The connection between wave function theory and density-functional theory in the asymmetric Hubbard dimer

Pierre-François LOOS

Laboratoire de Chimie et Physique Quantiques, Université Paul Sabatier, Toulouse, France.

PTEROSOR group meeting

Exact Hamiltonian for singlet states

We consider the Hamiltonian $\hat{H} = \hat{T} + \hat{V}_{ee} + \hat{V}$ of the asymmetric Hubbard dimer in the site basis:

- *t* is the hopping parameter
- *U* is the on-site Coulomb repulsion
- $\Delta v = v_2 v_1$ is the difference of on-site potentials

In the site basis, one can write the exact wave function as

$$\Psi = \beta_1 | 1 \uparrow 1 \downarrow \rangle + \alpha (|1 \uparrow 2 \downarrow \rangle + |1 \downarrow 2 \uparrow \rangle) + \beta_2 | 2 \uparrow 2 \downarrow \rangle$$

with $2\alpha^2 + \beta_1^2 + \beta_2^2 = 1$ (normalization condition). The energy can be written as

$$E(\alpha, \beta_1, \beta_2) = T(\alpha, \beta_1, \beta_2) + V_{ee}(\alpha, \beta_1, \beta_2) + V(\alpha, \beta_1, \beta_2)$$

with

$$T(\alpha, \beta_1, \beta_2) = -4t\alpha(\beta_1 + \beta_2)$$

$$V_{ee}(\alpha, \beta_1, \beta_2) = U(\beta_1^2 + \beta_2^2)$$

$$V(\alpha, \beta_1, \beta_2) = -\Delta v(\beta_1^2 - \beta_2^2)$$

NB: One can obtain analytically the energies and wave function coefficients

Let us introduce the site occupation difference

$$\Delta n = n_2 - n_1$$

- n_1 is the occupation of site 1
- n_2 is the occupation of site 2
- Δn plays the role of the density (site-occupation function theory)

Universal functional

Let us assume that we know the universal Hohenberg-Kohn functional $F(\Delta n)$ such that

$$E(\Delta n_0) = F(\Delta n_0) + V(\Delta n_0) = F(\Delta n_0) + \frac{\Delta v \Delta n_0}{2}$$

is the exact ground-state energy of the system for a given Δv

The minimizing Δn is obtained by solving the following Euler equation

Find
$$\Delta n_0$$
 such that $\left. \frac{\partial E(\Delta n)}{\partial \Delta n} \right|_{\Delta n = \Delta n_0} = 0 \quad \Leftrightarrow \quad \left. \frac{\partial F(\Delta n)}{\partial \Delta n} \right|_{\Delta n = \Delta n_0} = -\Delta v/2$

Hohenberg & Kohn, Phys. Rev. 136 (1964) B864

Non-interacting kinetic energy functional:

$$T_s(\Delta n) = -2t\sqrt{\left(1 - \frac{\Delta n}{2}\right)\left(1 + \frac{\Delta n}{2}\right)}$$

Hartree-exchange functional:

$$E_{\mathsf{Hx}}(\Delta n) = \frac{U}{2} \left[1 + \left(\frac{\Delta n}{2} \right)^2 \right]$$

Correlation functional:

$$F_{c}(\Delta n) = F(\Delta n) - T_{s}(\Delta n) - E_{Hx}(\Delta n)$$

Kohn & Sham, Phys. Rev. 140 (1965) A1133

Connection between wave function and density worlds

The equation connecting the WFT and DFT worlds is

$$\Delta n = n_2 - n_1 = 2(\beta_2^2 - \beta_1^2)$$

Let us construct the universal functional via the Levy-Lieb constrained search approach:

$$F(\Delta n) = \min_{\Psi \to \Delta n} \langle \Psi | \hat{T} + \hat{V}_{ee} | \Psi \rangle$$

The ground-state energy is determined by a second minimization step:

$$E(\Delta n_0) = \min_{\Delta n} E(\Delta n) = \min_{\Delta n} \left\{ F(\Delta n) + \Delta v \Delta n / 2 \right\}$$

Levy, PNAS 76 (1979) 6062; Lieb, IJQC 24 (1983) 243

$F(\Delta n)$ for the Hubbard dimer (1)

By definition, $F(\Delta n)$ is given by

$$F(\Delta n) = \min_{\substack{\alpha, \beta_{1}, \beta_{2} \\ 2\alpha^{2} + \beta_{1}^{2} + \beta_{2}^{2} = 1 \land \Delta n = \beta_{2}^{2} - \beta_{1}^{2}}} [T(\alpha, \beta_{1}, \beta_{2}) + V_{ee}(\alpha, \beta_{1}, \beta_{2})]$$

$$= \min_{\substack{\alpha, \beta_{1}, \beta_{2} \\ 2\alpha^{2} + \beta_{1}^{2} + \beta_{2}^{2} = 1 \land \Delta n = \beta_{2}^{2} - \beta_{1}^{2}}} [-4t\alpha(\beta_{1} + \beta_{2}) + U(\beta_{1}^{2} + \beta_{2}^{2})]$$

By defining $g = \alpha(\beta_1 + \beta_2)$ and $\rho = |\Delta n|/2$, we obtain

$$F(\rho) = \min_{\mathbf{g}} f(\mathbf{g}, \rho)$$

with

$$f(g, \rho) = -2tg + \frac{U}{2} \frac{g^2(1 - \sqrt{1 - g^2 - \rho^2}) + 2\rho^2}{2(g^2 + \rho^2)}$$

$F(\Delta n)$ for the Hubbard dimer (2)

Let us find $g_0(\rho)$ such that

$$\frac{\partial f(g,\rho)}{\partial g}\bigg|_{g=g_0(\rho)}=0$$

 $g_0(\rho)$ is one of the solution of the following sixth-order polynomial [u = U/(2t)]:

$$\begin{split} g^{4}\left(\rho^{2}\left(u^{2}+3\right)-1\right)+g^{2}\rho^{2}\left(\rho^{2}\left(u^{2}+3\right)-u^{2}-2\right)+\frac{1}{4}g^{6}\left(u^{2}+4\right)\\ &+2g^{3}\rho^{2}u-2g\rho^{2}\left(1-\rho^{2}\right)u-\rho^{4}\left(1-\rho^{2}\right)=0 \end{split}$$

If you can find analytically $g_0(\rho)$, you'll be able to get the exact functional for the asymmetric Hubbard dimer, i.e., $F(\rho, g_0(\rho))$

Other options are available:

•
$$f = \beta_1^2 + \beta_2^2$$
 and $\rho = |\Delta n|/2$
 $\Rightarrow f_2(f, \rho) = -2t\sqrt{1 - f}(\sqrt{f + \rho} - \sqrt{f - \rho} + Uf)$
 \Rightarrow Sixth-order polynomial in f

- $l = (\beta_1 + \beta_2)^2$ and $\rho = |\Delta n|/2$ $\Rightarrow f_3(l, \rho) = -2t\sqrt{2l - l^2 - \rho^2} + \frac{U^{l^2 + \rho^2}}{2l}$ \Rightarrow Sixth-order polynomial in l
- x = ? and $\rho = |\Delta n|/2 \Rightarrow f_4(x, \rho) =$ simple function \Rightarrow Nice-order polynomial in $x \Rightarrow$ Closed form!

Funding

