EPAWTFT/Notebooks/RUHF_EPSpherium.nb
2020-07-30 23:18:38 +02:00

85153 lines
4.0 MiB

(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 4216520, 85144]
NotebookOptionsPosition[ 4142755, 83940]
NotebookOutlinePosition[ 4143219, 83958]
CellTagsIndexPosition[ 4143176, 83955]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Initialisation", "Title",
CellChangeTimes->{{3.799388789459779*^9,
3.799388801761128*^9}},ExpressionUUID->"16dce8c1-32b6-49d8-81b0-\
4ab61451eb68"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["Y",
RowBox[{"\[ScriptL]_", ",", "m_"}]], "[",
RowBox[{"\[Theta]_", ",", "\[Phi]_"}], "]"}], "=",
RowBox[{"SphericalHarmonicY", "[",
RowBox[{"\[ScriptL]", ",", "m", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}],
";"}]], "Input",
InitializationCell->True,
CellLabel->"In[1]:=",ExpressionUUID->"80ad60af-86a2-4fda-8827-489ce9a5dc31"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["Y", "\[ScriptL]_"], "[", "\[Theta]_", "]"}], "=",
RowBox[{"SphericalHarmonicY", "[",
RowBox[{"\[ScriptL]", ",", "0", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}],
";"}]], "Input",
InitializationCell->True,
CellLabel->"In[2]:=",ExpressionUUID->"e3c918f7-5418-4fe0-a7f0-83630d2402d3"],
Cell[BoxData[{
RowBox[{"Needs", "[", "\"\<MaTeX`\>\"", "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"SetOptions", "[",
RowBox[{"MaTeX", ",",
RowBox[{"\"\<Preamble\>\"", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<\\\\usepackage{amssymb,amsmath,latexsym,amsfonts,amsthm,mathpazo,\
xcolor,bm,mhchem}\>\"", ",",
"\"\<\\\\definecolor{darkgreen}{RGB}{0, 180, 0}\>\"", ",",
"\"\<\\\\definecolor{darkcyan}{RGB}{0, 180, 180}\>\"", ",",
"\"\<\\\\definecolor{darkmagenta}{RGB}{180,0, 180}\>\""}], "}"}]}]}],
"]"}], ";"}]}], "Input",
InitializationCell->True,
CellChangeTimes->{3.804247120805704*^9},
CellLabel->"In[3]:=",ExpressionUUID->"4b3fa302-b0b1-4b48-afcc-dd7d3cb6f69e"]
}, Open ]],
Cell[CellGroupData[{
Cell["Useful calculs and results", "Title",
CellChangeTimes->{{3.799992410899127*^9,
3.799992442032549*^9}},ExpressionUUID->"d67f97ba-1e03-42ba-af26-\
2ba27f192a75"],
Cell[CellGroupData[{
Cell["Hyperspherical rotation matrix", "Section",
CellChangeTimes->{{3.799493178147408*^9, 3.799493183312126*^9}, {
3.799992458378956*^9,
3.799992462302994*^9}},ExpressionUUID->"3c74c21e-9502-4bc9-a659-\
650e70b4ea0c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"mapping", "=",
RowBox[{"CoordinateTransformData", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\"\<Hyperspherical\>\"", "\[Rule]", "\"\<Cartesian\>\""}], ",",
"3"}], "}"}], ",", "\"\<Mapping\>\""}], "]"}]}]], "Input",
CellChangeTimes->{{3.799493187322681*^9, 3.7994932652664557`*^9}},
CellLabel->"In[32]:=",ExpressionUUID->"d885c70d-1710-499c-a414-e4316bd418c4"],
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"#1", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}],
"]"}], " ",
RowBox[{"#1", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}],
",",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"#1", "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}],
"]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"#1", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}],
"]"}], " ",
RowBox[{"#1", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}],
",",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"#1", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}],
"]"}], " ",
RowBox[{"Sin", "[",
RowBox[{"#1", "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}],
"]"}], " ",
RowBox[{"#1", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}]}]}],
"}"}], "&"}]], "Output",
CellChangeTimes->{{3.799493191756102*^9, 3.799493265620201*^9},
3.801298298861149*^9},
CellLabel->"Out[32]=",ExpressionUUID->"d5fead00-b3a6-4446-b4ca-0ce7b6b6d160"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"rotation", "=",
RowBox[{"CoordinateTransformData", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
"\"\<Hyperspherical\>\"", "\[Rule]", " ", "\"\<Cartesian\>\""}], ",",
"4"}], "}"}], ",", "\"\<OrthonormalBasisRotation\>\"", ",",
RowBox[{"{",
RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]", ",", "\[Alpha]"}], "}"}]}],
"]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.799493480145965*^9, 3.799493492764624*^9}, {
3.799493527696116*^9, 3.799493556248288*^9}, {3.799493662588883*^9,
3.799493666588726*^9}, {3.799493766855884*^9, 3.799493786012108*^9}, {
3.799493973726797*^9, 3.799493997879751*^9}},
CellLabel->"In[33]:=",ExpressionUUID->"a18716d3-6a39-495f-8f4e-6a966becdb15"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"Cos", "[", "\[Theta]", "]"}],
RowBox[{
RowBox[{"Cos", "[", "\[Phi]", "]"}], " ",
RowBox[{"Sin", "[", "\[Theta]", "]"}]}],
RowBox[{
RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
RowBox[{"Sin", "[", "\[Theta]", "]"}], " ",
RowBox[{"Sin", "[", "\[Phi]", "]"}]}],
RowBox[{
RowBox[{"Sin", "[", "\[Alpha]", "]"}], " ",
RowBox[{"Sin", "[", "\[Theta]", "]"}], " ",
RowBox[{"Sin", "[", "\[Phi]", "]"}]}]},
{
RowBox[{"-",
RowBox[{"Sin", "[", "\[Theta]", "]"}]}],
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], " ",
RowBox[{"Cos", "[", "\[Phi]", "]"}]}],
RowBox[{
RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}], " ",
RowBox[{"Sin", "[", "\[Phi]", "]"}]}],
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], " ",
RowBox[{"Sin", "[", "\[Alpha]", "]"}], " ",
RowBox[{"Sin", "[", "\[Phi]", "]"}]}]},
{"0",
RowBox[{"-",
RowBox[{"Sin", "[", "\[Phi]", "]"}]}],
RowBox[{
RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
RowBox[{"Cos", "[", "\[Phi]", "]"}]}],
RowBox[{
RowBox[{"Cos", "[", "\[Phi]", "]"}], " ",
RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]},
{"0", "0",
RowBox[{"-",
RowBox[{"Sin", "[", "\[Alpha]", "]"}]}],
RowBox[{"Cos", "[", "\[Alpha]", "]"}]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{
3.799493495705141*^9, {3.799493539086556*^9, 3.79949355674233*^9},
3.799493667545238*^9, {3.799493767980646*^9, 3.7994937868716507`*^9},
3.799493974539198*^9, 3.799494004791428*^9, 3.801298299423567*^9},
CellLabel->
"Out[33]//MatrixForm=",ExpressionUUID->"692af3ef-045e-4764-8352-\
7f7255bd65ac"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"rotation", "=",
RowBox[{"CoordinateTransformData", "[",
RowBox[{
RowBox[{"\"\<Spherical\>\"", "\[Rule]", " ", "\"\<Cartesian\>\""}], ",",
"\"\<OrthonormalBasisRotation\>\"", ",",
RowBox[{"{",
RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.7994940266067*^9, 3.799494033254299*^9},
3.7995493171257067`*^9},
CellLabel->"In[34]:=",ExpressionUUID->"e45051e9-76b7-4644-ab40-79b851ee4e1f"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{
RowBox[{"Cos", "[", "\[Phi]", "]"}], " ",
RowBox[{"Sin", "[", "\[Theta]", "]"}]}],
RowBox[{
RowBox[{"Sin", "[", "\[Theta]", "]"}], " ",
RowBox[{"Sin", "[", "\[Phi]", "]"}]}],
RowBox[{"Cos", "[", "\[Theta]", "]"}]},
{
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], " ",
RowBox[{"Cos", "[", "\[Phi]", "]"}]}],
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], " ",
RowBox[{"Sin", "[", "\[Phi]", "]"}]}],
RowBox[{"-",
RowBox[{"Sin", "[", "\[Theta]", "]"}]}]},
{
RowBox[{"-",
RowBox[{"Sin", "[", "\[Phi]", "]"}]}],
RowBox[{"Cos", "[", "\[Phi]", "]"}], "0"}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.799494034063278*^9, 3.8012982998933887`*^9},
CellLabel->
"Out[34]//MatrixForm=",ExpressionUUID->"5d5c64b4-8720-404c-aa67-\
eaa2ad14bff5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"MatrixForm", "[",
RowBox[{"rotation", "=",
RowBox[{"CoordinateTransformData", "[",
RowBox[{
RowBox[{"\"\<Polar\>\"", "\[Rule]", " ", "\"\<Cartesian\>\""}], ",",
"\"\<OrthonormalBasisRotation\>\"", ",",
RowBox[{"{",
RowBox[{"r", ",", "\[Theta]"}], "}"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7995493233625097`*^9, 3.79954933154604*^9}},
CellLabel->"In[35]:=",ExpressionUUID->"82d466d4-7d32-479e-93a7-5759e9c1f0d8"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"Cos", "[", "\[Theta]", "]"}],
RowBox[{"Sin", "[", "\[Theta]", "]"}]},
{
RowBox[{"-",
RowBox[{"Sin", "[", "\[Theta]", "]"}]}],
RowBox[{"Cos", "[", "\[Theta]", "]"}]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.799549335916635*^9, 3.8012983002429323`*^9},
CellLabel->
"Out[35]//MatrixForm=",ExpressionUUID->"2218a806-c790-41d1-8dbd-\
4d365289cad3"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Two electron integrals", "Section",
CellChangeTimes->{{3.799389075535295*^9,
3.799389079742866*^9}},ExpressionUUID->"844fe8d0-f3cb-4eb1-9e94-\
a26f5035c4ce"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"(",
RowBox[{"ij", "|", "kl"}], ")"}], "=",
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SubscriptBox["Y",
RowBox[{"i", ",", "0"}]], "[",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
SubscriptBox["\[Phi]", "1"]}], "]"}], "R"],
FractionBox[
RowBox[{
SubscriptBox["Y",
RowBox[{"j", ",", "0"}]], "[",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
SubscriptBox["\[Phi]", "1"]}], "]"}], "R"]}], "|",
FractionBox["1",
SubscriptBox["r", "12"]], "|",
RowBox[{
FractionBox[
RowBox[{
SubscriptBox["Y",
RowBox[{"k", ",", "0"}]], "[",
RowBox[{
RowBox[{"\[Pi]", "-",
SubscriptBox["\[Theta]", "2"]}], ",",
SubscriptBox["\[Phi]", "2"]}], "]"}], "R"],
FractionBox[
RowBox[{
SubscriptBox["Y",
RowBox[{"l", ",", "0"}]], "[",
RowBox[{
RowBox[{"\[Pi]", "-",
SubscriptBox["\[Theta]", "2"]}], ",",
SubscriptBox["\[Phi]", "2"]}], "]"}], "R"]}]}],
")"}]}], "\[IndentingNewLine]",
RowBox[{" ",
RowBox[{"=",
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"k", "+", "l"}]], "R"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0",
RowBox[{"2", "\[Pi]"}]],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0",
RowBox[{"2", "\[Pi]"}]],
RowBox[{
RowBox[{
SubscriptBox["Y", "i"], "[",
SubscriptBox["\[Theta]", "1"], "]"}],
RowBox[{
SubscriptBox["Y", "j"], "[",
SubscriptBox["\[Theta]", "1"], "]"}],
RowBox[{"(",
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"L", "=", "0"}], "\[Infinity]"],
RowBox[{
FractionBox[
RowBox[{"4", "\[Pi]"}],
RowBox[{
RowBox[{"2", "L"}], "+", "1"}]],
RowBox[{
SubscriptBox["Y", "L"], "[",
SubscriptBox["\[Theta]", "1"], "]"}],
RowBox[{
SubscriptBox["Y", "L"], "[",
SubscriptBox["\[Theta]", "2"], "]"}]}]}], ")"}],
RowBox[{
SubscriptBox["Y", "k"], "[",
SubscriptBox["\[Theta]", "2"], "]"}],
RowBox[{
SubscriptBox["Y", "l"], "[",
SubscriptBox["\[Theta]", "2"], "]"}],
RowBox[{"Sin", "[",
SubscriptBox["\[Theta]", "1"], "]"}],
RowBox[{"Sin", "[",
SubscriptBox["\[Theta]", "2"], "]"}],
RowBox[{"\[DifferentialD]",
SubscriptBox["\[Phi]", "2"]}],
RowBox[{"\[DifferentialD]",
SubscriptBox["\[Theta]", "2"]}],
RowBox[{"\[DifferentialD]",
SubscriptBox["\[Phi]", "1"]}],
RowBox[{"\[DifferentialD]",
SubscriptBox["\[Theta]",
"1"]}]}]}]}]}]}]}]}]}], "\[IndentingNewLine]",
RowBox[{"\t ",
RowBox[{"=",
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"k", "+", "l"}]], "R"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"L", "=", "0"}], "\[Infinity]"],
RowBox[{
FractionBox[
RowBox[{"4", "\[Pi]"}],
RowBox[{
RowBox[{"2", "L"}], "+", "1"}]],
RowBox[{"(",
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0",
RowBox[{"2", "\[Pi]"}]],
RowBox[{
RowBox[{
SubscriptBox["Y", "i"], "[", "\[Theta]", "]"}],
RowBox[{
SubscriptBox["Y", "j"], "[", "\[Theta]", "]"}],
RowBox[{
SubscriptBox["Y", "L"], "[", "\[Theta]", "]"}],
RowBox[{"Sin", "[", "\[Theta]", "]"}],
RowBox[{"\[DifferentialD]", "\[Phi]"}],
RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}], ")"}],
RowBox[{"(",
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0",
RowBox[{"2", "\[Pi]"}]],
RowBox[{
RowBox[{
SubscriptBox["Y", "k"], "[", "\[Theta]", "]"}],
RowBox[{
SubscriptBox["Y", "l"], "[", "\[Theta]", "]"}],
RowBox[{
SubscriptBox["Y", "L"], "[", "\[Theta]", "]"}],
RowBox[{"Sin", "[", "\[Theta]", "]"}],
RowBox[{"\[DifferentialD]", "\[Phi]"}],
RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}],
")"}]}]}]}]}]}], "\[IndentingNewLine]",
RowBox[{"\t ",
RowBox[{"=",
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"k", "+", "l"}]], "R"],
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", "i"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "j"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "k"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "l"}], "+", "1"}], ")"}]}]],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"L", "=", "0"}], "\[Infinity]"],
RowBox[{
SuperscriptBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"i", "j", "L"},
{"0", "0", "0"}
}], "\[NoBreak]", ")"}], "2"],
SuperscriptBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"k", "l", "L"},
{"0", "0", "0"}
}], "\[NoBreak]", ")"}], "2"]}]}]}]}]}]}], "Input",
CellChangeTimes->{{3.798972130817108*^9, 3.798972160573216*^9}, {
3.7989721934935513`*^9, 3.798972220713028*^9}, {3.79897234708609*^9,
3.798972355492897*^9}, {3.7993956285506763`*^9, 3.7993956316266737`*^9}},
EmphasizeSyntaxErrors->True,
CellLabel->"In[36]:=",ExpressionUUID->"c9b257fd-5638-4f66-ba9e-a268c80376cb"],
Cell[BoxData[
TemplateBox[{
"Set", "altno",
"\"Use multiple sets instead of Alternatives in \
\\!\\(\\*RowBox[{\\\"ij\\\", \\\"|\\\", \\\"kl\\\"}]\\).\"", 2, 36, 1,
22564386845442116828, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.801298300607183*^9},
CellLabel->
"During evaluation of \
In[36]:=",ExpressionUUID->"d364e640-37f9-4f76-9665-427d6edb053b"],
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{
RowBox[{"SphericalHarmonicY", "[",
RowBox[{"i", ",", "0", ",",
SubscriptBox["\[Theta]", "1"], ",",
SubscriptBox["\[Phi]", "1"]}], "]"}], " ",
RowBox[{"SphericalHarmonicY", "[",
RowBox[{"j", ",", "0", ",",
SubscriptBox["\[Theta]", "1"], ",",
SubscriptBox["\[Phi]", "1"]}], "]"}]}],
SuperscriptBox["R", "2"]], "|",
FractionBox["1",
SubscriptBox["r", "12"]], "|",
FractionBox[
RowBox[{
RowBox[{"SphericalHarmonicY", "[",
RowBox[{"k", ",", "0", ",",
RowBox[{"\[Pi]", "-",
SubscriptBox["\[Theta]", "2"]}], ",",
SubscriptBox["\[Phi]", "2"]}], "]"}], " ",
RowBox[{"SphericalHarmonicY", "[",
RowBox[{"l", ",", "0", ",",
RowBox[{"\[Pi]", "-",
SubscriptBox["\[Theta]", "2"]}], ",",
SubscriptBox["\[Phi]", "2"]}], "]"}]}],
SuperscriptBox["R", "2"]]}]], "Output",
CellChangeTimes->{3.801298301000825*^9},
CellLabel->"Out[36]=",ExpressionUUID->"7cfbeb1e-1755-4c48-a5c2-f45e30e03619"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"(",
RowBox[{"im", ",",
RowBox[{"jn", "|", "ko"}], ",", "lp"}], ")"}], "=",
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SubscriptBox["Y",
RowBox[{"i", ",", "m"}]], "[",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
SubscriptBox["\[Phi]", "1"]}], "]"}], "R"],
FractionBox[
RowBox[{
SubscriptBox["Y",
RowBox[{"j", ",", "n"}]], "[",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
SubscriptBox["\[Phi]", "1"]}], "]"}], "R"]}], "|",
FractionBox["1",
SubscriptBox["r", "12"]], "|",
RowBox[{
FractionBox[
RowBox[{
SubscriptBox["Y",
RowBox[{"k", ",", "o"}]], "[",
RowBox[{
RowBox[{"\[Pi]", "-",
SubscriptBox["\[Theta]", "2"]}], ",",
SubscriptBox["\[Phi]", "2"]}], "]"}], "R"],
FractionBox[
RowBox[{
SubscriptBox["Y",
RowBox[{"l", ",", "p"}]], "[",
RowBox[{
RowBox[{"\[Pi]", "-",
SubscriptBox["\[Theta]", "2"]}], ",",
SubscriptBox["\[Phi]", "2"]}], "]"}], "R"]}]}],
")"}]}], "\[IndentingNewLine]",
RowBox[{" ",
RowBox[{"=",
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"k", "+", "l"}]], "R"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"L", "=", "0"}], "\[Infinity]"],
RowBox[{
FractionBox[
RowBox[{"4", "\[Pi]"}],
RowBox[{
RowBox[{"2", "L"}], "+", "1"}]],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"M", "=",
RowBox[{"-", "L"}]}], "L"],
RowBox[{
RowBox[{"(",
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0",
RowBox[{"2", "\[Pi]"}]],
RowBox[{
RowBox[{
SubscriptBox["Y",
RowBox[{"i", ",", "m"}]], "[", "\[Theta]", "]"}],
RowBox[{
SubscriptBox["Y",
RowBox[{"j", ",", "n"}]], "[", "\[Theta]", "]"}],
RowBox[{
SubscriptBox["Y",
RowBox[{"L", ",", "M"}]], "[", "\[Theta]", "]"}],
RowBox[{"Sin", "[", "\[Theta]", "]"}],
RowBox[{"\[DifferentialD]", "\[Phi]"}],
RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}], ")"}],
RowBox[{"(",
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0",
RowBox[{"2", "\[Pi]"}]],
RowBox[{
RowBox[{
SubscriptBox["Y",
RowBox[{"k", ",", "o"}]], "[", "\[Theta]", "]"}],
RowBox[{
SubscriptBox["Y",
RowBox[{"l", ",", "p"}]], "[", "\[Theta]", "]"}],
RowBox[{
SubscriptBox["Y",
RowBox[{"L", ",", "M"}]], "[", "\[Theta]", "]"}],
RowBox[{"Sin", "[", "\[Theta]", "]"}],
RowBox[{"\[DifferentialD]", "\[Phi]"}],
RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}],
")"}]}]}]}]}]}]}]}], "\[IndentingNewLine]",
RowBox[{"\t ",
RowBox[{"=",
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"k", "+", "l"}]], "R"],
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", "i"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "j"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "k"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "l"}], "+", "1"}], ")"}]}]],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"L", "=", "0"}],
RowBox[{"Max", "[",
RowBox[{
RowBox[{"i", "+", "j"}], ",",
RowBox[{"k", "+", "l"}]}], "]"}]],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"M", "=",
RowBox[{"-", "L"}]}], "L"],
RowBox[{
SuperscriptBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"i", "j", "L"},
{"m", "n", "M"}
}], "\[NoBreak]", ")"}], "2"],
SuperscriptBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"k", "l", "L"},
{"o", "p", "M"}
}], "\[NoBreak]", ")"}], "2"]}]}]}]}]}]}]}], "Input",
CellChangeTimes->{{3.7993952263805532`*^9, 3.7993952967622223`*^9}, {
3.799395336550023*^9, 3.799395338797583*^9}, {3.799395593684607*^9,
3.799395696231195*^9}, {3.799395726541176*^9, 3.7993957975706387`*^9}},
EmphasizeSyntaxErrors->True,
CellLabel->"In[37]:=",ExpressionUUID->"f3e4fc84-acd8-47e3-a94c-8b95c14b97ab"],
Cell[BoxData[
RowBox[{
RowBox[{"TEIu", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i_", ",", "m_"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j_", ",", "n_"}], "}"}], ",",
RowBox[{"{",
RowBox[{"k_", ",", "o_"}], "}"}], ",",
RowBox[{"{",
RowBox[{"l_", ",", "p_"}], "}"}]}], "]"}], ":=",
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"k", "+", "l"}]], "R"],
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", "i"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "j"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "k"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "l"}], "+", "1"}], ")"}]}]],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"L", "=",
RowBox[{"Max", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"i", "-", "j"}], "]"}], ",",
RowBox[{"Abs", "[",
RowBox[{"k", "-", "l"}], "]"}]}], "]"}]}],
RowBox[{"Min", "[",
RowBox[{
RowBox[{"i", "+", "j"}], ",",
RowBox[{"k", "+", "l"}]}], "]"}]],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"M", "=",
RowBox[{"-", "L"}]}], "L"],
RowBox[{
SuperscriptBox[
RowBox[{"ThreeJSymbol", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",", "m"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "n"}], "}"}], ",",
RowBox[{"{",
RowBox[{"L", ",", "M"}], "}"}]}], "]"}], "2"],
SuperscriptBox[
RowBox[{"ThreeJSymbol", "[",
RowBox[{
RowBox[{"{",
RowBox[{"k", ",", "o"}], "}"}], ",",
RowBox[{"{",
RowBox[{"l", ",", "p"}], "}"}], ",",
RowBox[{"{",
RowBox[{"L", ",", "M"}], "}"}]}], "]"}], "2"]}]}]}]}]}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.7993958027605*^9, 3.7993959343780413`*^9},
3.7993969944327106`*^9, {3.799397079357765*^9, 3.7993971092830963`*^9}, {
3.79939740140565*^9, 3.79939742366696*^9}, {3.799397456139041*^9,
3.799397492879713*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"28efe04f-fdbf-4afb-ad7d-2abba99fee3c"],
Cell[TextData[{
"Without the spherium shortcuts (\[Pi] - ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"3753181a-7437-4990-95d0-3698493e526a"],
") there are no ",
Cell[BoxData[
FormBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"k", "+", "l"}]], " ", "factor"}], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"d35a50b8-a236-471b-8532-d70d46f19721"]
}], "Text",
CellChangeTimes->{{3.799992677359459*^9,
3.79999272317367*^9}},ExpressionUUID->"13696ba3-1f41-49ff-b5aa-\
247dca623925"],
Cell[BoxData[
RowBox[{
RowBox[{"TEIr", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i_", ",", "m_"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j_", ",", "n_"}], "}"}], ",",
RowBox[{"{",
RowBox[{"k_", ",", "o_"}], "}"}], ",",
RowBox[{"{",
RowBox[{"l_", ",", "p_"}], "}"}], ",", "R_"}], "]"}], ":=",
RowBox[{
FractionBox["1", "R"],
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", "i"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "j"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "k"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "l"}], "+", "1"}], ")"}]}]],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"L", "=",
RowBox[{"Max", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"i", "-", "j"}], "]"}], ",",
RowBox[{"Abs", "[",
RowBox[{"k", "-", "l"}], "]"}]}], "]"}]}],
RowBox[{"Min", "[",
RowBox[{
RowBox[{"i", "+", "j"}], ",",
RowBox[{"k", "+", "l"}]}], "]"}]],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"M", "=",
RowBox[{"-", "L"}]}], "L"],
RowBox[{
SuperscriptBox[
RowBox[{"ThreeJSymbol", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",", "m"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "n"}], "}"}], ",",
RowBox[{"{",
RowBox[{"L", ",", "M"}], "}"}]}], "]"}], "2"],
SuperscriptBox[
RowBox[{"ThreeJSymbol", "[",
RowBox[{
RowBox[{"{",
RowBox[{"k", ",", "o"}], "}"}], ",",
RowBox[{"{",
RowBox[{"l", ",", "p"}], "}"}], ",",
RowBox[{"{",
RowBox[{"L", ",", "M"}], "}"}]}], "]"}], "2"]}]}]}]}]}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.7993971190029287`*^9, 3.7993971191491623`*^9}, {
3.799397473949041*^9, 3.799397511445822*^9}, {3.801392801358354*^9,
3.801392802429214*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"8fd7199b-136d-46ea-b887-2f3fba74f761"],
Cell[CellGroupData[{
Cell["Minimal basis verification", "Subsubsection",
CellChangeTimes->{{3.7993972452010527`*^9, 3.799397248670454*^9}, {
3.7999927509760513`*^9,
3.7999927721765633`*^9}},ExpressionUUID->"df63035a-1fc6-43ef-a84d-\
d3f08d517f21"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "1"], "[", "\[Theta]_", "]"}], "=",
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "2"], "[", "\[Theta]_", "]"}], "=",
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}], "}"}]], "Input",
CellChangeTimes->{3.7999928196258497`*^9, 3.799993152171343*^9},
CellLabel->"In[39]:=",ExpressionUUID->"63b49f2e-34fe-45b8-9472-e38d5bfd391d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["\[Pi]"]}]], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}], "}"}]], "Output",
CellChangeTimes->{3.799992820677084*^9, 3.801298301432296*^9},
CellLabel->"Out[39]=",ExpressionUUID->"0b91233b-d1f4-4af1-baad-4f1c5b2f4926"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "\[Pi]"}], ")"}], "2"], "R"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "\[Mu]"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]", "\[Nu]"], "[", "\[Theta]1", "]"}],
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ",
RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], "+",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{"Cos", "[", "\[Theta]1", "]"}], "2"]}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{"Cos", "[", "\[Theta]2", "]"}], "2"]}]}], ")"}]}]}],
")"}], " ",
RowBox[{
SubscriptBox["\[Psi]", "\[Lambda]"], "[", "\[Theta]2", "]"}],
RowBox[{
SubscriptBox["\[Psi]", "\[Sigma]"], "[", "\[Theta]2", "]"}],
RowBox[{"Sin", "[", "\[Theta]1", "]"}],
RowBox[{"Sin", "[", "\[Theta]2", "]"}],
RowBox[{"\[DifferentialD]", "\[Theta]1"}],
RowBox[{"\[DifferentialD]", "\[Theta]2"}]}]}]}]}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Sigma]", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7993973283348017`*^9, 3.799397330937827*^9}, {
3.799397536446756*^9, 3.799397536800218*^9}},
CellLabel->"In[40]:=",ExpressionUUID->"846899ea-4557-4a5d-a656-61004b83f6f6"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["1", "R"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1", "R"]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1",
RowBox[{"3", " ", "R"}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
RowBox[{"3", " ", "R"}]], ",", "0"}], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1",
RowBox[{"3", " ", "R"}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
RowBox[{"3", " ", "R"}]], ",", "0"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["1", "R"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["29",
RowBox[{"25", " ", "R"}]]}], "}"}]}], "}"}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{3.799397348946137*^9, 3.7993975594488287`*^9,
3.801298322084158*^9},
CellLabel->"Out[40]=",ExpressionUUID->"3eb3b03a-f6fe-4027-a3f8-f07757fef3b7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{"TEIr", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Mu]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Sigma]", ",", "0"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Sigma]", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7993973597077627`*^9, 3.7993973598265257`*^9}, {
3.7993975402874813`*^9, 3.799397540494282*^9}},
CellLabel->"In[41]:=",ExpressionUUID->"6d0f8a35-4401-473a-9174-b9f5cd75aa52"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", RowBox[{\\\"-\\\", \
\\\"1\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 41, 4,
22564386845442116828, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.801298322533474*^9},
CellLabel->
"During evaluation of \
In[41]:=",ExpressionUUID->"e4c9d9c7-11a8-48da-9c56-31ede496dfe7"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", RowBox[{\\\"-\\\", \
\\\"1\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 41, 5,
22564386845442116828, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.801298322899742*^9},
CellLabel->
"During evaluation of \
In[41]:=",ExpressionUUID->"7669b32b-557b-431a-8e5d-657ac4d4e959"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"1\\\"}], \
\\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 41, 6,
22564386845442116828, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8012983232568417`*^9},
CellLabel->
"During evaluation of \
In[41]:=",ExpressionUUID->"8f727b4f-ae13-4277-9660-4019ee9fb558"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"ClebschGordan\\\", \
\\\"::\\\", \\\"phy\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 41, 7, 22564386845442116828, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8012983235782127`*^9},
CellLabel->
"During evaluation of \
In[41]:=",ExpressionUUID->"2e17d0f1-44b7-417a-a615-3cd938948c77"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["1", "R"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1", "R"]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1",
RowBox[{"3", " ", "R"}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
RowBox[{"3", " ", "R"}]], ",", "0"}], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1",
RowBox[{"3", " ", "R"}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox["1",
RowBox[{"3", " ", "R"}]], ",", "0"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["1", "R"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["29",
RowBox[{"25", " ", "R"}]]}], "}"}]}], "}"}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{
3.799397360499398*^9, {3.799397501379059*^9, 3.799397515457122*^9},
3.799397559536655*^9, 3.801298323906097*^9},
CellLabel->"Out[41]=",ExpressionUUID->"157d73c1-19c0-47cb-872c-82cc90436f66"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "\[Pi]"}], ")"}], "2"], "R"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "\[Mu]"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]", "\[Nu]"], "[", "\[Theta]1", "]"}],
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ",
RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], "+",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{"Cos", "[", "\[Theta]1", "]"}], "2"]}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{"Cos", "[", "\[Theta]2", "]"}], "2"]}]}], ")"}]}]}],
")"}], " ",
RowBox[{
SubscriptBox["\[Psi]", "\[Lambda]"], "[",
RowBox[{"\[Pi]", "-", "\[Theta]2"}], "]"}],
RowBox[{
SubscriptBox["\[Psi]", "\[Sigma]"], "[",
RowBox[{"\[Pi]", "-", "\[Theta]2"}], "]"}],
RowBox[{"Sin", "[", "\[Theta]1", "]"}],
RowBox[{"Sin", "[", "\[Theta]2", "]"}],
RowBox[{"\[DifferentialD]", "\[Theta]1"}],
RowBox[{"\[DifferentialD]", "\[Theta]2"}]}]}]}]}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Sigma]", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.799395025772976*^9, 3.7993950325994787`*^9}, {
3.7993952047044163`*^9, 3.799395210603614*^9}, {3.799397041838778*^9,
3.7993970530167723`*^9}, {3.799397547564001*^9, 3.799397547830676*^9}},
CellLabel->"In[42]:=",ExpressionUUID->"39a76bda-9b84-47c4-aaac-115b2fa0ab3c"],
Cell[BoxData["$Aborted"], "Output",
CellChangeTimes->{3.7993970707918673`*^9, 3.801298336780199*^9},
CellLabel->"Out[42]=",ExpressionUUID->"096b7e94-d759-42a6-85de-99710d182c3a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{"TEIu", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Mu]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Sigma]", ",", "0"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Sigma]", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.799396150683653*^9, 3.799396260595922*^9},
3.799397288408113*^9, {3.7993975494448233`*^9, 3.7993975497907963`*^9}},
CellLabel->
"In[144]:=",ExpressionUUID->"55ebc313-238e-4414-bd29-e68cc73a5644"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["1", "R"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["1", "R"]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-",
FractionBox["1",
RowBox[{"3", " ", "R"}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"3", " ", "R"}]]}], ",", "0"}], "}"}]}], "}"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-",
FractionBox["1",
RowBox[{"3", " ", "R"}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"3", " ", "R"}]]}], ",", "0"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["1", "R"], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox["29",
RowBox[{"25", " ", "R"}]]}], "}"}]}], "}"}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{
3.799396261983705*^9, 3.799397002220264*^9, 3.799397091717456*^9, {
3.7993972909681787`*^9, 3.799397299759378*^9}, 3.799397435129719*^9,
3.799397590973344*^9},
CellLabel->
"Out[144]=",ExpressionUUID->"8d3a171f-015b-4cd5-af3a-e0cf8295d1fd"]
}, Open ]]
}, Closed]]
}, Closed]],
Cell[CellGroupData[{
Cell["UHF equations and SCF algorithm", "Section",
CellChangeTimes->{{3.7991244725798073`*^9, 3.7991244849719343`*^9}, {
3.7991253922796173`*^9, 3.79912539639213*^9}, {3.799388917895101*^9,
3.799388923565757*^9}},ExpressionUUID->"0f3a9cca-e608-42dd-8cc4-\
19f13235aa5c"],
Cell[BoxData[
RowBox[{
SuperscriptBox["N", "\[Alpha]"], ",",
RowBox[{
SuperscriptBox["N", "\[Beta]"], " ", "number", " ", "of", " ", "electrons",
" ", "with", " ", "spin", " ", "up", " ", "or", " ", "down"}]}]], "Input",\
CellChangeTimes->{{3.799124495964856*^9, 3.7991245886563387`*^9}, {
3.799124644604498*^9,
3.799124679847286*^9}},ExpressionUUID->"b8072621-4f64-4c90-aec6-\
7e04d8ad9729"],
Cell["Introduction of a basis set:", "Text",
CellChangeTimes->{{3.799124681428863*^9,
3.7991247397945213`*^9}},ExpressionUUID->"a72092fd-cf0d-407e-823f-\
afea1402ca86"],
Cell[BoxData[{
RowBox[{
RowBox[{
SubsuperscriptBox["\[Psi]", "i", "\[Alpha]"], "=",
RowBox[{
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"\[Mu]", "=", "1"}], "K"],
RowBox[{
SubsuperscriptBox["c",
RowBox[{"\[Mu]", " ", "i"}], "\[Alpha]"],
SubscriptBox["\[Phi]", "\[Mu]"], " ", "i"}]}], "=", "1"}]}], ",",
"...", ",", "K"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
SubsuperscriptBox["\[Psi]", "i", "\[Beta]"], "=",
RowBox[{
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"\[Mu]", "=", "1"}], "K"],
RowBox[{
SubsuperscriptBox["c",
RowBox[{"\[Mu]", " ", "i"}], "\[Beta]"],
SubscriptBox["\[Phi]", "\[Mu]"], " ", "i"}]}], "=", "1"}]}], ",",
"...", ",", "K"}]}], "Input",
CellChangeTimes->{{3.799124742144261*^9, 3.7991247618977413`*^9}, {
3.799124798167281*^9, 3.7991248009552526`*^9}, {3.79912483393946*^9,
3.799125056180552*^9}},ExpressionUUID->"934d15a4-507b-4f5d-8a24-\
2d5e42913e70"],
Cell["We define the unrestricted density matrix as", "Text",
CellChangeTimes->{{3.79912516909801*^9,
3.799125186160612*^9}},ExpressionUUID->"5e1f8c76-898e-44d1-a6a6-\
d54937a3c5db"],
Cell[BoxData[{
RowBox[{
SubsuperscriptBox["P",
RowBox[{"\[Mu]", " ", "\[Nu]"}], "\[Alpha]"], "=",
RowBox[{
UnderoverscriptBox["\[Sum]", "a",
SuperscriptBox["N", "\[Alpha]"]],
RowBox[{
SubsuperscriptBox["c",
RowBox[{"\[Mu]", " ", "a"}], "\[Alpha]"],
SuperscriptBox[
RowBox[{"(",
SubsuperscriptBox["c",
RowBox[{"\[Nu]", " ", "a"}], "\[Alpha]"], ")"}],
"*"]}]}]}], "\[IndentingNewLine]",
RowBox[{
SubsuperscriptBox["P",
RowBox[{"\[Mu]", " ", "\[Nu]"}], "\[Beta]"], "=",
RowBox[{
UnderoverscriptBox["\[Sum]", "a",
SuperscriptBox["N", "\[Beta]"]],
RowBox[{
SubsuperscriptBox["c",
RowBox[{"\[Mu]", " ", "a"}], "\[Beta]"],
SuperscriptBox[
RowBox[{"(",
SubsuperscriptBox["c",
RowBox[{"\[Nu]", " ", "a"}], "\[Beta]"], ")"}], "*"]}]}]}]}], "Input",
CellChangeTimes->{{3.799125198952877*^9, 3.799125242308874*^9}, {
3.799125322967175*^9,
3.79912538355825*^9}},ExpressionUUID->"f7215fc1-fb84-4352-96f0-\
625f766b6f63"],
Cell["We use the following notation for 2 electrons integrals", "Text",
CellChangeTimes->{{3.7991254234929132`*^9,
3.799125448582654*^9}},ExpressionUUID->"0b76a565-f848-4a42-9110-\
3696e691a3b8"],
Cell[BoxData[{
RowBox[{
RowBox[{"(",
RowBox[{"\[Mu]\[Nu]", "|", "\[Sigma]\[Lambda]"}], ")"}], "=",
RowBox[{"(",
RowBox[{
RowBox[{
SubscriptBox["\[Phi]", "\[Mu]"],
SubscriptBox["\[Phi]", "\[Nu]"]}], "|",
RowBox[{
SubscriptBox["\[Phi]", "\[Sigma]"],
SubscriptBox["\[Phi]", "\[Lambda]"]}]}], ")"}]}], "\[IndentingNewLine]",
RowBox[{" ",
RowBox[{"=", " ",
RowBox[{"\[Integral]",
RowBox[{"\[Integral]",
RowBox[{
SubscriptBox["\[Phi]", "\[Mu]"],
SuperscriptBox[
RowBox[{"(", "1", ")"}], "*"],
SubscriptBox["\[Phi]", "\[Nu]"],
RowBox[{"(", "1", ")"}],
FractionBox["1",
SubscriptBox["r", "12"]],
SubscriptBox["\[Phi]", "\[Sigma]"],
SuperscriptBox[
RowBox[{"(", "2", ")"}], "*"],
SubscriptBox["\[Phi]", "\[Lambda]"],
RowBox[{"(", "2", ")"}],
RowBox[{"\[DifferentialD]",
SubscriptBox["\[CapitalOmega]", "1"]}],
RowBox[{"\[DifferentialD]",
SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}]}]}]}], "Input",
CellChangeTimes->{{3.799125452917562*^9, 3.7991254841772003`*^9}, {
3.799125728015522*^9, 3.799125793564528*^9}, {3.7991258384205503`*^9,
3.799125868945969*^9}, {3.7991259772227097`*^9, 3.799126058735235*^9}, {
3.7991270793943043`*^9,
3.7991270803923197`*^9}},ExpressionUUID->"dab43983-d755-4b03-bafb-\
790ad3657b6e"],
Cell["The expressions of the unrestricted Fock operator are", "Text",
CellChangeTimes->{{3.7991260715671463`*^9,
3.799126088022646*^9}},ExpressionUUID->"5faddd9f-47a6-44e1-a54e-\
f2d4e1fe5b45"],
Cell[BoxData[{
RowBox[{
SubsuperscriptBox["F",
RowBox[{"\[Mu]", " ", "\[Nu]"}], "\[Alpha]"], "=",
RowBox[{
SubsuperscriptBox["H",
RowBox[{"\[Mu]", " ", "\[Nu]"}], "core"], "+",
RowBox[{
UnderscriptBox["\[Sum]", "\[Lambda]"],
RowBox[{
UnderscriptBox["\[Sum]", "\[Sigma]"],
RowBox[{
SubsuperscriptBox["P",
RowBox[{"\[Lambda]", " ", "\[Sigma]"}], "T"],
RowBox[{"(",
RowBox[{"\[Mu]\[Nu]", "|", "\[Sigma]\[Lambda]"}], ")"}]}]}]}], "-",
RowBox[{
SubsuperscriptBox["P",
RowBox[{"\[Lambda]", " ", "\[Sigma]"}], "\[Alpha]"],
RowBox[{"(",
RowBox[{"\[Mu]\[Lambda]", "|", "\[Sigma]\[Nu]"}],
")"}]}]}]}], "\[IndentingNewLine]",
RowBox[{
SubsuperscriptBox["F",
RowBox[{"\[Mu]", " ", "\[Nu]"}], "\[Beta]"], "=",
RowBox[{
SubsuperscriptBox["H",
RowBox[{"\[Mu]", " ", "\[Nu]"}], "core"], "+",
RowBox[{
UnderscriptBox["\[Sum]", "\[Lambda]"],
RowBox[{
UnderscriptBox["\[Sum]", "\[Sigma]"],
RowBox[{
SubsuperscriptBox["P",
RowBox[{"\[Lambda]", " ", "\[Sigma]"}], "T"],
RowBox[{"(",
RowBox[{"\[Mu]\[Nu]", "|", "\[Sigma]\[Lambda]"}], ")"}]}]}]}], "-",
RowBox[{
SubsuperscriptBox["P",
RowBox[{"\[Lambda]", " ", "\[Sigma]"}], "\[Beta]"],
RowBox[{"(",
RowBox[{"\[Mu]\[Lambda]", "|", "\[Sigma]\[Nu]"}], ")"}]}]}]}]}], "Input",\
CellChangeTimes->{{3.7991261112849817`*^9,
3.7991262566362667`*^9}},ExpressionUUID->"1972c041-98b1-4941-94dc-\
257513a35524"],
Cell[TextData[{
"If we choose a basis set of size K, the basis set will be of size ",
Cell[BoxData[
FormBox[
SuperscriptBox["K", "2"], TraditionalForm]],ExpressionUUID->
"d658f4da-5cd9-4bf7-9afd-1b4c762d6908"]
}], "Text",
CellChangeTimes->{{3.799127098912312*^9,
3.799127170513702*^9}},ExpressionUUID->"75e70534-a77f-4fbc-bbfe-\
3f61c923d1bd"],
Cell["SCF algorithm in an orthonormal basis:", "Text",
CellChangeTimes->{{3.7991271780616007`*^9, 3.799127179096154*^9}, {
3.799127296100884*^9, 3.799127296321487*^9}, {3.79938264740606*^9,
3.799382657405221*^9}, {3.799383290378018*^9,
3.7993832953778877`*^9}},ExpressionUUID->"54fc6b45-7f4e-4fb8-acaf-\
5b00791f14c0"],
Cell[TextData[{
"1) Calculate all required molecular integrals ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["S", "\[Mu]\[Nu]"], " ", ",", " ",
SubscriptBox[
RowBox[{"(",
SuperscriptBox["H", "core"], ")"}], "\[Mu]\[Nu]"]}], TraditionalForm]],
ExpressionUUID->"cb3d4644-992c-4ef0-978f-5952f0a89cb0"],
" and (\[Mu]\[Nu] | \[Lambda]\[Sigma]) \n2) Obtain a guess at the density \
matrix P\n3) Calculate G from P and the two electrons integrals, add ",
Cell[BoxData[
FormBox[
SuperscriptBox["H", "core"], TraditionalForm]],ExpressionUUID->
"18584d2f-7578-4e02-892d-29ca248af8e7"],
" to get the Fock matrix F\n4) Solve ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SuperscriptBox["C", "t"], "F", " ", "C"}], "=", "\[Epsilon]"}],
TraditionalForm]],ExpressionUUID->"82064650-98ca-4863-9a58-2b835467edcf"],
" , obtain the new C\[CloseCurlyQuote]\n5) Calculate the new density matrix \
P\[CloseCurlyQuote] and determine whether the procedure has converged"
}], "Text",
CellChangeTimes->{{3.7993831720217543`*^9,
3.799383580901733*^9}},ExpressionUUID->"2d67f35a-a8f7-4395-9db6-\
aada87889d6d"]
}, Closed]],
Cell[CellGroupData[{
Cell["UHF minimal basis minimization", "Section",
CellChangeTimes->{{3.7999936475553102`*^9,
3.7999936581211443`*^9}},ExpressionUUID->"88d1b6b5-5bea-4e44-ac1d-\
422fac666e30"],
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"\[Psi]1\[Alpha]", "[", "\[Theta]_", "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Alpha]", "]"}],
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+",
RowBox[{
RowBox[{"Sin", "[", "\[Chi]\[Alpha]", "]"}],
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Psi]1\[Beta]", "[", "\[Theta]_", "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Beta]", "]"}],
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+",
RowBox[{
RowBox[{"Sin", "[", "\[Chi]\[Beta]", "]"}],
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Psi]2\[Alpha]", "[", "\[Theta]_", "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[", "\[Chi]\[Alpha]", "]"}]}],
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+",
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Alpha]", "]"}],
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Psi]2\[Beta]", "[", "\[Theta]_", "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[", "\[Chi]\[Beta]", "]"}]}],
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+",
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Beta]", "]"}],
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}]}]}], "}"}],
";"}]], "Input",ExpressionUUID->"a5619f0a-81c8-47b4-bc04-0f01cf0e4e32"],
Cell["Ground state energy:", "Text",
CellChangeTimes->{{3.800171569468564*^9,
3.800171578143929*^9}},ExpressionUUID->"4a723b0a-595b-40e7-a718-\
b8dceda3c167"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"EUHF", "[",
RowBox[{"R_", ",", "\[Lambda]_"}], "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"2",
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"L", "=", "0"}], "1"],
RowBox[{
SubsuperscriptBox["c", "L", "2"],
FractionBox[
RowBox[{"L",
RowBox[{"(",
RowBox[{"L", "+", "1"}], ")"}]}],
RowBox[{"2",
SuperscriptBox["R", "2"]}]]}]}]}], "+",
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"i", "=", "0"}], "1"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"j", "=", "0"}], "1"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"k", "=", "0"}], "1"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"l", "=", "0"}], "1"],
RowBox[{
SubscriptBox["c", "i"],
SubscriptBox["c", "j"],
SubscriptBox["c", "k"],
SubscriptBox["c", "l"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"k", "+", "l"}]],
FractionBox["\[Lambda]", "R"],
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", "i"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "j"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "k"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "l"}], "+", "1"}], ")"}]}]],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"L", "=", "0"}], "2"],
RowBox[{
SuperscriptBox[
RowBox[{"ThreeJSymbol", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"L", ",", "0"}], "}"}]}], "]"}], "2"],
SuperscriptBox[
RowBox[{"ThreeJSymbol", "[",
RowBox[{
RowBox[{"{",
RowBox[{"k", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"l", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"L", ",", "0"}], "}"}]}], "]"}], "2"]}]}]}]}]}]}]}]}],
"/.",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["c", "0"], "\[Rule]",
RowBox[{"Cos", "[", "\[Chi]", "]"}]}], ",",
RowBox[{
SubscriptBox["c", "1"], "\[Rule]",
RowBox[{"Sin", "[", "\[Chi]", "]"}]}]}], "}"}]}]}]], "Input",
CellLabel->"In[56]:=",ExpressionUUID->"2c510fb9-7815-465e-8275-3af213e72b3e"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "tri",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \
\\\"}\\\"}]}], \\\"]\\\"}]\\) is not triangular.\"", 2, 56, 5,
22572770504959543681, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.802579071058299*^9},
CellLabel->
"During evaluation of \
In[56]:=",ExpressionUUID->"188c0920-3ba6-4be8-bd1e-c12e32ee6c39"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "tri",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \
\\\"}\\\"}]}], \\\"]\\\"}]\\) is not triangular.\"", 2, 56, 6,
22572770504959543681, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8025790715771*^9},
CellLabel->
"During evaluation of \
In[56]:=",ExpressionUUID->"63c996d4-5549-48a1-8127-af639bec2f9d"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "tri",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", \\\"0\\\"}], \
\\\"}\\\"}]}], \\\"]\\\"}]\\) is not triangular.\"", 2, 56, 7,
22572770504959543681, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.802579072058694*^9},
CellLabel->
"During evaluation of \
In[56]:=",ExpressionUUID->"6e3e76eb-b38b-4b08-9424-4c2ad8375465"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"ClebschGordan\\\", \
\\\"::\\\", \\\"tri\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 56, 8, 22572770504959543681, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.802579072482175*^9},
CellLabel->
"During evaluation of \
In[56]:=",ExpressionUUID->"ebb5ac60-e8d3-4550-8ff9-48d3268fa57b"],
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{"\[Lambda]", " ",
SuperscriptBox[
RowBox[{"Cos", "[", "\[Chi]", "]"}], "4"]}], "R"], "+",
FractionBox[
RowBox[{"2", " ",
SuperscriptBox[
RowBox[{"Sin", "[", "\[Chi]", "]"}], "2"]}],
SuperscriptBox["R", "2"]], "+",
FractionBox[
RowBox[{"2", " ", "\[Lambda]", " ",
SuperscriptBox[
RowBox[{"Cos", "[", "\[Chi]", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"Sin", "[", "\[Chi]", "]"}], "2"]}],
RowBox[{"3", " ", "R"}]], "+",
FractionBox[
RowBox[{"29", " ", "\[Lambda]", " ",
SuperscriptBox[
RowBox[{"Sin", "[", "\[Chi]", "]"}], "4"]}],
RowBox[{"25", " ", "R"}]]}]], "Output",
CellChangeTimes->{3.800171593491824*^9, 3.802579072962158*^9},
CellLabel->"Out[56]=",ExpressionUUID->"92a2088f-cc7b-4037-b9c7-d3578f2988b6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[PartialD]", "\[Chi]"],
RowBox[{"EUHF", "[",
RowBox[{"R", ",", "\[Lambda]"}], "]"}]}], "\[Equal]", "0"}], ",",
"\[Chi]"}], "]"}]], "Input",
CellLabel->"In[23]:=",ExpressionUUID->"85af60a7-84f1-4bf3-84e4-8b303f58a7aa"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{
RowBox[{"-",
FractionBox["\[Pi]", "2"]}], "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{
FractionBox["\[Pi]", "2"], "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{"\[Pi]", "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R", " ", "\[Lambda]"}]}]],
RowBox[{"4", " ",
SqrtBox["7"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]]}], ",",
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R", " ", "\[Lambda]"}]}]]}],
RowBox[{"4", " ",
SqrtBox["7"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]]}]}], "]"}], "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R", " ", "\[Lambda]"}]}]],
RowBox[{"4", " ",
SqrtBox["7"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]]}], ",",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R", " ", "\[Lambda]"}]}]]}],
RowBox[{"4", " ",
SqrtBox["7"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]]}], "]"}], "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R", " ", "\[Lambda]"}]}]],
RowBox[{"4", " ",
SqrtBox["7"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R", " ", "\[Lambda]"}]}]]}],
RowBox[{"4", " ",
SqrtBox["7"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]]}]}], "]"}], "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R", " ", "\[Lambda]"}]}]],
RowBox[{"4", " ",
SqrtBox["7"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]], ",",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R", " ", "\[Lambda]"}]}]]}],
RowBox[{"4", " ",
SqrtBox["7"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]]}], "]"}], "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.800171613453534*^9},
CellLabel->"Out[23]=",ExpressionUUID->"d566a9d5-cc70-4ca9-bd59-bb86b782151a"]
}, Open ]],
Cell["We choose:", "Text",
CellChangeTimes->{{3.8001716274319077`*^9,
3.8001716322751017`*^9}},ExpressionUUID->"d228c982-60f2-4308-8c3d-\
a729ff0d9551"],
Cell[BoxData[
RowBox[{"\[Chi]\[Alpha]", "\[Rule]",
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
SqrtBox["R"]], ",",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}],
SqrtBox["R"]]}], "]"}]}]], "Input",ExpressionUUID->"24b1c0ba-b8f6-48b0-\
a919-960805693e6b"],
Cell[CellGroupData[{
Cell[BoxData["ArcTan"], "Input",
CellChangeTimes->{{3.802578088412201*^9, 3.802578099479707*^9}, {
3.802578144515023*^9, 3.802578146805437*^9}, {3.802578654586584*^9,
3.802578654885808*^9}},ExpressionUUID->"cde28f95-f4aa-4c06-835d-\
e9e835badcd3"],
Cell[BoxData[
RowBox[{"ArcTan", "[",
RowBox[{"\[Pi]", "-", "\[Theta]"}], "]"}]], "Output",
CellChangeTimes->{3.8025781030471888`*^9},
CellLabel->"Out[45]=",ExpressionUUID->"5f2482cb-270b-44d8-9815-1058327d746c"]
}, Open ]],
Cell["And the symmetry gives us", "Text",
CellChangeTimes->{{3.8001716427101793`*^9,
3.800171649305901*^9}},ExpressionUUID->"be4eec09-b8a2-40a9-ae71-\
21c1e084172c"],
Cell[BoxData[
RowBox[{"\[Chi]\[Beta]", "\[Rule]",
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
SqrtBox["R"]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}],
SqrtBox["R"]]}]}], "]"}]}]], "Input",ExpressionUUID->"0865ccf0-0456-\
46d0-84af-873c05ba40ab"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[PartialD]",
RowBox[{"\[Chi]", ",", "\[Chi]"}]],
RowBox[{"EUHF", "[",
RowBox[{"R", ",", "1"}], "]"}]}], "/.",
RowBox[{"\[Chi]", "\[Rule]",
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
SqrtBox["R"]], ",",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}],
SqrtBox["R"]]}], "]"}]}]}], "//", "FullSimplify"}]], "Input",
CellChangeTimes->{{3.802579081257702*^9, 3.802579122035019*^9},
3.802579268349122*^9},
CellLabel->"In[59]:=",ExpressionUUID->"792b115f-d62c-41d3-9ed4-386e1cd85623"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
RowBox[{"(",
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], ")"}]}],
RowBox[{"42", " ",
SuperscriptBox["R", "3"]}]]], "Output",
CellChangeTimes->{3.80257912234461*^9, 3.802579268875536*^9},
CellLabel->"Out[59]=",ExpressionUUID->"817db579-e47e-4f92-8513-a370faf9484d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
RowBox[{"(",
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], ")"}]}],
RowBox[{"42", " ",
SuperscriptBox["R", "3"]}]], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8025791390277843`*^9, 3.802579155590673*^9}},
CellLabel->"In[58]:=",ExpressionUUID->"eb2c39a5-344c-448f-bb74-25006d1b2338"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVlnk4Fe0bx+ccSxElVJYsqSiJkiJLQ1lCCFlT2SohJaHXnhepqGwl8cqS
XWixlNzP+6ZEZSlR2bLvzpzj2A7O+c3vj7nm+lzzzFzz3Pf3+72fba5XrM5T
MQwbIa//30NHzRgcjgiKvfizYf6fARgJ3jzXtSKCxC0ORWdlDYC5UN9C1ZII
6szkmT2ROwCyh6+uXpkl18d2/3lWOAD/3Ulc+2dEBCn2Fa1zfjUAa5U7pdFX
EVT2kdEy1zgAydedTSOeiCCtguP5BXMDUEzxy8XURdC6421OGhaDwHPeSFX8
