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We present a method that accurately describes strongly correlated states and captures dynamical
correlation. It is derived as a modification of coupled-cluster theory with single and double exci-
tations (CCSD) through consideration of particle distinguishability between dissociated fragments,
whilst retaining the key desirable properties of particle-hole symmetry, size extensivity, invariance to
rotations within the occupied and virtual spaces, and exactness for two-electron subsystems. The re-
sulting method, called the distinguishable cluster approximation, smoothly dissociates difficult cases
such as the nitrogen molecule, with the modest N® computational cost of CCSD. Even for molecules
near their equilibrium geometries, the new model outperforms CCSD. It also accurately describes the
massively correlated states encountered when dissociating hydrogen lattices, a proxy for the metal-
insulator transition, and the fully dissociated system is treated exactly. © 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4813481]

. INTRODUCTION

Coupled-cluster theory' is the most successful method
used for the treatment of many-body correlations in quan-
tum chemistry. The wavefunction is represented in exponen-
tial form

W) = eT0),

where |0) is the Hartree-Fock reference state and 7' = T,
+ T, + - - - is a sum of cluster operators that build correlations
into the wavefunction through single, double, and higher exci-
tations. Even when the expansion of 7" is truncated, coupled-
cluster theory retains important properties of the exact solu-
tions to the Schrodinger equation, primarily size extensivity,
and includes all contributions from all orders of perturbation
theory up to the given excitation rank. Coupled-cluster theory
provides a systematically improvable hierarchy of polynomi-
ally scaling methods that approach full configuration interac-
tion (or exact diagonalization).

In quantum chemistry, coupled-cluster theory is typi-
cally truncated at the doubles level (coupled-cluster theory
with single and double excitations (CCSD)), and the effect
of triple excitations is handled perturbatively in the CCSD(T)
method.? These truncated coupled-cluster theories achieve
extremely high accuracy for a very wide range of problems,
but fail to describe the strongly correlated states encountered
in molecular dissociation or other highly degenerate situa-
tions. For example, CCSD famously fails to repair the incor-
rect physics of a restricted Hartree-Fock treatment of the dis-
sociating N, molecule, and the perturbative triples correction
only makes matters worse.

An enormous range of approaches have been devised
to address strong correlation in quantum chemistry. Those
that build on coupled-cluster theory use more flexible refer-
ence functions;>* allow symmetry breaking;> include lead-
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ing terms from variational coupled-cluster theory:® use
renormalization;’ or combine valence-bond and coupled-
cluster theories.®

One could assume that CCSD is the most accurate theory
possible that includes only single and double excitations from
a single reference determinant, because it includes all possible
diagrammatic contributions to the correlation energy within
that constraint. But consider some quantity in the full theory
x =y + z that is approximated in CCSD as xsp = ysp + Zsp-
Now if z & 0 (for example, through cancellation of zgp with
higher-order terms), it could be better to exclude the zsp terms
altogether and use the approximation xsp = ysp instead.

In this spirit, there is a growing body of evidence that
improved doubles-based schemes can be produced by leav-
ing certain terms out of the amplitude equations, like various
versions of the coupled-electron pair approximation,”'? the
approximate coupled pairs with quadruples,'' the n-electron
exact coupled-cluster (nCC) hierarchy,'? and pCCSD."3

Il. ANTISYMMETRY OF THE WAVEFUNCTION

The traditional description of antisymmetry in quantum
mechanics states that

W(ry,r) = —W(r, ry),

noting that this (or its bosonic counterpart) is an unavoidable
consequence of particle indistinguishability. The soundness of
this statement has been called into question, because the no-
tion that the classical configuration (r, ry) is different from
(15, ry) distinguishes the particles from the outset.'* This sub-
tlety appears to have motivated the analysis by Leinaas and
Myrheim of the classical configuration space of indistinguish-
able particles, leading to the prediction of anyon statistics. '
A concrete meaning can be attached to the concept of
particle interchange, as being the result of closed paths in the
classical configuration space for indistinguishable particles, in

© 2013 AIP Publishing LLC
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which the points (r;, r,) and (r», r;) are identified.!> For the
present work, the important result from Leinaas and Myrheim
is that although the topology of the configuration space for
multiple identical particles is globally different from the Eu-
clidean product space, it is locally isometric in regions where
particles are not close. To express it another way, there are no
physical consequences of the indistinguishability of particles
during processes in which the particles do not become close.

