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pCCD

I pCCD: excitation manifold restricted to the paired double excitations

I pCCD and doubly-occupied con�guration interaction (DOCI) ground state energies

are very close (pCCD has polynomial scaling, DOCI has exponential)

I pCCD does a good job in recovering static correlation (addition by subtraction)

I Minimal CC model for describing doubly-excited states



Goals

How to target excited states with pCCD? → helium atom

How does pCCD and DOCI compare for excited states? → linear H4 molecule

Can pCCD describe doubly-excited states without EOM? → larger molecules



pCCD

Usual exponential ansatz,

|Ψ〉 = e
T̂ |Φ〉,

where the excitation operator is

T̂ =
∑
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Substitution into the Schroedinger equation leads to
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pCCD t-amplitudes

Equations for the energy

E = 〈Φ|H|Φ〉+
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and k = nO × nV polynomial equations for the t-amplitudes,
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where f
p
q is an element of the Fock operator and v
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rs = 〈φpφq|Vee |φrφs〉 is a

two-electron integral.



pCCD z-amplitudes

We introduce the de-excitation operator,

Ẑ =
∑
ia

z
i
aP
†
i Pa,

and Ẽ = 〈Φ|(1 + Ẑ )e−T̂HeT̂ |Φ〉 leads to k linear equations for the z-amplitudes,
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∂Ẽ/∂z ia = 0→ eq. for the t-amplitudes; ∂Ẽ/∂tai = 0→ eq. for the z-amplitudes



He, 6-31G
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I Helium atom, 6-31G basis set

I Residual equation and its integral, as a

function of the single t-amplitude

I Usual algorithm cannot �nd the

excited state solution

I Information about the curvature is

required: Jacobian



Solving the CC equations

I Newton-Raphson algorithm:

t
a
i ← t

a
i −

∑
jb

(J)−1ia,jbr
b
j

I For the ground state, a constant diagonal approximation is �ne,

Jia,ia =
∂rai
∂tai
≈ 2(f aa − f

i
i )

I But for excited states, the Jacobian is required.
I Empolying the (t-dependent) diagonal Jacobian usually works,
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I Extra computational burden lies in memory, not so much in time.
I Equation for the z-amplitudes are linear, thus Newton-Raphson is exact.



Orbital optimization

The orbital rotations are introduced by an exponential unitary operator, eκ̂, which acts

on right and left-hand wavefunctions. The κ̂ operator encompasses all unique rotations,

κ̂ =
∑
p>q

κpq(c†p↑cq↑ − c
†
q↑cp↑ + c

†
p↓cq↓ − c

†
q↓cp↓)

The energy can be expressed as a functional of the orbital rotation parameters κpq,

Ẽ (κ̂) = 〈Φ|(1 + Ẑ )e−T̂ e−κ̂Ĥe
κ̂
e
T̂ |Φ〉.

Stationary points with respect to κpq can be found with the Newton-Raphson method.

The energy is expanded to second order around κ = 0,

Ẽ (κ) ≈ Ẽ (0) + g · κ +
1

2
κ† ·H · κ,

And the orbital rotation vector is taken as

κ = −H−1 · g
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How to run oo-pCCD?

Orbital-optimized pCCD for excited states

Excited-state pCCD

t← t− J−1 · r
Density matrices

γ & Γ

Orbital gradient
and Hessian

g & HNewton-Raphson

κ = −H−1 · g

Orbital rotation

C ← C. exp(−κ)



He, 6-31G
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H4, STO-6G
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I HF-pCCD (dashed) vs.

DOCI(HF) (points)

I Results match for ground state, but not for

excited states

I Two solutions for �rst and third

doubly-excited states



H4, STO-6G
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I oo-pCCD (solid) vs.

