modifs Toto

This commit is contained in:
Pierre-Francois Loos 2020-10-26 16:55:40 +01:00
parent 9f31c86800
commit 06394baa18
2 changed files with 213 additions and 172 deletions

View File

@ -15,7 +15,7 @@
% \documentclass[blind,alpha-refs]{wiley-article} % \documentclass[blind,alpha-refs]{wiley-article}
% Add additional packages here if required % Add additional packages here if required
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,mhchem,siunitx} \usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,mhchem,siunitx,rotating}
\usepackage[ \usepackage[
colorlinks=true, colorlinks=true,
@ -135,14 +135,14 @@ In the same vein, we have also produced chemically-accurate theoretical 0-0 ener
We refer the interested reader to Ref.~\cite{Loos_2019b} where we review the generic benchmark studies devoted to adiabatic and 0-0 energies performed in the past two decades. We refer the interested reader to Ref.~\cite{Loos_2019b} where we review the generic benchmark studies devoted to adiabatic and 0-0 energies performed in the past two decades.
%%% FIGURE 1 %%% %%% FIGURE 1 %%%
\begin{figure}[ht] \begin{figure}
\centering \centering
\includegraphics[width=0.5\linewidth]{fig1/fig1} \includegraphics[width=0.5\linewidth]{fig1/fig1}
\caption{Composition of each of the five subsets making up the present QUEST dataset of highly-accurate vertical excitation energies.} \caption{Composition of each of the five subsets making up the present QUEST dataset of highly-accurate vertical excitation energies.}
\label{fig:scheme} \label{fig:scheme}
\end{figure} \end{figure}
The QUEST dataset has the particularity to be based in a large proportion on selected configuration interaction (SCI) reference excitation energies as well as high-order equation-of-motion (EOM) CC methods such as EOM-CCSDT \cite{Hirata_2000} and EOM-CCSDTQ \cite{Oliphant_1991,Kucharski_1992}. The QUEST dataset has the particularity to be based in a large proportion on selected configuration interaction (SCI) reference excitation energies as well as high-order equation-of-motion (EOM) CC methods such as EOM-CCSDT and EOM-CCSDTQ \cite{Hirata_2000}.
Recently, SCI methods have been a force to reckon with for the computation of highly-accurate energies in small- and medium-sized molecules as they yield near full configuration interaction (FCI) quality energies for only a fraction of the computational cost of a genuine FCI calculation \cite{Booth_2009,Booth_2010,Cleland_2010,Booth_2011,Daday_2012,Blunt_2015,Ghanem_2019,Deustua_2017,Deustua_2018,Holmes_2017,Chien_2018,Li_2018,Yao_2020,Li_2020,Eriksen_2017,Eriksen_2018,Eriksen_2019a,Eriksen_2019b,Xu_2018,Xu_2020,Loos_2018a,Loos_2019,Loos_2020b,Loos_2020c,Loos_2020a,Loos_2020e}. Recently, SCI methods have been a force to reckon with for the computation of highly-accurate energies in small- and medium-sized molecules as they yield near full configuration interaction (FCI) quality energies for only a fraction of the computational cost of a genuine FCI calculation \cite{Booth_2009,Booth_2010,Cleland_2010,Booth_2011,Daday_2012,Blunt_2015,Ghanem_2019,Deustua_2017,Deustua_2018,Holmes_2017,Chien_2018,Li_2018,Yao_2020,Li_2020,Eriksen_2017,Eriksen_2018,Eriksen_2019a,Eriksen_2019b,Xu_2018,Xu_2020,Loos_2018a,Loos_2019,Loos_2020b,Loos_2020c,Loos_2020a,Loos_2020e}.
Due to the fairly natural idea underlying these methods, the SCI family is composed by numerous members \cite{Bender_1969,Whitten_1969,Huron_1973,Abrams_2005,Bunge_2006,Bytautas_2009,Giner_2013,Caffarel_2014,Giner_2015,Garniron_2017b,Caffarel_2016a,Caffarel_2016b,Holmes_2016,Sharma_2017,Holmes_2017,Chien_2018,Scemama_2018,Scemama_2018b,Garniron_2018,Evangelista_2014,Schriber_2016,Schriber_2017,Liu_2016,Per_2017,Ohtsuka_2017,Zimmerman_2017,Li_2018,Ohtsuka_2017,Coe_2018,Loos_2019}. Due to the fairly natural idea underlying these methods, the SCI family is composed by numerous members \cite{Bender_1969,Whitten_1969,Huron_1973,Abrams_2005,Bunge_2006,Bytautas_2009,Giner_2013,Caffarel_2014,Giner_2015,Garniron_2017b,Caffarel_2016a,Caffarel_2016b,Holmes_2016,Sharma_2017,Holmes_2017,Chien_2018,Scemama_2018,Scemama_2018b,Garniron_2018,Evangelista_2014,Schriber_2016,Schriber_2017,Liu_2016,Per_2017,Ohtsuka_2017,Zimmerman_2017,Li_2018,Ohtsuka_2017,Coe_2018,Loos_2019}.