jDDiag0fbZEcApGfH7yzEzaike+B15PHhsDqfZrb7iYhJHHxOXU/DEMwTcf7
weAG1E70BsRXj0B1YJpnmcV6NBt/Mja7YhTME21k2Y8F0Bd7Vvt02xgYZbwz
Pz7Fj57wrzQZccYhr+GvDr/TfOjZY+KmjsIknI1K3tRSsAa9TzKw1bo+BWHO
XM/XifAipbFtcbHPpwHbKwPHormRbeCwdXvnDIRs1jsbHcaN3Hpcb+Z3z8AC
x3X1YyA3ishtlLvRPwMz3/K0TDy5UdDJvEcbJ2eg64Zy9UkLbqQuNiKzgz0D
lfU6FWfEuZE5TRSr206Dy05OOYGlXCgmPyLE15sGYwZhR2vyuJBrn11z91Ua
uKs87WdlcqGTRzQE9f1p4EgdkglL5EJZ2hfEeMNocLzAKz0qkAvFljt8sr1P
gx3MoJQEPS6kU7FBSaqCBr/vPr5V/IOKAg7Y6jcRNPj+QbbEuYWKIo7y37Fm
0uALJ791UyMVXQ/DLncu0KDOr1I8opaKZg1LGpvZNMg+/b34VA4VjTkyeHV4
CfDcI9i6epWKOje5dzmIEOB2Ppn5wpOKIrOfXqaJEuCUKSnu4U5FBtfb/7u5
mQBzEUXXb3ZUxOet8CBdnADVZUNm3hEqMrF0zi+UIWC5KULspAAVaexuXhXb
QwCTe60ODy8VYRRZ8QAlAmaO3Hd5w6Gg25sVT7XsJeDPi4yiHbMUtBq3tOK/
j4D6tDfaS78oaOC3ZXfiQQLeteu5PP9OQRqqjOqWQwRUrm+MdvtKQTdKoxzW
ahBQENnZ/BVRkPEer0pvTQLiPJnO2fkUxEHjtzCcgOjc4Gi7LAoKp6buldAl
IKyXWiTwhILs9fsPqOgRcNVq42zAPQqq/PugsukxAk5pKkeb+lMQM1LqgrER
AWbXXxdiVyhIEEcZ2scJMHyu3fzag4KKblxqUjQmQEPOdIusEwXdy/dsWjAh
YCu/RyHzKAXhpc7frMwJOFv3JU5Om4KkuVMalCwIyLq2/+rJgxTkwwwwwE4S
IN/FOlSiQEHah83jkywJ8Lh/TuK3LAXxnwYVaysCio7Vr66RIPfv0r5OwJoA
lZL4ejcBCqLfCJC5dIqAa86M/AQe8v34mr2CNgS8ErW7C2wMZe5et72IZI1Q
WStJOoY2ptdebrYlIGh/9EHjCQy5x80/srEj6zs8LhY4iCG3errVD5KPmr/s
+/YDQ2rC6nJ19gREUcXeYy0YEufz4FNwIKChMiRP+ROG7kXIK8SSzO/Vf9vp
XwyZfD3m3k/yCRnDy3feYKgHsyhUdSTg3veik9UvMZQrmdwbTHLbrQ1qIyUY
YmpJTtWSLKp9fYtoHvm9pvyaOZJtiZ8svUwMCedWKcufJiA1V6f3SiqGsvFI
VXOSu+yz/81IwFDqt4XiyyRLC6559vkOhvb4optRJDv/6xW79DeGJJW00hJJ
zvZv9VIIxZD+ntCuRyQP7T5oYROAIaEPJ/ckkyzf+1j17ysYqktUu3KL5EuJ
7E0VHhi6fNMxzpfkEkO3pV4XDE305V20InmG1dAtcBpDcpfKhneTvK9MCWme
wpCG6ZuJBfL/r7kl5HiYYejwnneO/9/fqy3zMQ8NyfrsdBIPJHnhs6NnPY4h
q8Yxvl0ka0aAGUMDQ2KiLhtayPqFqO3YL6uKoZfuPgLeJNeNxYqa7yHX+7gP
ssl+UDKmF4J3YOiQvG7ALZL1La26CqUwxCnNy+MhOYanqq5zM4YmDw/Z/EX2
81ONZDaPEIZsZifcB8j+8/tERB/gw5BUp+UrXZKlS5NSpRc4oGv2Nbmb1FPO
pjPngsY5sJSkMyxO8q4wefmOLg58FnzPNCX1t9+i5mU84gBXcdbneFKvlVWR
QeMvOFDfYWaRQepZU/aEnsEzDli/f8GfRepdn97bvHKbA5daGelRZgQ0OhSk
2Idw4K0EoeR+gsyT/3ydXvlwwKBt9IK6KQH2SdwTXtYc+P0hwLCa9JvXQUWe
rq3k84HGJzKkP6/x1OQHbOCApk9YSSbp36AfRibCVA4Y8zm+Fib9fcf//H3j
UTZUFj/b0qZN+uf1U/HqCjZsjv6nt4jMkxfRKrXWuWzg7HvoV3eAgDc2dWdp
D9lwolr/w/v9BDTNdeXIh7Dhl7/GYjaZT+MHtyinGLIh2G7n7PMdBBA8ea37
DrPh1semBlM5AhZ/qPl92cOGwBUJzk8y/9YGWFVzbWTD+eLJ3vcSZP0q449e
61oFeuleg44NpF5itg4LNq8Cz/VyUboA6U/b4luFaBWSJ4eaWHwEHJ//9OXP
s1WItb8j95uLgIuHuO0srq7CW6ntddHTNPDhTVqacF0F0b+YD/4ZoUFAx7b0
GJtV4F2cmE7oo0FMAN7/TnMVgi7GxvG20SCvMshLiWcV8sv3rUq8oMHzGL71
nxZWYNPsz6blQhpU2qaWu02swKHwd3dfZtHg4/zrubSWFeg1ZGB5D2gwfIge
zpe2ApW/r4nfJufZFG+E3LO4Fbgw6zkp4kYDZsf6D7rhK7ChN7PW14EG3IFK
/DfcV+Dr2179XANyflVdTB5RXgEbzTNjPyRp4KbeW/D+/TKYSxjlTtfNwIUC
dVvDqmWIO2wzjr+cAU/xBK7GomWgue6ScMufgavLx842JyzDJTUjZYn75LyG
QpFf55Yhf2uflbbTDCQb+YfNLLNgK9fDD+1T0/CounmPL40F705VX2f2TEPa
7l2/ZgdYwJuzTbC7eRqerus6sNTIArGmY8FY+TSUtuiOc6WyQFS51TPuyjR8
tBM4Ja7GgumfZSMSg1PQ+Ok8JV2BBdV3X6l6tk7Bl8PwXFqSBaql3jcD3k3B
N8lrfDuoLLjf80j2/cMp6OvrrFNuXQI3KHyx2XAKFi/m7Nb3XgKrXU/M6A8n
YfnnSsfHc0vQdju4rzx8EtjGtlHG1ktgVmGqJusxCdxKfH3mmksg90smkF9j
EjYSPskOa5fgnInMFOP7BCje0OT45C5Cms7hhweXxwH1mCsOPlyEt0H9jXzd
42B7zM3G7vYiWBx/5uddOw6R6+OKcZ9FKD4n5t4ZPA6/cnvshDQWIa5tWkli
bgxi2yLKKz4vgMmV0T5myyhIq6d07axbAJeVAzyLBaPwKr2QN618AXo/LFCv
3hyFPxe/OUWmLIB3ro9p1b5RUGdv57M+twD48viUT+wIjCg2uDAZ8+D3ubSv
UWIYQh50xXkMz0NbZky76sQQCM/Tqro75+FtXqQHUT0ER/4VW/+hdh4yNOtN
nE8NQYqd55uUmHlgW2wXaYscBP0oQRF1iXnoZ4f0fXrbD7/Htx0pFpiH1a14
vG14P1y1OHRJhjMH/H63uIWO9sMTiXOwZmgOMuLcy1j1f4BRXu71s3QOxuPq
hCoj+iCrx7r+L705MHTxb+WIdoHqkCqrXW0OrFzXLdfG/ob6iY379u2agy2W
2UQp6xeMLLQ8GVk/By9KcV6RXz9BUfiEn3U3ExziFI9ohXfAC0N9ub2BTCjK
SWnV8WqDY2bb7WM9mcDrUfVSGVqh3Zp6b/AME+a7clRGhVph3hktPdZnQtZX
WWPZ019BK1i7jVeYCVxh9mYNKQ1QX6YW8adkFqSzHVS/aFSCTaVIpdbTWeCf
+N7GmngBI7WMyYdJs9Dv+FnhyI4yWNtUbmcWNAuue7k6ToVmgdmQksobo1n4
vtvBoaA5Be8Q29mbNMCAJyW3Mxc2/YdflOEWpf1gwDPbt2d2ydTjizsHjU0a
GaBq+c/VoyofcYkDWa+xcgaohEjSU92b8LNmUvGXQxkgL6231jGpDR+9uUnb
SIwBLtuTWLlCXTh/aBktiZ8BzmnPzsj5dOPKN4xz/qzQodtgVgG19uABPqH8
Qf106AkbU/pl9QfnPT38s6SIDupaiZM+xwdxRdvwuKV0OvAK2qsPCQzh5pbi
uob36YA334vTbx/CU4zM8vv86HAEKcwueI3gO9Re+wvr0KEsvyUzEY3jx1Us
dp9ToUPDo50JDRkTuLfieHfxNjpkGLzTswybxF/JSukb8NJhPup1XbrxNH5M
MFr4RgsB4VVpr52iCdx15FRZjwsB277Fh6dnM/GY/hlXRXLubQp23JioMocX
dcduDjQkIDJ2aUt13RzO+FYbKkSea/tra0zfDc7j1HDj1JgxGgiaZgQ2Gy/h
Jv6hHJmvNCB69MM9xpfwBK+KCzXkuT3RZN+22LssXNZe/OBUEA18gy/L3upc
xvH9422WgmRuevWU/L7PxmMUpA5P0mfAgfXh73l9Dt4sZfk0qmMGWu6kJays
cPCz/DU+VZkzUPR22Y/zBtMNGYxdJ6U6A/sfbb5UY0jVfZOyy2DMdhq+Fb48
QC/j0V17etSNoj0NfR36vnrbeXVtZfMiJbZNg7zhqmVgKq8uo2g7OjE5BXL7
HrvUxK7R3Y2ktSrCp2A2jBFecJNP17GvQk/Mdwp8N5s38jfy6f4PyXHkAA==
"]], LineBox[CompressedData["
1:eJwV1nc8Ve8fAPA7jSjlFqFhlJCV7PB5lLQIJSSSa5RUZsrXKqGMUEqyG0Y0
jEjLvVkpI5SQdXHvIaNs18rv/P46r/frOee8zvNZz5GiexxzIREIBEEigfD/
6yifzPoFz7/ARxyMzAJBZm7n3LWxB3/hz/WhTIEsAaaIYZ0sz9JfIMckc2V2
rGLOU3XeStDHYeVbjleSMy8z23uqIf3SOHCknOePrONlWva+6JcKGAdN49dv
1zB4mAVl0oJy98ZB0s03tXAzD9PVXdBBvWYcFCth8h9GYf5o6qWYKkyAS88u
+WvZJGaofrJYk+YECDaYfKXTSUzVPEvl4/smQO7ICSWJrSRm9I0v1iftJkCz
W/4PIYXI3KtZnOcSOwEJ/2WrmKYSmAUpEebBkxOQHF829jdsmVFHixgUIkyC
YmO+iJXAMgOLDg9+tHoSnqEjU0cSlhibAsOeV8lNgn6+ZW9jziLjll0on4DD
JDgYLs/H9c8zzmwOZj6om4SiCO57o+RZRsD9IGv5jkn4mMJnv1prlpG4OujP
O2wSTN491FvXOsOoXw7Y1EOcAqPjs5ll62cY2j3+V7dpT8FTwr2HAo+nGGsz
LqsWPp2Ckv8yYxUmxhk7RS9/3ls0BVZTQXdeZowzjON8T/9gTMGsdkKSktk4
IzDEJ2bu1xRI9CSXbKb/ZQw5eA3pr5uGvk75MgJhjMGUvJj5NWgajtuVzpXF
DTE6ky5o2UVPw3XD4RZx/iHG7NoLjWNJ03Bxxfu3UNggQ5HovrT29TQwTNtt
04MxRlLfORvr4WnYqzI1/C6czfB47LyWbTUDYi+th3PbWIxY/4epsU4z4HnV
zPSwB4vx0rxRTsdzBnTWtbnw8bEYf/5pGcZGzgB3c/a2ZP8exoVTAt7aH/D1
+tgJTddOxvn1Rd9jpGZBcey7sUhmKyNqBHPQUp4Fu613d4z9/cHIq5AY7dOd
BRG9pKRkwx+M357hFC3LWXjdxmfuNNzCONdgo9EXMQupHCtFUYsmhmvESqLG
6Cwwv65O0OquYUTYq8uwuLjrXiX1F1UzstXdXkVR5+C7ROBASnQVg9Pf8rl3
yxzk+U6RRYwrGM6QzY20mINvk9XDHh/eM+hcE9ue0jngFU9vkzPPZpw+n7z5
5nUuDBce3WmsVwSLHfyNE7e5cCbOLlx2oBiSDvkH2yVzoZ0e4jsYXgLNcja9
u4q5IK+ZoqnFKAOjwQ2Puthc0HYdwvaQGCDvfGeb2sF5eEOvd7vkVg013wmt
qZbzwNcUf8d6Sw3Q93mG8zrOQ2XYPv7Q5hpIlTbDuvzn4aPKKckXarWwpk8w
92b+PLT9LA5qZ32FaftbO7vXLMDXz5bd+uPfIL5hrvOAxAJcfNxQ9Gh/Eyjp
n40p2rEAJyWsn7jebQLXTcZjN9ECXN30Pqlcvhk6fpFfqXkvQOEnqZhfZi1Q
bh2idqt1AaYuPRIxC/gBkRZ+OrtTF8Hbfb9KvG073K1XuPD82SKcKr7udiWp
HVIP9KZvf7MIRksnbrxvbYcC/YOUjS2LMDmaIex4tAPa5cW/LfEuQS26UWCm
/QvkSOXONT5LECK6NkdivBPUgrwfwPUluNzlPhK/rQv0uLJfy2KXoI+42B5g
0wXmf+JU8p/h6w4BxmXlXXDll+NCXO8SgKdFzkRYN9QUUeNPHlmGFBJfevR8
DzQpvatosVmG0N3Kywvbe+FX7qWZI67LsKKTlDlt0Qt/0ttsDa4vQ+OeH3bR
ub0gEv1su8ybZeDXPnxgtxwLXJxM349K/wNWVuhBdjULKOvvYyEL/+BfGuGa
TFcfCP8JXiPMuwKHRnc9nh7uA6nac5pPaSugprPBOHO+DwwC9SJqFVegxNX5
3C2RfvBnD2xf57ACi1QNg6yj/fDntZrL48oVGE+b+Whd1g/LsZtuqzetgC8S
MZ2r6gdBN56Smi78eWMDK7/mfpDf/IsyMrMCgZPyC7ThfiiqQC1i6wmo+eKH
k61iAzCqMORFNyYgp2tmtc99BmBatDs834SAaJE/Sp2DB2CR0vJw+hgBMc/v
cyBEDsCq3vefIhwIaKzlfttA2gDsSIhbl3+VgDQ/8YrRawaAvqhZOJVHQKmO
KMlDmA1uQzur9QoJSEJ8j3aIBBs8WyU7wt8Q0Mn6Q1p+29gQ8moVcWMVAa0T
0JCX0GRDqlOPuV43AZXaXUg3tmFDW134eJgQEdnW8JiYJ7HhnkHa/hMiRORQ
YPw7PpMNxwpfJ2/fTEQHk3UOleWyoTFxwKhGgYj07/jrfShjQ42j4UNeYyIa
SGMYZLSxoXRuyTAqkIiiOjeak9ZxwPf8+ge2N4iorS4o5IsoB9S6d44qRBER
s0m7578tHHhZYZtY94CI8u2jJ1N3ciD7dtmwYDEROT+50jFgxIFEGd+EuN9E
xC1eUsr24YBlYvSQwzgRdZUr9Mv6c0CY/4m+6hwRTfnKFt8L5kDsn+bBJgoJ
5REjrbUjORDxVkVPWJKEPhTuOfA0jQN+ZiPse1YkJLzwxVGtkgPqFSRdF3sS
avxYpp30mQOT6uJxGs4kFFu75dVYHQcuiR/S+elFQselBNec+8EBV072bdHb
JFS60Tw6nc2BEwF0zeRKEpL9kCSzi4RBYtp6nrkvJGS1Ib3oLBWDn4ya1uNN
JBRFWvXrDh8GVpSdl1d3k1D13tqTn9ZgYHN7qvjaLAkhTVssThyDpFdZN7qX
SCjBIJfsuhmD9mbr47pkMso+tvaGqiQGJ0U+TE4JkdFb0QW+J9sxsM0I23VW
nowIygfrCKoYJH/SJFapkJFKxvS9QDUMOgeGmiQ1yehrtUDQmDoGdnKmnr/2
klFPDov0SgcD+8INr0ztyEiHYnq8eC8GZyqzFdXjyKjDNLT7+zEMMjk2S/H3
ycjml0NlviUGfbwC9WMpZGSftiDxnxUGdBMP95xcMmIKO/ounMTAqVUrT7yC
jAriHvZFn8Hg6dxv/yu1ZMQZ0AgWo2PAFks99KORjPiem+xId8LA+TTh9+1O
Moo2qB2KccXAdbB2B3GGjCpEYraTLmCQzR8wZ7+Iv98pV+bwRQwGdyp9fkek
IGofrTzyEgbnPO+4+q6hoIyz84Ljnhjk3t2n2byegtxFnw2IeGMw9HqGqixB
QX5jtBQNHwzc5k9mDe6goPPly39sL2OQJyF42UiZgtwCE587+mEwrF9u9Eid
gkQit9w+cwWD86HSbFtDCoIbJXPG/hhcEBiRbrSlIPW/xaplgRiM+L+jCDhS
UPYLvoGgIPz+oUjswFkKql88EaIXjMHZarm8Tz4UJGS+8vJpCAbYbm70P38K
MtfNOn30Gr7/x58v7rlGQa3/2lQncNNDXHeVxFDQSK2+r3QoHu8xDdrkXQpi
R7YRCnGfsaPOKD+kIAOxekz7BgandZ6W5WZRkEeH07R6GAbdOT7JnHwKeuZ1
V/MZbjuRfYHSRRQUtnU3r2g4Xj9TfZBaTkFFJR9u9uJudyyU6qiiIBMdewvd
CLw+m66RReooiBvY2xWLu9XAnHOsGY/veI9mN27LF1s/x7VRkFN+t/v2mxh+
bv/Nre+moIInRrfO4j4WVR7Fz6agfMwp6QnuZu7tC8bDFKT4zTu3A7f5Wfuj
N8YpaKNefBX/LQy+tSqqMmcpyLqmgrsb91GjpXXLSxSkMss1t8FdX1Q3pUOm
og1X+Tv8cB+RSmn146eirRbFqXG4v8adf1MsREXNwuk5j3Ef/KfzcHwDFQWs
saUW4P58gT9AaRMVbbt15tMb3Mad7XbnpakIG6INvsVdfSjXIEeOin6NM66X
4jYquyLJVqaimKGHqS9wV8geIElpUNFcM3NvBm7D+yJs+z1UtJSkHxKNm0nG
qpMNqch/H9neG7eBd0lO2wEq6pH8ix3H/ZEVFrn+KBVZzNfuUMWtZ2bpbmFJ
RS56+xR4cb//KGMaa0tFdJVFbjseH13FKeW6M1TEL+GfnoW7LLliLd9ZKuLz
V91+EbcW/91Jo4tUNCZ57YEK7tIrjj+u+1DRa9+ilVE8P+qYamm5PxVxYpbP
ZuFWq/zmrx1BRYfIxxx5cRfuyjh1OYaKmHlOPIV4/lUzL+kX3aWiW//Sv5/A
rRS0mqiYQUVPt9evvoPXz/ORrv5zWVSUlqsQuwO3gu3zqqx8KvKJjLF/i9ef
nNaRW1vLqGih1knoG16fOVni5+3KqUie/opyHLfs+uEjD6uoyHdz/qWW6xhs
m7glRGumouCjidWVeL1vza9J5BmmIvbeyCAvvF8sM8refh2nope7Mpyr8H6K
Ssjrip2jIruAqIPCuKcDYqVFqTzos8yW3RkBeP5NrF7ukORBJmo/K4OvYkAw
PNg8IsuDhCM7KvLw/tXQ0J1+pcSDtA93rG/B+ztz8xZd7T086Im4Tqcw3v9+
fzjVB614EH1V0ZrTXvh++9uGBO15UKiXe6ULPk/6fn4RaHbiQVs8GyTcPDAw
YbywOOnFgyYoVj10fB5Jx1/udovhQfFRj0tk3DBo2EWdiargQcae/9X0O2BA
kp0TNfvCg06/79n47DQG2uK/dWlNPMjLwvSRuz0Gj0kN11K6eVDJRls/ji0G
V7/fE3zO5UGf/NokXpzA43V527YGZV703HXcK+EwBgFl+44LpfAi/waTkYld
eH7tmsYdHvGiyif1tufx+T+8YhdbkMOLzMsyzFjK+PlwwO+LxWteFD76uqdq
J15fP3PhXgMvqtFMk/XCzw/u1GpFMQIfgmOo23YjHg+VdoqMCx+i3yifv7fE
Ac/sC6WaKvzoisb37CQGB3q+Sdxfo8mPTN59mXb/yAHT+a8+mB4/Upa2TdN/
zwEFE/ldiYf5UQnJSairlAPsCU7+jAs/GlGYHqW+5IC1vsOj16n86G82UXpd
KgcMfljEqK1ahTRWh1yRvMIBQZIWXZmzCvXO05MG5Dmw/6LlfYUEQRR0PRp+
RrJh49vNHvu3rUEeTN7sjeMDcNf71h3VNiFk7c5X6X5oAI5FmCmlla5FurcD
F5IL+kHhVNiJp0HrUMvy4palLf3wE+N/nHBCGMVc1RgvjOiDRjrHUHgrDb2z
WOvp8Y8FfZQc7n1pGrLPv6i5aYkF09nnXonJ0hAXwry+zLNAbGRkk5QSDZVu
ntu/fYYFzj6Tcyp7aOiKeMq5/hEWLNxYeWFqTUOUJvTQu4MFslli4pFxNNRg
YFM+/JoFOgc6mwQTaKhIjCGTXcQCk9+pN+MTaSi0S+ufYwELvJQkZx6k0dDs
mlPCnfks+FAi25SdT0PBJ9GblscsOFazO6LqMw29f5Mx0RaP/w+fm9E7WEdD
mUMoJzmWBVdXvZmqa6Sh2IL6ZvsYFqQd1XX83kpDn4ISwjk3WTD0E+n1D9BQ
t+KZswvB+PdeJU25DNLQodCOSmYgC1ZLVD37PUxD3wtF79/8jwVqDgdEJyZo
aOps/X0RPxbsJ/I3+s7Q0D4XreoeHxbYPPkaxuXS0A8Fc7ccLxac3x+zJ3CJ
hkZvrg319GBB0KDp5MoKDalKeQvpXmTB/wC0nSBO
"]]},
Annotation[#,
"Charting`Private`Tag$35931#1"]& ], {}}, {{}, {}}, {{}, {}}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-5, 5}, {-3.531077458727058, 3.223165104575678}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.8025791566902*^9},
CellLabel->"Out[58]=",ExpressionUUID->"fefbb2f5-4364-4785-bfa2-3d6ca23cbbe5"]
}, Open ]],
Cell[BoxData["Log"], "Input",
CellChangeTimes->{{3.802579643735317*^9,
3.802579644898148*^9}},ExpressionUUID->"92edf535-0da5-498d-afe4-\
d2067a4b8960"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"ERHF", "[",
RowBox[{"R_", ",", "\[Lambda]_"}], "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"2",
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"L", "=", "0"}], "1"],
RowBox[{
SubsuperscriptBox["c", "L", "2"],
FractionBox[
RowBox[{"L",
RowBox[{"(",
RowBox[{"L", "+", "1"}], ")"}]}],
RowBox[{"2",
SuperscriptBox["R", "2"]}]]}]}]}], "+",
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"i", "=", "0"}], "1"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"j", "=", "0"}], "1"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"k", "=", "0"}], "1"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"l", "=", "0"}], "1"],
RowBox[{
SubscriptBox["c", "i"],
SubscriptBox["c", "j"],
SubscriptBox["c", "k"],
SubscriptBox["c", "l"],
FractionBox["\[Lambda]", "R"],
SqrtBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", "i"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "j"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "k"}], "+", "1"}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"2", "l"}], "+", "1"}], ")"}]}]],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"L", "=", "0"}], "2"],
RowBox[{
SuperscriptBox[
RowBox[{"ThreeJSymbol", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"L", ",", "0"}], "}"}]}], "]"}], "2"],
SuperscriptBox[
RowBox[{"ThreeJSymbol", "[",
RowBox[{
RowBox[{"{",
RowBox[{"k", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"l", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"L", ",", "0"}], "}"}]}], "]"}], "2"]}]}]}]}]}]}]}]}],
"/.",
RowBox[{"{",
RowBox[{
RowBox[{
SubscriptBox["c", "0"], "\[Rule]",
RowBox[{"Cos", "[", "\[Chi]", "]"}]}], ",",
RowBox[{
SubscriptBox["c", "1"], "\[Rule]",
RowBox[{"Sin", "[", "\[Chi]", "]"}]}]}], "}"}]}]}]], "Input",
CellChangeTimes->{{3.8024921926077747`*^9, 3.802492196441489*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"a9a2e93a-6c8c-4f78-b9eb-90631ab6c195"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "tri",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \
\\\"}\\\"}]}], \\\"]\\\"}]\\) is not triangular.\"", 2, 1, 1,
22572210984893282261, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.802492201133101*^9},
CellLabel->
"During evaluation of \
In[1]:=",ExpressionUUID->"b82e6414-4cc7-4061-bd95-51c7d6e87268"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "tri",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \
\\\"}\\\"}]}], \\\"]\\\"}]\\) is not triangular.\"", 2, 1, 2,
22572210984893282261, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.802492202040123*^9},
CellLabel->
"During evaluation of \
In[1]:=",ExpressionUUID->"13e5a827-ec4b-4d07-a14d-e39dba52c8d6"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "tri",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"2\\\", \\\",\\\", \\\"0\\\"}], \
\\\"}\\\"}]}], \\\"]\\\"}]\\) is not triangular.\"", 2, 1, 3,
22572210984893282261, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8024922025122147`*^9},
CellLabel->
"During evaluation of \
In[1]:=",ExpressionUUID->"429a7d6c-b98e-4229-b19a-c97f3162d499"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"ClebschGordan\\\", \
\\\"::\\\", \\\"tri\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 1, 4, 22572210984893282261, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8024922028725853`*^9},
CellLabel->
"During evaluation of \
In[1]:=",ExpressionUUID->"d5addb50-6cd3-42e6-ae7d-f79e03c0a258"],
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{"\[Lambda]", " ",
SuperscriptBox[
RowBox[{"Cos", "[", "\[Chi]", "]"}], "4"]}], "R"], "+",
FractionBox[
RowBox[{"2", " ",
SuperscriptBox[
RowBox[{"Sin", "[", "\[Chi]", "]"}], "2"]}],
SuperscriptBox["R", "2"]], "+",
FractionBox[
RowBox[{"10", " ", "\[Lambda]", " ",
SuperscriptBox[
RowBox[{"Cos", "[", "\[Chi]", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"Sin", "[", "\[Chi]", "]"}], "2"]}],
RowBox[{"3", " ", "R"}]], "+",
FractionBox[
RowBox[{"29", " ", "\[Lambda]", " ",
SuperscriptBox[
RowBox[{"Sin", "[", "\[Chi]", "]"}], "4"]}],
RowBox[{"25", " ", "R"}]]}]], "Output",
CellChangeTimes->{3.8024922033036013`*^9},
CellLabel->"Out[1]=",ExpressionUUID->"ff6af3de-9a55-4901-9fcc-62b34e79b63f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[PartialD]", "\[Chi]"],
RowBox[{"ERHF", "[",
RowBox[{"R", ",", "\[Lambda]"}], "]"}]}], "\[Equal]", "0"}], ",",
"\[Chi]"}], "]"}]], "Input",
CellChangeTimes->{{3.802492213407578*^9, 3.8024922137635803`*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"cb14f184-1c90-4d30-bc32-15d0e8145bc0"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{
RowBox[{"-",
FractionBox["\[Pi]", "2"]}], "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{
FractionBox["\[Pi]", "2"], "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{"\[Pi]", "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"38", " ", "R", " ", "\[Lambda]"}]}]],
RowBox[{"2", " ",
SqrtBox["22"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]]}], ",",
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{"3", "+",
RowBox[{"2", " ", "R", " ", "\[Lambda]"}]}]]}],
RowBox[{"2", " ",
SqrtBox["22"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]]}]}], "]"}], "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"-",
FractionBox[
SqrtBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"38", " ", "R", " ", "\[Lambda]"}]}]],
RowBox[{"2", " ",
SqrtBox["22"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]]}], ",",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{"3", "+",
RowBox[{"2", " ", "R", " ", "\[Lambda]"}]}]]}],
RowBox[{"2", " ",
SqrtBox["22"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]]}], "]"}], "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"38", " ", "R", " ", "\[Lambda]"}]}]],
RowBox[{"2", " ",
SqrtBox["22"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{"3", "+",
RowBox[{"2", " ", "R", " ", "\[Lambda]"}]}]]}],
RowBox[{"2", " ",
SqrtBox["22"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]]}]}], "]"}], "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Chi]", "\[Rule]",
TemplateBox[{
RowBox[{
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"38", " ", "R", " ", "\[Lambda]"}]}]],
RowBox[{"2", " ",
SqrtBox["22"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]], ",",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{"3", "+",
RowBox[{"2", " ", "R", " ", "\[Lambda]"}]}]]}],
RowBox[{"2", " ",
SqrtBox["22"], " ",
SqrtBox["R"], " ",
SqrtBox["\[Lambda]"]}]]}], "]"}], "+",
RowBox[{"2", " ", "\[Pi]", " ",
TemplateBox[{"1"}, "C"]}]}],
RowBox[{
TemplateBox[{"1"}, "C"], "\[Element]",
TemplateBox[{}, "Integers"]}]},
"ConditionalExpression"]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.80249221474746*^9},
CellLabel->"Out[2]=",ExpressionUUID->"032f6e8d-dc9d-4ec5-bc63-565b049cbfc8"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
RHF vs UHF: minimal basis, Fock matrix, Hamiltonian and spin contamination\
\>", "Title",
CellChangeTimes->{{3.7999930345285892`*^9, 3.799993041915907*^9}, {
3.799993355935072*^9, 3.79999337576303*^9}, {3.8000005865062838`*^9,
3.800000618911915*^9}},ExpressionUUID->"0a52074e-c7dc-42d7-ba34-\
e36f8a07c424"],
Cell[CellGroupData[{
Cell["One electron basis and Fock matrix", "Section",
CellChangeTimes->{{3.799993392506085*^9,
3.7999933948423767`*^9}},ExpressionUUID->"df11dec1-6a95-483e-b301-\
63ee055cae1b"],
Cell[CellGroupData[{
Cell["RHF ", "Subsection",
CellChangeTimes->{{3.799993092090961*^9, 3.7999931196011257`*^9}, {
3.799993387387727*^9,
3.799993399043241*^9}},ExpressionUUID->"db909c0e-e94d-4e53-98ff-\
1fcd1e9db327"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "1"], "[", "\[Theta]_", "]"}], "=",
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], ",",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "2"], "[", "\[Theta]_", "]"}], "=",
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}], "}"}]], "Input",
InitializationCell->True,
CellChangeTimes->{3.799993160271023*^9},
CellLabel->"In[7]:=",ExpressionUUID->"4180999f-b578-4334-b501-0e64761602e7"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
FractionBox["1",
RowBox[{"2", " ",
SqrtBox["\[Pi]"]}]], ",",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}], "}"}]], "Output",
CellChangeTimes->{
3.8000026252128*^9, 3.800008290862617*^9, 3.800074343409177*^9,
3.8000906806097403`*^9, 3.800104023806819*^9, 3.80015705583879*^9,
3.800171589941497*^9, 3.8001814900908613`*^9, 3.8001818674919243`*^9,
3.800182343251149*^9, 3.800250598713025*^9, 3.800336404588154*^9,
3.800338945206175*^9, 3.800347263242309*^9, 3.800874525564262*^9,
3.800934728994132*^9, 3.8011948410586367`*^9, 3.8012982972225924`*^9,
3.801298350260435*^9, 3.801391068876822*^9, 3.801393058548064*^9,
3.801638196896677*^9, 3.8017426334310827`*^9, 3.8017993047107267`*^9,
3.801802895900681*^9, 3.801814474653829*^9, 3.801820090072027*^9,
3.801823421160515*^9, 3.801825563920274*^9, 3.801831566929063*^9,
3.8018850783288116`*^9, 3.801885344568172*^9, 3.801885628610591*^9,
3.8018857742615147`*^9, 3.801907047382818*^9, 3.801970350043779*^9,
3.8019717483795013`*^9, 3.801980397494182*^9, 3.8019916825830803`*^9,
3.80199565448978*^9, 3.802144333215562*^9, 3.8025781021224747`*^9,
3.802680703025485*^9, {3.8031154252750483`*^9, 3.803115441719665*^9},
3.8031161100797253`*^9, 3.803182861851646*^9, 3.803188055246521*^9,
3.8037881135144043`*^9, 3.8042358456532*^9, 3.804238432297248*^9,
3.804242393187325*^9, 3.8042443661455107`*^9, 3.8043913108388863`*^9,
3.804395011986464*^9, 3.804396519226778*^9, 3.8044040894549303`*^9,
3.8044142723196697`*^9, 3.804414307818306*^9, 3.8044147275881844`*^9,
3.804419410019491*^9, 3.804421116112615*^9, 3.804482072616241*^9,
3.804484154047114*^9, 3.80449883914611*^9, 3.8045688581106873`*^9,
3.804583421491001*^9},
CellLabel->"Out[7]=",ExpressionUUID->"bba80de9-d61a-4ad2-87be-f452ba11863d"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"c", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}]}], "}"}]}], ";",
RowBox[{"o", "=",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], "}"}], "\[Transpose]"}]}], ";",
RowBox[{"P", "=",
RowBox[{"2",
RowBox[{"o", ".",
RowBox[{"o", "\[Transpose]"}]}]}]}], ";"}]], "Input",
CellLabel->"In[27]:=",ExpressionUUID->"d33afd0a-5117-4ecf-ab34-88219e7c735c"],
Cell[BoxData[
RowBox[{"Hc", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"(",
RowBox[{"2", "\[Pi]"}], ")"}],
RowBox[{"2",
SuperscriptBox["R", "2"]}]],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
RowBox[{"Expand", "[",
RowBox[{
RowBox[{"(",
RowBox[{
SubscriptBox["\[PartialD]", "\[Theta]"],
RowBox[{
SubscriptBox["\[Psi]", "\[Mu]"], "[", "\[Theta]", "]"}]}], ")"}],
RowBox[{"(",
RowBox[{
SubscriptBox["\[PartialD]", "\[Theta]"],
RowBox[{
SubscriptBox["\[Psi]", "\[Nu]"], "[", "\[Theta]", "]"}]}],
")"}]}], "]"}],
RowBox[{"Sin", "[", "\[Theta]", "]"}],
RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "2"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{3.7999931119886847`*^9, 3.799993167870599*^9},
CellLabel->"In[7]:=",ExpressionUUID->"8435f84e-9b1a-4d78-9a8d-7f4fad49a8c3"],
Cell[BoxData[
RowBox[{
RowBox[{"Hc", "[", "R_", "]"}], ":=",
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"0", "0"},
{"0",
FractionBox["1",
SuperscriptBox["R", "2"]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.799994308310364*^9, 3.799994309412603*^9}, {
3.80025262505022*^9, 3.800252629336606*^9}},
CellLabel->"In[8]:=",ExpressionUUID->"dc095120-7d46-4759-83f1-b544ce0a97f3"],
Cell[BoxData[
RowBox[{
RowBox[{"G", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"TEIr", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Mu]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Sigma]", ",", "0"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Sigma]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}]], "Input",
CellLabel->"In[9]:=",ExpressionUUID->"738d43b2-6207-4158-86ee-ca90203397ca"],
Cell[BoxData[
RowBox[{"f", "=", " ",
RowBox[{"Hc", "+",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"\[Lambda]", "=", "1"}], "2"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"\[Sigma]", "=", "1"}], "2"],
RowBox[{
RowBox[{"P", "\[LeftDoubleBracket]",
RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "\[RightDoubleBracket]"}],
RowBox[{"(",
RowBox[{
RowBox[{"G", "\[LeftDoubleBracket]",
RowBox[{"\[Mu]", ",", "\[Nu]", ",", "\[Lambda]", ",", "\[Sigma]"}],
"\[RightDoubleBracket]"}], "-",
RowBox[{
FractionBox["1", "2"],
RowBox[{"G", "\[LeftDoubleBracket]",
RowBox[{
"\[Mu]", ",", "\[Sigma]", ",", "\[Lambda]", ",", "\[Nu]"}],
"\[RightDoubleBracket]"}]}]}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "2"}], "}"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.799401491576138*^9, 3.7994015018150806`*^9}, {
3.799471245629293*^9, 3.7994712623238707`*^9}, 3.799471426405301*^9,
3.799993234270146*^9},
CellLabel->"In[12]:=",ExpressionUUID->"369acc51-3a0a-4316-8ce9-1efe4c9ba39f"],
Cell[BoxData[
RowBox[{"F", "=",
RowBox[{
RowBox[{"c", "\[Transpose]"}], ".", "f", ".", "c"}]}]], "Input",
CellLabel->"In[28]:=",ExpressionUUID->"996e578e-5a50-408d-bc5e-b69971106628"],
Cell[BoxData[
RowBox[{
TagBox[
RowBox[{
RowBox[{"F", "[", "R_", "]"}], ":=",
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox["1", "R"], "0"},
{"0",
RowBox[{
FractionBox["1",
SuperscriptBox["R", "2"]], "+",
FractionBox["5",
RowBox[{"3", " ", "R"}]]}]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}]}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]], ";"}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.800002719030403*^9, 3.800002719958639*^9},
3.800005544320897*^9, {3.8002525527966557`*^9, 3.80025255607839*^9}},
CellLabel->"In[9]:=",ExpressionUUID->"ded60f15-55a7-42b7-af7e-242d53d444e8"]
}, Closed]],
Cell[CellGroupData[{
Cell["UHF ", "Subsection",
CellChangeTimes->{{3.799993331656663*^9, 3.799993342115625*^9},
3.7999934058111343`*^9},ExpressionUUID->"f3499336-7c71-4263-9391-\
c088a34f380a"],
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Alpha]", "1"], "[", "\[Theta]_", "]"}], "=",
RowBox[{
RowBox[{"c10\[Alpha]", " ",
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+",
RowBox[{"c11\[Alpha]", " ",
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Beta]", "1"], "[", "\[Theta]_", "]"}], "=",
RowBox[{
RowBox[{"c10\[Beta]", " ",
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+",
RowBox[{"c11\[Beta]", " ",
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Alpha]", "2"], "[", "\[Theta]_", "]"}], "=",
RowBox[{
RowBox[{"c20\[Alpha]", " ",
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+",
RowBox[{"c21\[Alpha]", " ",
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Beta]", "2"], "[", "\[Theta]_", "]"}], "=",
RowBox[{
RowBox[{"c20\[Beta]", " ",
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+",
RowBox[{"c21\[Beta]", " ",
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}]}]}], "}"}],
";"}]], "Input",
CellChangeTimes->{{3.7999934193217983`*^9,
3.799993443183601*^9}},ExpressionUUID->"03828073-977c-4344-a85a-\
bd2de2c1a82b"],
Cell["\<\
The coeffcients are obtained in the useful calculs and results part\
\>", "Text",
CellChangeTimes->{{3.799993509604323*^9,
3.799993548078808*^9}},ExpressionUUID->"b3250612-8996-4f80-ab8a-\
2c01684cec36"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Alpha]", "1"], "[",
RowBox[{"\[Theta]_", ",", "R_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Alpha]", "]"}],
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+",
RowBox[{
RowBox[{"Sin", "[", "\[Chi]\[Alpha]", "]"}],
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}], "/.",
RowBox[{"\[Chi]\[Alpha]", "\[Rule]",
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
SqrtBox["R"]], ",",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}],
SqrtBox["R"]]}], "]"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Beta]", "1"], "[",
RowBox[{"\[Theta]_", ",", "R_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Beta]", "]"}],
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+",
RowBox[{
RowBox[{"Sin", "[", "\[Chi]\[Beta]", "]"}],
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}], "/.",
RowBox[{"\[Chi]\[Beta]", "\[Rule]",
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
SqrtBox["R"]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}],
SqrtBox["R"]]}]}], "]"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Alpha]", "2"], "[",
RowBox[{"\[Theta]_", ",", "R_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[", "\[Chi]\[Alpha]", "]"}]}],
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+",
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Alpha]", "]"}],
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}], "/.",
RowBox[{"\[Chi]\[Alpha]", "\[Rule]",
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
SqrtBox["R"]], ",",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}],
SqrtBox["R"]]}], "]"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Beta]", "2"], "[",
RowBox[{"\[Theta]_", ",", "R_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[", "\[Chi]\[Beta]", "]"}]}],
RowBox[{
SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+",
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Beta]", "]"}],
RowBox[{
SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}]}], "/.",
RowBox[{"\[Chi]\[Beta]", "\[Rule]",
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
SqrtBox["R"]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}],
SqrtBox["R"]]}]}], "]"}]}]}]}]}], "}"}], "//", "FullSimplify"}],
";"}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.7999936000367727`*^9, 3.799993616856702*^9}, {
3.799993707621728*^9, 3.799993734090374*^9}, {3.79999383162755*^9,
3.799993876531172*^9}, {3.801823523544009*^9, 3.801823543594131*^9}},
CellLabel->"In[10]:=",ExpressionUUID->"c4d8ac54-6336-4dfa-a72c-5eafe69d8908"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[", "\[Chi]\[Alpha]", "]"}]}], "y0"}], "+",
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Alpha]", "]"}], "y1"}]}], "/.",
RowBox[{"\[Chi]\[Alpha]", "\[Rule]",
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
SqrtBox["R"]], ",",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}],
SqrtBox["R"]]}], "]"}]}]}], "//", "FullSimplify"}]], "Input",
CellChangeTimes->{{3.804482135492865*^9, 3.804482152097711*^9}, {
3.804482317063911*^9, 3.804482345450529*^9}},
CellLabel->"In[46]:=",ExpressionUUID->"0b371f85-d103-432e-a0cb-c7cd280964d4"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ", "y0"}], "+",
RowBox[{
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "y1"}]}],
RowBox[{"4", " ",
SqrtBox["7"], " ",
SqrtBox["R"]}]]], "Output",
CellChangeTimes->{{3.804482147421647*^9, 3.80448215244728*^9}, {
3.8044823178285227`*^9, 3.8044823460347157`*^9}},
CellLabel->"Out[46]=",ExpressionUUID->"22385a75-1d06-4a72-b2b8-c66dc0d09c2c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Alpha]", "1"], "[",
RowBox[{"\[Theta]", ",", "R"}], "]"}], "//", "FullSimplify"}]], "Input",
CellChangeTimes->{{3.8025832902063017`*^9, 3.802583291630026*^9}, {
3.804482089050167*^9, 3.804482091996099*^9}},
CellLabel->"In[39]:=",ExpressionUUID->"2edc62d2-b563-403a-83f1-4e61580dcf3e"],
Cell[BoxData[
FractionBox[
RowBox[{
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], "+",
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "9"}], "+",
RowBox[{"6", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}],
RowBox[{"8", " ",
SqrtBox[
RowBox[{"7", " ", "\[Pi]"}]], " ",
SqrtBox["R"]}]]], "Output",
CellChangeTimes->{3.802583292211362*^9, 3.804482092727456*^9},
CellLabel->"Out[39]=",ExpressionUUID->"f2624ecc-0d6d-4c95-8d36-0a08b2b11662"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Beta]", "1"], "[",
RowBox[{"\[Theta]", ",", "R"}], "]"}], "//", "FullSimplify"}]], "Input",
CellChangeTimes->{{3.802583250183707*^9, 3.802583251618064*^9}, {
3.804482098353063*^9, 3.80448210157699*^9}},
CellLabel->"In[40]:=",ExpressionUUID->"83b07df0-48e0-4362-8d9a-18b81ddb4da5"],
Cell[BoxData[
FractionBox[
RowBox[{
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], "-",
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "9"}], "+",
RowBox[{"6", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}],
RowBox[{"8", " ",
SqrtBox[
RowBox[{"7", " ", "\[Pi]"}]], " ",
SqrtBox["R"]}]]], "Output",
CellChangeTimes->{3.8025832520745897`*^9, 3.804482102120905*^9},
CellLabel->"Out[40]=",ExpressionUUID->"c859d2ac-076e-4256-9c74-adfeed7f053d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Alpha]", "2"], "[",
RowBox[{"\[Theta]", ",", "R"}], "]"}], "//", "FullSimplify"}]], "Input",
CellChangeTimes->{{3.8025832627576103`*^9, 3.802583264198324*^9}, {
3.8044821089033813`*^9, 3.804482111949585*^9}},
CellLabel->"In[41]:=",ExpressionUUID->"1030fbac-32a2-4c96-80de-d441dea46703"],
Cell[BoxData[
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}],
RowBox[{"8", " ",
SqrtBox[
RowBox[{"7", " ", "\[Pi]"}]], " ",
SqrtBox["R"]}]]], "Output",
CellChangeTimes->{3.802583264538742*^9, 3.804482112487176*^9},
CellLabel->"Out[41]=",ExpressionUUID->"c0badb89-13f0-40b2-9706-9b8b6d9e829f"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"c\[Alpha]", "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Alpha]", "]"}], ",",
RowBox[{"Sin", "[", "\[Chi]\[Alpha]", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[", "\[Chi]\[Alpha]", "]"}]}], ",",
RowBox[{"Cos", "[", "\[Chi]\[Alpha]", "]"}]}], "}"}]}], "}"}],
"\[Transpose]"}]}], ";", "\t",
RowBox[{"o\[Alpha]", "=",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Alpha]", "]"}], ",",
RowBox[{"Sin", "[", "\[Chi]\[Alpha]", "]"}]}], "}"}], "}"}],
"\[Transpose]"}]}], ";", "\t",
RowBox[{"P\[Alpha]", "=",
RowBox[{"o\[Alpha]", ".",
RowBox[{"o\[Alpha]", "\[Transpose]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"c\[Beta]", "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Beta]", "]"}], ",",
RowBox[{"Sin", "[", "\[Chi]\[Beta]", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[", "\[Chi]\[Beta]", "]"}]}], ",",
RowBox[{"Cos", "[", "\[Chi]\[Beta]", "]"}]}], "}"}]}], "}"}],
"\[Transpose]"}]}], ";", "\t",
RowBox[{"o\[Beta]", "=",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"Cos", "[", "\[Chi]\[Beta]", "]"}], ",",
RowBox[{"Sin", "[", "\[Chi]\[Beta]", "]"}]}], "}"}], "}"}],
"\[Transpose]"}]}], ";", "\t",
RowBox[{"P\[Beta]", "=",
RowBox[{"o\[Beta]", ".",
RowBox[{"o\[Beta]", "\[Transpose]"}]}]}], ";"}]}], "Input",
CellChangeTimes->{3.802584492826613*^9},
CellLabel->"In[25]:=",ExpressionUUID->"bc2a4e01-4a42-4c88-842a-a0e75c77df17"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"G", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"TEIr", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Mu]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Sigma]", ",", "0"}], "}"}], ",", "R"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Sigma]", ",", "0", ",", "1"}], "}"}]}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.802584509588841*^9, 3.802584509941169*^9}},
CellLabel->"In[31]:=",ExpressionUUID->"5d1ea56f-13fa-48f8-a048-b7acb1c3f360"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", RowBox[{\\\"-\\\", \
\\\"1\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 31, 9,
22572811419242671654, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.802584510834346*^9},
CellLabel->
"During evaluation of \
In[31]:=",ExpressionUUID->"ae4b385c-0321-432a-bd4d-5b745499e98e"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", RowBox[{\\\"-\\\", \
\\\"1\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 31, 10,
22572811419242671654, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.802584511337598*^9},
CellLabel->
"During evaluation of \
In[31]:=",ExpressionUUID->"3cfba2f0-e481-4fb9-9f91-90def4ea69c2"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"1\\\"}], \
\\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 31, 11,
22572811419242671654, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8025845118439293`*^9},
CellLabel->
"During evaluation of \
In[31]:=",ExpressionUUID->"e3b3dd00-60fc-4500-a76b-516e3630df6f"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"ClebschGordan\\\", \
\\\"::\\\", \\\"phy\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 31, 12, 22572811419242671654, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.802584512303248*^9},
CellLabel->
"During evaluation of \
In[31]:=",ExpressionUUID->"b417f738-2820-47da-b6ba-5c0b9d3438c1"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"f\[Alpha]", "=",
RowBox[{
RowBox[{"Hc", "[", "R", "]"}], "+",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"\[Lambda]", "=", "1"}], "2"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"\[Sigma]", "=", "1"}], "2"],
RowBox[{
RowBox[{"P\[Alpha]", "\[LeftDoubleBracket]",
RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "\[RightDoubleBracket]"}],
RowBox[{"(",
RowBox[{
RowBox[{"G", "\[LeftDoubleBracket]",
RowBox[{
"\[Mu]", ",", "\[Nu]", ",", "\[Lambda]", ",", "\[Sigma]"}],
"\[RightDoubleBracket]"}], "-",
RowBox[{"G", "\[LeftDoubleBracket]",
RowBox[{
"\[Mu]", ",", "\[Sigma]", ",", "\[Lambda]", ",", "\[Nu]"}],
"\[RightDoubleBracket]"}]}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "2"}], "}"}]}], "]"}], "+",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"\[Lambda]", "=", "1"}], "2"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"\[Sigma]", "=", "1"}], "2"],
RowBox[{
RowBox[{"P\[Beta]", "\[LeftDoubleBracket]",
RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "\[RightDoubleBracket]"}],
RowBox[{"(",
RowBox[{"G", "\[LeftDoubleBracket]",
RowBox[{"\[Mu]", ",", "\[Nu]", ",", "\[Lambda]", ",", "\[Sigma]"}],
"\[RightDoubleBracket]"}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "2"}], "}"}]}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"f\[Beta]", "=",
RowBox[{
RowBox[{"Hc", "[", "R", "]"}], "+",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"\[Lambda]", "=", "1"}], "2"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"\[Sigma]", "=", "1"}], "2"],
RowBox[{
RowBox[{"P\[Beta]", "\[LeftDoubleBracket]",
RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "\[RightDoubleBracket]"}],
RowBox[{"(",
RowBox[{
RowBox[{"G", "\[LeftDoubleBracket]",
RowBox[{
"\[Mu]", ",", "\[Nu]", ",", "\[Lambda]", ",", "\[Sigma]"}],
"\[RightDoubleBracket]"}], "-",
RowBox[{"G", "\[LeftDoubleBracket]",
RowBox[{
"\[Mu]", ",", "\[Sigma]", ",", "\[Lambda]", ",", "\[Nu]"}],
"\[RightDoubleBracket]"}]}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "2"}], "}"}]}], "]"}], "+",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"\[Lambda]", "=", "1"}], "2"],
RowBox[{
UnderoverscriptBox["\[Sum]",
RowBox[{"\[Sigma]", "=", "1"}], "2"],
RowBox[{
RowBox[{"P\[Alpha]", " ", "\[LeftDoubleBracket]",
RowBox[{"\[Lambda]", ",", "\[Sigma]"}], "\[RightDoubleBracket]"}],
RowBox[{"(",
RowBox[{"G", "\[LeftDoubleBracket]",
RowBox[{"\[Mu]", ",", "\[Nu]", ",", "\[Lambda]", ",", "\[Sigma]"}],
"\[RightDoubleBracket]"}], ")"}]}]}]}], ",",
RowBox[{"{",
RowBox[{"\[Mu]", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Nu]", ",", "2"}], "}"}]}], "]"}]}]}], ";"}]}], "Input",
CellChangeTimes->{{3.802584547265459*^9, 3.802584552436728*^9}},
CellLabel->"In[37]:=",ExpressionUUID->"0d545a38-c01e-4db9-95e4-f88c5af2dbb5"],
Cell[BoxData[
RowBox[{
RowBox[{"f\[Alpha]", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Chi]\[Alpha]", "\[Rule]",
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
SqrtBox["R"]], ",",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}],
SqrtBox["R"]]}], "]"}]}], ",",
RowBox[{"\[Chi]\[Beta]", "\[Rule]",
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
SqrtBox["R"]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}],
SqrtBox["R"]]}]}], "]"}]}]}], "}"}]}], "//",
"FullSimplify"}]], "Input",
CellChangeTimes->{{3.802583068883011*^9, 3.802583074697132*^9}, {
3.802584540662136*^9, 3.8025845626479692`*^9}},
CellLabel->"In[40]:=",ExpressionUUID->"fa0248f0-3f7d-4f6e-9993-42a1e4ec4f8c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"218", " ", "R"}]}],
RowBox[{"168", " ",
SuperscriptBox["R", "2"]}]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"84", " ",
SuperscriptBox["R", "2"]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"84", " ",
SuperscriptBox["R", "2"]}]]}], ",",
FractionBox[
RowBox[{"225", "+",
RowBox[{"242", " ", "R"}]}],
RowBox[{"168", " ",
SuperscriptBox["R", "2"]}]]}], "}"}]}], "}"}], "//", "Expand"}]], \
"Input",
CellChangeTimes->{{3.8025845723231153`*^9, 3.8025845743726587`*^9}},
CellLabel->"In[41]:=",ExpressionUUID->"94cc5c4c-414d-4dd3-9335-d32a6920c12f"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["25",
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]]}], "+",
FractionBox["109",
RowBox[{"84", " ", "R"}]]}], ",",
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"84", " ",
SuperscriptBox["R", "2"]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"84", " ",
SuperscriptBox["R", "2"]}]]}], ",",
RowBox[{
FractionBox["75",
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["121",
RowBox[{"84", " ", "R"}]]}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.802584574652103*^9},
CellLabel->"Out[41]=",ExpressionUUID->"316756b9-0356-4dfb-8d5b-9a6a362c3e84"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{"F\[Alpha]", ",", "F\[Beta]"}], "}"}], "=",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"c\[Alpha]", "\[Transpose]"}], ".", "f\[Alpha]", ".",
"c\[Alpha]"}], ",",
RowBox[{
RowBox[{"c\[Beta]", "\[Transpose]"}], ".", "f\[Beta]", ".",
"c\[Beta]"}]}], "}"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Chi]\[Alpha]", "\[Rule]",
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
SqrtBox["R"]], ",",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}],
SqrtBox["R"]]}], "]"}]}], ",",
RowBox[{"\[Chi]\[Beta]", "\[Rule]",
RowBox[{"ArcTan", "[",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
SqrtBox["R"]], ",",
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]]}],
SqrtBox["R"]]}]}], "]"}]}]}], "}"}]}], "//",
"FullSimplify"}]}]], "Input",
CellLabel->"In[35]:=",ExpressionUUID->"f6e5065a-29ee-4b4f-a77a-07f55b26ed28"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{"F\[Alpha]", ",", "F\[Beta]"}], "}"}], "=",
RowBox[{
RowBox[{"{",
RowBox[{
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"168", " ",
SuperscriptBox["R", "2"]}]], "0"},
{"0",
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]], ",",
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"168", " ",
SuperscriptBox["R", "2"]}]], "0"},
{"0",
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]}], "}"}], "//", "Expand"}]}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.8000027400667686`*^9, 3.800002740091992*^9},
3.800005549353466*^9, {3.8025837322134867`*^9, 3.802583740120566*^9}},
CellLabel->"In[11]:=",ExpressionUUID->"42ec6d28-d8db-46df-a550-a32767af2be3"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["25",
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["59",
RowBox[{"84", " ", "R"}]]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
FractionBox["25",
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["57",
RowBox[{"28", " ", "R"}]]}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
FractionBox["25",
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["59",
RowBox[{"84", " ", "R"}]]}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
FractionBox["25",
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["57",
RowBox[{"28", " ", "R"}]]}]}], "}"}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{
3.802583740447805*^9, 3.802680703787733*^9, {3.803115426031837*^9,
3.803115443220334*^9}, 3.803116111659665*^9, 3.803182862498369*^9,
3.803188056718606*^9, 3.80378811555951*^9, 3.804235846404626*^9,
3.8042423939551373`*^9, 3.804244366691134*^9, 3.804391311529827*^9,
3.8043950127417917`*^9, 3.8043965207155523`*^9, 3.804404090217104*^9,
3.8044142731842813`*^9, 3.804414308494985*^9, 3.8044147283686457`*^9,
3.804419411029365*^9, 3.804421117053446*^9, 3.804482073473496*^9,
3.804484154568108*^9, 3.804498839828072*^9, 3.8045688586345587`*^9,
3.80458342220444*^9},
CellLabel->"Out[11]=",ExpressionUUID->"a293ff27-c086-40b9-99a1-30c24f86810b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"168", " ",
SuperscriptBox["R", "2"]}]], ",",
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.802582647334622*^9, 3.8025826667517853`*^9}},
CellLabel->"In[66]:=",ExpressionUUID->"8a81f1a5-de33-4fb1-a7c8-ef7e5c069523"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVl3c8Vf8fx6NcpCE3vqWs+rY0SEpKnSuijFKk4atkZCQpJEJW8k3LjORb
oXIR2qXxurbMe5S9s0e4y47f+f1xHufxfJw/zvm8xvtzPkrWF4/aCc+ZM2ec
uv5/9+0x5s7O0lmqV3OOjNoA3ddkBI3TdJbQqs+TmxyAQ5KtYx8m6KzGLTNf
bJ0BRU3XPxd5dFaKEe1erTuQeytCrK2bzoqyeO1ecgMQ21Irzyqns+74Zyd1
vQCi3K0M/ePprNf6jcH8QSBNyC15jgadlfba7LDeHhZE7PTVlltKsRZl1mRp
trJArytwTgxfwkp6rJBdFpCDo3kPbTaUSLI+esa4j2/KxbXhPc73OxazHpAl
/fqCXHz0fOiUeXgRK2GumrQX8nAo4pjiTNwC1uDsoTCFl/nQT/h66MDgfJae
uidhllaA50VeNW4W4qx07X1NW14W4nRwlHRliiiLWRflX9xcBD+ruRkSdBqL
edWhL5/+HXM2K0DnxjyWb1Z6pJVlCRrC4m6mVQuz3nQbm75uK8XK+Q5M/j4h
lnTlicUvbMtxfruySOPKWSiKMVsPKFTCRqMlJS9vCkYpmxY9dWLjXIqGud6H
KdRvrrP6doENp+Xhc7+nToH9kpnU4MqG65TO6YrwKXjeqGlZ7MmGD5j0+jNT
mJui4uQcxEaUvoff0NQk9EM9/Hvi2Sg8vsBsufokIpX2j7wsZeN7sZ3Qo3WT
qHs25f2wgo0yTWTIr5iE1eDe4WCSjaoVl8X/Fp5Eb5mSs2ktG62ttd+2sCew
XG5BTPUvNsbtkzboOk/Ao0Jhi90EG8pXd826JI9j65h4heXfJFjNh5Q7YsYR
d2TF5Pp1JMx1bI4d/3cc61cuaxveQCJw0e00wmUcDlI7b7uqkKhPbj4uuXMc
/1zas2P3LhKhpH/Wq9IxhC1Os+s4REJeI7pxzbcxbAljXLc6QuLtIybtYdYY
7M3lJ2tNSbTZV/0TGD0Gu74Tr9+dIKExs1rc9MwYrgv5XtxgTaJbuegsnzsK
8+j9Ew1uJHzuN9526BrFsZLMKY4HCanR4Q9NtaPQmDqUIXSVxN6cZYsKvoxC
5XsUc74PiejjTtnRIaOIupcYjCASyl/9usS9RtEerxgbe4Na76pISb/zo/jH
Iu6U400Sg78/nztnMgrX/pfWnFskdIMX0jVkR2E80JDwIJxEQ5/S3rQFo7Bw
kzFUjiTheniHo8KsAKu2zw15E0UiXvYMRDsFcL9RL858QELV363/Wo0Af6Tz
5krHkSjsuik9UiyA1fSJ31cekuBmZZ2veymA/dLf/SsSKP1kCmKMngiQtnVx
2un/KP186nNYEQK8VVd8E/OYhIG+8DKmpwCtGvqDXU8p/dJldOScBBDcMcmf
TiRxRWqjS/g/ArAKN6iJJZN42mya76UtQJntC+npZyTUOtUmf6oLEDvoKFP9
nER+/xJV1fUClMjZBCW9IHGMM2IXtkIAR6csdfsUSv+xyvjuRQKs39kspMgk
4TmTQWoLC3AwvC2nnGIxkbuiCQI+6KWyhq6plL5SRm6mTXxoHni3ODKNxOdl
G5kZlXzkDFfwpdJJGCnMbxXP42MP485oCMXNa/qW2r3no0p/V+8QxS6big1Y
TD4iLb0fGbwkMav2wn9FAh/E1YNdcRTf1wx5f+U+H++vjkc2UazEsBskg/j4
Ya/sJZVB4rWe7qrNnnzcfEHa7qZYx3j1iVAnPr7LbF57nOKfpsJ3Oyz52LG+
IMyOYrtT7Xl7j/ChNOBgc47iUSvWRJwuH7G0jd4nKb5p/1hFoMHHqeenH+2l
eJmLn53JRj4MT0ZFS1Oc6m4ZnybPx8L2GNUW6nt2X9MiaVJ8xHPtNWIpLgtY
IWotwodXj5abDsWnQye1vo7zsPLMtfRWar3Dd+svLxvk4ST7Xaozxf7RH1Pc
Wnm4OD9FvZ/Sb8mjBy0VVTwYPtsmeYLixMQrS5ULeSi0+kf4PaX3NuYxgxuf
ePC8rFs5l+L8THX/tnQe/stZv0ub8ufYe/r73U94mLfEUsTl/35+4Q7ERPKw
Q+YA91/Kb888UokbwkOR75mcKCoPYiVZx429edBuWq12l8pLHPvenZQLPBwP
Wzn3CpUn5VqXvLlneSi4/INjmETCuHOTSrY+Dy3uMctznpBo6Zewk97Nw1Wp
R8VnqLy6cvofum7h4ePAwYABKt8RMym0ddI8yMnXDRdT+V8tEqoVKMaDsimd
Lkv1462E/eXmKS4cchJlj1P9qVm2piXyFxdMo57kSKpv9grzlg5Xc6HX9SUs
gurj+JqOgwbfqecb5RR87pGQ3fb03ZwsLtbfNqYtCiORpuk/YJHExeoAi7fv
QkloMc4ofYjhws3HNk8vhPLDWO7OBV8uPBZdS10dQPlhOp1b7MrFAd7mKhc/
yo9TjeOrbbmo3iI7+fQapb99nG2DARcJjR4N36j50xMgraW/jAuW9juvYgcS
830zhyPnc1FlsVv7jy2JLVcPJrVNc/DXwYf7pM5S/XTxne/dzoG9lVFLAzXv
aBZddempHNQ+yber1aP0Nb9+e+IRB3d3l43NaJM4dGQ5Q+8eB0zGmIXwHmqe
6Ru/aHXjwCgwbcdDNRJ/q7/zkNrDwXE1euv0ChIHVA5vOKPCQbzcj68caRLO
yn1NaUocLLhz0vLrYkpfRTnd/TTq/XVBcjXCVD8W3pC6WjkCtV9ZyRPd1P4l
plCYnzOC9r+0n95vZePW3E9eS95SrCgaMk7tJ1UTg22psSOo1j1br1HMhnW3
WWbz2RHojvT8a/mcjZD2IWtlsxH0pH7Ls01gI7UpVMZTbwSns/1W7Yhig1v1
xVdy4wjGwj3+2xbAhvD1g7EhvcOoqvfI8TvBhoGH76xC+TDyHE9c+mLMRvj5
V+c+vRrGiLzahS/72FA8sXz7oPcwdMwkZ2c2skFs7SOPLBzGz01337WMViJk
nZzmAGcIFwaufWI0V6JC7siT4JohDNyaJymdV4nT8z+5fHg8BFqGzNv5dyrh
0xEqIac2hNI2zrz25ZXIjl6/v9f8N7JMhjgFSysgZtFjI6T1GymZZ3Rfcsph
rvg8UFbpN6S6VW1by8vBTV3NMhoYxAcDlthfweXYwJLf/er6IDQm/l7o0VOG
KzeaT5bYDlJ6VJ01+1aGfINHVzsODuIxnF5bR5XBqnr5e+mlgxAs3zcxvacM
sf1Lt3qnDODRLqHLH0NK0Z3543DknQF8TB7wf2JeCnWPCJf0ywPo2Lu1IGZN
KSpnF6e3aA3AI2x7QzyrBDRpiXU6ZD9UmBWbgvu/w4MQklsw2YexJYGFpuLF
yJ3H2r2mtQ/rgulXvhcVQbLE79Te/D6crTrnNR5chHSz6Qeud/ugEuAy4DBV
iE7HManqVX3Yo214tK62AGoq77cOifah85C//emwAvjz3U1Ef/ciUecZzu0p
wIrr3DuaH3ohzf0c2/ooH0ejfov9Z9iLIItSm/ADeXhyMn3dB9Ve3D4YpGow
nIsh+fN6bOleXKFNKupE5eIWszdIuK0HHPXOUHZdDnK+dcycc++B2sxQpIEh
C6p99XyVhG7sf36Y1h/7Ce4jmzf8FdwN48jE0X3vPuLjWIDljFM3vu4skj5d
/gHaNOXCsp3d2Ox14UngyDscXe39wPFnFz7dclj6Z/YVYpQrSk0+d6HdJnRZ
x1gWGreumrMzsQvTGowvsdWZsGWUONBcu/DN+WfWtcA0eFjK7kqS6IJouImS
jEUism1dXG5xO2H72b9wrO8xZs7nJl6q70Q++eDYVlo8QrydJBgvOrFtMIXX
JbiP2AfZTU37OkFuTn8fdfkSkU2eui7j3YFY8eBf5NpUYqYu480fqw74SJts
LTr/ktjXJtzbqd+BFBGmWbZVFlE6lGryRroDRg8cbbTZb4gmiSklk1e/QFZ+
bnFY+ZlQpB8214j9Bfm7gZdcRL8SdrJJt+Sv/0J8Q6G6//Q3Ymi9IW/Q6Bci
aELLWwNziNn98fn/9rZjQiOA31ZeQOgaD4+7VrYjusu8XG64kAg109l84n07
1BfeHnGRKSYkbQai1wa3Y+mr0cRezxJilf9u+zyFdqy1PhLy7lYlce7mvfhU
Wjt2NcxGBLuyidS7HZXhv9uQ+3pK3EaBJLYlhO20+tyGS2b+Qk9Cqwjd7Ebx
P+ZtEN1nasMPqyYyUp9pFu1uQ3zX96c8hxpiWfxFx3DFNrwVb4gzMawlasZo
EYY/W5F8bw07X7GeWHPNXDJhsgUPa+lSJvRmYtyi/+LW/BYMrRkb+K3QQpRp
+VUW3GlBx/OVH023tRLuM8/uDim2oFLsfNDzD21EboBgAUO/GcE2WvpKSh1E
jPW/zj8lm2FfdoPMLOggHHXkyhwamsBOtjoa5dJJSIrsDwu/0ASf2IVWw+Vd
xJnQKPGOyEZ0S6/7oVrUS6g5rnf0tGzEZrMod2ZEH0Ez+FIssa4RPgrMpyyb
fiJDovOmenYDLrqsO3r/r0Fi+u42WkhbPdJPOjyMKh0m2BeL7GRT67HhlC+j
33aESDKxKMhwq4epUWbSl54RwkAqKLiWVo8DTu484QkOIc+T6TzPrgN5P6Ee
N7kE90eqzpyHdTg7tdQ4R5ZHxEVXCW/YXAetvPDkHYf4hPOVc9ZfR2sR3j+d
KTTMJxjHJ3OOsGphXEEdbqIERO+yVQHeprUQORvZ0DA8Sux4dGm21KsG7pY3
k336J4j5viJnrHRqMBuVdTv34yTRbBn3jb+gBvofM9tK7kwRwQo5vnJPqvFW
zfiBrvEf4sScY82vHKthYea1w2TnDLGpvVdLb1s1hGJyVU03zhI/EiWnXQp/
wsndedIkeg7jeVCyxdz7P7H21/qA6hVCDG/bnZ8fnPyJxjfu+vQXQoxVa628
WYM/UPmMczG6TJjhyswcX0L/gQq1r9HWp0QYqotcgva1VcFgaXPELiEag3N5
0yK3l1Vw1AzOHHtJY1zWYq7+qV+Fc6kmvO2yYoxtT+0z5klXIfDobYZhgxiD
L7JWc/svEsI2IYEuT8UZHpWJh2Koc4So0k3bnXoSjB3qZ+sLD5KIicmIiP17
AWM0VsF2TIb6T1nRcdtbYiHjlfgPzfEZNkoSM9lcv4WM/wFnCLRb
"]],
LineBox[CompressedData["
1:eJwVlHc8FP4DxrnOColTGfmWo4zSQPmW8nyU0ZAosiUdSkNUooz6VspsoqUS
KRpGRkqLQ1FSIXvdOePC3RknI79+fzyv54/36/X89bze6p5+O7woIiIi6X/z
/969U9U9dnkLKh5kVgvCZMk2DY6zk0kLBoT2h/R9ZMmmigmT8iMtuN+Gxa/m
yRITJS2JlNoW8KaX1imEypAluaGJzvdasbQ04zDPQZpQAuc0M5Tb8fVt+o8j
llLE2SPj+0vDdoRu8BMsFZMiOVvwScamHf5GBcw5TEniuWB/fm5EO1KKK5bb
mEuS4o9Fl6nD7ejKmbP+kZ0EUXlhe8FRrgN7HHxdxVUlSEASJ/Spbgfi4+xk
3TrFCT1g9gG7PR1QiNq6tvGoODmryjBPrerAnS5ufEiyGGkW+2081tuBEx7b
vk0fFiOGvFh9K7FObPeu7LZZL0bYzIIFw8adYF9MidjSTCVmh6XHN6Z3IvKN
ZIqGBpVQP+Q8Z51lIeUfpTLpbxTi+sTyodE9Fu6oO9VEplNIbnzz7ehXLMRe
DZ+8+R+FMHzFIw34LDyZ95LFWE0hpTTnvWfd2Xj8pUXHIVWURHiLKmms6QKe
