Obtain double excitations with spin-flip methods

Enzo Monino

20 novembre 2020

What's the problem?

Methods using Casida-like equations are blind to double excitations :

$$\begin{pmatrix} R & C \\ -C^* & -R^* \end{pmatrix} \begin{pmatrix} X_m \\ Y_m \end{pmatrix} = \Omega_m \begin{pmatrix} X_m \\ Y_m \end{pmatrix}$$

With

$$R_{ia,jb} = \delta_{ij}\delta_{ab}(\epsilon_{a}^{KS} - \epsilon_{i}^{KS}) + 2(ia|bj) + f_{ia,bj}^{xc}$$
$$C_{ia,jb} = 2(ia|jb) + f_{ia,jb}^{xc}$$

for TD-DFT, and with

$$R_{ia,jb} = \delta_{ij}\delta_{ab}(\epsilon_a^{GW} - \epsilon_i^{GW}) + 2(ia|bj) - W_{ij,ba}^{stat}$$

$$C_{ia,jb} = 2(ia|jb) - W_{ib,ja}^{stat}$$

for BSE

What's the solution?

The solution is to use the spin-flip methods formally introduced by Krylov in 2001 for CI and EOM-CC $^{1\,2}$

^{1.} A. I. Krylov, Chem. Phys. Lett., 2001, 338, 375-384.

^{2.} A. I. Krylov, Chem. Phys. Lett., 2001, 350, 522–530. < -> + 4 > + 3 > + 3 > + 3 > + 4 >

What's the solution?

The solution is to use the spin-flip methods formally introduced by Krylov in 2001 for CI and EOM

Example: Be atom

State	TD-BLYP	TD-BHHLYP	CIS	BSE@G0W0	FCI
$^{3}P(1s^{2}2s^{1}2p^{1})$	3.210	2.874	2.111	2.399	2.862
$^{1}P(1s^{2}2s^{1}2p^{1})$	3.210	4.922	6.036	6.191	6.577
$^{3}P(1s^{2}2p^{2})$	6.691	7.112	7.480	7.792	7.669
$^{1}D(1s^{2}2p^{2})$	7.598	8.188	8.945	9.373	8.624

Table – Spin-flip excitations (in eV) of Be obtained for various methods with the 6-31G basis.

Effect of the exact exchange ^a

a. Phys. Chem. Chem. Phys., 2020,22, 4326-4342

Figure – Electronic states of Be