Their fundamental philosophy consists, roughly speaking, in retaining only the most energetically relevant determinants of the FCI space following a given criterion to slow down the exponential increase of the size of the CI expansion. Their fundamental philosophy consists, roughly speaking, in retaining only the most energetically relevant determinants of the FCI space following a given criterion to slow down the exponential increase of the size of the CI expansion.
@ -317,50 +317,56 @@ If all the values of $P(\mathcal{G})$ are below $0.8$, $M$ is chosen such that $
A Python code associated with this procedure is provided in the {\SupInf}. A Python code associated with this procedure is provided in the {\SupInf}.
The singlet and triplet excitation energies obtained at the FCI/6-31+G(d) level are reported in Table \ref{tab:cycles} alongside the CC3 and CCSDT values in the same basis from Ref.~\cite{Loos_2020b}. The singlet and triplet excitation energies obtained at the FCI/6-31+G(d) level are reported in Table \ref{tab:cycles} alongside the computed error bar estimated with the method presented above and the CC3 and CCSDT values from Ref.~\cite{Loos_2020b} computed in the same basis.
For the sake of comparison, we also report the estimated value of the excitation energies obtained via a three-point linear extrapolation considering the three largest SCI wave functions.
In such a case, the error bar is estimated via the difference in excitation energies obtained with the three-point linear extrapolation and the largest variational wave function.
This strategy has been considered in some of our previous works \cite{Loos_2020b,Loos_2020c}.
\alert{Here comes the discussion of the results.}
%%% TABLE I %%%
\begin{table} \begin{table}
\centering \centering
\caption{Singlet and triplet excitation energies obtained at the CC3, CCSDT, and FCI levels of theory with the 6-31+G* basis set for various five- and six-membered rings.} \caption{Singlet and triplet excitation energies obtained at the CC3, CCSDT, and FCI levels of theory with the 6-31+G* basis set for various five- and six-membered rings.}
\label{tab:cycles} \label{tab:cycles}
\begin{threeparttable} \begin{threeparttable}
\begin{tabular}{lccrr} \begin{tabular}{lccrrr}
\headrow \headrow
\thead{Molecule} & \thead{Transition} & \thead{CC3} & \thead{CCSDT} & \thead{FCI}\\ \thead{Molecule} & \thead{Transition} & \thead{CC3} & \thead{CCSDT} & \thead{FCI$^a$} & \thead{FCI$^b$}\\
\mc{5}{c}{Five-membered rings} \\ \mc{6}{c}{Five-membered rings} \\
Cyclopentadiene & $^1 B_2 (\pi \ra \pis)$ & 5.79 & 5.80 & 5.80(2) \\ Cyclopentadiene & $^1 B_2 (\pi \ra \pis)$ & 5.79 & 5.80 & 5.80(2) & 5.79(2) \\%& 5.79(7)
& $^3 B_2 (\pi \ra \pis)$ & 3.33 & 3.33 & 3.32(4) \\ & $^3 B_2 (\pi \ra \pis)$ & 3.33 & 3.33 & 3.32(4) & 3.29(7) \\%& 3.29(1)
Furan & $^1A_2(\pi \ra 3s)$ & 6.26 & 6.28 & 6.31(5) \\ Furan & $^1A_2(\pi \ra 3s)$ & 6.26 & 6.28 & 6.31(5) & 6.37(1) \\%& 6.37(8)
& $^3B_2(\pi \ra \pis)$ & 4.28 & 4.28 & 4.26(4) \\ & $^3B_2(\pi \ra \pis)$ & 4.28 & 4.28 & 4.26(4) & 4.22(7) \\%& 4.22(14)
Imidazole & $^1A''(\pi \ra 3s)$ & 5.77 & 5.77 & 5.78(5) \\ Imidazole & $^1A''(\pi \ra 3s)$ & 5.77 & 5.77 & 5.78(5) & 5.96(14) \\%& 5.96(31)