h9gFJoqQVpuEWSfsuiAlUvK+8YQIWW28RKzSrwtyJp1iGY4ihCNnLwhI6wJv
3xGTM6oixKLw8ediGgcBk+saXm+dhoSMzRnPAQ50Gt5Z3E2cgqOW8/vVUt3w
eSvVLe41hYwNjOmZmt2InsGXm2kwBevgoNAXTt24Ebf1aW31JBI494Oppd0o
76Vz19EmsfgD3z/tdg++9rr/a5U9jqDmiayT+T1oX3lx1sYL46gQivGsv/XA
RlOTneU2jsPLVA4LxXth5GOztE96HPm3N/huCuhFtkFzdPKh3zAPvObZt6kP
Z37+ezzHbAwJV5KS3+7twz0vhd5t6mPoefqo/WpYH1Y8lHpi8UeIGNZrd+Pc
PkS/LcreUihEjQ3bOWYBF88Dkx2CDIRgLFm1c9koFwPHZpU7GY3ibHvdxoCU
flwuUGv5cHwYrYVbDwUV9aNptemqOLdhrL32PiGsth+JBQdr4syHwTPP6I2S
GEDNScX9unOH4f4k9FLKgQEsfPdhorBwCGsDNZtqDAaRw39W8kpqCAnbb1Kb
rAYhP9su5PywAHztWcs6vAahpN0RcapNgMdNwtP9iX/5lPyd7jwB5ppWLhaf
HMQ+2/PHchgC/BZbU6jqyYNkpgr72Sc+0gKGvtw9zIM1JerCaD4fdm3POtVP
8TCY4+K7N5WPrJd0Ge3rPOQEe+5+HM6H9wGZ3YZlPChfVThYY8RHTXUbdZsu
Hyvv2pxgPOch63aETZiAj6tDLzvXMAZRSYvolhMRoL5VNlbCbBCc6PNhybIC
sJkOPgqag5gfcu4pU1sA7TOL5rSwB3DR9T9J6d0CSMM313D/ADzUwt4nVgqw
fEdtv3dIP2bfO74iO3UIUyrng6U/cbFk3vHyDTlDqHAotmdkcmFx6Zh7zbsh
xL+0de+N5yIk/GiMsHEI4sXupoF7uejZ7d+zXn4YrxhjuZdEuHi/8ND9itBh
/La1ytq3oQ9+Dxiz2btGwFvmJ7ukswdxwTfvxO0dQVS8g0RWVQ+e21Rprzky
gtpO9bu2r3sw8MfINC5yBP0cenbv9R4cdJEO+LdoBKq7JoXem3vgq5jzI0Z9
FG0ROgxGQTe8I6YTVv0ahfQWLUw85CDCzVCjfWwUbF2hSkY8B2mG+zOjxIQo
jLyywO88B12d38vb/hHCgT40staLAwbSxiJthaA3NOjXLuLAc8zKuTVfiIpT
5xbyMrrg7ntL7cKZMZy+f90tr4SNiQapKn7sGNQWbD1Pz2fjxubgMNdbY5BY
KRp8/zEb37Qd21a+GEOqcphVVSwbZt1zkpvZYxgt2nFgwJENHcYVTf1Nv6EW
UnpPS8DCsNvFJS2zxqHHU/EqWc7C5S/CJkvVcSy+GpOvqMmC3nqfmBytccRI
dkUfVWLBe75F/wUyjvHBdh8nURYaGmdk6geMw4VTHVjyoxNvHcL1L9aOo9h0
VPnPyb+esw1cY3BnAsnr7tWHf+/A1c+6B5+mT2Be+sJbIeV/PWrZdndRwQR8
6TS7iKIOZK3fRFX6PoE4kWrH92kdqNdR+TopMYnNp0bNPp/qgDblLaPs6CQu
WSutX6ndgbIcsctOW6cwuOaU98PIdlTrvSr+7jgF2t3ml8qn29H4+PDIVu8p
ZL8Ku34jsB0Dd386m5yZwj8c8dS8ve2YG52+SKNgCkxjl50HTNrhtXfb61/0
PxjOaC44xG0DVTGeEz7+B9bmGp8/1rVCYSBsloLENErDDPiG5a1Q/7hvdSpt
GqdlZi/LKmiFSci6iI9Lp6F/m37rx41WBLNZi+R3T2ODVAuv0qUVA7n6Xg9K
ppFfrfb2CLsFv3R7/D0tRMitTjeXGSIt+Fl5nndOTpRY0N/HnHRtwnWTJHP7
uaJk/sy5ivLbm7AjO/fWIjVRwl4XZ5Fr2oSqBJZZma4o+eWv5rNQqwlle0xv
SliIkkQvWl6soBH5wknTqBBR4v+6v/FZdCMSNI5du9QrSuozG7jXyxpgf8pz
9a0SCjnmMeBZ71KPhCRFceEnCpGy3aP807Yede/KandWUwj9E7ekxbIeu6hL
jsu2UEjEAqtqimE9HGOHXpwepZAp/4NlGTL1cL53bqWPzgzyrS95l++7n/Ao
SVtqeGkGaRsI1zmo+xMHpbn0KmcqYboVzyhRrAM3+BVVeg+VNOWbOTySqYNv
TyTH0odK3jhyAq5Q6+BTqp3x4ehfLuPaFzhcC89w75V5MVTyTj5TP6KmFk5D
fz/0lkpWOHtIZsfXwqKp3tWXLkZSog87z55fiwVPyhLE+8TIvTbh829GNTj1
cuNOudsS5H6p1Ls5577jSNrB/NXLpcjZLQ5F8TrfIEMx8lzWNZPsti4w3vr5
K8wP2cXrXpMhmy/YXzZI+wKlQjU/c81ZRNJoYssiViWuBly8suKnHGnRFtHQ
06/Ajojtekn5s8mSVU6LjSs+QtflnH1qqDyJTNKKiospRx1H6sE1ewVSlfdV
+b59Gao8u0wVFtCIwO62W4V1KTqoj8bi6TSiqNcqcmBLKYbT9mUqL6aRixJq
vrIWpVDmcuer69GI6rPNUQ7rS8E4KhAuN6YRj8QMlsjSUoyfnX62zYFGTOjp
co+kSrH4obJK5CUa8TUNWri2jIk1lk3VMtdo5HkW44x8MRNWvXcuXE74u897
caHvDRP+egtHEpNoZD7jzunkPCaK8hZXpz2hkc6MdEmNh0zsKDOIYJbTyI3i
j3eOnmPCa9/Iuk2VNGJ7wKmDcZqJoJkFQ5VVNNKTo13kEMJEkvXaPT9qaeS7
348VG44x0VNH1nWyaGTA+8WkDoOJ8SDKkFc3jcz4Etug5cGErCozvbePRh68
cTLXcmVCf7flPD6fRjYMLi3TtWPCXFSq6tgIjRwi+xuW2TDhmFJxbmyMRnSM
RYMMrZjwNY8xDpmkEZ/58snGm5gI7d4mmJ6mkZSqvJ1mZkz8DykEIIM=
"]]},
Annotation[#, "Charting`Private`Tag$47516#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVlHk41H0Xxuf3K5ItGoSnkhYhEZWyNURUQmRJoihCIsuYEAol7UoSeSIt
TItUPFI63yL7vs5gGGRkH2PGNhqv949znevz131f59znKHsE2HniBAKheKn+
3yMHrTiLi0QUZKWdJzlMA1aEHK9zgYhItSfoVWM0sJbqmflvjog+vfikdGOS
Bhv0Lv4NmCKiS0lcEeE5Gvy8+UCEySKij401LqtE6CCi2b4e1RLRAOVZyHEV
OiSFnLa8kkZEOckG0hVn6PAGC35B2ENE0rrDPP0+Ogh5WugouK5GDlb6KQKh
TiDSfvk9T5RGcZZxSTc1u8CuJPWMWpUUeulVnsnxZUDEhJHf/f5V6K53IGmx
rxsKKam+uTaSSPNbrvwbHSZYP3DYIHgijvreD8V7K/aCRXqx9cFRUXT5pOKP
APk+eFUe1hbsshJpWTUXWCv3g1tckmx99gqUVfTaCs7+hqjTy96LEYXRhVnn
wwFfB4CwXQlMry1HXgK9Zw/1BqHj1pP4N604yvzkuTlxzRCsFfXO4e7H0Dvt
bqGTSiPg9r3m9kZDDGU/Noxjqo5AZpD2xaO7MZS/uS/5vM4IqHTO677diqGt
t8ofPjowAlpv75SeEcdQw9yRHD2/Edhv/amnqZWA0k+et6woGgGfBwLZPG8C
Mhr7+ETbdRTO71YX6ly7CAZhgTKDhWMQJPTldeiqRfiZnSsiVzoG4a0Wh1fj
i3DQnWJoVT8GN8me9w4NCsBZQv16y8AYUPMzFArzBEC/HJZuQRyHod1rNB+Z
C6A5vbCnPGAczukud7K5+BcuxN+IDNaagDN7urNLSvigkCndzPBkg1f2Hkfz
//jQo0U+peXHBl+FxGWVVD4YDttkXwtiw0W+qVtdIh/Q/d5Y42g2XIYcIv0U
H+Jt90xNpLAhyYIcNc6fByefRhv9WjaUOYnbK+yahy1C5d5ZepOgfkl/0f/F
LLRU2K2U2cQBxLBW70+eBWGkZOW9jQOOpmccnBJmwX6322jJTg7ESN5+Q/Kf
hecBNPdEMw7QXzCcpPbOQmWdk8Z1Lw7caLzyIa96BtTeURJ63nCApV7uzuVM
g4E7epZsOAWZjGOlYSY8sBGXfhp4iQs6v3XmW3bxgGY3MaAfw4XSYekdO1R5
oP/13IL4bS6wZurTWJI8MLF8+KX6GRfUVx8JPtbFhfWK6Rmfy7nw0dxs43YK
F/qleTlGCjwozd11hfl2CrSx9bcjSnjgUEAsMMiYAnX3B4PBdTxgfeOMJD+c
ggtPzSNC6TwQqfrgZBU+Bac2r72cOsEDq98aWkUWU5AoV6R/au00tMlv6X7Y
x4HHBcMJLMo0DF6VNbSQ58B5uxcXD+yZAdHI3ImHoktz0PareGk2A5qXDmUx
FyZBwbyJIGM3A6H+kaLhvZPQ4sZzVLwwA8IuA7S31Ek4u3d9UEPWDGzelU9e
bTQJzd7S+pPEWfBg2ecy3NnQYWF0LGJxFq73jnuo27Oh2TI5sFByDqhdN+Qo
5myo+lIUL7R+DjhN3yKltrHhID21o95wDvDoQynX/0wA+Zh6nUrEHJC0hxpt
JSbg10vtlSPzc1D0SPXAH8cxeOl2OEl9BR9EXAbPYIZjcDCfXrdDng+OG17F
KCqPQe39CxMWanzgUDehIyOjYMvO52db8kENrTfIix6Fu0i3WXcpdynDMtrh
2SPgHG+4MU5pAcgkbJ34/BAoRxO6mw7+hR1DdK5WOgs+n7UJyqhchBD2drU1
cSxwindkiTEWoXDmqqvAlwVBzuXNUexFMBFWL6vZy4IVl7iV38QIyG5T+GOf
lgHQceLc6tQhILKron6W2AAUja0JC75KQEWNJ6LlwvtBmVNGqF2HIQHt/ae/
p/uhdfix8/mlu9/PxP/8tugH0zvug5g2hqrHqUc/yfaD4iHyP7JmGOoS4ysf
zeuDrxrjDOSDocUDaaUJf3qh5cPH9KiPGDKzmpi9WN8LjyZIvuZfMXTD3nT7
8YJekLa9LDlXgiGpMyOPVOJ6IWVnra1iK4Y2XjE4V6LUC6nX0oPUpzHkFX8v
jSrcC1/qdSZVBBii3u2vTxxjAtn459wyYRztTL+19/RXJuRleF13lsWRWVHn
yr+OTGi1rt5ppoOj99SXeuUGTBBazpfJ1sORfFqAT+IGJjBppV5txjhqmxF+
YNnSA6n5O/LirXFEpaVO9qT3gERxo6iQA46ivmjahpzrAZlrR5JMXHC0JcJR
Kn2+Gyodu5JHvHA06zIcoF3aDYL2D+fs/HBUYxhV/+tON4wduSJzPhBHGetW
a51w6gaVHapD2qE4ChG8vDu+oRuwA6UrssJxdLBHbzxmmAE9PjleRVE4+gfV
Wq35zAATM7O64BgcjWe4v3sTyYAfEh1tVddw9PMqT9zYggFDVDVW0Q0cJXsk
+LVIMcBHZkSDdAtHPqbrarw7uuDYrPoLuzs4Mtyct+1vVhdEH7siyr6LIymh
A7cSL3TBq1SFXun7OPo9QBvesqcL1vT86/1xiQvL/A4XEbpASoOVXr3Et18T
qNZVnVCiQtF1WuJTN5JW9j/sBMPSjqfW93Ck46PqQ3HtBJt3n0apS3rCh79V
iG3tBP/stPGzS3461I+qZrA7QG/tTyJ5ye97sd/xu4o6wDPIIrA5Dkcxo5TB
itgOYDQe/Uq5giOHWjELV6sOCLWuJzlH4Ej1/bNXk3Id0GnFY/qTcbRwd6fw
dSYd/MLsV+X646ghoNxTkUqHzs3/lqw6h6Osoy6/3gfTQfvxIuW6G45CtSc2
mxrR4YYSUVlkaZ+HV8fGtQvTIcbaTSXhMI7WT8n9Pt9Ag29SDif+7sMRp5lq
SkilAfUrbdJpKT9PHjXhattp8H0lqSVhKV9+oV4exdPt0H8weoOZEI6MneZ/
2KJ28DtcUkydwpDM3rvKrIR2CKZm7H3HxNAf+Y1Xw4+1Q8oAi6Rfg6Fvc/lM
yXXtkJ5l8phUgKF7HYeMs1htsKFjXIT6L4Z0nwYuVoe1wTs5a9WTvhgSjRQ6
ddq0DZr6HBcoVhhiuD75zhVvg5hZOWKmJoY+7Nu+PqGtFTywNJfvEhiKU/oR
uS6jFbJie1zzhwnoOMGBkefTCvc0X2zy/UVAGr1/DM13tkLf3HUlSCeg5udS
C/5lLVDb0DdWZU5Ar2JfuCy73wKGFg0FRmsIKPzs3q+PnZfYsa30/tL/2ahy
OhyNNgOX3L5RfEwA08Jcun1BM5gp5ZaWhQigcjBebyi6GTS4hZ+ceX/hYk7u
rDSxGRh0U0ZIzwLskPSP3c9sAupR1kyg3QJMBmlIBr9rAk+/wE3FxXwIMszZ
1GLRBEUXY4efRszDzsxz75fLNoE5v8/UtnYOuEIqerv7GiGz4dT+B7JzQK5/
bp18uRGGJ+XTc+JnQHeXO73sUCO0mdwr9vgwDdMpSmdn5Brh19rxGr9aHlA8
noYdz2uAgPEo4freKdhbfmJ5QlQDUB9SmIXtHJjdpnDvi2UDTLlKHJGFSZga
3nZod0092J7bKkQuHoeQz9luyV71EFpnkGWjPgrTkVtCZgj1UGv5If5p0BDM
Sik9+7K7Dt6led5Jvd0PYR1pnxUbaoEULf7K15kJ81nyVRG+tdBHyvxYPkGH
Bd3VPKNnNXAJzWyhU8ogknBP9JleDZAthwJkJ3NAUCm2gdBSDRUUp8s36Z9J
mKuQ5U+RamCa2qtHZbWTYlRiTm/KqoLGMc3OujYmaTlbQI4zqgKj+8mWraos
knDsbIZ5UCUkze/ULf3NJsUfIRe8Fq+EfQeN7JVWc0kicpxqkdcVYLvH1Vks
aIaU0OPf62NSAQMlwhoGInySaM7IdFVnOfjtmyjPpwlIt4K8xTVCy6Frd/ij
iWDMWNxwQPmOVDkcUjiuZZK+zHhVffcRmwNlIFEqQW49JWJ8P8XF40PPL/iZ
knzhn0VR400rC9WWX/sFVc9zGzhREsb/A7/rcL4=
"]], LineBox[CompressedData["
1:eJwVk3s80/sfx23M/ZK+RSmkEEqERNH7Q7l0IbVWUuEsJKmVS4dc0m1KQlYT
WuVyVk6KEOni8tMR6aBciq0jlxg7NJtdzGrH74/X4/XP6/nf82VCpuwNxSso
KCTN5/9NaPUkemmOwfvCsk5+shb60z1Erm46Bh51mT05B7WQb3xcUuXBMRgi
9B29o6yF6KMP4pX+GgMi1ZDxIVQTmTdOn2Hmc2AwoSvo1kYNFMeeKz9XzYH6
Hp93KZgGei8m8Hw/cqDDjeLa+kMdnVpncEqsPA7MPSb44yXqqDrfPcI7ahyo
bXUqDSvUkcdZGnnCewJ+GCRZNxipIfpNRkHd0Qk4en+Dab9cFXFKH37LTp6A
euXvya6Dqih9+FXg5qoJ6K3BR7CLVVG330hAujEXpLY2xGAbVRSyZgNxnYgL
ta2FXTV+KujSt96tUUWToIdePTKqJ6B/aneejHs9CRkRxBZiCQFtojXQk3sm
oZF51aeSRkA8jz/H01SmQHTlE/NHOAEFPk7KLDoxBUn+Zi1+i+f3Z01Z3fY/
QND9vo4Yq4RmCc61y8g8qDWP/71gtyJiRgn+vneKB33UVNsDWxTRvoEnQyYJ
PFjsFLNojbUiKn+xUtPiFg8O6MVYrNVQRGEnNIMcmnlwTzy4/XoLHnV3Dij5
WE1DUazz52RvPCrPp/ol86chbJlLavQhHGrDqGM6Cny4XUkZ3LwLh0avX0ku
0OIDs3ahr5ErDi1PvFz61oIPr7YG+9sa49DVwxdVNYL4QBHoOVwcUUDBhskN
OW18GKYrvHkYrYAW3I+1fVYsgMNbIJG7TQ5r9GPfuVcIgBISQzFeKwfPzJjA
7noB5CpWceMxOSSej04X9wtgeBnXqGDoF3CCznBcdWegQNarXHbxFzSsOPng
fdIMVJSeaUlp/QmUwpAFI/uF4DoIWRMUGWTE597NOCqEE35E86rDMnjq127h
fFoI903sXXK2y2Dq10a3jGtCGHz+xrhklQwiD2lEOb0WgmdIVaToyxxELKro
SjcRgQ7j9KiW9xyEUeX0Df+KQOBUMP3TUQrUIw6rvklEwP629fp9cykwHY6X
pRHEwHmq707Sk8L3oU/vBozEkG9GipUJZyEEmJJre8QwZG6r4lg9C2TJroB/
qsUwvPp79sZNsxAYkWeYekECv450LcneLYG5PrX26RsS2Cf0znjjJoE72+OT
D+dJIFHpf1ck9hL4aOE/sL5SAs2nR2h3l0hg29jiAvaIBBJi1h3PGxKDZchN
UzvvWUi19Lt+IF4MM0eurvmqLYUH6y89dXwmgqy/xSyvZVKId/+dYvqHCKxd
j6VXrJZC94ZytlGuCMKWe06mIinwdS1POl8QQV+/YpldlBQecdK8FPeKoO7A
eburPVLYYXAysk8ohGt7zjrb352DSZUMH8xTCNkfrCJLS+bAq6TRKX2TEO56
Ddwzq5mDptyRc7o2Qih39VZa8mkODPlVz9ESIXyxNOiQqchAfyxrwoY7Axb4
upDmaBnYqdvOIdoMNFcQsg7u/AnvdCSFFVwBKC26PXpe+guuS0SBx17yYeFU
svZClXmvOtRzNCr4YNIS7lg879FqfNH6mhI+bEl0obbMe2bdWHTMNJcP8SPD
ZrpBcpiuDW0jxfFhqsoutLBJDo+7du7UdOLDv1acM2RPBeSQR16V9noaPrdd
4V3WwSFKv2+X8hce3NrC8CDp4ZBJZpVbWScP9j6ryjMzxKEIibZqYCsP2unD
25qtcKijQzux/SUPmn9zy1XxnP+Rt9MKKYMH1WKZW1oiDvXfNE+KDeUBfVUM
LXMch3yJn29kTf8AUgLZMa8Jj64Vf5ppCpwCOmORsrgVj/hpKQF5xCnorW/u
IXbikbF+70ic9xTsV1oTq/UVj1hhhtt87abA/4agMkWERw39YU4Hlacg4P7l
9ccsFdFf8p5znLJJCG5irnXIVEQTFdmTFaqTEKnBXdkeoIROkXfc2N3BBePH
zXTlCQJqjXW57V82DgkvthJ18lWQ5UCGfX3NGJxmRlY72qihpuASg+iVo6CJ
30he910dLfKhRSsXj4DHyX23rWiaqOvLBXLqoWFYUmtI8TDVRk78e6T2nUOQ
HXX1pu1nHeQ2uvjr4LZB2Evdbc2oXoCKZAXUJ+HfwOrQZVJxki6KpR25smLH
APSOqhXSSAtRpNpKwceWr9BO/u620BhDPWURSU4X2DCo9FByeyWGNgZsP9eY
wIYZZnjZUnMMqV3YkrHrLBuWcrnLTawxxDUpFoWfYENINF9ssxlDz27pPXpJ
YoP0kvyJzwEMzb7xpzZYscH8j6UG1zIxFGx72NS3lwXOXqxOTRqG6NlfmvQ/
smDX+N3ULDqGtEt7ScNtLDhjvUKYw8DQYvHPXSmNLHj93LyT+RhDgjdlxz+W
smBvsz317TsMwZ2ZyI5LLAgNF7p4t2Eo5y2zsiaZBXHqNYK2dgytetvOKohn
AcN3029dPRhqpvt/SKCwgNOLXIaGMcRghut6HmKBNA4vCB3D0A2zPk/X/SzQ
Wva2ZHwCQ44jl0iOe1hgF+SlPz2NoeWMOKm1Fws8cGrtMUIMuZa/zljrzgL/
oveXJZJ53t5GstaVBREe6ZsTZRiy1ejYYOPEgqQxH75cjqEXvfme9vYs+A+t
Rcto
"]]},
Annotation[#,
"Charting`Private`Tag$47516#2"]& ]}, {{}, {}, {}, {}, {}}, {{}, {}, \
{}, {}, {}}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-5, 5}, {-2.320700868212505, 3.686986570701582}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.802582668143413*^9},
CellLabel->"Out[66]=",ExpressionUUID->"e347d9a3-a698-43bb-8bf2-2715ea5cfe7f"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["NRJ of the Fock orbitals", "Subsection",
CellChangeTimes->{{3.80000064992311*^9,
3.800000675071621*^9}},ExpressionUUID->"2e29f87d-b002-4387-9dcd-\
1e29397736f3"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["1", "R"], ",",
RowBox[{
FractionBox["1",
SuperscriptBox["R", "2"]], "+",
FractionBox["5",
RowBox[{"3", "R"}]]}], ",",
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"168", " ",
SuperscriptBox["R", "2"]}]], ",",
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",", "0", ",", "5"}], "}"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[", "\"\<\\\\text{GS RHF}\>\"", "]"}], ",",
RowBox[{"MaTeX", "[", "\"\<\\\\text{ES RHF}\>\"", "]"}], ",",
RowBox[{"MaTeX", "[", "\"\<\\\\text{GS UHF}\>\"", "]"}], ",",
RowBox[{"MaTeX", "[", "\"\<\\\\text{ES UHF}\>\"", "]"}]}], "}"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<R\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800000685747664*^9, 3.8000007004241867`*^9}, {
3.800001148319057*^9, 3.800001352416725*^9}, {3.800001415423552*^9,
3.8000014975247383`*^9}, {3.80000156302775*^9, 3.800001563452786*^9}},
CellLabel->"In[58]:=",ExpressionUUID->"dc9b02f9-e10a-4196-842d-f4415b6e4ec4"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVlXs80/sfx83cQjHf8+tXqpHquB5xSpJ4f+iCqCQSpaJcQkKhonJyiUqW
iEiiXEMq5ZKQdNhmaybklsvcmttmxsayX78/Xo/n/88/nq+NHhcdPCUlJCQK
f+//PKP/ltrLpIBLzAKzdDWGnu1WyGYJKfBZ/MqPsaiCksj3vFy/UOHF4R7U
cFEFhbISuVYnaTCXvFRpGkhAb/ZzcrYk0kDD5nyKiQMBzRTaO+IbaLBh3yW5
p9sJyCeQUFGrSQe7SlpK0qIycv2VFGHEo4NHyN7AuTvKKEuBGkXYxwDOguVZ
zStKyNws/GTkKQaoU6Z8La2UUG+ArtFMGAPMY5LC5lYroTXMu6MtRQywTghi
qlSuQg/S7GzilFth573SUI7EKhS1hb5K3NMKksF23cSXikjD+cbYBX4rXMPr
mcfcUkT1cfr1vauYULKzZdnNVRGJJu4HVVsw4VxKLPG0giIKeXP4W0g+E/Bb
06gXghWQN7Q+ngxuA4F2mKbtUXkkkTNf3XO3DbwpZqbvDeVRmtT6XsqLNmBt
u5QYqiyPmslexMKONuBquvO49BVIy1GU47nrG9CCInpeH16Bxn00i3/g2iHl
IC7B9bQciqTa0Wiq7ZBjOfxHoqUcWqMfPF2zrR16w74ck/1TDlnzagwyPNvB
dlegU92ULCq87vDOmdwOWsUS+7dHyiLfpOu1DFIH3I1vVgsrk0GS/Jz+usIO
qPlXNSMyVQalOzdLvGrogKwWheb6GzKIsh7bkzDXATKcoQtDB2WQbn5Bk83x
TlBQe05Im5ZGkx/aGA1q3yFIzXs9mEijgBFtVnlpF/i4fzAlzeDRwKkuuU/k
LoDNRYH53Xh09HucPm24CypTdR3ZX/BoJ3Xs6ohqN3QGUGW5T/AI/zpXefXt
brCjDtXz7PAoLWKjedjpHvA65kT0KJdEn7C1j02U+6Di/s+tPzJxaHtCc+0+
3T6YrdnoHJeAQ3kyV4aP7O+DbZTqEvvrOHRP2LHVN6IPvjZTn+xyw6Fj/cn/
po/3gZHqgVJfIg6xi5Tnlup/wPKdG9mCXAkkvzFas3/nAGy1X3mZkSiG5t0P
tt7YNwA78nYYO4WJIfb4U+MNDgOQdCmpU3xKDJKkSqsTfgMQtpTp8EVfDIvL
k96dmQOg4b+9X5axDBO9TgVfJQeBfn5euGntMrSkaWrXtwwCY39Tf/FnEdwp
3254umsQ2I2bhU6vRGDNsDBZHhmECibr07oMETTKnrTZLR6E9v+qB4qCRVAT
SjpfaTgErfs9KQqbRVDiKCwsezQE5wt+dhvcXYL7ylSd7DMsKNN50LvFfxGq
jDe8OxTAAuOOIz73XBZh+NRFEIWzIESgSlhptQimJZijcyoL9MLFP05oLMK4
zcnrK+ksONpQ/EC7Wwh7oqa+XjUdBvlaK9fjh4Qg4CuFOKwegdSNpFUVVgLY
tMFDLN40AkaC7dG4nQI4tLc8vsRwBEYlktAZLQHkJh1/KndwBPYGGXNdVgjA
YWt2U23UCDSVm0nualmAEp+/VXW5IxAdNvDkntMCePQ41uFbRkHxgHnh3ZB5
kM8YvBDUNQpukWZlx33m4Y1rwPr+0VH47lJraHRiHvDdt69W48aAs6PHeL3F
PLz4Xr0tyHgMesYcvbNWzsNou3rBj5wx0Hd0Ypwt5IMvY5JUdXUcjOT1rHZP
zIEK6Spo3h6HOraaX3P/HFQflplOTh6HnKkwFfdvc6DwVc028NU4aOrnPq74
OAfFNAdpzZFx+KOZ5rxAmoNpSuXVZPufwHoynlBmMgdBX6I9LmqyIfeK+Vj8
Qx4Qh/fLzG9jw1nlsB36d3hAlVxRFIHYYO3Sd6knkgdbUAI33oUNP5MsYu0D
eNBVnRL54i4b2F3KRc9teGBRlve0a4YN7u+zgYXjASGjuXtP5QTEvk6oCL0y
C68DFY+usZmCfikf74JwLrSkY1dLjk1BjKjIhXSJC6ONqlmW56bgmadM000/
Lqiu1Z7wvzkFlqllPy+f4EL0p31Rn95NweCKDMMKUy4cU7n51ldjGh7GHSY+
/MWBxbdc7OPSNLx5eZHkFcuB7HA/toEzBzrF+bnIaQYM6lcIbrtxIIWUqbXB
ZgbqpQqk+89yQOdooRLebAYGEobVEwI54JeV8IO9eQaIz9ycf8ZzYKaA76DN
n4b0xsON2TUc0AiR9j6eOg1JK7c/VdHgwmLYMHfn0BTcyhIdmZvkQs54Q584
cRLsDSqDdHlcWNIxwq+PnQTip0sPPIRc8LXMFZtHTEL1EJvBkP7tpcHA/bHP
JMxu6TpcQpyFB9e5klkWk+BR/O6gl/0s9Gjr1Y/NTYBFVYDN97ezMOo+I0Bn
JkCibQDVXONB7LhTTY01G/687HXFUYcPEfh1ez8bjMMwP/WYwsd5qFZ0EztG
j8KBEd/rSUEC8C+y9toxOwyHhkm6ROIiBBC5VTHpLGB/9ohsLlkChqSZW8jN
IdAndGzYc/oXlLaYZoUGDII88N17ectQti3ALOPOAFhNuS5oOEmgRn1CnqFL
P3xvOIdz1cOhnHLjX06MPngX13hKnY9Dx+vij0lE9YKXdMgAnS6JDFw9mDiT
HjgbHP5OMR2PGkJdfeuI3bDVW5du5y6FcOa5M2fUuuCrip5CyO9O631gRMX8
7vaH0lsZengZlPVB2yHUshPCcTr2LX0ySKwcrvfHuQ6Q771mHVAui+LXjRY5
P26HkbyNyVkRcshhG8e9YfwbJGutlapyWoG0TXfHpRh9A1K6V5O7ujwqvhba
xkxrA9dkN7rimDw6JNSaVJX7/Yt7c4VZtQqozX0Nc9dlJrBGLK803FZEmRXp
+RtnWyHHzHAdzX0lKmE8lOD7t0JJTAjB+69VaHWyy+uzCwy47XTWFs9fhfaO
JRb8imeAUW924W2aEuqvszA+t5YBadoZJTRbZaT/sbl3i99XuFmfkGZbpYzs
lP7THZxJh4PrnHIpmwkoog9fGt5HA4uAphOEeAJKnL0o/fZvGmSt99jcwieg
2rigvJl/WmDz5/xHh06oIKvWeX3bYSqQ/mrQYdaqIC2kcM7EngpePKlWsg6G
1JxL00+9p4DH61n1+EQMeeyVSSHrUcD/1lHRgQcYonP2My/qUCDkaHmn4kMM
OdCTwldrUSCOH3Kf9AhD0y2dBM9NFCg1ES6lZmJo7SzbRlaVAsJP4o68lxia
KhDQT8tSgMRUTGhswlDLoaFzZ4bIkP78gk8sGUMiTf4ENkCG55fpe6ypGFK1
iO5p6iPD+9WkRSodQ+4L+TyDLjL0umI+be0YGhCKpOQYZNBkrd0zxMJQfnHV
Q/JHMhiUXyO+GMHQx/aMlKgPZNgV0yP0HMOQX53FslkVGew0M8t+sjFkIueP
Ly8nQ7CfOpHLxRCXa9n94iUZInb/I3zDw9DbU7ZKHoVkiFk59O0yH0NrJs2L
1PLJkPbq+V2BAEPvaeGEJzlkyImU8q5exJCKf2Kf6zMyvDziaRkhwpBtnYaS
6lMylGv8u8F8GUNyUuvyujLIUMv7UygWY8g50i3n8WMy/A/VzjWH
"]]},
Annotation[#, "Charting`Private`Tag$30617#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVk3k81Akfx2fGOAaDmV/1QplkHYtElx6V/X7RVm65QmhDd4RqN3J1SJdS
zWJZWUekQkIPNkSTqxIVhiRhHOMaxjjG9fT88X59Xu8/Pn++1/mcdjxMIZFI
l3/w/y38uKVEdxcP3KNnPuatIvDhPbcHMrY8aB25YcOXJdDRMK224jIPnpvf
7qt+zcTcY5tU9Sd4ENyqS+FvZ6LPF+dKiXf98HK/DMfGlIGyyd/9g9r7oTV+
nn5rAwOfewSs+dbfD3RDGr1nLQMlOmJCysgD4Lq3+HAzhYGZ3LLNQdsGgP3q
pWlJvRL2t6g/6kofAM0mwcqIA0p4omkkrjRkECZs6B8jVisiMy4EdGIGQUpt
RdQSRRHL7KXG2OxBOFcQqZzGV0C5D2utA/MHYYtG9rhtmQI+fe8oqcMbhOSa
0Ge/HFDAsYaSELbDEGT/VRVunkHHoDdXfE7r8EG8KgU1reSR1bdbanozH5xq
7h8dMJbHtxTa4zDkw6sbmQeqf5JHLYyduO7OB8Pwg9TKRTlsL/szKvMmH5yL
c742PpdDs2dZD9rH+SAY8qdor5NDRnJdh0XJMETxemdz6bJYUXojooEzDMbs
liD1RRqe5Npo7Gsehg11TT9ljdDwzcrm4978YTCy2V7Ef0vDkLj22fNrRkB5
5j3L5SYNv0fzV+VFjYCGdngem07DgkB5J2XLUXjgU1M3w5LBd0lESK7rKEiH
KFB8FWWwn6Oaau43CrLO4UXdy9KoqqI7fCryh//mIEN8l8YrVb9erioehQAL
EuGQKY2uzMjCExpjkKRh9JqxQRrFhRNE+fwY7FdTjBbYSuGKrlkTR9o4VESr
bD+DUrhBhvTbwKpx2CVgzlE3S6Gvp8JTxqZxcLvtsNVFWQrfUfV3HTk2Dsrx
0iuzeiXxgYvfWcWWcfBTCAgThUli2oWTfKP9AgihoVdRKRWNXtFmY7wEcGb3
Le/iPCq+oj6S/OYrAMaA5/qqDCp2x/apxwYKYKP/kmA2loqsf7z2D10XAJXj
FTbgQ8Ukjj0n7aUA+oWevYUKVLxH3/KAqTEB7J18txx/CbyUurBvamQCRLWs
WJvdFHQwKgnSF05A4OiKQI4pBVlVZ+76zE3ATi3jSoutFCzr4Tc1SU5Cq6w4
zE2TgpNa7fa5rEloWVf3ezuFgj5Pi22POEyCydQye2MVGc1KAyy5hZPgpLbc
uWRORtKnbnwZKgRxp9K8uzsJrwxVpIVeFAJZq2aiZR8JaaQUisk1ISwdp/m4
WZGQaeDOKf5TCG52BncCd5BQK6Z5T/4zIWiOev0yqkZCqx3Vdun9QnB48dld
o24Z7mdkeF5znIJVpWxIHVoC7bNHzjvriYDsqejkYbsIBtu/OaUaiWAvpydS
YLYIW0huhnxjEeile9PvGC+C+S3L/kiLH366S5u3dhG8M9c7P/EUwRTc9J6a
XID4z5OGlDsi6NrCP5CQtACSWyMH8oUimH1hXVk8Pg99ogRXufJp+Kxa9Z9H
+WJIN9t85uvraZDytw+0eiiGg7GNd/IbpkElQmnPVJIYOjQl65240+Cx6W2B
91UxNDsF7/hbOA20IWFyrJcYKgps1A30ZuCerjPPhi6GBH8y3y5hBkZV7S+v
CZ4DK96J8HtBs5CpRLiG2M+CXV+cPov14ydFjrfbPw381z5RdbnzoFu9eqm/
ego2MFrVLA4uwkjE/U6t3UKQBdGhTuESTJa3RzkoTsKeUY8ZDRcSnnyVUR/b
LwButR/ZYz0Z8+i1L8gN41B8jeOtLiJjfsfjKNc1Y3BE8lx3YyMFAw1lcrND
RsA3+EKxfJIESg1SnD8oD4PhUf1Gm0NUDGOakN98HYIPzPVy50wk0e/xz/6s
rEH4N+9S8noJKbxkHGTD/HsALpD1HN59lULzGyY5gff7QbYzdG9AkTSmXrW7
2pzJA17WOnZqmAwWBucuSLb1AftnFWqpCw3LO1JUdWT6IC7pSO0hdVkcKVYq
5zj3ggfbq1F+QBY3fZoWRDzrgdldD+dSK+RwjtTLEdF6oJdnfr46Rh5PpTW5
3Tr/HdJNN65+f4iOdkWmOZy+bsiNPsc4aqCANU3t77f4dkOMi6+1hEgBE/+o
V/vQ+g22dqblxLxXxKltaTdKvndBom5y7ntrJdQv+/1uJa0LIl/FJlqXKuHa
i2bvwtZ/BdvVLg8bNBkYkHZTVu9gJ5gF1B5gXGfgyvQNrKCcL5C6xkfznYiB
YV2XTliPdYDm6+x4uwNMJJrkVTbt7YA4g2q9jxVM9NNULP/2tB2OCKnN9XoE
aidm2G6Ubwefgkn163cI9D1bpMIK58KpS04LVncJ7JGJ+Cs3lAvnnIra5O8T
uHFlMNv0PBeuic7djosn8LOa5bz3GS7kmczNJ6QQWPNv9bXs41yYq1puzXpC
oHBH3GV7Vy7EfZSP5dQSWLe1liQ25EJShv+xq/UEejkO/5NowIWMs40We98S
mHO86b/b9LnwYlWc+G0jgS3dTpZ/aHOh04M49qmFQFWInJlfwwWdXhWLnl7i
R+exPqtluWBUFMrK5BGYHVXmXSXNhe3RX+YODxBYufbah6OSXLDRSXk2xCcw
piNc4QWJC8En1VkTEwS6/aq7tH+mDcJ2Xpx7LiRwLiUvmSxqg2h6z+ezIgIt
q+uePplsg8T8jJuzswQmpxrrksfaID2KerRMTKBYaS/76XAbPNl32DxsgcCK
iuPBbkNtUKRRo/bLEoG3MkNfUwfaoEKoPbe8TGBCg3tMQV8b/A9G297T
"]]},
Annotation[#, "Charting`Private`Tag$30617#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVlHlYzHsDxadpkZbbMm7WupVltEiuNeF825AU2pBQUxQhKUspJbmVK0LS
LaJNaBOFQot+0a4QTYumZaaa1mmaNtLr/eM85/k85+/P0WB5Wh+i02i0x7/z
/64YDL+xvKEBey+PfcpUYZCM2l9sw64GuHO6eaniDHKCq9WRk8lGOssgZsls
ZcI5wJYuLmdDlJMpGTOuRGwawvSqO9nYVlbPcm5UIusqu3y58xrR7ZoVMBqv
RMSzUxRVQhtx8m+dVEldJRLjr7Hp7MEmRKu4FaTaKhKZ0VqXS35NSA9QtaEb
KpIAz6Dw67ebcOuSCi9BQ5GwWK1fUiubwAycVNzTqkB0t97zaFjbjBFfXlyi
qgIpZsz9z0CxBXz7ZwLdbHmyKqKswEynBXfvupxJvixPHkqd69y1uQVcden2
cAd5cnXi6/Kj/i14W+19KkZSnti3Rr2P7W5BmFiC+F0nOcJ/ojjyo+g7qmXy
beW1ZImMRgizdR0HgfSjfmt/SJOyDTeWXzDjYH98WP7sFmnyz574tarWHKjl
mi1aWyhN6JGvtuzz4ODiDLlo/RBpMvmrz+3bPQ4OfG72nFSUJr3Ndo8+0tvg
FsSVsV89g1TFMLWKqtowvbUlm54iSa7krFpxkN2G9eyunsgISbK11sjgF7cN
UtyhZIszkoSa4Wi+YboNZ+fHVJtulSRvzkQeebWiHVvqV7AMBiRIhu3E46fR
7VB7qs2sMpIg1xQrtROcOrA4V2lGu4Q4yVurmmt1ogO+L3cffDREJ50HPPHz
fAdaVmdnRTXTiWEGw3b3nQ4ETxY+acmhk25zxwD5mg7c27/Ra4kbnZhc6v/o
a9iJDlqCn/EnMTIuUjhtrcLFxjnmL/cU0chCVdb09EIu/gqXdVv5lEasTHPC
M1ZwkRazrETrAY2k3NwTL23JBd9n8Ix7EI1YL0/4UHCJi319WrlLjGkkw/3v
eToCLvK1c29zoqbBarItFK/iISx6k5QtewoycW3Hvdg89GjMexpWOIVnDicW
tPJ4yPU4ZMRNmYJ4Y6hvvlgXvs33L5zlPYXkhvyVXmu74Dzbut1EYQq8evVH
3xO7EOfhdi7O6ieO1vZF5vl2w2ZLnphG1ySUI33BDO2GSsbztvy6SeTvkBqI
iupGzFiPu/ebSch+/MviZFY3mi3STuPmJNKrrSWZ3G4U+z7o2oBJDFS88o3a
2QO9ZI35sfET8CoNYXky+Yj+s3Qjy2scap2bpUZX8iGxzooT4zSOSvrMJ/6E
jxjvRpfOHeNYTCIE4Xv5SDU3OZ+nNw52/u2g5H/5cA0wmtzdPwajpw/j2YN8
aHLYOVtOjEEprqzR5FUvfpWs2CR/YRQFeVcuVFC9WP8wLi7ecxQeDds1d9X1
YrqP+kScR1H6Z92RA/xeTO3oP/DSdBS+kezxcwv60GB0Z/CI3CjaLvNVMoP6
0J+olVsdL0L2STmbOeb9UEktaefUjKAqluGbYd8P8SJWrWXxCHjUvPvGrv0Q
KKT1VTwfwby5Wr3HAvthJVVmIooZQUix2aXi3H6Y5aucn+E6AnvlwOdHNQeQ
aPuJyE4JMflcwHj7YwD6P5VKOg2EmPV93MB65iDMBoZjl+gJoSdNc+pSGYT0
8Za7pzWFcHH8I13p70FoPemuWC8rRJWEjulh90GMtPMiDrYMI97O1UehfhBt
xTOWioUMI+G8B19/9xAK5zn7qDcKoF80czx0/2+mb6y5XitAkcQjyVaXITCL
bWOlPwjAiehUjzg5BFMfBVuVHAHUHuzf3RM+hFPrvn5/cE2AWGoHlfBmCE7a
dkw3MwFuyq+KV9YUwNJ5wWuXvCEE3/+5a6RPgMjUd9YnvQaxU/+Vl45QgD8C
9ty7xxqEWrH3DdaEAHwPDc43m0Hkt/NrayWH8eKxu7z3mkEML2bvyFAbRtEP
s83GPwfASs+1PLxzGI9MrwStuTIAo7wT5g3Ph1Hj5XNVPqsftM8c8sZPCDIq
sveb24eQnoIEv4tCbIo9EuAp14eZtHt0gzAh9kyzhzyne6G8bC+Ve1uI5pAr
/9zk9mJxaN2WrKdCbJ4t1eP4rBfbDN9ZJfKEGOIxsycte3ErKckxzHoEdhrp
1dNX+Vjic/icrbYIc8c7K2OZPVi2vtXmvr4IC2+UpLxQ7cEq2p7l/DUiJHvI
V7MZPTC+as4LNBHhm2Zr52paDw4k69qmOYpQ6fCcZcruRvSX4eX06yIk+M4U
z7naDcnVgV1ZQhEct/sZp413oVN0x1727SjO5s/yuNTBQ6LRSu+WklGMFRgP
hDfycDCi5npWxSguFgfPulPHQ+MiyXKbhlHc2N+7rLSQhzqbU4Z3haPQ1HGp
9bzLQ0H2dvVl2mPwfef0edyehzvHxfhWd8ZQI3k0M62Wi23cowE3f3v6UUbJ
DfWdsOqM1FFTm4R1eLGxh0YH+CWsoLKMH7C/JWu8kGqDntJXVZODv3+IXn8/
4jwHMhA5Nwt/wUpblS/d+h1b+h3GNO1oxOPhg7/iWpvR8M5VzEFXjHztf2qo
uKgJuWHUAXWRGNGzy6nY9YyNw5KnOTU1dBJzWOHDpm0NcDl1PlcuVpxIXugx
HJv3DcvddGq2O0uQTDWFkV1yX/FRWVf2tIEkoRsmPXxFq8frzOA4XXEpcixj
vNxlwRecF9PeWdUiRdpcXj53MvgMmWa/rSdyZpDarlkLS499AvehRtR9f2ly
9LhdnfObOkQtnSuRZzeT6NiHWC6SrUNk7OEPzuoy5LruC8tgr1o4RO2vkeuS
Ie7Mxy2vyz9i3DRl4n6BLIn2deSkpdegg2t87l2oHDk7nGfPfl6NxI0r5lc7
yxPj+dkf5V9WIePyaSW3ZX+Q44dexgawKxFq52IhLvqDOF5THkiXq8Tq5oTH
odUK5HNDe+d6wwrEaMVlVFsoklBtcb2XweUILIqIschTJOvO6ru9Li2D5Xy7
lIpFSqRWPZnmrlIGoxMf9imFK5GbSZ5Lzc5/wP0FrEVVIiWSbvVmwZWm91hU
khpttU+ZzF9lqlNj+R6Ry95pfypQJg73vc5ZlJfisFCirlybQRyrrxzZSErB
yh5WD7/OIEnmjnPWv6dwLNjm57YbDNK1cU7UYorCaZucb3K3GIQ7YOGr9I5C
mOj0tchoBmlixQfy31LINJj4ceceg/xaF3EuIZfCRPH014dpDBKgl0pbmEIh
8pNcBPWBQdZYtEZ5h1CITTru/k/57/26tcSxYApJPjUmWysZxFXOm+0aROGF
SuRkZQ2DPDhqlrPbn0KzA8P9cz2DeO8YXWrsQ4HZMdekvYNB5C62j2i5UtDP
8VNL5jLIyv9cs5eyKKy/3DRxqItBbASFdUwnCtuZ95728BnEhX9tI9ORwikP
dTWBgEFSmO4F2rYU/DdcnHgmZJDmudeida0pXJZv/+IjYhAJ/9Q6vZ0UYrKS
/h0fZ5B154xPrtpOITFIwi1/kkEuafz7ee02Cmm7Dhn7/2SQFXvt/jPcSiFH
873qpl8MMlUcUozNFAqESyampxnEa+aUhakphf8Bpc4rjw==
"]]},
Annotation[#, "Charting`Private`Tag$30617#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwV0vk/1IkfwHGMc8aE+Wx2UzRRKbHp0rda+34LW265Qicj2pIj+WaiRUgq
mdCSkkbpJufGfHM2tuQK1dJHkTGOYTAmOVZm9/vD6/H8B14rfINdjijIyclF
/tv/5YnT+E9e9IFXwnR7gTaBVzQbjbiHBXA6bZHDmj0MrNiqW+YYJIDW5lCX
TmRg/8FgmI8UQK3YTPWuKQN35BNuezMEcC+SGp6sycAhm/1n6S0CEFl1Etw2
LbSME7eyd/QDczGhnO6phTNTGuEu2kK4P7qW9l2EJhro+spkBkLgBmb08I9p
oqNVaVL+BiFMrzhpf/GAJualet5SdRDC5S0XzVwsNdFlPfdlVZwQQja67WvT
0MT8oxt11kmEUJZSr9riqYG+pFs1pWkAptt2NxQJ6Ui98flEaNcAbNIyi5C1
0rHYO2hZz8AAVEvOBx7n0ZHyIZHNkx+EnsS89dkpdLzbydsUunUQLO75XPLZ
QceBd8wHn3IHQSyulWzPVMdjb0Y5FewhWOHuVFh+hIYMDhsME4fg0KvrdJYr
DXlOymPp6UMgsNLRXmVBQ1rrcruQp0OgqnP9v+PLaPik2UXJUDgE44FeBZnv
qDj2upyd7jwMFM577R/sqBhaH+8bbCiCK6bqFc+s1VCv/xflr5tEcL2tcXjx
VjVsVFB7FIUicAlfFx2/Rg1XYbIkyUsEL5QjAlNpatjFuxZz95IIZpxig4La
VdGi8N6trnER3P817qkmSxW1brz6YFk+AgoUfb57igpWVVz87TV/BLy6ODGc
cyp4vNNef0/bCJxeGvqoM1wF6xe3/XpQNAL9Z/qknP0qyOZ0zUQsG4WtistX
5hip4OcEkXZBzCgYbPArZjYoY1GIuusPNmJgGt+nmWkoY1MWwc73EINyyYyB
CkUZB/g6OTv9xFDe6OUs/KqEOkvWjgRGi0EWoJj26pMSxtdax9WWicFv0e6k
NU+V0IMRXXJMfwwOJEjVzF2UcK5EQlT+PQYpIR21ZlxF5EYeF5nunQDX5KOh
bw5S0LRGbSbxwARcLfpmM+9OwRrFB0o9rAmwj6J/W+9Awd7kfmZyyATctLrc
ULCDgnq3D+wdTpqATw8DelWXUDCL78TnPp+AAf8nh1e/U8BU+uZbDH0J5Hl+
6OS7KOC5nPk9X0YlUG9/82CRjzw6m5aHrpNKIMOksrLQWx71asOu+s5KIOzP
9NwyV3nk9YnevFGahIc11YJWa3mcXNXllK83CU0PLqdaG8mj75MyB3/nSdDN
Ob/F9IscWlQE2XSWTELNYCCt65IcynX04vMzUmjFUldOqgzih6u4Z2Kl8Cwt
VnU+QQZqctkK2y5IoTakLDWULQOGiRe/7JoUwq58mWUflsGqxLZdTwulsFhE
/bDwowxsd9Q55g5I4bs5H5vW5gVIu3Nn/wWXLxDo1BJmwViA1af8I9yMpqC0
wyvNqXQe+qcyPGiVX8FXM4yad2oObIXHzqaGzkARl5Ub5DMDjv2cdXp6czDZ
6aHrl/sVRC98Y17l/w09zK4k6tYp+FHrva7loW8QURqQUtMtBSpM+XRLF0Dt
RCTrbdUk7BJ7T+u7y+H5K5lu048k0FnnJ+9tLI+PTz8sZ1ZMQNkF/kHmlDy2
u9GWryXHwV8pvLelRQEDx8OymHZjwDoZWaaeRcE41vkU5+lRWB+wrsXeRxE9
WczxqvoRaGUY08K3KWF2cKLc4Wsi+F/BuRvG/374uqNu6fuUYYiUN3Ju+qiM
1pUm+sTFIaB2n9kdVKqCYlM2JfvmIAjvrUjPiVLFkU7b6OKWAUhfs0Sxwl0N
N35Lj729IAROlv9LHyYV/SrfljjYCME7/UCL+iAVWdamopjcfpixypvNqaJh
9iHD+PszAhAId0bUJapjMXdxyDOWAHLNNyxt9qHj9ahZveeNfZCfEK4VYLII
qwd+3jht3QeJ7iw7ytQirDdP8Xjb8Bm2dHMfJjZrINNM45O/7WfIXHsjv9lO
E5UPBR3jdfVCdE1ypl2FJg7pd5wWHekFh6Xuea9XaiHPUaa34UsPWAS93KeV
pIUdr/7K4G/ugZxlviubprQw+pzbWY3gT7Dyxf3fHfcx0NxZsnlJ9UfgmNQZ
tVcxsN4J3VbofAR/qWJbgxGBL25vC1UN7gbfoklmUgqBAS4bdRzfkxB4znXe
9iqBZ6s5j4s7SAh3Lf1LPY1AWUxxxfdtJFyYCr/C+Z3Acr9SO0EjCQXbZv/O
yCZQaC7YGVNLwmyt7P29xwR+VLl7qO0JCZx29WT+SwKb45VZrXEkZN05cfR8
A4FadH1by1gS7pxqsdzdSKDl/ucPn/1Gwh/anLnGFgIHFYfauGwSur2Jox3v
CMwzYNdFBpNgKFhi2ScgkFuSofLLPhJMS8/o3RUSGGSqE1DrScL2BHL2yCCB
N5tp5uYeJNgbZhcOiwjcu4pnZ7aHhJPHmXoSCYGnqH9MmOwiIeqn2NliKYG8
rwZy+VYkJND73p6aIvB54bd4450kZD69c2lmhkCsDxszNichN0YxgDdHYFNn
a3v+dhIe7zmyM2qewOXG3xuv/w8Jpfp/6v68QKBixdq5wi0kVElXz8pkBErj
B3/atImEfwA8aag5
"]]},
Annotation[#, "Charting`Private`Tag$30617#4"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.1023541453428864],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]]}, {
Thickness[0.1023541453428864]}, StripOnInput -> False]}, {
ImageSize -> {14.662804483188044`, 24.508064757160646`},
ImageSize -> {9.77520298879203, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.77}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.09523809523809523],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI1IAaxQYAJSjNCxZjR2DA5dDXI4rjYpKrHpZcY95DK
ppabKTGTVHfiEgcA+NYCcw==
"], CompressedData["
1:eJxllG1IU2EUx6dOU9uc3W3XzW3urjm3u4WZikFvHgmzDFLMDysss5qjQCUy
SDMKX5KakZjkC2L5QksqtA+SC7Uiqg9qFIKEfVDSsIVipsggbe25z/UZ1IGH
8Xvuztv/nHt1p0tybEECgSDAdw77TqDvfBZ/oW0pwSAMu6U9U2yGUWR14bBz
z1DOvQIzrAwv9dsnRNAXX9wVkGeGl47hyuQZMTTVS8pTLH5urK05Pj7IEm7r
1LvW7Cx0TzpndlSJIcHcI/3YbQLTr1h3a5gY+gyzVe0LRlA/o+8HTgeDEd2z
KmhBdkwI0+n5aa2faBClRWQ2s0J876L55wIc5yYNKs7fkyoraygdO0vDzBH3
qXWtJ5V58WDYFiGHC87Svj8SAczfKHIkquR8f0JITkImh32laVdH8kIIFyJ7
GEqY+1mOhI14d6yOrIAEinAts8kwmkvBRn6rwar+sCYh9XH1nxND7sL4UnMH
zecXwWukU1AUYU7nVT9LuXgKsHH1iHAd4wq4jfL/FMEr5N+lxHmrKehFehaZ
CDcjncpMOM8bCuR1mT+EKya+HwpSuPmycGXKM5m0WQrZk6qKggYW542Vknly
fRyS4rpEZihH/38sA3X7SXYkwQxPqW0R9nY5zJ23rDbtNYPr6C6rd44mrOV0
UhFe9/osVQPfCjomkrNYwvMX++W/HUbC3P5kGHC8WiXO36bHc7krI8ztQxlF
eGMeeE/0kPHkrVMwwOtYqOHnGg15aE5qFdjR9TsNmedQScVCyyWGzF9yInsq
0elnLq7bz6hc76KfB5F/ug7vUZwcz8GlI/EXO3uZsdCt//EBVKeVxvrLdFCD
+mik+feA4feDhp5V9+VRhsF9eRR4r69Ewf76KqowXM/veTREoroz9LjPChU8
Qn71vH5JGphF+m+P5eNoeTbgegYYiHF+Pxh/LY4w57dsJMz17WX5vY+BanFW
b6PBgvVRKuE5VH59r7Dw+7YF6xxiwfXt9jMXJj+SsADZ9WDi/+/36S/Q2/hm
"]]}, {
Thickness[0.09523809523809523]}, StripOnInput -> False]}, {
ImageSize -> {15.756732254047321`, 24.508064757160646`},
ImageSize -> {10.504488169364882`, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {11., 17.}, PlotRange -> {{0., 10.5}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0, 5}, {0., 4.7721512759756815`}}, PlotRangeClipping ->
True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
GraphicsBox[{
Thickness[0.02224199288256228],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJLIGYCYvc1R5czeCg6eOyvlbV4ruawJ7/m7UxWJQz+
qcNOazPlNBycJzQLpWkpOUxub426bKPpEM4p1m5cr+SQngYEbVoOrQrsqme2
yDskhASpL/DUdhCpnFRy1kXW4UGE+PaLDdoQ+RJJOL9gecmGf/5ccL6JMQh8
sW/m9V8/hVUDzq+8/+OW8W4lOL/TxnNXWpCCw5vax9nn1/yynz4TCCJlHGaC
aWaHB67xjrMKJR1egOTfcDrsCLaK+K8u5hCtGiFzTkbIYa2QDl+6nQjEfUvE
4fztIHXs0nA+2JxAOQj/nogDf2zAfaN0JQeFXQv2pa4Tg/N7I7r9GTfIwfl7
QeEmquBw+gwQ5Cg53AeZo6gACb9VSg4zQO60VHCoBvkrWhmir1zBoRvkLydl
SLjyKzqAvasMpZkVIe4RRPDvaMqu+R+sAOenguLBTR7OjwH5948cnP9l38et
6dek4ObD+B8WrVc4G6HgcAYM5BzKD29znamrANUvD3c/2F+mCg4toHi8Ig/n
w/wP4/8HgfuScP6bttxuo90SkPjRVIDGh4TDim8vK84IKEDi9bI4RN1seYca
ULi8FnNYAwr3fTIODCDgIAbRP1MSzoeYIwDng53vw+JQAdLfLQPng9OPtTKc
n5H/ofXkFXVIPMzkg6Y/LQdwfrCQgPPB4b1RCs4Hu+u0jMMGvbzFjDFaUPfK
OQTckq5JFNKCuGODgsMJUH6Zp+kAy18QeQR/s/mPQylaGg7o+Q8AunloPg==
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYC4vNXw97o39Zz8Ls4MeafsroDjO+xv1bWIl3D
QaTH6xXLFz2HBpaj/Ybmmg4y8+I0TxvoOzyIEN9+sUHLof63VcE5D10Hf5B+
Z20HnxPstrNNdaDy2g7paUDwTAvO3+HQ9Oh4hDqc38Lrv37KURWHX29fH7B0
1oTzf4L4ympwPljfDxWHzPwPrSdFVB2mtLdGXZZRcUgFmX9M1cFjzdHlDBXK
EPunqjlU3v9xy3i3kgMLZ5d88jp1hw+L1iucjVByOHHYaW3mP02HmSDAqQTx
3xVtqDmKDvEhQeoLVuo4GINAsyLcf/yxAfeNvis4uIPC5TmUX64ADQ89hzMg
0CMP58eoRsic2yML5z9wjXecVSgJsSdNx8EN5N4IMYcXxVtFf7/WhPN9QeHI
rAHnz1mkvPOPuppDqwK76hkTCYdakHs41Bx2BFtF/FeXckiJvePGfEPV4U1b
brdRtCw8fGD8C6D4lFZ1WCukw5deJwPng+V3S8P598HuQ/AZQMBB0uFp4sJr
JvyqcPu3mP84lPJKxUFh14J9qXxiEP+4qUHMvycCce9ydQjfTgSinksTzj++
a0cvm4EunA+K3lQJA7h9MP7e/Jq3M0UV4Pw7mrJr/hsrOpja7A2a9lDfofzw
NteZfxWh6VLfQfnao2CGOUoQ+UQ9iP5UZYcnoHSWoOsgUjmp5OwWaPrYquUg
BYoXARVIvJ1Rdwi8JV2TWARLT2oOG/TyFjPaqML5f7+VPpgjqA7nB4DUC2lC
8om7Bjw//AeBeC04f73qk+Z5vtpwPsT/OhA6QMshAxRfV3Sg+UzT4XmW9rfp
c3UdXoPSRbcmxP0PdB2kwelI08EElC4/60LsqdeAxL8EZv6F8QFDZ5x5
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIlIIaxWZDYzATYDFA+A4VqSNVLqpmkupNUe4nRS4ld
AKjmAn0=
"], CompressedData["
1:eJx1lHtIU3EUx6epZZKGsTvxAbo7nZth5ua9u0vhWFgilaaBQprM0pWRFSpZ
WFCavTEhM21Y9hJBqbBMpexhNstXD7EQaSaCj2ngMlF8rP3u3f0NCg/8/vjA
73fO95zvudcv7Uh8+gqBQGBnOTssx95yylHMhYHuLtm0MCKDKzHjDkoNBc/h
7JDeQw6dKF5Q4F25V9YRIocQec26TxIac/VodLBZo8L8pqg68aM7A8bsZ8J5
FxnmwjWxj647SjELUaFeCbw65aPSKlUwGJUaWXGMBI/SXucDXyjMfH2eWX1V
Nmb1n6AguratWpBHgulx3KEKLQV17utdtcEknJ5XH+2+QEGiM3FeYRDDQ6S3
hAK3lDhDqF4M391NkT0NFGxj34thYSZ3UPeTAm2GJQgx+A8XVHaNU3C8tSGq
fNEPppv6Ly060jAg86k11/tx9WgGdk9+nbpZJQKXrf659jEMCFCACPb4Rk7t
S2Y4PT8I+NC6ue5gFgOBJslYxUUCdn4uSV4qYGCi6PDlUC8C/qD8pQzXd60Q
NqB5P2XAt/lOS7qrEGLR/S1qUCpQCOEdmmeajdl5Ftq4OCFHUnZ7eTajSN2E
8/Oc7J/k3Z1PgB7pXVJb+yNgJDNopqxLDfmG2X6FkYDt7Ssjbj1Qcz40iTh/
pmgg+4YSBBNieBKcdc9Op4KambG8TiCh7JrbScqo4uZXQHL1YhnwRPuzVgI5
lrXp+MXArn6vfI1JgvudmzS+ZsgAzOw+nZNiHtZU9Sl7ZHi+3P4GcfP9TWNm
+261MbI5g7L67fQ/s3q6wzCvRv5mLs/s/RYFzs8zHf4y/oZGzs0jXAn65sar
TnFycLW0kd6u5OYaIYdptE/flNZ8Nq6nZ9/ulwdi5ubvibkxQZ1klopwPraP
9wSux/vH+lSjwP7yzPs/inSkWN8HCHE+fl/OOLQVb9SGYY5B/jtSmO8bWlx1
2RR+z34fUhrn55mvP2CxObSUwvrY73UVhfXz/ye+P575/v/9f/0FzX4PBA==
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIdIIaxWaBsBiifAY3NCJVnRmMTo54YcXraNZjdRk+7
cIkDALmJAos=
"], CompressedData["
1:eJxdlF1IFGEUhmdrsy7MqFg3+sHU0tpFSV0UtpnxzFxJCC1atEgSW432Axl4
FQwIQQT9UEg/bnWhGEVEJFRogntR1CwoGyFo2MWKFUUpZcW2IbHNN/megQ58
Fw/Dd877nvOdKT7Y0WQslSTJY5+99llin3exvonQAY3MdHaq5st6Ag81h6O5
cj89nTr3x9inUZuIl4V0Yddnb2i1Rnvmxud7+gopJ8Ii2r81ujFlurx5uDdh
FPjo7qeGylzx4v0yH+cL1YjwUecT38LoHZcrLvdmqzIue/u7w54Kne+/F/rO
6pwfjPpF2vyhMUVnfT8GIsdv/HL1O/q+uv7A8A9+VJd9djiwjXlMRH6A8308
FsxcVwJczxoeupgXCbCeOnmk6VrM5UE6PWOtC5K1Pdw96tepXejJC7JfMPoB
nl2Z2BFvcTnqH3wt1UJPkPuN/GDUx7ygD/2Hfswb/sDwD94yMdMszZbS/fNv
j0j1Go10mHPxD4tcpJEkYrqU8nc/vGJME/Pkmu/aq4zK3BO345TLhvBVq3I+
5/tvheuBoQcMvV0L4ZOpFSr7ebPBjFVfVdnvTzGv8nruBxj9cu43qNzfxuRy
5eYyl7u8Ly5VtSvMyef6g6Mpmdmpd0bmeTj67u3k/GDUf1x5ot8jy6zP6VdS
Zv3fhL5Jmf2B4R+M9wrGe0Y+vHfUwz5AD/YFjH1ydLTKvG/Ih31EP8DoF/h2
OlFwq1Pl++g38oNRH/OCPswT+jFv+APDP3hVayRdbZXQgPDbqJIjZ7zkXx9N
l/EewXiv4LX257ZNGjP2DYx9QL3//59/AVTVVew=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
JjHitLALAM7SAnU=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGZigIIPzg5782vezkxVcnjDu89gppSLwwPXeMdZ
hUoOvP7rp6R6uDi4rzm6nKFCyeGmdE2iUS+CHym+/SLDPwT/SeLCaybqrnDz
VJ80zzvr5OqwVkiHL11PyWFN9+0MBn+o/FRFh3k2Oldmhbk6lB/e5jpTV8Hh
QK2sRXoLgn9C02rS6XqEebj4xiBwGcEXqZxUctZEGYMPM7+R5Wi/4XRVuP0w
Psx9M0EgUsVB5JPj+TRfV4efb18fsFRWcaj7bVVwzsPVQeXao2CGN8pw/1Xe
/3HLeLcy3P8uE5qF0rqUHaZ8Y4uf8cfFwQMcPlD3TEfjhyP4FRErTM8qu0DC
q07ZARY/MPNg/DmLlHf+ea7poOD4MfmMrItDwC1gxAhpOfR4vWIxsXRx2O7Q
9Oi4hJaDCShcJiP4YP/fQfCXvfDQ+28IDB+Qxi+aEP2Jrg4/QP49DDW/1dXh
xGGntZnzNB0kpl7hzOhydfgPAvUIvihYvwac77EfZJE6xH/7MfleJ9htZ1/V
cNh5q+tv6nFXh5pPGwKyf2k6WFw7mmtyw9UhPQ0I2LQh4d/rCvGHsLYDSNms
eFeo+7Uh6U8OwQfHR5ULXD04vAxc4OaB0/cvZzgfHD9XEHyw/Stw88H+Pu4E
tw/GN7fZGzQtERr+gs4Ox3ft6GUL0IL4L9zZ4XmW9rfptlqQ9BXv7HAGBHgQ
/M3mPw6laGnA+TWg9PRaCs7fEWwV8V9dHG4eyDlpx8Tg9oW8vfxxxkIxuHti
VCNkztUg+Aq7FuxL5RN1WA6Kb0WofjVRuHng8DIWdSjZKvr79DIEPwIUvt8Q
fJbFk6wYdV3g+sHua3eBmw/jw+wHpx9bF7j7voDi7zvC/bD0DPMfjA/zP3r5
BAAATfRw
"]]}, {
Thickness[0.02224199288256228]}, StripOnInput -> False]}, {
ImageSize -> {44.95900373599004, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {45., 17.}, PlotRange -> {{0., 44.96}, {0., 16.34}},
AspectRatio -> Automatic}],
GraphicsBox[{
Thickness[0.023180343069077423`],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJNIAaxQYAJSjNCxZiR+PjEcakhlU2JOcToxeVmSvTS
wl+U2EWMmQB8+QKp
"], CompressedData["
1:eJx1lG1Ik1EUx6cThXzZcu59j+k2cy8WmJYWyc5KzUbg0D5oiGE0h0WIJJUw
K5WEmmUE6aZiGZRfEpTQzPKlxBTUoDQDP6RoIKVCiomWZt7nPveOFC9cHn48
957/Of9z7w0/l59m4/N4PK/Nmb05vTdnbAwaS6a4o51pVTkGGP3z/kt95rqp
v6P9rq/VAAWNhc1/BXyYuWBcrk4wgG5R+73mNh+G0Ajw8Iu4lXfnDTrKjomV
8ZhZBeX29CMZG5FS8DcHWVx6PkwmnTXXfJRQvdPzIwuuBgm0Wprj64qWTVkR
GaoPDg+HdTzusgWJIZKN5wW5aOwV4zxO+QCuQwxtaP2qL2X2e9mPsqpF8sg7
bBdlVudNII3HQ+OmGIjeVmb1KiSU7Wifr2xH7nF2lcaWhVI9wktdC632ZSmO
NxTK1aUAG9qfvAdCih4UDvswMFd+yXmglqGM9zPA+mVW4X15DI5XpYSm4Kgg
ezaD88hVwq0wv4ihEAbcaGTK8borKrzuqxT3aVCJ4zUQVnC+SuFehjPVy8p9
hVIQsXmIKOO8hZRNhebiwSwB7beLFQ7A/S7wcGe+Y95tU8PT8cbp6OMC7r8a
Ktk4u+HE875G3jU1zveQiPIZtl8SysRvEu8t8mdahuvbr8b5Jsrx/4fhkI7q
LJHD1d62JPe+MKz3U0GZ1E/i7cRsO0c8zPYnVrONSfwSn77K6OoIqk+Y5If7
o8V1xcthdX6257BGi3VEctCOTaXz5jS0viKk81pD60+8Xxace0eDfWyRQArr
jwavc4q28G7Kv5C/YwLs13UN7Q+JR7juiebV2oyeO/8CsI4rHTnBBu7cCeEl
lE71ywz4vkyKKCcjHZeEMqnXsdhsvfhbT/1aQfX26jm/lDDQe6wpr17PnV8V
bKBxw8PiCssPnyUd5ZTuYibeHgnraF03s40tA34JtZ91+L6vMVSf3EfsoxGG
UX1RKnxfRUbOTwWXvxH3yS2jzJ5zu5RyOcpnVEyZ+EHisXVMCLn304h1nwVS
/dRvJz8dFPlTtiIe8aP8//trBPJ+E72t7/k/IVB43g==
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYCYnObvUHTHLUd/C5OjPmnrO4A43vsr5W1SNdw
qPm0ISA7StuhgeVov6G5JoSeru3wIEJ8+8UGLYfniQuvmazXdPAH6XfWdtik
l7eYcY4GVF7b4QwI+KjD+RGcYu3G+5XhfOVrj4IZdBQdfr19fcDSWRPO/wni
K6vB+Tscmh4d/6HiUH3/xy3jakWHKe2tUZdlVBxOg8zXUXLwWHN0OUOFMkT9
HyWHSpC63UoOmfkfWk+KqDh8WLRe4WyEkoOB1krhCylqDjNBgFPJoRrkPysN
h9Q0IDim6HB8145eNgFNB2MQaFaE+48/NuC+0XcFh/WqT5rn+WpB+OUK0PDQ
gvizRx7Oj1GNkDm3RxbOf+Aa7zirUBKi7oyGgxvIvRFiDgG3pGsSg9Tg/C3m
Pw6lZKnA+WuFdPjS+5QcWhXYVc+YSDiEg8IvX8lhR7BVxH91KYi8nZLDm7bc
bqNoWXj4wPhgexsVIerqZOB8sPxuaTj/Pth9CD4DCDhIOuzNr3k7s1QRbv+K
by8rzgQoOijsWrAvlU8MEv5rlCDm3xNxYOHskk/mU4G6S8RBZl6c5ukCVThf
V1H+S840TTgfEj46cPtgfLC9ogpw/h1N2TX/jRUd5ixS3vnHXceh/PA215l/
gfGTpf1t+lxoOpqjBJE/rgXRn6oMScfHNR1EKieVnN2iDEmfMuoOUiB3Cag4
mIAjWsUhEBQPRbD0pOywAaTORhXO//ut9MEcQXU4HxxvQpoOG0DpYa0KPD9A
0pEanC/a4/WKZYs6nA/xvwYknQVoOZy/GvZG3xroPpC6L9B8xKzl8Lp4q+jv
bk2I+921HKRB7jXQdJgBSreRWg7/QaBew+HEYae1mXVaGPkXxgcAvSGZ4g==
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIlIIaxWZDYzATYDFA+A4VqSNVLqpmkupNUe4nRS4ld
AKjmAn0=
"], CompressedData["
1:eJx1lAtIU2EUx6/PyNDC2l34ou1O56aI2+7d3UTjGGgiRKaBI7Iw1KFRFiUa
aFCW0dMgTV0mWZAKSoXVVEosMc1Me4iYjBQRfEOOGoaK7bvX7xsUHfgYP3a/
c/7n/M+9smP5qdkeFEW5Oc8+53F3ngEUkSzUPmTaV6dV0FUSbDBXsGCFi5O9
O9VAofjBQlDdEdWHaDVkZdgSPUwcYVtgcaa2Uk/4Z/vYtbUEHubPvJCsbFER
vuS7/0mFl5Kw5EbynOewAuxPU45bzHqYSDgabznNQHLfprh7XhxhXB+zoG/Y
xYL+ZhaSmnsaqCIGQqdK6z5aWGjxj/QzRzHwLOrkI7dXLKRvpq/oxuXwDent
YWFrRsq4tlcOPomhBe5zLOwV7sshWt20/dMODsw5zqDlYJJaP1MhHBR2v0yo
WZNB+KJvZ7SRA5squHm9VSbWy+Ph4OLXpep6Kew+Z2rkSnhRN0jhVtpZRVU5
L+r5TsOqo2Citp6HcLti1nKVhguePeUaKw8LZSeuawNpMf97fqMviTjvGR52
dTzozPaTiM8XGoDVoZDALzTPShcL87S6+E1ZQ3r/l/+z8HPHSPJjPhxqChos
pmEN6dUYN/qjIRD5TBmheHx5TDdPw/mVmFODowaoQdEuFf1R6IEZmUyjFuQw
lVk/wg7pockxWzQADPR372nJDeHF+ZUyoo5SHgJQ3m0KaJhJilqXGeDAmNMo
u4L0+3txvsvIhBEW9umykrBYR0XmK+5vhPi/Uk8Y2Zrj4AgLunNZ0W/vf7kR
6XFzcRzy977uvyzoX9KQ/Jj52NepdzPVos58LfR2tN30TlFDvPOx6hUtTOdF
OKri1KBE++SD87m4lV9+m6UOJyzOP4BwW1qMaV0pJfmEPt/RpB72T9grm4b4
ixn7L/h7e+N+mITkw/vyHOmw6AiXIP8NLOFRf3v80GOW3Bfej0McyY8Z1/dz
2pjdxxJ9wvsayxL9+PuE+8OM+//7+/UH8+UE4w==
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIdIIaxWaBsBiifAY3NCJVnRmMTo54YcXraNZjdRk+7
cIkDALmJAos=
"], CompressedData["
1:eJxdlF9IU3EUx+8shGIkBbMIH0q3zHslyA1md7+xcx/0IQKHKxxhwcLbX2g+
KPSwEOwh6A9URM4hpgT1UGCQ0BKMSGiRacTSBwsUMYTKhxJEUFv3d9n3XOzA
ZXzY/Z3z/Z7zO3f/mWSzuUVRFJf1nLCeEuu5uqa3T14hSs2uzvh/7iVwNqbH
C9W7Kdbh7Sm0E52V8a6cqheu9U+oRMeX8r/Tg+UU8FsxFqFWX7xiMuXwvpGB
1+YOD1H3fC4dKp4/4OF89nt+D7mbhu6bbxzO1ej3xssM5oei9kum0eDzXVLf
gMH5waj/aubGhtlisL5bR39sDew0WH+vjG0G+wPDP/hFcPVtm3qQ+aMMt8r5
Fi9qKz1hlevlRrK3S6Mq6wmK0eYHCYdfykbs0SgxltfMwwadk3pKNfYLRj/A
15+0fKjrcHj5efRSpomKejTuN/KDUR/zgj70H/oxb/gDwz/YOz0fU35VUYOv
syQTJxpNppZ6vxe5nkiRMVdFxz7fbf27HGF2N1ovqGFmu84zwZyW/b0gOJ/9
f63gemDoAUPv8KHLj1xCsB+7f+8F+/VJ/yfD3A8w+mWfTwnur+233uFhWTcT
Yl5f6Zzrc4U2zyur8zzs329HOD8Y9RcTg9OBpM76InI/1nTW75X6tofYHxj+
wbivYNxn5MN9Rz3sA/RgX8DYp4r+0zXjd3TeN+TDPqIfYPQLPLXrj/HpseDz
6Dfyg1Ef84I+zBP6MW/4A8M/uOxUdLYuV0kL0m+XIFtOvpIKMoYcxn0E476C
n978el4JEjP2DYx9QL3/v5//AHlpROk=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
JjHitLALAM7SAnU=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4pkgwOnssDe/5u3MVCWH9uXhp4xMnB0euMY7
zipUcljxwkPvf6Kzg/uao8sZKpQcSraK/j69DMH/siEge5a4C5xf99uq4JyD
C9y8A7WyFukxLg5rhXT40vWUHNxUS5lmZUDlpyo6WFw7mmtS4OJQfnib60xd
BYdI8e0XGeYh+AmHL2unzkSYh4tvDAKXEXyRykklZ02UMfgw8xtZjvYbTleF
2w/jw9wHDpdIFYc13bczGNJdHH6+fX3AUlnFQWLqFc6MJBcHlWuPghneKMP9
V3n/xy3j3cpw/7tMaBZK61J20J2w4IehmIuDBzh8lB0SQe7Z6IzKL0TwhT85
nk+zdYaEV52yAyx+YObB+HMWKe/881zTYeetrr+p5s4OAbekaxKFtBxUnzTP
Oxvk7LDdoenRcQkthzMgsAbBjwD5/xuCD6JmeAPDp8frFcsXTYj+KheHHyD/
HoaaP9/F4cRhp7WZ8zQdNurlLWZc4uLwHwTqEXxRsH4NON9jPyhg1CHhfxOT
73WC3Xb2VQ2HkBKV6f8fuDjUfAImpF+aDhfz49nPfXRxSE8DAjZtSPgvd3Ew
AcWvsLYDyBqTSheo+7Uh6c8cwQfHxxRnuHpweHk6w80Dp28RBF8fFD/vnOD8
yyD7D+Lmg8176Ai3D8Y3t9kbNC1Ry0EdFH5aTg7Hd+3oZQvQcggG+a/AyeF5
lva36bZaDq6g9FXhBIkXHgR/s/mPQylaGnB+DSg9vZaC83cEW0X8VxeHmwdy
TtoxMbh9IW8vf5yxUAzunhjVCJlzNQi+wq4F+1L5RCHxbQ3VryYKNw8cXsai
Djz+66ekHkDwP4PCl98Zzp9vo3NllpszXL87yH0LnOHmw/gw+8HpJ9wZ7j5w
/Ak6w90PS88w/8H4MP+jl08ALJj6pA==
"]]}, {
Thickness[0.023180343069077423`]}, StripOnInput -> False]}, {
ImageSize -> {43.141947696139475`, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {44., 17.}, PlotRange -> {{0., 43.14}, {0., 16.34}},
AspectRatio -> Automatic}],
GraphicsBox[{
Thickness[0.021612275772638856`],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJLIGYCYvc1R5czeCg6eOyvlbV4ruawJ7/m7UxWJQz+
qcNOazPlNBycJzQLpWkpOUxub426bKPpEM4p1m5cr+SQngYEbVoOrQrsqme2
yDskhASpL/DUdhCpnFRy1kXW4UGE+PaLDdoQ+RJJOL9gecmGf/5ccL6JMQh8
sW/m9V8/hVUDzq+8/+OW8W4lOL/TxnNXWpCCw5vax9nn1/yynz4TCCJlHGaC
aWaHB67xjrMKJR1egOTfcDrsCLaK+K8u5hCtGiFzTkbIYa2QDl+6nQjEfUvE
4fztIHXs0nA+2JxAOQj/nogDf2zAfaN0JQeFXQv2pa4Tg/N7I7r9GTfIwfl7
QeEmquBw+gwQ5Cg53AeZo6gACb9VSg4zQO60VHCoBvkrWhmir1zBoRvkLydl
SLjyKzqAvasMpZkVIe4RRPDvaMqu+R+sAOenguLBTR7OjwH5948cnP9l38et
6dek4ObD+B8WrVc4G6HgcAYM5BzKD29znamrANUvD3c/2F+mCg4toHi8Ig/n
w/wP4/8HgfuScP6bttxuo90SkPjRVIDGh4TDim8vK84IKEDi9bI4RN1seYca
ULi8FnNYAwr3fTIODCDgIAbRP1MSzoeYIwDng53vw+JQAdLfLQPng9OPtTKc
n5H/ofXkFXVIPMzkg6Y/LQdwfrCQgPPB4b1RCs4Hu+u0jMMGvbzFjDFaUPfK
OQTckq5JFNKCuGODgsMJUH6Zp+kAy18QeQR/s/mPQylaGg7o+Q8AunloPg==
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYC4vNXw97o39Zz8Ls4MeafsroDjO+xv1bWIl3D
QaTH6xXLFz2HBpaj/Ybmmg4y8+I0TxvoOzyIEN9+sUHLof63VcE5D10Hf5B+
Z20HnxPstrNNdaDy2g7paUDwTAvO3+HQ9Oh4hDqc38Lrv37KURWHX29fH7B0
1oTzf4L4ympwPljfDxWHzPwPrSdFVB2mtLdGXZZRcUgFmX9M1cFjzdHlDBXK
EPunqjlU3v9xy3i3kgMLZ5d88jp1hw+L1iucjVByOHHYaW3mP02HmSDAqQTx
3xVtqDmKDvEhQeoLVuo4GINAsyLcf/yxAfeNvis4uIPC5TmUX64ADQ89hzMg
0CMP58eoRsic2yML5z9wjXecVSgJsSdNx8EN5N4IMYcXxVtFf7/WhPN9QeHI
rAHnz1mkvPOPuppDqwK76hkTCYdakHs41Bx2BFtF/FeXckiJvePGfEPV4U1b
brdRtCw8fGD8C6D4lFZ1WCukw5deJwPng+V3S8P598HuQ/AZQMBB0uFp4sJr
JvyqcPu3mP84lPJKxUFh14J9qXxiEP+4qUHMvycCce9ydQjfTgSinksTzj++
a0cvm4EunA+K3lQJA7h9MP7e/Jq3M0UV4Pw7mrJr/hsrOpja7A2a9lDfofzw
NteZfxWh6VLfQfnao2CGOUoQ+UQ9iP5UZYcnoHSWoOsgUjmp5OwWaPrYquUg
BYoXARVIvJ1Rdwi8JV2TWARLT2oOG/TyFjPaqML5f7+VPpgjqA7nB4DUC2lC
8om7Bjw//AeBeC04f73qk+Z5vtpwPsT/OhA6QMshAxRfV3Sg+UzT4XmW9rfp
c3UdXoPSRbcmxP0PdB2kwelI08EElC4/60LsqdeAxL8EZv6F8QFDZ5x5
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIpIIaxWaBsBiifAY3NCJVnRmMTo55Uc0g1nxbuIcZ8
AJ0vAkM=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYCYpl5cZqnA6wdNpv/OJSipeEA46enAQGblsN/
EIi3dniepf1tuq2WQ4yC48fkN9YOx3ft6GUL0HIQn3qFM6PIxsHcZm/QtEQE
f7tD06PjEtoOy1946P03hJmHyd9fK2uRzoLgF6zpvp1xwQonXwJk/iJLuPkw
Psz++t9WBec0rODuuyFdk2i01QrufrB9R6zg/oPxYf6H8WeCQKcCnD8dxI+U
ctDXWil84Yulg4kxCIg7bAHps7KA85eB/DfRDM6fNoG/yuy2KYR/WRLOl921
YF/qO3k4H2Y/jH8GBHi0IOa/MoW7/4bQJ8fzZWZw/2m85d1nwGkO9z+MDwsf
sH4tM3j4NbIc7Td8bgrn8/mvn5LqgeAzgMAGEzgfbF+aCdQ92g4zQO7rNoab
D+PD7H8BcqesCdx9XG6qpUyrTODuB7tvpwncfzA+zP8w/o5gq4j/6fJwfn9E
tz/jBmmI+z6YOPSB+AKSDn4XJ8b8SzaFh3eE+PaLDPdMIeocRCHu32bmsFZI
hy/dTsQhJfaOG/MLczgfnF6VLOF8WPzC9IeDzKuzcnjgGu84q1Ac4g9eawd5
UPytk4Tnl5C3lz/OcJSF81NB4eem6ICevwDto1XN
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIdIIaxWaBsBiifAY3NCJVnRmMTo54YcXraNZjdRk+7
cIkDALmJAos=
"], CompressedData["
1:eJxdlG1IU2EUx29FE6H0Q1wXWZS6XtioaKuM4d099wYRZDS2pAWGWM1JQgvq
Q8QkKKggAqOmsyTWhygiKLCYCFtR1KxsMRbRG6wkKSg/WDAWUmv3tv95oAee
D787nnP+//Oyhr1hX3COJEmzyretfGeX77axKuXyXJ0i+eI717dFBB7xuwOl
lVZaqk3vG/+tUZdxntTRzzvenksJjXZO5aZjV+soZHw/qFH78sDiTETwstF4
Klgj0/wdty8GxyrvV8gcb73LODK9rY90OrfrzBcKlo7YkOCe6l/xUE7n96a+
1Zs5Phj5T1/f9cz5WWd9u62JrHRFZ/2mvn7hDwz/4OHm4sP99lXM48aZZ+d4
Xw44CgOKnfOlR0fOWbx21tPckvT1dwpO0ImJ9EIHre2LF9el9H9xLQ72C0Y9
wP4jtoGSJPh+75JNoQ9aRY+D6434YORHv6AP9Yd+9Bv+wPAPtr2e8Evfm2jB
D+1l16RGyXBkanCywo81kozzsYkO35Nnnp8SnAt3VGUaiDlo9kFlNvt8UuV4
5u9bVM4Hhh4w9LYa+tpU9nPt69Y1pU8q+82naoZcbuJ6gFEv831U5fpao6+q
u32CW7Pn2/8Me5ijfbXHNtYLNvNlFe6Hqa/QwvHByH98xn0oc0ZhfW+Mfsse
1p80+mvzsD8w/IMxr2DMM+Jh3pEP+wA92Bcw9umukeemwvuGeNhH1AOMeoHD
t86+736g8nvUG/HByI9+QR/6Cf3oN/yB4R9cu8ebd6YbqdfwG1PJlJNrpNhg
+TwVjHkEY17BRwM3Nrx4JBj7BsY+IN///59/ASxFHA4=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
JjHitLALAM7SAnU=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4jQQmObisDe/5u3MVCWHkBKV6f8PuDg8cI13
nFWo5FCyVfT36XcuDu5rji5nqFBycGh6dHyGsSucf6BW1iJ9CYLvc4LddvZZ
V7h5PV6vWExeujqsFdLhS9dTchD55Hg+7StUfqqiA8viSVaMf10dyg9vc52p
q+Cg9qR53lktNzhfd8KCH4ZqbnDzcPGNQeAygi9SOankrIkyBh9mfiPL0X7D
6apw+2F8mPtmgkCkikNlxArTs59dHX6+fX3AUlnF4Uniwmsm710dVK49CmZ4
owz3X+X9H7eMdyvD/e8yoVkorUvZ4VdM7tF/i1wdPMDho+ygB3KPHRr/nwuc
/2Af3xzjUy6Q8KpTdoDFD8w8GH/OIuWdf55rOrQtDz9ldMTFIeCWdE2ikJbD
pw0B2bPuuzhsB0WUhBbEH5aucL4qyP9NCD6P//opqTdcHURAHvmiCdHP7ubw
A+Tfw1DzddwcThx2Wps5T9Oh7rdVwTkDN4f/IFCP4IuC9WvA+R77QQlDHRL+
aZh8L1A4XdVwUHD8mHwm182hBmTxL02HeTY6V2bVuTmkg/zJpg0Jf2M3BxNQ
/AprO0SIb7/IwOYGdb82JP0dcYXzwfGh6ApXDw6vay5w88DpewGC/wcUP1UI
/gKQ/X64+WA6zxluH4xvbrM3aFqilsMXUPhtd3Y4vmtHL1uAFsR/f50dnmdp
f5tuq+UgBEpfrC4OZ0CAB8HfbP7jUIqWBpxfA0pPr6Xg/B3BVhH/1cXh5oH9
dUwMbl/I28sfZywUg7snRjVC5lwNgq+wa8G+VD5RB15QfJ+A6lcThZsHDi9j
UYebwGRk5OsC54PDdw6Cn8P5c0H6ZRe4fnB+0XWFmw/jw+wHp58nLnD3RYLi
b54L3P2w9AzzH4wP8z96+QQA+bH4ZQ==
"]]}, {
Thickness[0.021612275772638856`]}, StripOnInput -> False]}, {
ImageSize -> {46.27404234122042, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {47., 17.}, PlotRange -> {{0., 46.27}, {0., 16.34}},
AspectRatio -> Automatic}],
GraphicsBox[{
Thickness[0.02249212775528565],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJNIAaxQYAJSjNCxZiR+PjEcakhlU2JOcToxeVmSvTS
wl+U2EWMmQB8+QKp
"], CompressedData["
1:eJx1lG1Ik1EUx6cThXzZcu59j+k2cy8WmJYWyc5KzUbg0D5oiGE0h0WIJJUw
K5WEmmUE6aZiGZRfEpTQzPKlxBTUoDQDP6RoIKVCiomWZt7nPveOFC9cHn48
957/Of9z7w0/l59m4/N4PK/Nmb05vTdnbAwaS6a4o51pVTkGGP3z/kt95rqp
v6P9rq/VAAWNhc1/BXyYuWBcrk4wgG5R+73mNh+G0Ajw8Iu4lXfnDTrKjomV
8ZhZBeX29CMZG5FS8DcHWVx6PkwmnTXXfJRQvdPzIwuuBgm0Wprj64qWTVkR
GaoPDg+HdTzusgWJIZKN5wW5aOwV4zxO+QCuQwxtaP2qL2X2e9mPsqpF8sg7
bBdlVudNII3HQ+OmGIjeVmb1KiSU7Wifr2xH7nF2lcaWhVI9wktdC632ZSmO
NxTK1aUAG9qfvAdCih4UDvswMFd+yXmglqGM9zPA+mVW4X15DI5XpYSm4Kgg
ezaD88hVwq0wv4ihEAbcaGTK8borKrzuqxT3aVCJ4zUQVnC+SuFehjPVy8p9
hVIQsXmIKOO8hZRNhebiwSwB7beLFQ7A/S7wcGe+Y95tU8PT8cbp6OMC7r8a
Ktk4u+HE875G3jU1zveQiPIZtl8SysRvEu8t8mdahuvbr8b5Jsrx/4fhkI7q
LJHD1d62JPe+MKz3U0GZ1E/i7cRsO0c8zPYnVrONSfwSn77K6OoIqk+Y5If7
o8V1xcthdX6257BGi3VEctCOTaXz5jS0viKk81pD60+8Xxace0eDfWyRQArr
jwavc4q28G7Kv5C/YwLs13UN7Q+JR7juiebV2oyeO/8CsI4rHTnBBu7cCeEl
lE71ywz4vkyKKCcjHZeEMqnXsdhsvfhbT/1aQfX26jm/lDDQe6wpr17PnV8V
bKBxw8PiCssPnyUd5ZTuYibeHgnraF03s40tA34JtZ91+L6vMVSf3EfsoxGG
UX1RKnxfRUbOTwWXvxH3yS2jzJ5zu5RyOcpnVEyZ+EHisXVMCLn304h1nwVS
/dRvJz8dFPlTtiIe8aP8//trBPJ+E72t7/k/IVB43g==
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYCYnObvUHTHLUd/C5OjPmnrO4A43vsr5W1SNdw
qPm0ISA7StuhgeVov6G5JoSeru3wIEJ8+8UGLYfniQuvmazXdPAH6XfWdtik
l7eYcY4GVF7b4QwI+KjD+RGcYu3G+5XhfOVrj4IZdBQdfr19fcDSWRPO/wni
K6vB+Tscmh4d/6HiUH3/xy3jakWHKe2tUZdlVBxOg8zXUXLwWHN0OUOFMkT9
HyWHSpC63UoOmfkfWk+KqDh8WLRe4WyEkoOB1krhCylqDjNBgFPJoRrkPysN
h9Q0IDim6HB8145eNgFNB2MQaFaE+48/NuC+0XcFh/WqT5rn+WpB+OUK0PDQ
gvizRx7Oj1GNkDm3RxbOf+Aa7zirUBKi7oyGgxvIvRFiDgG3pGsSg9Tg/C3m
Pw6lZKnA+WuFdPjS+5QcWhXYVc+YSDiEg8IvX8lhR7BVxH91KYi8nZLDm7bc
bqNoWXj4wPhgexsVIerqZOB8sPxuaTj/Pth9CD4DCDhIOuzNr3k7s1QRbv+K
by8rzgQoOijsWrAvlU8MEv5rlCDm3xNxYOHskk/mU4G6S8RBZl6c5ukCVThf
V1H+S840TTgfEj46cPtgfLC9ogpw/h1N2TX/jRUd5ixS3vnHXceh/PA215l/
gfGTpf1t+lxoOpqjBJE/rgXRn6oMScfHNR1EKieVnN2iDEmfMuoOUiB3Cag4
mIAjWsUhEBQPRbD0pOywAaTORhXO//ut9MEcQXU4HxxvQpoOG0DpYa0KPD9A
0pEanC/a4/WKZYs6nA/xvwYknQVoOZy/GvZG3xroPpC6L9B8xKzl8Lp4q+jv
bk2I+921HKRB7jXQdJgBSreRWg7/QaBew+HEYae1mXVaGPkXxgcAvSGZ4g==
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIpIIaxWaBsBiifAY3NCJVnRmMTo55Uc0g1nxbuIcZ8
AJ0vAkM=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYCYr+LE2P+NVs6bDb/cShFS8MBxk9PAwI2LQdj
EJhs6fA8S/vbdFsth/7gEpXp8lYOx3ft6GUL0HLwOcFuO3uplYO5zd6gaYkI
/naHpkfHJbQdbknXJBqlwszD5H/aEJA9yxzBX3x/H98cZtx8sPlXzeHmw/gw
+zfq5S1mjLGAu4/Xf/2U1BcWcPeD7ftuAfcfjA/zP4w/EwQ6FeD86SB+pJRD
cuwdN2YNCwcTcMCIO7wAmZtrBuffBPnvqAmcf/Kw09pMPij/siScL7trwb7U
d/JwPsx+GP8MCPBoQcyXNYG7n8tNtZRplQncfzEKjh+TbUzh/ofxYeED1h9r
Ag+/LSB7pBB8R6CyGdXGcD7Y2Y+N4HxukH2zjKDu0XY4DXLfPkO4+TA+zH7p
eXGapwOM4O6zrYxYYXrXCO7+aJD73hjB/Qfjw/wP4+8Itor4ny4P5/dHdPsz
bpCGuE/Z2KEPxBeQdGhkOdpvON0YHt49Xq9YTARNHBhAwEEUEl6vTBzWCunw
pduJOEybwF9lJm0G54PTT6g5nA+LX5h+sHkbLRweuMY7zioUh/jPwdJBHhR/
6yTh+SXk7eWPMxxl4fxUUPi5KTqg5y8AyI5Waw==
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIdIIaxWaBsBiifAY3NCJVnRmMTo54YcXraNZjdRk+7
cIkDALmJAos=
"], CompressedData["
1:eJxdlF9IU3EUx+9q2YsZFNeFBZb2z40kdSBs945zfUkiamjRHuxh1V3/IIMg
CAZCEEV/KCTKVQ8TAx8iFCpnknsoagOHIYKGISsrjHKQGbIwWfd39Xt+0IHf
w4fL75zv95zfuVuOtjaZKxVFcVjnkHVWWOdzuHPMW25QNJufqPtRRuD+Zl+o
sMNFLyauLZougyIi3pbSjb3fnd4RooO50dmOzlIqiLhC1LIttGk4KnnzQDxp
lqjU/a2xuvCJlu5vVzmft06ESuefqwtDEcm7bsfzNX2SnV3tPkfO4PtfhL49
DZwfjPrlxuyxzKLB+uZ6g2fuJ6R+W1+P9AeGf/DT+vyr4+6dzBkRxW7ON33a
M39Pd3O91ED/zaKgm/XUa4NNd8OSE3RpKrXBQ6kqX/vQuEEnhJ4iD/sFox/g
mTXJ3bEyySFXYkSZp2U9Hu438oNRH/OCPvQf+jFv+APDP3jr2FSzMlNJj69/
OKkUiAZbo7nY12XOEikiPlZS8YGeO2Zc8vi6X8a7CwHmjpgVf3RmU/jq0zmf
/f2izvXA0AOG3rYF37nhqzr7eb8xGq5VA+z3t5hXd4D7AUa/7Ptpnfu7L71a
f3BZcpvzza2aaY05/brhyan9ku16qzSeh62vys/5waj/rPpsl+Oln/XZ/WrU
WP9Poe+wxv7A8A/GewXjPSMf3jvqYR+gB/sCxj7ZOib9vG/Ih31EP8DoF/hR
NlnycE7n++g38oNRH/OCPswT+jFv+APDP3jtkWC2NlVBvcJvRidbzmjFUh//
SsZ7BOO9gtdbnyOTkrFvYOwD6v3///wHgTJVDQ==
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
JjHitLALAM7SAnU=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGZigIINzg5782vezkxVcnjDu89g5i1nhweu8Y6z
CpUceP3XT0nlcHFwX3N0OUOFksNN6ZpEI18EP1J8+0WGfQj+k8SF10yeu8DN
U33SPO8sk6vDWiEdvnQ9JYc13bczGPhdIfJTFR3m2ehcmSXm6lB+eJvrTF0F
hwO1shbpLgj+CU2rSaftXeHm4eIbg8BlBF+kclLJWRNlDD7M/EaWo/2G01Xh
9sP4MPfNBIFIFQeRT47n03hdHX6+fX3AUlnFoe63VcE5DlcHlWuPghneKMP9
V3n/xy3j3cpw/7tMaBZK61J2mPKNLX7GHhcHD3D4QN0TjsYXR/ArIlaYnn3s
DAmvOmUHWPzAzIPx5yxS3vnnuaaDguPH5DN3nR0CbgEjRkjLocfrFYvJT2eH
7Q5Nj45LaDmYgMIl2AXOB/t/DoK/7IWH3v+PLg4iII1fNCH6FV0dfoD8exhq
vqurw4nDTmsz52k6SEy9wpnh5erwHwTqEXxRsH4NON9jP8gidYj/6jH5XifY
bWdf1XDYeavrb2q7q0PNpw0B2b80HSyuHc01meHqkJ4GBGzakPD3dYX4Q1jb
AaRslrwr1P3akPR3zwXOB8eHlQtcPTi8PjjDzQOn710IPjh+piD4YPszcPPB
/m53gtsH45vb7A2alggN/4tODsd37ehlC9CC+E/c2eF5lva36bZaDqtB6Uve
2eEMCPAg+JvNfxxK0dKA82tA6em1FJy/I9gq4r+6ONw8kHPSjonB7Qt5e/nj
jIVicPfEqEbInKtB8BV2LdiXyifqsBwU3w+dIPrVROHmgcPLWNShZKvo79Np
CH4EKHy3IfgsiydZMb51husH5xd3F7j5MD7MfnD6+esMd98XUPxtR7gflp5h
/oPxYf5HL58AC17vng==
"]]}, {
Thickness[0.02249212775528565]}, StripOnInput -> False]}, {
ImageSize -> {44.45698630136986, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {45., 17.}, PlotRange -> {{0., 44.46}, {0., 16.34}},
AspectRatio -> Automatic}]}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.9, 0.36, 0.054],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.9, 0.36, 0.054];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable ->
False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.365248, 0.427802, 0.758297],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.2434986666666667, 0.28520133333333336`,
0.5055313333333333], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.365248, 0.427802, 0.758297];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.365248, 0.427802, 0.758297], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.945109, 0.593901, 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6300726666666667, 0.395934, 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.945109`", ",", "0.593901`", ",", "0.`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.945109, 0.593901, 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.945109, 0.593901, 0.], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.645957, 0.253192, 0.685109],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.430638, 0.16879466666666665`, 0.45673933333333333`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.645957`", ",", "0.253192`", ",", "0.685109`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.645957, 0.253192, 0.685109];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.645957, 0.253192, 0.685109], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.800001162727559*^9, 3.800001184439625*^9},
