10
0
mirror of https://github.com/LCPQ/QUESTDB_website.git synced 2025-01-12 22:18:29 +01:00
This commit is contained in:
pfloos 2021-12-03 19:21:06 +00:00
parent baaa3e85cf
commit dd613ce357
3 changed files with 33 additions and 7 deletions

BIN
img/CT.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 571 KiB

View File

@ -32,7 +32,7 @@
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<author>mveril@irsamc.ups-tlse.fr (M. Véril)</author>
<guid>https://lcpq.github.io/QUESTDB_website/subsets/</guid>
<description>The QUEST database provides theoretical best estimates (TBEs) for more than 500 highly-accurate excitation energies of various natures (valence, Rydberg, \(n \rightarrow \pi^\star\) , \(\pi \rightarrow \pi^\star\) , singlet, doublet, triplet, and double excitations) for molecules ranging from diatomics to molecules as large as naphthalene. This set is also chemically diverse, with organic and inorganic systems, open- and closed-shell compounds, acyclic and cyclic systems, pure hydrocarbons and various heteroatomic structures, etc.</description>
<description>The QUEST database provides theoretical best estimates (TBEs) for more than 600 highly-accurate excitation energies of various natures (valence, Rydberg, \(n \rightarrow \pi^\star\) , \(\pi \rightarrow \pi^\star\) , singlet, doublet, triplet, and double excitations) for molecules ranging from diatomics to molecules as large as naphthalene. This set is also chemically diverse, with organic and inorganic systems, open- and closed-shell compounds, acyclic and cyclic systems, pure hydrocarbons and various heteroatomic structures, etc.</description>
</item>
<item>