The problems with truncated coupled-cluster theories are
encountered when molecules are fragmented into separate
pieces. All possible exchange processes between the frag-
ments are considered, because antisymmetry is cemented into
the structure of the theory right from the beginning, through
the use of second quantization. In exact theory it makes no
difference whether these exchange processes are considered
or not (but of course exchange within the fragments must be
treated exactly). Here we speculate that an incomplete treat-
ment of exchange processes, whose effect must ultimately
cancel out in an exact treatment, could be the source of
the pathological failure to describe dissociation in coupled-
cluster theory.

lll. THEORY

We have motivated removal of exchange terms between
isolated fragments. There is no systematic way to do so in an
orbital-invariant theory, so as a substitute we instead investi-
gate removal of exchange terms between the 2-particle clus-
ters formed through the application of the 75 cluster operator,
whilst retaining all terms arising from particle indistinguisha-
bility within clusters.

We therefore turn our attention to the terms in the ampli-
tude equation that couple together two T, amplitudes, shown
in Figure 1 in the form of nonantisymmetrized Goldstone dia-
grams. Contrary to the usual convention, our interaction lines
correspond to bare electron repulsion integrals, rather than an-
tisymmetrized integrals.

Consider diagrams A and A’. In A, particle-hole pairs
formed as a result of two separate double excitation processes
interact through the Hamiltonian. In A’ there is an additional
process in which the particles (or equivalently holes) from
each double excitation are exchanged. In an infinitely sepa-
rated system the only physically relevant double excitation
processes are those where the two particles and two holes are
associated with a single fragment. But the very cases where

oYV Y
N LY LY

FIG. 1. Nonantisymmetrized Goldstone diagrams contributing to the CCD
amplitude equation that are quadratic in the amplitudes. The solid interac-
tion lines denote a 7> amplitude; the dashed lines a Coulombic interaction

from the Hamiltonian; and the thin lines particles (downward arrows) or holes
(upward arrows) in the spin-orbital representation.
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CCSD fails to describe dissociation are those where the re-
stricted Hartree-Fock orbitals cannot be localized on to the
fragments.

We hypothesize that the approximate description of phys-
ically irrelevant exchange processes could be the source of
the poor behaviour of CCSD for dissociation. Removal of
diagram A’ might well improve the description in the long
range—in fact it does—but it leads to parity violation. Never-
theless within clusters antisymmetry is handled correctly (the
amplitudes have the correct antisymmetry); it is only between
clusters that parity violation is permitted.

We now proceed by restoring the other desirable prop-
erties of CCD in the new theory. The quadratic portion of
the CCD T, amplitude equation reads A+ A’ + B+ C + D.
The amplitude equation can be modified without compromis-
ing exactness for two-electron systems by adding «’(2A’ 4+ C)
+ B(2B + D) for any parameters o’ and 8. Diagram A’ is re-
moved by setting o’ = —1/2, and particle-hole symmetry then
requires B = —1/2, leading to the modified quadratic contri-
bution A + C/2 + D/2. This defines the distinguishable clus-
ter approximation with double excitations (DCD).

The diagrams in Figure 1 can be interpreted as a Coulom-
bic interaction between fluctuations in separate clusters (A),
exchange interactions between clusters (A’ and B), and scat-
tering of a particle (or hole) of one cluster with a Fock-like po-
tential arising from fluctuations in the other (C and D). DCD
can be viewed as a method in which each two-particle cluster
is treated exactly in an embedding produced by other fluctu-
ations in the system, but with neglect of exchange processes
between the two-particle cluster and the environment.

To avoid the complications introduced by a full
consideration of single excitations we use a Brueckner
formulation'®~'® that rotates the occupied and virtual spaces
such that the 7', amplitudes vanish. The BDCD program is
implemented as a variation of the Brueckner coupled-cluster
doubles (BCCD) program'? in MOLPRO.?%-2!

IV. RESULTS

We first consider the chemically relevant situation where
a low-cost correlation method that can handle strongly corre-
lated states is of immediate importance: molecular dissocia-
tion. Calculations were performed using the cc-pVDZ gaus-
sian basis set and were based on a restricted Hartree-Fock
reference. The BDCD results for N, (Figure 2) and H,O (see
the supplementary material®?) dissociation are compared with
other coupled cluster calculations and benchmark data from
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FIG. 2. Potential energy curves for N, dissociation.
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the Davidson-corrected internally contracted multireference
configuration interaction method?® (denoted MRCIHQ).
Whereas CCSD, CCSD(T), and CCSD with full triples
(CCSDT) show increasingly poor behaviour in the strongly-
correlated region, BDCD smoothly and systematically disso-
ciates the molecules, reaching a regime of zero net force at a
physically realistic separation. This is despite the fundamen-
tally flawed description in the closed-shell restricted reference
state.