3.8000012354705687`*^9, 3.800001356112529*^9, 3.80000143718644*^9, {
3.8000014787761583`*^9, 3.800001500273628*^9}, 3.800001563924923*^9},
CellLabel->"Out[58]=",ExpressionUUID->"e586e923-c09d-48d5-bf34-97e29d2fa68b"]
}, Open ]],
Cell[TextData[{
"We observe the Coulson-Fischer point at ",
Cell[BoxData[
FormBox[
RowBox[{"R", "=",
FractionBox["3", "2"]}], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"bdb614c3-cd1c-4dec-9cb5-18d2312a7774"],
", the symmetry is broken for ",
Cell[BoxData[
FormBox[
RowBox[{"R", ">",
FractionBox["3", "2"]}], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"1a7959e6-2dcd-4542-b1ad-a7430073751e"],
"."
}], "Text",
CellChangeTimes->{{3.800004808143817*^9,
3.80000485670133*^9}},ExpressionUUID->"4eaa2d7b-45fa-4318-b7e7-\
ea808455e59f"]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["Two electron basis, Hamiltonian and spin contamination", "Section",
CellChangeTimes->{{3.8000016304764423`*^9,
3.8000016515404797`*^9}},ExpressionUUID->"6c64cb96-3334-4292-9b6e-\
dd886d2af85c"],
Cell[CellGroupData[{
Cell["RHF", "Subsection",
CellChangeTimes->{{3.800001949438826*^9,
3.800001950246894*^9}},ExpressionUUID->"9e6aaa81-06ba-42d2-a090-\
49e3f5a0e79b"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.801823052315659*^9,
3.801823059614296*^9}},ExpressionUUID->"bfe01521-4810-445b-a5d5-\
dd0be413fbd7"],
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalPsi]1", "=",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "1"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]", "1"], "[", "\[Theta]2", "]"}]}]}], ",",
RowBox[{"\[CapitalPsi]2", "=",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "1"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]", "2"], "[", "\[Theta]2", "]"}]}]}], ",",
RowBox[{"\[CapitalPsi]3", "=",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "2"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]", "1"], "[", "\[Theta]2", "]"}]}]}], ",",
RowBox[{"\[CapitalPsi]4", "=",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "2"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]", "2"], "[", "\[Theta]2", "]"}]}]}]}], "}"}],
";"}]], "Input",
CellChangeTimes->{{3.8000019632284203`*^9, 3.800002015343547*^9}},
CellLabel->"In[39]:=",ExpressionUUID->"31834666-ac95-48bb-888c-5e3473c0b895"],
Cell[BoxData[{
RowBox[{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1_", ",", "\[CapitalPsi]2_"}], "]"}], ":=",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "\[Pi]"}], ")"}], "2"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], " ",
RowBox[{
RowBox[{"Expand", "[",
RowBox[{"\[CapitalPsi]1", " ", "\[CapitalPsi]2"}], "]"}], " ",
RowBox[{"Sin", "[", "\[Theta]1", "]"}],
RowBox[{"Sin", "[", "\[Theta]2", "]"}],
RowBox[{"\[DifferentialD]", "\[Theta]1"}],
RowBox[{"\[DifferentialD]", "\[Theta]2"}]}]}]}]}], "//",
"FullSimplify"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]1_", ",", "\[CapitalPsi]2_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "\[Pi]"}], ")"}], "2"],
RowBox[{"2",
SuperscriptBox["R", "2"]}]],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
RowBox[{"Expand", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
SubscriptBox["\[PartialD]", "\[Theta]1"], "\[CapitalPsi]1"}],
")"}],
RowBox[{"(",
RowBox[{
SubscriptBox["\[PartialD]", "\[Theta]1"], "\[CapitalPsi]2"}],
")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
SubscriptBox["\[PartialD]", "\[Theta]2"], "\[CapitalPsi]1"}],
")"}],
RowBox[{"(",
RowBox[{
SubscriptBox["\[PartialD]", "\[Theta]2"], "\[CapitalPsi]2"}],
")"}]}]}], "]"}],
RowBox[{"Sin", "[", "\[Theta]1", "]"}],
RowBox[{"Sin", "[", "\[Theta]2", "]"}],
RowBox[{"\[DifferentialD]", "\[Theta]1"}],
RowBox[{"\[DifferentialD]", "\[Theta]2"}]}]}]}]}], "+",
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "\[Pi]"}], ")"}], "2"], "R"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], " ",
RowBox[{
RowBox[{"Expand", "[",
RowBox[{"\[CapitalPsi]1", " ", "\[CapitalPsi]2",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ",
RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], "+",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{"Cos", "[", "\[Theta]1", "]"}], "2"]}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{"Cos", "[", "\[Theta]2", "]"}], "2"]}]}], ")"}]}]}],
")"}]}], "]"}], " ",
RowBox[{"Sin", "[", "\[Theta]1", "]"}],
RowBox[{"Sin", "[", "\[Theta]2", "]"}],
RowBox[{"\[DifferentialD]", "\[Theta]1"}],
RowBox[{"\[DifferentialD]", "\[Theta]2"}]}]}]}]}]}], "//",
"FullSimplify"}]}]}], "Input",
CellLabel->"In[69]:=",ExpressionUUID->"10bae95d-3a3b-49d5-b6c0-da421cf9f00d"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"rH", ",", "rS"}], "}"}], "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]1"}], "]"}]},
{
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]2"}], "]"}]},
{
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]3"}], "]"}]},
{
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]4"}], "]"}]}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]1"}], "]"}]},
{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]2"}], "]"}]},
{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]3"}], "]"}]},
{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]4"}], "]"}]}
}], "\[NoBreak]", ")"}]}], "}"}], "//", "FullSimplify"}]}],
";"}]], "Input",
CellChangeTimes->{
3.800004320144642*^9},ExpressionUUID->"b5faa348-1eb1-474f-a5a4-\
d3ed39d023d0"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"rH", "[", "R_", "]"}], ",", "rS"}], "}"}], ":=",
RowBox[{"{",
RowBox[{
TagBox[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox["1", "R"], "0", "0",
FractionBox["1",
RowBox[{"3", " ", "R"}]]},
{"0",
FractionBox[
RowBox[{"1", "+", "R"}],
SuperscriptBox["R", "2"]],
FractionBox["1",
RowBox[{"3", " ", "R"}]], "0"},
{"0",
FractionBox["1",
RowBox[{"3", " ", "R"}]],
FractionBox[
RowBox[{"1", "+", "R"}],
SuperscriptBox["R", "2"]], "0"},
{
FractionBox["1",
RowBox[{"3", " ", "R"}]], "0", "0",
FractionBox[
RowBox[{"50", "+",
RowBox[{"29", " ", "R"}]}],
RowBox[{"25", " ",
SuperscriptBox["R", "2"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]], ",",
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"1", "0", "0", "0"},
{"0", "1", "0", "0"},
{"0", "0", "1", "0"},
{"0", "0", "0", "1"}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]}], "}"}]}], ";"}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.800002151407773*^9, 3.8000021726393013`*^9},
3.8000043633670197`*^9, 3.800004411340724*^9, {3.8001821324871187`*^9,
3.8001821388313828`*^9}},
CellLabel->"In[12]:=",ExpressionUUID->"6e4f6e6d-5616-448d-9ef8-04d79a2d1823"],
Cell[TextData[{
"The two electron basis is orthonormal. The Hamiltonian is block diagonal: \
",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"dc20253c-5fab-46dd-a3ab-4879b8f24c3c"],
" interact with ",
Cell[BoxData[
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"43283fc9-c20e-40e3-9de4-98813f4b9890"],
" and ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["sp", "z"], " ", "interact", " ", "with", " ",
SubscriptBox["p", "z"], "s"}], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"19684be1-9be9-4fec-9bd5-e8521728354c"],
".\nThe singlet symmetry block has the same expression as in the minimal \
basis of legendre polynomials: those polynomials are singlet CSF."
}], "Text",
CellChangeTimes->{{3.800002178441375*^9, 3.800002289316906*^9}, {
3.800004429063689*^9,
3.800004485173311*^9}},ExpressionUUID->"575d1f25-9a6b-417d-865f-\
0934d7769291"]
}, Closed]],
Cell[CellGroupData[{
Cell["UHF", "Subsection",
CellChangeTimes->{{3.80000231558915*^9,
3.8000023176386843`*^9}},ExpressionUUID->"1ff36fea-f6e0-4927-b494-\
83381e142e8e"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalPsi]1", "=",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Alpha]", "1"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]\[Beta]", "1"], "[", "\[Theta]2", "]"}]}]}], ",",
RowBox[{"\[CapitalPsi]2", "=",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Alpha]", "1"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]\[Beta]", "2"], "[", "\[Theta]2", "]"}]}]}], ",",
RowBox[{"\[CapitalPsi]3", "=",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Alpha]", "2"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]\[Beta]", "1"], "[", "\[Theta]2", "]"}]}]}], ",",
RowBox[{"\[CapitalPsi]4", "=",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]\[Alpha]", "2"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]\[Beta]", "2"], "[", "\[Theta]2", "]"}]}]}]}],
"}"}], "//", "FullSimplify"}], ";"}]], "Input",
CellChangeTimes->{{3.800002353416954*^9, 3.800002356433406*^9}, {
3.8000023874548407`*^9, 3.80000242283701*^9}, {3.800003737333551*^9,
3.8000037439246063`*^9}},
CellLabel->"In[64]:=",ExpressionUUID->"0cfd58b0-264c-4a32-a787-6dc97e0bede3"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"uH", ",", "uS"}], "}"}], "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]1"}], "]"}]},
{
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]2"}], "]"}]},
{
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]3"}], "]"}]},
{
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"H", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]4"}], "]"}]}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]1"}], "]"}]},
{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]2"}], "]"}]},
{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]3"}], "]"}]},
{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]4"}], "]"}]}
}], "\[NoBreak]", ")"}]}], "}"}], "//", "FullSimplify"}]}],
";"}]], "Input",
CellChangeTimes->{3.800002799019884*^9, 3.8000033299580936`*^9,
3.800003756203944*^9},
CellLabel->"In[19]:=",ExpressionUUID->"9884ee06-2438-48e5-a706-7ed7a2d33d4e"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"uH", "[", "R_", "]"}], ",", "uS"}], "}"}], ":=",
RowBox[{"{",
RowBox[{
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox[
RowBox[{
RowBox[{"-", "225"}], "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"75", "+",
RowBox[{"59", " ", "R"}]}], ")"}]}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]], "0", "0",
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]},
{"0",
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "45"}], "+",
RowBox[{"60", " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]},
{"0",
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "45"}], "+",
RowBox[{"60", " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]},
{
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]], ",",
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"1", "0", "0", "0"},
{"0", "1", "0", "0"},
{"0", "0", "1", "0"},
{"0", "0", "0", "1"}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]}], "}"}]}], ";"}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.800003869649755*^9, 3.8000038767153397`*^9},
3.8000039306983137`*^9, {3.800182146333519*^9, 3.800182152792946*^9}},
CellLabel->"In[13]:=",ExpressionUUID->"3f786932-48d4-4f24-b3f3-24e1289acc74"],
Cell[TextData[{
"The two electron basis is orthonormal. We see that the singlet state ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SuperscriptBox[
SubscriptBox["p", "z"], "2"], " ", "is", " ", "spin", " ",
"contaminated", " ", "for", " ", "R"}], ">",
RowBox[{
RowBox[{
FractionBox["3", "2"], " ",
RowBox[{"i", ".", "e", ".", " ", "the"}], " ", "Coulson"}], "-",
RowBox[{
"Fischer", " ", "point", " ", "by", " ", "the", " ", "triplet", " ",
RowBox[{"states", "."}]}]}]}], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"a1c20ee2-a50c-414b-96db-23db0692c302"],
" Coherent with the UHF description of ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["H", "2"], " ", "Gill", " ", "1988."}], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"8e48dc62-49ce-4c74-bb4b-13cfb3eddde9"],
"\nSee equation (3.6) of Gill 1988 for the expression of ",
Cell[BoxData[
FormBox[
RowBox[{"<",
SuperscriptBox["S", "2"]}], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"de9860fd-1d8b-4084-8077-ca477d296811"],
" >."
}], "Text",
CellChangeTimes->{{3.800003951126396*^9, 3.800004053175095*^9}, {
3.800004579396243*^9,
3.80000463443943*^9}},ExpressionUUID->"3cada83f-24c3-49fe-a339-\
0566f14382ec"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]], ",",
RowBox[{"{",
RowBox[{"R", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8014537914596043`*^9, 3.801453827125749*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"cb4026f0-35a4-4d45-8b9a-35314725a5e7"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVlXk41NsfxydRljaSSvYREiVL5d54n2gfVxFpuSQVKWW5KVLRYil3wiBF
kSVRSbYs2Y35FiXpkkqIpGiT1Ozzm98f5znP6znPc87n/Xmf9zm6Xv7O+2Vo
NFqldPx/1rLJjTWncTG+xrnVbfAIImbzD/dK+Y6n/fjDZREwehGl4TCDC4Wx
OIMdLjfQzprdWrmAi98zZx3cei0XIc43Qg0XcdGglbFEb98d6KiYGiUv56Lj
dD2jx70Qj59Xdsms4YLvTn3af6AIQQnrIgOcuCgcpY/MGyuGutMLi14PLn5l
2HnDpRSNszwHGH5cLDIvDLW9WoaD7Z/jK0O5cA1JTF3X/AAq8aEwjObCotF6
qVFPOao2T/malMSF5zLVjy39FVB6ps0IKOTimt0Bc8HDKpReust7W82F9XD3
11fJD/G3o3Ueo4WL+tGMH477qnH3qbOc4RAXy+LCDCcN1sCF2VeS9IMLzXU/
Vn9IqoXQwc9LhsZDh+wD+zrbOvz1JLLurToPqSZdaRts6/G1pSI0aQsPmj3z
GbnbGnD54lojGQ8evKbybouTG2C7qaPL/xAP5gH1Y986GhD3eNSCEcWDUaa/
SH1dI1ZeCBmoSOTBJ9rXhXmyEf0b5BIMMnlgTqHWKxY1wuyR1tdJ1Txw6T1T
wlWb0B1955r/Yx7k2jxcb9g3IWL9SsbbLh5ymf6XtQOb0M5xyqsY48Fhb1D8
SaoJgc3nvfwN+djJUR1y28uG1vt1U35Z8CFXkX7r4Xk2WmUUbp8kfMSa5cbP
ucnGQsIcu7CDD5vPt/PaBtjo8NicPMtbuv5ZfrktrRnhp5StU4L4aP8iW8bW
aMarquSInFg+en4X21lsbUbUKzf9xVf4MF2ePGh0uBkW3PmPinL4GI6PydkS
1QymVfrMuho+LH1mJzs+aMbq+7npr77xUSa+bJkxnYOvbQfsPIVSfvPsSaMu
B2lfjD98kBdgd9/3p3ZWHEwYF5r+1BVg6HPjed+dHGRtDHx+YokAbgxz1jw/
DjYfsAie9KcAewuUqy1PcZB/s7x6hosAJTG5Z5quc7CNHeqZ7CmATevwdpsC
DiYP/imrcViAwxWtHPNqDtx16hmLogSIpWmxrndzoJz26LV9hQDBYa/sHitR
qK28eLqFLUDB8i7RsbkUDnU76Dk9F+Cr9juVCj0KzXOe+3qMCJB5OjNcvIJC
kGXi9KFfArzzs2qQt6OgvdW16NBkIZbe0jK/z6AQGv+KG6IhRPAD0f0+dwoG
hWnXJEZCZL9arennTeHFU3cSZSVEZ0X5sfQjFEyVBqITHYWYsyxDTnSKwutF
OYvVdwnhM96vaxpJIXqD97MbPkL4Cfg8xX8pvIscUbsXIcTGT/7qL69QuJRz
t8qSKURdadzAo3QKfzYd8Xh4VYjY5BFv/xwKybTxm4+KhbBytDR4d4+CnXbZ
xs11QmTcCYkuLKHwzeb4l85WIeydtv9YWUFhY5jAcvC9EJc6eE1n6yn8ulrT
7TsmZWORzDo2heyK8JPfRUIkLy4XPqYobHm5Wue4oggi561TZ7VSEE1MZovU
RKiZWxIwv43CbVWOz3m6CFmthaeH2ym4WcQoKZmJsKF3h3/YCwqyzpsKE1aJ
cCzLKrSrk0JRwLSt8zaKoFoW3Mp7SeFJ6uzQgm0iXHW2uj39NYUPbPUMu30i
bK2qez7whgLtm27zy0ARrJeS/BNvKajPXzTqFy5CNX/8UlcvBUt7M2UZpgjm
ikHdv/sobD68YkVKqghpxd86+vopHEyxdTfJEyGl9mxT3DsK5xvWnmsoE8H5
o+ew/ACF9FGH/G1NItj0aRx1kHLFHJdno+0iBPzuT9kl5Q7smojoFUEu41bo
Cil/8fVaoPZZBJPSQOt30v3kk3xX3+GJoNR54vsOKevVBviQqWJYNRwqypKe
v+rjcWanqhiegxdjqqX1bVMJLzmoJ8bGeaNhedL6A1ZFvZIsFcOFuhLrI9V3
0ZspSbIRI2V3cxFfqj8nPmmhMUOMUMbYgJe0P3VVaYy67WJY+KnOyOyW3qf3
WYEu3mIomDZrPOii8HPG7ZRP/4gxbOMxnvUfBaO9FYOz48SofuoVMFXqjx2z
TiH/mhiB3amciKcU/i7nLLW9LcZx85Q1nS0UEpQ6ww40i+HX7/JepZnCXaue
TFGHGNH7nBJEDRQ4uwcpVr8Y73WbTnJqKfBLxmbXCMTAlojfE+UUVHu51s4K
EvjWaY+5l1JYIk/zHFaT4EH7THHufQp7/55xV9lcAtc9yqLePKn/sovXeB+Q
4KLm/hBuitT/JeYHBcESFNzsmBmWKPV/h3V8/DkJkuoflQ9eomBVsL6nKl2C
Kq+vJ3yl+Ul33Xd0ZqcEweNWv10Dpf6FH0rNGZDAYmaJ0zw/aR7zg+qtv0tg
Fpv5iy3Np2w4mVIsRyMLnEIU+3ZRWPnC0blHh0Yiwxba0tdSyAw7NGLmRiPl
95WyGKoUzOoVuNHuNMKfXHTdZQaFetk8ub69NOK3ouP4FnkK/cz3OswAGknn
hYzqCjnQuuHu9ukCjajfVT1vMchBKnszO7OaRtSGLugzCjlgTbdMV9GbRAo1
zq55Rzg4myF0+vl5Eik1DeWfk77HtBf9pPrEZNJ/l7lwnfR/MDjqHeJiLEfY
vf9m8MMb8H4iZZtSzRTy3wdGaXFVHTYNHTzFCpQnIz3rsh9crYbj+/jFWlqK
RFHni6z550qMNHlFPCpQIjVrK5QKq8uxRLlL0373dJJWc7fILr8MipjY0zM+
gzhKXtYa/CrB+i87f+u5ziIXZgm8HN2K0d24b9JOE2VSY6v37dP3+yiLYXvo
TCgTlGru7o4rhLdccH9bmwq54cs/x3EqwN6gsLJpqbNJsUJg/fmgO1jqs7jN
YY8q4RRYj7a05OOZiolSsPUcksIPq5lnkoeH986mmUxWI/pdKtcV23IRNsl4
y5O3akTZbPhjT/BNKPac2HCkdC5RTErduMY+B0O5ukkZJ+cRflu01ZhNNpKM
5stWus4n+trpjB1/ZCE+1Zvao6NOVlXiwuiuTOxMcm+bNqxOTGMaF8WwboC7
5iYvo3YB2Vj5bMvxhAwMDtmFNEZrkM/p+sV0q3Rk2Sxb8HSPJmllv86yenkN
BZHByj6mWqQtCIyvt9IQ7bqXMXlCi7wx1AmJZqVCGo/86KfaxMRAf+lQ6FVc
WZRW8JShQ6qNLbc4RF5BeD3zCqNSh5xIHPjnIDMFfy1wvdmir0v0dtGzP+Zf
xuoj1C7lC7okOCq7NXMgGRkaXvpPJnTJqi6rmRFzk6HfdOuy4y49MslCPlRh
fxLiTRuNO2r1SPLjeeY1dYnwHpd9/tiYTvRdmKFeaonwKvqhcyGOTqryzqVN
OcOC39mtwk0JdFKtv6nq1GkWgreWvpyWSCdyoTv+mQhjIWYi+FL8ZTqZ/jOq
5MMxFu5Z8wQp1+mkty/Ou92PBV6DpCv3Dp2Y77Y8VL+dhfiOaUw2RSentD8m
KC9jITX78IGox3Syn3X7StoSFrKPttlvaKWTfMUICwMTFh6oxfNb2+jEoyBL
38aQhZ6dsw+86KQTu4tnvgVqsmA4ON9+YJBOYjfXiH4psGBWekIrZ4hOdvxl
tvTiVBb+iHzD2z9MJzUvK8c05VhwMLx+/9OIVB/dZdF6GgtBh3S0xsboRLv9
rPuNXwk4ueoMr3icTjjvolRW/kxA5PSB/45O0EnbVWO39rEEXCnMjuVy6STg
9+VLMl8SkBUh61PFp5NZLTJnro0k4I7TfruTQjqZet1FZsXHBJTqcTRtxXQS
uNxDpWMoAbXjBjyJhE58/MfuHx5MwP8Aao/HsA==
"]]},
Annotation[#, "Charting`Private`Tag$3031#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 0.18659539142566528`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8014538192748203`*^9, 3.801453827469933*^9}},
CellLabel->"Out[2]=",ExpressionUUID->"c26e2d6c-ee16-4853-861c-a39115a14019"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox[
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-", "225"}], "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"75", "+",
RowBox[{"59", " ", "R"}]}], ")"}]}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]], "-",
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]}]], "//", "FullSimplify"}]], "Input",
CellChangeTimes->{{3.801454228657283*^9, 3.8014542325718393`*^9}},
CellLabel->"In[3]:=",ExpressionUUID->"d094781c-d1c5-425c-b3e5-23f0293bed05"],
Cell[BoxData[
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{"75", "-",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}]}],
RowBox[{"12", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], "2"]}]]], "Output",
CellChangeTimes->{3.80145423330802*^9},
CellLabel->"Out[3]=",ExpressionUUID->"ff995faa-4bba-4da9-b77f-ee24c7ff147e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[",
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{"75", "-",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}]}],
RowBox[{"12", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], "2"]}]], "]"}], ",", "0.25"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"R", ",", "0", ",", "20"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8014541950953503`*^9, 3.801454278991845*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"853ec222-1da3-4b95-8cda-b665d0e9c2e8"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV1Xk01PsbB3BGKlQ3bpkRMfZMEaZuoTwfW0qorq2UXBOGSJYmEnWzXBGR
PSm7riWiST9uXFvZ54uxL1lmumlsMYMsXb+5zznPec7rj+ec54/nnLc85eav
LjgBAYEifv83n9+jbNVyfqafv/lfYdDIJJrbEe9AVKK72Trfmx9rQonESKi9
V64xy/eu+IrXogPxoFQ8+6aX7+e1MXLCxKdw938HJuh8H5p3frxJzYDJBY/q
KL5Hd734d6M/G351qDpnx7dSvsgva+t5MFslnrGPb8+TtBsrcgVwK+p6ec+/
GLzpGc/lGRVD3k//iwvne83DfGSBWgpptlNIne9MwZHIFZMywB9nt7T9wMC4
44nycn85zDnEajvxPZVqWsdzp4OpafOD2Q0Mop1/XOGuv4V5c7cab76Z626J
3+QqQee6mvSVdQxuN8lqzpdVwcE01unGNQz2JfS0zRq9B3+5Y/cV+aaQkNA0
9W/Y+yCX2PQdA9x6IMYLqoWRGY2nYnz3jNvs55nUgVEv+ajpCgYBxWKVi/31
8EbKbjFnCQOz+H+2LmY2wC+4GuIHHgYyAXXWC+6NkPhQM2aUi0Gtkf+3+fUP
ECSToMtbwGDb8KTqrFwLpHlXvKicxWCgtpo2M9UCrjhhWtIMBoX5qQ3TZa2w
HpxU7TaNgaWvpSPHqB22mev9vTSFQbJIVfIXKgYxps3HClkY0P3NfP0InaDM
o1kZTmKQzjkmxQ3qhIRp6p7ucQy8OiWoiyZdYHQMZQyMYiCR3oxb6O+G1uau
iJB+DNZ3VRR4n2ACCbqDBnoxYD/IOf8tkwmr5rOnVXowqKDeezHv3gMqU1vv
F3RiYE8+oju33gsj08yd51owyGrN8JmWGwTJpFub0pUY8FLfksaiB4Fx7rtl
QwUGp6htrO7VQQg/KX/HiY7BjNCKTRVzCEQaTe6GlGJw/KSlbmTECPhG1W29
mIdBZ+kGTnV+DKpCffLtYvn3gsjVnRrjELReuMc7GgM9lUTdCOdxOK7n2X0/
EoPHvAJuYNc4eDXxLoaHYnDkSa8LpWgCWF5f7dT8MbjfeshMy5EFlzJ9dIav
YPBn2TuVoiQWGJU+/upxCYPuVEMh5XYW1Em7X+TZ8P+XevE9QYcNtDPOMTOW
GLQKhWkI/PwZqruKd99FGEieHJbAPv4DDmIb5pIKGJSURg57anBg0OTrbr8x
BnAkONFmThw449gbaDXMANXbZvoHEjnQsm2Xq3o/AzJPiGWxVjmgC1d6OhgM
iG+JdrX/MA1OU5RnddUMuM2KXTC9Mgvx0auyd9IYkCHWFipu8g0qVvKyzpxj
ABW6ns74ckHEd2+S78sOEMherhp+xIV9Nu0ZvKwOSN0iM9Kay4VcSna4T3oH
NLe4yhb0caFPzmHx8pMOOGC9ke2iy4MtKWbV3MAOmHJTLf4kuASF2OodbYsO
uB4fXNMZtwxqBXdEts21g9dnNRa9ZBWo8tXD/fLtICofpjp2XADxnGZy3TVa
4fHuNlLWb0JIUvvJCk2+GSjD1n8LtW9FEdcWvwzRP4DPhzDKTVVRpPy1QbNa
rQHKvHdYEc7sRDeR0fZPxbWQddeDo2m3G+Fu/r7iU/8XhGRsXODNiKPWNJcw
C9cKEGCOo/eBPyPPtsLOozvKQOWWa4A1aS8qqVCnzlnlA3spxVasWhK1CUZz
DEKSIduA7DfaIIk8aYo/luWTwTGGEVvaKols1YXNCuuSYEhJuMVqQBLdfPi5
UEwwCbqsfPXSuZLIPHhQq+p+AtSUmRPVSXjk6+ge3RYUB0E/vpzY1MQj4rUf
4lSZONA5E3qp6xgeRXXWO+ECYoE+XhlPM8GjVOWYHMpyDBT+pCpc8xseXXR/
HSLEjYKUG4IcyxQ8KuwxL+icDgPryvSt8i/wyPMBR2+cFAYSwscVubl4tFTf
WzHrHgqP072upJTjUesZ9hPc1AMIaxtmjHXgUZZAugKpORgM8f7TZT14xPl1
7SjpVBBsUiS2hw3jUUBdQotKYyAErp02OPAVj4wOyzTvrfUHb7WKN95bCGjc
MSW4450PaNAudBqKEdDrivNzb456w3TtzMweCQISSFzce5h6A1wvKqpUyhHQ
kddPdV5dpYJSbo3hIxUC2j5hF+Bs7wyT85ccHdQJqJz04Z2krRM4RMSlCuoR
UHCmQ+1gmi3sYx58yzQgILVOpKMQfx4GZJu68k4TUCKnBNcoYQLJ1ylz/uf4
+/8IlLjgtMG64oeomS0BKWYq2PuFEkAC91RVxoGAxvA5+vrG+oBZHDGeu0ZA
7TGdmZ/IZ8Hs8/XgeB8Cej8UU9NQdAlOBSsWGwcQUOwFqQf+qY5guHdkaPke
AX1cNk9OraeAronF8cvRBBTkvP0P+1I3IOUd5iq+JKAo1aW8YGNfEHPhub0d
IaAZG3aVqew9aGcHWw+YSqEupvvS5lQUWLLjDsrK7kNBXcVHHlo8BU4D5ffm
V9JIZ7P/9UjJS9AQ79tv5LgfRXUdjKS3l4EoLDmNcGWRWGbys2qrd2A6a7+i
YENEBl6km7tMqmGg3lnQ/pA80t/TnKD9Rx28fdh4lbgkj3D21/3FtRrBVZg2
zmAoIP8vignTO5rgmu/dtzvSFBHT49HN8tIWOEw9yDB3UkJ+f4Fy34l2wCQO
idF0lJFx4aGgghUG/FUS8uyQkAqaSJDxPVrdCXcFSefbR1UQvcegxGJPN4iO
BJ72oquijD9ZO5sdmfA5Xz4xI+gA0rVgaCvG9UDiAaktlTZqSPV4KJPT0wtx
aa5NTkQSStJtDVXY7AP7RAfGji8k1JPg96JfdgC+G+etZtQcRLgFg/bRC4PA
+mwYUB9xCF2X7XAN8RiC7JNa0h1O6qinxLM9I2UYXoXTxKnqGog2lJe+rWgE
ImyunRVa0kDxh1+axNJH4ehIVkFEx2G0W//fh9nYJ0hVe/aq46wmyjw6edmA
OQb3a2NSz1ZqIonpS9sH/MbBQtomr1VJC3Uu6x2RWh0HA6+my+KRWsjm8SlT
Q78JyJChKLUvaSEJyZBGj6UJUGp4mWx5WRvZ6VD8uj0nIU69ntRdo42mpJmB
s2OT4Mrd0tVCIiNZu3OVRfYsoJQtEiNjychCcqvxiTYWeIZYbZg9IaPRYxaZ
Gh0soFnR+3ckkJGbs3s/EWPBwyXa47hkMnrZp963hcmCEp3V9ZTnZDTBNpBs
G2LBat1mX34RGV196JlznsOCuO4dMY1NZBRofHs7EmFDWs4Ntz9ayOiFQ94H
dTE25NxiGJ1uIyMngvhV6Z1sqJCMW2tjkJGZYxFxeTcbRux/dmP2kpF7rsls
AYENqiwpo0kWGQ0asfNFD7BBkx4om/uZjBJWfpNaVmODbvjwqssXMppbtKBO
HGSDuerz1185ZGSdH5707jAbfD2IsgsLZORg+FGPcowNQScerJZzycj2tlyU
OT8Xw3dO9txaIqOiKhz9Fz02pJbmPPr+nYzybW+liQIbsn/fQq1aIyNlORE7
HmJD0QUXw6ANMioYPDI/asgGusLH/fr/kpF9zRqlyZgNNVyV1c1NMtITvlr+
+hQb/g98FTyJ
"]]},
Annotation[#, "Charting`Private`Tag$4443#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQPbcuic0wZbYdAxhcsGe//Uj9rfxJexh/4an5ha/l
b8L569Z33s7RewXnp9tfnPmm6DOcn/dU8/GWdT/hfC7FFvX7FgwOMH6fwGmt
hQnMcH7S7ZD9zGfY4PzCoy1J+epccP7GAp5gCU9eOH9hdfYrg3ABOL9p/p/A
L28E4XyGyw8c9lQJw/lqJWkVIVqicP6Tr9PDuPeKwfleT7NqJxVKwPl+TyZo
y8lJwfmvDic1nFgrDefrCV6TdY6XhfO57L8m3vksB+e7v436rhSqAOffOJTC
GKWjCOdv7TgSp/AVwU9jLX1w7pwSnJ9cVL2VZ5YynK+frn3OJ1EFzj8vpMNd
aqkK5+9e1zRbh1kNzq9m1Ao4cxfB57pT5ZG3RR3Of7pMccr8Gg04f4qGJMvO
UE04f8KstOOJClpwftSU2HM8zxH8Hy5Lf87fpw3nP37qVHGoXQfOX2RrKH02
URfOX9taKpiuqwfnt4cmezN/RfBN7yxc2X5WH86foTl77VlvAzi//kDvDO+d
CL6vdOjSUyqGcL5j3vFowU4Ef75MksqZrwi+yuHl0/yijRD+0z2kdWkfgp/2
meXiSS1jOD9p4yeFzn4Ef8Ilnt4jxxH8fZ/Vfv7/j+ADAB7l6x8=
"]]},
Annotation[#, "Charting`Private`Tag$4443#2"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 20}, {0., 0.633629177449769}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.801454251338786*^9, 3.80145427988146*^9}},
CellLabel->"Out[5]=",ExpressionUUID->"1cebf0ca-1a6a-48a8-bb81-e24f7a7d6bb2"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["Electron density", "Section",
CellChangeTimes->{{3.801823303780429*^9,
3.8018233147642117`*^9}},ExpressionUUID->"100bae6f-3872-495a-ab0c-\
896ce0c0e84e"],
Cell[BoxData[
RowBox[{
SubscriptBox["\[Psi]\[Alpha]", "1"], "[", "\[Theta]", "]"}]], "Input",
CellChangeTimes->{3.801823361455533*^9},
CellLabel->"In[28]:=",ExpressionUUID->"d6e67f73-194b-41c7-9739-d78c807ca3d6"],
Cell[BoxData[
RowBox[{
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
RowBox[{"2", " ",
SqrtBox["\[Pi]"], " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]], "+",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}],
RowBox[{"2", " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]]}], "//", "FullSimplify"}]], \
"Input",
CellChangeTimes->{{3.8018258476232653`*^9, 3.801825852000239*^9}},
CellLabel->"In[38]:=",ExpressionUUID->"eec71e21-c0ee-45fe-8701-eb10d240bef1"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], "+",
RowBox[{"5", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "9"}], "+",
RowBox[{"6", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}],
RowBox[{"8", " ",
SqrtBox[
RowBox[{"7", " ", "\[Pi]"}]], " ",
SqrtBox["R"]}]], "/.",
RowBox[{"R", "\[Rule]", "10"}]}], "//", "N"}], "//", "Simplify"}]], \
"Input",
CellChangeTimes->{{3.801825883043236*^9, 3.8018258982383757`*^9}},
CellLabel->"In[40]:=",ExpressionUUID->"12dbfe5c-372a-4f2b-beef-914402780641"],
Cell[BoxData[
RowBox[{"0.22221760314344077`", "\[VeryThinSpace]", "+",
RowBox[{"0.3009824333701151`", " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}]], "Output",
CellChangeTimes->{{3.801825890432496*^9, 3.8018258984418592`*^9}},
CellLabel->"Out[40]=",ExpressionUUID->"22d286a5-afa0-408f-9bb0-e903a4edff97"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
SubscriptBox["\[Psi]\[Beta]", "1"], "[", "\[Theta]", "]"}]], "Input",
CellChangeTimes->{{3.8018234295615883`*^9, 3.801823430791071*^9}},
CellLabel->"In[29]:=",ExpressionUUID->"498cd2d2-cabf-4c0a-b8cf-ff6444abbefd"],
Cell[BoxData[
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
RowBox[{"2", " ",
SqrtBox["\[Pi]"], " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]], "-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}],
RowBox[{"2", " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]]}]], "Output",
CellChangeTimes->{3.801823431530818*^9},
CellLabel->"Out[29]=",ExpressionUUID->"c29eeae9-169d-40b3-b8ae-3606dee56b0a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "10"}], "}"}], ",",
RowBox[{"Plot3D", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
RowBox[{"2", " ",
SqrtBox["\[Pi]"], " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]], "+",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}],
RowBox[{"2", " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]]}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Phi]", ",", "0", ",",
RowBox[{"2", "\[Pi]"}]}], "}"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8018234459418488`*^9, 3.801823504241561*^9}, {
3.80182354947348*^9, 3.801823603630808*^9}, {3.8018255522598352`*^9,
3.8018255920914288`*^9}},
CellLabel->"In[31]:=",ExpressionUUID->"cf48f2e3-669e-4a29-858e-1a9fc6957703"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJxlnH24zVXagCVxEopRITHHlGTijSZ9MLPVcFKpkRrNDBl9+SrSlHCS1Bzv
6BRDo2iKqEgqKsnXyFA+KxyVzzKVQkI4yjfv2+x1r31d9/prX9ftZ+1n3fv3
rN/az3r2yb/tnvZ3li1TpsyCcmXKnPj/rwUrnpx8fZ3hv8m+jvtN54vPGb6z
qCQz4sjSdT+f/WEGvnLkj3cPLFeSafu3NVvrzv4s8isGNfp0T4OVmQZtXnpz
bfE3kZd5t/Grz3ywPDOl7S331J29I/LVVX7W9/jgRZmnGzz+9PTSPZGf+9y9
5Yo/n59ZO6Vb37XFP0T+Xc3mp+7sPiNTo1Grmw7nH4y8V6/iWne3eSXzx2k/
v6ju7CORz1k/auv818dkPhpzbGh+gzIt4SfNml13dJNHMjvX391/eukJkXc5
cO53tUfemKl81sZureefGHmv964tumhQ/UyjTlffvLb4pMhfW7PiuVdfuD1z
3diZBT06VIh8Q4s6+x9YfH/mnk3nNjucf3LkVU5sd8OVPQZk8Jz1+lnGnuH2
DLdnuD3D7Rluz3B7htsz3J7h9gy35zi+PMPtGW7PcHvO+tuReIbbM9ye4fYM
t2e4PcPtGW7PcHuG2zPcnuP48gy3Z7g9w+056+mHxDPcnuH2DLdnuD3D7Rlu
z3B7htsz3J7h9hzHl2e4PcPtGW7PWR9HEs9we4bbM9ye4fYMt2e4PcPtGW7P
cHuG23McX57h9gy3Z7g9Z+d9Qkt7htsz3J7h9gy3Z7g9w+0Zbs9we4bbM9ye
4/jyDLdnuD3D7Tk7v5MSz3B7htsz3J7h9gy3Z7g9w+0Zbs9we4bbcxxfnuH2
DLdnuD1n53Fy4hluz3B7htsz3J7h9gy3Z7g9w+0Zbs9we47jyzPcnuH2DLfn
bLyVEs9we4bbM9ye4fYMt2e4PcPtGW7PcHuG23McX57h9gy3Z7g9Z+M6LfEM
t2e4PcPtGW7PcHuG2zPcnuH2DLdnuD3H8eUZbs9we4bbc/b9qyae4fYMt2e4
PcPtGW7PcHuG2zPcnuH2DLfnOL48w+0Zbs9we86+z88Sz3B7htsz3J7h9gy3
Z7g9w+0Zbs9we4bbcxxfnuH2DLdnuD1nxzs98Qy3Z7g9w+0Zbs9we4bbM9ye
4fYMt2e4Pcfx5Rluz3B7httz9v+dmXiG2zPcnuH2DLdnuD3D7Rluz3B7htsz
3J7j+PIMt2e4PcPtOfvvNRPPcHuG2zPcnuH2DLdnuD3D7Rluz3B7httzHF+e
4fYMt2c4nmtufX1Ovdn/Cq8fZkbf/s19xXeURP9w/G+a1/s3TVvktYQXTT19
RLdf9Y/jwz1+9v/VaOnx4R4fzvhw4oczPnVIxud6uK9nHK4nft6X+H/5r36D
6s9+Lbz+KzPuaEH7VQNLMvWvv2bOGdPyWsLvarPx+avOyl2f/fcaLX09nOvx
wDh44Hri9/jEz/jEz/iOn3F8Pe/rvGMcx8P7Es/vCnccPJK/LFe/Lag9srh6
SabiSYfyjuSvj+87ptstT5d+sTJyroc/sGXQ8oHrv4rX1yzYNeefvT+MnOvh
3ZcPHnE4/9t4fc8tPx/Rtv7SyLke/qepj3Yo7Pl9vP7xZicUn9/zvci5Hl7/
6iuHD1y/N3dfHf7Fkttazouc6+F1m/92z9yjuXr+kFuONO7Q7u3IuR5etW7r
mZcX5Or5n69vtafe9mcj53p4xaoFtQp7Ho/Xb3rnqWurtngscq6HP/LIi+92
uipX/590b7XZc7feEznXwx869Is+A9eXjdev6DOt4+YuBZFzPXzAfS/lP3dX
uXh9QaU9cz97sF3kXA/vu+Ocj+cezZ0v9M40bNLi7B6Rcz383jsnFm38e+7c
oVXNTmeXTugbOdeP73vHbav+1Dfeh7G+rfsQ7vsN7vsK7vsH7vsE7vsB7s8d
7s8X7s8R7s8L7s8Fbv9we4bbZ6xjyyfcPuH2CbdPuH3C7RNun3D7hNsn3D7h
9gm3T7h9wu0z1qvlE26fcPuE2yfcPuH2CbdPuH3C7RNun3D7hNsn3D7h9hnr
0vIJt0+4fcLtE26fcPuE2yfcPuH2CbdPuH3C7RNun3D7jPVn+YTbJ9w+4fYJ
t0+4fcLtE26fcPuE2yfcPuH2CbdPuH3GOrN8wu0Tbp9w+4TbJ9w+4fYJt0+4
fcLtE26fcPuE2yfcPmM9WT7h9gm3T7h9wu0Tbp9w+4TbJ9w+4fYJt0+4fcLt
E26fsW4sn3D7hNsn3D7h9gm3T7h9wu0Tbp9w+4TbJ9w+4fYJt89YH5ZPuH3C
7RNun3D7hNsn3D7h9gm3T7h9wu0Tbp9w+4TbZ6wDyyfcPuH2CbdPuH3C7RNu
n3D7hNsn3D7h9gm3T7h9wu0z1nvlE26fcPuE2yfcPuH2CbdPuH3C7RNun3D7
hNsn3D7h9hnruvIJt0+4fcLtE26fcPuE2yfcPuH2CbdPuH3C7RNun3D7jPXb
grd2PVw75xNun3D7hNsn3D5jPVA+4fYJt0+4fcLtE26fcPuE4xNv2df1GXur
dODUs9YXf5p8r1za96IWM0pLku+VVUP91t5GfrXvyIbiRcn3ynNC/dDe2nQ9
pXzj2a8l3yvbhTjt7bQQZ/IcD3HaG3Vmexsd4rS3C0Kc9nZBQfcDw3ZuT76P
Z1+/Tbxte+/xmj07bE28LX307Ibrir9JvE2+YtrlBfM3J96Glrni2rdLv0y8
dZ+/umO9Bl8k3ojT3iqFOO1te4jT3paHOJPv4yFOe3ssxOn87RridP6OOW/n
7CoT9yU+K1RotrD1/NLEZ/Z1b+Jzy6Ilq386h7HPDhNP27i98p7E5+KiP27O
b7A78Xn30lZr3yzalfgkTvvMC3HaZ78Qp31uDXHa580hTvskTvvsGeK0z1oX
TOrX4ePDic/HTvn+4WE7DyU+D2y/ZOj7FQ4lPrOvBxOf615ZNqZpiwOJzzaP
VZvQo8P+xOes7h1fGd/nx8QncdpncYjTPg+GOO2zR4jTPteHOO2TOO1zZojT
Pq8fM63WysFpvah83ifjtldO60Xz+h2oV/7ZMsnzpe/W2i//dI5nn9nX44nP
5cM+6Pxm0bHE5+W9qnfbNu5o4pM47ZM47fPdEKd9PhDitM+OIU77JE77vCzE
aZ9/r/XEwb1npvWiguI3HqoysVzi89jBT05o2LRc4vOdHgeH/HTOaZ+9159d
8da2JybP6+xr2eR5vWlW12pjupZNntfEaZ9XhTjt83iI0z6J0z6J0z6J0z6J
0z5XPdd93U/nbPY5tNKwTj+dZ9pnZuCbX1y3rELic/93n97x0zmwfU7reGhb
0ebyic9uH9TpNb5P+cRn9jWtvxGnfRKnfbYMcdrngRCnfRKnfRKnfRKnfWbj
TetFS4f3aN7h41MSn4OPDZt/b5dTEp+X9n7rt8N2Vkx87v58zZLJhRUTn5Ov
O3zt+xUqJj67zKu76j+j0vobcdrnshCnfT4S4rRP4rRP4rRP4rRP4rTP9hPy
n+78+amJz2y8pyY+FwzuOe6p/VUSnwN2D6/3ZlGVxGeTLtMnfVi1SuLz25Vr
G24bVznxOSFzZOqJF1ROfBKnfRKnfS4McdpnYYjTPonTPonTPonTPpdVffjy
K+ak9aKJV488smJwWi/KxpvWi26ZPWPw9sppveiyPUuu7P9JWn87/fwN5co/
m9bf9nTZsfgft6b1N+K0T+JM7s8Qp30Sp30Sp30Sp30Sp31+237n+R8PSetF
i4qPf9elbVovmrCw6tRd1dJ6UTbeaml9uGmzphXHV0t8Xtyzzb7RXaslPqu+
8Kd3zm1ULfFJnPZJnPZJnPZJnEl9OMRpn8Rpn8RpnyeP6ljzzhvSetE3H/Ta
uPfMtF604MTBYwdvqp74HNv8yT9XmVg98ZmNt3ri8/evvrP5/KbVE59NNi+d
OPNAWn8jTvskTvskTvskTvskTvskTvskTvs8/9Nleftrp/Wikyp/trxo8xmJ
zy9b7Xqi2pQzEp/zBpb53fg+ZyQ+n3m7WtXGl5yR+MzGm9bfbjjnkqeufj+t
vxGnfRKnfRKnfRKnfRKnfRKnfRKnfV57xqUHhm6rkdSL6F+yz7L/22ngS31r
JD7p+7LPOT8MLvPvsjUSn081+sfC65al9bdsvGn9jTjt87wQp30Sp30Sp30S
Z3L+G+J03aNdqM/gDc8XBu5+mxtD3QbOOMzX48A9Dh7MqWt5/Pj76zA+/Z/U
u+j/pG8NTt8afaGxPqa+ULj7QuHuC4W7LxTuvlC4+0Lh7guFuy8U7r7QOL76
QuHuC4XTF4pP6l32CbdPuH3C7RNun3D7hNsn3D7h9gm3T7h9xvHlE26fcPfZ
wumrxDP1LnuG2zPcnuH2DLdnuD3D7Rluz3B7htsz3J7j+PIMt2e4PcPtmXqX
PcPtGW7PcHuG2zPcnuH2DLdnuD3D7Rluz3F8eYbbM9ye4fZMvcue4fYMt2e4
PcPtGW7PcHuG2zPcnuH2DLfnOL48w+0Zbs9we6aOZM9we4bbM9ye4fYMt2e4
PcPtGW7PcHuG23McX57h9gy3Z7g9U0eyZ7g9w+0Zbs9we4bbM9ye4fYMt2e4
PcPtOY4vz3B7htsz3J6pd9kz3J5jHU+e4fYMt2e4PcPtGW7PcHuG2zPcnuP4
8gy3Z7g9w+2Zeleyrws82dcFnuzrAk/2dYEn+7rAk31d4Mm+LvBkXxd4sq8L
PNnXBZ7s6xjf+7rAk31d4Mm+LnB7pt5lz3B7htsz3J7h9gy3Z7g9w+0Zbs9w
e4bbcxxfnuH2DLdnuD1T77JnuD3D7Rluz3B7htsz3J7h9gy3Z7g9w+05ji/P
cHuG2zPcnql32TPcnuH2DLdnuD3D7Rluz3B7htsz3J7h9hzHl2e4PcPtGW7P
1LvsGW7PcHuG2zPcnuH2DLdnuD3D7Rluz3B7juPLM9ye4fYMt2fqUf69cKxf
ySfcPuH2CbdPuH3C7RNun3D7hNtnHF8+4fYJt094/D3pf/uQNsT61Y6/LJqx
t2hl6Kf5OvK8p3u/0ermD0JfyHeRzypaM7d9w8WhvyFXT2t4xqh2lSb8O5zT
5+ppTbd/+frgme+E8+YDkV++pcLGZwa8Gs75jkd+38yXL/6k2ZBwXpWrm73e
f16zNg1uDecuubrZG/n3H3//+YvC+UGubtb5H78e0b7jraEOnqubvXJbhdWr
u90X6rl5ke/odcKEU2oPCH1Om2M96rTeU2d8/9UHoV9ne+TjDj1TdtLHi0M/
R64O9tvO34+78cYFoX9iX+SFc4a2rV5+VjhfPxB53p+HPLtkyuvhHC5X17rg
h637TxjaPZwn5epaU29d2KJPmRbhXCRX16o1/g8VSs/rHOr75SPvP3T3a41P
/kv8/S/8kZHvFf69Zf/Qb7Q91oWK+txy9cGBS0LfzO7IO066Zuc/T1oY+j/2
Rb6w+H++e/mm2aGPYX/k69aW7fTDxmnhfC5XL1rbLm/esAuvDOdM5SIvrNls
V8tn/hjOS8pHftXU9X8rntIn1P3zIp/zh4dObfZav9DHszvWW+7bNbH5VzMX
hn6U0shP7rjmseYvzgl9Ffsjb9+g5fCR5d8M51vlYp3k8yd/9unwir8P5zTl
I288eciiD0f3jr9Ph++re8lLn53ZL/S7lMa6RLtfPtRg5Z65oW/jx8hnfT2o
d4O6b4XznvKxbrCi9OYHizbcFc4t8iJvtHX3pX/96wOhz+PH+H287oR518+/
ZHo4z8h9X+46dcpH53/fN9Mo5DvfL5zvcOc73PkOd77Dne9w5zv8L8p3uPMd
/qryPX7fVL7Dpyjf4W2Wn7xl2yf9Q7/g5vg9hXwvJt8DH+t8D/zKkO9Xke+B
D3C+B17e+R54Q+d74K843wOv53wPvDDk+3nke+DOd/bnzne48x2+IOR7y5Dv
8E+V7/AS5Tt8sPId3kb5Hr/XKN/Z9zrf4XnKd/gNynf4ZuU7/ELlO9z5zv7Q
+Q53vsf9ufId7nxnX1RH+Q7vFvI9ey74XO75PnjUkk8G5s714K3DOR37BDj7
hAvDOOwfGIf9LZz9LfkVrw/PU85PGX9TOD895b/94ovic3D6oStmjDmnJPR1
HY683IZ9h4bUfz7X/xP45nDemu2DX5A7H5nWbf2kX5WEPu+1kdebWti8sM6q
0B92OPLTe7V/9P4mE0Kf07HIb3rnr7def8WweJ4LnxrOc08Nf4eE9X/07cOO
vt2qJPSRfxp5/8mLXy1suyr0Q38ZeX6dxv9ufejD0Jd2KPLzejWsMGnlC6G/
6ljkX2yYNbf1iyNCn1DuvKB6vzrz5rx4Xzxfhn8czpezff8z4nMnr8b0/Pdu
Ksm8/N9+8Y8jX/FCtdoPFq4K/dlfRn7+j70W7R7yUegz3pZ7rnX6es3zK5eG
/rlDkV/aq+wTa3u9FPrAjkU+esO0gq8nPhn6mXL1+ZtmTB87+sZ+oS+nbOSr
R3Q4dOnIa+L5eDx3COfj9fg7LeF5V/jhutYld5Rksv3uJZH/YmznJx6cvCr0
l38ReZMVry9/tuqK0Ce9NfKLV798dmn/ZaHfd1fkLw7qtK5P7fdDX+ChyK/p
teG0kytNCv1tRyO/bsOkkkcnjwp9Wrk6+cjSNoPuP/HB0G9UNvIlbxwdM3zB
9aFvplzkN5wytvXvN1yVKQj5SD12x+BjPf5zf0n4vcGqyAeMnnLkwTWrQt/8
psgvm7RzZcHYFaH/e0vktdrcdUdBveWhj3lnrv68eGb9WSveD/24eyPf9MHy
O38c/m7og8zVsTv1euupy6e8HPr5jkZebsPYTvmvPh360nJ17BVNNnW+Yfqg
0F9VNvLbu68+a2//G0KfUK6OfcGRafW/GvDr0O+Sq2NXfvzIltI/d82cynoS
nnesJ8tYT6h/hvXko7BuxPpbWDe2h3UDzrrxSFg34NXCurEwrBvwtmHdqBHW
B54XrA/LwvoA9/oAZ324LKwPsX4V1ofCsD7AN2l9gFcN68PosA7wfGEdeCWs
A3CvA3CvA/F5p3UAfklYB5qGdQA+SutAHEfrAHx5WAf4O0g875zvcOc73PkO
d77Dne/wq5Xv8LbKd/hw5Tvc+Q4n37uFvOZ5Sl73DHkNJ69nhryGnxXy+rKQ
1/C5ymu48xp+S8jr8SGv4eWV17E+o7yG36G8hlcLed0u5DW8Qshr+sHYP7gf
DO5+MLj7weDuB4O7HwxOPxj7kLifUd8X3H1fcPd9wd33Bafvi/my//F84Z4v
3POFe75w5su84J4X3POCe15w9wfC6Q9kXuy7PC+45wX3vODMK/6+JnDHD3f8
cMcPJ37iZD/mOOO+0b8fDJw4iQfueOCOB048vG/cj+l94bwv48M9PpzxGYd9
C+NwPZzryWu+jzuv4cnvWwP3/QC3Z3jS1x248xruvIb7/of7/oH784In/duB
4yfme9i3JPkeeJLvgSf5HniS74En+R54ku+BJ/keeJLvgSf5HrjznX2U5wX3
vOCeF9z5Dnf8cMcPd/xw5zv7LscZ94GKE+58hzseuOOBO9/ZR/l94c53uMeH
O9/Ztzjf4VzvOgB91PQJx37U0FfP9fDkd0D63TTjxH5L9efDWWcYH+7x4V4H
4OQF7xv7D/W+cK9vcPKaeGL9WfHAHQ/ceQrnPifO+D1accIdJ9zrD5w8JX64
44c7frjjj3UJ5SmcvGBesV9O84J7XnDPC+71B05eM1+45wv3fOGeL9zzhXu+
sW9N84V7vnDPF+75wr2OwVlP8AC3h1g3kAe4PcT6gDzAvR7C/fuI2Afl9SRw
rz+xn0c+4V434J4v3OtS7GPR+HB/XnCvD3C/b6wDyDPc61Xs91A8cMcDT34H
GrjXAbjjhDtOuO+HWJfQOhb7KBQ/3PHDk78DELjvf7jzHe55wT0vuOcF930O
5z5nXnwv9rzgnhfc84I7r+HOa7jnG+sGmi/c84V7vnDnNdz7EPYP/M7o/wAQ
PhZn
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[{Polygon3DBox[CompressedData["
1:eJxNmXf8T+X7x9/n3HdDKqQoDWmgkpkiqVD2pmwhZe+MsilCyWoglE0aiEpT
pb2nfJsatKS96/t8fV/37/H4/XF/rqfjvN/vc+5z36/rdV2nXK8hbQfnhULh
Wv4E4gJiCeILWaHwA6MSfBLxHcZhcAnid8TPGZ8xDuf8psTzOb4z82f/YhzG
8SbEuhw7Fu4IN4MPghvA58BHwW3hi+Hj4E5wc/hIuA18Efwe4wj4H8bb8KHE
YsT/6Dw4J77KOBAOxDcZh8BFia/p9+ADiK8wDoAz4suMCP/LeCnzff/NeBHW
XPzJ2AWXLOgDhcLvjLPA04jv67rhSHyDUQQuQnyLUVT3TfyAUQo+kPgbowZc
kfgLoxpcnng6PzQG7gufAA+Eu8KnwaPhPvAZ8DVwP7gCPBK+Ai4LD4K7waPh
h+E1mif4Mrg1XBzuBreEi8Fd4Rbw8fAAuAt8IjwY7g6Xg4fAl8EnwUPhHppX
uD58Nvwv41y4CvEfRm24suaVc+rBNbPC/yawDqEqPAreBq+GT4VHwJfDJ8PD
4J7wr4zqcAXiKRwfDveCy8NXwb3hivAo+Eo9/7SWmsJf63vhY4lf6fNwGeKZ
aT41P5XTXOkeq6T71T1WSvOgOa+a7l332wSeCV8NN4NvgMfCveCV8Dy4L3wX
fBvcB14P3wo3hWfB16Rn1z/Nc/V0v7qvamlude8Xw9fBI+GG8DR4FFwPngwP
gy+Cr4WvghvAU+ERcH14CjwcPjutDc1PjTSHmud+8AZ4YVpvfeHOWsvpWfRO
z6In3E77WusPLktszvEb4XHwEHgTvAz+VHsVPoL4mdYTfCRxr9YNfDRxt/Y8
XJzYjc/eCy+GP2GUkWYQ92jNwaWJ32u+4HLE/bpW+ETil7o++Bjix4xj4EOJ
HfnORfD1cCd4MTwD7gzfDs+Ee8DL4TlwT3gFPBeW2G2El8KXwXfCN8Ft4fnw
FLgdvACeCreB58GT4S7wEngWPBTeDN8Bt4dvlobCreG58CS4BTwbHg/XTOtZ
+7co3AFuApeAu8Ot4LnRe+8LBOk2uDb8LXxrtC58A98SvR++hq+L3vO74Juj
NeIreH70ftsLXxv9G+/B0+CS8H/gedH7bQ+8IHq/fQnPidaCz+HZ0VrzKTwd
LgW/Dx8Trad94KOj9fRKuHS0nl4Bl4nW5b7wDdG68wl8Y7Te7YZvitagz+Dr
4dLwB/Cx0drdD54BH83xD+FZcBn4Y3gmfAz8EVwqWrt7w6PgP+EX4avhjHNe
gRfBjeDv4IXwhfA+eBwc4dfhxXBjeD88Hj4YfgPeCk+CixIfYkyFDyduZlwD
H0y8nzEWLkLcwhgHH0J8gDEZPpQ4gVEEfpPvnAgfAr8FT4peE2/DI+CfuP7n
4Kvgn+Hn4ZHwH/AL8HD4R/hZeBi8D34GHgP/Db8MXwPnfOer8Fg4wK/Bo+G/
OOcleEp0bngXnhqdM3bCk6N19p3ga7yU9dmYz3wO94JvCP7NWnClpJnaj9Ph
S+G18AK4A7wOvjnzvC6Ep6X9K828JfMzuQ2+LvN6nwGPzjxPl8CNkh5qT03M
/NzmwBOUi5JWj4EvgdfA8+Gu8D3wIrglvEzXnNmHSAM7ZV5HfeCOmfdED7hN
Zu8hPWybeX1dCXfIvAavgC/NvE57w5fAreA74Bszr5f2cMOkA9KW2Zn3zeVw
+5QLpO1D4W+k3fDpxAeZ0+Kaq9w+StpYKvMzbAlfmPkZtoLrZc658kgNMq/x
FvAFmddya7h+5jVyPlyN+BGjInw88VvGOfAZSYflSU4lfsGoCp+iZ82oAp9M
/JBRAT4u8/pqDNfJvM8awrWJ4/nd7fDd8KPcyxvKQcR3+feJ8FHECZzzJHwP
fBO8Q/MpHYNfgLdkXuMXw7Uy74ML4OrE1/UM4IMz74kL4RqZ13Ij+NzM/qoe
fJbum++cAA/Wveb2D/JUtXL7K/mu3vAD8HJpFvwgvCJzTpdvWQVfDm+F75TG
wQ/BK+H+8KPwWnhYupd7U37RPGyAB8CPwevg4fAz8H3wCPhZeCO8WPoBP6b9
Dj8Hb8rsnTQn98Mj4efhzZl16G2dD4+BX4K3wtOlzfAO+HrpKPxMZu15B34c
nibth5+Gp2jfw0/Ag+An4Lsya9tOeHvm57ILfipzffAe/CR8Nfwy/AA8EH4c
Xg/PlB7Dz8HbuJ8T4CHEXwuuGYoxvk6s2kFr4Aviw5zzG3E/403Gp4x9jN3a
V9JaYsnMx75Kx1WfqNb4g/FDOl+feyj4u/W72lP/d+73xN8ZXzJ6cfx14pzc
x39mfJJ+/6d0DbOUZ4jPZ75e3cPn6dp/TPeyL/12lr77+//3PbqfPYwZyl3E
Z9P1/5Lu4dt0/l7GN+kzmouJygnERzPnllfgBzP//550zvO59680fH3ufbEd
XgeX1jOFX8itz8oFm+Cyenbwl7m9h3LoPrhLwXn5i6Rdyr97kvYq5+5N+q88
+1Vu7y0d3Zh7Xz8V7P/kA2dzbEVuHXtc8w+X13qDH8qtITvgbbm1SDlrO1y5
4Fz2LFyz4Bz3XG5tVB5/IrcWKScuz/3cd6Z81K5gT7I5t2ZKz57KrWnSgydz
a5pyqPLzq1oj0sDcNZF8yC9Jz+V/Pkxaqjz4bm4tUr5+B76oYD/wEdy84Lz5
Gly3YI+xM7ceKqe/l1uXlNOljVpvD2f2Ba/B2+DfUn6Rl9uVW1eVc1/NrdvK
3a/n1kDl7jdy6568yo8pT8m//5Q7L8vLfZe77pNn+yHlNfnJ73PXhvJ1+3N7
TvmuT1MeUd77OOUaecWfU86Sh3wzt64q5+xO+UUe8pOUj+Q/H2E8nfbynHS/
j2TeT/vTGj9dXlb7h3io/FnB/rZocJ2rfN4Y3qI9Jc8SXDcpZzYK1uGc4w2C
Pby0tkmwhgeO1wuuNf4l1mfcB6vQbxqs7VH+KHddpvrsCHmvgn1gOflR7Uli
x2B9Pozzd+Suf6dw7JncvYupwXlLmi9P+EduX6Ea61h52YJ95nHB/kT+6KRg
3/IDsVlwHjmAz54c7G3kF0oGewP5nTLBXkhe9Ok0/1rPpwX7pZ+I7YJzjdZX
bXi1dIhYK9gL/UGsE+zB/gqudzRvS/ie84I9mHJd99xzdTvH68Lj4UHJX+m5
9IfrwGPhAcrJ8ER4iL4HHgcP1PnB3u9PYo1g/6PfrB7skX4jtg7OifLMbYJz
hzxz8+Ccq7zXKji3HsTxllpb8IHy7MG+7h/iBYy74b+JZwR7y5+JbYNzmbx3
pWBfKr9ZFV6qOSRWC/aEvybN0b6+Vr+Tu6cxQb+fu9cxEd6Quy4eCd+ftEU6
syx3nTtQaw0+E7466bB07yqtx9w9tDG63ty17Si4Q7AfUF2wNHddPEDzlLu+
HqR7zV0Xj9Zc5tbYwfDKpHXSwFW56+6hwXlJ+Uk5VjlN+UV5RjlHuSdLx5QD
lXfm5+533cCfeSnfzSX+mtvrqpZcnbsGHwZ3D877R3DNa3P3XkZw7PfcXlr1
6ZrcfZjhWm/B+ask5/cM1r2j4G7BvqUE/FbSH2nLO0nPZ/D/b+fuDV6f8ojy
wnj4A7gzPAt+P3fPcKZ+B24GT9eags+DJ0sbcvfuxmnd5e5NTdJ95O5bTtO1
5O5VXgdvivY3Wntbc/fuxnL8ltx9SNWYnYP9WDHO6RLs0+SVusIvwsU53inY
y6lO7BGcd46El+TuY/QP9n7K16pzb83db1TtvCV3T+wa7fXcfU7V14ty9xVV
Uy/M3YdUDf5gtJ+TXn2W8oL0/Pbo+keado7WLsc3EntF97PEvaP7RJvhumkP
ShO6RPdB1nOsa3SP4y64W3TPZQN8eXQvbFPaj9qn+p7j076T7nWP7svcrfUQ
3UO5Bz4/uG+pzx4V3GNZRjw7uK9yH3FgdN0ib1MzuAd1L/GK6J7U/XC/6NpA
/rl/dL0h79Ezuu+j76matEK/Wzm4d6frPytYD6VRVYJ7ZbrOi6P7aAvgM5NO
SkMGRNdC8lcVGasKnpMe0f0mXdug6NpJXqtSdA9L66dUcH/pDmLp4P7SncSy
0X1t7fcTo/vs2uMnRPeUpS0nBPe4Vuqc4B7UauIpSWOVO8oG975WEcsH97vW
EU8N7oOtJVYI7mHqmR4ZnHeUa47R+oZXEI+L7mtrfVaI7tlJr06N7mtL08pH
9+OkhxdF9zTnw/Wje6xztQaie/HStIrRPUHp2BnRvUKt7ZOi++zSltOj+4nS
z5Oj+/vSkNOie47Sz1Oi++/SHOVu5eulxL7RteUDcJ/onvhW+K+Uv5Triwf3
M28nHhzcd72V+G/KXzfBBwb3V28m6qWA8uAcYongPt6SYH8uD67a5fDgfu8i
YpHg/u1twTWIvPD2aC+0N+lqseB+8uLgmmR30t4suFbVvMnzTCp4Pi8JrqN1
Xy2Ttui+VGfuSNewLbo2kxa1D/Zd8gN5cI6ep2cU7BPklxrCT8FbiAcF95Zv
0ZoPrs21p1oEa5pycQz2JPJgBwT3nLUv5JeUT9cE696upIGHwNPhhcSm0fW2
uEN0T1nrtkl0Ta65ahTdG9U1NI7uZeu5NIzuU+tZNI/2GZq3jtF9Vf3uldF9
WN1Ls2iPomchPyzfKG/cKbqHq/XfObrPq31xWLA3k8dpEe17tDZaRfsbratv
iP0450b469weT7WP+ht6pnq2/yRfNJtjf+Z+pyMf2DK6B6E10ya6d6+93zq6
dy+tax/d99e+axvd65cmXBr97kF7uV30e4LlWg/R7xikA+Wi340p7x8d3H/W
OVWje+jyLUui+1PynEuje2Ty3mdGvy9RTlwZ3eOQb3w8uoZXnloV3R+Rh7wr
ukcgL313dC9DPvzh6J6C8t0T0TWz8vvq6H6KfGDl6Pc0yt3LovuD8q53RPcH
5dnuje59yJ8/Gt2/kMd4JLqvIZ/wWHQtLS9RLfqdgfL48uh3DPJyK6K9rHxm
lej3GfJyG6J7NKop6kS/m5RnuCe6F6Pa4c7ovqH84cbo3oo853nR7zjlNwZH
98hU89aCZZ7kN86Ofh8m/3Bu9DtOeZh60e+fpCEXRr+Xks40iH7npL1ZO/od
m3xO9eh3rvItNaPfO8qX1oh+T6Ya5Jzo93DyLWdFv19UPbI+uhej2ue+6J6R
6ovzo9+tag0Pie45qh5fE93PUl1QN/pdrPq6Q6P7g6rT10b3ueSx10X3s/7n
vaPfn2nN/xdOrMiA
"]], Polygon3DBox[CompressedData["
1:eJwtmgXYFkUbhXdmVlAsDMSgQVApKUUBBQQRRAmRNAiDBinp7gYpFVQUECUU
G+zu7u7u9jf/c3P2uhxn7p1932/f3ZnnOc9ZKvcd1nlozLKsqf6Xq/9e/WD1
FdQv0oEv1V8kPkz9fPEX6i8UH6p+nvjblGXjxANClq0Rf67jF4jLqp8r/lH9
UHEl9UvEf6gfLa6hfqX4f+rHiI9Sv0p8kr5vK9/H94gfUV9f/Lu+v4H4UXED
8R/ihuLHxA3F/xM3EjfQ528Wn6fj14lPURuquck6FjRXX+0mjc/V/LWaa6M2
UvMzdKyE5uqpbdf4HM2v19wZ4rvFl4ovFrdUG6LzJ+lYprnrdbyMhu/oWDXN
XSPeV/yauJL4avE+4lfFFcXN9Jkt4v463k+8Uf1B4rc0X0W8TlxK/LK4vHiD
+EDxm+LK4tvFVcVfimuJW6gN1niijv2nuT/VLtX4aPWrNVdXf2+duJf4fHFt
8ZXiHuJzxb+pHyk+Uv1l4tZql+j7pulYrnN/1/FRGldXv0JzjXTsOnEfcR/x
T+qHiSurXypupTZMn5+iY5F7rXaLxlfpWG/NHSfeIO6r8/uK71R/pPhrzdcR
/yoeIa6mfrn4DvXVxF9pvrb4NLVRGs/UsZL6roPUlmrcXOddrrm2aqM1P0vH
9tRcHbW1GvfU/Hma+1n9cHEV9cvEt6mvIv5Cn6kpbqjzrxX3jr7ee9XXFP+o
+XriU9VGaDxdx/bQuXeoPa3x7cHr42PxueIO4sXi78RTxcODr+9n8WrxLPFV
4nJqpTQ+VMfW6m/9ovk1Gs/Wsas197v4avGi4PXKmthH48Myr5UfNb9E48k6
tlZz9+lYLfFP4vo8n+L+TBGvE9dQq6jx0Tq2NXrNHRp8D1iLf+j8azReHLx/
WHNlWXuZ1+IbGh/C2hZfK/5N51+l8cLg/VJdrYLGR+nYFs1XEO8nPpw1EL0H
SouPyLw3uKd1xSdmvtfHiKsE/4abon/DseImmX/bseI64hPE94gf0N8vy7PW
sUGaO5prDn5m26P34IHicpn35sPJ185vGKq5o9QqaXyMjm3T/CeaP0/jjsHx
6iPxOeIzg+PhQ+KK4jLiIbmvgc/+EHxtv2r+cvEc8TXir4gb4sPVLyDA5o5P
6zS/ReMj1Y4I3gObdc43yef3CN6/XyXH227B8fILcT/x2cH79TNxb3Hn4PX8
ubivuEvw/vkyOR53Dd6/m/Q3Dha/La4q3lvz88QnRMfvH9QPEVeMXr/fa34u
8U/nX8F8cf5Y8ZXEf503SFxe/UJxc83fKx4o3iz+VHy+uFNwfOBvHhYcw7iW
r5PzS/fg+P+3+AbxKvH14v+KeL1WfKM4ETPE14m3a1w/em+xx1JyDD48OGYQ
mwMxU+P1OrZV40hMYe2Kt5Ef9JkHxEOin8e/Rfy/UvM3iP8SbxavFG8S/0nM
F68QbyR/iTeJLxNvyL0myhT7Y4e+s4Xm79N4UPT3/SPeJr4i+P40UTtd4+48
k+g1cIjG7wavDfZAefEnwXuDnLFJ412Zc8nLmu/IslI/UXNvqD9bvJf6yeKX
1Hfg3qifIH5e/RnkQvXjxK+r78L+UT9J/KL6M4nd6seLL1Tbpr/3oI61So5x
xLqnMufGMTrvNvGT4vbixpo/SdxO/GwRc9cE5zxicffoZ8szriVeJv6CfKa2
nL2itlHzO8VNNf+muKvGpdRP0XctVP8R+YB7Hh0ziZ0v6jMDcmuG64NzNlri
w+j9fID6mezn6PV4oPpZ4p3qjxN/o88MEz8gPkn8s3gE+118svgX8Ujxw+Lm
4l/Fo8RPiFuL/xSPFu8SHy/+Vjxc/KT4VPFf4jHip8RtxH+LLxWfo7Y8OCfW
QGtovrHG3+nYJbk1zfEan5JZ67yl1k3jvdVP1dwH0fmmtPoZ4vei49X+6qfn
XlOsrX3UTxNfpLZd3/eQjrVO1lDHiVtm1lZPq52m8T86NlZziMOtwXuEvVKl
yEdnRuebXmrLgjVB9WRNsZq9mllr3Jb8t1hDrKWO0bmFHFNVc7erPZz5mri2
HmpLyCU6Vo1YqvNLaPw8OURzV4hLil8gh4j7E4M1fpGYp/Obic8S92HPEOui
YyMx8mONbyn0HHuIvXSn+KXM38F3NVVrr3EPHXuHtSDuyZz4a/ER0bGZGE1s
v1WfvyfzmmPtrdGxPcTPkaOJ9Zq/lVwXrJd2cE/IRcH6Z3W07n4WDaDBqrhb
VmbPiMuKV4j1X/Y0eVd8fnTuIIegdW8lJ2r8WZHP0CxorR2ZtQx/k7+NBkO7
EZPqavxpkb/I0eTq98WDc2vEy4M1ONqRa+Ra+Q1ot57ipcEa6chkDUCse13H
BubWB39n1qzohVnkXB17U9wreY+WFO+Vee+Ss8nd7OEbo6+hVKFvuLZJaneL
XxCflXxODY3fK/J9Vx17RTxFx5dEX8Of7PfM11a10DMdovXP8WrN9Nm23GP2
Ps88eM2z9k8WDxSPZ49Gazz0ccNo7cc5aI9/gz+7f3It0Iy4Kt4vWYtTT7XP
XVOgnxtF1xr7iieIm4hPF58YnUvJqeRijo0Tz8987t9Ffq1VXBvXjFb6L/i3
dFGbiTbQsUOT1yhrt1yxdtkDncVlovdGV7V5wTVABZ1frtArp0Xn87bR2oVj
zJ2tY3PJ/eLy4ubiQcG/4V+de3SRD8+O1rN7JdcfjcXtcmsqtN5HwVqrVVEP
DIuOB03Ed4kvjM6vaDa02sfBWo4cQC64KFoPoFnRkh8Ga9ma0bUnNeg/xd8c
I56d+Vq6ixcE10CVkmMea3l4dLxpnKwH+kXnb2oG6tHjo2sJagzq1eOiaw9i
3ArWYnTsY42yVj8I1r7EcJ5Fl+jYfmKyXrkgWi/UKvRNt2h9WLPQF12j9T73
lPq7dvS97qY2P7iGqahzzxLPCL6GsuJXo3NDSdZF7me0QNwu+tmRg9HOBBFy
8wHJtdnJ4g65Y+xycafo2HsCz0jf30nHXoleIws1Pj167bDnLxN3jo4F/M3W
wWuMazk4uTZqqXFHzR2SXKu1Yh3m3vPs/ZeCax9qgr35W8G1wh78nmBNg7Zh
TfMsT41e6+Qz9u6+0dqpTHLtfoq4U+57Qu3XOvpeEcPRIvtFx/Zj1PcPXqPU
ylXV+gTXhNSGeAyNxC0yew94BtS3x0Z7CdS0nFsvutalRqZebRBdO7Pnxwc/
A2IBwRz/o260d0CMmBB8T4kdXPO04GfAb6GGR3/Xia7tW0TXbtRw1Lpdinw6
OTpfHV7Ui22i9TnPjFxeIvpZ8gym6vPLMj8bnsH04GfIs2ENTBIvzrw2zhRP
FC8Sl05ueCcnRc+xBplrH7022VN89ozovfabPtswWCOhlT5HxwbnKHLVo8nx
u3yhj7jmS4v4x28h/owr7h9rGb0wtbg/rFVi+JTi9xDb0SCTi/uDNqHGph6Y
Vtyvx5LzW4VCT3E/8TemF/eDmEUtzj3cHcty61P0C7EHPbq60K/obWLUykK/
ErvY09QC7GH2OjGEWoCYSGwhpo4t4jnxlPy9pMif5GdqAGoBao7dtZP4LvFz
4vPFS6O1CRrlXnE/tW8za2b4brXPNP5c7R6NH9TnF+kzn4h3snaTx5+q7Uqu
QahtqKmoTe5BA4mfFZ8nfiB3vkVP9SU2i28RPyHuIb5fvKvIx334++I7xM+I
z03O99QHeCLniHflrg+oF8j/O8W3BtcLPcX3iXeKnxf3TvY4FhX6EK+OmDi7
yEfESmLmnCIfEUtnqrXKrJHRyjOS4yGaFm07PXk/sKfZ27OS40fTIn/PIedm
rlmIj3OTYxkxkP0zOzl+NCvy7Shx9ayo2cn3ue8Nv4nfVjr3b+eecG8OzH1v
eaY82wNy3yvuOfd+X7XHM99j7vX+ue8N94x7NyK5lt1dMxMrxE0zeyJ4I1OT
4zseCl7KOHHtzB4K9SKatzd7Qf3s3PUF3s/3mq+b27PBu0HT433i+aDP12fW
l9Rrcwu9gJ6fmOy3HhXsx00SN2LvBPt3E5L92RrB/uTkZL1Uu/h7U5L1Cx4O
fsnYZK+ncpHvV+rvfZy5xrsLLZHs5VQq9MPo5OuvUOTb8cn+cPVg/25Msh9T
sdAH+6g9Jt4hvjN3Y8w9757sCeANoAHaJHsgAwr9hx7Dg0Hv9y/yBR4FXgX6
H+8aTwZvBg8DbxuPp11wzUV9gL4bWOgl9Bz1A/U+Gg2tRn3SqsifaDX0TK9g
zYf2o+asVsRPalFq2BbBNT21LTVsyyJfflQ841OK/M2zxx/pG5yjyFXkP+qZ
AeK/omtY4nO9Il7jEeEV4Tnh/eLxnxZcg+P94+Hg5bCm8H7xyPDKqKnx+olH
j2h8U7AeJx4tjvYw1qt/KriG13+7axs8JrxSanS8J94xtA2ucXn3gKdF/dYn
c37G88L7uiCzd807hjbBngfvHuaITw32ND6L9qTOCK6J8arw8PDyqJm/L/I/
9WJf8S/RnhneWb/MXjT5jLXFGkMP4AlUDa6h8Aqo+Y8J9hDwAm7PXS8/mLle
uU28Jbh+7oz2Fd8Q7Al1TPZPqEWpSfFTdmh+c7CH1gGtKr5RfL+4U3I+xY+t
ktm7vjm3X4IfhP+CJ4Y3hqZul+xx4XWhQdsm11PU4mgItAT1PfUimhxtjgdG
fUn9SL2P54b3Rr3ZUnyTeEOwJj892XMi37fIrNfQb8RaYi5aBM+pQbAewIvC
86gV7HHghZCT2cvsaWITmgBtQM7GS8GTKResGfBq8FBqBnsseCt4QicGeyp4
RXgiTYLrObwSPA9iPTEf7YgndkKwJ4NXhsdVP9jjwfvCE6sX7AHhld0hvjk4
hnRL9sgaB3s+eGd4LCcHe2p4L3gwzYM9NLwZPBRiHzGQ2nFv8aOZv5PvJr/j
gX1Q5NuSuZ89a4S18kLytXEPuZfkzDfEM6LzDTHsNfG06Nj2fPK185v4bXnu
tcAz49ntkfvZsWZYO8/p/GaZfzO//SD1X2fWDOiIErn9DdYka5M1RewcGb3W
nkl+FjxTnu1TRT5gT7A3Xkx+9qwR1goxlt9/SXTsfTZ5LXCPuFesKfLpqOjr
Zc1y70dEr+Wnk/caa4C1cK/6bzJrIDwAPJN/M/sPeClokrc1nh2dj9E474jn
ROffxcmxmRhNfY3melc8Nzpfo0neE8+L1irEFGLDIUWsQQO9L54frY2Ib/gP
pYv8tSTZD6Bmpp5bVuhp3iFSD+Dp4JccUMRDNNbrGk+P1gNLk/0F3vFRD7BG
WCsLorXa8uR6jnec1CeXJXvhvIOjPkFz4b3MjNYTC8Q9M3tc1EMvFfqJNc3a
fiV5b7Cn2Ft4bnnwO068ODytGPwOAa+LnE/uRxPwLg8PKwt+p4m3RcxCy46P
jmXEQLTehOjYSAxEH42LXu/3J9877iFeDhoDrYGm4F0gOb56ka+If48UeowY
QazAEywR7KHjFaJBahTxm3enDyZ7TXhMeE0fintlzhHkivvEe2b2qPCq6hb7
t3ERn15O3vvEEGIJMR4tPLGI/Y+L62TOEeQKYjJ6bnQRqz9Izm1oBLTCk8m5
nRxMLn4/OdeSA8mF7ybnMnIcue4d8VmZcxzr773k3EeOJleTM9CXY6P3KzHr
VfHUIpa9mhwriZHEyieScxkaA63xRnIsI4YRy95K1hpoDLTGm8mxDQ2CFnld
3D5zDCQWvpYce4m5xN63k7UJmgRtMj9Z+6CBqN/JKeS2wdG5Bg+Td3OVM9eL
VyfXftSA1LLzit+P54D3sCnZ28EjoR69Ntl/wSOh/r8mudalxqbWvjK59qZG
p1YfkPz+kDXD2hmY7OewPvAnLkiOJexR9ur1ye878ZSody9MXuvEHGLPRcl7
gz3AXrg4ee+wZ9g7G5O9HDw4/JRByX4W73R5t3tDspeOx4q/sirZP+HfKOAf
bkjW4mhy/J2tybUpNSre+xXJtTM1NF7i5eI5mT0xvLE1yX4K78jxt7Yle728
o+Fdzepk/4R37Phda5PrfTwLvIvrxKsye474MeuTvSg8BbyFq5LfR+Mp4C2s
S/YH8BTwD7Ynv//CY8Zr3iLemPkdCH7ZjcnvQningL/WP3kvE4OIRcOTtc/u
d9LiFcm1PDU9/suiZG2LxsX/3Cv3+kKDEW9K5dZiaDT269Bkbco7Yt4VH5w7
PlHjEs/RrPsVuRAtOzjZz+SdNn7VJcnvMne/QxePTH6Xu/sdJPk0d/yjxiV/
LEzWmmhO/NghyX4n78R5N7452RvAI8CP2zO3VkQDEj9XJvtd/BsE/OgyueMP
NTv54P8QiijI
"]], Polygon3DBox[CompressedData["
1:eJwt13XUVWUWB+D7gXQjjUqMIBiESomEKCEpSijdOqSUIKDSYY/SUg4gMYRF
6FJAJJUSpVsFYQZQGDFHmGcvzh+/tfd+zv245557zvteSnTp92jfdKlUaplk
kHHpU6mraalUObnPvMPBkeySuYTcydax59mP5mJyO/uEbWYXzHdIZfYR28sy
q/XYY2y/fh/Lpj7MWrFD+v0su9qQtWaH9W+x+9Xe7DmWy/yNZGUNWEt2UP81
y6LWZy3YAf00VlntwZ5hmc2fyxnzrVKevef4ctZGfZHNZuXNuyUdq82asN36
7eyK+R6pxTayXSxNrcUasz36AyyX2oS1ZSf0B1lutSlrx47rl7En1ElsFitn
3iinzX+L68/ed/wlllOtyRqxY/oVrG0cY3NYBfNXcgOrw5qxvfo9LL36AGvK
vorPyXKoNVhDdlS/g/0vvm+px7aznewvc3Wpz75g29jP5rulJtvAtrL/mitK
DfYZO8tKqV3ZAHZF/zLLr9ZN7oPT+ufYf8xFpTRby15ld6rtWG92VX+BVVOH
sIksu/k1uYu1Z33YNf3rrJzagfVlqbhHpT4bx6ahouZ1cb3MmaUge8vxN1lF
tTPrH39qniz3JJ9jYDwf5n/Lbaw7G8R+1Z9nZdUnk3vtd/10ViWxISyL+Sdp
wMaz6ayIeYZUZU+xoSyreYrcy7ol75HRPFOqs15sBMsZ107KJPf4YPab/hJr
Gtc7uTdKmN+QCqwTe5qlM2+S8/HsSqXk2r8Q52guHs8w+5RNZZWSzxvvkck8
XM6ZC8ezxFY7PiKujbmIlGJr2CvsJrUxa8PO6y+y2rF+sNdYXvMouWwuKXex
9Y5vYMfNNyX3xhI2lv1uLpuc81a2hV2MdUmqsI/ZZ+yE+Wa5jS1l/2Dl1Y6s
H0szj5Zf4zXxXLPNjo9hv5nLyL1sC1vPDpjzx3rH5rNzrHTyHcW98Yv+FLtZ
bct6sovxXbNrsd7Es8R2su9YseTejXv8R/3b7CF1EBvHCsZ5SAc2i61kd8f5
SvtYG9kKVtE8Tx5kA9lYVsC8Rp6PtYJ9zlqa50odNoCNYfnjekrXeH+2ilUz
/yLt2Ey2PFlfvpA/zFXloeTaZ74hlRqmrmU72SNek2J92L/YemOdWJvZcPYR
28Was1XyNJvHPmT1zH1knzmX5GDzYu2PNT9myc7mxjPAvjZni7A5rC/bb84j
Odnb7J+srjqYjWeFzAPkiDldfJ9skeMfsn7qXPYBqxvnJofMV803ykLH57N6
6jN8Aisce5HPNoJ9zHazR1l/OZwWN1kqlU95x/E/WLc4J7aaVY33lFv0+dir
cX3Mmfx7z+rXsB2ONYu9iA1g77LNrD4bJmfNhWK/YKscz+h1Q9XV7EvWNNZ1
6cEWsLWseuxZXtefrWSbWAO2UBqx4ewVVsz8jjSOZzvOjxU3L5ImsXYnz2+s
Lxn8e4PZB2wbaxT3vPRmS9k69kDsT143iL3PtrKGbLE0Z6PYm6yU+ar0YkvY
p6x27DvSik1mi1jZ2HekZazd7B12e+xZ0pMtZp+wWuYr0ppNYYvZHeYv5U9z
NanLtjme3vkNVN9jW9jDXrNEHmWj2WRWOv5Ousf9wNaw+8wLpCEbxl5mt5i/
je832ct6sQvxjLKj5hukAFvMhrLvzHljzWIr4/lhLWLNY1NZGfMxKchasq7s
jP4EK6y2Zt3ZWf1RVkBtwboke+1l1izWZDaXlTTPkhqsD3ue5Tbf6BpMin2d
HWMdWX72EtvOTrDOLB97MX4TsOOsE5sU9y+rkqwR8VuvW1xr85/Xt+PUVHYk
3kdtzjuyb/WHWV71EdaBndKfYSWTfSvW7Mv6iSyjWpk9yPbpv2fFk30/fgv8
pD/NSiTrffwWuKT/gd2qdkn2+J/1J1kR9XHWg53TH2J51GasPTupP84Kqa1Y
N/ZD3O/s7+qMZJ2Me21CfEhWgd2v3aWfzWrGGsVeYHnimZSd5mup67+7p8ce
y3awv64vo6lprCfby7JIVjY71gHWOfY0toBVjvOQPeYMkjn5TbOUPRZ7GpvC
bjMPlpOxlsZezZbFesZOxbopRdly9iz7Pu362hRr1LuxN8U9aM6Ydv13U+zJ
Q+I+N+eOvZqtYLmc/Fh1IzvI2njNk7LLnBZ/z2bEc8a6qG+whayKOae/HRN7
ODvAnmC52Xi2iR1m7eL7YRPYZnaEtY/7h02M3wTsKOvA5kgt1o+NTH5vZPO6
kWwd+4a1YtnZqNjr2T7Wmq2UTux1Np9VMufwutFsA9vPHmerZQhblKw5se4+
JbvN6SUTmxnrXrg6Pe36/7dqmv8P/OqjpQ==
"]]},
Annotation[#, "Charting`Private`Tag$3923#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwt0csrpWEcwPF3nDnOHBxMs9IU2WmKrRRbKVZTNmPHaizYmqUVa8IfINYS
G7mf47aZ5D7jnia5Lhi3JD5PWXzfz1tP79vv6Vfa3P697UMURZ26V3i/0Yn6
sqKokIMs4SgrOMcarrKBh2ziNVv5wl/Mi0VRN79ygN84zCqOs44ZTvKUj1rX
f11qyjAbnOYmZ7jFWW6HObjDef5hmn+Z4S4XuMdF7nOJB1zmIVd4xB7znvFJ
x7rTlVrMtcZGplnLMVZyiGXsZxG7mMMOPvvfz3AH/uA+6/mb1eEeLOcIiznh
u398UIFudaEv5svnZ6bCGfOYYi5zmcMkk0zwE+NMMMbssFPG+aqPYT/hLMwp
I0S9Hufv+38Df9xIqw==
"]]},
{GrayLevel[0.2],
Line3DBox[{661, 952, 458, 660, 1046, 868, 662, 1047, 869, 663, 1048,