DOCI(oo-pCCD) (points)

I Results match for all states

I One single and real solution for each state

I Lack of higher-order connected excitations

in HF-pCCD, which are less important in

oo-pCCD



H4, STO-6G
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H4, STO-6G

Number of negative Hessian eigenvalues for oo-pCCD:

I Ground state: 1 (1.4 a0 � 2.7 a0), 0 elsewhere

I 1st excited state: 2

I 2nd excited state: 3 (≤ 2.3 a0), 2 (≥ 2.4 a0)

I 3rd excited state: 3

I 4th excited state: 3

I 5th excited state: 6 (≤ 1.9 a0), 5 (≥ 2.0 a0)

Spatial symmetry-broken vs. symmetry-preserving solutions



H4, STO-6G
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I Di�erences between pCCD

and DOCI energies, computed

with either HF (dashed) or

state speci�c optimized

orbitals (solid)

I Massive improvement when

optimizing orbital

I DOCI and oo-pCCD also

provide comparable excited

states energies, as long as the

references are suitable



H4, STO-6G
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Larger molecules

I Set of 5 molecules: CH+, BH, nitroxyl, nitrosomethane, and formaldehyde

I 6-31+G(d) basis set, frozen core

I For CH+, additional basis set employed in previous calculations

I oo-pCCD and DOCI calculations performed with Quantum Package

I Additional CC3, EOM-CCSDT, and EOM-CCSDTQ calculations performed with

CFOUR



Larger molecules

Vertical Excitation Energies (∆E , in eV) for the First Doubly-Excited States.

molecule method ∆E

CH+ a HF-pCCD 7.74

∆oo-pCCD 8.36

FCI a 8.55

EOM-CCSDT b 8.62

EOM-oo-pCCD-LCCSD c 8.84

EOM-pCCD-LCCSD c 7.61

CC3 d 8.78
a Chem. Phys. Lett. 154, 380 (1989);
b Chem. Phys. Lett. 347, 237 (2001);

c J. Chem. Theory Comput. 15, 18 (2019);
d J. Chem. Phys. 103, 7429 (1995).

molecule method ∆E

CH+ HF-pCCD 7.90

∆oo-pCCD 8.32

FCI 8.51

EOM-CCSDTQ 8.51

EOM-CCSDT 8.58

CC3 8.74

BH HF-pCCD 10.83

∆oo-pCCD 7.35

FCI 7.11

EOM-CCSDTQ 7.11

EOM-CCSDT 7.14

CC3 7.29



Larger molecules

Vertical Excitation Energies (∆E , in eV) for the First Doubly-Excited States.

molecule method ∆E

nitroxyl HF-pCCD 5.53

∆oo-pCCD 4.49

FCI e 4.51

EOM-CCSDTQ e 4.54

EOM-CCSDT e 4.81

CC3 e 5.28

e J. Chem. Theory Comput. 15, 1939 (2019)

molecule method ∆E

nitrosomethane ∆oo-pCCD 4.66

FCI e 4.86

EOM-CCSDT e 5.26

CC3 e 5.73

formaldehyde ∆oo-pCCD 11.26

FCI e 10.86

EOM-CCSDTQ e 10.87

EOM-CCSDT e 11.10

CC3 e 11.49



Larger molecules

Root-mean square error (RMSE), maximum absolute error (MAE), and maximum

signed error (MSE) for the three surveyed methods, with respect to FCI results.

method RMSE MAE MSE

∆oo-pCCD 0.24 0.21 0.05

EOM-CCSDT 0.25 0.21 0.21

CC3 0.61 0.54 0.54

I pCCD-HF way o�, ∆oo-pCCD rather accurate

I ∆oo-pCCD ∼ EOM-CCSDT > CC3

I For the 3 larger molecules, ∆oo-pCCD > EOM-CCSDT ?

I MSE is much smaller: correlations e�ects are more balanced (Is this desirable?)

I Alternative method for targeting doubly-excited states



Conclusions

Targeting excited states with pCCD requires the Jacobian for the CC

equations, and the orbital Hessian for the orbital optimization

DOCI and pCCD provide very close energies as long as state speci�c referece

wavefunctions are employed

∆oo-pCCD provides accurate excitation energies for doubly-excited states
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Open questions

I Origin of failures in convergence? Algorithm? Complex orbitals? pCCD?

I How does the method perform for larger basis sets? And larger molecules?

I How does VpCCD improve wrt pCCD? For HF, MOM, oo-pCCD, oo-VpCCD

orbitals?

I How to generalize pCCD to target singly-excited states?

I What about strongly correlated systems?
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