10
0
mirror of https://github.com/LCPQ/QUESTDB_website.git synced 2024-08-27 06:31:51 +02:00
QUESTDB_website/static/data/publis/10/1021/acs/jctc/9b01216/abstract.html

1 line
2.1 KiB
HTML
Raw Normal View History

2020-06-15 16:13:03 +02:00
<p class="articleBody_abstractText">Following our previous work focusing on compounds containing up to 3 non-hydrogen atoms [<i>J. Chem. Theory Comput.</i><b>2018</b>, <i>14</i>, 43604379], we present here highly accurate vertical transition energies obtained for 27 molecules encompassing 4, 5, and 6 non-hydrogen atoms: acetone, acrolein, benzene, butadiene, cyanoacetylene, cyanoformaldehyde, cyanogen, cyclopentadiene, cyclopropenone, cyclopropenethione, diacetylene, furan, glyoxal, imidazole, isobutene, methylenecyclopropene, propynal, pyrazine, pyridazine, pyridine, pyrimidine, pyrrole, tetrazine, thioacetone, thiophene, thiopropynal, and triazine. To obtain these energies, we use equation-of-motion/linear-response coupled cluster theory up to the highest technically possible excitation order for these systems (CC3, EOM-CCSDT, and EOM-CCSDTQ) and selected configuration interaction (SCI) calculations (with tens of millions of determinants in the reference space), as well as the multiconfigurational <i>n</i>-electron valence state perturbation theory (NEVPT2) method. All these approaches are applied in combination with diffuse-containing atomic basis sets. For all transitions, we report at least CC3/<i>aug</i>-cc-pVQZ vertical excitation energies as well as CC3/<i>aug</i>-cc-pVTZ oscillator strengths for each dipole-allowed transition. We show that CC3 almost systematically delivers transition energies in agreement with higher-level methods with a typical deviation of ±0.04 eV, except for transitions with a dominant double excitation character where the error is much larger. The present contribution gathers a large, diverse, and accurate set of more than 200 highly accurate transition energies for states of various natures (valence, Rydberg, singlet, triplet, <i>n</i> → π*, π → π*, ...). We use this series of theoretical best estimates to benchmark a series of popular methods for excited state calculations: CIS(D), ADC(2), CC2, STEOM-CCSD, EOM-CCSD, CCSDR(3), CCSDT-3, CC3, and NEVPT2. The results of these benchmarks are compared to the available literature data.</p>