870, 664, 1049, 871, 665, 1050, 872, 666, 1051, 873, 667, 958, 1129,
668, 1052, 874, 669, 1053, 875, 670, 1054, 876, 671, 1055, 877, 672,
1056, 878, 673, 1217, 953, 879, 954}],
Line3DBox[{675, 959, 1130, 674, 472, 676, 1057, 880, 677, 1058, 881,
678, 1059, 882, 679, 1060, 883, 680, 1061, 884, 681, 960, 1131, 682,
961, 1132, 683, 1062, 885, 684, 1063, 886, 685, 1064, 887, 686, 1065,
888, 687, 1066, 889, 688}],
Line3DBox[{690, 962, 1133, 689, 963, 1134, 691, 487, 692, 1067, 890,
693, 1068, 891, 694, 1069, 892, 695, 1070, 893, 696, 964, 1135, 697,
965, 1136, 698, 966, 1137, 699, 1071, 894, 700, 1072, 895, 701, 1073,
896, 702, 1074, 897, 703}],
Line3DBox[{705, 967, 1138, 704, 968, 1139, 706, 969, 1140, 707, 502,
708, 1075, 898, 709, 1076, 899, 710, 1077, 900, 711, 970, 1141, 712,
971, 1142, 713, 972, 1143, 714, 973, 1144, 715, 1078, 901, 716, 1079,
902, 717, 1080, 903, 718}],
Line3DBox[{720, 974, 1145, 719, 975, 1146, 721, 976, 1147, 722, 977,
1148, 723, 517, 724, 1081, 904, 725, 1082, 905, 726, 978, 1149, 727,
979, 1150, 728, 980, 1151, 729, 981, 1152, 730, 982, 1153, 731, 1083,
906, 732, 1084, 907, 733}],
Line3DBox[{735, 983, 1154, 734, 984, 1155, 736, 985, 1156, 737, 986,
1157, 738, 987, 1158, 739, 532, 740, 1085, 908, 741, 988, 1159, 742,
989, 1160, 743, 990, 1161, 744, 991, 1162, 745, 992, 1163, 746, 539,
747, 1086, 909, 748}],
Line3DBox[{106, 347, 107, 348, 108, 349, 109, 350, 110, 351, 111, 352,
112, 353, 113, 354, 114, 355, 115, 356, 116, 357, 117, 358, 118, 359,
119, 360, 120}],
Line3DBox[{750, 993, 1164, 749, 994, 1165, 751, 995, 1166, 752, 996,
1167, 753, 997, 1168, 754, 998, 1169, 755, 547, 756, 999, 1170, 757,
1000, 1171, 758, 1001, 1172, 759, 1002, 1173, 760, 1003, 1174, 761,
1004, 1175, 762, 554, 763}],
Line3DBox[{765, 555, 764, 1087, 910, 766, 1088, 911, 767, 1089, 912,
768, 1090, 913, 769, 1091, 914, 770, 1092, 915, 771, 562, 772, 1093,
916, 773, 1094, 917, 774, 1095, 918, 775, 1096, 919, 776, 1097, 920,
777, 1098, 921, 778}],
Line3DBox[{780, 1005, 1176, 779, 570, 781, 1099, 922, 782, 1100, 923,
783, 1101, 924, 784, 1102, 925, 785, 1103, 926, 786, 1006, 1177, 787,
577, 788, 1104, 927, 789, 1105, 928, 790, 1106, 929, 791, 1107, 930,
792, 1108, 931, 793}],
Line3DBox[{795, 1007, 1178, 794, 1008, 1179, 796, 585, 797, 1109, 932,
798, 1110, 933, 799, 1111, 934, 800, 1112, 935, 801, 1009, 1180, 802,
1010, 1181, 803, 592, 804, 1113, 936, 805, 1114, 937, 806, 1115, 938,
807, 1116, 939, 808}],
Line3DBox[{810, 1011, 1182, 809, 1012, 1183, 811, 1013, 1184, 812, 600,
813, 1117, 940, 814, 1118, 941, 815, 1119, 942, 816, 1014, 1185, 817,
1015, 1186, 818, 1016, 1187, 819, 607, 820, 1120, 943, 821, 1121,
944, 822, 1122, 945, 823}],
Line3DBox[{825, 1017, 1188, 824, 1018, 1189, 826, 1019, 1190, 827,
1020, 1191, 828, 615, 829, 1123, 946, 830, 1124, 947, 831, 1021, 1192,
832, 1022, 1193, 833, 1023, 1194, 834, 1024, 1195, 835, 622, 836,
1125, 948, 837, 1126, 949, 838}],
Line3DBox[{840, 1025, 1196, 839, 1026, 1197, 841, 1027, 1198, 842,
1028, 1199, 843, 1029, 1200, 844, 630, 845, 1127, 950, 846, 1030,
1201, 847, 1031, 1202, 848, 1032, 1203, 849, 1033, 1204, 850, 1034,
1205, 851, 637, 852, 1128, 951, 853}],
Line3DBox[{867, 957, 656, 866, 1216, 1045, 865, 1215, 1044, 864, 1214,
1043, 863, 1213, 1042, 862, 1212, 1041, 861, 1211, 1040, 860, 645,
859, 1210, 1039, 858, 1209, 1038, 857, 1208, 1037, 856, 1207, 1036,
855, 1206, 1035, 854, 655, 955, 956}]},
{GrayLevel[0.2],
Line3DBox[{251, 459, 1046, 252, 472, 278, 1134, 486, 292, 1139, 500,
306, 1146, 514, 320, 1155, 528, 334, 1165, 542, 348, 556, 1087, 362,
570, 376, 1179, 584, 390, 1183, 598, 404, 1189, 612, 418, 1197, 626,
432, 1206, 640, 446}],
Line3DBox[{253, 460, 1047, 254, 473, 1057, 279, 487, 293, 1140, 501,
307, 1147, 515, 321, 1156, 529, 335, 1166, 543, 349, 557, 1088, 363,
571, 1099, 377, 585, 391, 1184, 599, 405, 1190, 613, 419, 1198, 627,
433, 1207, 641, 447}],
Line3DBox[{255, 461, 1048, 256, 474, 1058, 280, 488, 1067, 294, 502,
308, 1148, 516, 322, 1157, 530, 336, 1167, 544, 350, 558, 1089, 364,
572, 1100, 378, 586, 1109, 392, 600, 406, 1191, 614, 420, 1199, 628,
434, 1208, 642, 448}],
Line3DBox[{257, 462, 1049, 258, 475, 1059, 281, 489, 1068, 295, 503,
1075, 309, 517, 323, 1158, 531, 337, 1168, 545, 351, 559, 1090, 365,
573, 1101, 379, 587, 1110, 393, 601, 1117, 407, 615, 421, 1200, 629,
435, 1209, 643, 449}],
Line3DBox[{259, 463, 1050, 260, 476, 1060, 282, 490, 1069, 296, 504,
1076, 310, 518, 1081, 324, 532, 338, 1169, 546, 352, 560, 1091, 366,
574, 1102, 380, 588, 1111, 394, 602, 1118, 408, 616, 1123, 422, 630,
436, 1210, 644, 450}],
Line3DBox[{261, 464, 1051, 262, 477, 1061, 283, 491, 1070, 297, 505,
1077, 311, 519, 1082, 325, 533, 1085, 339, 547, 353, 561, 1092, 367,
575, 1103, 381, 589, 1112, 395, 603, 1119, 409, 617, 1124, 423, 631,
1127, 437, 645, 451}],
Line3DBox[{8, 667, 23, 681, 38, 696, 53, 711, 68, 726, 83, 741, 98,
756, 113, 771, 128, 786, 143, 801, 158, 816, 173, 831, 188, 846, 203,
860, 218}],
Line3DBox[{263, 1129, 465, 264, 1131, 478, 284, 1135, 492, 298, 1141,
506, 312, 1149, 520, 326, 1159, 534, 340, 1170, 548, 354, 562, 368,
1177, 576, 382, 1180, 590, 396, 1185, 604, 410, 1192, 618, 424, 1201,
632, 438, 1211, 646, 452}],
Line3DBox[{265, 466, 1052, 266, 1132, 479, 285, 1136, 493, 299, 1142,
507, 313, 1150, 521, 327, 1160, 535, 341, 1171, 549, 355, 563, 1093,
369, 577, 383, 1181, 591, 397, 1186, 605, 411, 1193, 619, 425, 1202,
633, 439, 1212, 647, 453}],
Line3DBox[{267, 467, 1053, 268, 480, 1062, 286, 1137, 494, 300, 1143,
508, 314, 1151, 522, 328, 1161, 536, 342, 1172, 550, 356, 564, 1094,
370, 578, 1104, 384, 592, 398, 1187, 606, 412, 1194, 620, 426, 1203,
634, 440, 1213, 648, 454}],
Line3DBox[{269, 468, 1054, 270, 481, 1063, 287, 495, 1071, 301, 1144,
509, 315, 1152, 523, 329, 1162, 537, 343, 1173, 551, 357, 565, 1095,
371, 579, 1105, 385, 593, 1113, 399, 607, 413, 1195, 621, 427, 1204,
635, 441, 1214, 649, 455}],
Line3DBox[{271, 469, 1055, 272, 482, 1064, 288, 496, 1072, 302, 510,
1078, 316, 1153, 524, 330, 1163, 538, 344, 1174, 552, 358, 566, 1096,
372, 580, 1106, 386, 594, 1114, 400, 608, 1120, 414, 622, 428, 1205,
636, 442, 1215, 650, 456}],
Line3DBox[{273, 470, 1056, 274, 483, 1065, 289, 497, 1073, 303, 511,
1079, 317, 525, 1083, 331, 539, 345, 1175, 553, 359, 567, 1097, 373,
581, 1107, 387, 595, 1115, 401, 609, 1121, 415, 623, 1125, 429, 637,
443, 1216, 651, 457}],
Line3DBox[{275, 653, 1217, 654, 276, 484, 1066, 290, 498, 1074, 304,
512, 1080, 318, 526, 1084, 332, 540, 1086, 346, 554, 360, 568, 1098,
374, 582, 1108, 388, 596, 1116, 402, 610, 1122, 416, 624, 1126, 430,
638, 1128, 444, 656, 657, 658}],
Line3DBox[{445, 639, 655, 431, 625, 1196, 417, 611, 1188, 403, 597,
1182, 389, 583, 1178, 375, 569, 1176, 361, 555, 347, 541, 1164, 333,
527, 1154, 319, 513, 1145, 305, 499, 1138, 291, 485, 1133, 277, 471,
1130, 250, 458, 652, 659}]}, {}, {}}},
VertexNormals->CompressedData["
1:eJztnHlUjVsfx58ULeV63Uy5b90bIspUKseQnVZmJUN1tcKlTupULzoimjRP
xiQy3VJp4OAoKeKcpqsJkaEiylAibVIJ4X1aau+rZbvreOvyrrvPP631Wc/a
z96f5/n+zjnP/p0Gr1y9kNuNYZgMGYaRZv96FslPETY7TWU+vjY/+dD6gkDO
wdrzWbQQtPMUKXWNgFoIIlu2P5a3FCOu0uNkcVE6BC6m0+8XJuQgHli+L+1a
EATcrJVL90/NRVyYeWP2aXsINsZlggW9MZcOqf9B9j/sODUhWfU8PE4vx3S+
1xYIei49Ubq7GZ/X2r5aT3AGgvjl0tO0J51B3Et78geduxDohJZk8+wSEG9w
nrC8uhECk1fhj2TidiD+eMpZwZP3EDxrmu3CG7pO1M7zrJXjqlgP8+zzU4PH
BiOusaxh52KW9z6apmQa5IP4AeVlYZEszxSXx48pnXGhnX/88xxQz9Qz9Uw9
U8/UM/VMPVPP1DP1TD1Tz9Qz9Uw9U8/UM/X8/Xj2zfG+ueZNFDrvqu5NafVv
INF/YWJ+RjLHGY3fNMKk7MHfMD6Jk8aX9HjS/HnH8m+u6BOKjs9wFiamsdfF
nz/e8o9YLhq/ZE+AoJkdX9LjSR4kHV/S+UuaO9J8enjqKdZVHG8fnxnc98qO
AS8gaMx7Ge/WmI64g6Z/Ja+AzM2H9qkQCLIQf7UswPrAITJ/q+Cm6tPwB+Ih
0rnLx7mSeajQ6J3nKJRr5u4QL48wBzLXNbM8kcq9iPj4TPO1b5zJXO5mrYt0
eTbiObPyDjuFknmYnzb3xM5UxBUWb7IfW0bmW449G8MTYM+zJipqz3pB5pnv
Vm1Y7XIQ8TILWZP9LWTuampQnzBlA+KG+37Xv/uBzHdOqWioVdrcfj8wPr/6
DRR9gRcJeY/f+wUiLho5NNbuC7yMV+CkaOyFeGDlg8GnWd7de9CkcYqYK9hu
fpHyFfehpPeVpPeJpNdd0uso6XUheaY+qU/qk/qkPqlP6pP6pD6pT+qT+qQ+
qc+/0+e6qTNmWjTi+STK9i/sRn3+pU/q7eu80fzSekh9Up/UJ/VJfVKf1Cf1
SX1Sn9Qn9Ul9fv8+6XOPzn1eROq3IfHOGkfS8Tv0fzLt/Z8d+taY9r61Dn2h
DKEvlCH0hTLtfaGbPu0LZWTa+kI3ftoXyvRu6wuV+7QvlOF+vi+UIfSFMu19
oQs+7Qtlaj7fF8q094UafdoXyoz6fF8o094XSn12rs8OfZVtr+fUM/VMPVPP
1DP1TD1Tz9Qz9Uw9U8/UM/VMPX8Dz9Tn1/k8cPunLVK3LqDzqq6ZX2yWDcFi
pTGvQxm83st5x5e+3gHBsKOVItVa/LxUxSN4SfxqCGSXzDtt0Q97S125dMB5
RwhMh0V7eYnwOMl1+qceBEIgMpBS1QzIQHyxoNur4lMQOA2yLfWWP4Z4wS27
bUkvIXDl+75+UhuG+Bnnhf3msH5EAtXgW+Er0Xq9cjMj3rDrrVFaf/i6Bn5e
ap9eVufI8ofhZyOVlvkirsndNXsvy88VTSoWc0wR75kerfe+9XiegbKWOX4O
vGxqrlH1Hgj0YqbsiI7AHnzdCx9t5UOgnJ+gZP0T9rBZbVIvPushWVigINsP
P5cuaZQWT/CDwMbELj+tfybi2/oOcb8mgKDHiMtyF7QiEHcp1GnwfQeB4jTh
boV8DuIKRXtKW+uJ0ZDwKKUR/mj+c/gzDf1YHpsX1fhAyw/x8vQlR7azfGt2
5V3bICvERWoGPVu91WpUcxRn4nX57Pau4W6A4PjsImdHFbyuiZZBcAS7Lh9+
s4yPLV6XSvmFKHcvdp4JLcdHx+B1nbpeWREfD8GpyHFZFnm2OC/vN9s0tT7f
5s9StFLF12X/PJ3QfSxfqRzS76gsXleslTDRn+Xa5gZjlI0dEY+3KQ6rZ/m7
4afF64fjeQ7xnSu+6wBBkpRBVUM6nqe9ubXlaXcILHbHJAdr4X2EgMQ4bfNo
CNa3HLWNV/FG45+dFFkiYMd/tSa0ae0dPB+1qH1m7iwfIc67sSqIj7iKq8yw
xyzvFVtjaPkj9snMV2m8uxGCqtgZostifN69IVFbyg9CoJFQHMYRBqBxwnP6
J/Jb95s23Lt0wd4FcQWTkrSyVg+ptUmvjPH96TQq+/3kvRCEry0drGDsjo7/
3WTxonz2+EPfWd7XSpj3AkLen0qY99/O/fiCF7QI8ZOLTLxb8/6ok/KeRMg7
l5B3GULeU/U/n3cTQt5jCHn3I+S9TsK8exPyPpCQ9zBC3osJeV9ByPuYTsr7
EkLeXQh5byLkfbiEeX8kYd5lJcz7bkLeeyYP12XeeqHjy3N2jjrB8tIO+3RB
bft0pM8JTUmfH4f0+fYw4f10d4f9075t+6dWZYII9Y2JiHNyTl6UYz8Xuald
mti9Jg1xkc+26robEGwn7LfmX4+r2NTnCOIgcr/IqhmC3P47Vnj3PYf4+c2N
Cj9cg2Dkvw01OPqYi4ddsVl3FQJOpcGx0LiTiMccfTontg6Ci4T9XK7bGa1f
4tD/IWFSEoeoDn7Lvv/WdKuS18Tz1zskt1avBALgfK5Pdxl8PzQObREoxrL+
3S2q9ffg/W61JyktokII7F8u4Fs248+9OzbV5Oc/heBnkXyfbvciEa/6NX34
Vva8gYT9ZaNm8dsTm/bhnMauOWfA1hndqFT+aGP8eXVqRnri23L2/vQ84aZr
gXPdN4s33vIoBPojPcc+jML5ml42f84zD7YONMj/rFh3Hl+X4nXiqxchcNa0
3CY/Owlx+ZxtotTHbJ0fON1JLBWNeLr68PUWb9i8OBo+NZLD95vhpZZVZ9j5
byfsj6vleG4pOLITHb8qcqlNLvt+YWz03Owt7zTmD63cZz5g65jGxpTpJ/H7
kbpddJGNEAIzDzPdyfPxugyWxyQe8Ibg2saDGkFauM7c7qWuPoetM2VqZt4p
hiL8vUDqSWFCJgSP3fgqERHJiE+2vDBh9SO2nvfW32mvGou4+yDuNOnXEAhj
0mUM1/vj+9/D6Y4Xu64BH37jrNByQ+uN8akyvsxyzT3+xqpH/pTHOxtUTrHc
4eaGqqAA7Dm38GKyCus5ZOD9hbo98HqXuvbmctjvKSrRCdGBLfj92mFevetU
fwgq/hU/N5SD16szYEbWB/b7USAnca7cWVzfdo30vSLrBEFCpSc32Ah/D7K5
fkR/1nkInnimGL+vwf5FlqLpdZUQiIODlFpmxCH+Uthna8ArCM7E3iscez8E
8Z91dA/psetS1rziWqWO6+HIpGyP2yyviIh+mW0RhOvY2cyZy1luS6gnmwj1
pIhQN/IIdUONUDe0CXXDnlAf4iSsDxmE+mBHqA9KhPpgSqgDnE6qAwMIdWAd
oQ64EOrAHUIdGP2N8l5KyHs1Ie8pnZR3ewlz/UsX5/opIdcZhFyfI+RakZDr
+4Rcd1Y/2K4O/WD32vrBJnToB9P+i36wru77utqh70vc1vf1rdbb1esi9Qd2
9bq6ev6dNc/Omo+k55V0fNI4pONprr/sk+ad5v1/mc/3lnfScwBSXz3peFJO
Je3Pl3R8Ui4663cBnTUf0n3e1b9f6Or5k3LR1esi5fqftl5SPflWHkj1StJ6
0tV143urD//vdeCflnea64+5vk3Yv/gvxY/uAA==
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
ImageSize->{365.9522022439016, 144.71094473679827`},
ImageSizeRaw->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->
NCache[{{0, Pi}, {0, 2 Pi}, {0., 0.2737382782077783}}, {{
0, 3.141592653589793}, {0, 6.283185307179586}, {0., 0.2737382782077783}}],
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic},
ViewPoint->{-0.0838037116420912, -3.3800194762104896`, 0.13581339533637288`},
ViewVertical->{0.0009948336515092158, 0.040124202756705155`,
0.9991942046765206}]], "Output",
CellChangeTimes->{{3.801823481856159*^9, 3.801823510667101*^9}, {
3.8018235517409487`*^9, 3.801823603980329*^9}, {3.801825565244288*^9,
3.801825592824583*^9}},
CellLabel->"Out[31]=",ExpressionUUID->"a6383fdd-4e4f-4ff7-84bd-bd68d5465477"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",",
RowBox[{"Plot3D", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
RowBox[{"2", " ",
SqrtBox["\[Pi]"], " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]], "-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}],
RowBox[{"2", " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]]}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Phi]", ",", "0", ",",
RowBox[{"2", "\[Pi]"}]}], "}"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8018236379392157`*^9, 3.8018236383373127`*^9}, {
3.801823830810561*^9, 3.801823832062315*^9}, {3.8018255977279177`*^9,
3.8018256036549997`*^9}},
CellLabel->"In[32]:=",ExpressionUUID->"eebf3ccb-1559-4da7-bdeb-234ad307674a"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJx1nHu8jWXehyU2ESKJCkNGJZrSTIXG0lQ6oKQZ1VCjE6VRzbxJjBENRruc
t0NTSQclNUQ5bOVs20glKsnQQSKhQjlv89a6r3u9n+v+vH+tz+fq6Xm+97XX
717P+j2/pd5t93W4s3SpUqUWlSlV6tj/fW397qjJ19QZ1jL7OqHlJ3tvn9Nw
zKDMiMPLP/5F4aoM/IU1i4f36vjPTNt/frS1buF/Iq/45dNXN93+eObMK1+Y
vi5/S+Qnb1n64KzRozNT2t58X93CHZEfGNakwt8LnsyMPfOxsa/v+T7y/iXT
u7f52/OZdVO69VyX/0PkR8c3fuWRQ1MyNZtc9vtD9Q5EfsWlp+adXmtG5qZp
vzi/buHhyD95rHyzv9w6O/PO+JIh9c4s1Qo+o3bbntXy5mV2rv/zQ6/vOSby
335ctnmXdosylU7d0O3yBcdGXrK2ev9ya5ZkmnS+6oZ1+WUj37X3vB92rS3K
tHt6duu7O5aL/IFGa3r1qFucuW/TLy84VO+4yNuNnvj+/pHFGTxnvf4nY89w
e4bbM9ye4fYMt2e4PcPtOeaXZ7g9w+0Zbs9we4bbM9yes/52JJ7h9gy3Z7g9
w+0Zbs9we4bbc8wvz3B7htsz3J7h9gy3Z7g9Zz39kHiG2zPcnuH2DLdnuD3D
7RluzzG/PMPtGW7PcHuG2zPcnuH2nPVxOPEMt2e4PcPtGW7PcHuG2zPcnmN+
eYbbM9ye4fYMt2e4PcPtObvuY1rZM9ye4fYMt2e4PcPtGW7PcHuO+eUZbs9w
e4bbM9ye4fYMt+fs+somnuH2DLdnuD3D7Rluz3B7httzzC/PcHuG2zPcnuH2
DLdnuD1n13Fc4hluz3B7htsz3J7h9gy3Z7g9x/zyDLdnuD3D7Rluz3B7httz
Nu/xiWe4PcPtGW7PcHuG2zPcnuH2HPPLM9ye4fYMt2e4PcPtGW7P2VwnJJ7h
9gy3Z7g9w+0Zbs9we4bbc8wvz3B7htsz3J7h9gy3Z7g9Z69fNfEMt2e4PcPt
GW7PcHuG2zPcnmN+eYbbM9ye4fYMt2e4PcPtOXudExPPcHuG2zPcnuH2DLdn
uD3D7Tnml2e4PcPtGW7PcHuG2zPcnrPnOynxDLdnuD3D7Rluz3B7htsz3J5j
fnmG2zPcnuH2DLdnuD3D7Tn7/52ceIbbM9ye4fYMt2e4PcPtGW7PMb88w+0Z
bs9we4bbM9ye4fac/e+1Es9we4bbM9ye4fYMt2e4PcPtOeaXZ7g9w+0Zbs9w
e4bbMxzPtbb+e279wrfC66pM7YUj2vyqzODoH47/TfPubdn04vKt4J3PfuSv
DXrmzg/3+bP/X81WPj/c54dzfjj54ZyfPiTn53i4j+c8HE9+rkv+s9/q1a9h
4avh9a3Miw/c8OPa1wZlGl5z9dwa08q3gj/yzptPLszPHZ/97zVb+Xg4x+OB
8+CB48nv85Of85Of8zs/5/HxXNd1x3mch+uS59o+Ow4crrci9ku/+fGjB9rV
+WemQtmD5Q/XWx+vO73u1icvHfRY5BwPf/Crfiv7rv8iHv/dyxc91GLyyMg5
Hn7Xyv4jDtX7Oh5frnnvhbUKxkXO8fA/Tn2kY5/u38bjm++/dVbr9c9EzvHw
hlf9bljf9bvj8XUnrW5+U6dJkXM8vG6LS79/80iunz/9o3Ynd6r/auRxvYFX
rXv57Oatc/385V9M+Wu3ObMi53h4haqtT+nT/Wg8/uJmLRpuf+rNyDkePmDA
8/M7X5Hr/8/Zccm/Hr5kYeQcD//7wdPv77u+dDy+TsdKG18fvjhyjof3/p8X
6j11T5l4/I0Lj7aZP2pp5BwP77mjwdo3j+SeL7Qv/cmYdxsui5zj4X+5c9LA
DcNzzx2mNup3wYZfF0fO8cP3Vdw8v0nufUj/1u9DuN9vcL+v4H7/wP0+gfv9
EK+rvzvcf1+4/45w/73g/rvA7R9uz3D7pE9rn3D7hNsn3D7h9gm3z3hd+YTb
J9w+4fYJt0+4fcLtE26f9GPtE26fcPuE2yfcPuH2Ga8rn3D7hNsn3D7h9gm3
T7h9wu2Tvqt9wu0Tbp9w+4TbJ9w+43XlE26fcPuE2yfcPuH2CbdPuH3SX7VP
uH3C7RNun3D7hNtnvK58wu0Tbp9w+4TbJ9w+4fYJt0/6qPYJt0+4fcLtE26f
cPuM15VPuH3C7RNun3D7hNsn3D7h9km/1D7h9gm3T7h9wu0Tbp/xuvIJt0+4
fcLtE26fcPuE2yfcPumL2ifcPuH2CbdPuH3C7TNeVz7h9gm3T7h9wu0Tbp9w
+4TbJ/1P+4TbJ9w+4fYJt0+4fcbryifcPuH2CbdPuH3C7RNun3D7pM9pn3D7
hNsn3D7h9gm3z3hd+YTbJ9w+4fYJt0+4fcLtE26f9DPtE26fcPuE2yfcPuH2
Ga8rn3D7hNsn3D7h9gm3T7h9wu2TvqV9wu0Tbp9w+4TbJ9w+43XlE26fcPuE
2yfcPuH2CbdPuH3SXyp9zax+W47J+YTbJ9w+4fYJt0+4fcbryifcPuH2CbdP
uH3C7ROOT7xlX9dn7O34/VVOXZ//YfK9cnnP8y+euef95Htl1dC/tbeRX+w9
/El+UfK9skHoH9rblV0r5p1T+GryvbJ9yGlvJ4Scyed4yGlv9JntbVzIaW+N
Q057a9z6rv1Dd25Pvo9nX79OvG1b8lit7h23Jt6WP1K70cf5WxJvky+Z1rz1
gs2JtyGlLmnzxp7PE293LVjTqf6ZnyXeyGlvx4ec9rY95LS3lSFn8n085LS3
R0NO12/XkNP1O/6MnYWVJ+1NfJYrd8HiyxfsSXxmX3cnPr8qKl7z03MY++w4
6YQN2yt9n/hcNvCmzfXO/C7x+efll62bPnBX4pOc9lk+5LTPXiGnfW4NOe3z
hpDTPslpn91DTvs8pfGLvTquPZT4fLTitw8P3Xkw8bl/+4VDlpY7mPjMvh5I
fH788orxTS/en/i88tFqz97dcV/ic85dnV6eeP+PiU9y2md+yGmfB0JO+7w7
5LTP9SGnfZLTPmeHnPZ5zfhpp7zXP+0X5ZX/YML2Smm/aF6v/fXzniyVfL70
3HraSz89x7PP7OvRxOfKoW/fMn1gSeKzeY/q3bZNOJL4JKd9ktM+54ec9vlg
yGmfnUJO+ySnfTYLOe1z+CmPH9h9ctovap3/2t8rTyqT+Cw58MExjZqWSXzO
uvvAoJ+ec9rnvetrV7i17bHJ53X2tXTyeb1pTtdq47uWTj6vyWmfV4Sc9nk0
5LRPctonOe2TnPZJTvtc/dRdH//0nM0+hxw/tPNPzzPtM9N3+mftVpRLfO77
5sM7fnoObJ/TOh3cNnBzXuKz29t1eky8Py/xmX1N+2/ktE9y2merkNM+94ec
9klO+ySnfZLTPrN5037R8mF3t+i4tmLis3/J0AV/6VIx8XnRvTMuHbqzQuLz
u40fFU/uUyHxObndoTZLy1VIfHaZV3f1pwVp/42c9rki5LTPASGnfZLTPslp
n+S0T3LaZ4dn6429ZWOVxGc2b5XE56L+3SeM2Vc58dn7u2H1pw+snPg8r8vr
L66qWjnx+fV76xptm1Ap8fls5vDUYxtXSnyS0z7JaZ+LQ0777BNy2ic57ZOc
9klO+1xR9eHml8xN+0WTrhp5+N3+ab8omzftF91cOLP/9kppv6jZ98W/e+iD
tP920lmflMl7Mu2/fd9lx7LRt6b9N3LaJzmT92fIaZ/ktE9y2ic57ZOc9vl1
h51nrR2U9ouK8o9+06Vt2i96dnHVqbuqpf2ibN5qaX+46QVNK0yslvj8Tfcr
947rWi3xWfW5P876ZZNqiU9y2ic57ZOc9knOpD8cctonOe2TnPZ5XEGnWnde
l/aLtrzdY8Puk9N+0aJj+z/df1P1xOfTLUb9qfKk6onPbN7qic8/vDJr81lN
qyc+z9u8fNLs/Wn/jZz2SU77JKd9ktM+yWmf5LRPctrnWR+uKL/vtLRfVLbS
f1YO3Fwj8fn5ZbserzalRuJzXt9S1068v0bi84k3qlU958Iaic9s3rT/dl2D
C8dctTTtv5HTPslpn+S0T3LaJzntk5z2SU77bFPjov1DttVM+kXML9ln6cGd
+77Qs2bik7kv+5z7Q/9SC0vXTHyOaTJ6cbsVaf8tmzftv5HTPs8IOe2TnPZJ
TvskZ/L8N+R036N96M/gDc/nBu55m+tD3wbOeVivzwP3efBgTl/L52f+h/Mz
/0m/i/lP5tbgzK0xFwr3XCjcc6Fwz4XCPRcK91wo3HOhMafmQuGeC4V7LhTu
uVC450LhzIXik36XfcLtE26fcPuE2yfcPuH2CbfPmFM+4fYJt0+4fcLtE+45
WzhzlXim32XPcHuG2zPcnuH2DLdnuD3D7TnmlGe4PcPtGW7PcHuG2zPcnul3
2TPcnuH2DLdnuD3D7Rluz3B7jjnlGW7PcHuG2zPcnuH2DLdn+l32DLdnuD3D
7Rluz3B7htsz3J5jTnmG2zPcnuH2DLdnuD3D7Zk+kj3D7Rluz3B7htsz3J7h
9gy355hTnuH2DLdnuD3D7Rluz3B7po9kz3B7htsz3J7h9gy3Z7g9w+055pRn
uD3D7Rluz3B7htsz3J7pd9kz3J7h9gy3Z7g9w+0Zbs9we4455Rluz3B7htsz
3J7h9gy3Z/pdyX1d4Ml9XeDJfV3gyX1d4Ml9XeDJfV3gyX1d4Ml9HTl9Xxd4
cl8XeHJfF3hyXxd4cl8XeHJfF7g90++yZ7g9w+0Zbs9we4bbM9ye4fYcc8oz
3J7h9gy3Z7g9w+0Zbs/0u+wZbs9we4bbM9ye4fYMt2e4Pcec8gy3Z7g9w+0Z
bs9we4bbM/0ue4bbM9ye4fYMt2e4PcPtGW7PMac8w+0Zbs9we4bbM9ye4fZM
v8ue4fYMt2e4PcPtGW7PcHuG23PMKc9we4bbM9ye4fYMt2e4PdOP8u+F4fYJ
t0+4fcLtE26fcPuE2yfcPuH2CbdPuH3C7RMef0/68xzSJ7F/tWnA7/bMvfDx
ME/zZeQzG45d9cW3o8JcyDeRz+u98MI7Cv4V5hty/bSJ40reOavoufCcPtdP
m3Z57SV/qzglPG/eH/m9L1RYPWvQ9PCc72jkvV5Z0q7fdW+F51W5vlnVT2v9
8aS9C8Nzl1zfbPDeDuP+OmBJeH6Q65utbj8sb8bootAHz/XNlpze76UjPywL
/dzykV934OPCJfnFYc5pc+xHXX9Xt/pV2o4K8zrbc/2uO66/s03BE2GeI9cH
W3Bum/PKV3kuzE/sjfxPuytteODUl8Pz9f2Rjyl78Imrd78WnsPl+lpfbmnS
Z+W/FobnSbm+VuWTRk7deO6S8Fwk19ea8er2k3teXxT6+3mRn1i70bqhq5bF
3//G/t6Bxof+0LM4zBttj32hS6/9alTTgvFhbua7yDetGFfw1Y3PhvmPvZFX
fqZkd4+zJ4c5hn2Rv9n169s33fJaeD6X6xeN/c17RVd+tjg8ZyoTeUH5K866
6MSi8LwkL/LbanyUV+f5ZaHvXz7yw2fvGV6mW3GY4/ku9luO3PblvqXPTQzz
KHsin9/m2wrdWrwU5ir2Rb5s+PROX46dFp5vlYl9kgfveL75oTVLw3OavMin
V3nkgqm9l8Xfp8M/u6Wwwes3Fod5lz2xL3Hf/k/rd2nzYpjb+DHy6h1GfFvx
/qnheU9e7Bscc9w5XVu2XxaeW5SPvGjkw4W3Xl0c5jx+jN/Hb6t+3z/Ov+rf
4XlG7vvylKWXX3PCxcWZJqHe+X7xqeod7nqHu97hrnf4a6p3uOsd7nqHu97h
rne46x3ueoc3Xda160v/KA7zgpvj9xTqPZ96D3yA6z3whaHer6DeA+/ieg98
rOs98KTeA0/qne9NrvfAqfczqHe+96neuT+/TPUOd73Dq4R6bxXqHf6W6h3u
eoe73uGud7jrPd4/q97hC1TvcNc73PUOd73DXe/cH7re4Sep3uGud7jrnfui
21XvcOo9+1zwqfh5+soZv9q47bVB8TndtXoOyH0CnPuEc8N5uH/gPNzfxvuc
cH9LfcH5POX5Kefn+WnFn+fFi+LnYNNTv7np9K8Gh7muQ5HPbNbu1Zur/J/5
n8BbhOet2Tn4RfFz56HM0ZYH/j04zHmvi3zgvMcuW7UmP8yHHYr8uRHfbrm+
68ww51QSeaniGSV/2DY3Ps+F8zy3Svh3SNj/F9x+YoP3eg4Oc+QfRn5Dp3N3
/v4X+WEe+vPIh31z3LvdyowMc2kHIx+xdWTdq+e9EearSiIv+n2jdYvOnxvm
hHLPC2psfeWBu1cviM+X4Txfzs79z4yfO3lDzjhu0m8HZ176eV58beSNDnww
ZmOPR8N89ueRN26y4fSCLiPCnPG2yN9ucPyuUgVjw/zcwcj7tfz1Ta2qvxHm
wEoiz//i2WlNHi4M80y5/vy8vWvfWFt7QZjLKR35pAfb7K2TyT0fh/N8vD7/
Tkv4vGv7aotdfcoOzmTn3d+PvGRs75Zd3xwS5ss/i7xg4417+vceHuakt0Y+
vMozp24bPSbM++6KvE+jQ32P7TEhzAUejPyeMR+NuuCe18N825HIr72/1pAn
Vs4Jc1q5PvkdpQ/v/e0988O8UenIzxn3aMX8XYvC3EyZyJuf1vnmAR2WZlqH
eqQfO3r1tWvbvzMo/N5gdeTv/7rO1l3lh4S5+U2Rv9fl0IT15w0L899fRX79
wfOuem90QZhj3hl5YeeCSxeWejrM4+6OfPV1izp0uOeFMAeZ62PftOOhVY0X
zwjzfEciP6lkRJeyNeaEubRcH7viCQ1+M3nOvDBfVTrymbOL6//w9KIwJ5Tr
Y5/20Jx7L6u2NMy75PrYzxwaVHTLkaJMFfaT8HnHfrKC/STwWWE/eSfsG3y+
sG9sD/sGnH1jQNg34M+HfWNx2Dfgx4R9o2bYH+LnUdgfVoT9Ae79Ac7+0Czs
D/CRYX/oE/aH+Lmm/SH2x8L+MC7sA3y+sA+8HPYBuPcBuPcBuPcBOPtA07AP
wB/TPgCfr30A/mLYB/h3kGJ/QPUe+w+qd7jrHe56h7ve4X9Wvcd5J9U73PUO
d73Dqfduoa75PF0d6rp7qGv4u6GuZ4e6hncIdd0s1DV8tuo6nl91DaeuJ4a6
hldXXcc+jOoa7rqGU9ftQ13DqWvmwbh/8DwY3PNgcM+DwT0PBvc8WLxumAfj
PgTuuS+4577gnvuCe+4LztwX6+X+x+uFe71wrxfu9cbfzYX1si641wX3uuBe
F9zzgXDmA1kX911eF9zrgntdcNYVf18TuPPDnR/u/HDyk5P7MeeEJ78fpM8Q
cpIH7jxw54GTh+tyH+Xrwrku54f7/HDOz3m4b+E8HB/vr8Lx1DXfx13X8OT3
rYH7/QC3Z3gy1811Vddw1zXc73+43z9w/73gyfx24PiJ9R7uW5J6Dzyp98CT
eg88qXd+9+F6Dzyp98CTeg88qffAk3oP3PXOfZTXBfe64F4X3PUOd36488Od
H+56577LOeHOGfsMqne488CdB+565z7K14W73uE+P9z1zn2L6z3eX4Xj/78+
AHPC7P/M1XM8PPkdkH43zXnYhz2fH/f/sM9wfrjPD/c+4D4A12W/9XXjfq79
DU5dkwfuPHDngbtO3QcgJ/u2c8b9Xznh3n/g1Cn54c4Pd36488Ndp+4DsC4+
X7yu+HmkdcG9Lrj3n/h9PNQ164V7vXCvF+71wr1euNfL91+vN/7eU+uFe71w
rxfufQzOfoIHuD3A7QFuD3B7gHs/hPv3EXy+JPtJ4N5/2M/tM36OaN+Ae71w
70vszz5/3P/194J7f4D7unB7hnu/Yj93nvi5oDzw5HeggXsfgDsn3Dnhfj/A
vY/x+eL88fNI+eHJvwMQuN//8fu46h3udcG9LrjXBff7HM77nHXF3yVpXXCv
C+51wV3XcNc13OuFe71wrxfu9cJd13Dfh/j5xX8BHKnTLA==
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[{Polygon3DBox[CompressedData["
1:eJxNmXf8T+X7x9/n3HdDKqQoDWmgkpkiqVD2pmwhZe+MsilCyWoglE0aiEpT
pb2nfJsatKS96/t8fV/37/H4/XF/rqfjvN/vc+5z36/rdV2nXK8hbQfnhULh
Wv4E4gJiCeILWaHwA6MSfBLxHcZhcAnid8TPGZ8xDuf8psTzOb4z82f/YhzG
8SbEuhw7Fu4IN4MPghvA58BHwW3hi+Hj4E5wc/hIuA18Efwe4wj4H8bb8KHE
YsT/6Dw4J77KOBAOxDcZh8BFia/p9+ADiK8wDoAz4suMCP/LeCnzff/NeBHW
XPzJ2AWXLOgDhcLvjLPA04jv67rhSHyDUQQuQnyLUVT3TfyAUQo+kPgbowZc
kfgLoxpcnng6PzQG7gufAA+Eu8KnwaPhPvAZ8DVwP7gCPBK+Ai4LD4K7waPh
h+E1mif4Mrg1XBzuBreEi8Fd4Rbw8fAAuAt8IjwY7g6Xg4fAl8EnwUPhHppX
uD58Nvwv41y4CvEfRm24suaVc+rBNbPC/yawDqEqPAreBq+GT4VHwJfDJ8PD
4J7wr4zqcAXiKRwfDveCy8NXwb3hivAo+Eo9/7SWmsJf63vhY4lf6fNwGeKZ
aT41P5XTXOkeq6T71T1WSvOgOa+a7l332wSeCV8NN4NvgMfCveCV8Dy4L3wX
fBvcB14P3wo3hWfB16Rn1z/Nc/V0v7qvamlude8Xw9fBI+GG8DR4FFwPngwP
gy+Cr4WvghvAU+ERcH14CjwcPjutDc1PjTSHmud+8AZ4YVpvfeHOWsvpWfRO
z6In3E77WusPLktszvEb4XHwEHgTvAz+VHsVPoL4mdYTfCRxr9YNfDRxt/Y8
XJzYjc/eCy+GP2GUkWYQ92jNwaWJ32u+4HLE/bpW+ETil7o++Bjix4xj4EOJ
HfnORfD1cCd4MTwD7gzfDs+Ee8DL4TlwT3gFPBeW2G2El8KXwXfCN8Ft4fnw
FLgdvACeCreB58GT4S7wEngWPBTeDN8Bt4dvlobCreG58CS4BTwbHg/XTOtZ
+7co3AFuApeAu8Ot4LnRe+8LBOk2uDb8LXxrtC58A98SvR++hq+L3vO74Juj
NeIreH70ftsLXxv9G+/B0+CS8H/gedH7bQ+8IHq/fQnPidaCz+HZ0VrzKTwd
LgW/Dx8Trad94KOj9fRKuHS0nl4Bl4nW5b7wDdG68wl8Y7Te7YZvitagz+Dr
4dLwB/Cx0drdD54BH83xD+FZcBn4Y3gmfAz8EVwqWrt7w6PgP+EX4avhjHNe
gRfBjeDv4IXwhfA+eBwc4dfhxXBjeD88Hj4YfgPeCk+CixIfYkyFDyduZlwD
H0y8nzEWLkLcwhgHH0J8gDEZPpQ4gVEEfpPvnAgfAr8FT4peE2/DI+CfuP7n
4Kvgn+Hn4ZHwH/AL8HD4R/hZeBi8D34GHgP/Db8MXwPnfOer8Fg4wK/Bo+G/
OOcleEp0bngXnhqdM3bCk6N19p3ga7yU9dmYz3wO94JvCP7NWnClpJnaj9Ph
S+G18AK4A7wOvjnzvC6Ep6X9K828JfMzuQ2+LvN6nwGPzjxPl8CNkh5qT03M
/NzmwBOUi5JWj4EvgdfA8+Gu8D3wIrglvEzXnNmHSAM7ZV5HfeCOmfdED7hN
Zu8hPWybeX1dCXfIvAavgC/NvE57w5fAreA74Bszr5f2cMOkA9KW2Zn3zeVw
+5QLpO1D4W+k3fDpxAeZ0+Kaq9w+StpYKvMzbAlfmPkZtoLrZc658kgNMq/x
FvAFmddya7h+5jVyPlyN+BGjInw88VvGOfAZSYflSU4lfsGoCp+iZ82oAp9M
/JBRAT4u8/pqDNfJvM8awrWJ4/nd7fDd8KPcyxvKQcR3+feJ8FHECZzzJHwP
fBO8Q/MpHYNfgLdkXuMXw7Uy74ML4OrE1/UM4IMz74kL4RqZ13Ij+NzM/qoe
fJbum++cAA/Wveb2D/JUtXL7K/mu3vAD8HJpFvwgvCJzTpdvWQVfDm+F75TG
wQ/BK+H+8KPwWnhYupd7U37RPGyAB8CPwevg4fAz8H3wCPhZeCO8WPoBP6b9
Dj8Hb8rsnTQn98Mj4efhzZl16G2dD4+BX4K3wtOlzfAO+HrpKPxMZu15B34c
nibth5+Gp2jfw0/Ag+An4Lsya9tOeHvm57ILfipzffAe/CR8Nfwy/AA8EH4c
Xg/PlB7Dz8HbuJ8T4CHEXwuuGYoxvk6s2kFr4Aviw5zzG3E/403Gp4x9jN3a
V9JaYsnMx75Kx1WfqNb4g/FDOl+feyj4u/W72lP/d+73xN8ZXzJ6cfx14pzc
x39mfJJ+/6d0DbOUZ4jPZ75e3cPn6dp/TPeyL/12lr77+//3PbqfPYwZyl3E
Z9P1/5Lu4dt0/l7GN+kzmouJygnERzPnllfgBzP//550zvO59680fH3ufbEd
XgeX1jOFX8itz8oFm+Cyenbwl7m9h3LoPrhLwXn5i6Rdyr97kvYq5+5N+q88
+1Vu7y0d3Zh7Xz8V7P/kA2dzbEVuHXtc8w+X13qDH8qtITvgbbm1SDlrO1y5
4Fz2LFyz4Bz3XG5tVB5/IrcWKScuz/3cd6Z81K5gT7I5t2ZKz57KrWnSgydz
a5pyqPLzq1oj0sDcNZF8yC9Jz+V/Pkxaqjz4bm4tUr5+B76oYD/wEdy84Lz5
Gly3YI+xM7ceKqe/l1uXlNOljVpvD2f2Ba/B2+DfUn6Rl9uVW1eVc1/NrdvK
3a/n1kDl7jdy6568yo8pT8m//5Q7L8vLfZe77pNn+yHlNfnJ73PXhvJ1+3N7
TvmuT1MeUd77OOUaecWfU86Sh3wzt64q5+xO+UUe8pOUj+Q/H2E8nfbynHS/
j2TeT/vTGj9dXlb7h3io/FnB/rZocJ2rfN4Y3qI9Jc8SXDcpZzYK1uGc4w2C
Pby0tkmwhgeO1wuuNf4l1mfcB6vQbxqs7VH+KHddpvrsCHmvgn1gOflR7Uli
x2B9Pozzd+Suf6dw7JncvYupwXlLmi9P+EduX6Ea61h52YJ95nHB/kT+6KRg
3/IDsVlwHjmAz54c7G3kF0oGewP5nTLBXkhe9Ok0/1rPpwX7pZ+I7YJzjdZX
bXi1dIhYK9gL/UGsE+zB/gqudzRvS/ie84I9mHJd99xzdTvH68Lj4UHJX+m5
9IfrwGPhAcrJ8ER4iL4HHgcP1PnB3u9PYo1g/6PfrB7skX4jtg7OifLMbYJz
hzxz8+Ccq7zXKji3HsTxllpb8IHy7MG+7h/iBYy74b+JZwR7y5+JbYNzmbx3
pWBfKr9ZFV6qOSRWC/aEvybN0b6+Vr+Tu6cxQb+fu9cxEd6Quy4eCd+ftEU6
syx3nTtQaw0+E7466bB07yqtx9w9tDG63ty17Si4Q7AfUF2wNHddPEDzlLu+
HqR7zV0Xj9Zc5tbYwfDKpHXSwFW56+6hwXlJ+Uk5VjlN+UV5RjlHuSdLx5QD
lXfm5+533cCfeSnfzSX+mtvrqpZcnbsGHwZ3D877R3DNa3P3XkZw7PfcXlr1
6ZrcfZjhWm/B+ask5/cM1r2j4G7BvqUE/FbSH2nLO0nPZ/D/b+fuDV6f8ojy
wnj4A7gzPAt+P3fPcKZ+B24GT9eags+DJ0sbcvfuxmnd5e5NTdJ95O5bTtO1
5O5VXgdvivY3Wntbc/fuxnL8ltx9SNWYnYP9WDHO6RLs0+SVusIvwsU53inY
y6lO7BGcd46El+TuY/QP9n7K16pzb83db1TtvCV3T+wa7fXcfU7V14ty9xVV
Uy/M3YdUDf5gtJ+TXn2W8oL0/Pbo+keado7WLsc3EntF97PEvaP7RJvhumkP
ShO6RPdB1nOsa3SP4y64W3TPZQN8eXQvbFPaj9qn+p7j076T7nWP7svcrfUQ
3UO5Bz4/uG+pzx4V3GNZRjw7uK9yH3FgdN0ib1MzuAd1L/GK6J7U/XC/6NpA
/rl/dL0h79Ezuu+j76matEK/Wzm4d6frPytYD6VRVYJ7ZbrOi6P7aAvgM5NO
SkMGRNdC8lcVGasKnpMe0f0mXdug6NpJXqtSdA9L66dUcH/pDmLp4P7SncSy
0X1t7fcTo/vs2uMnRPeUpS0nBPe4Vuqc4B7UauIpSWOVO8oG975WEcsH97vW
EU8N7oOtJVYI7mHqmR4ZnHeUa47R+oZXEI+L7mtrfVaI7tlJr06N7mtL08pH
9+OkhxdF9zTnw/Wje6xztQaie/HStIrRPUHp2BnRvUKt7ZOi++zSltOj+4nS
z5Oj+/vSkNOie47Sz1Oi++/SHOVu5eulxL7RteUDcJ/onvhW+K+Uv5Triwf3
M28nHhzcd72V+G/KXzfBBwb3V28m6qWA8uAcYongPt6SYH8uD67a5fDgfu8i
YpHg/u1twTWIvPD2aC+0N+lqseB+8uLgmmR30t4suFbVvMnzTCp4Pi8JrqN1
Xy2Ttui+VGfuSNewLbo2kxa1D/Zd8gN5cI6ep2cU7BPklxrCT8FbiAcF95Zv
0ZoPrs21p1oEa5pycQz2JPJgBwT3nLUv5JeUT9cE696upIGHwNPhhcSm0fW2
uEN0T1nrtkl0Ta65ahTdG9U1NI7uZeu5NIzuU+tZNI/2GZq3jtF9Vf3uldF9
WN1Ls2iPomchPyzfKG/cKbqHq/XfObrPq31xWLA3k8dpEe17tDZaRfsbratv
iP0450b469weT7WP+ht6pnq2/yRfNJtjf+Z+pyMf2DK6B6E10ya6d6+93zq6
dy+tax/d99e+axvd65cmXBr97kF7uV30e4LlWg/R7xikA+Wi340p7x8d3H/W
OVWje+jyLUui+1PynEuje2Ty3mdGvy9RTlwZ3eOQb3w8uoZXnloV3R+Rh7wr
ukcgL313dC9DPvzh6J6C8t0T0TWz8vvq6H6KfGDl6Pc0yt3LovuD8q53RPcH
5dnuje59yJ8/Gt2/kMd4JLqvIZ/wWHQtLS9RLfqdgfL48uh3DPJyK6K9rHxm
lej3GfJyG6J7NKop6kS/m5RnuCe6F6Pa4c7ovqH84cbo3oo853nR7zjlNwZH
98hU89aCZZ7kN86Ofh8m/3Bu9DtOeZh60e+fpCEXRr+Xks40iH7npL1ZO/od
m3xO9eh3rvItNaPfO8qX1oh+T6Ya5Jzo93DyLWdFv19UPbI+uhej2ue+6J6R
6ovzo9+tag0Pie45qh5fE93PUl1QN/pdrPq6Q6P7g6rT10b3ueSx10X3s/7n
vaPfn2nN/xdOrMiA
"]], Polygon3DBox[CompressedData["
1:eJwtmgXYFkUbhXdmVlAsDMSgQVApKUUBBQQRRAmRNAiDBinp7gYpFVQUECUU
G+zu7u7u9jf/c3P2uhxn7p1932/f3ZnnOc9ZKvcd1nlozLKsqf6Xq/9e/WD1
FdQv0oEv1V8kPkz9fPEX6i8UH6p+nvjblGXjxANClq0Rf67jF4jLqp8r/lH9
UHEl9UvEf6gfLa6hfqX4f+rHiI9Sv0p8kr5vK9/H94gfUV9f/Lu+v4H4UXED
8R/ihuLHxA3F/xM3EjfQ528Wn6fj14lPURuquck6FjRXX+0mjc/V/LWaa6M2
UvMzdKyE5uqpbdf4HM2v19wZ4rvFl4ovFrdUG6LzJ+lYprnrdbyMhu/oWDXN
XSPeV/yauJL4avE+4lfFFcXN9Jkt4v463k+8Uf1B4rc0X0W8TlxK/LK4vHiD
+EDxm+LK4tvFVcVfimuJW6gN1niijv2nuT/VLtX4aPWrNVdXf2+duJf4fHFt
8ZXiHuJzxb+pHyk+Uv1l4tZql+j7pulYrnN/1/FRGldXv0JzjXTsOnEfcR/x
T+qHiSurXypupTZMn5+iY5F7rXaLxlfpWG/NHSfeIO6r8/uK71R/pPhrzdcR
/yoeIa6mfrn4DvXVxF9pvrb4NLVRGs/UsZL6roPUlmrcXOddrrm2aqM1P0vH
9tRcHbW1GvfU/Hma+1n9cHEV9cvEt6mvIv5Cn6kpbqjzrxX3jr7ee9XXFP+o
+XriU9VGaDxdx/bQuXeoPa3x7cHr42PxueIO4sXi78RTxcODr+9n8WrxLPFV
4nJqpTQ+VMfW6m/9ovk1Gs/Wsas197v4avGi4PXKmthH48Myr5UfNb9E48k6
tlZz9+lYLfFP4vo8n+L+TBGvE9dQq6jx0Tq2NXrNHRp8D1iLf+j8azReHLx/
WHNlWXuZ1+IbGh/C2hZfK/5N51+l8cLg/VJdrYLGR+nYFs1XEO8nPpw1EL0H
SouPyLw3uKd1xSdmvtfHiKsE/4abon/DseImmX/bseI64hPE94gf0N8vy7PW
sUGaO5prDn5m26P34IHicpn35sPJ185vGKq5o9QqaXyMjm3T/CeaP0/jjsHx
6iPxOeIzg+PhQ+KK4jLiIbmvgc/+EHxtv2r+cvEc8TXir4gb4sPVLyDA5o5P
6zS/ReMj1Y4I3gObdc43yef3CN6/XyXH227B8fILcT/x2cH79TNxb3Hn4PX8
ubivuEvw/vkyOR53Dd6/m/Q3Dha/La4q3lvz88QnRMfvH9QPEVeMXr/fa34u
8U/nX8F8cf5Y8ZXEf503SFxe/UJxc83fKx4o3iz+VHy+uFNwfOBvHhYcw7iW
r5PzS/fg+P+3+AbxKvH14v+KeL1WfKM4ETPE14m3a1w/em+xx1JyDD48OGYQ
mwMxU+P1OrZV40hMYe2Kt5Ef9JkHxEOin8e/Rfy/UvM3iP8SbxavFG8S/0nM
F68QbyR/iTeJLxNvyL0myhT7Y4e+s4Xm79N4UPT3/SPeJr4i+P40UTtd4+48
k+g1cIjG7wavDfZAefEnwXuDnLFJ412Zc8nLmu/IslI/UXNvqD9bvJf6yeKX
1Hfg3qifIH5e/RnkQvXjxK+r78L+UT9J/KL6M4nd6seLL1Tbpr/3oI61So5x
xLqnMufGMTrvNvGT4vbixpo/SdxO/GwRc9cE5zxicffoZ8szriVeJv6CfKa2
nL2itlHzO8VNNf+muKvGpdRP0XctVP8R+YB7Hh0ziZ0v6jMDcmuG64NzNlri
w+j9fID6mezn6PV4oPpZ4p3qjxN/o88MEz8gPkn8s3gE+118svgX8Ujxw+Lm
4l/Fo8RPiFuL/xSPFu8SHy/+Vjxc/KT4VPFf4jHip8RtxH+LLxWfo7Y8OCfW
QGtovrHG3+nYJbk1zfEan5JZ67yl1k3jvdVP1dwH0fmmtPoZ4vei49X+6qfn
XlOsrX3UTxNfpLZd3/eQjrVO1lDHiVtm1lZPq52m8T86NlZziMOtwXuEvVKl
yEdnRuebXmrLgjVB9WRNsZq9mllr3Jb8t1hDrKWO0bmFHFNVc7erPZz5mri2
HmpLyCU6Vo1YqvNLaPw8OURzV4hLil8gh4j7E4M1fpGYp/Obic8S92HPEOui
YyMx8mONbyn0HHuIvXSn+KXM38F3NVVrr3EPHXuHtSDuyZz4a/ER0bGZGE1s
v1WfvyfzmmPtrdGxPcTPkaOJ9Zq/lVwXrJd2cE/IRcH6Z3W07n4WDaDBqrhb
VmbPiMuKV4j1X/Y0eVd8fnTuIIegdW8lJ2r8WZHP0CxorR2ZtQx/k7+NBkO7
EZPqavxpkb/I0eTq98WDc2vEy4M1ONqRa+Ra+Q1ot57ipcEa6chkDUCse13H
BubWB39n1qzohVnkXB17U9wreY+WFO+Vee+Ss8nd7OEbo6+hVKFvuLZJaneL
XxCflXxODY3fK/J9Vx17RTxFx5dEX8Of7PfM11a10DMdovXP8WrN9Nm23GP2
Ps88eM2z9k8WDxSPZ49Gazz0ccNo7cc5aI9/gz+7f3It0Iy4Kt4vWYtTT7XP
XVOgnxtF1xr7iieIm4hPF58YnUvJqeRijo0Tz8987t9Ffq1VXBvXjFb6L/i3
dFGbiTbQsUOT1yhrt1yxdtkDncVlovdGV7V5wTVABZ1frtArp0Xn87bR2oVj
zJ2tY3PJ/eLy4ubiQcG/4V+de3SRD8+O1rN7JdcfjcXtcmsqtN5HwVqrVVEP
DIuOB03Ed4kvjM6vaDa02sfBWo4cQC64KFoPoFnRkh8Ga9ma0bUnNeg/xd8c
I56d+Vq6ixcE10CVkmMea3l4dLxpnKwH+kXnb2oG6tHjo2sJagzq1eOiaw9i
3ArWYnTsY42yVj8I1r7EcJ5Fl+jYfmKyXrkgWi/UKvRNt2h9WLPQF12j9T73
lPq7dvS97qY2P7iGqahzzxLPCL6GsuJXo3NDSdZF7me0QNwu+tmRg9HOBBFy
8wHJtdnJ4g65Y+xycafo2HsCz0jf30nHXoleIws1Pj167bDnLxN3jo4F/M3W
wWuMazk4uTZqqXFHzR2SXKu1Yh3m3vPs/ZeCax9qgr35W8G1wh78nmBNg7Zh
TfMsT41e6+Qz9u6+0dqpTHLtfoq4U+57Qu3XOvpeEcPRIvtFx/Zj1PcPXqPU
ylXV+gTXhNSGeAyNxC0yew94BtS3x0Z7CdS0nFsvutalRqZebRBdO7Pnxwc/
A2IBwRz/o260d0CMmBB8T4kdXPO04GfAb6GGR3/Xia7tW0TXbtRw1Lpdinw6
OTpfHV7Ui22i9TnPjFxeIvpZ8gym6vPLMj8bnsH04GfIs2ENTBIvzrw2zhRP
FC8Sl05ueCcnRc+xBplrH7022VN89ozovfabPtswWCOhlT5HxwbnKHLVo8nx
u3yhj7jmS4v4x28h/owr7h9rGb0wtbg/rFVi+JTi9xDb0SCTi/uDNqHGph6Y
Vtyvx5LzW4VCT3E/8TemF/eDmEUtzj3cHcty61P0C7EHPbq60K/obWLUykK/
ErvY09QC7GH2OjGEWoCYSGwhpo4t4jnxlPy9pMif5GdqAGoBao7dtZP4LvFz
4vPFS6O1CRrlXnE/tW8za2b4brXPNP5c7R6NH9TnF+kzn4h3snaTx5+q7Uqu
QahtqKmoTe5BA4mfFZ8nfiB3vkVP9SU2i28RPyHuIb5fvKvIx334++I7xM+I
z03O99QHeCLniHflrg+oF8j/O8W3BtcLPcX3iXeKnxf3TvY4FhX6EK+OmDi7
yEfESmLmnCIfEUtnqrXKrJHRyjOS4yGaFm07PXk/sKfZ27OS40fTIn/PIedm
rlmIj3OTYxkxkP0zOzl+NCvy7Shx9ayo2cn3ue8Nv4nfVjr3b+eecG8OzH1v
eaY82wNy3yvuOfd+X7XHM99j7vX+ue8N94x7NyK5lt1dMxMrxE0zeyJ4I1OT
4zseCl7KOHHtzB4K9SKatzd7Qf3s3PUF3s/3mq+b27PBu0HT433i+aDP12fW
l9Rrcwu9gJ6fmOy3HhXsx00SN2LvBPt3E5L92RrB/uTkZL1Uu/h7U5L1Cx4O
fsnYZK+ncpHvV+rvfZy5xrsLLZHs5VQq9MPo5OuvUOTb8cn+cPVg/25Msh9T
sdAH+6g9Jt4hvjN3Y8w9757sCeANoAHaJHsgAwr9hx7Dg0Hv9y/yBR4FXgX6
H+8aTwZvBg8DbxuPp11wzUV9gL4bWOgl9Bz1A/U+Gg2tRn3SqsifaDX0TK9g
zYf2o+asVsRPalFq2BbBNT21LTVsyyJfflQ841OK/M2zxx/pG5yjyFXkP+qZ
AeK/omtY4nO9Il7jEeEV4Tnh/eLxnxZcg+P94+Hg5bCm8H7xyPDKqKnx+olH
j2h8U7AeJx4tjvYw1qt/KriG13+7axs8JrxSanS8J94xtA2ucXn3gKdF/dYn
c37G88L7uiCzd807hjbBngfvHuaITw32ND6L9qTOCK6J8arw8PDyqJm/L/I/
9WJf8S/RnhneWb/MXjT5jLXFGkMP4AlUDa6h8Aqo+Y8J9hDwAm7PXS8/mLle
uU28Jbh+7oz2Fd8Q7Al1TPZPqEWpSfFTdmh+c7CH1gGtKr5RfL+4U3I+xY+t
ktm7vjm3X4IfhP+CJ4Y3hqZul+xx4XWhQdsm11PU4mgItAT1PfUimhxtjgdG
fUn9SL2P54b3Rr3ZUnyTeEOwJj892XMi37fIrNfQb8RaYi5aBM+pQbAewIvC
86gV7HHghZCT2cvsaWITmgBtQM7GS8GTKResGfBq8FBqBnsseCt4QicGeyp4
RXgiTYLrObwSPA9iPTEf7YgndkKwJ4NXhsdVP9jjwfvCE6sX7AHhld0hvjk4
hnRL9sgaB3s+eGd4LCcHe2p4L3gwzYM9NLwZPBRiHzGQ2nFv8aOZv5PvJr/j
gX1Q5NuSuZ89a4S18kLytXEPuZfkzDfEM6LzDTHsNfG06Nj2fPK185v4bXnu
tcAz49ntkfvZsWZYO8/p/GaZfzO//SD1X2fWDOiIErn9DdYka5M1RewcGb3W
nkl+FjxTnu1TRT5gT7A3Xkx+9qwR1goxlt9/SXTsfTZ5LXCPuFesKfLpqOjr
Zc1y70dEr+Wnk/caa4C1cK/6bzJrIDwAPJN/M/sPeClokrc1nh2dj9E474jn
ROffxcmxmRhNfY3melc8Nzpfo0neE8+L1irEFGLDIUWsQQO9L54frY2Ib/gP
pYv8tSTZD6Bmpp5bVuhp3iFSD+Dp4JccUMRDNNbrGk+P1gNLk/0F3vFRD7BG
WCsLorXa8uR6jnec1CeXJXvhvIOjPkFz4b3MjNYTC8Q9M3tc1EMvFfqJNc3a
fiV5b7Cn2Ft4bnnwO068ODytGPwOAa+LnE/uRxPwLg8PKwt+p4m3RcxCy46P
jmXEQLTehOjYSAxEH42LXu/3J9877iFeDhoDrYGm4F0gOb56ka+If48UeowY
QazAEywR7KHjFaJBahTxm3enDyZ7TXhMeE0fintlzhHkivvEe2b2qPCq6hb7
t3ERn15O3vvEEGIJMR4tPLGI/Y+L62TOEeQKYjJ6bnQRqz9Izm1oBLTCk8m5
nRxMLn4/OdeSA8mF7ybnMnIcue4d8VmZcxzr773k3EeOJleTM9CXY6P3KzHr
VfHUIpa9mhwriZHEyieScxkaA63xRnIsI4YRy95K1hpoDLTGm8mxDQ2CFnld
3D5zDCQWvpYce4m5xN63k7UJmgRtMj9Z+6CBqN/JKeS2wdG5Bg+Td3OVM9eL
VyfXftSA1LLzit+P54D3sCnZ28EjoR69Ntl/wSOh/r8mudalxqbWvjK59qZG
p1YfkPz+kDXD2hmY7OewPvAnLkiOJexR9ur1ye878ZSody9MXuvEHGLPRcl7
gz3AXrg4ee+wZ9g7G5O9HDw4/JRByX4W73R5t3tDspeOx4q/sirZP+HfKOAf
bkjW4mhy/J2tybUpNSre+xXJtTM1NF7i5eI5mT0xvLE1yX4K78jxt7Yle728
o+Fdzepk/4R37Phda5PrfTwLvIvrxKsye474MeuTvSg8BbyFq5LfR+Mp4C2s
S/YH8BTwD7Ynv//CY8Zr3iLemPkdCH7ZjcnvQningL/WP3kvE4OIRcOTtc/u
d9LiFcm1PDU9/suiZG2LxsX/3Cv3+kKDEW9K5dZiaDT269Bkbco7Yt4VH5w7
PlHjEs/RrPsVuRAtOzjZz+SdNn7VJcnvMne/QxePTH6Xu/sdJPk0d/yjxiV/
LEzWmmhO/NghyX4n78R5N7452RvAI8CP2zO3VkQDEj9XJvtd/BsE/OgyueMP
NTv54P8QiijI
"]], Polygon3DBox[CompressedData["
1:eJwt13XUVWUWB+D7gXQjjUqMIBiESomEKCEpSijdOqSUIKDSYY/SUg4gMYRF
6FJAJJUSpVsFYQZQGDFHmGcvzh+/tfd+zv245557zvteSnTp92jfdKlUaplk
kHHpU6mraalUObnPvMPBkeySuYTcydax59mP5mJyO/uEbWYXzHdIZfYR28sy
q/XYY2y/fh/Lpj7MWrFD+v0su9qQtWaH9W+x+9Xe7DmWy/yNZGUNWEt2UP81
y6LWZy3YAf00VlntwZ5hmc2fyxnzrVKevef4ctZGfZHNZuXNuyUdq82asN36
7eyK+R6pxTayXSxNrcUasz36AyyX2oS1ZSf0B1lutSlrx47rl7En1ElsFitn
3iinzX+L68/ed/wlllOtyRqxY/oVrG0cY3NYBfNXcgOrw5qxvfo9LL36AGvK
vorPyXKoNVhDdlS/g/0vvm+px7aznewvc3Wpz75g29jP5rulJtvAtrL/mitK
DfYZO8tKqV3ZAHZF/zLLr9ZN7oPT+ufYf8xFpTRby15ld6rtWG92VX+BVVOH
sIksu/k1uYu1Z33YNf3rrJzagfVlqbhHpT4bx6ahouZ1cb3MmaUge8vxN1lF
tTPrH39qniz3JJ9jYDwf5n/Lbaw7G8R+1Z9nZdUnk3vtd/10ViWxISyL+Sdp
wMaz6ayIeYZUZU+xoSyreYrcy7ol75HRPFOqs15sBMsZ107KJPf4YPab/hJr
Gtc7uTdKmN+QCqwTe5qlM2+S8/HsSqXk2r8Q52guHs8w+5RNZZWSzxvvkck8
XM6ZC8ezxFY7PiKujbmIlGJr2CvsJrUxa8PO6y+y2rF+sNdYXvMouWwuKXex
9Y5vYMfNNyX3xhI2lv1uLpuc81a2hV2MdUmqsI/ZZ+yE+Wa5jS1l/2Dl1Y6s
H0szj5Zf4zXxXLPNjo9hv5nLyL1sC1vPDpjzx3rH5rNzrHTyHcW98Yv+FLtZ
bct6sovxXbNrsd7Es8R2su9YseTejXv8R/3b7CF1EBvHCsZ5SAc2i61kd8f5
SvtYG9kKVtE8Tx5kA9lYVsC8Rp6PtYJ9zlqa50odNoCNYfnjekrXeH+2ilUz
/yLt2Ey2PFlfvpA/zFXloeTaZ74hlRqmrmU72SNek2J92L/YemOdWJvZcPYR
28Was1XyNJvHPmT1zH1knzmX5GDzYu2PNT9myc7mxjPAvjZni7A5rC/bb84j
Odnb7J+srjqYjWeFzAPkiDldfJ9skeMfsn7qXPYBqxvnJofMV803ykLH57N6
6jN8Aisce5HPNoJ9zHazR1l/OZwWN1kqlU95x/E/WLc4J7aaVY33lFv0+dir
cX3Mmfx7z+rXsB2ONYu9iA1g77LNrD4bJmfNhWK/YKscz+h1Q9XV7EvWNNZ1
6cEWsLWseuxZXtefrWSbWAO2UBqx4ewVVsz8jjSOZzvOjxU3L5ImsXYnz2+s
Lxn8e4PZB2wbaxT3vPRmS9k69kDsT143iL3PtrKGbLE0Z6PYm6yU+ar0YkvY
p6x27DvSik1mi1jZ2HekZazd7B12e+xZ0pMtZp+wWuYr0ppNYYvZHeYv5U9z
NanLtjme3vkNVN9jW9jDXrNEHmWj2WRWOv5Ousf9wNaw+8wLpCEbxl5mt5i/
je832ct6sQvxjLKj5hukAFvMhrLvzHljzWIr4/lhLWLNY1NZGfMxKchasq7s
jP4EK6y2Zt3ZWf1RVkBtwboke+1l1izWZDaXlTTPkhqsD3ue5Tbf6BpMin2d
HWMdWX72EtvOTrDOLB97MX4TsOOsE5sU9y+rkqwR8VuvW1xr85/Xt+PUVHYk
3kdtzjuyb/WHWV71EdaBndKfYSWTfSvW7Mv6iSyjWpk9yPbpv2fFk30/fgv8
pD/NSiTrffwWuKT/gd2qdkn2+J/1J1kR9XHWg53TH2J51GasPTupP84Kqa1Y
N/ZD3O/s7+qMZJ2Me21CfEhWgd2v3aWfzWrGGsVeYHnimZSd5mup67+7p8ce
y3awv64vo6lprCfby7JIVjY71gHWOfY0toBVjvOQPeYMkjn5TbOUPRZ7GpvC
bjMPlpOxlsZezZbFesZOxbopRdly9iz7Pu362hRr1LuxN8U9aM6Ydv13U+zJ
Q+I+N+eOvZqtYLmc/Fh1IzvI2njNk7LLnBZ/z2bEc8a6qG+whayKOae/HRN7
ODvAnmC52Xi2iR1m7eL7YRPYZnaEtY/7h02M3wTsKOvA5kgt1o+NTH5vZPO6
kWwd+4a1YtnZqNjr2T7Wmq2UTux1Np9VMufwutFsA9vPHmerZQhblKw5se4+
JbvN6SUTmxnrXrg6Pe36/7dqmv8P/OqjpQ==
"]]},
Annotation[#, "Charting`Private`Tag$4263#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwt0csrpWEcwPF3nDnOHBxMs9IU2WmKrRRbKVZTNmPHaizYmqUVa8IfINYS
G7mf47aZ5D7jnia5Lhi3JD5PWXzfz1tP79vv6Vfa3P697UMURZ26V3i/0Yn6
sqKokIMs4SgrOMcarrKBh2ziNVv5wl/Mi0VRN79ygN84zCqOs44ZTvKUj1rX
f11qyjAbnOYmZ7jFWW6HObjDef5hmn+Z4S4XuMdF7nOJB1zmIVd4xB7znvFJ
x7rTlVrMtcZGplnLMVZyiGXsZxG7mMMOPvvfz3AH/uA+6/mb1eEeLOcIiznh
u398UIFudaEv5svnZ6bCGfOYYi5zmcMkk0zwE+NMMMbssFPG+aqPYT/hLMwp
I0S9Hufv+38Df9xIqw==
"]]},
{GrayLevel[0.2],
Line3DBox[{661, 952, 458, 660, 1046, 868, 662, 1047, 869, 663, 1048,
870, 664, 1049, 871, 665, 1050, 872, 666, 1051, 873, 667, 958, 1129,
668, 1052, 874, 669, 1053, 875, 670, 1054, 876, 671, 1055, 877, 672,
1056, 878, 673, 1217, 953, 879, 954}],
Line3DBox[{675, 959, 1130, 674, 472, 676, 1057, 880, 677, 1058, 881,
678, 1059, 882, 679, 1060, 883, 680, 1061, 884, 681, 960, 1131, 682,
961, 1132, 683, 1062, 885, 684, 1063, 886, 685, 1064, 887, 686, 1065,
888, 687, 1066, 889, 688}],
Line3DBox[{690, 962, 1133, 689, 963, 1134, 691, 487, 692, 1067, 890,
693, 1068, 891, 694, 1069, 892, 695, 1070, 893, 696, 964, 1135, 697,
965, 1136, 698, 966, 1137, 699, 1071, 894, 700, 1072, 895, 701, 1073,
896, 702, 1074, 897, 703}],
Line3DBox[{705, 967, 1138, 704, 968, 1139, 706, 969, 1140, 707, 502,
708, 1075, 898, 709, 1076, 899, 710, 1077, 900, 711, 970, 1141, 712,
971, 1142, 713, 972, 1143, 714, 973, 1144, 715, 1078, 901, 716, 1079,
902, 717, 1080, 903, 718}],
Line3DBox[{720, 974, 1145, 719, 975, 1146, 721, 976, 1147, 722, 977,
1148, 723, 517, 724, 1081, 904, 725, 1082, 905, 726, 978, 1149, 727,
979, 1150, 728, 980, 1151, 729, 981, 1152, 730, 982, 1153, 731, 1083,
906, 732, 1084, 907, 733}],
Line3DBox[{735, 983, 1154, 734, 984, 1155, 736, 985, 1156, 737, 986,
1157, 738, 987, 1158, 739, 532, 740, 1085, 908, 741, 988, 1159, 742,
989, 1160, 743, 990, 1161, 744, 991, 1162, 745, 992, 1163, 746, 539,
747, 1086, 909, 748}],
Line3DBox[{106, 347, 107, 348, 108, 349, 109, 350, 110, 351, 111, 352,
112, 353, 113, 354, 114, 355, 115, 356, 116, 357, 117, 358, 118, 359,
119, 360, 120}],
Line3DBox[{750, 993, 1164, 749, 994, 1165, 751, 995, 1166, 752, 996,
1167, 753, 997, 1168, 754, 998, 1169, 755, 547, 756, 999, 1170, 757,
1000, 1171, 758, 1001, 1172, 759, 1002, 1173, 760, 1003, 1174, 761,
1004, 1175, 762, 554, 763}],
Line3DBox[{765, 555, 764, 1087, 910, 766, 1088, 911, 767, 1089, 912,
768, 1090, 913, 769, 1091, 914, 770, 1092, 915, 771, 562, 772, 1093,
916, 773, 1094, 917, 774, 1095, 918, 775, 1096, 919, 776, 1097, 920,
777, 1098, 921, 778}],
Line3DBox[{780, 1005, 1176, 779, 570, 781, 1099, 922, 782, 1100, 923,
783, 1101, 924, 784, 1102, 925, 785, 1103, 926, 786, 1006, 1177, 787,
577, 788, 1104, 927, 789, 1105, 928, 790, 1106, 929, 791, 1107, 930,
792, 1108, 931, 793}],
Line3DBox[{795, 1007, 1178, 794, 1008, 1179, 796, 585, 797, 1109, 932,
798, 1110, 933, 799, 1111, 934, 800, 1112, 935, 801, 1009, 1180, 802,
1010, 1181, 803, 592, 804, 1113, 936, 805, 1114, 937, 806, 1115, 938,
807, 1116, 939, 808}],
Line3DBox[{810, 1011, 1182, 809, 1012, 1183, 811, 1013, 1184, 812, 600,
813, 1117, 940, 814, 1118, 941, 815, 1119, 942, 816, 1014, 1185, 817,
1015, 1186, 818, 1016, 1187, 819, 607, 820, 1120, 943, 821, 1121,
944, 822, 1122, 945, 823}],
Line3DBox[{825, 1017, 1188, 824, 1018, 1189, 826, 1019, 1190, 827,
1020, 1191, 828, 615, 829, 1123, 946, 830, 1124, 947, 831, 1021, 1192,
832, 1022, 1193, 833, 1023, 1194, 834, 1024, 1195, 835, 622, 836,
1125, 948, 837, 1126, 949, 838}],
Line3DBox[{840, 1025, 1196, 839, 1026, 1197, 841, 1027, 1198, 842,
1028, 1199, 843, 1029, 1200, 844, 630, 845, 1127, 950, 846, 1030,
1201, 847, 1031, 1202, 848, 1032, 1203, 849, 1033, 1204, 850, 1034,
1205, 851, 637, 852, 1128, 951, 853}],
Line3DBox[{867, 957, 656, 866, 1216, 1045, 865, 1215, 1044, 864, 1214,
1043, 863, 1213, 1042, 862, 1212, 1041, 861, 1211, 1040, 860, 645,
859, 1210, 1039, 858, 1209, 1038, 857, 1208, 1037, 856, 1207, 1036,
855, 1206, 1035, 854, 655, 955, 956}]},
{GrayLevel[0.2],
Line3DBox[{251, 459, 1046, 252, 472, 278, 1134, 486, 292, 1139, 500,
306, 1146, 514, 320, 1155, 528, 334, 1165, 542, 348, 556, 1087, 362,
570, 376, 1179, 584, 390, 1183, 598, 404, 1189, 612, 418, 1197, 626,
432, 1206, 640, 446}],
Line3DBox[{253, 460, 1047, 254, 473, 1057, 279, 487, 293, 1140, 501,
307, 1147, 515, 321, 1156, 529, 335, 1166, 543, 349, 557, 1088, 363,
571, 1099, 377, 585, 391, 1184, 599, 405, 1190, 613, 419, 1198, 627,
433, 1207, 641, 447}],
Line3DBox[{255, 461, 1048, 256, 474, 1058, 280, 488, 1067, 294, 502,
308, 1148, 516, 322, 1157, 530, 336, 1167, 544, 350, 558, 1089, 364,
572, 1100, 378, 586, 1109, 392, 600, 406, 1191, 614, 420, 1199, 628,
434, 1208, 642, 448}],
Line3DBox[{257, 462, 1049, 258, 475, 1059, 281, 489, 1068, 295, 503,
1075, 309, 517, 323, 1158, 531, 337, 1168, 545, 351, 559, 1090, 365,
573, 1101, 379, 587, 1110, 393, 601, 1117, 407, 615, 421, 1200, 629,
435, 1209, 643, 449}],
Line3DBox[{259, 463, 1050, 260, 476, 1060, 282, 490, 1069, 296, 504,
1076, 310, 518, 1081, 324, 532, 338, 1169, 546, 352, 560, 1091, 366,
574, 1102, 380, 588, 1111, 394, 602, 1118, 408, 616, 1123, 422, 630,
436, 1210, 644, 450}],
Line3DBox[{261, 464, 1051, 262, 477, 1061, 283, 491, 1070, 297, 505,
1077, 311, 519, 1082, 325, 533, 1085, 339, 547, 353, 561, 1092, 367,
575, 1103, 381, 589, 1112, 395, 603, 1119, 409, 617, 1124, 423, 631,
1127, 437, 645, 451}],
Line3DBox[{8, 667, 23, 681, 38, 696, 53, 711, 68, 726, 83, 741, 98,
756, 113, 771, 128, 786, 143, 801, 158, 816, 173, 831, 188, 846, 203,
860, 218}],
Line3DBox[{263, 1129, 465, 264, 1131, 478, 284, 1135, 492, 298, 1141,
506, 312, 1149, 520, 326, 1159, 534, 340, 1170, 548, 354, 562, 368,
1177, 576, 382, 1180, 590, 396, 1185, 604, 410, 1192, 618, 424, 1201,
632, 438, 1211, 646, 452}],
Line3DBox[{265, 466, 1052, 266, 1132, 479, 285, 1136, 493, 299, 1142,
507, 313, 1150, 521, 327, 1160, 535, 341, 1171, 549, 355, 563, 1093,
369, 577, 383, 1181, 591, 397, 1186, 605, 411, 1193, 619, 425, 1202,
633, 439, 1212, 647, 453}],
Line3DBox[{267, 467, 1053, 268, 480, 1062, 286, 1137, 494, 300, 1143,
508, 314, 1151, 522, 328, 1161, 536, 342, 1172, 550, 356, 564, 1094,
370, 578, 1104, 384, 592, 398, 1187, 606, 412, 1194, 620, 426, 1203,
634, 440, 1213, 648, 454}],
Line3DBox[{269, 468, 1054, 270, 481, 1063, 287, 495, 1071, 301, 1144,
509, 315, 1152, 523, 329, 1162, 537, 343, 1173, 551, 357, 565, 1095,
371, 579, 1105, 385, 593, 1113, 399, 607, 413, 1195, 621, 427, 1204,
635, 441, 1214, 649, 455}],
Line3DBox[{271, 469, 1055, 272, 482, 1064, 288, 496, 1072, 302, 510,
1078, 316, 1153, 524, 330, 1163, 538, 344, 1174, 552, 358, 566, 1096,
372, 580, 1106, 386, 594, 1114, 400, 608, 1120, 414, 622, 428, 1205,
636, 442, 1215, 650, 456}],
Line3DBox[{273, 470, 1056, 274, 483, 1065, 289, 497, 1073, 303, 511,
1079, 317, 525, 1083, 331, 539, 345, 1175, 553, 359, 567, 1097, 373,
581, 1107, 387, 595, 1115, 401, 609, 1121, 415, 623, 1125, 429, 637,
443, 1216, 651, 457}],
Line3DBox[{275, 653, 1217, 654, 276, 484, 1066, 290, 498, 1074, 304,
512, 1080, 318, 526, 1084, 332, 540, 1086, 346, 554, 360, 568, 1098,
374, 582, 1108, 388, 596, 1116, 402, 610, 1122, 416, 624, 1126, 430,
638, 1128, 444, 656, 657, 658}],
Line3DBox[{445, 639, 655, 431, 625, 1196, 417, 611, 1188, 403, 597,
1182, 389, 583, 1178, 375, 569, 1176, 361, 555, 347, 541, 1164, 333,
527, 1154, 319, 513, 1145, 305, 499, 1138, 291, 485, 1133, 277, 471,
1130, 250, 458, 652, 659}]}, {}, {}}},
VertexNormals->CompressedData["
1:eJztnHs4ldkex9+hPRRyi06lm+QSRSo1aF5NKjOlC0p3CimTKFFSJ9EhlSKV
W+1SIZFyHcPJJR0cEjGMyyZJhHjlGpFZnljr5DmreXaHyXla+x/P833Ws/Zv
fdb7/e3Xu757T99ppWfGQ1FUyiiK4gV/NXcmHt8hq5VIfXg5fvjTRO+sDBFV
TT2eNKCPcxVrTu5laOulF7v2anhCvcZwE//v7xn62B6H3QVPrkD9tb5cU0o3
Q994qaPsaRkI9ctzxp3Pe8vQ32vbWhTp34V6W/auh2ebGTro7izWneBIqIu0
STssqmNoA98VjRtmxEI9zfFx1prnDO2ibHI+wikO6odazNnbShg6Nl5Aqlr9
V6hLyhQunlLE0EX1FwvG1P8C9QWBnVGzOAwdLrnf28o6Gup6kxbPKH7J0IYZ
CTJJL1Gd3407cJIF6nSP03k/xu8a1JXXJY6fANab46S35XyFMeTZ3dv3YmjC
mXAmnAlnwplwJpwJZ8KZcCacCWfCmXAmnAlnwplwJpxHDuffZQ53ZwtYwfGp
8aebmj7Bv9GPtcia5QHH3ykq0O19P/zz43Tc/NyOx9XPNorU1y3bDsebbd65
ohvona8ao0PFHaHOY0TtTPqM8TgO3M7Pbf3c+g5Xj5uGpVBepsOATsUHrvw1
B+i3tsnm+jx1hzpl2BA5/RN6vmP+sqBDPlCPc2MtDenB68lNo/186wKgLlGW
cvVdF15f4zXX92+mt6Fe3/i2PbIdr+dsLFpVrXcP6ulSvt7BTXh9bvqpHUrj
o6AuerIqSqUWry9sXZeUrQb7AyX0s2X6slK87hs/dV6JIOwblP3EI4H3ivC6
HDWLn2cPmkd0TYZzWAleD/GwZT2bDfsYFbm23Vn1OV4vNRlf4LcD9kMqeOJL
8dI6vB6/79lTAeM7UPdqGuM+tQ2v79+yOEEgxh9dVz2OihTY94C9R1fJByP9
1U9BSrw93F+H3F5X3F4n3O47t/vI7b7gOBOehCfhSXgSnoQn4Ul4Ep6EJ+FJ
eBKehOdfyXN/yIPO51GIZwKrlD+X8PxTnoTb53Ej/iX9kPAkPAlPwpPwJDwJ
T8KT8CQ8CU/Ck/Ac+TzJc4+hfV6Ey9tg9aGah8v5B+U/qYH856DcWv+raXAu
lMLkQilMLpTC5EIpTC6UwuRCKUwulMLkQqmBXGjxx7lQSq0/F3rv41wopf/f
c6HUQC703Me5UEqlPxdKeA4tz0G5SmogV0k4E86EM+FMOBPOhDPhTDgTzoQz
4Uw4E86E81/PmfD8PJ6nC9K3TxaD36ulNAM7Y3sAN4Hknjc2W9FzvNtajIZ4
D0OvFrqnWXz2FtSl1zeL7+pkaO1513VlDcOgvqKwLNe6haGnC7a4fyOPuD1u
Vm/eXs/Qr47OPM9ExUB9lIy/klMlQ8veLFtSMQPxETnQLGYO+FjHZ7jzSyCe
7LwWxbBShpbzXW7x9Bniw77c6xNXxdCLNm0u3rwMPdc94a5dFt3E0AstRIz0
PdDzYU6nVsTsdwxdzdkQeI5lDfXrKZxWBvAxYd7EjK3zhfrGZB9DY8Ch4JZa
t1TYTagH2XtYtgAOJzPZp/duDoV6eISqqG4rQ+9PXiJkcDsC6h5TGqyOvWbo
rQuyA5y1EYeMoxvsw1+A8aUZ11g0Wm/PpdNpSmC9014bWCqvQeOXLvHr8gTj
RYImlxzUuw91S4PJkusZhtZvzRT11Ud1el71MlfoYmj1E6vNxvsjH7Em1nqk
gPUGdLYxW7NuQN1Wzdf/CBjfHB9WEroNPX/WsItzmt7G0GwmszJAHq1r7721
LV4NDF0k22UmXoD2JStJO+I3sC+LY5qM3RJR/eYCkTpmYN/PlPM8n8+D5lHs
fKRSDeY5ta7RPk8S+XSDjbmmIOAsqPDIY1e0K9S38+8+aQPq9z4s0VFlHAJ1
V7N8mUZQZ3mW7r7624hPePY5hxuNDM24Wk26Zobq9PWMzW8F/mpzfeL6OgLV
8/CgtvJusF/aEYZH3hUHofnrJqkWdjB0DP8VXlX/81C/lChDfwvquTHbS3iu
AnrfKZcr+ULAvswL7fhGrh2dL/jz81WMrWHoK1KG7cJX0TnFA8/Ela7tDP0g
Sda2PtkL6gHjjB7aA5/e1THZFOqC5mkK9y+QfsXQzmFpYlOjvaG+tmu3yBNw
3Z4ZYX6XG2a/q2H8HugSolDpB383gEpYdsS073cDTDF+L8T4/R8Yvx8YZr8L
Y/y+DuP3WVz6vQXj92sYvxdj/K6J8ftpjN9dMH7/dpj93orx+1KM36OG2e+J
XPrdCeN3ZTv/Qo7AGqjrdPEJ933uWw46p0voP6fD3SeMxsyDu78twHye4s5P
tf0MvK3yDkH9Su6kUxwwfnyrQUxNHbovWq98cLIiB3/eOmdLhvWYEhuoV291
2l4D5kkOTu9q+fsZ5KN0te4fgL7yfrhFLxvNf/yS+3WhMtDPOQFMfhuq8+co
y7aOT5znplWJhS5PRf1kc4GDZl8/8ZHTFVil5Iau/7jCCzuALqg1Y786C+1X
uTz9vgHwl39xrmWcPqpHY+ORtQ2gHqXKeYeyy9H7quRk82gVM/T8WuGMngtI
v+QUYqII6rmDOV8efTOaxy7PHOo/cFjSHaCeMWxpn4BiF6hv3ZFqdwzoBRJG
fFkXLiGf6q90mwOuQ2cviZy80f/RV6tkD9qBvrpSXM5Ung/Vr27To5RZztBZ
qrsy09JRnR23fLJdQf3NauyKt/9EusaZWbtCgP6vaClrlauofgVJlbDOZwzN
wZyP69S+TdJJNULXg+JU4b7fRfGiYhe2uZxE98mstuDLQJc8O8pv47SLaL2m
QlUWYF3p9C8m/ArXoa5txZlSD9alL7XUebl5MNR72aadVn2f+4fv5H6XgOp0
m8FZcAvUuVz937VJ99G6cq0fr88B6/II3rO6pRrpmSXrz8gCvTF6QuwxQcQt
Zvm0lHjA7ZHqZCktUeT3AxyJ8u9rGbrG7VHtqlTkR7OL6bx9fuyNt3NcMd8J
6j+1mMneBTpvy8X4F3cvQD0w2HLsTbDeyphJ0bYebKgbGPtf3QT+X/D77cSh
fRao74kEaSvNBP8fxZW9nGmiH472sZNXkf2Gobuf6+r+aIU4FNWUWThUMPTE
3Q0Fcb5ovRE25v6SfdenNN/YBhHk34kT1PJvAH8le2d6pzkgDi9j7VNtwfXP
M5f3PicZcVBni7t7gf5p9Mhwb5M0ug8RmOPdxgb3IT9y2U/mY/rGQ0zfWMVl
38jF9Ac/LvuDwhD1BxFMHxAc5j7weIj6gN5X5vf3GF/zYHxdgfG1L5e+fjdE
vk7B+JoX42sTjK+5zYOlDMqDSfbnwdYOyoO9/pM8mOqgPJhYfx7sS+W+vtR6
v1Q+cLjXNdz1D1WdQ1UPt+/L7fy4eXDjia8/zZP4nfj9f6lnpPkd9xwAl6vn
NnfNbT5/qHLdQ/W9gOHOmQ9VnTiffqmc/HCvC+frr229uH4y0r4fwW0/Ge6+
MdL6w/97H/ja/E58/cHXBzDnF38AYWfPkw==
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
ImageSize->{339.8862186084723, 136.09279661142423`},
ImageSizeRaw->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->
NCache[{{0, Pi}, {0, 2 Pi}, {0., 0.18414221034722758`}}, {{
0, 3.141592653589793}, {0, 6.283185307179586}, {0.,
0.18414221034722758`}}],
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic},
ViewPoint->{-0.0922638721505621, 3.3763906031479225`, 0.20365135126042658`},
ViewVertical->{0.0016439986601792383`, -0.06016202765432161,
0.9981872708549865}]], "Output",
CellChangeTimes->{3.801823638837199*^9, 3.801823832472835*^9,
3.80182560658733*^9},
CellLabel->"Out[32]=",ExpressionUUID->"669e99bd-436b-4846-a43e-5d860e77ffb0"]
}, Open ]],
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1"}], "}"}], ",",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
RowBox[{"2", " ",
SqrtBox["\[Pi]"], " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]], "-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]1", "]"}]}],
RowBox[{"2", " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]]}], ")"}], "2"], "]"}],
",",
RowBox[{"Re", "[",
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
RowBox[{"2", " ",
SqrtBox["\[Pi]"], " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]], "+",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]2", "]"}]}],
RowBox[{"2", " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]]}], ")"}], "2"], "]"}],
",",
RowBox[{"Re", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
RowBox[{"2", " ",
SqrtBox["\[Pi]"], " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]], "-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]1", "]"}]}],
RowBox[{"2", " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]]}], ")"}], "2"],
SuperscriptBox[
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
RowBox[{"2", " ",
SqrtBox["\[Pi]"], " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]], "+",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]2", "]"}]}],
RowBox[{"2", " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]]}], ")"}], "2"]}],
"]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]1", ",", "0", ",", "\[Pi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]2", ",", "0", ",", "\[Pi]"}], "}"}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Opacity", "[", "0.7", "]"}]}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8018260966863213`*^9, 3.801826123231099*^9}, {
3.801826187625939*^9, 3.8018262048870583`*^9}, {3.801826595983247*^9,
3.8018266415416813`*^9}, {3.801907648436627*^9, 3.801907661890799*^9}, {
3.801910985969706*^9, 3.801911030723186*^9}},
CellLabel->"In[57]:=",ExpressionUUID->"ecd4cdf8-af5f-4cab-859d-aba1c354768f"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJx1mH1wVNUZh7PoVrYiKjqOjoUAjjFqsZ1Y0I7AXeVDFIj4We1YFKsG2wij
DkKmgxMCKgQNSQiiteqgFkXoGI1FApSttlJtg1ZroegOxdZICys1hkurrFh2
uM+9c37vwT/cuU/Ovvfdh3PPOfc35JaZV93Wp6ysbM+h/x116HP8263PVw9q
Gs3n6unlT4YPrwyai2/+bXBnVwBvumbeO2/vei6Y9ODWXeWd+Zhfc/vEcz9o
Xx1UTnj2pW2N3TEfO6dhdVtbe/DCpB/NLO8sxPyKcZtbX3qiI3ikcvEjHb09
MX905LpB229YG2x7oWbWtsYw5t+Zt2n91NHrglOHjb3mwJAvYl58r2LUxD3r
ghteHHx+eWfRjN/y6MGFQyrLslr/0+21czp6U1nt57jTP6wZlzsq5uOj/ofd
eNkPtjWmY35D9HsnP/Hq+DuuOybmSyM/M3ecOeLAkExWfXKNV/XMp3qGq2e4
eoarZ7h6hqtnuHrW8XjW+njWfvAczy/xDFfPcPWsPvGMP/UMV898qme4eoar
Z7h6hqtnuHrW8XjW+njWfvAcP6/iGa6e4epZfeIZT+oZrp7h6plP9QxXz3D1
