2023-10-02 21:45:02 +02:00
|
|
|
subroutine GF2_QP_graph(eta,nBas,nC,nO,nV,nR,eHF,ERI,eGFlin,eOld,eGF,Z)
|
2023-06-30 19:17:35 +02:00
|
|
|
|
|
|
|
! Compute the graphical solution of the GF2 QP equation
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
include 'parameters.h'
|
|
|
|
|
|
|
|
! Input variables
|
|
|
|
|
|
|
|
double precision,intent(in) :: eta
|
2023-09-07 15:37:19 +02:00
|
|
|
integer,intent(in) :: nBas
|
|
|
|
integer,intent(in) :: nC
|
|
|
|
integer,intent(in) :: nO
|
|
|
|
integer,intent(in) :: nV
|
|
|
|
integer,intent(in) :: nR
|
2023-06-30 19:17:35 +02:00
|
|
|
double precision,intent(in) :: eHF(nBas)
|
2023-09-07 15:37:19 +02:00
|
|
|
double precision,intent(in) :: eGFlin(nBas)
|
2023-10-02 21:45:02 +02:00
|
|
|
double precision,intent(in) :: eOld(nBas)
|
2023-06-30 19:17:35 +02:00
|
|
|
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
|
|
|
|
|
|
|
! Local variables
|
|
|
|
|
|
|
|
integer :: p
|
|
|
|
integer :: nIt
|
|
|
|
integer,parameter :: maxIt = 64
|
|
|
|
double precision,parameter :: thresh = 1d-6
|
2023-07-27 17:43:18 +02:00
|
|
|
double precision,external :: GF2_SigC,GF2_dSigC
|
2023-08-24 11:18:12 +02:00
|
|
|
double precision :: SigC,dSigC
|
2023-06-30 19:17:35 +02:00
|
|
|
double precision :: f,df
|
|
|
|
double precision :: w
|
|
|
|
|
|
|
|
! Output variables
|
|
|
|
|
2023-07-27 17:43:18 +02:00
|
|
|
double precision,intent(out) :: eGF(nBas)
|
2023-07-27 21:23:40 +02:00
|
|
|
double precision,intent(out) :: Z(nBas)
|
2023-06-30 19:17:35 +02:00
|
|
|
|
|
|
|
! Run Newton's algorithm to find the root
|
|
|
|
|
2023-09-07 15:37:19 +02:00
|
|
|
write(*,*)'-----------------------------------------------------'
|
|
|
|
write(*,'(A5,1X,A3,1X,A15,1X,A15,1X,A10)') 'Orb.','It.','e_GFlin (eV)','e_GF (eV)','Z'
|
|
|
|
write(*,*)'-----------------------------------------------------'
|
2023-06-30 19:17:35 +02:00
|
|
|
|
2023-09-07 15:37:19 +02:00
|
|
|
do p=nC+1,nBas-nR
|
2023-06-30 19:17:35 +02:00
|
|
|
|
2023-09-07 15:37:19 +02:00
|
|
|
w = eGFlin(p)
|
2023-06-30 19:17:35 +02:00
|
|
|
nIt = 0
|
|
|
|
f = 1d0
|
|
|
|
|
|
|
|
do while (abs(f) > thresh .and. nIt < maxIt)
|
|
|
|
|
|
|
|
nIt = nIt + 1
|
|
|
|
|
2023-10-02 21:45:02 +02:00
|
|
|
SigC = GF2_SigC(p,w,eta,nBas,nC,nO,nV,nR,eOld,ERI)
|
|
|
|
dSigC = GF2_dSigC(p,w,eta,nBas,nC,nO,nV,nR,eOld,ERI)
|
2023-08-24 11:18:12 +02:00
|
|
|
f = w - eHF(p) - SigC
|
|
|
|
df = 1d0/(1d0 - dSigC)
|
2023-06-30 19:17:35 +02:00
|
|
|
|
2023-07-27 21:23:40 +02:00
|
|
|
w = w - df*f
|
2023-06-30 19:17:35 +02:00
|
|
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
if(nIt == maxIt) then
|
|
|
|
|
2023-09-07 15:37:19 +02:00
|
|
|
eGF(p) = eGFlin(p)
|
|
|
|
write(*,'(I5,1X,I3,1X,F15.9,1X,F15.9,1X,F10.6,1X,A12)') p,nIt,eGFlin(p)*HaToeV,eGF(p)*HaToeV,Z(p),'Cvg Failed!'
|
2023-06-30 19:17:35 +02:00
|
|
|
|
|
|
|
else
|
|
|
|
|
2023-07-27 17:43:18 +02:00
|
|
|
eGF(p) = w
|
2023-07-27 21:23:40 +02:00
|
|
|
Z(p) = df
|
2023-06-30 19:17:35 +02:00
|
|
|
|
2023-09-07 15:37:19 +02:00
|
|
|
write(*,'(I5,1X,I3,1X,F15.9,1X,F15.9,1X,F10.6)') p,nIt,eGFlin(p)*HaToeV,eGF(p)*HaToeV,Z(p)
|
2023-06-30 19:17:35 +02:00
|
|
|
|
2023-09-07 15:37:19 +02:00
|
|
|
end if
|
2023-06-30 19:17:35 +02:00
|
|
|
|
2023-09-07 15:37:19 +02:00
|
|
|
end do
|
2023-06-30 19:17:35 +02:00
|
|
|
|
2023-07-18 14:59:18 +02:00
|
|
|
end subroutine
|