& $^3A'(\pi \ra \pis)$ & 4.83 & 4.81 & 4.82(7) \\ & $^3A'(\pi \ra \pis)$ & 4.83 & 4.81 & 4.82(7) & 4.65(22) \\%& 4.65(35)
Pyrrole & $^1A_2(\pi \ra 3s)$ & 5.25 & 5.25 & 5.23(7) \\ Pyrrole & $^1A_2(\pi \ra 3s)$ & 5.25 & 5.25 & 5.23(7) & 5.31(1) \\%& 5.31(26)
& $^3B_2(\pi \ra \pis)$ & 4.59 & 4.58 & 4.54(7) \\ & $^3B_2(\pi \ra \pis)$ & 4.59 & 4.58 & 4.54(7) & 4.37(23) \\%& 4.37(35)
Thiophene & $^1A_1(\pi \ra \pis)$ & 5.79 & 5.77 & 5.75(8) \\ Thiophene & $^1A_1(\pi \ra \pis)$ & 5.79 & 5.77 & 5.75(8) & 5.73(9) \\%& 5.73(7)
& $^3B_2(\pi \ra \pis)$ & 3.95 & 3.94 & 3.98(1) \\ & $^3B_2(\pi \ra \pis)$ & 3.95 & 3.94 & 3.98(1) & 3.99(2) \\%& 3.99(8)
\mc{5}{c}{Six-membered rings} \\ \mc{6}{c}{Six-membered rings} \\
Benzene & $^1B_{2u}(\pi \ra \pis)$ & 5.13 & 5.10 & 5.06(9) \\ Benzene & $^1B_{2u}(\pi \ra \pis)$ & 5.13 & 5.10 & 5.06(9) & 5.21(7) \\%& 5.21(36)
& $^3B_{1u}(\pi \ra \pis)$ & 4.18 & 4.16 & 4.28(6) \\ & $^3B_{1u}(\pi \ra \pis)$ & 4.18 & 4.16 & 4.28(6) & 4.17(7) \\%& 4.17(67)
Cyclopentadienone & $^1A_2(n \ra \pis)$ & 3.03 & 3.03 & 3.08(2) \\ Cyclopentadienone & $^1A_2(n \ra \pis)$ & 3.03 & 3.03 & 3.08(2) & 3.13(3) \\%& 3.13(8)
& $^3B_2(\pi \ra \pis)$ & 2.30 & 2.32 & 2.37(5) \\ & $^3B_2(\pi \ra \pis)$ & 2.30 & 2.32 & 2.37(5) & 2.10(25) \\%& 2.10(45)
Pyrazine & $^1B_{3u}(n \ra \pis)$ & 4.28 & 4.28 & 4.26(9) \\ Pyrazine & $^1B_{3u}(n \ra \pis)$ & 4.28 & 4.28 & 4.26(9) & 4.10(25) \\%& 4.10(8)
& $^3B_{3u}(n \ra \pis)$ & 3.68 & 3.68 & 3.70(3) \\ & $^3B_{3u}(n \ra \pis)$ & 3.68 & 3.68 & 3.70(3) & 3.70(1) \\%& 3.70(37)
Tetrazine & $^1B_{3u}(n \ra \pis)$ & 2.53 & 2.54 & 2.56(5) \\ Tetrazine & $^1B_{3u}(n \ra \pis)$ & 2.53 & 2.54 & 2.56(5) & 5.07(16) \\%& 5.07(77)
& $^3B_{3u}(n \ra \pis)$ & 1.87 & 1.88 & 1.91(3) \\ & $^3B_{3u}(n \ra \pis)$ & 1.87 & 1.88 & 1.91(3) & 4.04(49) \\%& 4.04(40)
Pyridazine & $^1B_1(n \ra \pis)$ & 3.95 & 3.95 & 3.97(10) \\ Pyridazine & $^1B_1(n \ra \pis)$ & 3.95 & 3.95 & 3.97(10)& 3.60(43) \\%& 3.60(26)
& $^3B_1(n \ra \pis)$ & 3.27 & 3.26 & 3.27(15) \\ & $^3B_1(n \ra \pis)$ & 3.27 & 3.26 & 3.27(15)& 3.46(14) \\%& 3.46(1.61)
Pyridine & $^1B_1(n \ra \pis)$ & 5.12 & 5.10 & 5.15(12) \\ Pyridine & $^1B_1(n \ra \pis)$ & 5.12 & 5.10 & 5.15(12)& 4.90(24) \\%& 4.90(1.34)
& $^3A_1(\pi \ra \pis)$ & 4.33 & 4.31 & 4.42(85) \\ & $^3A_1(\pi \ra \pis)$ & 4.33 & 4.31 & 4.42(85)& 3.68(1.05) \\%& 3.68(0.65)
Pyrimidine & $^1B_1(n \ra \pis)$ & 4.58 & 4.57 & 4.64(11) \\ Pyrimidine & $^1B_1(n \ra \pis)$ & 4.58 & 4.57 & 4.64(11)& 2.54(5) \\%& 2.54(13)
& $^3B_1(n \ra \pis)$ & 4.20 & 4.20 & 4.55(37) \\ & $^3B_1(n \ra \pis)$ & 4.20 & 4.20 & 4.55(37)& 2.18(27) \\%& 2.18(29)
Triazine & $^1A_1''(n \ra \pis)$ & 4.85 & 4.84 & 4.77(13) \\ Triazine & $^1A_1''(n \ra \pis)$ & 4.85 & 4.84 & 4.77(13)& 5.12(51) \\%& 5.12(13)
& $^3A_2''(n \ra \pis)$ & 4.40 & 4.40 & 4.45(39) \\ & $^3A_2''(n \ra \pis)$ & 4.40 & 4.40 & 4.45(39)& 4.73(6) \\%& 4.73(1.07)
%\hiderowcolors %\hiderowcolors
\hline % Please only put a hline at the end of the table \hline % Please only put a hline at the end of the table
\end{tabular} \end{tabular}
%\begin{tablenotes} \begin{tablenotes}
%\item JKL, just keep laughing; MN, merry noise. \item $^a$ Error bar estimated thanks to the present method (see Sec.~\ref{sec:error}).
