2020-01-23 21:22:41 +01:00
|
|
|
subroutine Bethe_Salpeter_A_matrix(eta,nBas,nC,nO,nV,nR,nS,lambda,ERI,Omega,rho,A_lr)
|
2019-03-19 10:13:33 +01:00
|
|
|
|
|
|
|
! Compute the extra term for Bethe-Salpeter equation for linear response
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
include 'parameters.h'
|
|
|
|
|
|
|
|
! Input variables
|
|
|
|
|
|
|
|
integer,intent(in) :: nBas,nC,nO,nV,nR,nS
|
2020-01-23 21:22:41 +01:00
|
|
|
double precision,intent(in) :: eta
|
2020-01-08 10:17:19 +01:00
|
|
|
double precision,intent(in) :: lambda
|
2019-03-19 10:13:33 +01:00
|
|
|
double precision,intent(in) :: ERI(nBas,nBas,nBas,nBas)
|
2020-01-08 10:17:19 +01:00
|
|
|
double precision,intent(in) :: Omega(nS)
|
|
|
|
double precision,intent(in) :: rho(nBas,nBas,nS)
|
2019-03-19 10:13:33 +01:00
|
|
|
|
|
|
|
! Local variables
|
|
|
|
|
|
|
|
double precision :: chi
|
2020-01-23 21:22:41 +01:00
|
|
|
double precision :: eps
|
2019-03-19 10:13:33 +01:00
|
|
|
integer :: i,j,a,b,ia,jb,kc
|
|
|
|
|
|
|
|
! Output variables
|
|
|
|
|
|
|
|
double precision,intent(out) :: A_lr(nS,nS)
|
|
|
|
|
|
|
|
ia = 0
|
|
|
|
do i=nC+1,nO
|
|
|
|
do a=nO+1,nBas-nR
|
|
|
|
ia = ia + 1
|
|
|
|
jb = 0
|
|
|
|
do j=nC+1,nO
|
|
|
|
do b=nO+1,nBas-nR
|
|
|
|
jb = jb + 1
|
|
|
|
|
|
|
|
chi = 0d0
|
|
|
|
do kc=1,nS
|
2020-01-23 21:22:41 +01:00
|
|
|
eps = Omega(kc)**2 + eta**2
|
2021-09-27 15:57:26 +02:00
|
|
|
! chi = chi + lambda*rho(i,j,kc)*rho(a,b,kc)*Omega(kc)/eps
|
2020-01-23 21:22:41 +01:00
|
|
|
chi = chi + rho(i,j,kc)*rho(a,b,kc)*Omega(kc)/eps
|
2019-03-19 10:13:33 +01:00
|
|
|
enddo
|
|
|
|
|
2020-04-26 16:07:45 +02:00
|
|
|
A_lr(ia,jb) = A_lr(ia,jb) - lambda*ERI(i,b,j,a) + 4d0*lambda*chi
|
2020-01-08 10:17:19 +01:00
|
|
|
|
2019-03-19 10:13:33 +01:00
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
end subroutine Bethe_Salpeter_A_matrix
|