Orbital optimized pair coupled-cluster

Fábris Kossoski

Group meeting November 2020

F Kossoski 1/10

Introduction

- Main goal: explore solutions of coupled cluster methods for excited states
- Start simpler: pair coupled cluster doubles (pCCD)
- Interesting properties of pCCD:
 - virtually the same ground state energies as DOCI
 - reduced computational cost (N^3 vs e^N of DOCI)
 - captures static correlation
- How does pCCD compare with DOCI for excited states?
- pCCD energies depend on the set of orbitals, in contrast to CCD
- Implement an orbital optimized pCCD code

F Kossoski 2/10

pCCD

Usual exponential ansatz:

$$|\Psi\rangle = e^T |0\rangle$$

where the excitation operator

$$T = \sum_{ia} t_i^a P_a^{\dagger} P_i$$

and singlet paired operators

$$P_q^\dagger = c_{q\alpha}^\dagger c_{q\beta}^\dagger$$

Substitution into the Schroedinger equation leads to

$$E = \langle 0|e^{-T}He^{T}|0\rangle$$
$$0 = \langle 0|P_{i}^{\dagger}P_{a}e^{-T}He^{T}|0\rangle$$

F Kossoski 3/10

Equations for energy and t-amplitudes:

$$\begin{split} E = & \langle 0|H|0\rangle + \sum_{ia} t_{i}^{a} v_{aa}^{ii} \\ 0 = & v_{ii}^{aa} + 2\left(f_{a}^{a} - f_{i}^{i} - \sum_{j} v_{aa}^{jj} t_{j}^{a} - \sum_{b} v_{bb}^{ii} t_{j}^{a}\right) t_{i}^{a} \\ & - 2\left(2v_{ia}^{ia} - v_{ai}^{ai} - v_{aa}^{ii} t_{j}^{a}\right) t_{i}^{a} \\ & + \sum_{b} v_{bb}^{aa} t_{i}^{b} + \sum_{i} v_{ii}^{jj} t_{j}^{a} + \sum_{ib} v_{bb}^{jj} t_{j}^{a} t_{i}^{b} \end{split}$$

where f_q^p is an element of the Fock operator and $v_{rs}^{pq} = \langle \phi_p \phi_q | V_{ee} | \phi_r \phi_s \rangle$ is a two-electron integral.

F Kossoski 4/

pCCD z-amplitudes

When we need properties, we have to introduce the de-excitation operator:

$$Z = \sum_{ia} z_a^i P_i^{\dagger} P_a$$

Then, the energy expectation value is given as

$$\varepsilon = \langle 0|(1+Z)e^{-T}He^{T}|0\rangle$$

 $\partial \varepsilon / \partial z_a^i = 0 \rightarrow \text{t-amplitudes}; \ \partial \varepsilon / \partial t_i^a = 0 \rightarrow \text{z-amplitudes}$

$$0 = v_{aa}^{ii} + 2\left(f_a^a - f_i^i - \sum_j v_{aa}^{jj} t_j^a - \sum_b v_{bb}^{ii} t_i^b\right) z_a^i$$

$$- 2\left(2v_{ia}^{ia} - v_{ai}^{ai} - v_{aa}^{ii} t_i^a\right) z_a^i$$

$$- 2v_{aa}^{ii} \left(\sum_j z_a^j t_j^a + \sum_b z_b^i t_i^b\right)$$

$$+ \sum_b v_{aa}^{bb} z_b^i + \sum_i v_{ij}^{ii} z_a^j + \sum_{ib} t_j^b \left(v_{bb}^{ii} z_a^j + v_{aa}^{ij} z_b^i\right)$$

F Kossoski 5/10

Orbital optimization in pCCD

Orbital rotation can be performed with the operator

$$e^{\kappa}$$

where κ is the antihermitian operator

$$\kappa = \sum_{p>q} \sum_{\sigma} \kappa_{pq} \left(c^{\dagger}_{p\sigma} c_{q\sigma} - c^{\dagger}_{q\sigma} c_{p\sigma} \right)$$

For rotated orbitals, the energy is now given by

$$\varepsilon(\kappa) = \langle 0|(1+Z)e^{-T}e^{-\kappa}He^{\kappa}e^{T}|0\rangle$$