%\end{tablenotes} \item $^b$ Error bar estimated as the difference in excitation energies obtained with the three-point linear extrapolation and the largest variational wave function.
\end{tablenotes}
\end{threeparttable} \end{threeparttable}
\end{table} \end{table}
@ -377,7 +383,7 @@ Each of the five subsets making up the QUEST dataset is detailed below.
Throughout the present article, we report several statistical indicators: the mean signed error (MSE), mean absolute error (MAE), root-mean square error (RMSE), and standard deviation of the errors (SDE). Throughout the present article, we report several statistical indicators: the mean signed error (MSE), mean absolute error (MAE), root-mean square error (RMSE), and standard deviation of the errors (SDE).
%%% FIGURE 2 %%% %%% FIGURE 2 %%%
\begin{figure}[ht] \begin{figure}
\centering \centering
\includegraphics[width=0.8\linewidth]{fig2} \includegraphics[width=0.8\linewidth]{fig2}
\caption{Molecules each of the five subsets making up the present QUEST dataset of highly-accurate vertical excitation energies: \caption{Molecules each of the five subsets making up the present QUEST dataset of highly-accurate vertical excitation energies:
@ -436,159 +442,194 @@ Likewise, the excitation energies obtained with CCSD are much less satisfying fo
%======================= %=======================
The QUEST\#5 subset is composed by additional accurate excitation energies that we have produced for the present article. The QUEST\#5 subset is composed by additional accurate excitation energies that we have produced for the present article.
This new set gathers small molecules as well as larger molecules (aza-naphthalene, benzoquinone, cyclopentadienone, cyclopentadienethione, hexatriene, maleimide, naphthalene, nitroxyl, streptocyanine-C3, streptocyanine-C5, and thioacrolein). This new set gathers 13 new systems composed by small molecules as well as larger molecules (aza-naphthalene, benzoquinone, cyclopentadienone, cyclopentadienethione, diazirine, hexatriene, maleimide, naphthalene, nitroxyl, octatetraene, streptocyanine-C3, streptocyanine-C5, and thioacrolein).
Each of these molecules are discussed below and comparisons are made with literature data. The interested reader will find in the {\SupInf} a detailed discussion for each of these molecules in which comparisons are made with literature data.
QUEST\#5 does also provide additional FCI/6-31+G* estimates of the lowest singlet and triplet transitions for the five- and six-membered rings considered in QUEST\#3.
The extrapolation errors for these quite challenging calculations are computed with the scheme presented in Sec.~\ref{sec:error}.
%-------------------------------------- %\begin{table}[bt]
\subsubsection{Toward larger molecules} %\centering
%-------------------------------------- %\caption{Singlet and triplet excitation energies of various molecules obtained at the CC3, CCSDT, NEVPT2, and FCI levels of theory.}
%\begin{threeparttable}
\alert{Here comes Denis' discussion of each new molecule.} %\begin{tabular}{lccrrr}
%\headrow
\begin{table}[bt] % & & \mc{4}{c}{6-31+G*} \\
\centering %\thead{Molecule} & \thead{Transition} & \thead{CC3} & \thead{CCSDT} & \thead{NEVPT2} & \thead{FCI}\\
