
gapGW = eGW(nO+1) - eGW(nO) gapGW = eGW(nO+1) - eGW(nO)
@ -78,26 +78,27 @@ subroutine Bethe_Salpeter_dynamic_perturbation_iterative(TDA,eta,nBas,nC,nO,nV,n
X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:)) X(:) = 0.5d0*(XpY(ia,:) + XmY(ia,:))
Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:)) Y(:) = 0.5d0*(XpY(ia,:) - XmY(ia,:))
! Resonant part of the BSE correction
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:),A_dyn(:,:))
! First-order correction ! First-order correction
if(TDA_dyn) then if(dTDA) then
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:))) ! Resonant part of the BSE correction
call Bethe_Salpeter_A_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:),Ap_dyn(:,:))
OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:)))
else else
! Anti-resonant part of the BSE correction ! Anti-resonant part of the BSE correction
call Bethe_Salpeter_B_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:),B_dyn(:,:)) call Bethe_Salpeter_AB_matrix_dynamic(eta,nBas,nC,nO,nV,nR,nS,1d0,eGW(:),OmRPA(:),OmOld(ia),rho(:,:,:), &
Ap_dyn(:,:),Am_dyn(:,:),Bp_dyn(:,:),Bm_dyn(:,:))
OmDyn(ia) = dot_product(X(:),matmul(A_dyn(:,:),X(:))) & OmDyn(ia) = dot_product(X(:),matmul(Ap_dyn(:,:),X(:))) &
- dot_product(Y(:),matmul(A_dyn(:,:),Y(:))) & - dot_product(Y(:),matmul(Am_dyn(:,:),Y(:))) &
+ dot_product(X(:),matmul(B_dyn(:,:),Y(:))) & + dot_product(X(:),matmul(Bp_dyn(:,:),Y(:))) &
- dot_product(Y(:),matmul(B_dyn(:,:),X(:))) - dot_product(Y(:),matmul(Bm_dyn(:,:),X(:)))
end if end if

View File

@ -13,7 +13,7 @@ subroutine orthogonalization_matrix(ortho_type,nBas,S,X)
logical :: debug logical :: debug
double precision,allocatable :: UVec(:,:),Uval(:) double precision,allocatable :: UVec(:,:),Uval(:)
double precision,parameter :: thresh = 1d-8 double precision,parameter :: thresh = 1d-6
integer :: i integer :: i
@ -45,7 +45,7 @@ subroutine orthogonalization_matrix(ortho_type,nBas,S,X)
if(Uval(i) < thresh) then if(Uval(i) < thresh) then
write(*,*) 'Eigenvalue',i,'is very small in Lowdin orthogonalization = ',Uval(i) write(*,*) 'Eigenvalue',i,' is very small in Lowdin orthogonalization = ',Uval(i)
endif endif