The modification to improve description of a fragmented
system could well have made things worse in the bonded re-
gion, but in fact this turns out not to be the case. On the con-
trary, the shape of the curve around the minimum is consid-
erably better in BDCD than in BCCD (or CCSD). For Ny,
the difference in harmonic frequency relative to MRCI4-Q is
99 cm~! for BCCD but only 13 cm™' for BDCD, and the dis-
crepancy in the equilibrium bond length falls from 0.90 pm
to 0.16 pm. Moreover reaction energies are well described by
BDCD. For a test set of small-molecule reactions®* calculated
using the aug-cc-pVTZ basis set, the root mean squared de-
viation compared to CCSD(T) is reduced from 7.6 kJ/mol for
BCCD to 5.0 kJ/mol for BDCD.

We next consider hydrogen systems (Figure 3), which
are important model problems that connect the challenges of
strong correlation in the quantum chemistry of dissociating
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FIG. 3. Potential energy curves for hydrogen systems. (Top) Hs system with
geometry from Ref. 25 (see text). (Middle) Uniform dissociation of hexag-
onal Hg, in which R is the distance of each hydrogen atom from the cen-
tre. (Bottom) Uniform dissociation of Hso chain, with comparison to DMRG
calculations from Ref. 26.
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molecules with those in the description of the metal-insulator
transition in condensed-matter physics.

First we consider Hy using the cc-pVQZ basis set. The
four atoms sit on the circumference of a circle of radius
1.738 A, with opposite pairs connected by diameters subtend-
ing an angle 6 at the centre.” For 6 < 90° the electronic struc-
ture is dominated by a reference state which pairs the hydro-
gen atoms into molecules one way, and for 8 > 90° the other.
The MRCI+Q data can be regarded as essentially exact, and
the energy goes through a maximum at & = 90° with zero
derivative. Neither CCSD nor BDCD reproduce this feature
exactly, both producing two different energies depending on
the choice of reference state, but in BDCD the maximum is
much more accurately captured, with the energy at 8 = 90°
being reproduced almost exactly.

Next we consider dissociation of the Hg ring and linear
Hso using the STO-6G basis set. In the former case the ex-
act result (from full configuration interaction) is available. In
the latter case exact diagonalization is unfeasible—the Hilbert
space has over 10?® dimensions—but highly accurate results?®
can be found using the density matrix renormalization group
(DMRG) approach,>’? owing to the linear structure. For
Hg it can be seen that BCCD (approximately equivalent to
CCSD) rapidly diverges from the exact result, whereas BDCD
closely follows the exact curve at all distances, reproducing it
exactly in the long range. For Hsy agreement with DMRG is
also spectacular, and to emphasize the extent of the error that
BDCD has to correct we also present the reference energy
from restricted Hartree-Fock theory.

A significant challenge for many-body theory is the de-
scription of the onset of strong correlation during the metal-
insulator transition; this has often been investigated using the
model system of cubic lattices of hydrogen atoms.’*3! In
the equilibrium geometry the electronic structure is relatively
benign, but as the nearest-neighbour distance is increased
enormous degeneracy is introduced until, at dissociation, the
wavefunction is composed of around 10'® equally weighted
determinants, from a Hilbert space of 103¢ dimensions.

For this system, very few approximations work even
qualitatively; the restricted Hartree-Fock energy rises rapidly
to spuriously high values; perturbative methods produce in-
finities; and coupled-cluster calculations appear impossible
to converge. BDCD provides a converged energy at all sep-
arations, shown in Figure 4, smoothly dissociating to exactly
64 times the energy of the single hydrogen atom (in the STO-
6G basis set).
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FIG. 4. Uniform dissociation of 4 x 4 x 4 cube of hydrogen atoms, a model
for incipient strong correlation in the metal-insulator transition.
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V. CONCLUSION

Motivated by speculations about the role of antisymme-
try in the description of dissociated fragments, we have ar-
gued for a simple modification of the CCD amplitude equa-
tion to provide a theory that neglects certain exchange terms
that must cancel out in an exact description of the dissoci-
ated system. By doing so, we also lost terms important for the
description of correlations within the fragments; but it tran-
spired that all of the desirable properties of CCD could be
restored by other modifications. Thus, BDCD has N cost,
is extensive and invariant to orbital transformations, is ex-
act for two-electron systems, and treats particles and holes
symmetrically.

The resulting method does indeed describe dissociation
of molecules. But perhaps more surprisingly it also improves
the energetics in the bonding region, and improve energy dif-
ferences such as reaction energies. Most astonishing of all,
though, is the fact that BDCD smoothly dissociates hydrogen
lattices producing exactly the correct energy at infinite sep-
aration, a feat that should apparently only be possible using
a wavefunction of immense and computationally intractable
complexity.

Our attention is now focused on the derivation of this the-
ory in a more rigorous theoretical framework, with the aim of
treating singles, doubles, and higher excitations in one sys-
tematically improvable hierarchy of distinguishable cluster
theories.
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