View File

@ -8,7 +8,7 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0">
<title>Subsets - QUEST: a database of highly-accurate excitation energies</title>
<meta name="description" content="The QUEST database provides theoretical best estimates (TBEs) for more than 500 highly-accurate excitation energies of various natures (valence, Rydberg, \(n \rightarrow \pi^\star\) , \(\pi \rightarrow \pi^\star\) , singlet, doublet, triplet, and double excitations) for molecules ranging from diatomics to molecules as large as naphthalene. This set is also chemically diverse, with organic and inorganic systems, open- and closed-shell compounds, acyclic and cyclic systems, pure hydrocarbons and various heteroatomic structures, etc.">
<meta name="description" content="The QUEST database provides theoretical best estimates (TBEs) for more than 600 highly-accurate excitation energies of various natures (valence, Rydberg, \(n \rightarrow \pi^\star\) , \(\pi \rightarrow \pi^\star\) , singlet, doublet, triplet, and double excitations) for molecules ranging from diatomics to molecules as large as naphthalene. This set is also chemically diverse, with organic and inorganic systems, open- and closed-shell compounds, acyclic and cyclic systems, pure hydrocarbons and various heteroatomic structures, etc.">
<meta name="author" content="M. Véril"/><script type="application/ld+json">
{
"@context": "http://schema.org",
@ -57,9 +57,9 @@
"name" : "M. Véril"
},
"headline": "Subsets",
"description" : "The QUEST database provides theoretical best estimates (TBEs) for more than 500 highly-accurate excitation energies of various natures (valence, Rydberg, \\(n \\rightarrow \\pi^\\star\\) , \\(\\pi \\rightarrow \\pi^\\star\\) , singlet, doublet, triplet, and double excitations) for molecules ranging from diatomics to molecules as large as naphthalene. This set is also chemically diverse, with organic and inorganic systems, open- and closed-shell compounds, acyclic and cyclic systems, pure hydrocarbons and various heteroatomic structures, etc.",
"description" : "The QUEST database provides theoretical best estimates (TBEs) for more than 600 highly-accurate excitation energies of various natures (valence, Rydberg, \\(n \\rightarrow \\pi^\\star\\) , \\(\\pi \\rightarrow \\pi^\\star\\) , singlet, doublet, triplet, and double excitations) for molecules ranging from diatomics to molecules as large as naphthalene. This set is also chemically diverse, with organic and inorganic systems, open- and closed-shell compounds, acyclic and cyclic systems, pure hydrocarbons and various heteroatomic structures, etc.",
"inLanguage" : "en",
"wordCount": 1012 ,
"wordCount": 1035 ,
"datePublished" : "0001-01-01T00:00:00",
"dateModified" : "0001-01-01T00:00:00",
"image" : "https:\/\/lcpq.github.io\/QUESTDB_website\/img\/TOC_JPCL.png",
@ -79,14 +79,14 @@
</script>
<meta property="og:title" content="Subsets" />
<meta property="og:description" content="The QUEST database provides theoretical best estimates (TBEs) for more than 500 highly-accurate excitation energies of various natures (valence, Rydberg, \(n \rightarrow \pi^\star\) , \(\pi \rightarrow \pi^\star\) , singlet, doublet, triplet, and double excitations) for molecules ranging from diatomics to molecules as large as naphthalene. This set is also chemically diverse, with organic and inorganic systems, open- and closed-shell compounds, acyclic and cyclic systems, pure hydrocarbons and various heteroatomic structures, etc.">
<meta property="og:description" content="The QUEST database provides theoretical best estimates (TBEs) for more than 600 highly-accurate excitation energies of various natures (valence, Rydberg, \(n \rightarrow \pi^\star\) , \(\pi \rightarrow \pi^\star\) , singlet, doublet, triplet, and double excitations) for molecules ranging from diatomics to molecules as large as naphthalene. This set is also chemically diverse, with organic and inorganic systems, open- and closed-shell compounds, acyclic and cyclic systems, pure hydrocarbons and various heteroatomic structures, etc.">
<meta property="og:image" content="https://lcpq.github.io/QUESTDB_website/img/TOC_JPCL.png" />
<meta property="og:url" content="https://lcpq.github.io/QUESTDB_website/subsets/" />
<meta property="og:type" content="website" />
<meta property="og:site_name" content="QUEST: a database of highly-accurate excitation energies" />
<meta name="twitter:title" content="Subsets" />
<meta name="twitter:description" content="The QUEST database provides theoretical best estimates (TBEs) for more than 500 highly-accurate excitation energies of various natures (valence, Rydberg, \(n \rightarrow \pi^\star\) , \(\pi …">
<meta name="twitter:description" content="The QUEST database provides theoretical best estimates (TBEs) for more than 600 highly-accurate excitation energies of various natures (valence, Rydberg, \(n \rightarrow \pi^\star\) , \(\pi …">
<meta name="twitter:image" content="https://lcpq.github.io/QUESTDB_website/img/TOC_JPCL.png" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:site" content="@LCPQ_UMR5626" />
@ -275,7 +275,7 @@ MathJax.Hub.Config({
<div class="row">
<div class="col-lg-8 col-lg-offset-2 col-md-10 col-md-offset-1">
<article role="main" class="blog-post">
<p>The QUEST database provides theoretical best estimates (TBEs) for more than 500 highly-accurate excitation energies of various natures (valence, Rydberg, <span class="jsonly">
<p>The QUEST database provides theoretical best estimates (TBEs) for more than 600 highly-accurate excitation energies of various natures (valence, Rydberg, <span class="jsonly">
\(n \rightarrow \pi^\star\)
@ -666,11 +666,37 @@ are made with literature data.</p>
<h3 id="quest6referencesquest236"><a href="https://lcpq.github.io/QUESTDB_website/references#QUEST%236">QUEST#6</a></h3>
<p>This set provides a series of highly accurate vertical excitation energies for 30 (mild or strong) charge-transfer transitions obtained in 17 compounds (aminobenzonitrile, aniline, azulene, benzonitrile, benzothiadiazole, dimethylaminobenzonitrile, dimethylaniline, dipeptide, $\beta$-dipeptide, hydrogen chloride, nitroaniline, nitrobenzene,
nitrodimethylaniline, nitropyridine N-oxide, N-phenylpyrrole, phthalazine, and quinoxaline] computed from CCSDT/cc-pVDZ excitation energies determined corrected by CC3/CCSDT-3 energies obtained with the cc-pVTZ basis with further basis set corrections (up to aug-cc-pVQZ) obtained at the CCSD and CC2 levels.</p>
<div class="box" >
<figure itemprop="associatedMedia" itemscope itemtype="http://schema.org/ImageObject">
<div class="img">
<img itemprop="thumbnail" src="https://lcpq.github.io/QUESTDB_website/img/subsets.png" alt="/img/subsets.png"/>
</div>
<a href="https://lcpq.github.io/QUESTDB_website/img/subsets.png" itemprop="contentUrl"></a>
<figcaption><h4>Composition of first five subsets making up the present QUEST dataset of highly-accurate vertical excitation energies</h4>
</figcaption>
</figure>
</div>
<h3 id="quest7referencesquest237"><a href="https://lcpq.github.io/QUESTDB_website/references#QUEST%237">QUEST#7</a></h3>
<p>The QUEST#7 subset is composed by 91 vertical excitation energies of 10 bicyclic molecules (azulene, benzoxadiazole, benzothiadiazole, diketopyrrolopyrrole, furofuran, phthalazine, pyrrolopyrrole, quinoxaline, tetrathiafulvalene, and thienothiophene).
In total, we provide aug-cc-pVTZ reference vertical excitation energies for these 91 excited states of these relatively large systems using CC3 and CCSDT.</p>
<div class="box" >
<figure itemprop="associatedMedia" itemscope itemtype="http://schema.org/ImageObject">
<div class="img">
<img itemprop="thumbnail" src="https://lcpq.github.io/QUESTDB_website/img/CT.png" alt="/img/CT.png"/>
</div>
<a href="https://lcpq.github.io/QUESTDB_website/img/CT.png" itemprop="contentUrl"></a>
<figcaption><h4>Molecules of the QUEST#6 of QUEST#7 subsets</h4>
</figcaption>
</figure>
</div>