DFfPcPWs4/Gs9fGs/eA5Xv/EM1w9w9Wz+sQzPtQzXD3D1TNcPfOpnuHqGa6e
4epZx+NZ6+NZ+8FzvJ+IZ7h6hqtn9Ylnfrd6hqtnuHqGq2e4euZTPcPVM1w9
63g8a308az94jvdn8QxXz3D1rD7xzO9Tz3D1DFfPcPUMV89w9cyneoarZx2P
Z62PZ+0Hz/F5RzzD1TNcPatPPPM71DNcPcPVM1w9w9UzXD3D1TOf6lnH41nr
41n7wXN8fhTPcPUMV8/qMz4XRv2qZ7h6hqtnuHqGq2e4eoarZ7h61vF41vp4
1n7wHJ/HxXN8H/EMV8/qE8/0pZ7h6hmunuHqGa6e4eoZrp7h6lnHc6318az9
4Dl+vxHP8b+beIarZ/WJZ+6vnuHqGa6e4eoZrp7h6hmunuHqWcfzO7U+19oP
nuP3RfEcPwfiGa6e1SeeuY96hqtnuHqGq2e4eoarZ7h6hqtnHY9nrc/v1364
jt+/xXO8rohnuHpWn3imnnqGq2e4eoarZ7h6hqtnuHqGq2cdj2etj2ftBy9x
niGe43VaPMPVs/rEM99Tz3D1DFfPcPUMV89w9QxXz3D1rOPxrPXxrP3gOc6H
xHO874lnPtWz+sQzf1fPcPUMV89w9QxXz3D1DFfPcPWs4/Gs9fGs/eA5ztvE
c3yOEM9w9aw+T9v1q/VDOzfGnz//65ZwQXfiH874Hb+ZMbpqZN+sjqeujuea
72l9uNbX8VxzHzj1qafjlTNe63Ct/Zy7cfZ9FZ1r4s+PnhpeseeZlUFF9eXr
T3mxb1Y51/xdxyunP77HfRnH37U+/cK55nvav9ZhvN6XcVqHa71vmfx3Zs3h
8dkVGy4qP/Sc+nne8M/WddWWnlP/+ILhb4699v7Sc+qvExrOc+qvXzT8lcbH
WkrPqf++KcPzB0+oKz2n/n7Shh99z8KbS8+pv8+M4Vzjdclnk1eVnmuu/Txv
OJ794wuG49lfJzQcz/76RcPx7L9vynA8+/tJG45nf58Zw13P+WDtA3t7th9a
V13PyvOGu551fMFw17PWCQ13PWv9ouGuZ71vynDXs/aTNtz1rH1mDMcznuo3
dzeV9jU8+3necK794wuG49lfJzQcz/76RcPx7L9vynA8+/tJG45nf58Zw935
XAj6/3bK3NK5wp3PyvOGu/NZxxcMd+ez1gkNd+ez1i8a7s5nvW/KcHc+az9p
w935rH1mDMczv/t7Y4KTSuc6PPt53nA8+8cXDOfaXyc0HM/++kXD8ey/b8pw
PPv7SRuOZ3+fGcPddSMMLm1a8mrpXO2uG8rzhrvrho4vGO6uG1onNNxdN7R+
0XB33dD7pgx31w3tJ224u25onxnD8ax5NZ79PG84nv3jC4bj2V8nNPxIuTqe
lePZf9+U4Xj295M2HM/+PjOGu+tzMZgg89nP84a767OOLxjurs9aJzTcXZ+1
ftFwd33W+6YMd9dn7SdtuLs+a58Zw/FMX7o++3necDz7xxcMx7O/Tmg4nv31
i4Zz7b9vynA8+/tJG45nf58Zw919MJU9Xs4bfp433N0HdXzBcHcf1Dqh4e4+
qPWLhrv7oN43Zbi7D2o/acPdfVD7zBiOZ+6j52c/zxuOZ//4guF49tcJDcez
v37RcDz775synGt/P2nD8ezvM2O4e95IZ/V90M/zhrvnDR1fMNw9b2id0HD3
vKH1i4a75w29b8pw97yh/aQNd88b2mfGcDzzPc03/DxvOJ794wuG49lfJzQc
z/76RcPx7L9vynA8+/tJG861v8+M4e65LpPVvM7P84a75zodXzDcPddpndBw
91yn9YuGu+c6vW/KcPdcp/2kDXfPddpnxvDDfW6MP2+a2bazlDO7572E959y
+w9LubNy9zyTcK75ntZXzvWR+JH61xyS8coZfyQ/et/D49fEn/2XDTq9lCcv
HX3ttlLOrJxr/q7jlbuebX1//2uO2L/WZ7zWcf+9kvsy7kj9633L5L/dM+tO
/dNFy02u3ndgUNb97iMmV7/jLwOqy5YtM7l6z4AdX920cKnJ1Y/7d133gFea
Ta5+/ZYhg6+e0mhy9cqB5/Xb+vU8k6sPmH7O61c032Vy9ebu4bvLho3Kaa4+
oXDGzq5Bs3Kaq8+aOnvq2rb5Oc3Vv5G9Y9ex0xbnNFe/eEBH98cdzTnN1cc+
N+6Sxsdbc5qrV/234vvTLlma4xqvrs8kVz/YO+0no+5MPMM/rTz23cXBMnn/
6grm3t5b23R54hl+zuMH3u/X1izvX11BceiXmTeuapT3r65g7Nmb3z9rfIPJ
1Wf0XbFoxRN3m1y9flR+Vd0HJ+c0V9+zdn9lc/aenPv+1RXcPPXXx6+qb8hp
rv5le9uMEVWNsef4Pam17K0nT0o8w6dXXXn9xP0tOXf+H+o/8u96zgfMT9dz
Pvbpes4Hlx19dG7vqDaTq6cGTtzZ+nCrydW/qrh0/aZh6jkfrHzq4KaBE9Rz
PvhHS0PT8D7zTa6++fTbrgyaZ5lc/cLilgunP3CFydVHT57yx8G/+6l4zgeb
DuxtOe739+U0V+9X2/fyitcfEM/5YOv+yf/aWP9QTnP1VyP/mquPieY/nvHk
Pu9Jru7OzyRXx6fm6nd2rOt/3YQWk6sftX3DG8/ubDK5+gfv7P9068FFJldv
P7G6d+y++XJe7Q6qFw49ueO9OpOrF1LXnvWfNbeaXP27c+t21q2+LueeV7uD
JVtbvmg7bVZOc/XaT/aOKr9lXuwZfkzkX3N15r/m6qw/7nwuBKyf7nwuxM+7
O58L8fzUXB2f7nwuBOUXj2gYsPghk6tvrD979/iqRTKfC8FFL1eM2/jaApOr
//hnfR7r8/B9Jldvf+vbkxr33mVy9Tk9++Y+88srTa4+6evnT9nzxbSc5uqt
kX/N1Tuj+a+5+i3R+qO5+r3R+o9nfjf7kZsn9MTrp5sn9MjznuTqzE83T+iJ
fWquvqWscsdtv3jQ5Or3LljRcUHmfpOrh71/H7ahZp7J1S/5ZOobN66qM7n6
x3/Yt+DJu2eYXL0+8m9y9Wj+a65eFa0/mquz/muuzv7rrhthwP7urhthvB+5
60YYr5+aq/O8u+tGGM9PzdXxqbl678hbq1bPWSDrRhis+Oq1E7/5UYOsG2HQ
sGHRybeOqTe5ejbyr7n6i9H811y9O1p/NFefEK3/mqtnRx/efzVXb4/OP3jm
d7jnpSRXd/f3JFdnP9Jc3V0/k1yd511zdean5ur41Fz9z5Pnhi/XzI89w5+O
xmuuTn3N1elHc/VJUf+aq/N7NVevjfxorn5C5NNdn4sB5093fS7G5yV3fS7G
+7vm6uxH7vpcjNdPzdV53jVXZ35qrv60zGc+90XzX3P12dHzorn6yOj50lyd
51Fz9Y+i51dz9THO+TPJ1Sui9QHP9MV6Ep8XI876g2c45yXN1dnf8Qx396Mk
V2f91Fyd511zdV2f4fjUXJ31X3N19gvN1bc7558kV2c/0lyd/UtzdfY7dx9M
ZXk/cvfBVJbzvLsPprKcPzVX57zk7oOpLPu75ursR5qrs35qrq7nDTjzU3N1
d/9NcvXB0flHc/U+0XlJc/VidL7SXJ3zmObq/aLzG565D+c9PMM5H+IZ7p7n
k1yd8yee4ZyXNFd39/ckV2c/0lx9kpyf4TzvmqszPzVXx6fm6pz/NVf/+luH
3xc0V+f9QnN13kfc80Y6y/u7e9449NxE7zvueSOd5f1Ic3XO8+55I53l/Km5
epWz/iS5Ovu75ur6Pghn/dRcneddc3Xmp+bq+NRcfXz0/qu5+u7ofVlz9Zro
/RrPfI/3cTzDeX/HM5z3Tc3V3fmf5Oqc5zVXZ/3XXN09LyW5eq3kG3D2I83V
WT81V+d511yd+am5Oj41Vyf/0VydvMg912Wy5EvuuS4j/pNcnfd3zdXd9SfJ
1Xk/0lyd/Vdzdc6fmqufIHkdnP1dc3X2I83VWT81V+d511yd+am5Oj41V3fz
zyRXLyxZ0XDWMctNrt79vw1bqocsN7n6m+m7Ll25N8kD4Ve/ffb5s0/l3yvJ
1RlPfTjjNVenH83V6Yf61NM+4doPdeCaq7v1k1z98+yDn7ect9zk6hdu3TCi
Zhj1k1wdrrk6dVzPa4L+VdUfnjt8ucnV28/pmfnPC5L68TyMuMnVozqMj31H
XHN16jCOOnDN1anzf62ir1c=
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.7], EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[Polygon3DBox[CompressedData["
1:eJwBCQX2+iFib1JiAgAAAKgBAAADAAAA4gIRESEgEgIDEwMEFAQFKRkaFQUG
GQkKGgoLFwcIGwsMGAgJHAwN7+XkIBARIRESIhITIxMUJBQVJRUWJhYXJxcY
KBgZHQ0OFgYHgHBxKhobLR0eLx8gMCAhMSEiKxscMiIjNiYnNycoNCQlOCgp
OSkqOiorOyssPi4vPy8wLBwdPCwtRjY3QDAxQjIzQzM0RDQ1RTU2QTEyNSUm
Rzc4bV1eSzs8TT0+Tj4/Tz9AUEBBUUFCUkJDU0NEVERFVUVGVkZHV0dIWEhJ
WUlKWkpLXExNXU1OXk5PX09QYFBRYVFSYlJTY1NUZFRVZVVWZlZXa1tcZ1dY
aFhZSTk6bFxdbl5fb19gcGBhcWFiaVlacmJjc2NkdGRldmZnd2doeGhpempr
SDg5e2tsf29wdWVmfW1ufm5vfGxtECAfMyMkSjo7uamqhXV2jn5/g3N0hnZ3
nIyNjX1+inp7h3d4j3+AjHx9kICBmYmKk4OElISFuKipkoKDlYWGloaHmoqL
m4uMmIiJkYGCi3t8iXl6nY2OoJCRoZGSqpqbq5uco5OUopKTp5eYqJiZpZWW
t6eorJydrZ2etKSlsKChn4+QhHR1r5+g5sXUrp6fsqKjtqanno6Ps6OksaGi
gXFyuqqr4NDRva2uvq6vxra3vKytv6+wwLCxw7O0xbW2wbGyyLi5wrKz1cXG
0MDBy7u8zLy95B0Oyrq7zb2+zr6/0cHC0sLDz7/Aybm6x7e41sbH18fI2cnK
2srL28vM3MzNu6us3c3O7ejS4+IQ38/QAhIRAxMSBBQTBRUUBxcWCBgX2MjJ
BhYV3s7PCRkYCxsaDBwbDR0cgnJzChoZgpKREiIhqbm4FCQjFSUkFiYlFycm
GCgnGSkoGiopGysqHCwrHS0sHy8uIDAvITEwIjIxIzMyJDQzJTU0JjY1Jzc2
KDg3KTk4Kjo5Kzs6LDw7Lj49Lz8+M0NCMEA/MUFASVlYNERDNkZFN0dGOEhH
OUlIMkJBOkpJO0tKPU1MP09OQFBPQVFQQlJRSFhXQ1NSR1dWPk5NRVVURlZV
RFRTNUVESlpZbn59TV1cTl5dT19eUGBfUWFgUmJhU2NiVGRjVWVkVmZlV2dm
WGhnWWloW2tqXGxrXW1sXm5tX29uYHBvYXFwYnJxY3NyZHRzZXV0ZnZ1Z3d2
bHx7aHh3anp5TFxbbX18b39+cIB/cYGAcoKBa3t6c4OCdISDdYWEd4eGeYmI
eoqJe4uKgZGQfIyLgJCPdoaFfo6Nf4+OfY2Mg5OShJSThZWUipqZhpaViJiX
n6+ui5uajZ2cjp6dj5+ekKCfiZmYjJybkaGgk6OimamolaWkl6emmqqpm6uq
nq6tlKSjnKyrna2skqKhEyMioLCvorKxp7e2o7OypLSzobGwqLi3qrq5q7u6
rLy7rb28pra1rr69r7++sMC/ssLBs8PCtcXEtsbFmKint8fGu8vKscHAucnI
usrJuMjHvMzLvc3Mvs7N8OfmwNDPwdHQxdXUxtbVydnYy9vax9fWyNjXwtLR
ytrZzNzb5OUezt7dz9/e0ODf6ODRxebE7uriHeQezd3c8u7j6+QOEOIRqZma
7ObU7/MPv8/O4uoC0ujR8+/r9fHt9+8P9PDs9u4B4+7i8eno6Ong6+/k+PDT
8PTT+fHh7vIB8fXh5ufE7vbq8Pjn7PDm7fHo7/fl8fnppJSVlYFeKQ==
"]],
Annotation[#, "Charting`Private`Tag$10851#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]},
{RGBColor[0.368417, 0.506779, 0.709798], Opacity[0.7], EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[Polygon3DBox[CompressedData["
1:eJxNmGnYTlUUhr/VTHMqkcoUSZIhKSKEJEKkUEJkihIRETIWSjJ9SGQOIbMy
y5RMEU2GypiUn83rud57X8uPdT32OWfvde9zvOfcFGjZuUGnC7KysmZZVtaF
njU9G3s96XW5119+7G+vKyyT/3hdaZn81+sqy+R/XldbJrM8r7FMmte15AVe
15EXeuUiL/K6nrzY6wbyEq8byUu9Tnj96PWDVx6vHF45vfKS4r2ZFG8+Ury3
kOK9lRTvbaR485PiLUCKtyAp3kKkeAuT4r2dFO+dMImlCMdye93hdRPsD3nd
41XKqzjXircErGK8mxRjSTI/8/LDWIz18rJWAXhLk+ItQ4r3XljFdZ9XUbjK
k1rvflL7qExv9XyAY+KtBJ/OlWVtrVvR6y728SCp6yow7y4qH/usArd4W3s1
sszfvWpwa+2HSbHX8CoHe01S7I+QYq9FivdRUv1rk2J8jBRjHVJ7qktq34+T
elb1SPHWJ6t6NSDF+wT5MPuoDu+TZPpt1YT3KVK8T5PibUKKtykp3makeJ8h
xfssKd6WMImlOcfE/hxZH97S3N/nvRrC2wZWMb5AirEtKcZ2pBhbsJ76teeY
eDuQ4u1IircTrOLqTIrrJVLrvUxqHz3orZ6veLWCtzt8Ovcia2vdbpb5O6R9
vErquq7M0zm9M/R70e/wNdYWey+4xfup10de07x600PsfUixv0GKfbTXQK9B
Xn059jLHusEyiBT7m+xHXIM5pr0O4JjmDOGYGN/y6gnj2+TrXsNIMQ4nxTiC
FOM7pLhGevXz6u/1HimWUaT6v0+KfSj9e3JtF7jHsJ/B9O/IPZrOvdD5bLjF
O4EU70RSvJNI8Y6nn+ZMhW8Uz2EUXB96vcs+pnFM/ebQT31m0H+s10xynNds
emRzbDD3eByp3rMY67pFcKj/x6wt9nlwf+D1iddkuBaQU7wWkpo/l3ma851l
vqf6Vn3ltdprjdc3Xpu9tngtZQ9iX0aKazmpfawgte+VpBhXker5GTmPPvPh
XUOKdy0p3nWk9r2e1O9gA7nYayO5xGsTKd4vyGXsYxm8W0jxbiXFu40U73ZS
vIdg3WGZv3P6Xeo3uRNu8e4ixbubFO8+mMSyh2Ni30tuhHc693c/14r3AKxi
PEiK8ZjXERi/5/np/fE1623ieco39EyTJ2mcPEnj5EZyjuRGGic30ji50bXc
42mwJk/SOXmPXEIulNxLPZIzyUWSM2mcvCqXhSflsfAkjafyrBdaOJA8I71r
3rJwJn2v9Y3Xd7ishSflt3CjghZuVMjCjQrDVYRxcq9bLRxLa+m9LA8pCp98
o5iFA8kl5A5yiOIwlWCc3Kgka5ViXBjeMuy7OOsmTypl4UmluUfF4Ejf9QYw
yTfKWXhSeQvXqci6D3BOfSowTo51H3uoxBzxySsqw1GFsTiqMi4DR1X2WZF1
kxtVg0mOUd3CjWpY+NAjFj5Uy8KHHrXwodoW3pn2VIdzyXvqWfhWTQtPqmvh
SY9buFQdnkdljiVnqg+rvKOhhffILfQt13f2RQtPamzhQ00sfKiphd80Z225
QwsLT2oGU3PWTr71lIWLdIKpBWuJSc7QysKB5BLyI3lFawtPakMf8XaET++u
duyvNWslf2pr4UntLTypg4XPPcMxfV97WbiR3EJ+oO/zAAt/6mzhPd3g1re6
C4zdOaf++qb3gLc3PdpyrDtMPbmuA/17soeurNuaPl0t3Ki3hRv1sfCegcyR
Y/RnzgDG6jeY69K/0/LBMoRz6q330FD22pceXVivH6xDmZOcu5GFJ+lddsrr
nNdRC08abuFA71k40wjWlWvIOeQF+v7OtPCkUXDLN0bDOpZxcouxcI1nnNxr
JPdlNGtpf9lclzxpAtfqHT0FJnnHJJjkG5MtPGkqa01jnBxohoVvTaTndK4b
w/npFq6WbeGUw2Cazf51Xo4xx8J7PmHduZxTn3mMs7l2toUbLYBPXrEIjsWM
xbGEsbiWMp5Mn/kWbrTUwo2WWbjRcgsfWmnhQ6uYL8f43MKHVvM8ppy3p7Wc
S96zwcK3Vlh40joLT1pv4VJrLTxpo4UnbbLwJI1Peh22jPskT9pi4Ulb4ZMv
7oBpJ2P1k+vspoe8ZK+FJ+208KRdFr61zcKN9sC0j/lyDP0fS24Y5ab7YTrA
OHmSxkf48zY4D3Fvj3v9ZBlnupF1c7Pn/fQ7zXVyq5+5Rm6Tg3k5eSZ6Nvod
/ML6ug/6v6BfvS6zcM3NzFNfedl2+LZx7Qn6/GaZd4H87neOa50zPA/1OQvb
n1kZvuOsrXlHWfcIfz7IuifYwx+s8yV5hj+fY/63rHea9U/B9C37O3zePTzL
fk6y7mH4TnLtMdY8Qv/feX7p/7/kO3pn6N2h99r/dQpSUw==
"]],
Annotation[#, "Charting`Private`Tag$10851#2"]& ]],
Lighting->{{"Ambient",
RGBColor[
0.19699838300000003`, 0.252204821, 0.33320940200000004`]}, {
"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`, 0.29811516000000005`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`, 0.29811516000000005`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`, 0.29811516000000005`],
ImageScaled[{2, 0, 2}]}}]},
{RGBColor[0.560181, 0.691569, 0.194885], Opacity[0.7], EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[Polygon3DBox[CompressedData["
1:eJxFmHm4VWMUh28fGTJFcyKSuJk1ScqVBjdUCqVIrkSTS0qKSoZokCiZkhAi
bmUspdKVKSVjiQZDhvxpHsJ6n/PuZ/+xnnX3XtO7vnPO3r86vKy8x9WpqKho
fpWiot3Cd42LfmGXhO0R9lvc/z3sk/j7F3LC7+7fv4btmQrxP8L2SgX/Z9g+
8fff4f8J2y/+3hX+37C9UyH+V1i1VPDkVU2Ffsw7OBXq99XoQX39VKghVlMO
6r4K2xj2WdhBYSkVOGsZZ4/aenjrpQIHvQ4I+y96F4WvY5w96urJ2z8V2Mlr
IBM7HaInfmLYYWGHh50SdnRYcVgjmWqEHWouM4/wHnscKWtt6+rK2Ng4sSbG
YTxKT15D+1V39oHOK7YHZ9ZUz7meZB5cx7kDXMfr6Xey8Ywx+8ybeQ+uFnLD
dYy9OZtj9fRtbi55Lc2F/dqwy8LKwlp5j72vCetv7PSwEzzXNs6g92l62EuM
s9MZetg7OBvGTs5mTnvj7HGmnry29uMMzre+o9bC+p7WEDtHDupKw1qHnRrW
RQ8vv6N27tFND28POeh1Vip8V6jvbpw9ztOT11l28i6QiZ0u1BO/Kqx32EXO
b+p59ZHp7LBe5jKzr/fYo5+s3Tz382Tk93+usUuNd/fz6W5eb/uVOrvUeWX2
4Mwu13Oug8yDa6A7wHWlnn6Djff1XIrdZ2jYxXJdLTdcA+zN2Vyhp+8wc8kr
N7e/e7fx8xsuK4wrwirCFoaNkolz/TpsZ9jnYSOdAftdYWPDxoXdYC773Rg2
RN6b9MPMHSb7OD1c19uPeaPtwRmMN85vYkIq/GbgnWgNjLeGXRc2Iuw2PYx3
GIfrTj29p8oEyy32o35y2BjZp+jJu9n5zOaZynOF58s0d4BxunkwzpTj9rB7
vMece/Xw3m0dNfeZy073yw3vg2GT5HpID9fDevaYYT/mzfYen8kjehjn6Jk5
V1a4HtPD9biefk/oZ8o10rOe5z14n5EPrkftTd+nwma5x/ywB8x70rpZnjXf
Nb6zz9qDnZ5zB9gXywdXhTswZ6GePV4wDu+LehhfDXva+UtlZc5LxmF5WQ/v
Ivsx723rl2jzrd/k/bfCVspB3XK5nw97XQ/vKuPs8YYe3jflYP6ysAXWrzbO
HpV68l6Tnbx3ZGKnd/XE/1RP7OX8RzyvdTLxm37PXGau9x57bJAVxm1hm2X8
wDixD43D+JEexrX24wze1zPv01TQSfxW0Ee8M3l3ZloH1t/VTGiRTDNx/bea
qZo7P+x3Au2D3iCGBkE/oDl+VTMxA81EP653qbeoQa+gDahBG/E3OofnBN/B
K+TjHc9vm3c278FjU66B0Bk8J/j9TnCHesZg4r1f3xmH2qOa9+rJ0cC8TDM1
SLkmQ9vwPOa53MWzqGOMZw1a5TDnoREy7YNHT6CP0BhHOK/YvEyLZNoE39Q9
G9m3hnWNUq6Tij2nhu6TaaPjrEFjoDkyDdFePu6hV9A6aIbm9j3ZGlhbGoOP
93krudj/VHdqZR4crc1rary1vM3s29g5zVKujdrI2tZr4h1kzXRSifXtvYap
o3m13KGxHJ2MwcG7vrN7omfauXeJ162Md5K11Bqeezyrb/FzbeKMqs6rmXIN
0TvlGgidkb3XB8jbwxisvPd7OhP9cKF79jSvo/Xnp1wzXZByTdbVewOdUeLM
bu5G/Fyv0Q/9vEZXoEX4zqJT+siEfurv7DKvM81EfRdzL0q5NiqTb4DXZ3kG
vbzm7IZ7D42BTkBf8I4eIxNaItM7+KHOGGQNs8vNK7NfpsHxvOP5rpzjTpwF
774Rsl9jPeyD7Xuxc4bIPkJWzvJ66zMNdKMc6JBR1o/2OtNG5GUaujTlOmms
89EL41OuFzPNNMp55cbHudMEa3jH8HxeJhPvdTQDz3We77wHeIfzbp3jmaI3
Jtl3ojWZNposExpjqjOm2+Mm702RY5p5441Pk/cO+2a67daUazVimWa6J+Ua
KNNE+AdkQlfMTLk2eijluifTQfjZzphh39usmyHvbOsnOHO6NtdzyXQSOgEd
wfv5xZRrKfLQN2iKJ1OupR6XFS3xtHy805+R63k/nwe9N1+OBebNNr5A3nn2
vc8589y1wl6ZTqpIudZ5SQ40xuKUa6YXZELbvOLnMcvecCwxBgf6Yal7LnLG
Y/ZbJPtSa2BdZg2f5f32zXTScvlWeM2/L/i3xSZZ0SCVKddPq+RAn71lXzRN
poPw6CPe7/wfSPWU65K1Mr1jPTuvtm+mt1bLu9a+MK2zPtM9/E7QRGij9TJt
8HqzOZVybvI8t4d9mQp66Fuv0UcHyFrdM1jvvGQuemSLOUWe3UTPcqv9OYef
wr4J+9g6ZqG5Fsm3UrYv5PvOs94qx3brfvDvn6sUPteVcu1Ihf9XguV7Z21z
/ufu+KYzKo1/4fWP1lZxJrPXeG+H97dZs1n/vbts97x+Vj/ybqzh/R/cc4u9
OKOdzljjbl/L+JUcG+3/k3z/AyEgSW4=
"]],
Annotation[#, "Charting`Private`Tag$10851#3"]& ]],
Lighting->{{"Ambient",
RGBColor[0.1830429875, 0.21424763749999998`, 0.0962851875]}, {
"Directional",
RGBColor[0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}, {}, {}}, {
{GrayLevel[0],
Line3DBox[{246, 1, 242, 227, 16, 31, 46, 61, 76, 91, 106, 121, 136,
151, 166, 181, 196, 231, 248, 211, 244, 236, 212, 213, 214, 215, 216,
217, 218, 219, 220, 221, 222, 223, 224, 233, 249, 225, 245, 237, 210,
195, 180, 165, 150, 135, 120, 105, 90, 75, 60, 45, 30, 229, 247, 15,
243, 235, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 234, 246}]},
{GrayLevel[0],
Line3DBox[{495, 250, 491, 476, 265, 280, 295, 310, 325, 340, 355, 370,
385, 400, 415, 430, 445, 480, 497, 460, 493, 485, 461, 462, 463, 464,
465, 466, 467, 468, 469, 470, 471, 472, 473, 482, 498, 474, 494, 486,
459, 444, 429, 414, 399, 384, 369, 354, 339, 324, 309, 294, 279, 478,
496, 264, 492, 484, 263, 262, 261, 260, 259, 258, 257, 256, 255, 254,
253, 252, 251, 483, 495}]},
{GrayLevel[0],
Line3DBox[{744, 499, 740, 725, 514, 529, 544, 559, 574, 589, 604, 619,
634, 649, 664, 679, 694, 729, 746, 709, 742, 734, 710, 711, 712, 713,
714, 715, 716, 717, 718, 719, 720, 721, 722, 731, 747, 723, 743, 735,
708, 693, 678, 663, 648, 633, 618, 603, 588, 573, 558, 543, 528, 727,
745, 513, 741, 733, 512, 511, 510, 509, 508, 507, 506, 505, 504, 503,
502, 501, 500, 732, 744}]}}},
VertexNormals->CompressedData["
1:eJztWXtUzWnbLowmEkUzxhQ1jjmbzFBf2zNSTaIih4ScGiVKKSrR6DBI2job
yTR4w5Dz0Ohle1CSVyQpETGUHNLeRjONU/u99+/XtZd8q2+91sda37fW7g/3
+l09Pb9nX/u+7+u6H2bz/F3nt9LS0npM/7Sm2KhU/bif1BJ/IsRnOYtOl0xd
lPUjB35Ukre36LWcZf/0yNhwwg41HnTK1v7+33J2+9jkHVMT9qjxdr/1lzbU
y5lN4ga/N/FNnd0FXFo7a63BG/v4Bfwi7LPGq+NBnzfee3yy4T7Ve6MLzvsN
nd1lFHAxKFgPD4dKWs+Aty7QFdbHrYrcSPur8W3uGcL+kRcdl9N51LiHq4tw
HpMHil1v4hnr+wl4mk+OluEb+wStdxP2mb77b71Fb7y314VigZ/iPEP3ZGs3
9TnBp4ZnDc8anjU8a3jW8KzhWcOzhmcNzxqeNTxreNbwrOFZw7OGZw3PGp7/
D/Fc/GRDmEOM+nNN8i1M9v0f+N/P/c1pvXr//dbFwvoPvX9LeEv7v+v6ls5f
njc5o29AqHp9xfC5e28QfqFtm7o+AaHq/UNdPAX8Xde3xMO77v+u53/Xumvp
PHgWg2nT3yk0+AfCq6si9BdSH8q6qSX0Ew3+YfCB54ccVenAs+p1Ql/V4B8G
nxTtJ1XpcELqKEHXNLgG//+Mv3bqdkiV55UZcc3yXIO/X7wsXfuhyo9bFeo0
69sa/P3izecbhQb/QHjooRgj8iEsN165903+Nfj7xSOct2er5u8/62Ka9RMN
/n7xE586qfSRRR9sro8a/P3idu0HrFXhaefHaPAPiD9tPWmXKs8TeiY3y3MN
/n5xHbtpl1X3po0z9Jr5EA3+fvHPM2ZH6Q7r99/ulzT4+8WHlHQuCnGI4Wcv
PRHumd837ufQaEk4a/V7/f8Kb+n8YvjP7ydb2qel9xbdW1BpFhDKx58NbHaf
3BLe+JtegWlAKNv+afB/hLe0z7uev6X9W9rnXc/fwntHNY8KVnBXqzIgzI+5
bDT2/UMplzRFZhB74n6nGeFs/qcHev6L8KbIlBYVq60urVa/R7vvcNN1hJdt
zlY4xcSxiVc6hQyn9U2RyQPDdI7YJDK9dMcOZY23ZWKUs66Rpg3n9ySr96mZ
9kf/cMKfHtwY+0iSyrQnfyLd11gjm3rW5IQ14f3/6VGw7FQq80yfeKlPo1zW
FNkPu32GLW6TynK7B2UdaWyQHSips7Qn/MckSXD8syRmP2/Alj8In1VueXkT
4Vnb/jrjOSiexZVfe6GnVMrEKGf7Ul0bzgxbw05M+/b6D0q5rCky458cfHob
hbC2A3R+rSS8KbKg+E5zHEu08f8aap7B41u8Mvusod2P6PiqY7vVywNrCD+c
MfWeycsV7PE3nQ11Sr3Z3LXKofmEH/2pdeOUmz+wu92XZM5zmsuq5A1rNhAe
a25sZL9oPZMabQvP+MKVjVr0/WkbwvPGT3M3ykpgn9Zf/r71YMVJyb6RfR7R
5617Pm5ErVEyM7WKn/u77iS+eoufYxLho7PaxWUcTWFHfHv/cnfxPF6adTLX
ifAn5rvGSselsuOtKn5+OW0hj+2VkjGE8I9ine28dqYwW8ek5zNDA/iB3zYl
2xKemPjn3pt7k1htjzZ5zu2DuIWzPCaO8MjSpVa9LmxgJnvzM1MfLeWPtRem
NBBu8aJ7j9f1q1mrnEkhW/oF88P715xbQOe/tM671c6KYGYa7uVAke8sNT54
kvCstuNKRhDPtx4m7qHvge9c3FbgH3n5Vp6qeQSv4NP0oba04XWIOi50+L39
McKz9e1/8TKJYtFGHnnp+UuY1mnJ15sJ7+t1p6fBoBh2bFzgR2Ulniy9vcNx
b8K9HAdEm96RMi3zYj5+0zDmE5Kdb6qqF7NDSWZzE1lZn26D5hTP5t1tNr24
SJ+3TdnovtKeyezwvczbWekB/Krhbb8IwrfoaNVMUiSzvu3GVC6aGcoD5+q5
qPgfObXrwfy4ZBYzeIm3XdX3fMRjf2NVPutE7zD56Foiy/1LapepE8XvFvZa
HEC4n1tq+YkMKQvRnxBqpIjmlysW2JwmPPPKX6ctLVezScOtKynyqfdy87rT
OYMdar8k3tnY1o5j6HvgXW6vFvh385qW/xHxXC9L1csdtobn+doL+Y/6RN2j
3pGXyFPkJ3gEr+Dz21NzdG9krlDHmbt9l28lPNFgflZro2iWkPMgoNvxAPZj
2bLQZMIPxuTEh3nHsPx9fGTnHRPZxa+M7vkQHnfcsGveRCmrnzG3IenYHJ5m
mJDdi3DpqdwbpekJbPqlO9nPji7llfo3JhYTD+a6j08m5iQyy8F+vEG+ig9J
Xd5+DeFTXn6RdJbwQqtF0SXnfuDtVlwudCe8X3LOiUd+CexM/Ez7jD0xPHvg
yVoV3k1i45SQtp4VGhjOpMjrDW99Ek1462Upc4h3ljc4qYa+B+7/SOR/sm5b
L8p7tvXXKeOpDviRJB8h/7v0tdxxPU7rpJ2B7TXqQ1xnS5nQf9A33+qj6jpH
3aPekZfIU+QneASv4LN213Cbhu7L1fFl7E8mhwjvlzrl+PXJkexSjVHH+6u+
YxUX5k/dT7jtNyFOQy3WMB+b+2b+IVN4zNK0V1GEd/jbbGt+eCzzn98ve3j2
Un5Cy/34V4SPSWIlg5ZKmVGZe+TckEieEeh69QZ9XutOXUeYeG8gnQmfM/DX
tbxn1vZgVX+orbB5PPNmHCsaHv6MIv/MwnvlbMJfDfsvK+KdKR765NH3wHee
lQn8b95qOZTynv2zqKAv1QFf2FPM/5+f8DjqO6xINz6b+hAfsKhO6D8l+y12
LJE2ynxd68JJB3jpkZFC/4cONdclubpvoo+if6LOUfeod+Ql8hT5CR7BK/j8
I9m07xbXQHVcdvLyx2WEd000yBuwfwVrtcW/t06Xgaz4lnOny4QvvnCnept/
FLszwPi2ZEsA1z6lX5Cm6mN3u0TM+nwNK78/u8/naRH85rcSxTeq76XnRnZY
P4Z1cBppTZFXpJxOq6Tzr1neYxrxzhbsPPoVfQ98Ts9/CPxf2XF9OeU9u2a+
PpHqgEc9E/NfS3ZkNPUdtlSWcoj6EL9uEyD0n0uuAYXU91mbPlX2pAN8YInY
/133FP8+W/uV7OvD1V+SDnO7VFF/0Teg89B36BB0CXqEvok+iv6JOkfdo96R
l8hT5Cd4BK/gM4NdGX5OPk8dz422vFCv0ovdLicGPQxk0TdTzhf6z+Pxc+ZM
rSK82tbRMcp7BWsTWsUo8ojf1vfYTrj2C4F39ssS2Ur6Hnihr8j/Nbl0JeU9
U/ZxuUh1wF8/E/P/4Z4Dh6nvsDNWVieoD/GgvmFC/wk29TxNfZ9ZZBveJx3g
HpVi/48P9p1BusuiHGMdSIe5U5yovxkNuqm5D/+SeX5tcI58EL9fIvof+CT4
Jvgl6Dp0HvoOHYIuQY/QN9FH0T9R56h71DvyEnmK/ASP4BV8ivfUVRJE+KXR
VRYKWs8ap3+8j9bzRYvF9R3HND6i/Zmv8fk7tD+3LxP3rwiadITOw6r35KXR
efgFd/E84/YWZdH5mfugkeV0ft4lQjx/2YywK/R5mb+1e2/6vFwSIn5eswyX
MOKHZb/KiyV+uOKFyI9lu051fnEKWd6zCeuIT+71UuQTvvMtH6r2SfBN8EvQ
deg89B06BF2CHqFvoo+if6LOUfeod+Ql8hT5CR7BK/hc+GcHE8p7jljjIeb/
6EojPaoXvvJqVg7VC7+n7SLUS7l+v1FUX8xaKbWl+uJHr4j11cZv1iuqR1Zw
s6Yj1SOXrRXr8Ypx2iSqX9bm9C0p1S93viPW76mUIa5U72xrUb0F1Tt3675Y
qHfbVXJzq1lVsixfuz+pP/AH28T+AB8PXw8/D98JHwr/CZ8E3wS/BF2HzkPf
oUPQJegR+ib6KPon6hx1j3pHXiJPkZ/gEbyCz979K7tS3+eI+Uqx/z9o3+9h
9arveOIM3UOkF9xb4iXoxe6saAPSF5554+Ja0hd+K13Ul6HLTs0jPeLVzqUr
SY94ZZmoR361wRVagxWjykrPuJF+ccO7on7l6F/kgbPyZA0zHNuS3vGOeaLe
YS7CnIT5CD4evh5+Hr4TPhT+Ez4Jvgl+CboOnYe+Q4egS9Aj9E30UfRP1Dnq
HvWOvESeIj/BI3gFn+FeBwaQ7+GIvl0zBP9zR6qzkPwSl5gtSye/xNuHBwt+
qca6rLy0xJMfN6/pRP6KZ+iNFfxVuWHCMvJj3LQwR4f8GK/uuUrwY3WLz9zY
P+uq5HXw6Fvk37iixkDwb5gzm8+dcvVchDkJ8xF8PHw9/Dx8J3wo/Cd8EnwT
/BJ0HToPfYcOQZegR+ib6KPon6hz1D3qHXmJPEV+gkfwCj5H+mqrfD9HrMsS
/X+HzE+20rzA20VO3ETzAjfbPkqYF34+5jmX5gvuWVAtp/mCz9/1tzBfzJvo
fKpqVpWkg1w3nOYR3mutOI9gbn9rjlfPmZg7MW9iLsKchPkIPh6+Hn4evhM+
FP4TPgm+CX4Jug6dh75Dh6BL0CP0TfRR9E/UOeoe9Y68RJ4iP8EjeAWfl2L0
vWnu5Yj6A+8K86/kX/sutS315ps/O5hD8zIfM05rmGpeDpEXfZW6oU5iry3P
pfmaG/8ozte4B3nrXkQ9t2OOx/yOORNzJ+ZNzEWYkzAfwcfD18PPw3fCh8J/
wifBN8EvQdeh89B36BB0CXqEvok+iv6JOkfdo96Rl8hT5Cd4BK/gc+PPZed+
1fHliBONw4T7n7qgr48/DX4uke0e6x4Q5seTOpkI90W4V2p+z6RguAfBvQju
QzC3Y47H/I45E3Mn5k3MRZiTMB/Bx8PXw8/Dd8KHwn/CJ8E3wS9B16Hz0Hfo
EHQJeoS+iT6K/ok6R92j3pGXyFPkJ3gEr+Az08p63St6RgSfPmcCg12+8FDH
j40XznpO651uxKe9Uiolyv5hJpcjPJqe6Tzd9t21He3NYsbVjbAb7c2n9/7H
Z3KVv+r+3Q474n3syisHJ7h4c2XK5qgGwrEOf4f18huq3ytl+YeLJ9D6pmda
f3DXNecvPDjihO/E89Q+UCwoivDgKwYkXH1O53/cOkE4T/PzKSU4Z/N9lTLs
j/PhvDgn9sV7sP/J/vaBiQud1HHUeDeXRsKtTpneC5zuxoZNfe4ZNN2NO/qO
kr0kHM/4PXDf09Ft6e854tZp4j5uj536KJVyycbPvhnhEuWEZ7Yxtr+9wsON
cYdXt15Tv2mK7MFIx6eE88659un5GxplkeYivu7Jl/eGzK6XTPe1KHCOcuKy
p037NN9Xgv3x99gP++B9b72fYV+8B/v/G++owhg=
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
ImageSize->{418.92529466668094`, 215.41989924112062`},
ImageSizeRaw->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->
NCache[{{0, Pi}, {0, Pi}, {-0.01880790625886348, 0.09734030001602528}}, {{
0, 3.141592653589793}, {0, 3.141592653589793}, {-0.01880790625886348,
0.09734030001602528}}],
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic},
ViewPoint->{-1.5080713019819163`, -2.906452883126842, 0.8533771653273892},
ViewVertical->{0.11615217970914925`, 0.22385601871308294`,
0.967676161758024}]], "Input",
CellChangeTimes->{3.8019713391283207`*^9},
CellLabel->"In[40]:=",ImageCache->GraphicsData["CompressedBitmap", "\<\
eJyUfQdcFWe6/jgzp9MUYteosfdGRFDBgnRQmiIiRTpIVxFEUewtsXdAbDHd
OSYq2AFN25RtSXY3e3M3e+8eS2Ky2axH/f9+9/++7/fNnMGQu3f9/d5vvjMz
Z2aYeZ73eb4yx6j0itysZekVeUvTB4SUpZfk5i0tHzC3uAxWSV0EocsqQRBu
DRBkqP8PVPVFl//5n/+pwqJjvYQWhh6FhYWvZWdnt2RlZR2ApXnFihVsPwPb
r5gWxi7/+Mc/lsH2A7Cfafny5fuhnpCTk9PJrtbi4uKzsLlbUVERromG3XbA
1zrZtSec/Ypu1xDYFa+mk13d4ai4qTt8BdfEQn3HM7vyv2kFrK6AsMDfshOW
mRBCJ/t5lJSUnIIL+xK274HwhFN02O+X7t0v1ZfRQhqRm5s7OC8vjz7Rdivb
Xsi298/Pz18F55sDf60gFeHVSfOhxK2u7/BryGfXaq6srJwGx42C/TCsFRUV
gsRuDR4rRxfz4Lh94RxibygECf9M7dAB7HB4a3CrGu6lpaXCFXbGPP4Y4SlP
hjMOhM24Rj0rP+kS3QVjeC9btiwATixOx7/KEATfxL9PjQnwWZjKTj4K7k0t
fP0ExHYI3PeZky+F1QPwT2hra/v5ySX9yQWD60/qBhehxmg8qlRMd3cU1LX9
J7H9TatXr8b9tsIe/nCF+PeqV5HDTuMFsEznp+I3W1KvhD6JbF2k/nLc2LrF
+IfBYfGBCCKVhlnwUX/X6ZTj2P54Q0bzy1Qvg58Yrx4PZVi3bh1Q/OeX0dV1
Su0y2KUZ+sFppsF31ZhJmAumsjd/srTniF++jCy2aRKsRkAgFPlN7/Qy3PV4
M1JpcSsrK9M/HLxj+GgO8KU/Pqxhv3wJS9km86pVqybwyxBMnVzCALYumd8J
Qp2UTTffF+p94C9Ww1peXi70o/3lobDHi3BPdvNTX+1w1tmwZSSslfbt2/e/
nRUfr/aHM7gYhgHW9fd/lu7+S0eOHNH278GuZDicZwVszYB4DlIdv5J0dkzk
YgGcGW+xYPnlK0Fsa0dmV2ywwSPoCrdejZPEjBIqh/FsRXv+lp0yjR2qT0FB
gR9clGHDhg2CtZNTjmWHr3kmH+BNE8QsOvwiKIfDKTApCSKVUpdPPvlEO+VH
7JSp7PCI9SlwSkpK/JR4urmw3gQIUCkzVX+/OS+QUvjUA+j0WMpz6Wb3hL9D
2/k9dr4lrueGm/GuCTa2bgBcLiJC/OCDD1jSFDEbCFISyhXcvnl0glL6+zAd
+cA6+mo7O/ZiTgb4G8bC9SCHBXe2bhAcezK/dmE6WxcBn6XGxkZ9WukKJ4yH
Q9NNZLdSRj731cV1drZk9g1EzAw4E+U+j18+G13sb37zGxc+ZH9K2/iXoAhj
4M1zw0fgz54wPpIdXHUxFuE3qtn5F7HjegIup6tPzrOT80ewQ6XB1/F2YmCa
T6e/kN3MCP1T9WX74xO6DVtROTHw+tVTJ7HTYDJbyP2B4PWLp5YS9UmSg2YQ
fDdTNQoillI/AimiArOuDugyPvjLsEtfPPD333/PL2MhO9RIjj19QvyXl2Hm
qfLXv/41PgaMtbAd8wVmCjGEEDxOL2Kj2GHQgh2GXely+ZUsYJvwS8gQ8dy5
c0K3X74SzIPaYTn68ezSnj176DmK5IsM4+H0ZbBeDcocXDXEpqYmzEsIH/Uy
EtgmlGU0LkPh1IJPJ5fBn98E/V/HVMMgHT9+XH0uGCkEEPZoVL7RniyNG5Aw
PvD8xVdffRUvpUZ3OfHsNEhdTE2IOuG5Ti6Hi5380ksvoWhPJZpTaZgBZagu
XsBj9GGnxmdeBV5yDSy3chV55tSYBW1ws8X29vZ/deo41XVwGTfW1tZ6wGNQ
g8l4Od2PMD2UnuP719TUYJJHg40PUTp69Kh6OfP5abZs2YL4Rtcg9OzkcsrY
oYbAOoTYUh7hdOr++DglRIZ26p0dDj+KCx9eSaeHL2d0WqS7enymkp/mH8Og
pgbmUGE7O8M8djQ0ARMh8H4JvX7xDJKqVDrGW9BIoC9WA7+Dd/McBC7xOMJm
drpodhi0PcjGF/FK+nRyulq2ror/QUx2Msh7YE5+HvbFwPxF7t2fQ/1Pf/oT
+pEA2GcqBBLBsnLlykB29ih2VFT+YK5TQt9fPvtCPRi4B0HC4F1Vg7U7wgg8
z/HmFO05mV2RaLfbMeMiy/NhiU4BHRW/okjXFQXCtep8VKdX1MGLGHn5hz/8
wQJKjT7GG64A4b4Ac04FXdQUfS4Yz7/yz3/+U96xY4d49uzZLp999hmahHWu
i+LJDI0Mfhv5IvTv5KJ2uB5mTEdnb0A84ePCSIWYRObxeQI6Xqx2RSMZkpBf
Y2AffOCFcHx+JeHsmLN5o4dS6PP/xyvht0eqr6+nv4SbRqQdPnwpHCos5cpI
QDQHb+CVus4exo6Kj68HdzyqKezs7IaNGzeOUpuq3FDi34oOD5eChA5AWq55
xRd4m0EYzDP/m2++iTjZi3vwawhhm9AMYJok6zOok2s4xBPRtm3b+quH5XdA
3rx5M8IUjQEGGgYUIPJlDP4GfD7zOJyPwfaFukuYyw6NZgD9CKJceKGTSzjN
1iGY5vE2gCBiKUXQn4zXr/Y4CN3ZedF2pcN6fOaREBYkMz9vMDse8hnxjM0e
9U51dl5kprdqHCnV0/0WjGiMEmFnvPHLufJhsmXaLsxxfT1Cxc6QTk5znq3D
lF3B76IgYikNJFj317cAWZ4TZnEUgG4H8IShtsw6OzbiVEMa+xPoLhrxi3hx
agTwNnZEh9OgNcDDIo7+t9NIBw4cQFlnj8CVp7BVg9EdLgEtQh6EuILpot5I
MkAIQexo3hwXqG2qh+lwVtbslPD5BanrRJcepvGbiZFEJ2P3E02oAaBLe85g
p2TIIOMRCIfCW84zSKenlHbv3u3FZVVlgxFSqC/sh4HdK/iH4l8nRtK5OxhD
/w5nRRdkWL9+vT5v6c8aIQiCuBKKek4EqK7kIdiolPobjUbt8N05t+EKEVWU
I0SSAMqfK+F82Iiu449C8GOXM42nm02bNmG6QTURxrA/blhKSkpCcGjQpp6D
DVdmJNmUyCIPJarIQ/x4xDSzYHz7hUnGnb0GG8p7DzVMGzjOMnXgeMson74m
cRBcliB5eHl5aRe3gt9qq9WKW2kPvt+kvsNMUweNNU8dONYMLcdBWK7oPUTe
2fMFCkGi0nh1yIvGj0f4m9T4ZHgALeFq/OEr8NH88YgA83X/OJtgUMILPQRJ
iSj0UCKWUcA6LOX3xs+14PV/QhFglumPkW4M9TPt7zvcgH+QIFJpSe0zzDB1
0HjL1BdYTO4/0jzE5k5X38dkMhkmTpyodj7hbQ9VAcNNMiYM7OFA14m9mIht
ruTqbR8Ntxxvu7xz505+26WiEWMGXpkV+4ISlu8hiEr4Mg+JLt1NicQ/pcjj
YnCW+80psbZbU+Zb3/CNstZPDLfWTwq37hjub17//BhTVb+RxgVWD0mM6tKl
yzMooQuU2Ya0rj2kdc+PNmAIIpXSyyOnGesnhpoxBJFK+eKLkeabU2LMtyBw
KUJhEYwXg5fa4D67wV12h6U7LeFC6ZIFGR8B1pTwIlqK9EcY8Q+gVRE8ItlS
wgo8sqhiwhgGHANLg2tdMYU9ugRvDNRwf9d69knwaJ6Z4nbTb77t5lQWzVPm
WZt8I6z1k8OtB8cHWza8MMG0buBY0/K+w41xJouY6ObmluLn58e7Y6J4Sxub
u2/wuvrYWCetlM9NiHT48GFhNCPvYEmSDnv3kS5H5fS/GZs/FDBY4EF3QfCi
+6CCMZw9xQuh+R7vhOR5XIB4OzTP463QXIg8j+tjZlneHzDG+P7zELCsluQu
IuP7DCi0J5nIoDZSFMWVutywCp7sW0AY+X14nuJbIdk2QXorJMuGtfP4SX4H
S5M9LA+eXgGPZW70BMOXudPDE/GyZf4c1QfGH5oBHxS7+0a833a6+yW6J4T7
wIreSlQpfN8eWeJxAW7FO+H5HnYI8S3EtfvVF6Nt7w8Ya7zRf5QRrzuM/20o
USt5LxY6MPHChQsRvN9DfQqst5ocMloM0nL2FMxe8CxDeg40vjZmltkelutx
JSafngY+DAXOTk8FLgofBq0qoAcj2rUUoeEWVtNa2EbI1N0HRDci8/rUeBvm
DzVODRhnxOwxBJi0Dsqw/qNM/pAaBYmVkOvMLxgMBgxBYmVPs9msPdTRrjyp
7Sez/UZ594JjjTVjCCKVUgCU5b0Hy7t6QYYUqZR2QvkSrIO0CNmVlW2Tws3q
wxZMWMIfUOAGfxTyN5zxl566O63jxCUkRFD+gb/WaFfpGglPOQJ4iMtIom6x
St3IEkZFEREgKshUGav26FIPJbrUU4kq8zAr0WW4f3S5hxLDAvbH8tl18MmA
VdhK36AtZRRwWHWDgY5nosND7WpQivutGfHdr0+cOmhzSEgIarPan4TuLURN
02y4gQshdTWh86B2HH8OY2VZ3j7Mz/i2f6wVLicsz12Qr8Tk9b85P28oognD
TIgyKxEFBG87fLJHMGQRyghGhR4SYYkDT40C/DYpFdxrTATX/BNsAuTXeTZM
skDdiy9GQ34PoxAkVh6ADIF5fv3zo02CiDWRqhJWc336sfTejyX50l4vGGA9
BCb5OqgJMtbr+LrdABAD5Xk8uvnVyRGU4/EiINNjygcBmJNutWu5It9m0RAE
kClgkHFX/yomWSISRFQYc6Bqjyim7CGwdTJhiOdtrLOEIrNEUsqjBHIQVEQE
jZGDJqbck0Ayj+AyDyEwn6rzYcM8CPxkxlJW5ld44HrcpcLDjbYY8StXZy5x
uzpxVvfGoNBJhYGzpg5ZtGiR8ZcBMoVtwmY1dn5gq0hN+mlePaRmIJd9bpZN
Cc2F+xGa5wYYicrte3N+7mBAjBuGhNCRUdBFhAzAIDyP0KIQYvLwTsFqgwYg
LTUBtGwEMIlR0nWPCznyJHtYAWAnh0KQqZQuhOR6KBBvQWD+h9JCAsPXafXQ
HFhma3XBDT/hN7LdUTFIP7iK2ENybBd4CAYqZZeK5NMSr8tmoJodanjVBTas
UeaR+C4F7piDmFFgmVTSrEAkYYSpf6RO8xkYSlBaSvGPji7VgILJoxTzU3SZ
p5o8lJgKD8IKQAJgQkCowH0QJrGwTY35FfB5uacBCnwAsSs87XErvHCJa3AJ
h8dtkhK33ANr9MmNSpsdvsrWqYdk9S+HTnK7M3PWjMSUlMXYXtMPUHUGsRfZ
pvF8bJa65nijwNqzZ8+w5/rLrwwYZ7jiH28xKKFw56UrUTl9b87LGQyogydE
pQTgsylhuRSUroCkiD54Su4MeJKdAw6DfWJgVLMZfy6qUBrUFKYXS8FK24wd
cpnmbgoRzFjQ99X01+H7IgeuemzXMSmpuGxJgTvb1cQ8ZoE7fAX9phss+S4A
MtklaIgrd52Vcec705fovO4yu0Sy1QA98jeiaj454DQrqiaqEi0oI0mYjEis
MCOVUTbikoV5SSbkzSd0ebAsBJgwMhjZ45Z7KbErGIyMWIP94+Bz3EqAXqUX
LEEsoIKIY6vok8jWQQnrVnribnA6LD1wHdbYYVbA5xXaZ9jXi6/3fBdwcH56
gscbY/36Yg+V7ZcByYZ3aDh0uDriO9JldLcNmmh8c8p8iz04Cwg9N9smKZgj
jEpotg1Q+cLVqJx+iFPEJS41gKqrcvGxUWlHwAJwKZVAYK50w6zGUqc9LB+c
CZWYbdyxBvgkNEhYQRS78MuwJZLRxOxp4clTB0ECCYemBkuu1hyasgpbNYwM
8QxdHRDqpqUzSm/qZgY2lz4WuJAuqjszf0k2y6DhEa8L5ZJJpk42yWhFUUFy
ifaKGexovWZycHJcRpcxXMoupTQwULpyGaY/gcApYoojMMJRCTeVHkr8Sg97
/EpPUYmvhCwZX4nEhyrW7PGrvLCOS9wsYgW+mlCJH2kVhklJqGTfh1vP1ne9
GLnMU4H2WPHgyabpg0b0dJs9e7Y6QaMzPLIFzZjBHjfsVFLxiJa/0sNHbBkV
aLowMw2wNjvTJlgUgKYSnO2KuWz5cXz2ZACrG35GDGbbzCyj2gmcLBCquYha
hkcb4dHG8QgCr1DJMJrvZufrRfyA2KNHnu9uD2dYZWmJpVsNqCYVaYQ+dzUI
K7An678o0JKnCzbPYIzJqpuGbnc1kXJ08/4P8g+Yc1krjto0MmvZEMgiGdiw
tUMtOzTyka62uMJbeUx+DXr5RXdGAkyOnMQWjom6Op+JIjwLl4CyTEefViLg
Kj0YqGQOIgDcKogqWJ2AqxUEUwJugkio8pLsCVVdcXVVV7suDLgCLjthVVes
wbd4sM8ifhDkX8cW91vX/Xm5l09vqzxlyhQ+7I/ddDi3heYC8TbmRI7F4uJi
7AmlwevhrMltGD169GBojaVBM1sZ4mu8NG2BVZmdDkiZnYHFUgDOnEx8LnOy
AG5ZvghFeFZYyhoUeVDiFJWQHJ4e0WXZyWERDq0qKu1hKjpzbXau8WzJUicq
vQ0+5aMS5nNRVG0ZLiUVK7gqn+HHTLtKLm9fYGN5i/DjpuIM65gS3UyUwGSt
G4OLv5s9wmX2IU/ZCUwlvPEPx48sBQPHgrUMBYOGHDW0NiFYAZ62Opi5eRUk
s/Z5Faq0Qk4BdJFzk1FHXZCCAyGSElgQiDwIHPB5lacrqjztCdVeMuGKAGRV
EqoBMKu76pd2jES2VHhdxAr8ZbpVQB0oJfwo0sHka4mV3e9E5nW/OnlO93ho
jXX95fw2gW3CERkcIaJpFBxuqLflPQcZTo4ONF+eGktQU2alY55LR5hAlVZR
ZNBSIChC6z8u0xfxqMJRBSVC0T4HQWkPJmuPuZIDEtbNRcEmWEJ2ZDiUEaGE
Qx6UICERhDL1RvSRiofmcSNqwFUmBKQRUSbyRkE+9c7m61oN+RruaFcEqZ25
NibJ5BNllErKXtiFyKGnwZD3TBEMMX8xPyeriU1tbDLoSQTFaBbw12IJwHPB
UaAG5zOdEQYEH2tESKie9vnM+cMnXmJiYwkOfdkKDzJnlNwolYkIPwSGJxZe
CCAvRCbHWSLDmogfJPwkKQtWd4XTLqjpijV1ace1ItZErBppL4ud9mBhT1zd
rXVhVc8PFq7qc2lScNec4ZM9vV4Y1U2datIZ/NhQLo2S4LAmDj7yMR8jyau7
t9gyIsCkzEi2KUFLAH6p8EBnpSEuCI1pNnXJUGnsiMp0G0MigRaA6clWL6Ww
z9EvM2GZyQDKQWrnQq4uBTKccGcAoQhQlhVhO7VVCa1Ge4hLy/XZU8QKACNU
vznXRoB1ZVA1SzKEgnyFU1YtsDEHqCIT8WfnvYQmJqjPQlLs2LolbZV4yXvP
eIs3soTBk/V4ECgNLlACCDkYVSs3r0OrAvIf2LRYbBYwfZUwDcoa+OASKPlV
YWCLFsDHM1ViTVcTggsMCVTtC12Ba1l9TVfBpiyAEkC5pht87gZLb+AO1AQz
7EOfbySt7vnbpKoBv5q1uNuhbr0M1tGT+0nx8fHev4w7NnNLslVUVODgF818
GErrTL09upn9er1g2txjoPzB0KmmS1PjrUpQqk2ZmYoPaOYSBB/UaR1fLyrg
/yQXDCUVdjxVYikjAu1zMniyzMBdl/LsiPDD/AifUKzd9LBjdS7cCD0SanWp
witE7yRxyRBJ7R+DhjILokxkOm3nSRBaMbQ0qDpdyJoXEaxnVm1w2wl0y7Tk
h3VZBV+RbsSFK7LIuusjmanj2kyhtmnVvGjSGhJaXy0uyzwBjJ4Cb/LGdGje
ohYDBkVwe9hc1TpA1ISIzQhqivKoJHnG1ga1LLhEM9PniXVZS5LwtBKqPRGn
LFh6hDsBqRGuALNhohqUBmswYwJEZYQrwZfBtJuIFVqNyPVWFq6FWOMtY8WA
NUTwGlrXnFTT/Tqg+FdJq/vfiirocWxSmDWk5yBT919G8BjXoDzOY8bhWz7g
7469x+t6DTYcHupnujx2jtk+YxEgdTFECsuiMzFSbHaKJRCpqL6IbIPCP2Oo
KIc/HveQEd8fxy71pbQ7i3wnSb4u5QpsnYUwPocH1Zdy7C+lOlkCUYV8ts4E
4CeJqkZEOyFcn3BDCNRqS0lNpKwnyqQB3aABnaRf6mBEyWDqmt00CEOjTmzI
xdBh6IlnVIHGn7DUN04AuDQoiBCmvkHMoNAeBfTCx3JPljWpfxgCPST2CXvC
k59f7oVtFXss9spQh58XYTaWSTl5SoZXbAWrTVoVsyTq6CwRyqt4VHmyRFvt
yUQeEu1qL1XkBRJ3EfFqJLyCwq/tijX9EtYuXEugXcsBC5FU6y3aoYA/Bkpl
EcZaChE/SFoNfD1Uryev6fn+4pq+rck1vW8kVfd8bVqCW+KAMeYeJpOpB8+7
ZWVlOB0K0fsMoHFiHE7F7PLb3/6WT9AxFguC8KZ3H/nKqCCzPWChzT4dAD1j
MTzlwMX4RDVspyCOsZRVrNsxZi2xSQhvkdAsfTw/w1fh+ObYtqiY1ryDZi3Y
ZwQvT+QSS+DMNAgsi8sKNw9qxiavQGCGtDwnRw/wUAQ4a/nr3IKg+l3V2PKg
bgBjRzuLTpZa467RnnBtwNDM7EGRh7YML/JQm98sPSOQTQRgPrPi2aXgsgSs
zY2ohvBiLaQyQny5F5wrBiAMNXsMxLxyL0zFCG3WvQ0ZmnKyCbu2mVFlLoF1
JPIWOWs5yVo6hsA2uYgVbB15oGHw4NYBMGzQMIwZFiG9FtGNWTcJ0brWG4jB
ILnOG24ylITZ5HXoHLCUlMXrvZXF6yjgTmBpbl68tvuvU1Y/37p4ba8LfNvJ
3oMNo6zuspiVlcVnrHb5/e9/jxOX+rB3Fsgy2EpLS3EyPs77s/LJW8MLCgry
aXYV+95gPi9wPk3QYeuS+HcGYvJmcxPVadw4xpwAm2g+EpuuZ+xhNpvHuHcz
zOg1xHigxyDpxoCxhnf9462iffpChOX0JGBFks0OATcVkr6Ivhk2BIJ7BqYQ
W0QqjXYo7UFqpNASOSMhaZBSqTaiCRLGyEuiTBqjho4eJq0PQnU05Ga4o6Hu
B0YEg9oVpoXLOWvtPNXWGFxJ3s6pIEhaatc7ZXWAh0yym54Zak8rmwJiZral
SAu1P8plmiM7DhEyMkjqHA9Xd6cgsg5PbK4Zyaog/oEH5FBigAPACxEJIbgR
HWKBJpwSOHTDMj32xTOHwvvfcekpMbsCmZ28M3U5edqh5aa6aFHL8GSi0Rsz
M0Jumj7JlOFNlNkXYqxhrgRyO/ADorYb7AikMCrJteBIFhNRkpEULAQrleaL
i9c/d3Xxuh63F6/tfWfx2j7vLF7vA9/rdm5WinuhT1+ZTbI2IFpx2t8QAHk0
vgnhIoc3vhe6mc8X/h3EczhlDfZt4NMUcUL6Z3yCLb78tYuvxzmkb0PgLMzf
QAzIzMzks4rV2XJd+Qw6U1VVFeePdYIoiqlWT3FDjxfkA4MmGc6NnG68MSrI
qAQkWuwBCyxKwEKLfdpCiwiFVVSAOZIyA+hjRuogaTDsgbhE1iSzJYiNjMQR
UWuQHkxdPp6f7gtYgJoJOSK7fJKqI3aoG7Ei8066TBvZHgMTCSCApfO8rw6j
/Qzrsla6cM4Gzwo50E12XebXz3tiHa16lJdoA52ibpBT7RejXjGaDSHQdAjy
3awfjHy4gAbcE0cjmZEhaPMRTIS2nZtvhcaJ0MngeBJ1yJtd1kXtMFPbidVk
YSSyMAatjyKRdzQksm4IzXW73AsLEQEPRS34b4A6kID8CuTzZKYBCsKcL6F1
iTAHPahj0E+pw08p68GgY9XywZLavrdTavvcSKntdTll3XO4qSVqmeeOEQHm
8d37m0yDBg0SerPxgGF8qn4CJwBL/EYPqOL7xDjtG9ccBC3BGXuMHrYCqK7n
kMfRhT/j+Bgs3+MT93D9anzBBjWCw5/PT0XfjxPB6XUHNgXaVgVWaY/FQ/wA
Wq9XRs4wnp8Sa77gF2u2Yyt2aoIFgpZ2/wQLUN4/0SIiM+BGAzfsnBsKdixP
X4BTT2YsQJ8CLGH0YMqShJicwTwYBuAAiCIxZUFOqG7s/WFTTTfHz7UgQ8zI
ELUlMTNN57TSYRsaK5PLWC3VDJYyG0zVbFIPMlP6xgCyhnyUro+adQKKfETv
Z+zRRi7y1UE0NvjroZ9/VMQHLNQpJK7OkqJORmYNXAt4C1UblNX6S6i7GLtK
llPvMTZacTBWpEF+iYb9ef7nA6uS1kzFEQokDGpBJQ5odGSJh6utupq3SVlb
tYY5fdIBiQwSVUkMUADIHiWptl0ibpDn0VI/sGAD5wR8EqmUkBS0PmUj+iao
CYYLUH60pLbf50tqB1yA9XbcJtIe0tuzlrinevWQjMOHD+cJ2ojvsvXVzTLH
dsDXOEebgboG6JHS8V0n0znYpVj3Gssfs9mb1F/p/BVOvN4H36VPjAzq7HF1
jjHOcmCvQ4lDcWqbdULX7oYgMFMJQJZtPv2lA90Hytf7jzb86vlxBiAMkAUj
ASgCFUir/sQfi8Yj9TNySSRG2ZSpicQt2tcf60x27P4oPQuQWnp6TV+AwJ6h
0ktdLiKCgXdzR059ErNk8s3JYV3v+84MfhybWPgkJXzmk+xZg34Km9T9P4On
ef9lzGi3zyYFuL03Yprp1qRIH0G8OjnSAo04YqGrp4p6qcROGu0G3nf6M/oB
9ebwtgxsfmYESWWi/LOBdr1dE4mERj0JeQenm2uehY576iQjidMwssP8HNYE
jyrycJm0Et6fzgalmXSx+X4oYTKf3xfjmhSBTKxAO0gqtYIHa5TwWQ+8y6hD
FzrgXSdPQDjPDs1rapUYSJMsLs/l8lskQ0kuKYILBhEirokoP5KqPcCuJRjI
H16mbvRWUjd54xIuHmqC3Jy6oXtral2vj1LX92tO3dhdotXS+ZgSr0O+kVZf
SZLUZsOzhJvYkXA4ABn/DOEOZrOX8NWvINFGw9e+1BEOXznY1DnhovAdH5xd
vn37dv7Sr2zt0aNHIHiz+V26dEmxuIniFppd3zDM39gI8daIacaboFdXx84x
2UGzRMUvDgRKmRpnwZriF4+fsLTaoVT8dFT073zJGGlWVzFGEiutwEQrMTGA
9G8B6B/p3vSFVlQ8hfSO2lSodTT88F/T507+0TcoyplSuMe5pGifM2PZS87a
gkxBdDblThY8Hm9MGPWkOmbY08ygAf8InNj//vCxQ/5rxKyoP44ImvLH4YGT
Px0W0PsDkMPbI2eYLuLpeUtK1JpQv0xAIxFQ0vrDtO4C0cUzNk8gH7WYWBee
z5tFKHP2cG3+h8EeUdihE1edeK3vt5XVafCq0rFmDxufsumHBfRiR0OlfJKH
2tphsucal8I5R6RrnupkDlE/TsAHTrEnltROr3AQvJGj9r5Sg8fAXB9onMSs
H7o+A+uhUh0fd3siVzZ9Q0dW1Y65P2KhSMomoYYhA4mFosrITZyLm1QumpXU
zXzdZoq21A2930+t64v8bGHc3Aw72+Ggrwcuck8YOM7c3WQyDWQNlmfpaVqx
YsVHwK3n+Ut4zVCfgy9oMYOHL0Y2ctrh24B/wPd5ampq3oXlBN5HfBzfP4R9
VL/IRjYkfB8b310X33jjDf7LA+7V3C9+CBL4UZ+h8sVxwaa3/eZbz+MkKwyo
AwmtREJY2pGWRE7JzhjKNtBG2AAl24oMRf4i8ZiKAr5VVooon4IPiKUVRZKE
MYCLpb/Lh4LvtDDvucB2dWKI5cfhfaSn8xbmOdPKjjozyo8502GZXnbEmV56
yFm7LB+omOcreDtP5PlizVmfM8l5PHvy42Whwx5NmTT++2GBix3Ts/f8bXrW
y3f9lmx8OHha3Pf9Jwbf7T9+8ud9Rhg+7zvSoO/zwyXTRol38nE+qkqo9u8F
s0FAXTeeWeu34NS0AzWRnipNRW2Ez03fitOGlyNcs2iYC4UspO+ki+z48gO2
2WjkTh21U8M1OVDS6BlLY8lQymzyKeuZW6kL1XXS7Bg2zYo30UStQw4pS9Qk
OrKhERcXBZl7za7AxK7caq71Zr0OREje8ILSqO95UBaj7WTNMXKdREbyk1wO
7Us2anQTiFsifjTSZ8M7qZt8Pk9bN/BK6sYednUvIOpmH0H6YPhU8yiLmyzi
ixv8/VP82YUR6kxD/kLfYuDRdf7uN76JI7/88su8O8MmQf06cOsorEdZnMll
En8R5W+8C+MmEq2urk7lH3/fsy806/Cnr3S/1WIeBkbU16ePcWn3gdL+HoOk
6/3HyL8aMM6gttNk5BETQ4NCwseoxoNzkYSScZTvGWchLmr8tBIfRY2VVu5t
ibOckBI7IaqmN/O3iZqHZfRcYLnkG2N+f/ps0/2wyW7O2NQ1T7JKdzizVp50
Zq484Vy6AqPRuXR5gzOr4ohzY3GOsynfT5ChfFFEWgqWx7uXjHsUN9v3h+Co
pG9nJi2/N3XJZkdg3gGIg44ZuQcg9gvi98NmpgiWvw0NDPtq6LQJvxs5a8xt
35iB7b7zBt54Mabb1RejLc3+0KBFVrJpd5Kem4JGzJ/Na3L1s3BiSroh0WfZ
KLKXJOza4LqqlD+bNx7JO1CepWG0bgCd3hrg0yB1I5YqHVElcehS4jT0pBFL
XeMPJZJ3BK5SJVLu4EUTa9iApOiiocm+UGv2dcVeEc2Lah7UhFSjLhBIW2oD
j1tQkjviGzTsYGlAplkY0+xQXkrd1P1G2sZeH6Zt6AfRH/681C0+KJObfd6a
V+61YdhUs/oesl7oVBOJEz5w/QJ6QZgPDpWXl8fC58moYLynHDsX8W1u/Fk4
taecv739AmxC8tHbWGyqu8nSs2fPaI9uEr5B2giG6/zoIGPzxHATohkuTlUg
F/SpZqJmHrlMhbf+BGr6icQ0Wc8xrEucm/HIOE4nhcSO+lqsTP5gG3efWrtw
qtZetKru9CZc4VeLZxvvVUZ5/JS6cKEzu+r0k+zyl2B5FuKM6MxadVowODNX
nXJmVZ505q487qwrK3KeLJwiSM6mgilCbySZ84Qu9qZNcK5JGP9T9vygv08P
Sbznn7rNMavwmGNWwVHHzHyMw46g/EOOwPyDdwOW7nwwKWHVg4nxlf89MS7/
LxNiM74eF5UA7tX3jyNm+n46fEbPD4ZPM30wfLpJ1Ma3Ou2N6cAwVwtQ1k1t
ccOJqGzCqaupJ2uU4s07ejVH1vVIRnUgkkvP6AULkjKzfqon9Thim04dN9Va
cpK+w5EmpXgSk7wYi1hXiqR1MlIfIxxb6zxRWQR1Xaci8Qiets5Jan0lJF0i
a6Pp7SLyZTOyagtu3eKDBQjilbTNPZFS7ekb+1xN29TzQtoWbyUN90nb6iMp
6VuBYq1TY90SB44zuXfr1q1TirGZpKrO4ew+6nasr6/nNJELwfx93G+k4fKk
CPBbC2ysa4/1R0ynFhK1kjDvC6yZJGP/BukCWjcIIo6qKBzaJo1WSAsrfMmP
k4O12qwiIw6Rw+4ijNaxInR2VBdZBa9fjfI1/veKCLPj5FLro+jwaGfemtch
3nySu3wPLF9z5tW85sxd/SrEOWdu9TlnTvUrzhzGJGddeTkwpnAqylKhn/NE
AcYUYMwU0dmY/6JgdDbmveg8lvuiMzN07A++oUscs4vqHXOKG0WoNAhujtnL
6h2zlh2HYFwKKjgCPDpMChaYuw8UbK9jRs7uv03Pfvlv07JfFn/oPylYkL/o
P8r0eb9Rhg9HBJjsIVlsDFimBpxR4a5QC949aeIcYW9BFuus37Mzo000eUZr
iOkaYygvpmcnQqtTVbXGV5XWCU98oLkF3N2Rw6vWGl6uzndJHXnl6pKEA6xU
GqmXg3coUgA/7KAwrAUm27X+dsYVSWfvGD2Y5Ahk6oxECtiw1Qfxz+CPdICb
mrZ+4HvpG/tdSNvqbYdAgqBFhFJJ3+aDAZeEpfTm2CCLeda8YSK6ryGu10wO
cwOozkNgzTL69Sn1RyL5W5wGm7e393jv3sYVvYcZrg2aaHw3YAENr9KQEPWF
s+EiNvoKuNc69RZSnwION6EquLiFUMfud5l5Ld6n6M8FiVpMemZo3feSJlpI
SW0fK7JJZR5JTyff5+zysfvFmq+9GGr64xw/4/1diea7x1Mtj6LmznUWrr/g
LFxndxbWKk/yVux3FtSeh3jbmV/7ljN/7ZvOPIw1bzDS1bzuLFh92rmrPFN0
nlzmj6RaNhXpRXGi0E9EhglDgVpTIPxouWvJhEdJc30fhiTk3Z+Z9bJjbukp
x9yyk47gUowTjjklJ5BwEA2O2cX1wLjjEMccMwtBtQqBbQWHHTMxgHUz8w45
gvIO3vNL2fj98Flp3w6fmfT18MCAr4bPmPT7MXPG3vaLHwQx8MbU+G5X/eMs
l2Yusboolu9m7KTzX/zZaLCLbpIqSOX6IbIYTZDYC3n08p46/UFWexhVZaIZ
DzR5BzsVtR59TxfleN+G2JFwYBfU0a6Fa/Wd+ahH3vakdbx3kewcaZHKM61R
tYH3MaJOuXo3GN82I31BmAwu0rlz0nm7Yhsyy/siEPFa+uaebemb+vwKCKiu
t0PAGbA02jPYOuRfS2Sh17oR/uYeFotl+C+LFf9ZJHzrAX/JZCjykv+2S1d3
d/cVvYcaXh8XbL4YAOrDZ6fJOLgk0twfNhNInelA8x5QzRZpg1c0RQInS7Ce
dwtnoo36AwN4v2BAokVlIbWFiErYjWg1diJL9AnuE9Q/mTTF8NeScJOjKcN6
93ia5YfSBf7OTGgTFW+4BHHRWbTh4pOCykPOorp3ncvq3hFE57L1FwQTI9s6
xUW0tW85K1Yfcx4qi4V9ThYFgCY1FQVA+DtPLIMohCjAmAqSVTBVsEDp52yA
2LZk8j/z42b+PSgy5V5g9n5HaMU5iLOOkIqzgugIKT8tuAPTGNvmljU55iDb
ShuBZYxtc4owQO6QcegVgXGgcfBd4Jtguzstc9eDyYlV6BX/e3J8wV8mxS39
j3ERUX8cOdv3j6Nm+344JsjyAURLYLKba1zNNTVUYD+3QT/goES7xtDUaZ+i
wud8uoRMENmbPVq7aX4FfzWW2kuiRihqKnV45ULrrtfmcYraJDic6VajGzlm
vBJYq8nYgVvYlch9nlHttthA3s6u9RP+rG+CdQ9u9pa5t9tKn9HGMQWD8JZI
mUyMN1t9WtM397mTsanPjYwtvZoztvZQ0rfjl2CrpFV93gpa5B4xYqrVA/6N
+GUi8V86w0HnQPU3x/gv9KLr+xDUi+bRq1PaaE6PNt0TSpoIRBMdZFXgkrX5
EWwQmEaHRWUaK6xw13g/HpnEALXzQLV6HXlj/Ll4dWySCdLVsXPMf5k0SnY0
LQXRcpzOtAqmB9uTfB4tya51lmy6TFG66ZKzZPOlJ4VVh4ErxZsuQbHxkmB2
Fm28BITDuOhchrH+XVK2ZevOOw+XxwKviqeLQKlpIFBF06ARdWJZgLMRozBA
QFoFADMb8v2dDXn+4AanPloS5vcgIG27I6zyTUfYytfhisJWvCYYHaErXnWE
Ln8VKHYO4hWkmmNu+RnGNglYdpqYNrf0BHwluKRR6AX6xtmG2lbEtG3WMmQa
tsgOgJ7tB13b5wjK3QOOcvd3I+em/fD85LnfPj9p2p+eH9ft8wFjjNf9E2zE
qg69groeQQMfEIsu03XSU58fzeDXdEnXWnKNeOHEC/1gF2pSDZ94gTNJa/h7
IWzCkavPD6mUxKkDcqT2+emcoPCsBSQq1em6+VhjSbOALkmiZpLQFbmE7o9Y
pC251LAlGj/vX2Vs6v/7jA0Dr6Vv6WUnGdrO5Wi7NzeFJrZuhxo+9tStz50b
N9uKP7ekTsXrjF66XzfU3tLjJtHXw1veNWCc4TzqE84IZbPgcMKzgU195lOi
Z7GlILL3UxgbZ/Fp1/rp19qcvJRnpvGp8/t0CofMZEYT/SdK2zRV2hKtEnlN
N+41eXe7bnSMDGRHo6n1CwrS7YDZpv8sZPIGuCY6/rg0dqYzH3xg2ebLFKVb
MJqfLKtGOpZuBjoCOyUkJnCyGDmpBnByxbpTzqNl851NxTM4HYtnyEDH6UJX
JCXQEaJwGihbgLOhMACXj1fHj/0pIizi29CszXfnlp91RFQpjvCqtx1hVW85
wlYBNSvfAHpivMYpanGEAT2ZEkLAd0gRy09DgBKWoxKeRG4CQz2QocDPBkdw
MTb6jkMcA0U8Chw9AnEYVPEQ8PQgeM8D306YV/r9iNmpEEvEr0bOnCxIn02M
GH172sLBrdOS+gritek4kv9uaJ47e6eh3FN7U1/XPHN1xXd8VVX82Ws0zCIK
9LIWgEWlofpCgkZHFDcuajohE1Q6Juu64DsoGuux4GNdRv1Ylza+BeskXZ8F
NbcYA1mTC/404CBcADCtJWNLz+sgZh8BEy9nbO2uNsUUjY07iIk7vLHwwS/t
eE7J2PHc+fnLu+31m+/WB3+pjf8mDrbREtSXIDgN+c+ejuYvQOAPJ3IamtN8
+sqnX4y2vIN0o8EY1+sz7B3Duer7NvRmIn8hYSmbyQr5Cb5npwl8/P0yO3//
R51PscTGZv51Zj1Fsp46yVSJCXdnOnWuaEH6CbtOczlQahNaO/YbanO2eLfJ
5Ynh5i9DAoyOuljz3fo0C9FRdJyCUvohL2Lg48zKRmf59stAQiih2HZZkJ8U
rT7iLNt6maJ0K6wGuoLylQJxS1gIxFdoxZWArpZuete5qXq9s6lkpgTFDMFA
TD2hRtEM4iqIJZRewNbpzgZgbcMyDKgDc9ckTflpcVzUQ9/YlY6oNe86omow
LjgiMVbbHRGrgb3V54HB50VH+Kq3BW9HOOmrSuLXkchcY4G8y1/hdvaMRuAQ
IHBIOQhs2QmIRhBaIG8pkLekHu4I0Be7bIjAh0FkMQ7dm5ax9YHvwqq7vgvK
//JiYuY3vomZfx4fEfKn0cFTfj82eIT4wfg5kPGag5e6aS8WydovFfAu+vgO
b/kadJbTS23EsVkhOoU08IZbN3UWFs2/EvXWUus+3KBOo5JdesiIKLvU0ERq
iL6SeUumflwFGQsF+Xr65l4fZGzq15qxpc/1jK29iHJIwx0+qvARDX2weE5C
BgrS2/PKuiYP97N2N5vN6vtyWbo5IfzVYfWHj3sVFBTgj4TTL2xLVMqBcXFx
u3oOMrw7O9Udf4SIfo5I7e1SJwqxl3js7L0eV8cyDbHiS5iZ9AZFBk0PZO9h
6GlJXGQvhAbRzEJ8v4nPPkRKknmV1BlVancMMQ5KiciHpOugk/YA5l+vTw01
3U2ZZrjbmG52nMm0SsQv+f72eLMzKWetc/muy87lOy9Lzoqdl8Eslu+8/KRo
zREkHEUZLrfBchvSCjgnMdKVAOnMSDPnvpXpyCtiVVNxoI5dgSJWgFnFM4Cg
jcC0BhZwJCwtznr4fBxYdmzZ9EdhswLvobbFrGtxxKxthrjsiF5zCeAfveai
YHDEAOuia94B5kGsvgCsuwDbIqoV0PGI6reAfRCr3kS9rHxd6EuUC1v5KosV
50A/Ge1CK05D/JxywWUNsGzQqBdcCrpZArpZfBS087BjTuFB0MwDEPscs/L2
gLfd892o4NQfBkye+18DJw4TP4fmiGBg7z6pwWc/MnZJrgnw1Z408oxuE9+N
5731nc4IZlSTVNVb6zKhRrWvvo7657XQDKc662qz1i+idomYNb/5TJcI95dI
Ii6APpcztnX/9dJNA9qAeHZV4RjLBKKZspQFnABL2Z6x87kbgYs9og1GUdz2
cu24f807/Pk4VRb5aFn+yNHD3h4wwuudSbNBc6/OiO8hyL8NSuz+wfSErq3B
ad2uReT7iFBA+rgcnu9lD8t10yI0x02hoJfq6IcbkZH0Bmow00mSSRl9LDyX
2TiTN82mzutNRRPL9dHFxcW8m5QMq/gsGxeq4mhhk69c0eIfZf10TpDpu1Vh
RsfZTAuSkFtP693j6e4/ZSbPB9pdcK58+bJzBcZLEMhKxswnxWuOEDslZ/mO
y4JVo2XZNh5bm1UxdK7aeNp5vCISCBnI1A6ahCWBqtoJGheBp1Djn5CL7s76
ZTMgAp0HcgKcefP8f4hJLnwQXnz8LnJxft11x/z11xzz12FcdcyvbXHMW9sC
XJu39rIwHrh6CeKiI3otcvRd4mhkjR3UUYE4D/E2cTSi+k3gKcSq10EiQRYr
VY4CP1e8AgH8XI5xhnGUgvE0pPwERCPnaD3jKPAzGPgZXHyEcbToEEjkQfC3
B78fFZwGkXpv1Jz5X40J9v1yfNjED6YvGnY7aMng1plL+l6bnWq7hg+dz9Mn
L8rmgdj5u9zoPwXdOLS+R4Xe0VLngRh0PZW8R6XjqJkg6edWCTrtk1nrj+sd
hKjRjxlN40UwnddA8D5aurn/nYwtfd9N3/4cY2AGK0DsgHeikgnkMzIy7iRC
nl9U63MicJHHCFEUOQnNK1euxCn3+J+eqYMFnZGQdbNYfSwWC76JixHWf6Q5
edSL3dcOm9y1Yegkj5tjpnt8MX6Wx6+nxXUTP4zK7yXIH0Xl9YRaz7bIvOfs
YfjLfKG5+EOZ6kuuITmcj8y4GpRg/pJVcKb2Vjn7VQTem8Nf4tX15vyvTnVR
h6nH6FRvT5ll/iY/1HRv3yJQvyyLgXgnPaxKGOTMW33YWbm3GUhRuQfItXI3
uEsk35OS2iNExOUvwWpgoeis2IXbKnY1Oyt2gB7uaMZAV9oMq8u2Nzvr1u9y
NpTNdTaVEu8CQUmJd6CLajSWEN+cDRrnmP7VFwVqsTvT71H5otk/hCxc5ojd
eMMRt+kWcCxu4y3Qv7iNNx1xG2Bd3Q1HLCxj667DtvnrrwoycBL4uK7ZMa8W
dfOSiGSEJmMM0nHNO0DJCxB2oKUC0gl0rOZ0XI1yGV71hmCGEui4CuhYCXSs
BDquBDquPAuUBCouPy0CH09C2gqtACZWEBOxL7YMxxLnltUDI48DI4GNpchG
YGLx4buz8vfcn7p47YMpSavuTkkq/4vfoqy/+CVliX8aF+oHyXxC6KAPJ4VZ
MWjCB1IOOabvzXQZzc7afQY+warOu4PJ3MSnfOhNpqgOPeMxNLHT+vlJ6VrS
t/b4EFh2G1h2PWNbL+YnOad0QodMw6WRKCcrmUC3jC3P1Y6fbRvYtYeZ/x4I
vtGCv59e9C+oxv4rKJuI/yNBZGSkHBk3wxCZ6BcgG8T1otTlfPfn5S8GjDHe
9JtnvRpZ4P27mHxolH8ek99P/Dw6r58gtUbk+oATVdUOpy+YFLWhqE5zp7d6
M7W3fTP4FHrZrn9VeBYNRKidNa63kTUPylqD//niWMP9DfNM2J2ZBS0M5BXU
rBi0jsvbk8jFZc6q/cicyn1Aosq92E5buffyk9L1R4huIpaicwVUbZr0LecB
nGOMw+VOYN3OZufK7eed+1dl4Hzl0kDwn03IsdJAzjXQNKg34pLpm0RkM0AZ
iDVnPSwpigLhEMeXBYKaHisMfBQ4I/A+dmXGb2lzJEDgMn4zRivUW3EJLNx8
S3BHRgIzbzIGbriOLHTEojKuvwLRAky8DEzEuATa+C5SUEA6viMMYlRcY6eI
WgNUrHkblPEtoOObEK8DJSGqXnNErHoVFBKi8pUONAyDBmPYipNAR+QgU8RQ
UMSQ8gZgInCw/Dhw8RhwkfOwBFSxGBSx6CAo435Y7gN13Cv+faBviGD4erBv
vy+G+Jo+GxNkuYS//rmATW10+Uw9ywDm1KjboPlMMpcGbXgApxBv9bZTC26b
t52rGS6x39Kesd1b5yntYDNRzz5YurmfXWu54eBAR4YxUZO0VZnkMpnQZcHn
bBY3ogq8KiW5i5RfkjLp33Ob7Hd93H27dOmS695Nern/KOPBIZNNTX7zwbjF
265OS3RrDcvy+Sg6vxeoG0QuRs/3I3J7COK18JxugnwtLLsbRFeMi3OzPdiP
lUHrj/WTUrtPxzlN2Tq8ut/BbrosZ+uUEMs3KTONd09kmDnfrHq+sci03j2W
ankUGxPqrD7Y7Kw6eNlZdQD0qerAZcHoXHUAfOF+LZ6U1R1xriJCclYCKVEA
kYZG5/KXmzkFgXqwXLX9DefxFdESMU7Ssw19JJRGYluDPpiqiShvEpHN6Dxe
FPiofOG076MyaxyJW285ErcB1ba2SY6EbW2QLuK3tTvit7ZigJwB51DwttxC
0jniN4HwbQLh23gDxXDDNdgjtu4qBKfc+mYReQdmtPai4EWqB4SDsDtiiG7n
Qf3OE92iat4EBQS6rX6DUw7oVoV0Owe0e8URvvIstB9XnoG7HLbilMY2ClC9
0IpG8qDIuLnlxDgRKQdaO7f0iGNuyWEg3aG7QXm7vhsXlfdwdEjaN2NDg78a
Fzrlq/GhLwrineDMYeI1/K1gQ3NMiRdrytX9rK/Erg1p6/pKJGKZNxs52Oaj
9VeqbOMsUyDsGTu8kWLXMrb0wv4SFLXmjG091I4SVcyAs5lIMqAS8JLItJNI
djYk0zNs0Hiz+lOm/1c2sf+nyw3fkxkDljEULGPcgDGm9aBfrw2dYnpv3GzL
JexHCc/3eCc8z+t6RJ7PdZAv8Xp4ro9gg9L7dnjOcx9G5PT4MCK7+4fh2T0+
DM/qcSMksxuziuorJZpNtFC7TWcVkUiX/WKtv54aYPprbbz5biMR52y2JlSZ
VuYBqTR+X5Yw0lm8+YRz9eFmimqMQ0Ce6kPACaCSID0p23AEuYRMAt3A0uCs
BDYBgbRYuY/0DPwk0qkZKYVLAeUN163beszZVBZINBKRRiJyyIAUkpE12CWC
lClGtlC/CPjB47DcsnTGP2Jj4+9FVb0mORZsbwNmIHkSt7cxElG0AyeQSQYk
lcokHmgh47fcQgW7KSKThL7ApesQ1yAYj2LrWkDGmiEuAZUw3gU2YbwDcQG4
dIHxae15xqc1bwGngEs1bwCfXgcuvQacAi5VA5eQT1XnmHxVnkU6IadOCR7A
J+DRCs6n5Y3AJ1CuinrgE8ZxUDFQr7KjRKbg0kMPpiavfuCXvFr8S8DiHMH4
tV/igj9NiJj6p4nhfp/6RvX6cEq07VZwurtIXR4dm1iiizISowzv2le773XC
hN0YUBraMrb0/iBjc1/sXlTpovYpamJk0ouRqlO0zCJxymZc2gVceum5M77h
tjG9BprpFet/k0vstzosXb788kuxuLhYWpwe27Wrt1tmF1FYB/HF82OMrb6R
VvX3TfE3e6HJJYAPzPNQcLSG94K0hmd7fxGV3eeLSIgIjKy+X0Rk9n13zlJ3
ZJLMf9kLSNQyJcb617hpRkfTUgtxBgrm8LDbApTmTKY6iC092J7s48xZXuus
OdoCgK452iw5Vx/B4jDCHSj0pHzTUVzC1qqDzYBqpkuXmSAdaFaXEnIJzBxj
UTM6RFqugOX2unXIGOSLjO5O5JLTUPKM5LDPBuKPyXm8OJDzJ9B5dNkM59LI
yd9GF+92JO1AsUna2SY6FlJ14c52xiTglUjskohVC7YRu2AdlFi0CiYgWCvQ
q1VbIr1oCXKFFAN2xW++gfqFarWJs2tDiwj0aoYmVmwdEGv9RYh3iWDz1wG5
1mJcgLCDTVxzXjACt97m3EKteoPz6jXs63wVNkcAtSKqQKoqz0CcBskCnVp5
EocJmwRvRxjQKqyCUwuNIcpUGTeGZaBRpYdApw6ATu2Hhtr+B1MWrfz7wBdD
IOZ+PcSv3xfD/UxtM1PcVBJp/EndRgPVguQa/sK5USg1gkildCdjc+8vlm4c
eC1jaw+2jnXSy1rjqUPDyay3cKQ8wJjmhau72Yf7WaSsggVT/j3CsHlXtgmS
JJV16y3tGzTeVD8xzNLiH2drmbHQjf14MHAjjPgBketO7SU3wRPaS25sYC3b
9j6ozkfh2T0/Cs/q+VFYJsTSnh8GLvD+Tehcy/2iMMuDMzm2B2eyrfch7iI9
iCRYWCH9nnH5sr/nJk5xLt/zBrBhzfFmwd255lizs0aLFrY8CrJztOVJBXCF
JOhIi0uGDqOkIINkZBDjDwumQkZnJVCIlIjHmpdfcR5ZlQjaUhZIKoMmTW0U
AXNkZAqojFrFmhoiJ099kYs8EI+rEif8EJ+27H5cDU4FWfRSO1JoV5sj6aU2
XDJCAeoX7mxDVlHoKQb0WgCrFmxvRXJtR4MHdeSUGiJSChUMjGHCtltsuRXp
tOUG8C5+M4jVZqDTpqtAqRZH/MYrYAObIeD+IKsEm2N+3UXGLeQUitY6EKta
BQRLcUSjaK19C+j1JpDrDRxRqHkdvhMFxIoEwYqsBkZVvwIG8CwYQcaqMMYq
iCYgFs56AWJhJ0g9qGdoxTFoeB0Dbh2FOAy8Ooy8ejB1cfXD0WHpD0eHpn01
McIPYsqvZqaOuROSO6w9LG/wDWi+X48s9GyOr/RC3cGe9Vtg0UBz+l3HuVJo
2zLYRA5aZoBVA7qYXC5NcnFlJ6nNS7DuSnSxV9HEEJtb165d1f+R5f9KGjZT
2IQ/boD/VU7I86PMyeDYdoO6tI+abr4yfaEbUxdJCcP/DgNZA5whdeF96wbs
zGvzCzf/NT3c9mDfYiuwww0E4gxss313Osvt4elsd4pTGFnu38I6JMj97Qlm
Z3rZWufa+mbn2uMoFGvqm4ktEpIFsAsUebJ88xFcAmBXH22GFjuoDNGkGqmi
1g+3OKswDgFNDrU4V6GDW3UQD1EJzNm4Y5+zsWwWa7+QkEjOBio47EWUDKrJ
WBPcnLuz/P+5LCXiu7BlOx3Ju9scyXvaYdnuWr7c5lgEwZdIDCwQ9wz8O9GN
JSEXdrS6YjtKxcLtrRLxQUY+EAsWAOwhkAm3gCacAY6ELTcERoN+HWmw6QpR
IXbTZVCYy0xa6t4laYld/44jdt0FoIIdqKCQZ4tZ+zbEW8y3rXkDCQD6ArEa
4A8Rtfoc0OAVR2QVTkY5A1QAYak8hb2DK5uEXkgBMG4NYNow6iGOEwtCKo4S
C0LLD98PzNz4wH/J6nv+Syr/Oi214JtpqTnf+Ccl/sfk6Knf+Eb7fT4tzvNj
/1jbdZzcla4h3QeHi9jAEe9OW7rT5a2yEPjZZLu4pVLjrVkpHiEjp9EcQvV/
mTGuXbt25P+hy429y+jV5dNPPxVra2ul8uqsmC5dhMPu3uJv+o8yKvz/u8Lh
XlQL/L+wmGLkYLj/duA4w4ON802y45VsK/okbE2czbY5APcgA25okXDM6f6p
LNuPTdme/y96zrina+svi0/XHofMDWgXEe4yyQIh/cnyLQzjhHgTAd3irAZt
qD7STECv1kDerAH9YA32hEGmhxyP6b6hLNCIsJZZNj9ewsDM8rr0eEOK74/j
QlIci/e2wxViaYDytmMxIJqWe9uxDtsA4wBNQjkifzehXEaYixzmu9pY1geE
72rFGkQrxaIdmOYB65j/sboAYM9Qzu0UNWBUF3UTXNQNWDKYXxN8AOZXwUC1
sNh4GeISwTu2jkF7PoYKbwyA9zyA9zye4WMA3jFrXgOIY7wqIrYBwZHVZwHd
Zxi6q05CooeohOReeQIw3ugIB3SHUdSDf8I49mN4+aGHYZDfQ8oPQRyE5skB
yPX7v50Ul//3QVNC7g6eMvHL4f7mLyCuzivDeUuuMRiOXle+3vWczNL122HZ
nuOfH8H6fXm67vLo0SP8PzRP/gvksh8NsyR26dKlsvvzhsMjp5lf8ZsH/iYJ
Rz49rs1ZYPvzgjkmxwlq4b6SYyWM6uGZzeAJCdpxKtvt29q4bs78tS8BjtY2
YIoFcD4BqKohPgHICsbHUEI0P17D4ing9TFL0wThmuPNWMMlNI15sj6GzkaN
FhnhDLseXZWAkEXEauAtBeMOuIUv1Zd2sCQSrhAIzwjnjk5FxlU/JSdGPUio
PuJYsq9ddCzZj+YkZf9trDlS9tEn3JCyt11CgCPuAbqL9wCSF++GWjJhmgMb
C4TsIsD0op0U5G5aRZehGY+tBDI0ZGwoOMC3Y7cW5GwMAvV1hDQEAHrzFQ5q
sC2Qs+M2Ylx0xIFtia2DfF13AcBth7ytOObXnodggJ639k3HPAI0xusqqCF3
nwNcvwJx1hFVfeZuRPXpBxFVp76LXNX0MJIQfQKQDS2BlRj1DNXLjyGq0cQc
EdwwZSOwv/VNKHk4NjzDMT4i9qtJUVO/gnT98ez0sXci8kdADL8WU9z1WkxJ
V+41LqbU+eyfOt9tMv44y7R/z2uwSXAmHFSc5NHNsAQ8xsdjRxvu5s813WtM
tzjO5Vgh7bxC5dkcKyKXcPtKtptIwDUQhAG8d4+n237MXxIMwLoALUeErgmh
+1gXT1dsPYK4JQRLT9bwkvBLsJURriKi1YBgBTeNCXfTSwec9ctDEJ/OE+WA
03JsdJahkW5gsMUl+wQ4pLwLGDU8C13ncTLf9WwbroPth4um/3N5Wsjfw5Lz
AFipBxCyB9qNhFsTIhWwy2OfbrkPfXTKXkjBgF6B4IvoxaVAOIbiZdyQ/FIr
GRIIwZWqybW3oTehnK0zKBI37K1oSagB3CqMAxCjF7lJkbgNgLztGoAZAoG8
BYC8WQ/kSwzIG94FMAOQ1wOQ6+yQpQHI6wDI696GACDXIpjfeDhvzWvfQTyY
t+bVuzEA5GgAcjQCuZqADHEKUvUpSNFNkKIhKnVAxvSsMx+hFWQ87gVmbQLj
UXPff0m1IH4zPT1PMH41Ocb/6/FhfreG+o3ME/C/lu7SBe1xwL+HWPZ7vvQf
Yx6Y9YL07qU088WbmeZPzy00f39kgflBU4YF8SohXAm6Nqi5UZxG0KIRlhG6
325NHfg4a80e57pGFP/GZiuB1v0JgJTZX4wGAGZDC5pgZ019yxNYPgWIPl1z
7PJTTLoAYYIxAVewOVcDkCnLatHi3FtXjJAlnOKyQUu18AnbfLQuiC3LmWkQ
KPsyAKtRxiGNEGZgJkCDq4At8qOI0KB7idsUR9qhdkfqIYAxVADQB9sZrB2p
+ykAUqmI71Sel9spL/MsvQ9NRuq+NsQ3ohtDIoTLDOF72tUQ0YxgAbhNJrP9
MtoI8t6I7F0ssDVqJIz3I1Cj40b7sZCAzMCcCFm5A5i3NAOgMS4BqCE2ApA3
vvt9fJ39x/i68wRmyszrz3NA86y89g2I18BVvwqZGYC85hw1LM8JVp6ZEcyn
wUmfIr9BgMbMTGAmryGi0YBMHIZGuuzIZ/7pp5XAghvK9Pwbl32TT/2636RF
n/caGX2hW/8ptYBh/JmboZB2+f931+Xrr78uUX/zqiOGh4IHnqS+98neAJDd
vby8Zs8Hc1s2zXhRSTFLyu0ci+CptOdYb11ItXx2bpHlq1PJlr+eSbfcOwmw
Rgyf4VjGrHuGYRpNwz8XJIQ51zVhBl13AjW99kQzYhoDPkEpsZT8ZMW2I4Rq
V7SoKGeOg9wwemDI2RCYnwURQS4+qSHjASVEMwXg/fGGfSecDRVzZISzhAiW
eTquR1Dz5Gwk/EoqktVPbAus218Q4CxI8P82oWrf3eQ9lxzpRwG86UcQlWlH
2h1ph9sRzwjlQ2iSAdaONF0gzA1a9hZZjUE8dX8bhzjmWai5/IdABoQSOnpv
WXXgLI/TklL3bvxmMk/nvI35Ek/nIiZxNN07Xc1Kyt47blH2vil4QHnjbuK2
6/cTt119kLjtysPELc33Era26IAOnnoTZGwMBDtk7tgNF7AjRcGpJOtZwqao
fRNneL0h9AQT8hq5ag51ADpAvAYsNcA8EmFedfIu2Om/zC4+9Ztp2W8os0o/
gHhfmVnynjKz6LYSVNSuBC1rVYIKbwHGb9mn515tGxW+8cPBM4pfH+CbJu7u
NSpaMIb2GTsvtM/omElu3s+PkmV5kMFgMA4ZMoT/rnqpPm2P7wB5/GVe/NEN
nUuW+vgPsmxZPF5uORhjEgjvIsAdQd+WY4GwUrTmWG+8k2q5fT7N+seTyda7
9cnW+ycybAT20wD6UzluD4uCzY/LdjU515/ETor1TTSg09SM8CcKiEgBwPIJ
aNQRCRjyGwn1gqgSAxnQSAxgnwD3DdijwRK+FsiEx7hkoG+h5c6ttfKTxvIg
QX7SUK7lbwwjYt6ggTwIIE7BII8eJUgwMB4A9tdmBP49PS/37uK9OLV26XFE
YsbxdkfGMR5HAa5ACEBZ2tF2rCEzWBzGhA7skHi6J45wRhArZM6FA7e5Dqjp
3sC5QCRZsk/1NXg8yPrUENU0wJGyh1kbiVn0xejOk19iXSywK3j0+4t23fou
aefNBxiLdt7EPhWgwGQobyINwM5cB/uCcQ0y/hXI+BBbkAQA/i2Q5TcD8De9
ywnwDlgXZlviwLbEQpaPdTEArAt477WvQ4D3XvPqf4ZUvH59TvltJWTlb5W5
K3+jBK/4tRK8/FMluOJjZU45xofK7LIPCf6zEP7Fd4AC7YwChUiBm9cnxB+8
PiFu/7lxMS+dGBO9s35ESO3evhMW7Oo1MjLH1m0gtu9iIEb8S9zn6jexl5JN
XX7/2Uf+Yhfhk7wpBjsAHpEPYSXwywh+Kq3KrWyLcjPbiiFBYRMM772ebP3+
QKLlQUMaMeBxaGwC4LfuJKAbwG8g7Fv02KcA9D+t2LiHhKC2kT4zIcDyRAtD
fWMLWHUEvJkAvwZ1oF6NFo0ER6oT0KwEMcciPYXqU0D80/rymYIIZZBgIQbU
UwSyKONLXEcMQKuCHJD1IoBBFBE5W/bkBTjjwqY6Mo/jDLvM+ttgHzKBDJn1
7Y6lGFg/TkvJsfQYQBvoAbhcepSIQjxhbAH9OHpbx5L0Q8iG9MO3gSpaADMO
3gE3dPC2YAapuK23Suwzd/wu4QCuyNz67yFjtLvtweLdt35c/PKNb5NfvuXy
RDI5fRPrmYe268Kdaq8jsuEGsoG6X64Jg3WMaIa4zL3PRdX7gBy8g5LAvE/d
+b/OLDh/NWTFZ0p4zZ8h/qSEV/9BCavC+FwJXQVR+XslFNgQAmyYC2yYS2z4
RJlT8StldjlE2UfKbBSEEow7xIigZUwQApe1iqAINwU3JTD/+jv+mcoXIAUY
r3j2Ggu+p8s8CPF1+3XxNeVal8st17pcv369y+eff87fX+xy7969Lj/99BOS
RH2nqjNysN/1lJ/v09W0Onm8fHV/tEmTBKIDSERrNpKCCCGIWBqJFsZbSort
vwrm9PppzeE3H9WdbHkMXEBSGEgRJGQF1lzKIMhPKzYBH2A9DxCBJkaHZkYJ
kg2oYaeLyz851/AGApqiRs4S0hAsbax9wJmzfdcOZ8Py2UwHKlATmC6Q7y/H
/I/+6Ek9iQag/jGLwMegFxIUXCE024SNgSDiB04HJ7oEPUqPC3yYvGLD3aVH
bziyG287shrvQMCy4TYtMxtvq58BX1kNgNms+nYkE9SAO6QxIpIHOMJE5jZy
BdlxBMu0I8CNw1pgU4LUAyiTeugOBrYiDjJF4ZQ5wA2YRLbLxG0XxL62u0v2
tj1Ysrf14ZI9N79N2Yu+SGs/qyqD63gPkMjlhdoTi3bz9gQ0ozGSdrVSa/mW
MBR4dMuRhMqy44amLAu2XgVGIZfIXt2dX3fpD2GVN5V5Gx1KzIb/VqLrINb/
VYla940SVfsXJXLt10oExpo/KxHIo9WcS9VfApe+AC79XgkBLpGyEI+YssxB
LgGP5iCPQFmQSzNLwFwVvyeitAgejErorQpvtkxOavhwcGDJh4OnlzT0m5C0
u/fomHKI8L5jYkJ7j4qa7OEzaDSYK+yH4f8hCP7suy80ev8Vh9iPcFqiQJoa
Vs80nj+/WBMW7qf4Mhtf8mvNRqFhIqMJjYkYZbr02iLrn0sKs+9tPHPzwaYz
t77fcPr6I5CSx+uaLqHgnCJaMZapJCMR0ri1DjZgALck4pbMeNWk8qvFiMRi
ZJKJTC6OtTA+wUGPvO48VJOMTEH8V4A0ULO4vlzt8eFEQCUBjpiRN0ggLZBQ
QLEnLGZKIE4ziXqqSQvCA5fTAcqDHm3MDvoxMS3Vkd0AsANCAXqzgVI5J24T
vbJPuOo5jQh63MdAdKPtje0d6YbbQKmgRktUrkzahmomAQNvAwEpiH+3BYsj
nTEQFExdvgfLO8DHO8DG94CFSDnSqzSSsVSSL63xIzEC3ks90PYwdf+t71L3
tT5Ysr8VWShgX1YbWrw2IzFN0jdwBJdcCVM4y9TWO+txBa6Bct28F7fx+q+i
a393MXbLt0r8tu+VuK3fK7FbHiqxmx8o8zE23QOW3QWWAdOIZZxpyDIKZNl/
KOEq01TVqkaWQVT+Dpj2O2JaCPm3z5higX9DxUIPN6uUeThgGbCNe7hl5OEu
Tk1/Cz3c1QlxB14dN29309iYnYdfmFa4p9fo6D29RkUJIjo4QfIVRVEjTzfX
+/alnbfbO3CNDVKZvDw93GqGPyeev5hqJq7ddnENOAZMMxDRJD3RBMYy6ZNV
8ePurTr4lmPLOUy/VN7ffPbWT+tPtDytbbzImCY5605jMwSqRDeIp8uBYaRo
J1touY5UrIUpGVRQzlpkZBvJFxKMhK1TEdu6dx9QaxZasgoUmHK98iCrZO7H
SImYhxNEtROqLMjl7Zjn44SS0BOiI9S84UzB8Bjox8hXFvho9uwZD+I3nAAI
ZzcBmnOakAQ5TXewRp8Maom0g/WMdneIejISk6h3h6kdX2Y23AHSIr0MQKs7
nF53KJBgaBJpG6dYxhFOtSN4drCEgvQw/WAbRCtpnYi8EiTWl8YbUmInfWky
EkzCHjOo6vrMsK42o3jTSes/S2bjebvbhSHAuvbvY2qvtsVs+EZZsPuxsuBl
iJecSuIujEdKwo6fIP6hJGz/UYnb/ncljnj3HfAO41vg3n3g3H2ubg4lChQu
itQN4z+BcxBrvoZAznHeaU4ROFelOUV7yApyivgjpxWfClbNKTLOoUt8XwkC
zgXpnGJQ4S10ijfwFbv8azfGxuz6svfo6PbuQ+ZsM1i8art0EcNESZaKql6W
iqt2CSIO7YI9fPvttzVOWf699hT72UELdp35TeprPJrzonzpfIqZKEiSl21h
kqfKHXpGKG7xmiBx1bMxOrI2lnIDPl/Ptl16NdnqSM0vdmx9DR/SltfwgUMd
