Website #2
@ -662,6 +662,11 @@ MAE & & 0.22 & 0.16 & 0.22 & 0.11 & 0.12 & 0.05 & 0.04 & 0.02 & 0.20 & 0.22
|
||||
Here we describe the feature of the website that we have specifically designed to gather the entire data generated during these last few years.
|
||||
Thanks to this website, one can easily test and compare the accuracy of a given method with respect to various variables such as the molecule size or its family, the nature of the excited states, the size of the basis set, etc.
|
||||
%=======================
|
||||
{
|
||||
\newcommand{\meth}{\text{meth}}
|
||||
\newcommand{\err}{\mathcal{E}}
|
||||
\newcommand{\nEx}{X}
|
||||
\newcommand{\nExnn}{\mathcal{X}}
|
||||
\subsection{Introduction}
|
||||
\label{sec:websiteIntro}
|
||||
%=======================
|
||||
@ -703,21 +708,21 @@ uncertainty.
|
||||
\paragraph{Statistics calculations}
|
||||
We want to calculate the accuracy of each couple method/basis compared to the reference (usually TBEs).
|
||||
for each method we define a vector containing all the energies of the user selected vertical transitions.
|
||||
With $\text{meth}$ a couple method/basis and $E^x_\text{meth}$ the energy of the vertical excitation $x$ for the method $\text{meth}$.
|
||||
And $\mathcal{E}_\text{meth}$ the error vector of the method $\text{meth}$ compared to the reference $\text{ref}$
|
||||
With $\meth$ a couple method/basis and $E^x_\meth$ the energy of the vertical excitation $\nEx$ for the method $\meth$.
|
||||
And $\err_\meth$ the error vector of the method $\meth$ compared to the reference $\text{ref}$
|
||||
\begin{equation}
|
||||
\vec{E_\text{meth}} = \qty{E^1_\text{meth}, \ldots , E^X_\text{meth}}
|
||||
\vec{E_\meth} = \qty{E^1_\meth, \ldots , E^\nEx_\meth}
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\mathcal{E}^x_\text{meth} = E^x_\text{ref} - E^x_\text{meth}
|
||||
\err^x_\meth = E^x_\text{ref} - E^x_\meth
|
||||
\end{equation}
|
||||
When the vertical excitation $x$ is defined for the method $\text{meth}$ and the method $\text{ref}$.
|
||||
So with $X$ the size of the vector $\vec{\mathcal{E}^x_\text{meth}}$
|
||||
When the vertical excitation $x$ is defined for the method $\meth$ and the method $\text{ref}$.
|
||||
So with $\nExnn$ the size of the vector $\vec{\err^x_\meth}$
|
||||
\begin{gather}
|
||||
MSE_\text{meth} = \overline{{\vec{\mathcal{E}_\text{meth}}}} \\
|
||||
MAE_\text{meth} = \overline{\abs{\vec{\mathcal{E}_\text{meth}}}} \\
|
||||
RMSE_\text{meth} = \sqrt{\overline{\vec{\mathcal{E}_\text{meth}}^2}} \\
|
||||
SDE_\text{meth} = \sqrt{\frac{1}{X}\sum_{x=1}^X\mathcal{E}_x^2-MAE^2}
|
||||
MSE_\meth = \overline{{\vec{\err_\meth}}} \\
|
||||
MAE_\meth = \overline{\abs{\vec{\err_\meth}}} \\
|
||||
RMSE_\meth = \sqrt{\overline{\vec{\err_\meth}^2}} \\
|
||||
SDE_\meth = \sqrt{\frac{1}{\nExnn}\sum_{x=1}^\nExnn\err_x^2-MAE^2}
|
||||
\end{gather}
|
||||
These statistics allow user to determine the accuracy of each couple methods/basis.
|
||||
On the website the statistics are forwarded in a tabular and in a box plot graph.
|
||||
@ -743,7 +748,7 @@ And the value is considered as not safe when one or more value as not safe
|
||||
\begin{equation}
|
||||
\mathrm{unsafe}_\text{ADC(23)} = \mathrm{unsafe}_\text{ADC(2)} \lor \mathrm{unsafe}_\text{ADC(3)}
|
||||
\end{equation}
|
||||
|
||||
}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Concluding remarks}
|
||||
\label{sec:ccl}
|
||||
|
Loading…
Reference in New Issue
Block a user