\caption{Singlet and triplet excitation energies of various molecules obtained at the CC3, CCSDT, NEVPT2, and FCI levels of theory.} %Aza-naphthalene
\begin{threeparttable} % & $^1B_{3g}(n \ra \pis)$ \\
\begin{tabular}{lccrrr} % & $^1B_{2u}(\pi \ra \pis)$ \\
\headrow % & $^1B_{1u}(n \ra \pis)$ \\
& & \mc{4}{c}{6-31+G*} \\ % & $^1B_{2g}(n \ra \pis)$ \\
\thead{Molecule} & \thead{Transition} & \thead{CC3} & \thead{CCSDT} & \thead{NEVPT2} & \thead{FCI}\\ % & $^1B_{2g}(n \ra \pis)$ \\
Aza-naphthalene % & $^1B_{1u}(n \ra \pis)$ \\
& $^1B_{3g}(n \ra \pis)$ \\ % & $^1A_u(n \ra \pis)$ \\
& $^1B_{2u}(\pi \ra \pis)$ \\ % & $^1B_{3u}(\pi \ra \pis)$ \\
& $^1B_{1u}(n \ra \pis)$ \\ % & $^1A_g(\pi \ra \pis)$ \\
& $^1B_{2g}(n \ra \pis)$ \\ % & $^1A_u(n \ra \pis)$ \\
& $^1B_{2g}(n \ra \pis)$ \\ % & $^1A_g(n \ra 3s)$ \\
& $^1B_{1u}(n \ra \pis)$ \\ % & $^3B_{3g}(n \ra \pis)$ \\
& $^1A_u(n \ra \pis)$ \\ % & $^3B_{2u}(\pi \ra \pis)$ \\
& $^1B_{3u}(\pi \ra \pis)$ \\ % & $^3B_{3u}(\pi \ra \pis)$ \\
& $^1A_g(\pi \ra \pis)$ \\ % & $^3B_{1u}(n \ra \pis)$ \\
& $^1A_u(n \ra \pis)$ \\ % & $^3B_{2g}(n \ra \pis)$ \\
& $^1A_g(n \ra 3s)$ \\ % & $^3B_{2g}(n \ra \pis)$ \\
& $^3B_{3g}(n \ra \pis)$ \\ % & $^3B_{3u}(\pi \ra \pis)$ \\
& $^3B_{2u}(\pi \ra \pis)$ \\ % & $^3A_u(n \ra \pis)$ \\
& $^3B_{3u}(\pi \ra \pis)$ \\ %Benzoquinone
& $^3B_{1u}(n \ra \pis)$ \\ % & $^1 B_{1g}(n \ra \pis)$ & & & & \\
& $^3B_{2g}(n \ra \pis)$ \\ % & $^1 A_{u}(n \ra \pis)$ & & & & \\
& $^3B_{2g}(n \ra \pis)$ \\ % & $^1 A_{g}(\double)$ & & & & \\
& $^3B_{3u}(\pi \ra \pis)$ \\ % & $^1 B_{3g}(\pi \ra \pis)$ & & & & \\
& $^3A_u(n \ra \pis)$ \\ % & $^1 B_{3u}(n \ra \pis)$ & & & & \\
Benzoquinone % & $^1 B_{2g}(n \ra \pis)$ & & & & \\
& $^1 B_{1g}(n \ra \pis)$ & & & & \\ % & $^1 A_{u}(n \ra \pis)$ & & & & \\
& $^1 A_{u}(n \ra \pis)$ & & & & \\ % & $^1 B_{1g}(n \ra \pis)$ & & & & \\
& $^1 A_{g}(\double)$ & & & & \\ % & $^1 B_{2g}(n \ra \pis)$ & & & & \\
& $^1 B_{3g}(\pi \ra \pis)$ & & & & \\ % & $^3 B_{1g}(n \ra \pis)$ & & & & \\
& $^1 B_{3u}(n \ra \pis)$ & & & & \\ % & $^3 A_{u}(n \ra \pis)$ & & & & \\
& $^1 B_{2g}(n \ra \pis)$ & & & & \\ % & $^3 B_{1u}(\pi \ra \pis)$ & & & & \\
& $^1 A_{u}(n \ra \pis)$ & & & & \\ % & $^3 B_{3g}(\pi \ra \pis)$ & & & & \\
& $^1 B_{1g}(n \ra \pis)$ & & & & \\ %Cyclopentadienone
& $^1 B_{2g}(n \ra \pis)$ & & & & \\ % & $^1A_2(n \ra \pis)$ \\
& $^3 B_{1g}(n \ra \pis)$ & & & & \\ % & $^1B_2(\pi \ra \pis)$ \\
& $^3 A_{u}(n \ra \pis)$ & & & & \\ % & $^1B_1(\double)$ \\
& $^3 B_{1u}(\pi \ra \pis)$ & & & & \\ % & $^1A_1(\double)$ \\
& $^3 B_{3g}(\pi \ra \pis)$ & & & & \\ % & $^1A_1(\pi \ra \pis)$ \\
Cyclopentadienone % & $^3B_2(\pi \ra \pis)$ \\
& $^1A_2(n \ra \pis)$ \\ % & $^3A_2( \ra \pis)$ \\
& $^1B_2(\pi \ra \pis)$ \\ % & $^3A_1(\pi \ra \pis)$ \\
& $^1B_1(\double)$ \\ % & $^3B_1(\double)$ \\
& $^1A_1(\double)$ \\ %Cyclopentadienethione
& $^1A_1(\pi \ra \pis)$ \\ % & $^1A_2(n \ra \pis)$ \\
& $^3B_2(\pi \ra \pis)$ \\ % & $^1B_2(\pi \ra \pis)$ \\
& $^3A_2( \ra \pis)$ \\ % & $^1B_1(\double)$ \\
& $^3A_1(\pi \ra \pis)$ \\ % & $^1A_1(\pi \ra \pis)$ \\
& $^3B_1(\double)$ \\ % & $^1A_1(\double)$ \\
Cyclopentadienethione % & $^3A_2(n \ra \pis)$ \\
& $^1A_2(n \ra \pis)$ \\ % & $^3B_2(\pi \ra \pis)$ \\
& $^1B_2(\pi \ra \pis)$ \\ % & $^3A_1(\pi \ra \pis)$ \\