a44tr9I6KA3fbzh17R91J6/8s+4UGs/LXByRs9LT5ZuBp6d0EomdcqSMLUwd
T7ZIUDQbNYlsRuaqNlTk5GWNtGaQwiQkD+pfkJmPbjAWEit1LSliYX0F9TlU
qMxknjNI7WcmCQS1LA9CVYSNj1cuDfn7gupdD3JOAJ4f5DbBn3w39+RtRy7n
I7ITiXoSCYQr1Y25J+/gEu5JbhPSL5d08j1d3CHtzG58D3WxEZpZIJMSktaI
XEUvCpR+kHms/bulR9seZh5tvbcUuzqAnSBawE2tm4O6/9iSCaARezo0AdT6
O8h+HmgjWsooe9haaxOsnJvt90Dgvo7f/EHLgl3fKYv2PVWS9j5VFmLswXgi
Kgt3PxH6AhefEBcTkYvEx38qiTv+SXyMBz7GIx+3/UAayPj4LdPAjaiBEBu4
21z/jNus5W6zpoPbFIGMXwq9dWaTN9qggRe8/BPNbLJGG5dANJtFum6MZW3g
NFuvT4jd/+GQoHJsrf2m58iIpp7de58d1sutuqenaSFIXwiEiBPBBcnWvXt3
jVfyv0dDNkfJ6GOz2VbPGym/uS/KTPRrz7Zg94aE/EP5o04MKqBBR+02lWpq
fJE6e8jd2sZLJuQZo5zh7pZX2+5veuXWw41nb/y0/uSVJ7XMgQK9TECvvYxe
p1p4qHVkDYijiEzDNh9xjQKbdSe5J5X0hGOfoNxw5BW1wUaukEjk6s4QWJ+2
rFpPlXAkn8S3QMa5iiBBXccOF6j6WBrZKWdmVjA7j5bMcG7InfPP6PS8B3kn
2x/kQvDld0BC8WFuUysUJ1oF6bvcE21AyXbioAn5B0Q8+R7y7j1U0PeAo1AF
QYU4gZ+AelS+R8qJmimTaTWDx719FxTzu6zjbQ+z6lsfgEG9y8wqqClxsv42
WVRsHyINsW3IXGk7tQuRlhlIw3Te6ahqJdPJNuQfjTExFlI3Y9u95Jdufpaw
9fMrSbu/VVIOPMVfa4LSqCQfeKok7+cBfFy0lzgpQoFk3PNEGO4SRi1UgQRC
7uSkBELGg0C6jOl3OmN6nxtTjL+xJiAIZOQ6ZkxZ8+8/qCslouYrIOUfgZRq
8+/zDsZ0rmpMl396e3Tklo9HziwV/xw+c67g9s2qhBkQ01kkTv/bukTfB9sS
R323MnLEw8Tg2f+RHB5yJyM67Mq4Qb1C3Dy8jf8e4dhMWqO4YcOGAKPU5Y3E
MQayntx2EuEEGwqeHQKXz7TytKVdNaQiV0AdIWEdltLVQ7HWuzlVm0kHbS5m
mlD+/rHu5BUkFzEROOmsO9MCQWJ3mpUaM7Frnsi4njcN16lyiKWrK4aLYpM6
dIW+dtfOdTitnLX/gkj1ZG5AG9ROxnKVdoyvjI/alwKZ9BkexUTNurdkn+LI
PXXbkUeBzan8Uwhw/Azr7+Weav8h92Trj3lNt37MbbolYkUw3M872UZfI9Wj
eA9olHvqPaBU3qn3sEZLCJE2Mi7msBCInyLSUJC+zW5o/yGnofVeTmM7I6SE
fMQ2IxascVh/BymIS9iFeJh5DMl4lBqL5F1JEwXOwHRSQ70SQv1B0q6bn8Vv
/b2spB5+iu/gHn6qpBzicfCphOyDYv9TaJUQ7XigHC7Y+9S+cA/QbM9j/NGL
3Y+FUeBJ/z9n5wEexXX1/clsUQFsJw5ucYlLjMEF0xES6iBAEl10EOplV9Kq
rBrqFNF7R703BOxKqNIkENhxix2XxF+cxHbsEZIAU8So8p1z7szuQuy8b948
z7n3zszumsD9zf9/zpT7iC/dBb50xz2zL90KWoi5IPlSxA6Q2yLroGCY/5Av
xaoL86VYdYE80Ai4XbJbU/jXVyb6dLtOfLNr9+oJQlHIdKE41E4oDrMTCsMc
hN0R64XNkVFCZmSs4B9dKPjpCoT1uvzrq7Q5d9+yW5nAcdyreAeM1c+AJb3A
4ldff/31rz799FPGEtvHt7W1/aqzs5O2pNfH/+qjjz6i/QMDA/IaRD8HJXsb
ovIx53FPar3eUDUd9LbCi7cIo2Xpso22AEc1OVClyYFeZKEg6JSGC0Ej6pr8
R/w5epmdsKmkxRa5UxF3aiG7+sr1LZXtvfrsQ3ezSlp7gbG+zJImBYLHI4HI
GHAosYdKaKrXyNxZSdwxUWwRN58oE09sWEI4PVQekfSKQJP2xUkh1WRMHpN0
j23J+6TPMgWk1snyd+NQYI9EOPSGrpvbsyrzoBBeBvM7vLRDiUDSiBfCSju4
kTjsCSu5fDOsuF0KHF+5GVYCWllyFaIDNLODjYvhBxBL4K8UcIQIL8WtcNhn
yxAtvtYdVtSBcSOs8EoX2FYklngNw3HRVR5dLICHh7DmIwUC3EG1IaXsYbGR
PSzY2ZyryClqJoU/XY2Aw0iqbSeo4Q+Q8V1dte9bg1/eoGE9Ru6gwTd3wLA+
Z8Dgi3ECkPQ9PgDZyLrjA4TsuqMsAFl8lRq01kgugvuwapqUs18h29g+HsWS
R/vKo1TymEiCtV26HZRStq6A7BLZum653jQr7o+XXAKrrnn5Hfxmoceif62Z
7didsmSqcEy7UDgUuVLYowsUNsckCSlx2wRtfKkQklAjhMRXQ1QJQfrK66t1
ZT94B+V8YbcgPfu5N72eBHf4c+kdo+xJXNU1MCgoCK8Tvyy9CBEXYlgg3epj
nZiY6AyfwSWHPHEJ5JiYGHz0Cl+fjbcTx8Pn8E3bNnFxcRKeP0updFFiDJwc
TgRMVp2BdJFVafCSG5BogSkvVWraJKm8GAIh9ZeCSE453ngRH8CCdoQsnUw2
eQQYMQ4c0Vq48snvIxKSQS7becTYCjHmkWKYkdlVV3Akb0FrfTth2xHYj663
/cam8kv3wML2ZRQ1MZ7LwNNmleF9nIR4WbOEejMeZqgrpHRTTjLZZXFZbWFf
UYO4b1sC4qdkypjHDKmTlQyr3owuIa5Epv8NYsKXtVlBTreXhWo6A3KahfBy
AAJIRuBKO3CEuzi2D8guu8r20zHALLzsGopr6dWusDKMDtYD9vwtwBtSbAAd
Rxg9qNH4DQUxre4C4PE49B04RsaReB4xBxrDS02ajNDLvWSYMVtVUrbKKL/K
4AbMsbQrF30L0CEEU7k3pEDeh8lusCTW0Ejod3T6H7/8lzUH/tS29kinIaBw
yBBQMMQb/AsGlQa//EEeccd3guYy6NfnQJwYROCRd6QdX414DFwvwI6vamPI
E/ZklHn0yTziDieA1Qf7AfZ+hJ0CeDdIeo1qTdhzv2Mu2Zy+1i3O7vrg3YU7
/uoxz/efoYu9/5W+yq0rce0yYU9MhJCadEBISj4mxKWUCLqUGiE89SxEvRCW
WieEpUBsMHT5xZ/qXKI79bW3rvFPM31Ltr0ybf2kp162owdcpHUfRgCguJrK
b7VabbRpabEnRkVERNTAJi5gGwZRJMH5skajOSiN7YHpo8D5bOB5D+xbCT3f
3t4+DhcUXIiruChypN30o8/9Mu7SPoU+dI3ftBcUbWmuKo7ZYxXh3vawJSYb
bENpKimz5UEbHgiHxPUCJa7AteFCAItzAbZth9e91hO++ZiVVCYioqsoOEa6
0pJ0DJ4OjridsP2w/FGKLay/nVl8vj+9sFHMxJS2lChHzMqwHEznALO9ltjn
ZZmXEuHMEtyXSfvy4t0BckcMZo45JdNrMs0UKuSaEKcRkq2XLlyyMwFvAt6k
4ezUwM4KBzQz7nktmQ+624aQ0zmggqgv7xA05XgOQIw07ExQDqCWXyOQbXHE
WSH0d8JL2iEuSwEqX3qFPmMtCzj7jsUJgESdUQ6GW06Gi69S7dhUScYCM1Gt
NKk3fCAYy8V5V/6xYtf7DQEFvYbg0mF8hKt4GAgNLB42BBax8C8cRowhBg1+
BYP4eGX+oALVm/GsApYHSMCJY8YyPph5jBA2G258WQfSC6LNo1JzjwG+fQxf
QlY0Lt9z95MJ8zfe9pn2ClhdF2GPPlrYkF4iRG26KERuxLggRGy8yAsRWeeh
yWyFvxttRougSW/q8kuqv7lQZ7g6N/FTI2S5FyctPej71KuOIxkFuI5z+cOr
cKodgbVMaZ/i0KFDuCogumLpMF9bW7sBdk2W7lbEldDx41KFaClsbpN/8T9g
yA4ppk55UbXRd4LyXN5iK0l1VcbLmKWGPJSl0uURVijClDTIBlUWwEM+LwTB
gQv4ikTD+QAbw7lAW4zvVvrMV1uwt1VSVFvGHoOs2gQXjwM8WHWlc0vV5Rsb
yy7dzUQjXdIq8WahrOipET4V5bYmX820mCEIqakEoZgJPcb2Q3hNxVEFZDmS
IebNPvhhaf3ZfdYMPpRhU7DtAgrp55Q4ZLviMCwZvR/g49Tju+VwZ3DRBR4h
VCKPSkFTgYUjDQCoqbgG/TXqwzHKqQcwYKSioeJOeGk7O1Au8adC+NQ4Qim/
JlMYZtZZjmmvgvSWKsPFVykVvgoSSdXiwo7OkPyO7/1PvPfp2oNfGkIrh3lD
aMUw4BFSPmwIhQgpGzYEYzAkS+ADQSXD8K8ehEwijyithSithUNwQgaBhRhi
ff4gAopo8qiyPPpqxDHHDCePrcKktLzZUTcs3/bte/OCcr/wWRHTvXSe9/XN
mkAhM/2YEL+lnhei8THy6OxLSkG35RJnc10LOAamX/z76tSrny/a8HHb/Kxv
0Vyf8Uz56uC4WYl/wCz0MQbTAkDiWYtVONcCPXtNi+Q+0YELclpQgwqab8Ge
HXz8uLQq50idTvc0/NRvITbDZ5DR/+B62W0ET9qOHj062OUVZe0+L3VD3Vpr
JBD5kytFyCH1v1AtMvUX6YLKBWT0QjCuMHYB+QQUKQDL89DLeLYG2L4fba/u
Sjhco0QwFZLX3Vr9iPNliqg2gbqlmoLghV5J0NqYRFKK65sr2ns2IcDFrZTN
ZrJKE8mjmVi2r4U3Q2vSTYawirA9mrEGiZWCqaSjfCGFIepsgvZRdNE3I4F6
Z3ytv17Kki24xW0AFt/Jo8cb6Eg30/xn3l4UGgG4oUvQVKIwhVd24AgCKb2K
PUpnBWJE1Fa8B/uu0ecRwwrQvPBKbIhZDTLLoAbUoVXI+MqUw5YNtmS+Mc8G
rMPQTpt8MjD7ve/h99oD8gWDpvoBbwivRvzCq4YNYebgGbshFdiU4wcQ3JBS
AheDYWtrCAI5DSoeYvgWDQHChC/Si8wa/Zm08gguR9JKHhmCI4a5kYDvoKW+
ole+vDbp1FfzFoV95+21utvfN7IrTLdXSMo+I8Rtv6AUYrcDprHbLnG2XdpN
F35Yndr+2fKsz9qXZX/X6LPrtql+vGRrV9IY56hRYyZ7s4Wk1U9A5jlbspcY
aDV3m0m9BsNnpKVzMWwh6TxuQao9fFw2s7hsYCGMmyCQVHyK8D+Q+hS7q4Df
uXOnWus9/szc15XN5cusGKkhRCgVkzDplCjFpJSTxdLCr8LJ9ALltSY4GZg8
UglNAH6+1c/W0LzepsfTZxW7xmlDPKofdasEYzbCixAqIEUFJiuvYMC0Ym12
VYcssGh6q8Bm4QGrzi2Vl29llVzoTyto7MuQ5HWjRKWtBCRp5pEjRBrxRuSZ
0k5mTHnJhsqUKcyUMeXU0wsVLJJXK4k0PT4V4+7h2L1iewEwc0WIqAJ/qsU/
o4ZGlSa0Kim4ERJg2sprd7Rl7fJ+NX5IzYjTVMjEydJJYFmbtBF0ELH7dvW+
9w2aUw8MmtoH8K+iOfkAQToJ2zXD1Ieb+QqrBq4qGV+EVhjJIogjQoZ0GVEi
QRrx9QKlw8yuKoyyVYXAF7IVoj0Fp2pLQuiXN2Bcn9N7dV1ixfdLPGbftxv/
dvdK7QFBv/uSoN91CXuloN8JyqbfcQlOP3HbL0G09QRlnfth6Ya29xZt/oYj
0wp/ktWHIOU82AchnneNaNJx8L9fswvxj2KDinUIsamsrMTlKz6jN3bTZ631
MJ6Hn/3xxx8Xw3irRIEr8OKP3+GNRiOnwMMmOJ79ZW7Ym60UWH1dOW+M6mKM
vYocpi1ouuQsTQrXxq57IDeGS0E2CqrhKCVhs0Vxw0B9wwaOjQJ8bEjP5DgH
25D2GVr9bQihVj/qP4z1eP7HjYUNZidqa7KbSkbJQ+QwQNQyNWZpq5RtaiUq
3hYJLIiejWVtdzJLzvVCcsdquSXkNznexJHsQSn5Q8XDw0pxY8Ep8dDGIHO2
JxtThQkUJ3SQpvJuARMrgopwU5rAY0ApZC9q3oID8fg0Q0G8k1iod7qf5Od4
a01C6nW/E0b4P6utxtQPoMMRxFXah5ka7au6BvEe66tRijRV15SyzFVdu6Mp
v4w9Bv4KoljJKJSUTUZXRa0CFfFhKNGSll/7IajwvU/8cr6GCRJ5BiaNIeLM
A0PE6QcG7WnIiwzaUwCjthYPAK84MmhP4gHglkdkoQFUbRBYhmvVsJHksHLY
CMgaKCqo55gqKh6ys7zZztoYIc2EGGr13/NZx/q005+vCEy/7T1z0t15brNu
LgnI7Izeia9xjt+HTzrH720X9Pvahfg9eNssto8Bum1dkdsv/Bi+te3vAdnX
PvLJ/urcyn3dII79prKxVEMyrjl0v2p2zHnX59/2/M3PE6vOysrC1aWTJCK3
WBCLK2CUwbYffB7rL+7S95DYAiQ2nl7L/7RGo3mUWCn/w+XWXpZ0UyLWegzP
85sWjlPWlS6zNrYF2lhUYMlv0t06TN6MUibIqakleUMTSgJ3nhGKthTaEUYY
G8/5I6UQ/jZGRqqJ1sayZdbfRGqDhc0VbXCqlyFlUqYSshmgciC03Egc0ad4
YbOEbUfXpvK2no3ll25nlZ6/jxcqgUeeFWkzS+XrMBKTHENRJW49ekLM07tK
KDoCUfTKfcYjc5um9M4CSNK+ArMTZcYSL8zoWbWGJYlSRsizLBFGCoJSLRYC
lEV6Fru1Tve0AZ7X1x0+qSAuVUgicRkBfQTrsbRQDc4QiEN1rAYlrGhH9OCk
hC2Bhgopo0eftH0UvwokmHTyh/XHrl0LLv6+LuL0EPyjRhoeqCQGI08zBiNk
BhE/JpkWsqkwampQNh9gzzHNVKF8MggRPNZzLJ+0ZblkOYhm2fCFwB0df14X
ltW1Yr733dl2k+7NnuV9Y13k7k7dtrO8kET37SUdbBcSIZIOQH+gnRcS97dz
Nt2ROy4I/lva/ui7929taw/+2LT2yB1zCTe3n/JLHo0pvjv8+EDD7Nhm95en
LFO9+eab0m2llqRJxRflE1FRUXOlCxejYMze6m2F1zTwusckCFVmZibuHQ3y
6YGlT34+FUDxq79AWaSlLj7JDK1i+cK5c23VfGuKs1q6zkGaqDLbxkfoUhiB
KuN5tI4mqqyY9pmDUcXo4nhjiz/qKLQ4ajuw5tWesE3HSAHVlhbxIfGzshRE
FiYh7JCspbX5e1K/WfrsZvZ5Jfvwjayyi/fTi5r72F0+lgAykVRIWngoK0DW
QZMWsiQPhnq234SYfMmDHCg5ToVZA5WWGohjJcFmDbA5M+BQCSXwwpZM7lm/
5QBAclmBiMF8M8PWIURWX+VhgOhEVl/DkbQVgQyiJCoZf9UkkLh7BGEInyDt
pEBNlTNDSzTJySoYmtdDSjr+tu7IRwadEa1opPHBCGSRRwp5QlCFYogYUiCE
EackDUTBRO/KQto3gqAMRz8LMIZXDdWFld9vC9xx8eYqD3txiet00dNh8v1p
U+y7fWMPwR94w5HLcNpNOXxZ2CBFyiHogbzkA+03Qrad/9uyLR+0rzkogKEd
RDvLYaGHMkMq9EDCmI/75Gyx/7yHvmk63tT925/h7d1fBoThqR6rVCpTV41X
nT6x0NqiFGlrK9cjpSIkQkL5FMIRiHkVwnGecqnz/iQ1GLAPkVAgGAgDQgFb
rG32t/lu+dL5lCdZm+lQWlo/JjOSGFVdeQgS9j0p85Ks4WYCajN93rSPQSQd
Q0JUXZsq2m9llly4m1HSeh8oAVLwfQWMjc255WJOgoc5BcPG0XRDGxVF2GWD
/1UtUy8VRNSSEMUjR2QMCQ28Nw5aHgmBJgFfgZSxdsJP63Xa7oD9JfD/LaoG
r81F1SAZHdBfQyx4IbKGZnyNmRArxokJDtySSdJakKTGrccJEmVnePnVH4ML
r30SVPj12cgz/bxBV49TO6r+gUFX98AQVUdb1AIfhigIQARsH7QKEi1rNI5G
GJlYIRPJWEFmmI20bdKU370cuOPCZ+ti9vSs8J4rLnKZJs51nH537ryFN1eE
ZXUmHmgVUo9f5oW0Y3BiSDt6mVN1x+67+K/o/R1/C9n3wZ98933VFFBwF41j
2bBcDIWsT02VlIBiiKIhAKKvcl7yRdcXJ3hJDOBFdczBkAP5UYafY+AJalVY
Hlw2ZjSft3MuKw+2U5lPvluablVhTozKDHIREPFAHAAFcl1yjiSVGzgqNfBE
hYJZMIkHpSQYwIOhyd/mjzp7VVf8oRqqPdDUNmkCN+pnkieFKTsy64Zlb5r+
VTIaChgTDhIosAVzYlNVR+emqivdWeWXbmWWXuhNK2ruTytsVEhU7N8aa7qz
hahQS1SAa3vo9hYnXqrtWZQJLY2aWhYMQKCAIYDKQBTA7kKJjCImGgyJEWJx
gpN4JHJGrz7E88bytF2C7iSgcPIqRAehoQMOABTYxjkPkCh/BhAGg/JORGU7
7SN5qTGxJKFl1h6mObLQMIpkxwcHukJLrvw1qODTS+FV3YYYwMbKEF2PmgEI
4YgAkiECUal7oEaGVASQgoiRgmMkjURyWjXFP3wWkFUlrFodeHuZ52zRx90O
lGNar6uz2w1//Z7O+H1nhfScK0I6Pu0LA/i3SztxuSdm/8Vvg/e9fyUk74eL
gfnd9aHlALNcmgRholRMvqogXVmgAiVLxxo8k8+7vzp9ueqtt96SxeMlSFIm
/i/AkQr7vF6vVy+cOW7v20/zLeXLreh6FmEDBFmTgjxBicpFSlhINbAiJ6Ni
ROW4YCot2BqlpEW2VsgJj8gwi6VCBTE0+xE1dQ3rrXvmLV3FdMJWkgzmoTos
/ZTkt2xxm3Fk6aks5YIxQ7DYIB1wEt4En4ORHGrcwanuphW29qXmN1LZPftY
gXgiyZMJhNpCOfKZoeKsTMU7qn9Ll61M7slZlgkqJZj4QNGQZAKHREcCEQJb
AAen7NsaOPmO3ZK1QmRVOyLBIx8KAAUapALa2ms4khk5iRMfDzAecPKfNDGC
SOC2HLz8G8hZNQVjhEjA+gUrRnCKH8FffRpY+BdDbAPOa2yVhuiGB4aYsw8M
sRDRZx/YIB4kNYBFPcMCkhTggkSGegNqynBd5OnBi9rSH4WADSfEFQs8kQZe
XOo+nVP1T3tnzG33paFCet4Viow8/NfNyMV/+fTcywjIDc3eC5+v2vf5uaCS
n6TcSY0WzRCOUT1sWbzgsXIBf1asW4SUD7w/bcUWdFJP/3dGahRjAR8kWOL0
srIsZKpKMlK28lM30iVdFTkpuvuY9eZLuzxd2lVY1tvQWAWgTJC18mNAtEpA
QKJP7sqPBTCBbBibMGC7Yb3NR7rZz/+YkX8WU3ruNyyFl2wS04Hb8cCClE+w
ma6AKY4foMn+0MTHv+ZNlPqbjsnHWY+HMWuhzQoK/CFsb2YUX7idWdBw78Cm
CHxLU19urHSrpNUjpTiFXHYzXStyMjknCnJOmKtYJhks0FUxNpCSYhbAJLX3
gtZ7dwfsPMHEg0ECf2QghcPhNUFXS4Gui7Unr92Jqrosw6Nk2AgREh5Ihhpb
woPUhGcejaEEucY/Q4o/eC+4+FtDbCNMeWCCx5GS6LAyxAAdsRIhFpSQmihQ
WZQ0HEliEo2iUi8FExcj5C8NkafF9ojyzi9DdjZ0+UZkiMs93XjRZ5Yd/P0s
cJ5yf66Lw23vlaHX9fuMQmY+moAMaK07k45f/i7u+LW/hh795OOA4183hlfd
Zx6O5TwKVgI0ak+SpcMeKxKsBIhkY+0+tFw84Bh48LlXJnk883+hxSrL6w1V
bckyazRPj15p5VTSHcIXg6UbIDAHCbQhRhSUkCtM6nGeco5ziAVYLJZpqORU
nGkFRKMfctboh5YN2GgpWPnrb8N1scLG0jZhczkgAAE9SkUFcoLNlgo43cMm
81s4wv3wr0uOqif1+Kk7+uyDt5L2FnIK1nal5zfIcEjAKCyAYXxgxUnaZlHB
Po8EdtgyZK7vOF7cXRA361Z+jEtvjs6p/4TO0cKDSZeJ8pEgi3o02SuJEYWk
IBIcMhrxzlZEhC18eWZvasisOwsDgsy2SuqBC7JbOkYK5hkECIJy8j3s70RV
X5ageY/pDP8zkmNrQgTvciy58llI6V9adIY7Bn3zA0NcM86ruCaYcHGNNJSY
QEJ4SUtMnMhbcDK35IainthhxKhadLV3vtLmfPZjUMrxn9auDwEJmccxLJTi
0lnTRbcZk24vWO7frcnKVQiZBXBO60zNvXxTd/DC/ws58vH7YQX/OB9afhPV
SPmzFTrYgn1aaZ+WigNauU5n0LI4uyC9Zdqvn31NqlD9r+lg715V8Ns2RI79
7Ujl5UXjlOymeemxTVlAzNUr1AyqBNM9CBzTEZPRMl/+DGAaIqXprG6FxMBf
aKufrVEChkHDhIRHcuAwsIPMyPFJ7MK3r+sPnFIAPEDJxnKaumXID0xm5Kii
g+DhiSglDmVJwGMKiaJNFZfhy+3A0KHutONnmFgob2w4WI67WGw9zOOAU3Sn
Hj8tbGTfgEmGrYq2LQiiHyDCRtDQSti/d5tQrHeFcMO4eyLKue94lKPpLn1H
ul+IytByOZqSeRuTI1OR3ihlhOQgkpjegMLEm/QGQymWAGCje5cudrsedOw0
mLMrUu7SIUMlkUS5C42jJLJMssPIerSX5ElB5EVJkqXCkcJs1v4VmH/tsqZa
gAmpb4WTNrCmRNh4ZI0j2Ag1CDBgiJm1EfCBGK6Lrh9siDaI32sPXxH9Y7LF
1ct8xGWz7GR8fNyn46jXzml2V+TWMl7IKoAZgAwpboXsPfdlwNHPGiJOiQiJ
EX2eQa4hSPaOeygROk0lBE4qu7FywqkHxohTQ+cWZrZSSeu5/44edpu9arS1
tXXgqvGqhk2z1HXnAlgewm5qV//CXT227HqnwswNq/0GohhZXgOVvJhc5kKC
5CsssA+sGI+aw9BRoODI2MAWtsrGIh8rYXVwtJBVfEXYWAKeK6sEMSpFJjaW
duBI2FjWgQG7yzBxyQKqNkqxqYJRBkdw+3p6flNPypHam0n7S0cAEfBTNPe7
006cuZl8oIzF/lK5v7HhcBXHd6flGDgVfMYAIyNGV0ZBIyLJjaTvjxTyNyyV
uZHC9WZ+tPPt3Ginu7nRzr25MY59uTEzGTdxjqYimMWF0V80cAqzHD3s3uRk
pxgOyBZOIQkWUCWWSoHjnGgHMXat/U/+Ok33+p05nZqyi8gYJUHAvlnPWDDM
rt6JrMYTyMNaZRIx+Cd4BDseB5Ir7IyovvpjeNm1L0PLPm+KPnvPFgEDmxLX
CjS1PDDoW6jncYD0ocg1SdH4QMJPtoOcVUNMXd/FmNqezyPz/nQ9ZHOpGBCb
La5aukj0mW0H/68ROZu+2TPevefl6X1raWCCsLHwSmdmweXu5BOX/qnPff/L
sBOffRCY9w38KKVVWHOwkg0iRWSdqXyHPWct1bpR1c4u3/m+56t2iyxvU/3f
cmbNOHOd/ILyWKSdsqVkmZVcOpbux1Fb3o/DbiwgH2erkuybhS7B1jlLlsjC
sYTfymTkmkxGDmhiPfCGRKmNRJivjeEsi69WOf2hM+loE5yZirBMlgmgZclR
8u99ZgmiByNokMKbiXtKejYcrr2entcMey6rhawyxLT8iprUTs0YBNHZyKIz
q/RSV3peA/i/vLPMBaJe3UraU8QpoQVnCIjWkOKZ8yKFsPfgPhkvcIvQYuMK
fqQozrWrINblRkGMy528aKf+3OiZwJojlRCsfjErUkhVNGcTT3iJ1MIAWrAG
gCkkukos0iWetOs3Ykmis1gqxbGoGfczQl3vrgpY071qR6FUc3vYMDLAaD/o
V5sMHONMZfaEFrzxxJTtQ7xZjLu0FR1/DS379FKkobs+rqVfadCfh6kbf/4B
gHXugZrQe0xGzhI/1DrZYBrjGoc+1xV/+WPU8Y4b4VvKxHX+YeKK+XN4ZIwX
lwFotn1zHd7tdXWb3ROWsv96wgGDsKnoyo3owxe+0uR+di2y/LtWbc1P6DN5
KvgpDKSVrNzHKaXWIjPDoMofiCuyF8UYNEZJpfQoJoWGsMo7SRMW6Ea9PXPh
7/47+tgjm2or7+mvBrzzDN++fY7a2C7ZwrYgeojD9CQHWcNAU7DkyeYhVyhX
rlnZTb6zRyZQbXjEFbLygp+NEhrU04b1tgRePYPv/F4vm06/uGwrhE+J7MFE
zyzpIAqRNIXEW0ZRe1fa8YY7sZsOdWYUtZEM2iKACsSNR9xQEMFTbjSrH3o+
8ngA4EapyqBkNAF79bf12YfJLyqZa+zcWHpJ2Jp/WshJWwMTrjDOHb5bGAfE
xbkSagScQiiBoaKrKNb1Xq7OuT8Hci3LknWhOahkrbCsyFnSRrpFesXUq8RE
lErehkCqnJAs+CSMeLEsET7Ql7p6/O2lIaGd2vKLeD1UvgaEFQpAql3WMSrj
dSBYV6lKAec3C6pMBMF2V2jx5U/Dyv6KzMC0BXyskRwYxp97YEiAiJe3sAUN
A6SkLYTLyqhvGa7TNw+1xZy+/q0u9z0xcn+DGJaVI65aSBnV7BmEEWcNUjVd
XDp7Rv/4cWNurIneKmxCa1N0pSv0wKW/+h35RCmVBGPMCR6OeUSJVTsMMlBq
U5lQkrLI+gdG6hk+xogzg0eff9tZfpwxGcBIhXg+PDz8PzHD7uRRqseOHTvN
5VV1Ueg0dUvhUmuLN+JQbQ7rcqw2h1c8A+ke0kCqzbHiAyjo+QBbdr3Tj0Wr
v+lmAAOrVkseEP6fmQRrvSxWKhIvZKbBF7khduAY0MMp6k6ttvmzZrGdsAFX
qhMy0FxnFGIik1l4BUcsiix6ejNNehHVPwvbujYcrb+ZsKesJ+nASTyOtdFi
/JGiKzRSIYVKBJD0Dr6aBYYTmCPhI/BQCYE1GFEAfwxFyLkk5pBAtdlpKsFZ
lpPD3JiVdnOPbgEPzXy++3DMPL77SMxcyN2OxMzD0fXc2Fm4xAeonRW07jcL
ol1vF0S73C2Idr5fEOvUR6+IJOwKmRV0UpnyLJQsuipkcobOFLJ6lUhjiS3s
iS9ncI64rwwjiaLvoHZ6b/CaWTcD0jd1rT9UI0TWdGB1myfmFHciH6WN/KIs
dB0cc5gjZEf5UK+reU8IL736ZVjZ5+ejDDeNiQw1zhI9PQuYW3hklAlHCUm5
N8afG26LO9P1aWz5X7/T5V4TNdklYqAuTVy3zhf+ry3zmAH/15Z52IkLXabc
n+fqcGeBz+qffMJSuzbkXfpHfOEfP48o/PxaSOl36Dt5NKBUgLRipUjAT4Wi
xo0g9GKkgLERq41yDxzWh1fdypmrL3sNn+dgj/or8Dbv56XnObjx/xN16v3W
ql+9b/8S/3HIVNX7ekebxlO+v2Z3uLGbtU1pGORZF0GNLvrL991Ym5SK5WXS
xSJ/Ux7GShimW2/oKqsJQCXB14juEEsYfrbEII9eEYnDR5zrSblspd7m3FGf
X38fHJUspOdjgSG94IoFhtaA2BWArYP1hVe6NhwB3HYWdycfMsBnLzMSldLH
TGGF/FmZ0CPqJAdaiuBCa03oKViixzjj5NLKluIm0K+1UiHDVdl1PMYD1Op4
zJyuEzFzeg5Ge0L2vStqIWdza3fUQohF3cdi5nWVxLr2lMS53iqKdblXwN4G
KbnEn8+98MkN3CbA5EgwwcaZ7aIsYChu2Cpl4KgvI0lLghyvPMmJG9m3O3Rq
b0LI3NueQVrStcga0rY7kZXtZCURvkipPAIUmYBDJtlH5RsirmvLr/wtpOiT
tqgzXfX65n4FkmItoWQBFo55YkthlLhCDmFKobhZN8Y3930SW/n199H5127p
jl28H7GzSvQLjxVXLZkvLp/jwBNajxFaPrOni+72k28vXh3QE5Wd26k52PLn
yJIvLsfU/tiiM94xxjUPPWQ99VRmaX6gsIAuroFBB37wEQHEsgtCSOWXqNN9
x+fpy8a8+I7zS/8dZeyeutEIaNkzz43pcZnt37lkZXLn4uWJXV4Lwu+/8uq7
4mtvzxFfHe/9g7u985f+syZCTPhQ7/lGwynfJ+rr14+qr/cdWd/oZ1vXjOE/
gj3GREmZCTK16X5vLKo3g1NsZnkZj4ix8gYDDdXOiLqmRHUzSmkZcsaEToVD
I67tELVg/HXdrlNCWj5xk4+XtxG3NGzS6f0w6QUd11NPnLul35bfk7iv2pZ2
KywZg1MxtgpUOGYzi5EeaNXIG88KLMia2lLvmMaxnmmcFdslyd+24+VCkd6d
uCsBzVKiTUT5ggwNRUwoswjY7jkS7cXfzo5cqoDGh1MMZ4YvvJencx7IiWaS
xi7lMiFTWYiYk4kxZhZBtixMIk+tWhIxZyZkkpiVJzmrCTMrsSLJaWCZ0yu3
PKPSOrVllyzwukoXeDvgb4luJqpmNxWx8VXp6u7VTkQzKP/KR2FlfyNYFA8D
RFtWSBehxo20UCmK+vjWwbY4Q/dXsaV/FnWHm0XdoUYxct8ZMSA6VVzh7cIE
y0pcNgeo8pguejhM7LV3mXMjZGvpj2HHOz4PyP+CySNVLWGKxEmG1BQtSLCe
2HqkmNn0AJWNM19g46XrBTA8HVz247qX3nXlfv9/gcp2nFKpxPfdH3vn+ccO
e7/7dLXb2CffXzFl9L8CHV+47/XWr2/OHf9s74x33+X77CbbcyP6ZkyxF2dM
cRAnTXIVJ05y+ZeP44RvVzq/8+1Kp7c/2eD5yodZ3i99uGfxc1eP+DzNKS6c
XvcYJ1+/tQWUbKnWLomWUSocGhvIITYQOBJPxnoWhjqijNzjxe1zrXrWxR8Q
0vLoBpE8gAm5skaucHQ95Vhzd/JBw42EPZWdqTnncZ9EWv6Vx5ErUjgeaSLF
I+GSuMqgQkkH44qXcjgpp5NDIZnKoxs1AkgPS6sYNQgQDYmcUtoCbhRCOQxV
0LrjSKiIdxcq9G439+vmczy0Czj1vT1RXnf3RXuLe6I8xSMxHgOHoj36D8d4
KPqOxHlQhuZiSq5KE5wopwK8zJIk4UIolSWhkJUzdIgc2uIRH4Qo2QlHfYfB
IIaunX0/IG1jZ1BBI+qWBJEt0zDpvlXp3tXr2sqOf4WVvveXkJJPm2Lq7yEb
RA6zeMgTbhlNcvWYJT3Y1+tbBtHrfRRT9bcfonOv3os60ipGAUFhWUfE9SFa
wmb5HDukyA5OBovcJvfPcplx133Rmu+XJZ/4S1TRp5ciTnXzxnis+GODo1HS
BYAWKlI+XCFRWAAU22gBEKc4t+bgh34vvetOBPwHbKRLW89qNBpvuWzB3oEx
CtelekOlUjmDJs1xeFlV4Piy4i/v/M7mp/FvvNljP9n+J/tJM+7OmAwxya53
xqQZ/UgP3283aQZYfLupM0V7CFc7u7uzZ0y7scRx4o01LuNv6OaM+T7J69Xv
dy/53feHlj37ee7K0Rz/x+JVv+GUHeWrnkBO5DKgApHgiQ4FCo3s7+D/ohF8
n/KHOW6uQloOTP9cCqWQiu+ChxHk00COkMoCFKe2J3Hvya7kQw20H5FJpXdb
p9EVdcCHYZSPkgNbjyFHmIyRSBVckb0iiIssUh1S6oa/klEsFUlUwo5D+UJh
gifVJkriXJAgjpcYYtAQPFIGRfgQM0iQGlsV4OPGWXeVx7l258XOuZEbM+en
EzEevcejZ/UfjXYfgOjbHzNP0b872pvDdj6OxNx4d2bkeJN3IyqcZU7gKIxU
SIZCrISjqoG9odPuBQUs/skjJI6AQDR4wkQlQ3EzIPfC52FlX17QGW4wDngL
JBLMykFI8DjibFrizt79MK76Hz/ocq+iNwMGmkhNwrKOiWvXrhFXLnDH3GeO
HcwTQKF/2tuvDUydMuWO49LQz5dtOtUWVvaPpuj6XlbKYMqBJHAEBStsyPu5
J6hVWJIBn2MFfMnHcYrG0LLvMyYsiKB5/fL/CIMbHHpSq9Va3OqgwmXe/vXr
597uGffmdMFukn0nAAD/fg5T7OFvywFgmDFp+u0ZE6fftps4vddukh3820yX
QHAU7aZgzBR93ceLYR7jxI0Lfy9uWfSSmL34JXHrohfubl/8/DeHfJ7h+C+P
LRvNWV8uW/X42TNrbRtOr7M9e2adbd2ZdTYQI96LdhzxY8K+OoWQQmuCpMLc
T2EBW9gq4Uh7V9LB+tvRG490Jx4wWCET8CdMAURSc01IQOAdDKkoL6n5TGPU
OPMfl50ZJkiSM2MZkQ3WKUwZEU7+zCLJqUF/eHOcUIJvpofWFX65JM6NqUes
G41L43DOw2xXS1OdRCLezSJomxcqWePOPSZUJbgLVfEYbkJ1vNvtkhjn+0Ux
Tv24cCKV4RJJLfr3xXgOZEcthlg0kK1bzA9s1S3mrPv3xXqJpUlSDTzJhcZl
0CMRgIGaMBgxUJnsLFaCZkA/sMLp5V5377k350WldmpKW7uD8lv/vv7oNTrL
s+zDZKjkmc9ZYatmGUydvnWoQd8k/i266OM7UUfO8Tj3uVHQNogRe0+Jvr7r
UAGYgZo9TfSZNVVcMsuub+K77/ROm7vy2+Bj166FlX/H3BPNeaU8+w1SPGe+
XmXU1fducwzIfnzUqFGv/HezWrr1c6bVyKdOPv7C1PeefM31ry+Pdfzurbdn
Xp820Z6Hie2gpNn9mgAzHWc49jftJtrdhNl9c8ZEu9twor+LAfP8ruOU6b2L
Zk7qXePyTm/YrLFi9JzX+xI9X+3LnP9SX/aiF8VsnO2LXry9ffEL3+9b+ux3
m+c/99O69eE/xR04fyvh0EWISzcSj7R1Jx1p70462n49+Wi7sOH4ZYgr3Qn7
jD3xO6t6EvbUwnY7j7OfprsSp7Vp4ud2sFkOsxt6G9PkVuLkVuLk5hSyW6JZ
bsXSFDivK0z5SId8uufIPPFYtMMHf45WQwrhTlOcxynO46ym2W6e30rT/Fag
/4HtSjizV8LXYE7jlOZxNvMwld3hmDSpheoEiER3/mZ5nAtnfbc0zvluqd75
Xmm8Uy8Ezu8+vFgKp/C+ggQ3Rf+BWE8eGi84wRyOm9d3In42hAfH44hT4Rg+
545zm2Z2VRJm+FXJTpwN7rt/WGPXG7vo7a6QlXO+CtJE/jE48+il5bvON2hP
XqfZzPJrhexpaJ8KWyXN8N9cjDP0/Cmm4q//iCn8kE7q8sk9YleNGLJhj7g+
WMMKWq6T++bNeLN/scOYPm83u9sLFyz4fq5m5+dRx9svaU920byGdNTi/C6f
103+51lmfeLwBF++KPPUO+DjLU/heI+zn/RQplw3/uXJbq2aPHmyk/Vjz9Y9
8eJ049NjvVqffmPuRy+MdRPGvuVwffpkB5j0Ux1o5tMI/o3spzjQzJdCgQhw
j3XaT7LvAr9DAQD0OE+Z3jNr2tQerxmTfvJ1fvNu4tzf381e8FwvRP/mBc8P
LnedMByWVcUPRe1u5R4f0u1uHYje29ofs/ccRl/MvnP3Y3adFaOy8vp120/d
it/fehN4gGjrAhaE5GPAAQXmARtoIcENOR2PnPqZHKSy8zye23PB+qfiMjmp
dG6XGFCbM3I21VkosUIGv75n5w6c5DjFhVLspfN4aSzNcbQt7o/YFpXJvEj2
3xTuOPnZyVxB8x1P5jj7CQTYVw0neJr/CW605QbWvDrR7XpVgmsXRHdlgmtP
VaIrAVGmBxD0Tv2lekexPFFy+8/Ayd21Lz/B3SJmUX9c79G/N8Z7cG/MfNAH
bxCD+YN7dN59B6I9eyoTZwmnk90h3DrL45y7DoXafb870vtb7boF/1y9fPHH
LqG7WgILv8IJTyd37reEgr51+JOYiq//GZ3/x5tkaw42sdl/CGb/ntNiYGym
uHr5EnHRrBn99u++Prhw0tMD65xeHdSs8Oj2Tdz7Zfi+hgu62usNMQ2iFXMt
lud1zuz7H5c9jTlzli7nPLyPZ/uueiaVvvXyZGb1JR14DZBYhm/k+R/QYM/O
2E6B7Ljl1y9MNz4z1tvwzDjvs8+M9fr8udddrr/9jgOjAGMqSYKDGvfAv5f9
FNIEgkIltW7TpgvaWa/3BDmM7lsdc0zU7WzlFANRO5o5q8HInc3DETuahyN3
NA5rUg4Pa9NzgYgWooIHKloAkD0tnNWQbk8LQtIfvaf1jn7/xTvx+y/+FH/w
Ylfi4TaO7wRpUHRuOHqZRyB45AFwOMGgMPshpYVAAAojEQXy+wpMlBkFNkJu
ymqa6iykUznZdHepKuQOUJTTyRznd4U5eJzc8B+tjJdNCpvl/z7Xq9HRwORW
4NzmRgo1SW7CSSlqMWAq1ia73axMcLldrsdw7i+Nc4SA034CzPTKJGec7ljc
pdN6kktfWZzzrep4V5zG1ysTZ/+0L3oRp7y9U7eUe+zW/uhF16sSPTpPJ7lj
3IpZ8PYPczxm/dnJN6U1tPCLs7HGnoY4Yw/1sWd6zsWe/NdnuoKPFGLE7tPc
SFGzs2bA0XPlwEzPFQMz5y4bmDLhnYEJr/9u0G3ck0Prpj05sGvJi/cyE2N+
CDt2tTXK8BNNW2tpdkpnb3IuNLvJnlMdiKPPsNtspDks9Y3++V+tHePo84f/
zsKwt3YoZluPeubsk793wGkLRGCrbH16zNw/v/iGK9gZR7AzDuDQp8xUmeYu
L8yACTxKmDHZ4fqkdyb3Tp0XIfpuahMDtlwUQ7aeFzXbzomR21vEyOy6voiN
lX3ajGIxantTf9R2XD6WJvNA5I6WwcgdzTCpWwZhz2AU9DTe2cIph6J24WTe
DcO+6L3nemP3nce4F7f/An8LZjKnvhV/6FJ3IpodFszwHGOTGiYbzGqc1HIo
TZ5HgVNaaTq7U4mIN81rmHu7dh8UivQeOJ052aXQdI7DwH0wkdk528p0npaD
zAozLXiSxllehXe0mHyLgnkWmtv4W3AGV9KJWyXUwIn8ZKJl4G/UJuKx2iR3
HAmnkii6amAvf7My3pW/U4FX2+9Uxjv3VtJ8xl+FFhsXbFzhbwO2hTNwsq5N
mnUjN85LefN47HxOdWuPdt6dqKV2d8IWTLkfNn/y/dD5kzl+OMxrIvfYcMz8
t4fj5o8zhX7eq0MlIe8MFa77/VDeiqcHc1a9MLTPd8Kd7KjV/0zckf+xtvCz
c1Fnbo1kluPf88yRP3P+VeMWOwlbPVzqbMHLA33ZzsHbcVkJ7v82s0c8//s3
4kb85uUzT4+ZA/9lnNkqPEG3Pgu+5cU33P75yhuO3VPedeDQszha4xxnp+YR
ndMnzrg9yXG5uDi5VfRJvyL6ZFwRl2deFldmtvf5ptb2+adU9Gk3nRG12U3g
DiO2tXC2YuS2FhxR4DgKCdje0ocRRX1rX+SOVgQATtJwTpcmPk1+PKtDQA9j
OJsDAJwaCejX7TnXDwxgMKez7zx/P3b/eQV6HE7dBZNfcjhXWMDMTz4G52o0
OkoCIEWKDbiiSgquk5kq2x45sYW/A2hVrAyEtVMrYeOxs8KJFF/z+Z2sDIGA
DgbNTLmeGrTjjADZtbixs7uKYAAMkAIpJPci23gLHDDI0zAvQ0DUkLMBHKBF
AGoTEQR32nJ/aJ8bweJOsAAkia4Yd2oSaQzHTiXCjwMT8KXTSa6CgQK/ZEBY
DMmYdQMjZGoAsVsgXf0F0fCBoYIoV34oP8oVqDgYMXd4j9ZreHeYx/DOQMfh
HeunD29fN2VgV6DTUEboYiEu+8RHccfPX4w+01Mf1zgg+xOqQdL5HM7i8Y/U
9B85m0t+3XIXo0OuykgfkczLRefgHc+/Ns2Dpvx/yQl7O4Rin9r2SeDCixHC
FKDjqT/M7n51jP2PMyY7gnWnk78jmJQpjjw4FUfucRx2T57oKDqt3i0uSWkX
l6S2iz6pbRCXBtbGHO1bkXRGXJp2GfC5LK7JvCSGbm4RwzG24MsZNNn4cK0m
u0XUbKWAfdqtLdBsw3fxRTB2TAH8wMcRHGtRt6N1AJRkIGpbM/aDBI4ET+TO
Jt4kHuSJQEyYHWrBvhfA4e/oD1yAs1/8wUudkB50Jh25DJ7oMloicEegIaQe
AAo1EjJWiAw5IUyCgZlt+/KE4jh3ymbR1sfibCSXH+tOW7xQFou2vgy2yzHi
sAdA4sz2xywRlNDKlRp3iYR4nM1mj+9OgUQohZMJ8B+tTTBhkUABXgu2eJrx
CpzxMP/dsWfzH77HuHABBFyEM4mQhp+G3TawCQKRhJPftfMURG2S653qeKe+
qtiZQ5XRDkMV0XCWHKrQOXC2Q+U6h6HyKIwZQ0UBbwzlrXxm6PjKF/oPr37t
bkpK6jeaPYYvInZWKqGp4pTv64631+sbRTkUddCQleGNzMPHml0NZ/PI5I+T
NYMmvyQfcaYypRkXY2zTUPOy7a3T8Ib5Mf8nDF5RKBTHHn9uQj2YHyAOMVB8
8Mzr7t+88aZT59SJM6la6UhZrSOOqIdQEhDW16eMn9470T1UXJTcLi7e0N7n
k9jYv1xf3b9CXy4uTmlXACWXwYEiJ0tTgQvo12RcFP2yzonBm1rFsE3IRfjm
ZoBjC8IBoDBAslsImBYFEgIHUGBgRLJD4qNERrBKtr21P3J7MwUSQv6KPFaz
2WPtAtnZ1YKQDMFYkhobTCIGdXtaRZCXXozY/ReQE/RZEBdvJmDugE6LU3Qn
g+SkgNRAoIqw9rhJZzhWX1ULqbBtkVTLakKcwMwuI1rciBAcl5PjKieSKmJN
porqQJQVmHSEsgI6Uq2XgXGX8gQmLQhGDdByEk2VTAxqA4JiAsadoEGQSDcS
XOGYK+vh+CnCC1lS38HfOsX2sYDfsOAHN2F35ylIvGvjXW5Vxzn3VsU4DlYC
KxU6+6GKKHtOAcTYw990WYTdUHHIu0MFfq8P5Kx7fWin77Rbm2MC/hG/o+Ba
aNl3Tbq6e1i1lM71nLIl9pTwXtSJy1JcUbynO3FFfSmm9Eve7KmMsRIU5KlQ
MFrMucIjCsPJEiN/5n/aB+Ozaw697/X6zCXSIuaUH9vJ17v+A1vSE/Wv2owa
fRjYqnv6DU+JLavGZ97w/PCFN9x+HPfWTDNPJDeOlA8DVLjvzuvj7EXP6EZx
cXxT/4qYoj6fuFpxUcI5cWFSOy8uoiYZmsXUbGjnlKRHy1LaxBWpl8T1GecU
YtjGJlCVsI3NiJkpADYka3MTIteEekTIwQFJnfBtXVrY1gKGEdmW1IHB41Gl
4GOyx4OMhuP7QKPQ4bVyI5jD22lyeSRS6PSidjXLeTsihw4P0qKYvefgTw5Z
zn2K/efvxB+4qLiZCCbPVgBtkktYjDyZthxGWNaROiE/cQnoUAzlKxJRZRJR
buDPYlEdzDnKQ7mKjBbpkQLRIoaUjKYabE4SUoRTPEPq5/QH96H01Ca4wH6Q
mUSs9wIVKD0JtI1x5yRm86dIsE7DV08DcTJZ8DM3a/TO96piHfsBHwWywxM6
I4bKI+2HyiCKAsYO5a15aej48t/dzYoN+16XXdgRm/fB+ciTN+qj6wfoUUoV
XttVS7Kht5zVrbE130OOG1PzPY7k4D+KOtTMKT+KPNT8ccTBJuwxGE/KR3Nv
G7MoqR/iK8p4N3HiosiR450XjmVzP8jyjop3fhkV9kY85ctKpfLkY89OYI5s
7HxGi7L56Tfm/fO1sY7C9IkzBftJM7GWil5sCqNk5s1xY8aLczW1fT7Rpf3L
dEXiAv0Fcb7+kjg/vo0XF8S3KcUFCW3cCHFBYhtEu7hQjqR2hIjJFsSqlAti
UEaTGJKBqU1oJoGThRfhm6SA8UZcgy8coFKL4ZuaRI1F4HY4IbXZrGIUku1T
kuXTyrGthRQN/itk9na0QrRQoN3jxaidrXDMZPowmKRBqoqlBAUw1URypgMh
U7A6WPRuHEaD8YsB0xe3/zzH34k/eIFT3ko8dBGcXjv4vPbO3dnb+M4SIEbZ
Wcr0RwqY7xXo6sCrofqga4OoBOcGoSA5Uj6U1jBi9ESMLEI1lO6fBGEiYhg/
8W4MESUhwg64QrgQM5B1ISWnTDi4ytt3aoguRMZK3t9ZG+96Hb7+U02s00CF
bib5M0QFMljAhLk0xKUswn6oVGs3VBQ0fujY8hf69gTMvBuXuu2Ldcf+fE5b
cwtyc7pdKK6B3RChYrdG0OVfmNZKVn36Qruj6gvtzqovNDuqPsdeGl+JKvjk
bOxZka+PbRA5JbT3cVQX2zRoBDykbzN9epghY0xj/xnPxGJcqkuSlccjIyMT
gJc0fJfkfyi7svckW78CrBx97Ll360eP8TA8Nc7b+NRYb8PTGOOoZ0m/shFU
5+Pfve72j7FvUTkLsZkJZ1X7yTNx1D1lgt19J+/I/sXaQnG+zih6xZyHuCB6
xV4UvWMv8qJ33EWYyt5xQBOG/hLMS2j5R+CyEhcmgLlLuiSu2nBe9EtrEYPS
EaRGMTgDgQnNaFQAUY2AQChQBCPqgShSKCKKR4DgA4AQEkT8QJA2AQcaSY0s
8EEPuBUXBzEVHljwcta0vRVREnW4RTU45YCp8ACh29HMD+p2wsFB3S4pU9qN
xhAhegyyptaBhB01vfsSAnpzI1x78yJcbxdGud3CKIpyu1ES7d5dFuPWXRbt
1gU9IwXhqaTSmaVpU8nKwmCh7J9l/sAKk5kaBOQkZj8wscFCgpliYkK0uMrE
AC1w2ApaNxzRx5AU+ng80kK1M2SuG8TkVnWsU29VtCPmMEDHKCl/sSdKKCIc
iJDikIkDuSHT+7cHefRk6iP/HpN19P3Qon/WR53px4ee5Eef5NvF8bkNenoD
31whP6HPW9x8Z5R2Ss9+sMf5TXcbNdGHm+hz8mOSzWS7mtntF5z64TuWWh6c
j6n4+3tRkJmiE+Qefy/yxBUcAYQfXdKVfnEpGsKiv6gr+wv7CTN2TfMSi2h1
vDf/O3162mTlfnt41HPj60aPmQN/1NFjPXnj6LFegPhTIFhPjfOUAsZjvZqf
Hjv3y9+Pde6aMN4eCwcO3OM3p0+2E+etTOmbE1wsemjqxDnaenFORIM4N7JR
nBfZJM6Lahbn6VpET4pWsH6tolf0OaQSprpXLJzFGZlxFwlJCCAUmLRmeqdv
YxHfBi7xorgk8YK4Mvmc6JcCmVVQWgMvBqdjk9EA4hWS0UB8mgKRzGjkiVKF
TCcGh4g2MtFTySKHDpJCw5wky9tgPzONuA9bNZjHZoDUHJEULZKPJFgBT0Wf
DiTviT6AsT+axYAOcjfYHoTxYPKm3OGj4bOGj4W7Dh8Pdx06rnEbOqF1H8jR
uvfnRrj350W490HwYn6kG76FOdLtVmm0283SaHeM7opYlje5MRBZ7iT38fIx
pQSjmxQWUGIWZWYQA3e7oJjFMzwlFq0ITxv85B34L/TUxIKfi3bsB/gGy1GY
MCLIywGSIE+c9VApiZT9UGHgO4OH/Sb3pUWH/0ObXXk5Kv/Lc+FVtxT44JMV
e8aXno5C/EY9/NwG3kQu3VAu3VRuoG2Lm80ZoDHsSaxG6UZ01rMb/1QIpHwz
oDzG20Wa8Do+IWqmsSHWcItTtEaDn7QhPwmjc9FV/yQDCYH9nwM2lRQsWhe+
HCXtv0ROeqsMWcJRz4w3jn59LvxRRo+ZpzCMfgObsfO4J9pHj5l1663xjnc8
F6zr8wo8JLoFVUFUi+7BNaJ7yEmIWnFW6ClxVthpiDPi7HAMgzhbYwD46nig
7yzM0bkSg3NlBqNagMNWHgA8B7PJM9osikwYUQUBPjiGqrhQf1Fct6FJDEg5
Kwam1MOxoNSzgENQ2lkxOK0BA7aAPWxxOx3Qgy0e2kbOlvALNUWTBXtNpj4c
CcRcTsFs58ZGtJxIHrQjRS3s0xKN0G/BaDaldEhgZLaZvqhtzQQe6iMiuIMa
SNvQaoqbUjeLORo3CJeBExA5FK6DJ8Ldho9rXIdPYGhdYfLmRLjxQ7nY5EUA
INC6D+VFUtwpiXbj7wCBnKqnIsb9enUchlsn9BBg5zprSCKhFWr0GFinrpGM
IrlCUkHccuEJqRGywlkEbrt1wg/Az7neqopxHiZ1i0QvCNqGXhDVDfGSogQw
K9I6DJ4ImHh/f5DzbW3akY99j/6/Bk2NyN7KTK+uYEP25gojShF7nUUd0hBV
Z37LH4QS387E4wPBTCSVRkkk5Yc76ClHHmnk2UOPsSZ1hDCaXpnGGxltMoP0
io4m+TZEWSFRLZlKcsq6yNO3tzgFbsObbUfExsaq2GvIY6AdGxYWZgu7OIXU
xsXFKffs2UNQvfDfkcj2KdFwHh/19FtNT77iDBzOtUIYuTdbXpmw4Mo79ku+
g7g3edG2Poe1haKTb7HovL5EdPYrEV38ykQXf4iActE1oEJ0DawU3TAQ1eBH
UZVwDT0tziZkAdVwI2ilkfTSA/VS22DSTEtePaNQL88RrAtiWkUffbO4OqFB
XJ9ULwZsqINAMAMATyVCCgGwpp5FVJVIKpwGgtIZm8HpjeY+A3wpAArchWQ2
kUpCUHrYSNkhaG84wkjRRIEwRmxqkqCE70dswXQxAnhELiNlHhmTCiaHACT8
N3brQ8VcjYuYq3WBLWgVIrhOTg0i5woiRzGQp3UbBOQgXHkcgH0F9gbzI9yG
IGDu5yOUoIHciIHCSLfeYp0rRYnO9XZZtOtP5TGutyB6KmNduzGqYl2BSiIQ
b0A7SbcX1wKWtXpX7OEA7vtNV3Wcy02g7H6FznGgnHnH4VLZQ5KPZH0J9MVa
+8HcsJm9O2L8r6cnp/1Vu/XUB/45/6BFBozsHUr4XiX5dZhqbOkVs5yV6bWz
cli89Awmv66OvexCgSP28gvDQw/kS0/qMwKZOqLynZWfQZaU0gh7VGYmVcZY
873weVN89E9bWVnJ6ygrt23bNjU0NNSLEGOtJ1CChfYp+K5MJbWKFy0Wx5FS
tf81aOwxFPWzIx4fHWL92LNXR/z2D4bRr8+CmA3hAYZzjAfoPpjPj2a4Lftg
3OQ5Xz/zmoPwltfOzkkri7onryy4N3VFjuiwKkecuTpPnLkGYm0+RAFMV8d1
hSATTr5FD8Hp7FcqOvv/O6CuQQQoj4TyiCc3WnQPNWvp7DCmox7hMphoZs+S
kM6LbBC9oxrERTFnxVV6g7g+8bTol3gGwiD6JRlE/ySj6J8MQCbXIZAb6kBF
zUA2AJANCCZHlpUjNolMKXhJSJlvRQ/LtvCjobBNIgqUhmWiZaWMMzxL5pMC
NRMa7SaEWsMYFSM20+VspDWSSqDxWSXiAd1KMSfcBQ7kalzhrwDJzNNiuLKI
cBPzI1zBdGLAOIqNCyJd+1i4UV8Y6dJfAFEY6TpQEOE6mB/pMkg9oM0PI+DK
YRgjsrgfoHXl+4uiXPHlUvCTJSzulepc+ZsVMZD9QQtGNM4FBNS1pyrWRSyP
cuwrj5w5CCSSrXTgEUTIYdFXIo4lGoehojC7/v26lX1J+g1/02yuuRKa801r
SMlt+U1/+P4yYwQGvsAZ33quMr8XsNb0nmeOHVMatLh4iDnohbajpJc+RRlN
j+yjZhqRanoThvQaQ6mnR/t19AZdSTzNLBuYpp7Fc0PMWcnjniUve8o94shL
arWa3Z2pUBQVFT2j0WjoZk4ltQoHIGs9gLeeUGXtVIv1PqSb85WvWwCLoEqV
l2fMz7Y4yrV+9vDzU9kKlU3TY8+8febJVxzrnnrN+f0JDov6Jk916PzNS/Y3
X5i0Vnh7/l5h/OIjwruLjwrvLj3e+e7SE7cnLDl8f/qyg6LdisPiDIyVR0T7
lcdE+1UYxwHaE7zosDoHJpnD6lzi13FNvui4tkB0QkFdV2jBbrEkrKXAbSkw
WwZhKa5VJK7uKK4hJK4wgYFc7mnGbjjzwR7ggZdE1YqrYmrENXE14jp9jeiL
EX9SXB9fK/olnAJmTzF2k84As8BushGINZKgBm5AZoFJCGBXcr0qMRj4DQZh
pUirh8BjIWnoiEPSz4qhwHEouV9sVQRtmByZGFRhhXYkkRsO7leDBEsUazE2
NYLCNpLCZiVuEnPDAcZwF5WYp3EBpc3TIJuuZjYjiEkeGhd8ZIwQdZFDIRYC
aipoXUQg1SLAgAKv8JXBfK3rcL7WZbgAIj/CRTGEPzcErHKPDxVGOA8XRzg8
gBgu0toPF2ughyjUyEqIMXO4QOM8lKNxF/fpA2+ujzvwwZrD33C8MawGZ384
YBeG6wjgmljy+gK41McoHCpxQRAkzvwiQgxS0IdeqSa9Zk0tvaod4UPRNL/H
3chUk8e9kpJG10nWVQE0Dtd4b6gd+8rEWdzzjIDJMPvRVzJvyVp8SQ2u0YjB
KahV2cTHx+OaqZYsSQ9RPiyA0oOVT0qrI2PJE/8biiNHjvw6MjIyEMaPR0VF
2ej1+nW4ts4m/CErXBhrVHR0tFVKSspSqUqKKqxOTU2VVwH5OWbZo9Rjpr/w
wgsH//DGWzsnTpq6a4Jr8NbX3VK3vj4r49CY2Zn1Y2ZlNI6ZvbHxjTlbPhw7
Z4swdk62MG7ethvj5m29N94rW5y0YKs4ZeE2ceriHeK0JbvEaUt3i9N89orT
l+0X7ZYfgDgITB/6N64dGNeINQCdywQZoZbAdkSo1xXBZAesud9IolzKxPhR
xywltm7oloNPih6hNaK3pkpcGlEhLo8qF9dGl4vrYqCPreDFdXGVPKBcDdZ0
vb4aYD4JMGPUEtD+IMj+AHRAsgH0N9kIGWhgMvJshIA+pQ6YxqgHooFfDMax
CgHmKXdVShybMleewFVTwhpuETtjwNGGO/PAJ76OKg8lVOMs5lO4iAAV/AUU
oNEt0NI6CRFAHgRyx1OrsAQWn6SGFml1NRFbhAEM89C6cDa43Q+/gewOwK8O
FWgcgT6HB/ka+wesB5V8kB/uwD/IC3fgRj44rp31YGf0+gfpsbEDUQn7eldn
Nt1bkHnl78t3ffF3n+1/+nD1ob93+B77oTWw4Ba+O1ohvTy6mpazq5bfLf2A
LReJb8lV0C55pRBr+TXUbFUtFFh5tQRjxCkmtvQaRHn9H8s3jlqhrrKXKVob
JcJN78uW3yYlvWGKJ6lVyLss13JoXHvw01VjHFdY3ur9CoifJ1DkyfwsttYI
93SIqVLg0o3YjwP3qzEtZ/5bdVpaGq6VhWsio9bi8sp/gJ97MiIiQgtjfJmV
Oj09fRocOwDbxyBmwNg6MTER180qhm28io7rvPpC/x8YZrqrfAr24RJAeP0d
TwXsD+JkM33ppuffnJX84puz0l58c07Gm2/MSrN/Y1aq/RuzM+zHemw88AfX
5LpX7YI7p8xY/L2X53px/Owk8V2PDeKEuanixHnp4iTPTHGy9yZxyoLNENni
1EUS6kt3idOX7hGnP4S6hPkKxFxCfeVx0X71CYich1Ffy/w3Yu7o+0v6XUb6
7R5YLs4NLhMXhJWIKyMLxdWRReJqHUaxuEZXIq6JxigFzCFiysR1seWib2wF
THjfuEpuFGBeJaFeI/phSLj7g4YHJJ0Gyk8D42eAbwNxHrTBiHqdUgcaG5Ra
xxiXNDsEI62BtDoknfWhGajb1PMo1MC5Nv20eFi7QMwLc2YR7oxgK5FsRNbE
OD4/CluclVgI1hn3mwK2CynoXfdwJhgpo089BqEdQWKM233wnYF8rdNQvsZx
qAAAHs4Ps+dGDueF2Q/BaCgvlEUuxD7dqntJiVt/Ck6v/mll5rkbSzZ/+NPi
TR9eX7zlT7ywNPtPnBW0n3Yt3vzhD0uyP/5u6dZPvl2S/eF7qw/842xQ8X2O
1nYFevDl8GEVtL4Wx14Yr5DWgMW1t5BPIB/fkC2fB2hpoHB6Xza9OhvstdG8
ZpCW1sCU7DZ7ZTDabTg1KNmiKQx8af0hUnxprZVHenqPo1LOmM88dF44t2rf
x6tfn7kcFzbh2MV4ayTvhfDwcPTHGIlA3g6INohsE9hqBBhXfMVMVnHw4MEM
GOP5gC3RZRsCm1EWer5bOn3gGFeBxbXz+NOnTz/zyzyz190pFQcOHBgJHIfB
N9bgGYN9FJ8nubTqXZWhfKU1/HXVrLHhnrycuXjcpyHeLp+Gznf9NGy++80Z
7mG3p87W3Z7mEXN7+pzYe5PnJN2bOi/53jSvlPtTvDPEyfM3Es8mlpfsBJ73
oGzDbJy+7ABII8q2nYVsz1h59N/tuEp0WJNnVm5S7QJS7CLuCdHDv1CcH5Qn
LgvLFVeE54grw3PFldo8cZU2X1wVkS+ujigAlAHnKBllGWfEuBSUOqYMBM0X
aY6rAMmuBIpBu9fHV4OK+SfUgFafhKgVAzAA5MAkBnIQgByUghAHp9QpkFvg
i5Er0Qt9bHKOeFTjJeaG4QtE8lCE88NxxZUCjYsJUBgTrdi4EKkox86MRxux
ED5aqHHuLwh3GsrTOA3nhUOEOkigUQ8JJ4w426EToS6DR8NmDWQmpN0Nz6jp
8tn4gbAw60/Cwo2fQP8J9jcXZX3IC4s2AoGLNv1JISze/CdOLQCR1xdv+ujW
/LTLf1ma/Unb2iOCMah4AFf9GQIMy4a4EWwBk/IhtsZkuWmdSYgHiKYhvAp7
hiQu1kytJMvhbPkHBbGptJRmBFMtLbCn/be1vdRGYvCkiUdjJMuHJbHGMpaa
8cpeaEyhOdm3+TW7xa8z7NDIyrBg8JcvX0azjFMfk1ZeT+Irr6DMIGAoPg+H
a3F9c+lOzhggaPkvo/i+xdKUr8FXjsA2Fn7/A4qs5KTEPwdWsjylb7ClwV59
ZvLvR25aNUHVsNfbCkE0VENUrbEx1qy2MZxkvfEkjtl2R/ridyDGQ7z7Wcj8
WV+v9Fr49Srvxf9vufeyH+bMC+h0nxfWOctL0+PsFX1/4jyQX88McZLXRsB1
szgZpJdc9qIdgOxOctnTl6L07hPtAFgexReYowwaUJ1hkT2j/KL0OqzJFWf5
nhDn+R0XFwUeFX2Cj4jLQzCOiitCj4krwo7x4sqwE0DDSsB1lSYXguHKUC3g
xTVRhTDt14L4ro0uhigBSDFKAdMyQnV9bIW4HmSXB6mtghOJf3w1sFpNvAYA
r8hqYNIpYjUo+QyPsAKdocm1YmZMMtIo5oc6iflhTpJ40vJKYc5q2IXL7IUj
ixKnzgifHDztfqI/P9xpEL41lBvmOJwbCn3IzKG8YBA9CNY7DB0O9xraE7FG
zNJF90Yk5d5anX5OmJ/+EcTHvDA/42NOJSzI+FhYkElxc2HGh9hzPLSf8MJC
arI+4UYIiwBc4FWOzgWZf/zcZ9uXbasP/mgIKBqkVeqCMIpxVbqgkkEALKhk
yBBUOmQIhggplRBmS8ESxkxXK+Q11MOoqcIFLUlUaVHLB0Q0Sisvr8Ju8tZE
KYMY16MwL495ki1XIassfU5eybbW5K7Dq/v2OQbue+7VKR6cRGmgxBEay3cB
xWnS4pRIhCvaVkYkgpJrQaReWirpF4isDQoKsiRyDxxTZWRk/Aci2T4lXs/B
+jJ++1n4JrtDTvXkyJEjV01/UXEqcIpKplESSaWJypOMSgVucNMsATVWrx7R
lLviqZajy3/XcnTFc+cOLH+pPXvp2PYtPm+2Z/u89XHkQudvfDx9vvHxWv7N
cu8VNxznRoBXThYnzEkhrzwRvbIM7EIAdtFWi7QYvfI+8spY6pq+/DDB6rDy
sOi0+rDosfagOM/3gLjUf6/oE7BP9AncLy4LOgBxUFwefAggPSyuQFhDEdaj
wOkxoPQ4xAmgFEKbI67W5kLkiWtAXNdEohAjro8DrsWE6zqKEtFXwnU9Rhwg
C+rqhwEK64e4QgTFl4sbdClY3A3BFTVCadkmABNGACgtTBuKyzaF4eo0YUw8
AcEwtLIwxBGEUz98fhC+N5gXgijinTY5wY7c49A6DOUEYdgPHQtxG9oZsX5I
n3CwNzSp7MaKDS3X56f8sdMz5UNhXurHgmfqRxDQp2F8BBx6QasSvNI/vjk/
7QPBG9ClAHKVyC+P+CqQVk59fX7Gh98vyPr4k6Vbvzrre+KewT9/wOBXAPrp
XzAAyad/4YAhACJQjiKI4gFAFmOQqMWlmXFByeDSQcJWWq65HHJdxFVpssFh
lQ8kYCsfKEhtFcbwh2jFVmmE1hhWTVUt3EMJMe42F7gsPHK73Zrs516bxB7l
YUiqt+GKyxCLAYExYEbRkKKYsiUy1Lhs7C7gayzQiiUoXIgZRZRpp1KVlZX1
BGzKSLKykzoCvhEiERoOPVaXfnX37t3/QCS7iqO0Sk5OngE/iIuv/w6OS1dw
Xp/wgtVJn3eUZ08skUgkEDmVUWJODtrL4wgbWyXR6WKopaO2htq1tobTFDam
3rDW9mz56l//MWHR9E/DF7hCuP1r7px1t6fNjgTnq7ttNzf23pQ5ifemeibf
m+qVcm+ad5o4yRvoXLAFpHQrSSk53yWsYOW0fLfovnKP6LVml7ho3Q5x8fqd
4pL1u8Slfhh7gEoMoDNwH1DJ6FwOdK4AOldIdK4kMjGOi6uATiJTg2T+/8LO
A76KKmvgszOv5VHcVbAAsrhKEgihhxIS0nvvyUt/L40SSCC0FAgJAYUQekmh
CYgiRWcSSiQBRFlcqi6r+6G47i67DlgQpQzC+37fOffeeZlQ/PL7nZmXaW/e
ved/zzl37tzD6CzeCkLoRDaBzB3EmBIyHYZ0t1Ixfa7SVOijtBR64YPOQi9c
eCOBhd5AoDchUCBLo8NcknUREFc4+X+BMcIZb2+GpQk/25vzvUEm2xsL/O2r
pqY+rCqp+NVW3vpLWnknL4fOvyDIoQtgEVZ+gTPJYRUX5HAiF+XwSpQLNyMr
z8kRlYgjsAVMAoFIZCRI1MILVBahlQQzyvWE5SX8dCNq4fl/RC06dyRj889S
Vosi5rTcF7O33BdzQHIxSTJI7tYHgpi7DaAkZNrI4s0HgBzBES3pTgQwny53
AYa7iAUlyS+J+WQeMAjLrq6j3q/qBb8DOBWh4ysRSCmUEqx54g8bkUeWpZb4
w7Dr4ZGoqg/G4ZtDtKdUN07jhxJ3Ff1UTodkoaM6hxk/ljgzDiBpg00YBTZh
Fy1AybxXHfYAvQvbvgXJdxCoR7ZEFnp+ijNwwJV/qweXWj4BDbIfdkPh050B
rEfIZDKVBQ7WiVUBhrbtyYw8gRhAZgwpcWgKcbbX/Qw2XKvgHYT1wUw8EJCD
Ukb43qcC28QsJ50o4oRiUrYT98rHdYlup2sTh59ekjTidF3SyCuZUTFXMqPj
QOK/TolOux4UXnQ9OGLK9dCoaT9PipinjAmHYDSyhnQwecUuUSYn1CkBSXVK
cMpSJcKyVIlKXwYoLlUSsl5XErLfUBJzVoDUEySTrA0EyWRAMhmQTAGDmZK/
FuxSasF6oCKtcAPIRkByE0HSAgbTQrGEY9KntYCbi0hmAJLZxU1K6dQqZX1+
kNKc7ykoLfme4GCCaVJaCqiA96iDhRf3rLK1wOs+fHoA1uthM1iwpjwUb/vm
PD/76sJYe0NRkn3ZVJt9ybSp9sriCqVo1tY7aXOP/hhTdupG2JxP5OCy83Lw
HAj0QuacB3MVMvc8yAU5lApQOO8C4ZEDFhecvxk+/yysyX/lsAPA5JFMAZGE
T4ChkRjHSDCSYBZ/DJ3/8adxS77oTFn1rZjZeA8qLQuWOjGrSRGzmhUxm8h9
XsxuuQ8+ZU4LJTBnK1JI1iR/8q+gEcxSoqF0mEnbjofo2cIxQCVcFrgkPBKv
dhd4swAlOrPEr/1frodEwHyHhaQ0LJVQGIWYlb0tcdnZyFcnJrH59HQ2nGAD
OEK1RuHDSRToro0CWf70UbAtCPY+h5rfg24bCKeGwmkD8ax+T4eHvt+nQ3uV
zqb0wIcrjPXxY1/Wb5ruaWjdk2YSARieWi7VidRYL0wlgDTpqa1CfDIJNl3Q
wBHvE5vlhNAAM2YewQH3Az7iJyQIRZLovJW4xrn59GRivv6tBzN7tW+3vATS
r31Her8TG9JeO9WQMvRUQ6rb2Yr4sVctkQlX06KTr1piUm4Eh09RxobMVzzC
ypUJkRWKV3SVEhhXqYQlVSnRqVVKjGWREmtZrMSl1yrxGXWAF0UskSC2HGev
z63nlWRrA9cTlsBY3mrgizKWCmYPCHPwZQGzZwHGCgqXKmvzAnilKW+8DhYT
uBeV5ryJSkuX3If/HzTaJj5stE601xTmgOTay6ZV2ouLl9unz1hpL5qx3l44
c+MDa8mOuyklB34Im3HsRtCMk7L/zI9APpYDSk7LAaV/lgNnnQH5hJeDZv8F
jFDQ7LMA1TmNEK6Qrpuhc/7yGF2I0rwLctj8CwQsHpc80iUgXXDB8Mrz18Mq
zv0nrPzsycTl18T0jXdB3zM23hXEjE13oZ4zNt8TM1EamTRhj2h20z1cKJxB
hQwY+xVsHaFKAuEJXgIFi8LFET8Us5g/4Jye4IiS2NFBGFg9jiAG34GJalnQ
2BG+4EjeoDGRPd2949kDAfT68LkgPobwBkh4VG//p8PAbBYO5UGjhuFVEnsi
wR6IkEFu69xeEA7uSDZJey0mweGvcYLGelAcMDXUQYfLRoVZjUw8nmJAhCMs
8MSI6HEKSlGFoJVN4qqZGVmdrFKdNJlO/srSR7HpzB3JcOhM5144iaw6Afrp
15NGfFYS6wcS8HlRbMR34RF5t4Iip9+Kjp32c1zC9DuxCaV3YpNm3YlLmXM3
PmWeEp86X0lIq1ASLVVKcvoiJTmjWknOrAFiljFqliM1SjIYp+TcegBmpZIC
xikFwMm3VSlrrH5KU66H0mgdp2y2TlQ22SYpG61eyjrrZGW91ed+dV7Ggzl5
U+2FhdV2MFT2tKmNdjBSIM128B3t6dOaH1qmtjwAuRU55R3Zq/Cw7FV0BOSo
7F30gew95QN58pRj8uSpHfLkaZ0gJ3jZZ/oJrpfsV/yh7DcDBPkpAX5Ku/GD
+CA8N4Nnn5GDEJzZ54ANQAhsEzAkEFMFHKGNAkxwqQOKziNEVJjXyAnfB5ed
/ltE5aW2lNW3oErS1t2BOrasuwNyV7Ssvwv/pW9AdIAlJAlFApgAJdyXSZeN
d8FYoWCWNDBYcDyarCzwGLO2IE3oOaJ9Av+Re4Z5jxSlHBWpbb9K1u2/Eptl
285sFpBk2/lQsm2/fzh8/lHi0VGnymRl4Q4+Ku9VUlLybHFxMc7vVAaCwQyd
MsTA7927F8ewzWdeXh/s4rh///5vDIh5hkKDMOEjQDRI+ICBxm9C2mt9+O3F
nnrx7TRt4NP1iWOWJEONfMwMIWpFNNaEuGAEHCcGDxUEx0ineqXTjZMpYLtS
FZKZyQWWi62dpcqlCQOO0WnNzVyY2GE1ix2Y1YPmyDmyP7vv6fWWoafXp7ud
3pDhfml1+sgrKyweV+ot466sTB9/fanF6/qydG+QyT+WpCUrxWlpygyLRZlp
yVBmpmcpJRnZSklmDkiuUpplU0qzbUpddqSyJtsL1hHKzOwipSi7VLHllP8K
KD0AK2SHtT3J1gCyyg62CGSNHUKwh0lgi2Jsm2+H25p/8M3Zfd0z5115Ys4B
eWLuAdnT+p7saUN5X55kE+VJeZI8Kb8VpA0QaqMYFR4BhFCOAkJajFCOA0Uo
J4Chkzf9Z+D6FLVFJcwWlQBLpZgjGmgihojwBCyhQSJGCfYFU5TmMJTmOFC6
EVz2ydXQeec+jKn9RkxedZsXU1bdhrpIXn1bTF1DBFQjde1tqJG0tbdB7iBY
Ytr6OzxjyrLhLnKFNMGh6ZuYhdIhVgiVaqV41Qls1DqBCnUCjSQUy9nicASl
nC339oTNO+Y7aEwMA8WIfX9V7GmXD0gYfMbOvb7Tp09nnpShD3zeycae4KCy
Tfn5+b0g0PkNSuggNR0ihyNXXoB9QlNTE52pwaD38PAY6PqSU+3Y/kLHinBH
jMJrLc+BjC5niyfOlp7EKCIRByZoc1ioQuc5FoAQhznhBAcpLAUGNShsyn5i
WI5iXieau4ahwhIbElw6CDkdcDwiQ1IE2FhenD9gCilMLqpmdJeOWx3JPHDd
fjS31wftub1h3bvjSO4zp6ScZz9szXnuw9bcPpffzh5wdWfWII6/ujP7Fc7l
3sb0ocrGdDeQYcra9FFKffpEpSo94v40S44d3Dt7TOpCO7h39rj0GntcxhJ7
XGYdyLJfIzLq74RkrPneM635xri0LfLotDflMWk75TGWnfLY9F0gu2WPjLfk
cRlvy+MyUd6Rx2e9K09Ayd4nT8jZ30VX7kFC1ySkC8jyymuVvQracMakgkPc
y7I30AVk3fQpgvUUMFRT2oGsLiPlQ+g6KfsWo3xIyPKb8VEXXaWELGqpZjss
FVoopOo6/H8taPa5S2HzPz2U8PoPYlL9z1APSSt/hrpJWnlbTGq4LSY3ID64
dCJIpTCsUtaoeN2RACkJ0UoFe0Wtlh7xArruiOkoyNdGJM3h/TnB8p4EXEka
7w+M1b32oNJDPi+PjNCPGjVKDU8sjw/uMmCvuZXp+2jwzNAxQ7NDu9IMI2Ez
doXrVq5ciZuxK+BlwOI3IKJxjw5tGA5amc1GmLhTcuP69vjd7tneemlPaleA
f5AG+QwYwdGzJjIXzYm6aBITjYvWHR4z88FUhMxqnkE2KT9LfJGtTfMENieH
pn5qJ/i0k8TTGqSY0HwaNJ8o5kDUkYxsmsxslC7do3TpSI4cAcEST7KMOQJZ
uuH/4klg82Q+SJ6TxParx7V15Jq+2p764q1NCc//3Jj0/O21SYMezEvweRAb
bbsXET3lJ+/IspsTIsqvDQ+v+5dbxHLZLXKl7B69Sh4euxZkvTwyfqM8MmGz
PCqxEaRZHpXUIo9KBtiSt8mjU7aD7ADgdhDoxlgodGMzUN4i0I0nsheg2wsw
AXacAaDbr0J3c5L1AINO5MGWSZwJueuyaEWqc9hOmZtyjEfowBmkvmEXdn4M
O/8Sh3N4A4Ksf/jPPHU4ZoksxS37Aco94Y2foNwTlt8SE1eg/IzCi4nAm0lK
WvmLmAiS1EAlueEXiaxX/YKmTIfIQaCCwKUQ+8VkHQraMODN6LBhjLXWtLU3
DwcUS8RLYxE9DmwcysYiswx/QiVoeW/w2LDzjeNnkx4CdVYfcgQ1XAbsyK5n
GOJr5KvAKA2Gc36DJ6cuntzgSB8QHJ1Fz9Bj1ou6tBF6cWGAsW1nsglZoh1k
ArpllB5wyrLMaoCDoiPhDWKjzrdPsTHTDBUqSg4DxJlZMjSW5oLZoCMsuMGU
GCQ1htVJz5w2knONJX8CImg2QyNNA8+4OU7TwqP5Uamw4cMxDQUoPNmpJ1Cw
TQSWEyTtL+4bLh7PdWo7lmP66IDF9MXORKPcEmu8vi3eKG9HiTP+fWuc4dCW
WOPMtdHPBvkE5Pq7+JX7u/hXpTgHVNU6B1TWOgcuqnUJWtziElzThuIauqRt
SPiyL8j40rBlMsI1DOGKWiW7x6whcI2I20DHjgNcI5OaAKwWAAvgStkmj0nd
DgJgoVVT4bK8hRbt5ngADK3a+Mx3eDBpe8FVe8ygWd8D3sBZ5PohW4gWcRe1
cHkXMlexqJ26i90N2n/B0F0MKD1zOGLhP8Tomv+K0bXfitF1shi79AbIdyA/
iHHLfpTiX/9RjH/jJoVLQLikBAoXh2T9AnVJqOoSAdGCCmFgUVlNTBl6iGvQ
a0xa9VOTR8raSc+/OpHrSZUa+wDU4UfqsAnsV5vARjHi4CL047BjjXYbGKI1
tKANwRFLg4C8/5cWAUcpDYcL4ThlbjTd0xv+xo192bA9YZiuFSIdTQij+ma0
HxkpoKCY0dyIUhbrD6DAMEeNJXPRMRtjpnYl2yxosgcyR41BwtJO0/S54gfW
xzw2QVT56MwzqwkNO/NYEl4HKHyXScFPXdt4hAPTI8LGk1YHKiJFBU4XkBTO
6erWOON/Qa5vi6OM4Lol1jALGHHfmmAesCWxF8scPKj3iMiF/d2CKvu7hSzq
7xZW6z4kaNE4V5ChoYuDXIMXVwNDq1yCqle5BteedQ6sloEj2SVkiUzGZ4e9
DuyskN2iVsrDolcDO+vk4XHATsJGEDRMTWiUbo5JQXa2EqOkZWesZSeP7iAY
FuoM7qHOYBY6g2iX9hF2wCbxCA7O9mpVfUGRoOMF6BBsCg4BNoe+BbnqXdB2
InDWWTG88isxvOoqFE3Ewm84kxix6J9i1KJ/iZGL/y1G1Vyj2NR8K4IBEmPq
bvBibN13ULFgi8Q4pOb1m0DOT0gPsU23KD4i4pNUjx0P4Ag6/MCGX3YN9i56
caB7kPo+ixYIfFrK24jZwP4x7DRGYXOgG/CB6kbmSPUDdX+XPdvpDgKOQMCB
SFrD1HvmzJm4nZikCXTbyuEvCoer/Y2t+ywm1gWmZxbCrOkCRr/qyWbCiSg9
lNhhVe21gUmXceAfC1DMVPlVA4HxSS7ReBLPE19JIEpsRAXWmgGiyLg+QZwv
oseH27NNF95ONt7aFG1APb4Gevz51ljjwZYYY3BzjIm/tL+e9bkHFb3qO6/I
2W9+kbN/1RTXwOpLg/0qLg0OXHQJ9PWya0jtV66hdV9BW//t8Mg3rqEjNSyq
gbX1qLPoSGFb39TNkRqVQnV2dKrqSKHOqo7UWyB71LaeOVIYvdAIZiIKdaS+
n5D1zt/AkTocOOu8GDz3r2LwvMtiyPzPxZAFn4thC/5HDCsHqbgihqHGVl5F
rRWxYY9c9A0I1djImmtSVM1/JNBaCRv72LobEmgtNPTfS3FLv2cqC7Lsphi1
8OttzpOLGeOkaX40MEAvB5UHg2B8lwQVCJto2mWkNy1YsAAf+6NWtmKEje9U
juqmjkUFj2d1/T1c0YN1QGF04EkPnej6vK5xynjD0Q3RJk7zFE+nUT0nGhO3
Eb1U+1wdCbe6craaH3FNWKtLHROjmo2SOiawPm5VUy6rmSx16v/qWmCevaa9
RU9EQN+d+isOJYVDmG7ixTukDKKf18AfubElzngR/JDdoJ/F0M7+aVtcT+41
8vMnv+AWWOHn7LsgwNW/clFw4uwZ4JPUOAcuBFlc4xqypA10tA3a1LYhYcsu
ok8Ca3zvBdrVetBT8Emi18juTE+JT5KwmepqUjPzSbZCm7pN26469NQjnfgl
Nzwsu/7tkb7rjKdNOuxTfEr0L/lECoBWMmDWOZDzYuDsi2Jg2UUxaM6nIJ+B
jv5VDGF6GrrgCzG0/O+gp1eksMovJWxZI6q+loigjlb/U4qs/tdxaI2bRsWv
LXjJNQSnTKbq55TNFKUnqCHGoBNZr04oG9n1PPbqsHnK8Bg09l7oaI9+ur5R
B0OYBIfFMV3jvKkOvjBuUM+0CQOFMyVeBvrwiySa0j7wQhF+O4xUnWCO9Vw+
pSuGZGUUMCDkzCwk7ErzzfplWNZUs2rQBZa/+ASGhjaHvtFQUTXpaO27LDpR
Zfimz6EFJNrWHGM8B1pWCp+HbInv8dz2lGfVWRGFxsbGxO6OmEv/YUEVIAv7
Dwutdh0SvMhjSNBCjyEhi8cNCastdQ6sanAJWNgAVn4rWPkrsJZdgmvlISHU
wg8Nx9ATNBFCz2ExNPQcEb+hmxZS75i0lt/C+hvQyjPQIoreU4+Lk6edEH2m
nRR9p50SfYs/En1nfAxyWvSbeUb0K/kLFKR/6VmuB9HCgLILUiCRS2LwnM+k
4LmfoRa2Bc6+0PbKeGv4APeYAfgyOBt6VAu/EwcMJmHLBTqAnd7Yj5Gr1Ryj
VnN0DQ0NOCcDvkAzHLXGj2rNy3DVptihOnFHklPrgQyz2svQ1W2H7ZIjYHJy
5NjE/IBHs6lNbIfP6uMfVBh9l+9noD11qCFwEhXagUC0gQRQpBOBNFTMA2RK
Qyymjjp/9JhcKp10DSXYSRu/XKfDR7NMF/YkGb9bG274AjSkviXO6NEU68QN
e4J20AcOr7422Hd+obPvvEJn/8pCl8BFW8CGXhgM4hxUfdE1eMmX0DZ9CW3S
l+DrfTM0oh60oQE0YTXazu/Aht6C+OkyaEOnR+beQxNz32/1tLWJngVHRK+C
dtGr6JjoXdQhek85zrThJGjDh5Lv9FMS0YTij6VJBYePvepVPI2DPzqAUzBU
V1e7qVE4j4/KOd0YoB3n1JjFXooo0NayQa1lTCiDD0E84Gh87ymAWrS+JpMp
fXg/oSHfQy9V+Bqk9zJMjr4kZmsetTc9aA1DjbbnODkeW2CyVUdDYHWsOW23
bCcKrXAeaxutjrWrJaCpzEnwa9O4+syTJ3anyyHCc6xauyN25ji1fZBtOvGe
xXQR6vpyc4xhY1OM0QqtgXtzvJlNbdC9rmkp9Rdyy1r8BvvO83Pxq/AD6tNc
AqoWO6MEVi8G+t8CW9TKYuSj0BL8A3yny9AC/Nk9Zm07+ETi2PQ94riMvdK4
rP2dYyy7T0HdnxoSUnNqSGjtqaFhS5qc/ebm9xnkSabMZ04qklnG3jrj+BAy
PUO38RWF2orU4cuokTjUEA7BYb50LKLuWbii64RBxiVj+gtnZnkZdCwRp7a3
gkHIPeqZfmBl7TUnkBTxHV19fQScTsZkp5ZR9BxsLE7DpSP3tRnzYxMeaQdF
L9rya6DsgIYAKkmC9YkDqaavm6ON74LkbYwyDtsSbzbvzn6ZzSzYvZLomJTn
nnMPrug3LLiqHzTX/dzDa8e6BFV5OPvNG+0aUJHz3CuTV/R6YdiK3i8Oe6P3
SyMi+49IHvnHsZkj+7lFgkSN7O8W3R8aM7xSGIk4mMMHHl0eay6xk2kway6n
dzOyOA0Gln8pOROXJgxKOAFflHDUF7W0vQbC12wbN0A4sD3B1LYvzSQdYQ/8
1LhYS40jQMAK4AwSc9RIX6rDWcslBo80h7msFqAGDKQG9NRgEnGQQY+ktlci
l0PJJjXQBk1hm2Qxnd4SY9yxJtzw2ra4HmOfUOijWAFVVFTggFR87SqRFcNU
9aksGefDCWr4Rc6w0JIjnRkmqtU4Ls6TCWcgS8E0b948xznjaGPkx/N8deoI
vVTlZ5Basx71Y4lXwZmpE8tELRDtZ6aivKqhDu0kZUS7CwS1ASEFRYrLYS6g
eo5lOx05lGE63BJtXLEj3pSyIdL00ua43uxGuxcUdWe7FwLVrh665cuXv6aZ
wEH19TyZr4dP6By+HhsLhV0/x0DeAVkM+zJoebKH1vgMELtYUTgDWZJun3wm
nJ4shTA4E4MZctYIFr0MHDjQxXOQacnY/oKYM1p3ZE+KkeO74lM1OiX8o2Z1
MG47rY41p7bbjgKn3p3gUEYWs+axZp30Yh5n9p7HguX0H6+LMBws89SX+L4i
DCn3MT+zJqaPGqY/qWiLH/dxyduCMazzDH9yMvN1sEj+ALrKpkScisMyWaPK
saIcT3dhN9xUFWoDRRtfMkKyCd16yjhaWRyTQ85iXRO/79WrV6lLH0Ga423Y
926aSdyfZjoMovZodXR5M+TnmzlSWrQzy6a1eI6+KlJUukcU8dCRTJMETaW4
J9HUGTtEVx/mrHPT6XSc11NLy1CuKS1sn/BXoI/A0584SDsDUL+nl5Iv3YXm
Jpi9RcLpyVJAlfVmkwtxhkmPWy56WRNOjhcMTNsmDtTNjR6ia57rrd9T6WP4
sC7QeOTtZPyh1JdHVq0EWHQJ1QLSECqRA7FYTGjmsWg6N0UZd9b4GeY3RpmK
Ilz0Iwf31fNwE5OfXjL48HwSu29f9rvwvv/49FIIpbt0K1asQEi12OGZDuwM
uKTWwgld8VecXzC5x7iZisYPELYHvyZczB2tOzN/ssGhFfTHdvk4xxlb6F6p
bHXmElt5MX+M/lLuKN3uCh/DivEDeLdZXk5/HDXAxM+ZM4c56t1/Lp1AzRSq
mU6GtNbr1q3Dn4y3WoEDnunvwCbFUXO/URSkYTeVECXCzjWkDIUzkKXA79u3
z3EdM2PMYDCUgPt6JMJVx/EdoAOc0BHjqnsbyMftHNkLfq2zs7Pj3KAn/CQ6
otqoq6+vxw5D/EbsUcG7wdbhVfwlLMXK1vz8/P1syB2XSe/dSncNgsOCWHzN
GXBp8iLai5MHCM3NzeSw1Cd8P30ybMZ+IYyk1HvF87wYDRmsMR8G20jQyZOv
EbTHc+n0fmhvJenExx5NFE5PlmQ4LXojBUStyFJw1cIV89TbM+GbYeHwpez0
ArwWXhVVV7906dLl9NupVSCViK+ezCR2gywFfCr+KnsazhnIUsBBWY5vfxJe
7M1oHMWL32RGveTxXJ5eVKuIXAO9hyX0nB5lZWUTutUIJ/izUIVUjYFW0PNs
EjJylscT7oE9AuE7Ojr6sAJXB/pjxaKlTQNB7Em9rKO3sZIeiN5IPyiofoRv
shTQ2caSLCQVgcsRT/he1uXCv//++39SE5rQbWZU1nD20/ldu3YFswti7eKI
A3SeED46TE3vyt4GUgWLgVtMb3MbYY+WJg7xwcIllaNnVYQM//TTTxpWnnSb
PXCOxQRt3A/tGtoHHEJUzlQBeUKnhSWI0EfBfZ2DbfPZ/hDNfe2hFw9gbwIG
EiMR6HD6vJlwBrIU+mpr8bmn3qZJvU3EC8/Evi/1OxAvatx1+Ox5BmzaDIf2
hXKooTd1kF4Kbd9Lj9RplKZ8OT1ZCug5PAtlQEvoCTdF+4aNWCYYTeOMQBhN
4xXxB+nr6urUF5WNVVVVOayDGMuVFdMJelX0obGVmEE0iiwF9GFwriEUjidL
Ukw5bDvHz3icIdZKo1dSA3tjNDXyCd2FEWIAKzWOJ0vCOzJA/qMDivXIH7pS
v7t06VIKswvqpX6hhyTA4TikDPuGDkHb6qf5ttv023AsZhzsfgaVkdUCudNy
+vkzeiX+zTff9C2gPeoobvhlb2oPMeBrcdiRgaiUgFwuoLO77KBHfU6/D4+o
UqtnO911mdZAH7hDH9h1CiNrkB3d9uIWnDAG35HtCdrT/bJoNWyPXPav9NbL
MfSBS+O34nvs/fDWd2gP0fVlZYQ+5Ssgbz5eDtrP3O/+D7EI7gM=\
\>", "ImageResolution" -> \
72.],ExpressionUUID->"5c38a6a2-82a4-43d6-8233-ba811ff2d35f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1"}], "}"}], ",",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{"Abs", "[",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
RowBox[{"2", " ",
SqrtBox["\[Pi]"], " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]], "-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]1", "]"}]}],
RowBox[{"2", " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]]}], ")"}], "]"}], "2"],
",",
SuperscriptBox[
RowBox[{"Abs", "[",
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
RowBox[{"2", " ",
SqrtBox["\[Pi]"], " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]], "+",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]2", "]"}]}],
RowBox[{"2", " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]]}], ")"}], "]"}], "2"],
",",
SuperscriptBox[
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
RowBox[{"2", " ",
SqrtBox["\[Pi]"], " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]], "-",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]1", "]"}]}],
RowBox[{"2", " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]]}], ")"}],
RowBox[{"(",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]],
RowBox[{"2", " ",
SqrtBox["\[Pi]"], " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]], "+",
FractionBox[
RowBox[{"5", " ",
SqrtBox[
FractionBox["3", "\[Pi]"]], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"Cos", "[", "\[Theta]2", "]"}]}],
RowBox[{"2", " ",
SqrtBox["R"], " ",
SqrtBox[
RowBox[{
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}], ")"}]}], "R"], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}], "R"]}]]}]]}], ")"}]}], "]"}],
"2"]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]1", ",", "0", ",", "\[Pi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]2", ",", "0", ",", "\[Pi]"}], "}"}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Opacity", "[", "0.7", "]"}]}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.80197132593405*^9, 3.801971333429564*^9}, {
3.801971701220582*^9, 3.801971783020898*^9}, {3.8019718311383753`*^9,
3.801971831508401*^9}},
CellLabel->"In[37]:=",ExpressionUUID->"940d9eff-6030-437b-8335-864a85272893"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJx1mHuMXVUZR+dKL+01QhAfoEZLC9ZGqQlgEQPtmZZhLEqBKJTIIzwUxlKg
fxCVEjCGR/qg9kWnDyMNRBKx1FQppAwM5VExGIaCPByKN40J0BZ6eZR6Ewk3
xU6469zs9e32D07Omn2/853FPvvs8xt3xdwfXfmprq6uPQf+c8iBY++2Ffed
/bUlUzm++L91rzz3/a3FstYzrx4zMFTAX725d+EFe58qzpr/r11jB+ol7/vw
xw98/uMni4kz7v3r8KI3S/7aqit3dd3zRLH+rEvmjh1olPy+y+bveuOULcWq
iXes2rRvb8kvnd1/0WM3PVoMr+/7xfCiZsmfPW7p499dM1AcPannvI/GfVjy
1osTpvxwz8PFTzYec9LYgVbJn2mPf27N/gXjJnZ1u/4726+5YdO+Srf7Oewr
/+474/FDSr693f+ki8+8YHhRteRXte935l2be2fPGl3y4bafuTu+fvJH42rd
9sk5Xu2Zoz3D7Rluz3B7htsz3J7h9gy3Z9fHs/vBM9ye4fYMt2f7xDP+7Blu
zxztGW7PcHuG2zPcnuH2DLdn18ez+8Ez3J7h9gy3Z/vEM57sGW7PcHvmaM9w
e4bbM9ye4fYMt2fXx7P7wTPcnuH2DLdn+8QzPuwZbs9we4bbM0d7htsz3J7h
9gy3Z9fHs/vBM9ye4fYMt2f7xDP3bc9we4bbM9ye4fbM0Z7h9gy3Z7g9uz6e
3Q+e4fYMt2e4Pdtn+b5s3589w+0Zbs9we4bbM9yeOdoz3J7h9uz6eHY/eIbb
M9yey37l2T7xzH3YM9ye4fYMt2e4PcPtGW7PHO0Zbs+uj2f3g2e4PcPtufz/
L8/2iWf6tWe4PcPtGW7PcHuG2zPcnuH2zNGeXR/P7gfPcHuG23P5PMmzfeKZ
vuwZbs9we4bbM9ye4fYMt2e4PcPt2fXx7H7wDLdnuD2X65M82yeeub49w+0Z
bs9we4bbM9ye4fYMt2e4Pbs+5+4Hz3B7httzud7Ls33imevYM9ye4fYMt2e4
PcPtGW7PcHuG27Prc//uh3OO9gy35/L9Kc/2iWfq2TPcnuH2DLdnuD3D7Rlu
z3B7htuz6+PZ/eAFbs8c7bncj8izfeKZ39kz3J7h9gy3Z7g9w+0Zbs9we4bb
s+vj2f3gGW7PcHsu93fybJ945u/2DLdnuD3D7Rluz3B7htsz3J7h9uz6eHY/
eIbbM9yey/2yPNvnl3b9+ZHxA4Plsf+STR+/dULHP5zxOx67buqJp43p9njq
ejzn/M714a7v8ZxzHTj1qefx5ox3Hc7dz7cGf/XrCQMbyuOoOWuvP3f61mLC
2T945Isbx3Sbc87fPd6c/vgd12Ucf3d9+oVzzu/cv+sw3tdlnOtw7ut26d9J
H34yvvueR08de+A5zfN64O8/PHTNyHOaH98I/Jme828feU7zdZqB85zm67cC
f3DR2uUjz2n+upXA6/uPmDfynOb7qQY+6voFl408p/k+a4Fzjtfts15aMfJc
c57n9cDxnB/fCBzP+TrNwPGcr98KHM/561YCx3O+n2rgeM73WQs89XzgvX3C
/U+MrKupZ/N64Klnj28Ennp2nWbgqWfXbwWeevZ1K4Gnnt1PNfDUs/usBY5n
PA2+t6k58l7Dc57XA+c8P74ROJ7zdZqB4zlfvxU4nvPXrQSO53w/1cDxnO+z
Fng6nxvFnjdbrZF9RTqfzeuBp/PZ4xuBp/PZdZqBp/PZ9VuBp/PZ160Ens5n
91MNPJ3P7rMWOJ65761XHN43sq/Dc57XA8dzfnwjcM7zdZqBlzljtn4rcDzn
r1sJHM/5fqqB4znfZy3wdN1oFn85astTI/vqdN0wrweerhse3wg8XTdcpxl4
um64fivwdN3wdSuBp+uG+6kGnq4b7rMWOJ6dV+M5z+uB4zk/vhE4nvN1moEf
LFfHszme89etBI7nfD/VwPGc77MWeLo+t8J8zvN64On67PGNwNP12XWagafr
s+u3Ak/XZ1+3Eni6PrufauDp+uw+a4Hjmb68Pud5PXA858c3Asdzvk4zcDzn
67cC5zx/3UrgeM73Uw0cz/k+a4Gn78FK927tN/K8Hnj6HvT4RuDpe9B1moGn
70HXbwWevgd93Urg6XvQ/VQDT9+D7rMWOJ65jvfPeV4PHM/58Y3A8Zyv0wwc
z/n6rcDxnL9uJXDO8/1UA8dzvs9a4Ol+o9rt78E8rwee7jc8vhF4ut9wnWbg
6X7D9VuBp/sNX7cSeLrfcD/VwNP9hvusBY5nfud8I8/rgeM5P74ROJ7zdZqB
4zlfvxU4nvPXrQSO53w/1cA5z/dZCzzd19W6ndfleT3wdF/n8Y3A032d6zQD
T/d1rt8KPN3X+bqVwNN9nfupBp7u69xnLfBP+hwsj8dtrlTfPsE5Xocffu5V
F47kzubpfqbDOed3rm/O+cH4wfp3Dsl4c8YfzI+v+8n4DeVxYNKlvxzJk++c
ev7wSM5szjl/93jz1HOsn+9/w0H7d33Gu076/6tzXcYdrH9ft0v/9sydd/Sz
p64Oufr0dZ+993cvrQq5eu8jV3xhw8b+kKvvru++7Z+1lSFX39Z765o1k1eE
XP262bUxW5YuC7n6zk8/9MG64SUhV+/ve7M2dfSSkKvvbo93rk595+r041yd
/p2r97Tv17l6T9uPc/XdbZ+c4zX12cnVW/suv3rKtR3P8D+8fFPlmrP79f01
VEy78J2TmxvvDLn6Q+d8r+v915eHXP38V/40ed4Zy/T9NVTsm7Nw7Tkzl+j7
a6iYfdQ3J/T/5rchV2e8c3XqO1enH+fqp7f7d65+d/t+navvb/txro7/1HO9
YH6mnuulz9RzvZgxatTj705ZKc/14sgpr/Uf/+CKkKsfeduGu8d/vEye68Wj
86rvPfH2kpCrj9n+uav//o/FIVffctiM6b2jF4dcnfHO1anvXJ1+nKvTv3N1
7te5On6cq89o+8QzntLnvZOrp/Ozk6un/XRy9es2PXz4rBnLQ65+7fozZx4y
e2nI1Y9ZfWgxa/nikKtvvfg/rb+tXRRy9RsueOuyz+xcGHL1J9vjnatT37n6
nHY/ztXp37k69+tcnfnvXB2f6XxuFKxX6XxulM9XOp8b5Xxwro7PdD43irHT
Tr7lyDsWaz43ip+/PmHJC82FIVcff9Zhz08+fkHI1d+5ZN66NxbMD7n6se3x
ztWp71ydfpyr079z9SPa9+tcHT/O1fGJZ+6b90WaJ+wt17c0T9ir572TqzN/
0jxhr+63k6tv65q448rfzw+5+o7nt1/+ndbtIVe//49ffmx93+0hV2e8c/Wh
dn3n6n3tfpyrp89XJ1cfaN+vc3X8OFfHZ7puNAve7+m60SzfL+m60SzXQ+fq
PO/putEs56dzdfw4V//vaT878f4bbgu5+v67Ttl+0bu3hlyd8c7V6+36ztWZ
/87Vn27371z90Pb9OldP39edXJ39D565j3S/1MnV0/d7J1fnfeRcPV0/O7k6
z7tzdeanc3V8Old/YebNzQf6Op493rk69Z2r049z9Rvb/TtXH2zfr3N1/DhX
x2e6PrdK/+n63ArzGe75DH9S8xl+rOYz3PMZ7vkM93wu+9R8LvMzzWf4eM1n
uOez79e5uuczfKfmM315fYZ7fYZ7fYZ7fYZ7fYYPaX0uc0Stz3Cvzx7vXH2b
1me412f371x9s9Zn+3Gu7vWZ63u/Afd+A+79BnyO9htw7zfgfdpvwI/VfgPu
/QZ8vPYbru9c/avab8C934B7v2E/ztW93+A63j/DT9f+Ge79M9z7Z7j3z3Dv
n+FPa/8Mv1H7Z493ru79s/txru79s+/Xufo07Z/tM91vVLt79D0Iv1vfg3B/
D8L9PQg/Qt+D8AF9D8IP1fcgfFDfg3B/D8I363vQ/ThX9/cgxzP0PWg/ztV7
9T3I73qUb8D3K9+AO9+An658A+58A+58A+58A+58w+OdqzvfcD/O1acp34A7
3+DYUr4Bn658g7/vVl4H71FeB5+hvK6so7wO7rwO7ryurKO8Du68Dr5TeZ3r
O1d3Xuf+nav3Kq+DT1dexzHNPzu5+p6l99zyjdHO8QaLm1+efN7V41aHXJ3x
ztUZzzm/c32463u8c3XXp57rmDPedZyrp+M7ufoH3fM/WP7t1SFXh3PO3z3e
PPW8oSh+2rdy0uTVIVeHM45+4c7VPd51nKvDGec6ztXh/wcZMxta
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], Opacity[0.7], EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[Polygon3DBox[CompressedData["
1:eJwBCQX2+iFib1JiAgAAAKgBAAADAAAA4gIRESEgEgIDEwMEFAQFKRkaFQUG
GQkKGgoLFwcIGwsMGAgJHAwN7+XkIBARIRESIhITIxMUJBQVJRUWJhYXJxcY
KBgZHQ0OFgYHgHBxKhobLR0eLx8gMCAhMSEiKxscMiIjNiYnNycoNCQlOCgp
OSkqOiorOyssPi4vPy8wLBwdPCwtRjY3QDAxQjIzQzM0RDQ1RTU2QTEyNSUm
Rzc4bV1eSzs8TT0+Tj4/Tz9AUEBBUUFCUkJDU0NEVERFVUVGVkZHV0dIWEhJ
WUlKWkpLXExNXU1OXk5PX09QYFBRYVFSYlJTY1NUZFRVZVVWZlZXa1tcZ1dY
aFhZSTk6bFxdbl5fb19gcGBhcWFiaVlacmJjc2NkdGRldmZnd2doeGhpempr
SDg5e2tsf29wdWVmfW1ufm5vfGxtECAfMyMkSjo7uamqhXV2jn5/g3N0hnZ3
nIyNjX1+inp7h3d4j3+AjHx9kICBmYmKk4OElISFuKipkoKDlYWGloaHmoqL
m4uMmIiJkYGCi3t8iXl6nY2OoJCRoZGSqpqbq5uco5OUopKTp5eYqJiZpZWW
