Website #2
@ -719,7 +719,7 @@ And $\err_\meth$ the error vector of the method $\meth$ compared to the referenc
|
|||||||
When the vertical excitation $x$ is defined for the method $\meth$ and the method $\text{ref}$.
|
When the vertical excitation $x$ is defined for the method $\meth$ and the method $\text{ref}$.
|
||||||
So with $\nExnn$ the size of the vector $\vec{\err^x_\meth}$
|
So with $\nExnn$ the size of the vector $\vec{\err^x_\meth}$
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
MSE_\meth = \overline{{\vec{\err_\meth}}} \\
|
MSE_\meth = \overline{{\vec{\err_\meth}}} = \frac{1}{\nExnn}\sum_x=1^\nExnn\err_\meth^x \\
|
||||||
MAE_\meth = \overline{\abs{\vec{\err_\meth}}} \\
|
MAE_\meth = \overline{\abs{\vec{\err_\meth}}} \\
|
||||||
RMSE_\meth = \sqrt{\overline{\vec{\err_\meth}^2}} \\
|
RMSE_\meth = \sqrt{\overline{\vec{\err_\meth}^2}} \\
|
||||||
SDE_\meth = \sqrt{\frac{1}{\nExnn}\sum_{x=1}^\nExnn\err_x^2-MAE^2}
|
SDE_\meth = \sqrt{\frac{1}{\nExnn}\sum_{x=1}^\nExnn\err_x^2-MAE^2}
|
||||||
|
Loading…
Reference in New Issue
Block a user