& $^1B_1(\double)$ \\ % & $^3B_1(\double)$ \\
& $^1A_1(\pi \ra \pis)$ \\ %Hexatriene
& $^1A_1(\double)$ \\ % & $^1B_u(\pi \ra \pis)$ \\
& $^3A_2(n \ra \pis)$ \\ % & $^1A_g(\pi \ra \pis)$ \\
& $^3B_2(\pi \ra \pis)$ \\ % & $^1A_u(\pi \ra 3s)$ \\
& $^3A_1(\pi \ra \pis)$ \\ % & $^1B_g(\pi \ra 3p)$ \\
& $^3B_1(\double)$ \\ % & $^3B_u(\pi \ra \pis)$ \\
Hexatriene % & $^3A_g(\pi \ra \pis)$ \\
& $^1B_u(\pi \ra \pis)$ \\ %Maleimide
& $^1A_g(\pi \ra \pis)$ \\ % & $^1B_1(n \ra \pis)$ \\
& $^1A_u(\pi \ra 3s)$ \\ % & $^1A_2(n \ra \pis)$ \\
& $^1B_g(\pi \ra 3p)$ \\ % & $^1B_2 (\pi \ra \pis)$ \\
& $^3B_u(\pi \ra \pis)$ \\ % & $^1B_2(\pi \ra \pis)$ \\
& $^3A_g(\pi \ra \pis)$ \\ % & $^1B_2(n \ra 3s)$ \\
Maleimide % & $^3B_1(n \ra \pis)$ \\
& $^1B_1(n \ra \pis)$ \\ % & $^3B_2(\pi \ra \pis)$ \\
& $^1A_2(n \ra \pis)$ \\ % & $^3B_2(\pi \ra \pis)$ \\
& $^1B_2 (\pi \ra \pis)$ \\ % & $^3A_2(n \ra \pis)$ \\
& $^1B_2(\pi \ra \pis)$ \\ %Naphthalene
& $^1B_2(n \ra 3s)$ \\ % & $^1B_{3u}(\pi \ra \pis)$ \\
& $^3B_1(n \ra \pis)$ \\ % & $^1B_{2u}(\pi \ra \pis)$ \\
& $^3B_2(\pi \ra \pis)$ \\ % & $^1A_u(\pi \ra 3s)$ \\
& $^3B_2(\pi \ra \pis)$ \\ % & $^1B_{1g}(\pi \ra \pis)$ \\
& $^3A_2(n \ra \pis)$ \\ % & $^1A_g(\pi \ra \pis)$ \\
Naphthalene % & $^1B_{3g}(\pi \ra 3p)$ \\
& $^1B_{3u}(\pi \ra \pis)$ \\ % & $^1B_{2g}(\pi \ra 3p)$ \\
& $^1B_{2u}(\pi \ra \pis)$ \\ % & $^1B_{3u}(\pi \ra \pis)$ \\
& $^1A_u(\pi \ra 3s)$ \\ % & $^1B_{1u}(\pi \ra 3s)$ \\
& $^1B_{1g}(\pi \ra \pis)$ \\ % & $^1B_{2u}(\pi \ra \pis)$ \\
& $^1A_g(\pi \ra \pis)$ \\ % & $^1B_{1g}(\pi \ra \pis)$ \\
& $^1B_{3g}(\pi \ra 3p)$ \\ % & $^1A_g(\pi \ra \pis)$ \\
& $^1B_{2g}(\pi \ra 3p)$ \\ % & $^3B_{2u}(\pi \ra \pis)$ \\
& $^1B_{3u}(\pi \ra \pis)$ \\ % & $^3B_{3u}(\pi \ra \pis)$ \\
& $^1B_{1u}(\pi \ra 3s)$ \\ % & $^3B_{1g}(\pi \ra \pis)$ \\
& $^1B_{2u}(\pi \ra \pis)$ \\ % & $^3B_{2u}(\pi \ra \pis)$ \\
& $^1B_{1g}(\pi \ra \pis)$ \\ % & $^3B_{3u}(\pi \ra \pis)$ \\
& $^1A_g(\pi \ra \pis)$ \\ % & $^3A_g(\pi \ra \pis)$ \\
& $^3B_{2u}(\pi \ra \pis)$ \\ % & $^3B_{1g}(\pi \ra \pis)$ \\
& $^3B_{3u}(\pi \ra \pis)$ \\ % & $^3A_g(\pi \ra \pis)$ \\
& $^3B_{1g}(\pi \ra \pis)$ \\ %Nitroxyl
& $^3B_{2u}(\pi \ra \pis)$ \\ % & $^1A''(n \ra \pis)$ \\
& $^3B_{3u}(\pi \ra \pis)$ \\ % & $^1A'(\double)$ \\
& $^3A_g(\pi \ra \pis)$ \\ % & $^1A'$ \\
& $^3B_{1g}(\pi \ra \pis)$ \\ % & $^3A''(n \ra \pis)$ \\
& $^3A_g(\pi \ra \pis)$ \\ % & $^3A'(\pi \ra \pis)$ \\
Nitroxyl %Streptocyanine-C3
& $^1A''(n \ra \pis)$ \\ % & $^1B_2(\pi \ra \pis)$ \\
& $^1A'(\double)$ \\ % & $^3B_2(\pi \ra \pis)$ \\
& $^1A'$ \\ %Streptocyanine-C5
& $^3A''(n \ra \pis)$ \\ % & $^1B_2(\pi \ra \pis)$ \\
& $^3A'(\pi \ra \pis)$ \\ % & $^3B_2(\pi \ra \pis)$ \\
Streptocyanine-C3 %Thioacrolein
& $^1B_2(\pi \ra \pis)$ \\ % & $^1A''(n \ra \pis)$ \\
& $^3B_2(\pi \ra \pis)$ \\ % & $^3A''(n \ra \pis)$ \\
Streptocyanine-C5
& $^1B_2(\pi \ra \pis)$ \\
& $^3B_2(\pi \ra \pis)$ \\
Thioacrolein
& $^1A''(n \ra \pis)$ \\
& $^3A''(n \ra \pis)$ \\
%\hiderowcolors %\hiderowcolors
\hline % Please only put a hline at the end of the table %\hline % Please only put a hline at the end of the table
\end{tabular} %\end{tabular}
%\begin{tablenotes} %\begin{tablenotes}
%\item JKL, just keep laughing; MN, merry noise. %\item JKL, just keep laughing; MN, merry noise.