We are looking for the set of orbitals that minimize the energy:

$$0 = \frac{\partial \varepsilon(\kappa)}{\partial \kappa_{pq}} \Big|_{k=0}$$

We define the one and two electron reduced density matrices as

$$egin{aligned} \gamma_q^p &= \sum_{\sigma} \langle 0|(1+Z) \mathrm{e}^{-T} c_{q\sigma}^\dagger c_{
ho\sigma} \mathrm{e}^T |0
angle \ \Gamma_{rs}^{
ho q} &= \sum_{\sigma\sigma'} \langle 0|(1+Z) \mathrm{e}^{-T} c_{r\sigma}^\dagger c_{s\sigma'}^\dagger c_{q\sigma'} c_{
ho\sigma} \mathrm{e}^T |0
angle \end{aligned}$$

F Kossoski 6/10

Orbital optimization in pCCD

The gradient of the orbital rotations becomes

$$\left. \frac{\partial \varepsilon(\kappa)}{\partial \kappa_{pq}} \right|_{k=0} = \mathcal{P}_{pq} \left[\sum_{r} \left(h_p^r \gamma_r^q - h_r^q \gamma_p^r \right) + \sum_{rst} \left(v_{pt}^{rs} \Gamma_{rs}^{qt} - v_{rs}^{qt} \Gamma_{pt}^{rs} \right) \right]$$

We might also need the Hessian of the orbital rotations:

$$\begin{split} \frac{\partial^{2}\varepsilon(\kappa)}{\partial\kappa_{pq}\partial\kappa_{rs}}\Big|_{k=0} = & \mathcal{P}_{pq}\mathcal{P}_{rs}\big\{\frac{1}{2}\sum_{u}\left[\delta_{qr}(h_{p}^{u}\gamma_{u}^{s} + h_{u}^{s}\gamma_{p}^{u}) + \delta_{ps}(h_{r}^{u}\gamma_{u}^{q} + h_{u}^{q}\gamma_{r}^{u})\right] \\ - & (h_{p}^{s}\gamma_{r}^{q} + h_{r}^{q}\gamma_{p}^{s}) + \sum_{uv}(v_{pr}^{uv}\Gamma_{uv}^{qs} + v_{uv}^{qs}\Gamma_{pr}^{uv}) \\ - & \sum_{tu}(v_{pu}^{st}\Gamma_{rt}^{qu} + v_{pu}^{ts}\Gamma_{tr}^{qu} + v_{rt}^{qu}\Gamma_{pu}^{st} + v_{tr}^{qu}\Gamma_{pu}^{ts}) \\ + & \frac{1}{2}\sum_{tuv}\left[\delta_{qr}(v_{pt}^{uv}\Gamma_{uv}^{st} + v_{uv}^{st}\Gamma_{pt}^{uv}) + \delta_{ps}(v_{uv}^{qt}\Gamma_{rt}^{uv} + v_{rt}^{uv}\Gamma_{uv}^{qt})\right]\big\} \end{split}$$

 $\mathcal{P}_{pq}=1-(p\leftrightarrow q)$ is a permutation operator.

F Kossoski 7

The (preliminary) algorithm

- Build the reference from the canonical Hartree-Fock orbitals
- Solve for the pCCD t-amplitudes
- Solve for the pCCD z-amplitudes
- Compute one and two electron density matrices
- **5** Form the orbital gradient g (and hessian H)
- **②** Compare norm of gradient with a threshold value. If $|g| > \epsilon$, update orbitals via Newton-Raphson $(\kappa^{(N+1)} = \kappa^{(N)} \mathbf{H}^{-1}\mathbf{g})$, and go back to step 2
- **②** Check for the eigenvalues h_n of the Hessian matrix. If $h_1 < 0$, move in the direction of the smallest eigenvector, and go back to step 2
- **1** Here, $|g| < \epsilon$ and $h_1 > 0$: stable stationary point

F Kossoski 8 / 10

Neon atom, cc-pVDZ

F Kossoski 9/10

Now what?

- Develop a robust algorithm for the orbital optimization
- Optimize orbitals for excited states
- Solve amplitude equations for excited states
- Implement DOCI
- How do pCCD and DOCI compare?

F Kossoski 10/10