toto part

This commit is contained in:
Pierre-Francois Loos 2020-09-08 15:30:37 +02:00
parent 830a893fe2
commit e72c1b9751

View File

@ -243,7 +243,7 @@ The definition of the active space considered for each system as well as the num
For the $m$th excited state (where $m = 0$ corresponds to the ground state), we usually estimate its FCI energy $E_{\text{FCI}}^{(m)}$ by performing a linear extrapolation of its variational energy $E_\text{var}^{(m)}$ as a function of its rPT2 correction $E_{\text{rPT2}}^{(m)}$ as follows For the $m$th excited state (where $m = 0$ corresponds to the ground state), we usually estimate its FCI energy $E_{\text{FCI}}^{(m)}$ by performing a linear extrapolation of its variational energy $E_\text{var}^{(m)}$ as a function of its rPT2 correction $E_{\text{rPT2}}^{(m)}$ as follows
\begin{equation} \begin{equation}
E_\text{var}^{(m)} = E_{\text{FCI}}^{(m)} - \alpha^{(m)} E_{\text{rPT2}}^{(m)} E_\text{FCI}^{(m)} = E_{\text{var}}^{(m)} + \alpha^{(m)} E_{\text{rPT2}}^{(m)}
\end{equation} \end{equation}
$E_\text{var}^{(m)}$ varies almost linearly as a function of $E_{\text{rPT2}}^{(m)}$, but with a coefficient $\alpha^{(m)}$ which deviates slightly from unity in well-behaved cases. $E_\text{var}^{(m)}$ varies almost linearly as a function of $E_{\text{rPT2}}^{(m)}$, but with a coefficient $\alpha^{(m)}$ which deviates slightly from unity in well-behaved cases.
This implies that, at any iteration of the CIPSI algorithm, the estimated error on the CIPSI energy is This implies that, at any iteration of the CIPSI algorithm, the estimated error on the CIPSI energy is
@ -273,7 +273,7 @@ The $m$th excitation energy at iteration $n$ is then assumed to be a Gaussian ra
\sigma^2(n) \propto \qty[E_{\text{rPT2}}^{(m)}(n)]^2 + \qty[E_{\text{rPT2}}^{(0)}(n)]^2 \sigma^2(n) \propto \qty[E_{\text{rPT2}}^{(m)}(n)]^2 + \qty[E_{\text{rPT2}}^{(0)}(n)]^2
\end{gather} \end{gather}
and we treat all CIPSI iterations as a set of Gaussian-distributed variables ($\mathcal{G}$) with weights $w(n) = 1/\sqrt{\sigma^2(n)}$. and we treat all CIPSI iterations as a set of Gaussian-distributed variables ($\mathcal{G}$) with weights $w(n) = 1/\sqrt{\sigma^2(n)}$.
We then search for a confidence interval $\mathcal{I}$ such that the true value of the excitation energy $\Delta E_{\text{FCI}}^{(m)}$ lies within one standard deviation of $\Delta E_\text{CIPSI}^{(m)}$, i.e., $P( \Delta E_{\text{FCI}} \in [ \Delta E_\text{CIPSI}^{(m)} \pm \sigma ] \; | \; \mathcal{G}) = 0.6827$. We then search for a confidence interval $\mathcal{I}$ such that the true value of the excitation energy $\Delta E_{\text{FCI}}^{(m)}$ lies within one standard deviation of $\Delta E_\text{CIPSI}^{(m)}$, i.e., $P( \Delta E_{\text{FCI}}^{(m)} \in [ \Delta E_\text{CIPSI}^{(m)} \pm \sigma ] \; | \; \mathcal{G}) = 0.6827$.
The probability that $\Delta E_{\text{FCI}}^{(m)}$ is in an interval $\mathcal{I}$ is The probability that $\Delta E_{\text{FCI}}^{(m)}$ is in an interval $\mathcal{I}$ is
\begin{equation} \begin{equation}
P( \Delta E_{\text{FCI}}^{(m)} \in \mathcal{I} ) = P( \Delta E_{\text{FCI}}^{(m)} \in I | \mathcal{G}) \times P(\mathcal{G}) P( \Delta E_{\text{FCI}}^{(m)} \in \mathcal{I} ) = P( \Delta E_{\text{FCI}}^{(m)} \in I | \mathcal{G}) \times P(\mathcal{G})
@ -294,6 +294,7 @@ The inverse of the cumulative distribution function of the $t$-distribution allo
such that $P( \Delta E_{\text{FCI}}^{(m)} \in [ \Delta E_{\text{CIPSI}}^{(m)} \pm \beta \sigma ] ) = p$. such that $P( \Delta E_{\text{FCI}}^{(m)} \in [ \Delta E_{\text{CIPSI}}^{(m)} \pm \beta \sigma ] ) = p$.
Only the last $M>2$ computed energy differences are considered. $M$ is chosen such that $P(\mathcal{G})>0.8$ and such that the error bar is minimal. Only the last $M>2$ computed energy differences are considered. $M$ is chosen such that $P(\mathcal{G})>0.8$ and such that the error bar is minimal.
If all the values of $P(\mathcal{G})$ are below $0.8$, $M$ is chosen such that $P(\mathcal{G})$ is maximal. If all the values of $P(\mathcal{G})$ are below $0.8$, $M$ is chosen such that $P(\mathcal{G})$ is maximal.
A Python code associated with this procedure is provided in the {\SupInf}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{The QUEST database} \section{The QUEST database}