%\end{tablenotes} %\end{tablenotes}
\end{threeparttable} %\end{threeparttable}
\end{table} %\end{table}
%-----------------------------------------------------------------------
\subsubsection{FCI excitation energies for five- and six-membered rings}
%-----------------------------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Theoretical best estimates} \section{Theoretical best estimates}
\label{sec:TBE} \label{sec:TBE}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
We discuss in this section the generation of the TBEs obtained with the aug-cc-pVTZ basis as well as oscillator strengths for most transitions. We discuss in this section the generation of the TBEs obtained with the aug-cc-pVTZ basis as well as oscillator strengths for most transitions.
An exhaustive list of TBEs can be found in {\SupInf}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Benchmarks} \section{Benchmarks}
\label{sec:bench} \label{sec:bench}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
In this section, we report a comprehensive benchmark of various lower-order methods on the entire QUEST set which is composed by more than \alert{470} excitations. In this section, we report a comprehensive benchmark of various lower-order methods on the entire QUEST set which is composed by more than \alert{470} excitations.
Statistical quantities are reported in Table \ref{tab:stat}.
Additionally, we also provide a specific analysis for each type of excited states. Additionally, we also provide a specific analysis for each type of excited states.
Hence, the statistical values are reported for various types of excited states and molecular sizes for the MSE and MAE.
\begin{sidewaystable}
\scriptsize
\centering
\caption{Mean signed error (MSE), mean absolute error (MAE), root-mean-square error (RMSE), standard deviation of the errors (SDE), as well as the maximum positive [Max(+)] and negative [Max($-$)] errors with respect to the TBE/aug-cc-pVTZ.
For the MSE and MAE, the statistical values are reported for various types of excited states and molecular sizes.
All quantities are given in eV. ``Count'' refers to the number of transitions considered for each method.}
\label{tab:stat}
\begin{threeparttable}
\begin{tabular}{llccccccccccccccc}
\headrow
& & \thead{CIS(D)} & \thead{CC2} & \thead{CCSD(2)} & \thead{STEOM-CCSD} & \thead{CCSD} & \thead{CCSDR(3)} & \thead{CCCSDT-3} & \thead{CC3}
& \thead{SOS-ADC(2)[TM]} & \thead{SOS-CC2[TM]} & \thead{SCS-CC2[TM]} & \thead{SOS-ADC(2) [QC]} & \thead{ADC(2)} & \thead{ADC(3)} & \thead{ADC(2.5)} \\
Count & & 429 & 431 & 427 & 360 & 431 & 259 & 251 & 431 & 430 & 430 & 430 & 430 & 426 & 423 & 423 \\
Max(+) & & 1.06 & 0.63 & 0.80 & 0.59 & 0.80 & 0.43 & 0.26 & 0.19 & 0.87 & 0.84 & 0.76 & 0.73 & 0.64 & 0.60 & 0.24 \\
Min($-$) & & -0.69 & -0.71 & -0.38 & -0.56 & -0.25 & -0.07 & -0.07 & -0.09 & -0.29 & -0.24 & -0.92 & -0.46 & -0.76 & -0.79 & -0.34 \\
MSE & & 0.13 & 0.02 & 0.18 & -0.01 & 0.10 & 0.04 & 0.04 & 0.00 & 0.18 & 0.21 & 0.15 & 0.02 & -0.01 & -0.12 & -0.06 \\
& singlet & 0.10 & -0.02 & 0.22 & 0.03 & 0.14 & 0.04 & 0.04 & 0.00 & 0.18 & 0.20 & 0.13 & 0.00 & -0.04 & -0.08 & -0.06 \\
& triplet & 0.19 & 0.08 & 0.14 & -0.07 & 0.03 & & & 0.00 & 0.19 & 0.22 & 0.17 & 0.04 & 0.04 & -0.18 & -0.07 \\
& valence & 0.20 & 0.10 & 0.20 & -0.06 & 0.10 & 0.06 & 0.05 & 0.00 & 0.19 & 0.24 & 0.20 & 0.02 & 0.04 & -0.16 & -0.06 \\
& Rydberg & -0.04 & -0.17 & 0.15 & 0.09 & 0.08 & 0.01 & 0.03 & -0.01 & 0.16 & 0.12 & 0.01 & 0.02 & -0.13 & -0.02 & -0.07 \\
& $n \ra \pis$ & 0.16 & 0.02 & 0.24 & -0.03 & 0.17 & 0.07 & 0.07 & 0.00 & 0.26 & 0.32 & 0.22 & 0.05 & -0.05 & -0.01 & -0.03 \\
& $\pi \ra \pis$& 0.25 & 0.17 & 0.20 & -0.07 & 0.06 & 0.05 & 0.04 & 0.00 & 0.15 & 0.19 & 0.19 & 0.00 & 0.12 & -0.27 & -0.07 \\
& 1--3 non-H & 0.10 & 0.03 & 0.03 & -0.02 & 0.04 & 0.01 & 0.01 & 0.00 & 0.13 & 0.16 & 0.11 & -0.01 & -0.01 & -0.17 & -0.09 \\
& 4 non-H & 0.13 & 0.04 & 0.12 & 0.00 & 0.09 & 0.03 & 0.04 & 0.00 & 0.19 & 0.26 & 0.19 & 0.03 & -0.04 & -0.10 & -0.07 \\
& 5--6 non-H & 0.17 & 0.02 & 0.30 & -0.01 & 0.11 & 0.05 & 0.05 & 0.00 & 0.21 & 0.20 & 0.14 & 0.03 & 0.03 & -0.10 & -0.04 \\
& 7--10 non-H & 0.15 & -0.03 & 0.42 & -0.05 & 0.22 & 0.10 & 0.08 & -0.01 & 0.26 & 0.29 & 0.19 & 0.05 & -0.06 & -0.02 & -0.04 \\
MSE & & 0.13 & 0.02 & 0.18 & -0.01 & 0.10 & 0.04 & 0.04 & 0.00 & 0.18 & 0.21 & 0.15 & 0.02 & -0.01 & -0.12 & -0.06 \\
SDE & & 0.24 & 0.20 & 0.21 & 0.13 & 0.12 & 0.05 & 0.04 & 0.02 & 0.17 & 0.16 & 0.16 & 0.15 & 0.20 & 0.22 & 0.08 \\
RMSE & & 0.29 & 0.22 & 0.28 & 0.15 & 0.16 & 0.07 & 0.06 & 0.03 & 0.25 & 0.26 & 0.22 & 0.17 & 0.21 & 0.26 & 0.10 \\
MAE & & 0.22 & 0.16 & 0.22 & 0.11 & 0.12 & 0.05 & 0.04 & 0.02 & 0.20 & 0.22 & 0.18 & 0.13 & 0.15 & 0.21 & 0.08 \\
& singlet & 0.22 & 0.16 & 0.25 & 0.10 & 0.14 & 0.05 & 0.04 & 0.02 & 0.21 & 0.22 & 0.17 & 0.14 & 0.16 & 0.20 & 0.09 \\
& triplet & 0.23 & 0.15 & 0.18 & 0.12 & 0.08 & & & 0.01 & 0.20 & 0.23 & 0.19 & 0.11 & 0.15 & 0.22 & 0.08 \\
& valence & 0.22 & 0.14 & 0.24 & 0.12 & 0.13 & 0.06 & 0.05 & 0.02 & 0.21 & 0.25 & 0.20 & 0.12 & 0.13 & 0.22 & 0.08 \\
& Rydberg & 0.22 & 0.21 & 0.19 & 0.10 & 0.08 & 0.03 & 0.03 & 0.02 & 0.20 & 0.15 & 0.13 & 0.14 & 0.21 & 0.18 & 0.09 \\
& $n \ra \pis$ & 0.18 & 0.08 & 0.28 & 0.08 & 0.17 & 0.07 & 0.07 & 0.01 & 0.26 & 0.32 & 0.22 & 0.11 & 0.10 & 0.14 & 0.07 \\
& $\pi \ra \pis$& 0.27 & 0.19 & 0.21 & 0.14 & 0.11 & 0.06 & 0.04 & 0.02 & 0.18 & 0.21 & 0.20 & 0.12 & 0.16 & 0.28 & 0.09 \\
& 1--3 non-H & 0.23 & 0.19 & 0.13 & 0.10 & 0.07 & 0.03 & 0.03 & 0.02 & 0.18 & 0.20 & 0.19 & 0.14 & 0.19 & 0.24 & 0.10 \\
& 4 non-H & 0.22 & 0.19 & 0.15 & 0.11 & 0.11 & 0.03 & 0.04 & 0.02 & 0.19 & 0.26 & 0.22 & 0.13 & 0.18 & 0.23 & 0.08 \\
& 5--6 non-H & 0.21 & 0.12 & 0.30 & 0.12 & 0.13 & 0.06 & 0.05 & 0.01 & 0.22 & 0.21 & 0.15 & 0.11 & 0.11 & 0.19 & 0.07 \\
& 7--10 non-H & 0.24 & 0.11 & 0.42 & 0.12 & 0.23 & 0.10 & 0.08 & 0.02 & 0.27 & 0.29 & 0.19 & 0.12 & 0.14 & 0.16 & 0.07 \\
\hline
\end{tabular}
\end{threeparttable}
\end{sidewaystable}

Binary file not shown.