t6eorJydrZ2etKSlsKChn4+QhHR1r5+g5sXUrp6fsqKjtqanno6Ps6OksaGi
gXFyuqqr4NDRva2uvq6vxra3vKytv6+wwLCxw7O0xbW2wbGyyLi5wrKz1cXG
0MDBy7u8zLy95B0Oyrq7zb2+zr6/0cHC0sLDz7/Aybm6x7e41sbH18fI2cnK
2srL28vM3MzNu6us3c3O7ejS4+IQ38/QAhIRAxMSBBQTBRUUBxcWCBgX2MjJ
BhYV3s7PCRkYCxsaDBwbDR0cgnJzChoZgpKREiIhqbm4FCQjFSUkFiYlFycm
GCgnGSkoGiopGysqHCwrHS0sHy8uIDAvITEwIjIxIzMyJDQzJTU0JjY1Jzc2
KDg3KTk4Kjo5Kzs6LDw7Lj49Lz8+M0NCMEA/MUFASVlYNERDNkZFN0dGOEhH
OUlIMkJBOkpJO0tKPU1MP09OQFBPQVFQQlJRSFhXQ1NSR1dWPk5NRVVURlZV
RFRTNUVESlpZbn59TV1cTl5dT19eUGBfUWFgUmJhU2NiVGRjVWVkVmZlV2dm
WGhnWWloW2tqXGxrXW1sXm5tX29uYHBvYXFwYnJxY3NyZHRzZXV0ZnZ1Z3d2
bHx7aHh3anp5TFxbbX18b39+cIB/cYGAcoKBa3t6c4OCdISDdYWEd4eGeYmI
eoqJe4uKgZGQfIyLgJCPdoaFfo6Nf4+OfY2Mg5OShJSThZWUipqZhpaViJiX
n6+ui5uajZ2cjp6dj5+ekKCfiZmYjJybkaGgk6OimamolaWkl6emmqqpm6uq
nq6tlKSjnKyrna2skqKhEyMioLCvorKxp7e2o7OypLSzobGwqLi3qrq5q7u6
rLy7rb28pra1rr69r7++sMC/ssLBs8PCtcXEtsbFmKint8fGu8vKscHAucnI
usrJuMjHvMzLvc3Mvs7N8OfmwNDPwdHQxdXUxtbVydnYy9vax9fWyNjXwtLR
ytrZzNzb5OUezt7dz9/e0ODf6ODRxebE7uriHeQezd3c8u7j6+QOEOIRqZma
7ObU7/MPv8/O4uoC0ujR8+/r9fHt9+8P9PDs9u4B4+7i8eno6Ong6+/k+PDT
8PTT+fHh7vIB8fXh5ufE7vbq8Pjn7PDm7fHo7/fl8fnppJSVlYFeKQ==
"]],
Annotation[#, "Charting`Private`Tag$3990#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]},
{RGBColor[0.368417, 0.506779, 0.709798], Opacity[0.7], EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[Polygon3DBox[CompressedData["
1:eJxNmGnYTlUUhr/VTHMqkcoUSZIhKSKEJEKkUEJkihIRETIWSjJ9SGQOIbMy
y5RMEU2GypiUn83rud57X8uPdT32OWfvde9zvOfcFGjZuUGnC7KysmZZVtaF
njU9G3s96XW5119+7G+vKyyT/3hdaZn81+sqy+R/XldbJrM8r7FMmte15AVe
15EXeuUiL/K6nrzY6wbyEq8byUu9Tnj96PWDVx6vHF45vfKS4r2ZFG8+Ury3
kOK9lRTvbaR485PiLUCKtyAp3kKkeAuT4r2dFO+dMImlCMdye93hdRPsD3nd
41XKqzjXircErGK8mxRjSTI/8/LDWIz18rJWAXhLk+ItQ4r3XljFdZ9XUbjK
k1rvflL7qExv9XyAY+KtBJ/OlWVtrVvR6y728SCp6yow7y4qH/usArd4W3s1
sszfvWpwa+2HSbHX8CoHe01S7I+QYq9FivdRUv1rk2J8jBRjHVJ7qktq34+T
elb1SPHWJ6t6NSDF+wT5MPuoDu+TZPpt1YT3KVK8T5PibUKKtykp3makeJ8h
xfssKd6WMImlOcfE/hxZH97S3N/nvRrC2wZWMb5AirEtKcZ2pBhbsJ76teeY
eDuQ4u1IircTrOLqTIrrJVLrvUxqHz3orZ6veLWCtzt8Ovcia2vdbpb5O6R9
vErquq7M0zm9M/R70e/wNdYWey+4xfup10de07x600PsfUixv0GKfbTXQK9B
Xn059jLHusEyiBT7m+xHXIM5pr0O4JjmDOGYGN/y6gnj2+TrXsNIMQ4nxTiC
FOM7pLhGevXz6u/1HimWUaT6v0+KfSj9e3JtF7jHsJ/B9O/IPZrOvdD5bLjF
O4EU70RSvJNI8Y6nn+ZMhW8Uz2EUXB96vcs+pnFM/ebQT31m0H+s10xynNds
emRzbDD3eByp3rMY67pFcKj/x6wt9nlwf+D1iddkuBaQU7wWkpo/l3ma851l
vqf6Vn3ltdprjdc3Xpu9tngtZQ9iX0aKazmpfawgte+VpBhXker5GTmPPvPh
XUOKdy0p3nWk9r2e1O9gA7nYayO5xGsTKd4vyGXsYxm8W0jxbiXFu40U73ZS
vIdg3WGZv3P6Xeo3uRNu8e4ixbubFO8+mMSyh2Ni30tuhHc693c/14r3AKxi
PEiK8ZjXERi/5/np/fE1623ieco39EyTJ2mcPEnj5EZyjuRGGic30ji50bXc
42mwJk/SOXmPXEIulNxLPZIzyUWSM2mcvCqXhSflsfAkjafyrBdaOJA8I71r
3rJwJn2v9Y3Xd7ishSflt3CjghZuVMjCjQrDVYRxcq9bLRxLa+m9LA8pCp98
o5iFA8kl5A5yiOIwlWCc3Kgka5ViXBjeMuy7OOsmTypl4UmluUfF4Ejf9QYw
yTfKWXhSeQvXqci6D3BOfSowTo51H3uoxBzxySsqw1GFsTiqMi4DR1X2WZF1
kxtVg0mOUd3CjWpY+NAjFj5Uy8KHHrXwodoW3pn2VIdzyXvqWfhWTQtPqmvh
SY9buFQdnkdljiVnqg+rvKOhhffILfQt13f2RQtPamzhQ00sfKiphd80Z225
QwsLT2oGU3PWTr71lIWLdIKpBWuJSc7QysKB5BLyI3lFawtPakMf8XaET++u
duyvNWslf2pr4UntLTypg4XPPcMxfV97WbiR3EJ+oO/zAAt/6mzhPd3g1re6
C4zdOaf++qb3gLc3PdpyrDtMPbmuA/17soeurNuaPl0t3Ki3hRv1sfCegcyR
Y/RnzgDG6jeY69K/0/LBMoRz6q330FD22pceXVivH6xDmZOcu5GFJ+lddsrr
nNdRC08abuFA71k40wjWlWvIOeQF+v7OtPCkUXDLN0bDOpZxcouxcI1nnNxr
JPdlNGtpf9lclzxpAtfqHT0FJnnHJJjkG5MtPGkqa01jnBxohoVvTaTndK4b
w/npFq6WbeGUw2Cazf51Xo4xx8J7PmHduZxTn3mMs7l2toUbLYBPXrEIjsWM
xbGEsbiWMp5Mn/kWbrTUwo2WWbjRcgsfWmnhQ6uYL8f43MKHVvM8ppy3p7Wc
S96zwcK3Vlh40joLT1pv4VJrLTxpo4UnbbLwJI1Peh22jPskT9pi4Ulb4ZMv
7oBpJ2P1k+vspoe8ZK+FJ+208KRdFr61zcKN9sC0j/lyDP0fS24Y5ab7YTrA
OHmSxkf48zY4D3Fvj3v9ZBlnupF1c7Pn/fQ7zXVyq5+5Rm6Tg3k5eSZ6Nvod
/ML6ug/6v6BfvS6zcM3NzFNfedl2+LZx7Qn6/GaZd4H87neOa50zPA/1OQvb
n1kZvuOsrXlHWfcIfz7IuifYwx+s8yV5hj+fY/63rHea9U/B9C37O3zePTzL
fk6y7mH4TnLtMdY8Qv/feX7p/7/kO3pn6N2h99r/dQpSUw==
"]],
Annotation[#, "Charting`Private`Tag$3990#2"]& ]],
Lighting->{{"Ambient",
RGBColor[
0.19699838300000003`, 0.252204821, 0.33320940200000004`]}, {
"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`, 0.29811516000000005`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`, 0.29811516000000005`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`, 0.29811516000000005`],
ImageScaled[{2, 0, 2}]}}]},
{RGBColor[0.560181, 0.691569, 0.194885], Opacity[0.7], EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[Polygon3DBox[CompressedData["
1:eJxFmHm4VWMUh28fGTJFcyKSuJk1ScqVBjdUCqVIrkSTS0qKSoZokCiZkhAi
bmUspdKVKSVjiQZDhvxpHsJ6n/PuZ/+xnnX3XtO7vnPO3r86vKy8x9WpqKho
fpWiot3Cd42LfmGXhO0R9lvc/z3sk/j7F3LC7+7fv4btmQrxP8L2SgX/Z9g+
8fff4f8J2y/+3hX+37C9UyH+V1i1VPDkVU2Ffsw7OBXq99XoQX39VKghVlMO
6r4K2xj2WdhBYSkVOGsZZ4/aenjrpQIHvQ4I+y96F4WvY5w96urJ2z8V2Mlr
IBM7HaInfmLYYWGHh50SdnRYcVgjmWqEHWouM4/wHnscKWtt6+rK2Ng4sSbG
YTxKT15D+1V39oHOK7YHZ9ZUz7meZB5cx7kDXMfr6Xey8Ywx+8ybeQ+uFnLD
dYy9OZtj9fRtbi55Lc2F/dqwy8LKwlp5j72vCetv7PSwEzzXNs6g92l62EuM
s9MZetg7OBvGTs5mTnvj7HGmnry29uMMzre+o9bC+p7WEDtHDupKw1qHnRrW
RQ8vv6N27tFND28POeh1Vip8V6jvbpw9ztOT11l28i6QiZ0u1BO/Kqx32EXO
b+p59ZHp7LBe5jKzr/fYo5+s3Tz382Tk93+usUuNd/fz6W5eb/uVOrvUeWX2
4Mwu13Oug8yDa6A7wHWlnn6Djff1XIrdZ2jYxXJdLTdcA+zN2Vyhp+8wc8kr
N7e/e7fx8xsuK4wrwirCFoaNkolz/TpsZ9jnYSOdAftdYWPDxoXdYC773Rg2
RN6b9MPMHSb7OD1c19uPeaPtwRmMN85vYkIq/GbgnWgNjLeGXRc2Iuw2PYx3
GIfrTj29p8oEyy32o35y2BjZp+jJu9n5zOaZynOF58s0d4BxunkwzpTj9rB7
vMece/Xw3m0dNfeZy073yw3vg2GT5HpID9fDevaYYT/mzfYen8kjehjn6Jk5
V1a4HtPD9biefk/oZ8o10rOe5z14n5EPrkftTd+nwma5x/ywB8x70rpZnjXf
Nb6zz9qDnZ5zB9gXywdXhTswZ6GePV4wDu+LehhfDXva+UtlZc5LxmF5WQ/v
Ivsx723rl2jzrd/k/bfCVspB3XK5nw97XQ/vKuPs8YYe3jflYP6ysAXWrzbO
HpV68l6Tnbx3ZGKnd/XE/1RP7OX8RzyvdTLxm37PXGau9x57bJAVxm1hm2X8
wDixD43D+JEexrX24wze1zPv01TQSfxW0Ee8M3l3ZloH1t/VTGiRTDNx/bea
qZo7P+x3Au2D3iCGBkE/oDl+VTMxA81EP653qbeoQa+gDahBG/E3OofnBN/B
K+TjHc9vm3c278FjU66B0Bk8J/j9TnCHesZg4r1f3xmH2qOa9+rJ0cC8TDM1
SLkmQ9vwPOa53MWzqGOMZw1a5TDnoREy7YNHT6CP0BhHOK/YvEyLZNoE39Q9
G9m3hnWNUq6Tij2nhu6TaaPjrEFjoDkyDdFePu6hV9A6aIbm9j3ZGlhbGoOP
93krudj/VHdqZR4crc1rary1vM3s29g5zVKujdrI2tZr4h1kzXRSifXtvYap
o3m13KGxHJ2MwcG7vrN7omfauXeJ162Md5K11Bqeezyrb/FzbeKMqs6rmXIN
0TvlGgidkb3XB8jbwxisvPd7OhP9cKF79jSvo/Xnp1wzXZByTdbVewOdUeLM
bu5G/Fyv0Q/9vEZXoEX4zqJT+siEfurv7DKvM81EfRdzL0q5NiqTb4DXZ3kG
vbzm7IZ7D42BTkBf8I4eIxNaItM7+KHOGGQNs8vNK7NfpsHxvOP5rpzjTpwF
774Rsl9jPeyD7Xuxc4bIPkJWzvJ66zMNdKMc6JBR1o/2OtNG5GUaujTlOmms
89EL41OuFzPNNMp55cbHudMEa3jH8HxeJhPvdTQDz3We77wHeIfzbp3jmaI3
Jtl3ojWZNposExpjqjOm2+Mm702RY5p5441Pk/cO+2a67daUazVimWa6J+Ua
KNNE+AdkQlfMTLk2eijluifTQfjZzphh39usmyHvbOsnOHO6NtdzyXQSOgEd
wfv5xZRrKfLQN2iKJ1OupR6XFS3xtHy805+R63k/nwe9N1+OBebNNr5A3nn2
vc8589y1wl6ZTqpIudZ5SQ40xuKUa6YXZELbvOLnMcvecCwxBgf6Yal7LnLG
Y/ZbJPtSa2BdZg2f5f32zXTScvlWeM2/L/i3xSZZ0SCVKddPq+RAn71lXzRN
poPw6CPe7/wfSPWU65K1Mr1jPTuvtm+mt1bLu9a+MK2zPtM9/E7QRGij9TJt
8HqzOZVybvI8t4d9mQp66Fuv0UcHyFrdM1jvvGQuemSLOUWe3UTPcqv9OYef
wr4J+9g6ZqG5Fsm3UrYv5PvOs94qx3brfvDvn6sUPteVcu1Ihf9XguV7Z21z
/ufu+KYzKo1/4fWP1lZxJrPXeG+H97dZs1n/vbts97x+Vj/ybqzh/R/cc4u9
OKOdzljjbl/L+JUcG+3/k3z/AyEgSW4=
"]],
Annotation[#, "Charting`Private`Tag$3990#3"]& ]],
Lighting->{{"Ambient",
RGBColor[0.1830429875, 0.21424763749999998`, 0.0962851875]}, {
"Directional",
RGBColor[0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}, {}, {}}, {
{GrayLevel[0],
Line3DBox[{246, 1, 242, 227, 16, 31, 46, 61, 76, 91, 106, 121, 136,
151, 166, 181, 196, 231, 248, 211, 244, 236, 212, 213, 214, 215, 216,
217, 218, 219, 220, 221, 222, 223, 224, 233, 249, 225, 245, 237, 210,
195, 180, 165, 150, 135, 120, 105, 90, 75, 60, 45, 30, 229, 247, 15,
243, 235, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 234, 246}]},
{GrayLevel[0],
Line3DBox[{495, 250, 491, 476, 265, 280, 295, 310, 325, 340, 355, 370,
385, 400, 415, 430, 445, 480, 497, 460, 493, 485, 461, 462, 463, 464,
465, 466, 467, 468, 469, 470, 471, 472, 473, 482, 498, 474, 494, 486,
459, 444, 429, 414, 399, 384, 369, 354, 339, 324, 309, 294, 279, 478,
496, 264, 492, 484, 263, 262, 261, 260, 259, 258, 257, 256, 255, 254,
253, 252, 251, 483, 495}]},
{GrayLevel[0],
Line3DBox[{744, 499, 740, 725, 514, 529, 544, 559, 574, 589, 604, 619,
634, 649, 664, 679, 694, 729, 746, 709, 742, 734, 710, 711, 712, 713,
714, 715, 716, 717, 718, 719, 720, 721, 722, 731, 747, 723, 743, 735,
708, 693, 678, 663, 648, 633, 618, 603, 588, 573, 558, 543, 528, 727,
745, 513, 741, 733, 512, 511, 510, 509, 508, 507, 506, 505, 504, 503,
502, 501, 500, 732, 744}]}}},
VertexNormals->CompressedData["
1:eJztWntYzmcfz6mlw1Kb5o1IqYapXMip5/kREtNBVpkOj7HQiYQOSHJsiddG
hBxCc1iSmcmoH2VqjGULk2imkENlmhh53vt+vn2eq6f37b3meuu63j9+/nBf
v49v3/tzf/re38N96TltjmdgWy0trYfsr3Zsfa3kf3zlWvRnKX1XC+mC4Bby
1WYB+ODs7zN+qq8Wvt3+oJuxR7oan3d6tPPd59VCWfZH6d7rD6px3eN91tbV
Vgu5xZsCG+OmRxUqPO1jp6VGjfxo2x5S+YmtvFQQ1HjfGoNDfN+zGZl7C9d1
zwVOS43gZGt/j9mLwD0sdFT2J3xn7WD+1bh95y0q//EXx8cwPmrc39Ndxcfs
fs2+xviONe+rcDdzubKxn7EJk1V+umyuei+k0b6WZ39S6ZM4pdDYzMVbzRN6
SjpLOks6SzpLOks6SzpLOks6SzpLOks6SzpLOks6SzpLOks6Szr//+g8Oagm
YKFLgvpcOkcvbQj9L/o/e7pOzuzV/h0ci1T2re2/Obw5/29q3xz/nwd6LbEJ
j1bbb930SUYJwy9ot6+yDo9W+492n67C39S+OR3e1P+b8n/Te9ccH3zTYt7w
czUS3kp4RfnSt4NZHvqqVEuVTyS8dfCT08ev5XVgyJK9qrwq4a2Doz6jLkt4
6+B+r/y2c3ytd38Jb0Xc4GT9AR7n0X6fa8S5hLcsfrWL02Xej+fa62vkbQlv
WVxzvqmR8FbCU5aFd2d9iNjpQX1GY/0lvGXx3JTFeXxunqATr5FPJLxl8VPv
ua7l7xbLs+Qa9VHCWxa/ebRmOcdjo50lvBXxYa6X9vM4z7H+QiPOJbxlcVu3
m+f5u2mcwkCjD5HwlsWpD7H9t/clCW9Z3OiZcVmUS4KQoP9Y9c7c0viBcYEf
MVwM3fX0f8Kb40/L33+fbM5Pc/temTfrdc/waCFpeoTGe3JzuElyyM/m4dFi
bd2Cv4U35+dN+Tfnvzk/b8r/P++rI9dca4Qn9/sFHV4dKrjKu0Y+U74lN5rU
y+Up85PQw26F6zcxan/OE5Z/c5Xhrgkedd9oL1XjK7fqnxcZHpntUd0Y31VC
+Dqjd7wa+0m/0+DHdGlXvi/wSSm07/LCH8LsFbU5mnrUCCM2vTeG2YuyedxO
KaO1Wsh+OCee+Rdhb+pF/q2ez+V81Pim68Rnb3jPOxwf42jAvpUyWquFJ3c3
z23sp20C+fE+VP0sk+37OJv2pRU8y2UNeqrnL+gIXaFnVa3966NvhapX05yY
iHsMNww269ZmZIyQZ5/oa5kWLFRF9Da8yPARCzb0/zI2Tijdk+3RadssISu5
3z+zGf5UXlC0j+EVHWxO9vCbIbz4+N1B33EdtndPa8/81FrNdv/A+1PhovHk
Q5cZnpZU9NMJtl+Uwi8kv3qaMNf7WvcqrkMve/1+ivKcbedTf7s+Z5rQe9XE
rL8Y7lK08R6zF60mkf3OkWTvNef4MeZfTHsVpvJfeNlH5f/hbcdTjI8YKCc+
xQeJzyK7Z+8w/mJ8PfEfrWur4j/B3LxSi/kpUiYO5+ddZdtHdV55Re59posY
69D/Ften8iHpU3sjaPyoX9rId6f2O8D1bGNKeuL3hDhFfEJH6Ao9DbzaxtbV
R6nXT/bf1uN8pqxUBJc8iBUm3Jp9dXDfSCHXL8znAMPPjLVeVMZwZ/nxOcOs
5gvbdN2OZDL8a7vjh9u+jhKc7iZv3eAZIVw85qZbwM+Vaq8cyPbtuGh+6X7D
uUJXb73vfme4td6weVaK4pzyUmf94NRwwaav7Rmup0PdgnGD0oLFyoXzf+T2
IcPIXlj25XnmX4yqTE7k/g9+Rv47hFgkMT7iWBPi0/mCq4rP7L6zNzL+ovdc
4h8lhqr4r/BShrJzim/H0Hln/Ernff/cpnsWbN+kAWaOXJ9Zs0mfHfVnLU0U
tbJ9e2z3cj2jKpap9ITOuPe474hLxCniEzpCV+h5LE3Ru2TvIvU69MeQmF0M
f94+edxt9r3I88mZmu4xwuPE+Av7GT4rvqybC/MjLlpYr3M9Uqj84PG+0wwX
p/dt14ft2+1EvbOf8wLBdEafETzvJb8Y3fHwuqqc3glTR3/57XwhSM/eroLh
sXNO2jF7Me5yvQO3/3Q22d/dpNWL+Rd9+i006Mj8Rz58pPJvGXthLOMjKg4+
OcL5TM4nPmfGLDZkvEVlFfE/bBWq4j9ii9kTdl7xcExAIj9vr22k/9OSgleG
bN9ok409uT6DOlP8bwn8KPyHyBeypnpCZ+RR5E/cc9x73HfEJeIU8QkdoSv0
fLRvoFMdw7G+TNxudoTrXDHSaBzz89h0V5k+0+Fsp5I253ic77xyz4Htu3Zv
vMKf6ZYYZXL3BsPDQpb79mD5eVrW1IFc5ysDSedTywLfHew3Q8yMjp/J7XuO
InvFqnxT5l+80pH8Fz+/rvIfkG08kvEQsw8SnzXriE+7l0syGH/RRiD+zpeI
f5CJw0x2XvGcL523gzmd9wstmTvTR7T5jPSZmk76HLvQae1bLJ7PdZlYxvUs
nmKgoTPqEuoR8ibyKPIn7jnuPe474hJxiviEjtAVeuoplD1SmR+s3cqKdPi+
uUldrYaxfe/2GTnmK5YH/I44TeZ5L6QL5Q1ZuWNbnjeUAuWN+l/KHJm9+KsF
2Y/YTfaRASkDmV8xoeCUEfefUkT+wyqDbjE+4s1Mc13Ox96a+CTLn+uyuBeD
X6W+zflX9CP+bnMrEth5RWM3Ou/EW3Re792xbkwf8cT5LSu4PqFhpM+jsd+r
8saeiSVxXE/7Kcs180ZDnUd9Rx1CXUI9Qt5EHkX+xD3Hvcd9R1wiThGf0BG6
Qs/gPw3MCti+WO/5D71Qy/D1Q3gdLM4ZesrtIK+D89KpDr7U2zGO2YnGhjXv
c/t4R7KfaVvyMfMvru/tY8D9J2wk/747Xd0ZH7Gqy2I9dg+E7M+IzzjjpAGM
v5h8ttqU809cTfw9fY8XsfOKFkfovFZz6LzGPgHdmD7ihmOkj91K0mem4vO4
U+uqZE31hM6afVONgLqOOo/6jjqEuoR6hLyJPIr8iXuOe4/7jrhEnCI+oSN0
hZ7ErzgHK3hO792+kNmLS0a7fJHP9vXaSPb2OfXazL9oaUz+ezqQf+tXeZyn
GOZBfEJ0iY/O1sdyjqv70n8QHmT97usg5uehGfdTnrPHhfzoxWin8H1HC6TP
y8ONeZbLmuqJvlOzD2V9ZkOfhL4J/RLqOuo86jvqEOoS6hHyJvIo8ifuOe49
7jviEnGK+ISO0BV6+qWu9uR2WLd3J3tf/aqJPJ6L8sj/kNXkf+igW548nssE
dzPOp3Ae8fm+E8XziQ/vm3H+TiuJf8agc+d5PMf8uHswP++1CXTeWusZRjye
K1+TPjciSZ89ZhTPcVq5s7ieCyZpxjP6evTz6DvRh6L/RJ+Evgn9Euo66jzq
O+oQ6hLqEfIm8ijyJ+457j3uO+IScYr4hI7QFXr+9cHpXtwvVp8fyP+9dS7X
eH6OSDnRnfPJ1Kb8HHFxcXuen7P2E3/LDpSfDUZRfrZZSedNXEvn3ayg/Gwa
WpbO9ZnRnvJz1mjKz031hM6YkzAfoY9HX49+Hn0n+lD0n+iT0DehX0JdR51H
fUcdQl1CPULeRB5F/sQ9x73HfUdcIk4Rn9ARukLPqdcGuHAeWD0DG/goqd94
uIb4zy8m/qFVg1T9hn4cnXfpb3TeLl1ch/J+w2G4TKXP+g6dVfqExfB+o1zW
VE/MmZpzZ7WAuQhzEuYj9PHo69HPo+9EH4r+E30S+ib0S6jrqPOo76hDqEuo
R4gH5FHkT9xz3Hvcd8Ql4hTxCR2hK/TsuIF4Y7WMI/6+edQ/H20Xv5CfN+Zq
w/zy13Fjpo9YV/TInOvzQJv08bhL/XNTPcEfczzmd8yZmDsxb2IuwpyE+Qh9
PPp69PPoO9GHov9En4S+Cf0S6jrqPOo76hDqEuoR8ibyKPIn7jnuPe474hJx
iviEjtAVeq6MoXNiDdH5XXXezmKcDtNH/M2p7Z9cn8UDSJ8zpd9m3GA6K+4c
C+R69s8kPfEOovkuwuashrkdczzmd8yZmDsxb2IuwpyE+Qh9PPp69PPoO9GH
ov9En4S+Cf0S6jrqPOo76hDqEuoR8ibyKPIn7jnuPe474hJxiviEjtAVeu4s
PHeT64L19p8N+qxwC/6D6Xy8qkyf10H/9MZ1UCdX852pRsA7CN5F8B6CuR1z
POZ3zJmYOzFvYi7CnIT5CH08+nr08+g70Yc2fa9ryhN1HXUe9R11CHWp6Xsd
8mjT9zrce9x3xCXiFPEJHaEr9CR+7eVYwTMoLyLS3cJfvep0Cw54wezzpuza
94rFeb7/9aw1o/wbvqsF7bKCR24W/mLNLbIPGE72bjFbJ9iy8yT1vB6exOxL
bckedvg52I9fQP4nBl1yZP5F+q4W1rwkO6xfTyF7P33DmdyufiftsyuE7DX5
KWXgqelXKYN/8ANf8IRf7AP/USbOf3we7KpeE2U+7q95nOQr7di3mD/c+Y/1
DJ/lQzi+8e/Ap56mb6ylkwhH3jYqis6ujXAV6obY2/D/H64b4lHIvtX9vEED
Djubl3l37FicwP5B7tHSl+z37fNp6Yf85wYLmvbwA3v8fNN9YYf9sS/8Yh/4
/xfyAjLG
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
ImageSize->{303.72856125765617`, 143.75433003135836`},
ImageSizeRaw->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->
NCache[{{0, Pi}, {0, Pi}, {0., 0.1506287854262581}}, {{
0, 3.141592653589793}, {0, 3.141592653589793}, {0., 0.1506287854262581}}],
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic},
ViewPoint->{0.04594731413309502, -3.3442623683058055`, 0.513612749313721},
ViewVertical->{-0.00208521986788912, 0.15177214305986653`,
0.988413308514772}]], "Output",
CellChangeTimes->{
3.8019713499006023`*^9, {3.801971749310088*^9, 3.80197178387834*^9},
3.801971832972389*^9},
CellLabel->"Out[37]=",ExpressionUUID->"7b764416-c238-4186-9012-f9b34d9d7185"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["Exact energies", "Title",
CellChangeTimes->{{3.801299411564414*^9,
3.8012994156820307`*^9}},ExpressionUUID->"9bbe0ea0-6528-4545-9c4f-\
868b32b20dcb"],
Cell[BoxData[{
RowBox[{
RowBox[{
SubscriptBox["A",
RowBox[{"i_", ",", "j_"}]], ":=",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"i", "+", "1"}], ")"}],
RowBox[{"3", "/", "2"}]],
SuperscriptBox[
RowBox[{"(",
RowBox[{"j", "+", "1"}], ")"}],
RowBox[{"3", "/", "2"}]],
RowBox[{"If", "[",
RowBox[{
RowBox[{"i", ">", "j"}], ",",
RowBox[{
FractionBox["j",
RowBox[{"2", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "i"}], ")"}], "2"]}]], "+",
FractionBox[
SuperscriptBox["j", "2"],
RowBox[{"4", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "i"}], ")"}], "2"]}]]}], ",",
RowBox[{"If", "[",
RowBox[{
RowBox[{"i", "<", "j"}], ",",
RowBox[{
FractionBox["i",
RowBox[{"2", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "j"}], ")"}], "2"]}]], "+",
FractionBox[
SuperscriptBox["i", "2"],
RowBox[{"4", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "j"}], ")"}], "2"]}]]}], ",",
FractionBox[
RowBox[{"i", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "+", "i"}], ")"}], "2"]}],
RowBox[{"4", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "i"}], ")"}], "3"]}]]}], "]"}]}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
SubscriptBox["B",
RowBox[{"i_", ",", "j_"}]], ":=",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"i", "+", "1"}], ")"}],
RowBox[{"3", "/", "2"}]],
SuperscriptBox[
RowBox[{"(",
RowBox[{"j", "+", "1"}], ")"}],
RowBox[{"3", "/", "2"}]],
RowBox[{"If", "[",
RowBox[{
RowBox[{"i", ">", "j"}], ",",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"i", "+", "1"}], ")"}], "2"]], ",",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"j", "+", "1"}], ")"}], "2"]]}], "]"}]}]}], ";"}]}], "Input",\
InitializationCell->True,
CellLabel->"In[14]:=",ExpressionUUID->"4ff6a594-012a-42c1-9e1e-0ce854cee633"],
Cell[BoxData[
RowBox[{
RowBox[{
SubscriptBox["\[CapitalXi]", "l_"], "[",
RowBox[{"u_", ",", "R_"}], "]"}], ":=",
RowBox[{
FractionBox[
SqrtBox[
RowBox[{"l", "+", "1"}]],
RowBox[{"4", "\[Pi]", " ",
SuperscriptBox["R", "2"]}]],
RowBox[{"JacobiP", "[",
RowBox[{"l", ",", "1", ",", "0", ",",
RowBox[{"1", "-",
FractionBox["u", "R"]}]}], "]"}], " "}]}]], "Input",
InitializationCell->True,
CellLabel->"In[16]:=",ExpressionUUID->"5be72a3b-c8f8-4b96-9265-4e9c94871b49"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Hexa", "[", "R_", "]"}], ":=",
RowBox[{"N", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox[
SubscriptBox["A",
RowBox[{"i", ",", "j"}]],
SuperscriptBox["R", "2"]], "+",
FractionBox[
SubscriptBox["B",
RowBox[{"i", ",", "j"}]], "R"]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "14"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "0", ",", "14"}], "}"}]}], "]"}], ",", "15"}],
"]"}]}], ";"}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.801299480841412*^9, 3.8012995392870417`*^9}},
CellLabel->"In[17]:=",ExpressionUUID->"140d9680-5488-4cd6-9e93-90da85bb14ac"],
Cell[BoxData[
RowBox[{
RowBox[{"\[Epsilon]Exa", "[", "R_", "]"}], ":=",
RowBox[{"Eigenvalues", "[",
RowBox[{"Hexa", "[", "R", "]"}], "]"}]}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.8012995457698*^9, 3.801299579852026*^9}},
CellLabel->"In[18]:=",ExpressionUUID->"729d0ca0-7b17-493f-bf05-6177ed58c74b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Eigensystem", "[",
RowBox[{"Hexa", "[", "100", "]"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "15",
"\[RightDoubleBracket]"}]], "Input",
CellChangeTimes->{{3.801831590944212*^9, 3.8018316229093246`*^9}, {
3.801885660185794*^9, 3.801885692845845*^9}},
CellLabel->"In[36]:=",ExpressionUUID->"e1945473-5c00-42db-99a4-83a13b93fd62"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.56582720976686260501877321644723726373`15.", ",",
RowBox[{"-", "0.60511128612261675040414458303455191969`15."}], ",",
"0.46454111504944465268467645623612299218`15.", ",",
RowBox[{"-", "0.27810829696411035936747813588004995802`15."}], ",",
"0.13290817196901076905510686583729714093`15.", ",",
RowBox[{"-", "0.05106910060098795180105135468264209066`15."}], ",",
"0.01577405105471967050841368070181086196`15.", ",",
RowBox[{"-", "0.00389591214560623018752579399339296625`15."}], ",",
"0.00076159632108301700786622522273040339`15.", ",",
RowBox[{"-", "0.00011594126728626892218202265681549099`15."}], ",",
"0.00001340667738004250605711545336969641`15.", ",",
RowBox[{"-", "1.13232484802582511815949056526151`15.*^-6"}], ",",
"6.539758368987717147960868395478`15.*^-8", ",",
RowBox[{"-", "2.2729877293621515982232821672`15.*^-9"}], ",",
"3.383506183247444833252462528`15.*^-11"}], "}"}]], "Output",
CellChangeTimes->{
3.801831623294814*^9, {3.8018856605657043`*^9, 3.801885693569869*^9},
3.801885812884367*^9},
CellLabel->"Out[36]=",ExpressionUUID->"4093005d-2040-49d0-a908-cdc1c80d3aed"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.82465661425964856288024366682528176888`15."}], ",",
"0.53727701978549676082504563075775565322`15.", ",",
RowBox[{"-", "0.17452095311349187291869504119527529972`15."}], ",",
"0.02852169793776642744342094261106605818`15.", ",",
RowBox[{"-", "0.00195498686012338440102052266792391892`15."}], ",",
"0.00001629228242546981128114106308795977`15.", ",",
"5.2018856554108174480210646638262`15.*^-7", ",",
"3.121239702824123259766471667307`15.*^-8", ",",
"2.50554144291865954665130547175`15.*^-9", ",",
"2.3891310367697317150336409614`15.*^-10", ",",
"2.553050250326141645923770064`15.*^-11", ",",
"2.95737510925779517642776513`15.*^-12", ",",
"3.6369580904908151731488518`15.*^-13", ",",
"4.694710201501790322291318`15.*^-14", ",",
"7.0560748171665399151488049893920937170603743`15.*^-15"}], "}"}], "//",
"Chop"}]], "Input",
CellChangeTimes->{{3.80188507429563*^9, 3.801885076119246*^9}},
CellLabel->"In[88]:=",ExpressionUUID->"29e6def1-058c-4787-8a36-da20af8eb94a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.82465661425964856288024366682528176888`15."}], ",",
"0.53727701978549676082504563075775565322`15.", ",",
RowBox[{"-", "0.17452095311349187291869504119527529972`15."}], ",",
"0.02852169793776642744342094261106605818`15.", ",",
RowBox[{"-", "0.00195498686012338440102052266792391892`15."}], ",",
"0.00001629228242546981128114106308795977`15.", ",",
"5.2018856554108174480210646638262`15.*^-7", ",",
"3.121239702824123259766471667307`15.*^-8", ",",
"2.50554144291865954665130547175`15.*^-9", ",",
"2.3891310367697317150336409614`15.*^-10", ",", "0", ",", "0", ",", "0",
",", "0", ",", "0"}], "}"}]], "Output",
CellChangeTimes->{3.801885079074353*^9},
CellLabel->"Out[88]=",ExpressionUUID->"0fb21a07-f74b-416f-9ea7-5f7d559d1b1c"]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.801885089907299*^9, 3.8018850925520973`*^9}, {
3.801885129713052*^9, 3.8018851480736*^9}, {3.801885189714094*^9,
3.801885277370439*^9},
3.801885328145001*^9},ExpressionUUID->"27c016bb-5a31-44dc-840b-\
1501bd3a1b35"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"\[Psi]", "[",
RowBox[{"u_", ",", "R_"}], "]"}], ":=",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
SubscriptBox["\[CapitalXi]", "n"], "[",
RowBox[{"u", ",", "R"}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "14"}], "}"}]}], "]"}], ".",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Eigensystem", "[",
RowBox[{"Hexa", "[", "R", "]"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], "\[LeftDoubleBracket]", "15",
"\[RightDoubleBracket]"}], "//", "Chop"}], ")"}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.801885288944332*^9, 3.801885325359079*^9}, {
3.801885611025597*^9, 3.801885615189487*^9}, {3.801885713468998*^9,
3.801885746863061*^9}},
CellLabel->"In[34]:=",ExpressionUUID->"40d902eb-88de-426a-a413-db609c284d32"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Psi]", "[",
RowBox[{"u", ",", "4"}], "]"}]], "Input",
CellChangeTimes->{{3.801885779317939*^9, 3.801885785643499*^9}, {
3.801885845052886*^9, 3.8018858455238733`*^9}, {3.8018860250852747`*^9,
3.801886046289537*^9}},
CellLabel->"In[44]:=",ExpressionUUID->"8871427b-e128-4795-a3f4-cc84bc1de9ec"],
Cell[BoxData[
RowBox[{
RowBox[{"-", "0.00450603597182860930559589870804534575`15."}], "+",
RowBox[{"0.00146842996795529993981909413188133418`15.", " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["u", "4"]}], ")"}]}]}], ")"}]}], "-",
RowBox[{"0.00059873197087574366956156566571252833`15.", " ",
RowBox[{"(",
RowBox[{"3", "-",
FractionBox[
RowBox[{"3", " ", "u"}], "2"], "+",
FractionBox[
RowBox[{"5", " ",
SuperscriptBox["u", "2"]}], "32"]}], ")"}]}], "+",
RowBox[{"0.00002759146490282762431285400426987617`15.", " ",
RowBox[{"(",
RowBox[{"4", "-",
FractionBox[
RowBox[{"15", " ", "u"}], "4"], "+",
FractionBox[
RowBox[{"15", " ",
SuperscriptBox["u", "2"]}], "16"], "-",
FractionBox[
RowBox[{"35", " ",
SuperscriptBox["u", "3"]}], "512"]}], ")"}]}], "+",
RowBox[{"8.1263146471855923932237146226554`15.*^-7", " ",
RowBox[{"(",
RowBox[{"5", "-",
FractionBox[
RowBox[{"15", " ", "u"}], "2"], "+",
FractionBox[
RowBox[{"105", " ",
SuperscriptBox["u", "2"]}], "32"], "-",
FractionBox[
RowBox[{"35", " ",
SuperscriptBox["u", "3"]}], "64"], "+",
FractionBox[
RowBox[{"63", " ",
SuperscriptBox["u", "4"]}], "2048"]}], ")"}]}], "+",
RowBox[{"5.794811194307946160194053056989`15.*^-8", " ",
RowBox[{"(",
RowBox[{"6", "-",
FractionBox[
RowBox[{"105", " ", "u"}], "8"], "+",
FractionBox[
RowBox[{"35", " ",
SuperscriptBox["u", "2"]}], "4"], "-",
FractionBox[
RowBox[{"315", " ",
SuperscriptBox["u", "3"]}], "128"], "+",
FractionBox[
RowBox[{"315", " ",
SuperscriptBox["u", "4"]}], "1024"], "-",
FractionBox[
RowBox[{"231", " ",
SuperscriptBox["u", "5"]}], "16384"]}], ")"}]}], "+",
RowBox[{"5.61087913862401933193450545601`15.*^-9", " ",
RowBox[{"(",
RowBox[{"7", "-",
RowBox[{"21", " ", "u"}], "+",
FractionBox[
RowBox[{"315", " ",
SuperscriptBox["u", "2"]}], "16"], "-",
FractionBox[
RowBox[{"525", " ",
SuperscriptBox["u", "3"]}], "64"], "+",
FractionBox[
RowBox[{"3465", " ",
SuperscriptBox["u", "4"]}], "2048"], "-",
FractionBox[
RowBox[{"693", " ",
SuperscriptBox["u", "5"]}], "4096"], "+",
FractionBox[
RowBox[{"429", " ",
SuperscriptBox["u", "6"]}], "65536"]}], ")"}]}], "+",
RowBox[{"6.368270639998519482089675811`15.*^-10", " ",
RowBox[{"(",
RowBox[{"8", "-",
FractionBox[
RowBox[{"63", " ", "u"}], "2"], "+",
FractionBox[
RowBox[{"315", " ",
SuperscriptBox["u", "2"]}], "8"], "-",
FractionBox[
RowBox[{"5775", " ",
SuperscriptBox["u", "3"]}], "256"], "+",
FractionBox[
RowBox[{"3465", " ",
SuperscriptBox["u", "4"]}], "512"], "-",
FractionBox[
RowBox[{"9009", " ",
SuperscriptBox["u", "5"]}], "8192"], "+",
FractionBox[
RowBox[{"3003", " ",
SuperscriptBox["u", "6"]}], "32768"], "-",
FractionBox[
RowBox[{"6435", " ",
SuperscriptBox["u", "7"]}], "2097152"]}], ")"}]}], "+",
RowBox[{"7.959477089915783966167334596`15.*^-11", " ",
RowBox[{"(",
RowBox[{"9", "-",
RowBox[{"45", " ", "u"}], "+",
FractionBox[
RowBox[{"1155", " ",
SuperscriptBox["u", "2"]}], "16"], "-",
FractionBox[
RowBox[{"3465", " ",
SuperscriptBox["u", "3"]}], "64"], "+",
FractionBox[
RowBox[{"45045", " ",
SuperscriptBox["u", "4"]}], "2048"], "-",
FractionBox[
RowBox[{"21021", " ",
SuperscriptBox["u", "5"]}], "4096"], "+",
FractionBox[
RowBox[{"45045", " ",
SuperscriptBox["u", "6"]}], "65536"], "-",
FractionBox[
RowBox[{"6435", " ",
SuperscriptBox["u", "7"]}], "131072"], "+",
FractionBox[
RowBox[{"12155", " ",
SuperscriptBox["u", "8"]}], "8388608"]}], ")"}]}], "+",
RowBox[{"1.060527615603453827317086645`15.*^-11", " ",
RowBox[{"(",
RowBox[{"10", "-",
FractionBox[
RowBox[{"495", " ", "u"}], "8"], "+",
FractionBox[
RowBox[{"495", " ",
SuperscriptBox["u", "2"]}], "4"], "-",
FractionBox[
RowBox[{"15015", " ",
SuperscriptBox["u", "3"]}], "128"], "+",
FractionBox[
RowBox[{"63063", " ",
SuperscriptBox["u", "4"]}], "1024"], "-",
FractionBox[
RowBox[{"315315", " ",
SuperscriptBox["u", "5"]}], "16384"], "+",
FractionBox[
RowBox[{"15015", " ",
SuperscriptBox["u", "6"]}], "4096"], "-",
FractionBox[
RowBox[{"109395", " ",
SuperscriptBox["u", "7"]}], "262144"], "+",
FractionBox[
RowBox[{"109395", " ",
SuperscriptBox["u", "8"]}], "4194304"], "-",
FractionBox[
RowBox[{"46189", " ",
SuperscriptBox["u", "9"]}], "67108864"]}], ")"}]}]}]], "Output",
CellChangeTimes->{
3.8018857891575603`*^9, 3.801885845843503*^9, {3.80188602578784*^9,
3.801886046602819*^9}},
CellLabel->"Out[44]=",ExpressionUUID->"021ab0aa-c0dc-4a5f-86ad-5a65e04cba03"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"\[Zeta]", "[",
RowBox[{
"\[Theta]1_", ",", "\[Theta]2_", ",", "\[Phi]1_", ",", "\[Phi]2_"}], "]"}],
":=",
RowBox[{"\[Pi]", " ", "-", " ",
RowBox[{"ArcCos", "[",
RowBox[{
RowBox[{
RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ",
RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], "+",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"\[Phi]1", "-", "\[Phi]2"}], "]"}], " ",
RowBox[{"Sin", "[", "\[Theta]1", "]"}], " ",
RowBox[{"Sin", "[", "\[Theta]2", "]"}]}]}], "]"}]}]}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.801467099387476*^9, 3.801467111123537*^9}, {
3.8016446836356487`*^9, 3.8016447022537327`*^9}, {3.8016456218677397`*^9,
3.801645689420854*^9}, {3.801646649688272*^9, 3.8016466626432753`*^9},
3.801646698079185*^9, {3.801651867010997*^9, 3.801651916700856*^9}, {
3.801652038498434*^9, 3.801652097753989*^9}, {3.8017366534474077`*^9,
3.8017366552312117`*^9}, {3.801736876696393*^9, 3.801736877609166*^9}},
CellLabel->"In[19]:=",ExpressionUUID->"f6128365-6e64-4c25-825d-64c6722e0685"],
Cell[BoxData[
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"(",
RowBox[{"\[Pi]", "-", "\[Omega]"}], ")"}], "/", "2"}], "]"}]], "Input",
CellChangeTimes->{{3.801889555999948*^9, 3.80188957445296*^9}},
CellLabel->"In[96]:=",ExpressionUUID->"558e7195-ec20-4ae1-a25e-3c80a0b9b80b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"\[Pi]", "-", "\[Omega]"}], "2"], "]"}]], "Input",
CellChangeTimes->{3.801889616165143*^9},
CellLabel->"In[97]:=",ExpressionUUID->"f622e75f-0f5b-4118-a203-1d6f94cc0e12"],
Cell[BoxData[
RowBox[{"Sin", "[",
FractionBox[
RowBox[{"\[Pi]", "-", "\[Omega]"}], "2"], "]"}]], "Output",
CellChangeTimes->{3.801889616259348*^9},
CellLabel->"Out[97]=",ExpressionUUID->"29635d95-93d7-453f-84ae-15597df23491"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"\[Pi]", "/", "2"}], "-", "\[Omega]"}], "]"}]], "Input",
CellChangeTimes->{{3.801889581685525*^9, 3.8018895818866453`*^9}, {
3.801889620991137*^9, 3.8018896223601513`*^9}},
CellLabel->"In[98]:=",ExpressionUUID->"bcb22def-eda0-45df-849f-608a0687b97f"],
Cell[BoxData[
RowBox[{"Cos", "[", "\[Omega]", "]"}]], "Output",
CellChangeTimes->{3.801889582503603*^9, 3.801889622995813*^9},
CellLabel->"Out[98]=",ExpressionUUID->"f3e95ef0-60a8-415c-a5eb-83f467b75947"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]2", "=",
RowBox[{"\[Pi]", "/", "2"}]}], ",",
RowBox[{"\[Phi]2", "=",
RowBox[{"\[Pi]", "/", "2"}]}], ",",
RowBox[{"R", "=", "5"}]}], "}"}], ",",
RowBox[{"Plot3D", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Psi]", "[",
RowBox[{
RowBox[{"2", "R", " ",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"\[Zeta]", "[",
RowBox[{
"\[Theta]1", ",", "\[Theta]2", ",", "\[Phi]1", ",", "\[Phi]2"}],
"]"}], "/", "2"}], "]"}]}], ",", "R"}], "]"}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"\[Theta]1", ",", "0", ",", "\[Pi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Phi]1", ",", "0", ",",
RowBox[{"2", "\[Pi]"}]}], "}"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.80188662991249*^9, 3.801886631327209*^9}, {
3.801889493177137*^9, 3.801889493815372*^9}, {3.8018896291706457`*^9,
3.801889631936281*^9}},
CellLabel->"In[99]:=",ExpressionUUID->"b8433c3f-b91a-4f84-ab67-731c9d1c1b2f"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJx1nHlYTs0bx5MkVBSSLa89e7Jvz3MkZN/3LVtEyE7IFiXLS/YtRSiSpVCK
VKgoSmmXFpX2tK/8nvOe+c4Zx/X7q+v6GPPc8+nMzP3cZ6aOKzbNXK2spKQU
oKKkVF/xc9xHB9epeqdkwk9HmYP5yyRPxxTZ6dqQuH98wuTgsrbz7/N8sm1M
VgefJMor0i328lzfxOVxrH0G5Xs1587k+b3JSzZ18MmjfFxmv348v6B//IJn
yU/Kn9x42YLnsffWbI+1L6Nc3XumCs91+xjPrulYRfn5woBfTxR8wcN/BnTw
qf2rffilX3Yd9ZU4af/58Ra7PEvqcdJ4NNomrhnrX5+Txt9n8YR5sfYNOOl4
p1x/Ps58bkNO6mdTctfBNR0bcVKf8Cx4TZIHdzvvznoGTy/4djM5PJF6Bnf+
MaDxvHax1DP4wmqddAOTKOoZfFPB3IR+iyKoZ/DUPl72G53DqGdwswsr076M
eE89g8/IcZ6dtjmUegZfQdrDs7R/eAbfQOKBZ9o/iR+ewa+Q8cIzeDLxA89S
n/As+MuT67iWH2E9g/vfC+8Z/ymWegZvG/a7nYEiTngGt3/UaM5N37fUM/i3
VfM8D+zzo57BE4avKJxg4Ek9g/e929jwyX536hk8K/7glbaWbtQzeEfSHp6l
/cOzNB54Brcl8cMzeCsyXngG9yN+4Bm8GfEJz4KnMvliLTtL1jN4v7QZPXr4
faGewWMKt/nEKJ4feAb/Xnrt8PUkP+oZ3NG91xBPhQd4Bj8yLztrd8kl6hnc
+07FgGEyG+oZvEOfeaYvL+6knsHtSXt4lvYPz+DHSTzwDP6RxA/P4B/IeOEZ
XI/4gWfwOcQnPAs+auWttP/0DH53dc5w1jP44FqHAtYzeI5j/XLWM3jPzefU
vBjP4NsvHR23h/EMHt01Zf8IxjP4hU8B/gGMZ/B3pD08S/uHZ/D2JB54Bk8j
8cMzeDcyXngGdyR+4Bm8qfafnoVx1+N07/25boC/2GS9lF03wHPmd7Bk1w3w
jF5VrW4x6wb4GbevRoeYdQP8WFHZpknMugEetO+pxlNm3QBvb9THTI9ZN8B9
SHt4lvYPz5STeOAZPIbED8/gqWS88Az+mPiBZ6lPeBbG14B70ePPfRC8esa3
EnYfBF+8+cpldh8E79A7xLE/sw+CRw4JeWLA7IPgjt/6L7Fk9kHwggUub2OZ
fRDcOCxp5HdmH5S2h2fwK6R/eJbGA8/gbUn88Ay+kIwXnsFLiR94lvqEZ2Ec
in+3+DOvk3J4lnJ4lnJ4lnJ4lnJ4lnJ4lnJ4lnJ4lnJ4lnJ4lnJ4lnJ4lnJ4
lnJ4FuJV50Y/ylD3YjyDJ/oblPteSqeewW8F3fPtcT+Tegb3VnbWOeKcTT2D
X9Pd0zBkdB71DB789Hv5+FkF1DP4xSmHzWbeKaSewZ38pgy00yiinqXt4Vna
PzxL44FnafzwLB0vPIMnEz/wLPUJz0JczThbA5sBrGfwjXkL293qnUk9g+e9
OjeejxOewc+b3NjzesBP6hnctKar5hvVUuoZ/GST+tkDp5VTz+DNPWtdgz9U
UM/gjTsYuWVPq6Sepe3hWdo/PEvjgWfwyyR+eAYvJuOFZ/CtxA88g9sRn/As
fL4W1zS02IT1DG5gs3x96oMs6hncSXl9Kv/8wDO4RivzyObFJdQzeMCZl1G8
B3gG773ksf2vn9XUM7j5QuO2+cp11DP4PK+jSqN866hnaXt4lvYPz+ChJB54
ph5I/PAM7krGC8/gMuIHnsG1iE94Fj6nORcq8Qzu73Z/F+sZfPCPt79Zz+Bq
s/vnsJ7Bfd1Vy1nP4INMNZ6ynsGDTNUnsZ7BA8KGGLKepe3hWdo/PEvjgWdw
LRI/PIMPJ+OFZ/B3xA88S33Cs9BfS+6M4Z/rBvjlzpM4dt0AD+AOX2TXDfBV
N6/4susG+IE761az6wZ4XZ/wWYOYdQPc/3jwPyHMugGuP/l61xxm3ZC2h2dp
//AMfojEA8/S+OFZOl54Br9B/MAz+FnDP9cN4f+14vp6/rkPgndzCOnmx+yD
4C+TOnfqyeyD4O/mq3ix+yD4+6xrsew+CG68o3+RCbMPgp9yfGA1i9kHwbep
agax+6C0PTxL+4dnaTzwLI0fnsHfkvHCM3h/4geewQ08/9wHhX9vzXWw/DOv
Aw941UnTi8nrwL+Xa4zyYvI68GvhXdZ4MXkdeN+KifZeTF4HXl/+0sWLyevA
rbvrP/Vi8jpwkyLvF15MXidtD8/S/uFZGg88S+OHZ+l44VnqB56lPltnPXjR
ycdPLvwMkx/Sri97GfqN+gffFNj4Dd8++eVGmeFINU7aHv2DW5D26F/4f7rc
m4l9XxUvTqX9g89rZVnG9i9tD474h7W+VMb2jzrkv6/Tgth+pBztpf0gfmk8
vfx2WnfzcZcLP/3kHQZd7LljU4qs29SJL3QeqnFSjvbCv+tyW8dvNxn2UWwv
5fCAflq0nB7Bfy7aI/5wrUkRbDyI/0dwv2w2fvR/+03PbLa9tB+0l34u4pH2
g3iknzvNKq+qtmMorZd6D3fz+bQnSda4QbVabcd4+rmhj7vb8e3B0d4wZ2mR
t0mcbEem9fu98Wm0vb2j3gq+PTjaP40K6O//PFq29v2B0zUds2n75dWBHN8e
HO1Xlz5b+igyUrbQ49Bcq3WFtP2nJmO78u3B0Z4bUWR8pO8nWbcJRqf2xheL
8WfcbPafB8LRXlnNyVRNLUzWYcSYn751Yj2/ztGpPt8enNa9Te9bXuz0XqbV
Yezz4eNq/2oPjvYppH1jrXFtrNb9/isecLSvR+I5ePDWq8Xjxfr/RzJecLQf
Rca7r7qz5d54ZU7qExztlxGfu7e6dLy2XoWT/r7A0d6d/L6253WJ8q0T3y/g
eQBH+17kedi8+rZN4r/ieweHN1aP+fbgaO9Jnjc8h6jfWtz4mWlfF0efN/A3
Y7aaLhz6mT5XtH1Whr1bfCh9fsCtHy+c178ugD4n4HrbE3ucUPKhzwN443of
fPqUPqa/d/AjJ1sv82/vTn+/4FaE4/cIrkb6we8LvD35XPxewPeQOOEf3IyM
C57BXxMP8Am+hniDT9RpuXsTUqb3jqU+watcXt8os/9IfYJbZbq/Wp4YSH2C
X1t9+d8Rp55Sn+BT1Cu+7th3h/oE31u+4dwK2XnqE9yzi3V6fr/D1CetVxMO
n+A7SD/wScdFPhc+aZ2cxAmf4BZkXPAJnkU8wCd4X+INPlGP3dX+YSHrE7xu
08oI1ic4x80vZ32CB+Z2q2N9gs+sf+HmTsYnePOKlO8rGZ+Uy1J6FTE+wRsS
Dp/g2qQf+AQ3IZ8Ln+DeJE74BB9ExgWf4HnEA3yCWxBv8Im664TJvVscZ+Y7
uKPe8/vsfAfvKGs+5h4z38HnK3m1M2TmO3i/N+88TzLzHfyfLg8H9WPmO/jU
HW+GBjLzHXwc4fAJrkf6gU/wHuRz4RN8CokTPsE1ybjgE/w88QCf4BzxBp+o
r/Z4YqcUwezj4DZuvSx9mP0avJVqbBK7L4NX9g/Rf8zsv+DOVRbKtsw+C25o
PXVIY2Y/BR+29vjsy8y+KeXwCd6P9AOf4DfI58IneDmJEz7Bm5NxwSf4AeIB
PsE7E2/wKa2jwqeUw6eUw6eUw6eUw6eUw6eUw+dfcRKfUg6fUg6fUg6fUg6f
Ug6fUg6fqJf+WNKwympYOvUJ/tho8sRTmRnUJ3iz+zbRnY78oD7B72lo/nvn
Zw71CX7C06jefLV86hPcd1GYQ2PXAuoTXH3Wu245XoXUp5TDp7Qf+JR+LnxK
44RP6bjgE/wJ8QCf4LnEG3yiLvqzBSfPsMqgPsEnT3xXa+2XQ32C99j8MOGB
ehH1CV7tnGZsdL2Y+gTfnDrUtCC1lPqkdezt9S4v8CinPsEdTBtkT0qqoD6l
HD6l/cCn9HPhE7yWxAmf4H3IuOATfCbxAJ/g5cQbfKL+GebePLjmQyb1Ca5y
68fhwa751Cd4xquu+XvMiqlPcLPZZz/nJ5dRn+CNfs2f3666kvoE39Mupu/w
HTXUJ/jd23mtKlrXUZ9SDp/SfuATXJN8LnyCW5A44RM8m4wLPmk/xAN8gscT
b/CJOufrk16fWZ/gl+b/vs76BNcsmqW8l/EJvlypXRHrk9aTDdz2sT7B5/9z
ciHrE3zMx5/jWZ9SDp/SfuATvBH5XPgENyNxwie4DhkXfIJfJx7gEzyYeINP
1DN3jX2ylJ3v4DuGPR29n5nv4DdHu2l5MPMdfIvLodPsfAefdvnTK3a+g294
26ThQma+g4eNWbF8MjPfpRw+pf3AJ/h08rnwCb6VxAmf4LfIuOCT+iEe4BPc
mniDT9Qtxw8+0XkPsx+Bt2o85Ra7H4Eb9Zy+pDOzH4GbOEWMvcvsR+BDr0en
sPsR+NwDEQ5NmP0IfIFF25G5zH4k5fAp7Qc+pZ8Ln9I44RN8HBkXfIL/QzzA
J/gM4g0+UV9a1lJJzYvJl8AT9Wf192LyJfBWoxbP82LyJfDVac93eTH5Erje
50HnvJh8CbxTVayrF5MvgV/kEv6r38KnlMOntB/4lH4ufErjhE/puOBT6gHe
hJ/x8g/PXSfEhIl5u3pl07bx9l/kurUz2191iafeQrYPGPm0JFK+rSHXq6tN
HPWmReq3z44clE8Ki6PezqSV1ibYv5Vvc63zcumSQL11IfXDBWlrF9kOSqLe
TMyaqPb1cZf7piRYxLonU2/TSZxL2+667TXmE/XWjMQ5LL93eVqTKHEfJ3G+
P6EyVOVRDPWGOvPGlb5OH4wSqLeLJM45jfzfK23+Sr31JnHem7Eo3Sb1G/XW
e9zaypP5OfLW8stFbL1I+Jkt/xi981XikCjq7UfQ8dbr5mbJo2vD/I7mfKTe
Qg617xnHn4eKymt6Zs176s119MPh4/zT5TotPz1o1CSEerNTGj3JqyRV/jWs
exPN0cHU21r/z4s66afIzQ1zlZP8g6k3xPmks8bxudFPqDd1EufMnb6rOh3y
pd5ySJwvUjTdA24FUW/vSZyP3iWq1Bv2Qfw+TuKsMfl4aXq/z9TbMRJnpwUL
HYZMiKXz14zEqXq13iO2/nape76P5u1SecG02xlsfaNhw8GBY/1L5KOPWTuF
n/tEfQo/i+U3MlKmzpnwlvrMfBv8mX8P8+xqdKd/E/2oz7m3myXmaPyUG+2P
/jqmqxf1+c5mQXpH/SL5088zrWaqe1CfFiHGsY9tCuS/PCamtpnqRn0iTndH
n4T9G09Rn2okzis9rcYM3+NEfe4kcdbtUfat3+YR9ZlF4ozpbdW26QM/6nMe
iZP78bj66fpg6hNxXp7RwnSjZyT1uY7E6V11PpWtv7XpfWfn3Kga+QRJvehY
k8L9J/Or5aP7Xgxm60WVOUPs3jSsll+rsUhj60XCzyr5qwslQWy9KM4t9JLh
yEq5lZ1XB7ZeZHJM29l8boV8mWruV7b+5r12kZuTZbk88eO2HgVMvQhxppzN
zihk6kX2JM6eWSuvsvWiKhJnG9s4U7ZeZE7iPPciLIStF8WTODV7XfrM1osQ
593ME65sveg5iXOxpP429dLDNp8O1ONM7kRosvUiVbVoxxyNelybdp9v8r8X
+Hy5s7KT6lUlTiVhi90zxe8RPrdntbvLv8eTuVi2a/ZAfD6Fn7/lp6/fO6Gi
eE7g8/3JD0sf2/ySX437tm+E4rmCz+EbWqz54Vgn7xpYbXRY8RzCJ+Ic/aVu
S3vFcwufiLN3bsG32YrnHD5fkThH66+pNFbMC/jcQeLUM9FrczpRfD4XkTin
u1Q+4ucdfCLOsm190vh5Cp/DSJybghqXsT7/bXOiqrhVA260dmr5H+997B/t
07ytwpVaRjUeqlg34PNXVXS9noYqXG6SSZ8ZinUGPp+ZVx3h33MGhr+RKSvW
JfjcGN++8fLJ9bnYytjYQMU6Bp/CT2VusfP7HV0U6x58JnubaV8yU+ZaXhk8
dr5inYRPxBk4tOPrr4p1FT7HkzhP+7++0FSxDsPnbxJnyopdKk0U6zZ8Ik7r
C/v7OSjWefhEnOan+920VewL8Ik4u81rqpWk2EfgE3Hq50W1Z+tvEdfWxvHv
2bau8o5h60V26icX8+8zAyqa2x1R7F/wKd/7OGVKaEPu5JOjD+op9jv4rMj9
sop/D/z9UEf3MMX+CJ8PF1X/sElX5Q4NnDSngWI/hc81H/Q2OFmqcuPWzdD6
rth/4VP42YBrc2Sq7zPFfg2fiHPUpNaq8Yr9HT4R5yGPiCA7RT4AnxyJs7qj
WcZtRf4An5Ukztd2HQdPVuQb8Ik4Dft8+MHnJ/CJODcdd3Dm8xn4RJw5gQ7q
bP1NiFeds5qjXMLWi0JOmY+YG9WEK9pQOEZdX8zPD/w66b/ZtAl36F6u0w4u
k/ocuvHJmJP5jTlvo3bFoywzqc+irzHBrlaNOQP9E2brAzOoT9cpNZPeNGzM
qWb03X/V9Dv1afqyQ8S3c424VX2HbZSfSqM+EeeBMxPPL32bT32GkjhPpC8s
6pSZQ30eJHEaVm7d6fQ9i/pEnCFDHu5u908G9Yk4V22Y28w0PY36RJyXR7dJ
H7QklfpEnMbbA9PY+ttM544Xln5tyv0wthjOfn8U4m3KdfcfMeBIK/H7Y8CB
dY7nKzS5ll2yuBSlAupzd9GpTo9tNLklMt/JQeuLqM/+pp53wrQ0uQbXni8w
MvxJfWZ/iu35w1GDKyyKzuw98yf16Syv9ajfW4OLelrPKCCtiPpEnGOjzV78
jiqnPhHnkicONf0flVKfgSTO/jc6NYwbUEx9WpE4s6IX73eZXUh9Is6p5rUm
jtdzqE/EGRse09zueCb1iThL+yTWsfW3UK39w0e/0OJ841e/Yesbtyecqf14
QItrXtetKHO8WN8Q4tXiBjhMKXIO+kl9LvF5eiBHQ4vrucGj+5v9pdTnsJ/B
Rruim3HqXEJtlWM59dmyR4KK6tVmnPGys2Wdaiuoz5+mee/OLm/GjSjJn/Xs
WCX1iTjrtFUenLCopT4R5x1D48+W+tXi80ni3HLjuW+zURXUJ+Iceiy4cH1t
CfWJOL9dt421fSh+H0ecY4tsT39sl0t9Ik61H/mj2e/j2TPze0Qdac65SepF
b+1/55pObs4N/OR+ha0XOQdqeRRoN+eUM27WsvU3IV5tLj31eTpbL1pgONiw
sZM213v/iLVsvWjQOpPSi2banLZeyHC2XqR1c+Gzrn20Oa+QTnpsvQhxDrrv
O5qtFyHOQL2rU9l6EeLM8Hi3ga0XIc78LRXJbL0IcZaGxhSz9TfEadl7hC1b
L0KcRZL6W6Nzi1qvntGSW6Zrupyd7xkfNiQWt2rJKS0K/8T/Xuh8r3/g+oHk
FpxawKAGdg/FetH1EQ7LNG+34IzrwrtbKH7v8CnE24Ib2L5/Ff+cwOec+8/S
exi24HRza5puVjxX8Nk/PeT288rmnIH10kz+OYRPxPntbFkg/9zCJ+L0qL42
o7PiOYdPxNnVffyYasW8gE/EefpuxHx+HsEn4nxoGax5UzHv4BNxNh+S1TRr
vOgTcaa+UI1gffb4EqpW0a4VN0DVVJ+tFzXQSHpvk67DbfN4YM6vG/CZalxw
QvueDve2cFYov87A58u9StOcLHW4iTrm3W8r1iX4vOylrdV3iA43qmC9Bb+O
wacQb0tu+oV+Gw0V6x58zugy5PyENy05nUXNBilFl1OfiDPdcdl7fl2FT8Q5
YZPxij6KdRg+EadHVXggv27DJ+LcYv7sBr/OwyfiDH459Tm/L8An4mx/fvYe
fh+BT8TpsD15ATvfJ+kMrbT7ocsFOnd9MeajmC/h/NLT63uHDFbsa/CpfHTx
XpftutzErcYn+X0QPnHuq+Zu9w7tFfsmfL4oO6D0WlmXO6h2zNhZsc/C5/k+
ZwOnhLbiznXalNpZsS/DpxBvK+6d2sObyxT7OHwizl4u46Zxin0fPruTODPm
Dlt4TZEnwCfijDE7aGChyCvgE3F6JpjekCnyEPhEnFqla7rvVOQt9P0vidP4
fOfrfJ4Db9NJfcZ/h9FamaX43s3g//BZpG7zjtSX0A/GO1XpZlhoo3TaHnyu
hEt/X+DSuh/6l57/wflP1LtiKhb8d/4H59bAH5/c8oS97wNu76Kmtts0jp4L
BfdwnHA1VvULPRcKbtg47t6OnZ/puVDwXyOSO07xiKDnQsGd9nOufF0L50LB
I1w2Hvvt8JGeCwW/RtrjXKi0f5wLBe9P4sG5UPA7JH6cCwW3IePFuVDwz8Qb
fKLeFTLis93CT3HUJ3jgeMd/WZ/go6Imx+1u8pn6BL8QMLP/56JQ6hNcfZSF
gWtSIPUJrhOU7l3g5Ud9gmeFlgWFhz+nPsHT7oy2qTF6Rn2CfyPt4VPaP3xK
44FP8H9J/PAJPpSMFz7B3xJvOFcJ/op4g2fUu1ZPSelx/HAM9QyeduzMLtYz
eE2B64T3bmHUM7ifh0rrqb0CqGfwkPXWxpUXPKln8EMXlU9MMbhDPYMfWf72
yBDPq9Qz+GHlwonvgy5Qz+AbSHt4lvYPz+CBJB54Bvci8cMz+E8yXngGX0i8
wTN4IvEGz6h35XbWM+Tvw8IzuA+5dwzP4Krl9aPZe8TgWRMi/Nh7xODfNVNu
sPe1wesqhly0Yu4Rg4/LzF0wnLlHDL7QWv20P3OPGFyftIdnaf/wDB5N4oFn
8DgSPzyDV5YJ44Vn8GTiDZ7Bn0juv6PetTF7tAn7PIO3Ov7n8ww+3XSAG/s8
g+s5JB9hn2fw4kMBbauY5xlczUa5zTTmeQbv0FO2YjjzPIMrDb+kHc48z+At
SHt4lvYPz+C5JB54Btch8cMzOEfGC8/gq4k3eAbXPv7n84w60kTXmCB2fQZX
mvjn+gyu2sF6uBWzPoNXly/tGMWsz+DWI3YaujHrM/jAVWcCi5j1GVxvZHnw
J2Z9Bs9Z6m9Tx6zP4G1Ie3gGNyT9wzP4HhIPPIPnk/jhGfy3njBeeAYfTbzR
c/ISb/CMOlIRqSPBM7ie4ZU/8gpwM+sL19m8AjzioN6KOCavAFc/4Xh2J5NX
gDfuU9ZhKpNXSOtv8AzeLfvGrXpnxbxC2h6ewdVI//AsjQeewcNJ/PAMvoqM
F57Bc4k3eJZ6g2fUu/aQuhw8g0ffTVFl7/WAv9cN/30lO4N6Bq/9d1Vhz4M/
qGfwLis7H1odnkM9g98Lu7H16bU86llaf4NncK/nHWJtehVQz9L28CztH56l
8cCzNH54lo4XnsH3EW/wLPVG8zpS75qwPGKmm22GmNcRvuN0Ug/WM3gb7orL
P0k5Yl5HePCF47+V2haJeR3h174dbzL5ZLGY1xG+8pvjg4gjpWJeR7hy0ckm
TuFlYl5HuKVqg8kz5OViXidpT/M6Sf80r5PEQ/M6wt+T+GleR7geGS/N6wif
SrzRvE7iDZ5R7xrfxF9jXfss6hk8aVo2x3oGH+n2IsvRtIB6BncyH3XGK6eY
egZf4uNinrm8nHoGP/2raUHxwCrqGdxtj3kzuWYN9Qy+sDbMv+5JDfUsbQ/P
0v7hGXwFiQeewW+R+OEZ3JiMF57BZxJv8AyeTLzBM+pdlRdUt/D3YeEZ3ILc
h4Vn8PXbLxWx94jB7QeFf2XvEYPLOqR9Z+8Rgz9a+u0Ge48Y/MIS/QHsPWLw
E9yy1uw9Yml7eJb2D8/gRiQeeAY/TeKHZ/DNZLzwDK58UfAGz+AbJPeyUe/a
vNO2M/s8g7eY8efzDL4u2133BvM8Ux7p7c0+z+Cre4bdYJ9ncNMp5w1KmOcZ
PO204SL2eQa3S9qn8Yt5nqXt4VnaPzyDm5F44BncksQPz+AbyHjhGXwn8QbP
4C1n/Pk8o941cn/ObnZ9Bvd2+HN9Bn+9plc1uz6Df7cZOKYesz6Dx1+uv4Zd
n8HHaaW0i2TWZ3Dnxbm27PoM7mtVFcauz9L28CztH57BE0k88CyNH57BA8l4
4RncmHiDZ/AXDn+uz6hHvYj1/O+8GXyC1//n4OqrTF4BvmLNWvteTF4B7u1W
PMWMySvAlxYGmj1j8gpwj8Ja52VMXkHrY24P844weYW0PXxK+4dPaTzwKY0f
PsEbk/HCJ3gQ8QOf4MMnqzXkffb67xxSAq1fLd4S1JzPA4XzNN8p15j96TZf
jxLOheRSzp1z9uTrV8L5BrGe5hJupc/Xu4T39GI9bUvJ9kd8fUx431xJuWaj
ISf4eprwnu835S0PBbXn+xHeV4l1sxO7Rrjwnyu8dxHrZpdaHHDg4xTeH4h1
s26Fh+p2KcYl1MHFuplSzxsP+LqZUMdUo9xMbmDO10uFc07ptB71YmiqcUbC
B5lwXieH8vpjwrz0Z72RCec5xDrY+SspU9b4v5IJ5ydKKXdpqad7RclHJrxf
r6Q8b2+nSWV3n8mE93BiXWtKZH7G+tgAmfA+SaxrXfMtdp9hFSIT3ouIda07
F49MtdSJlAn1fVXKBwy/e7PyZiy9/wv+qcLtJ3+OTjhvlEPrQktzVAKcB/rI
hHMzRZSr7ax2HNzzgUw4/1FK+eClriuLTjrLhHMMFZTvvnZ+5J6ml2XCey+x
XhSdfOhpsbefTHh/o0J5M++w5kHHQ2TCewhVsS7U2vPNh+dRMqGerkb5w0HP
/WZ4fZUJ53iKaL1l494hG7z3usiEcx4llA9/mhc16dgZmXCuooLyMePzGmk0
OCAT3hup0DqJsa9BnPacNzLh/Ycq5QEbP09qvCGS3k8Hb1e/f4OQvYky4RxJ
Ca1LhOn1XV+956ZMOA9RTvmquourjq25LBPeo6jSuoHH/LoHLv9EyoT3AWqU
t9g/ydxJPUEmnJ8op9/HTbY71I9Z+1wmvM8Qvy87re3xdWSvBFkfMt+l30cw
36XfXzDfpd93MN+l348w36XfpzDfpd+/MN+l/WC+g3cmn4v5Dl5H4sR8l44L
8136PQvzXfo9Sw3znXwvCL2+QH/9rkKZPeY74SnXLB+MGVYsznfCX91//NBp
TKlsPOY74Wrtr7yU3SoT5zvhNUqBx30MysX5Tvjo5rsb7f1ULM53wo/G31nS
aFORON8J//5p3p7nl3PF+U64PK3vG+PJmbLumO84LzG7Xxf+PRrmO/Lz6YOf
aL+dWUbnO/h+3bqrIQsq6XwHj0lar2a3v1rGkfkO/rXkyW/LgzV0voN75PX7
8aWqhM53cM3e4S1WzCui8x3c6EVp3bzV2XS+g8+NGRaX75lG5zvy3ppdq43T
l1bR+U6/XyQn52yvrqHzHfx881fdWi6ro/Od5vMN7rg6pv2k8x18yNwmfdrc
y6XzHVyle8+Eid2+0/mO/PCYwdZR94Kq6HwHb+Sj3D5MXkPnO/iB5IpWj3Xz
6Hyn+flXP2sDtQw635EXbei5YMLQpDI638Ftgjdv7R76XSa8F7wml+5reE8H
HkzeAyJPAH9E3rsZkH6QPzSPH+Izhvl7F+BDSV6B+QXekrTH+1P0b0rOjTf5
77z4W7oPbota9Yxfr4RzXTWUx5W0qItSrG/0/A/h88h5aeEcfADddyx7TV7K
r5PCOe9Yymvv1bPn11XhfFgN5QeC9c4dVazDwjmnX5Q3zhmZW6lYt/E+F/wX
OT/clPwdEqz/hsZ1Gvz6L5wj/0J5t0dTpvP7hXAeOpVy12UjEvj9RTjvVU15
z+QGuvx+JJyv+kV54qDRRfz+JZy/Ed8XbDhlbM3vd3i/DO5Azt8K5/6f0n3n
8IHWEfy+efe/8+JRlKdyyQX8Piucz06lXHdqa2t+XxbOGf+gPHvFF4cSxT4u
nEurptzLTNbMWrHvC+erflE+0ark209FniCcExLr82+mGgwdqsgrhPMuypQP
NHY7d1ORh+D9OPhUct61E/5OC9nvbkVlN+DPVQrn3SMp72w5Np/Pf4Rz2ymU
Pz8Z6svnS8L54yzKo2uX3p+pyK+Ec7QFlO+7uKzIQpGPCeftqin379p5QoUi
fxPOjdVRXvjLr/k1Rb4nnH8S6+QD3V+PM1fkh8I5HmXKnQftdO2hyCeF8ygq
lJ9sHaKXqcg/x5H5KK3HCvcNIv6qewvn5pP/qm8L578z/6pvC+eY8/+qbwvn
XIv/qm8L5wv/rmML5+Tq/qpjC+e9/q5jC+eWlP+qYwvnb/6uYwvnSP6uYzfF
eoK64vV98/n1MBTrCeE7yyI+DFGsn+Fk3cD+EmmzcQe/3uaQdQN8SrVNxSPF
+nyQrBvgXW0OR3xQrOeBZN0AX3ldo9xNsf7rkvUB+8WaYZ9S+P0ilKwP4AOe
nR3E7y9YH8Dvr9v6gN+PhpH1AfykfWhXfv+yIusD+LSv+j/4/Q7rA3iJymKO
3x8vknWA1jdyPTP4/dSNrAO0rnJoZJf5iv0X6wD4ji/jB/P7NdYB8LLPZrox
iv0d6wDtx+vBpM2KfMCQrAPg3g9mT+XzB6wD4A4LDWL5fAPrAHiivh7H5yf4
O0jY73ZMnGPA5zOY7+BpMwIq+fwH8x086OitZD5fwnwHf3Ph7l0+v8J8B3fr
pbOOz8cw38GL3I83eaHI3zDfwS/FXh0sV+R7mO/gO/eHt3ZW5IeY7+DVtqeV
jRX5JOY7eHBOkTOff64h8xr76SvZmR789/p1ZF6DJ1QHrePrAM/JvAY/1zv8
FF83GEbmNbhXMTeDrzNgXoNbTI5Yy9clMK/BR52uy+XrG05kXoPfcCi8wdc3
MK/BV97ZtpLvB/Ma/Oj3kxP4z8W8Bj9+ousRPs7pZF6Dq/rcWsaPC+fBkD90
LYlTvVcu/v0K8Bv/XuiXWvOFngcD97mUrTPvdBQ9Dwa+aljVlmOekfQ8GHiz
HtHqV5ZH0PNg4O0m2g3e0VO87wbuuEt2tsQ2guYJ4A+Maq3jSiPpvgzeudnQ
fhX5UXRfA6+3qzR79Y4Yeu4LXOfOgIKEE+K9P+Q/j8v21xs1PJyOF9w+8NaA
5Ybv6HjBe4/1yO2jF0DHCz7+2OTDn3eJ9y/AtUftWxh97TkdF7i7tcfuS0YB
dFzgrUa27dv66js6LvCNlX3XxGuK9ynAUye+buvyQ7xPAW5pUG6sXhdPx4W8
y+BjA9lwNV86LnrvrO33VgnnxXs64HWZxmkBc1zouOh5GCe7r1q9r4r3awhX
rTk4dGHGCxo/uE+b9JbLL4n3a8Abzqy+uG1vBI0f3LxlXMqTklgaJ/IxdefU
Yez9LPCrcx0GsX/PB/zIr9wG/D0sxAP+8PyrePb+FL0XZh79lL0/Be6emJbJ
3/fB5yKPGpS77baO9y36ueCD2y72nl14hfYPHr29/+mmhuJ4wUvfFtaNfBxL
+0He4jn/TcbMq89pe3BLtQMRk/bF03mN7+Mz4tqPn2Ir3uMAH6J0V/dcUJZ4
v5XwgiuRayZHZlPP4C1+5ewpO5tLxwvuuMW26a6feeK5bsJLL5ycUx4l3tcA
d7lxNkAnOI8+/+Ab39ftezsjlz4/4IbznzUy3pdNf1/gs4eaPAhZlUV9gsdf
3HjqdxfxPjW4fUlc2bCENHG+k7zlwMpV2l6e4v0L8N5FH0MO2fwU5zvhD946
LtmxtkSc74QbT7i+pOy7eH4Y/OD1C5O6JJeJ853wcU+ju9jrlojznfChR02M
3nf+Kc53wl9aD3mZlJUvznfC93/4sCB2brY43wmPPPZ0e+6X73RcyKOq7qxx
OBUr3oMAd+nKFQw/LZ4zB095OdChr08VHRd45jstjQlda2j84A32Wq1V3y6e
Dwffp1Xt3m6ZeD4c/N6EofaHVuTR+MHzB2w2txkh3idC3nX8po0Fe78APFpv
2Vj2fgG4zgcNA/4eAeIBPxdZWMae/6f9ZESeYs//g9ff0zSMP6+Oz0UeFfk9
Kr3VOdEPeKFJ+NUgvRraP3iXtOTAOYnieMHnXS4Y7b4+k/aDvMV2zM21edFl
tD34qs4eO9bqZ/zfOgDOCWP9d7S9eoNfH9AePGnpkZTpV/9/HQD9YB3WNlLJ
5NclrDPg3QvHr+XXMfQPrtc3/dsMxbqH/sGTO0f/01KxTkrrAL9JHQCfi/W2
NrdlNnvPF7zH/Wkv2Hu+tP3pcYn8eo54aPtVWxqx93DBCy74jWHv4YLbbbw/
jr2HC457uIgT67bcWbWO36cQJ7h6zsG3/L6GOOn3feVBB/l9EPOUntMb7Nhi
kWLfRPz0+/tgmXcLxT6L+MHnefYzD1Lsy4ifnuubHPiD38cRP7jy5hTtEYp9
X1oHmEbqABgX9pd4G5vdfP5A7xEQ7vu95Q4+38C4wAc32j05QVP8OwDgGmv8
+rS5KuZR4Hlt+x++rMh/MF5wU+99S2Kuic8n+LuLE+2id4n3+sHfh+Tm9NUT
8yhwsw+tu60wFPMo8EnvI2L5fA/jxfffDp1Htg7o8ZWOF/zUs+7bEpm8ETxk
UR8nM0WeifGCDzjq2KgyX8yT6ffxFw5b4kvFPBn80ey9F0ptxXkEvvrsoIm7
mDwZfNbe+hpXl4t5Mq0nRKqvsPcU82RwV1u9PD5vhwfw9s2jUvg8H+sV+K42
3+z47wV0PSH7y9zfd+aw6w+435aHubmK9QrtsZ6/H+BiwK9v8Al+bWDeNX49
RD/g+j22TOfXT4yX3ptbq+nIr7foH+vzWX/vcPZeG/inljpn2Xtt4Cu/Hqvi
1398Ll3/XSP6sffOwJX0VIzZe2fgtsf3mfP7EeLBer5l0el9/P6FeMDDFmQ+
4/c7xEPPk2xIjOD3R3oPlPAm1qmX+f0UcYIv/9VqPr//Ik7wwxotY/j9GnGC
ez7Y2H3EafG+Ifi7fbde8fkA4sf+0tZ5xiU+f0D84NtNl7jw+Qbip+cNTI4a
flXkJ/TvABAedrGtA5/P4Pmn3+v3ptny+Q/GBe7R4mgIny9hXODPXPUi+PwK
46L1hBNrX/P5GMYFXny0ne5hGzGPAh9/r/oIn+9hXPhevGTKvUw+b8S4wJOH
eg0IXSXmyeCDV3Tz4/NSjAt8lo7ZvHczxDwZfHtkhxetgsXnHHz3y3UrK5g8
Gdyyanmj3T/FPBm827Ke88rPinky+HePge2mRIp5Mq0DbHjgxOf5mNfgntOG
OvHfC/7f+4v/ATK6GKU=
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[{Polygon3DBox[CompressedData["
1:eJxNmXf8T+X7x9/n3HdDKqQoDWmgkpkiqVD2pmwhZe+MsilCyWoglE0aiEpT
pb2nfJsatKS96/t8fV/37/H4/XF/rqfjvN/vc+5z36/rdV2nXK8hbQfnhULh
Wv4E4gJiCeILWaHwA6MSfBLxHcZhcAnid8TPGZ8xDuf8psTzOb4z82f/YhzG
8SbEuhw7Fu4IN4MPghvA58BHwW3hi+Hj4E5wc/hIuA18Efwe4wj4H8bb8KHE
YsT/6Dw4J77KOBAOxDcZh8BFia/p9+ADiK8wDoAz4suMCP/LeCnzff/NeBHW
XPzJ2AWXLOgDhcLvjLPA04jv67rhSHyDUQQuQnyLUVT3TfyAUQo+kPgbowZc
kfgLoxpcnng6PzQG7gufAA+Eu8KnwaPhPvAZ8DVwP7gCPBK+Ai4LD4K7waPh
h+E1mif4Mrg1XBzuBreEi8Fd4Rbw8fAAuAt8IjwY7g6Xg4fAl8EnwUPhHppX
uD58Nvwv41y4CvEfRm24suaVc+rBNbPC/yawDqEqPAreBq+GT4VHwJfDJ8PD
4J7wr4zqcAXiKRwfDveCy8NXwb3hivAo+Eo9/7SWmsJf63vhY4lf6fNwGeKZ
aT41P5XTXOkeq6T71T1WSvOgOa+a7l332wSeCV8NN4NvgMfCveCV8Dy4L3wX
fBvcB14P3wo3hWfB16Rn1z/Nc/V0v7qvamlude8Xw9fBI+GG8DR4FFwPngwP
gy+Cr4WvghvAU+ERcH14CjwcPjutDc1PjTSHmud+8AZ4YVpvfeHOWsvpWfRO
z6In3E77WusPLktszvEb4XHwEHgTvAz+VHsVPoL4mdYTfCRxr9YNfDRxt/Y8
XJzYjc/eCy+GP2GUkWYQ92jNwaWJ32u+4HLE/bpW+ETil7o++Bjix4xj4EOJ
HfnORfD1cCd4MTwD7gzfDs+Ee8DL4TlwT3gFPBeW2G2El8KXwXfCN8Ft4fnw
FLgdvACeCreB58GT4S7wEngWPBTeDN8Bt4dvlobCreG58CS4BTwbHg/XTOtZ
+7co3AFuApeAu8Ot4LnRe+8LBOk2uDb8LXxrtC58A98SvR++hq+L3vO74Juj
NeIreH70ftsLXxv9G+/B0+CS8H/gedH7bQ+8IHq/fQnPidaCz+HZ0VrzKTwd
LgW/Dx8Trad94KOj9fRKuHS0nl4Bl4nW5b7wDdG68wl8Y7Te7YZvitagz+Dr
4dLwB/Cx0drdD54BH83xD+FZcBn4Y3gmfAz8EVwqWrt7w6PgP+EX4avhjHNe
gRfBjeDv4IXwhfA+eBwc4dfhxXBjeD88Hj4YfgPeCk+CixIfYkyFDyduZlwD
H0y8nzEWLkLcwhgHH0J8gDEZPpQ4gVEEfpPvnAgfAr8FT4peE2/DI+CfuP7n
4Kvgn+Hn4ZHwH/AL8HD4R/hZeBi8D34GHgP/Db8MXwPnfOer8Fg4wK/Bo+G/
OOcleEp0bngXnhqdM3bCk6N19p3ga7yU9dmYz3wO94JvCP7NWnClpJnaj9Ph
S+G18AK4A7wOvjnzvC6Ep6X9K828JfMzuQ2+LvN6nwGPzjxPl8CNkh5qT03M
/NzmwBOUi5JWj4EvgdfA8+Gu8D3wIrglvEzXnNmHSAM7ZV5HfeCOmfdED7hN
Zu8hPWybeX1dCXfIvAavgC/NvE57w5fAreA74Bszr5f2cMOkA9KW2Zn3zeVw
+5QLpO1D4W+k3fDpxAeZ0+Kaq9w+StpYKvMzbAlfmPkZtoLrZc658kgNMq/x
FvAFmddya7h+5jVyPlyN+BGjInw88VvGOfAZSYflSU4lfsGoCp+iZ82oAp9M
/JBRAT4u8/pqDNfJvM8awrWJ4/nd7fDd8KPcyxvKQcR3+feJ8FHECZzzJHwP
fBO8Q/MpHYNfgLdkXuMXw7Uy74ML4OrE1/UM4IMz74kL4RqZ13Ij+NzM/qoe
fJbum++cAA/Wveb2D/JUtXL7K/mu3vAD8HJpFvwgvCJzTpdvWQVfDm+F75TG
wQ/BK+H+8KPwWnhYupd7U37RPGyAB8CPwevg4fAz8H3wCPhZeCO8WPoBP6b9
Dj8Hb8rsnTQn98Mj4efhzZl16G2dD4+BX4K3wtOlzfAO+HrpKPxMZu15B34c
nibth5+Gp2jfw0/Ag+An4Lsya9tOeHvm57ILfipzffAe/CR8Nfwy/AA8EH4c
Xg/PlB7Dz8HbuJ8T4CHEXwuuGYoxvk6s2kFr4Aviw5zzG3E/403Gp4x9jN3a
V9JaYsnMx75Kx1WfqNb4g/FDOl+feyj4u/W72lP/d+73xN8ZXzJ6cfx14pzc
x39mfJJ+/6d0DbOUZ4jPZ75e3cPn6dp/TPeyL/12lr77+//3PbqfPYwZyl3E
Z9P1/5Lu4dt0/l7GN+kzmouJygnERzPnllfgBzP//550zvO59680fH3ufbEd
XgeX1jOFX8itz8oFm+Cyenbwl7m9h3LoPrhLwXn5i6Rdyr97kvYq5+5N+q88
+1Vu7y0d3Zh7Xz8V7P/kA2dzbEVuHXtc8w+X13qDH8qtITvgbbm1SDlrO1y5
4Fz2LFyz4Bz3XG5tVB5/IrcWKScuz/3cd6Z81K5gT7I5t2ZKz57KrWnSgydz
a5pyqPLzq1oj0sDcNZF8yC9Jz+V/Pkxaqjz4bm4tUr5+B76oYD/wEdy84Lz5
Gly3YI+xM7ceKqe/l1uXlNOljVpvD2f2Ba/B2+DfUn6Rl9uVW1eVc1/NrdvK
3a/n1kDl7jdy6568yo8pT8m//5Q7L8vLfZe77pNn+yHlNfnJ73PXhvJ1+3N7
TvmuT1MeUd77OOUaecWfU86Sh3wzt64q5+xO+UUe8pOUj+Q/H2E8nfbynHS/
j2TeT/vTGj9dXlb7h3io/FnB/rZocJ2rfN4Y3qI9Jc8SXDcpZzYK1uGc4w2C
Pby0tkmwhgeO1wuuNf4l1mfcB6vQbxqs7VH+KHddpvrsCHmvgn1gOflR7Uli
x2B9Pozzd+Suf6dw7JncvYupwXlLmi9P+EduX6Ea61h52YJ95nHB/kT+6KRg
3/IDsVlwHjmAz54c7G3kF0oGewP5nTLBXkhe9Ok0/1rPpwX7pZ+I7YJzjdZX
bXi1dIhYK9gL/UGsE+zB/gqudzRvS/ie84I9mHJd99xzdTvH68Lj4UHJX+m5
9IfrwGPhAcrJ8ER4iL4HHgcP1PnB3u9PYo1g/6PfrB7skX4jtg7OifLMbYJz
hzxz8+Ccq7zXKji3HsTxllpb8IHy7MG+7h/iBYy74b+JZwR7y5+JbYNzmbx3
pWBfKr9ZFV6qOSRWC/aEvybN0b6+Vr+Tu6cxQb+fu9cxEd6Quy4eCd+ftEU6
syx3nTtQaw0+E7466bB07yqtx9w9tDG63ty17Si4Q7AfUF2wNHddPEDzlLu+
HqR7zV0Xj9Zc5tbYwfDKpHXSwFW56+6hwXlJ+Uk5VjlN+UV5RjlHuSdLx5QD
lXfm5+533cCfeSnfzSX+mtvrqpZcnbsGHwZ3D877R3DNa3P3XkZw7PfcXlr1
6ZrcfZjhWm/B+ask5/cM1r2j4G7BvqUE/FbSH2nLO0nPZ/D/b+fuDV6f8ojy
wnj4A7gzPAt+P3fPcKZ+B24GT9eags+DJ0sbcvfuxmnd5e5NTdJ95O5bTtO1
5O5VXgdvivY3Wntbc/fuxnL8ltx9SNWYnYP9WDHO6RLs0+SVusIvwsU53inY
y6lO7BGcd46El+TuY/QP9n7K16pzb83db1TtvCV3T+wa7fXcfU7V14ty9xVV
Uy/M3YdUDf5gtJ+TXn2W8oL0/Pbo+keado7WLsc3EntF97PEvaP7RJvhumkP
ShO6RPdB1nOsa3SP4y64W3TPZQN8eXQvbFPaj9qn+p7j076T7nWP7svcrfUQ
3UO5Bz4/uG+pzx4V3GNZRjw7uK9yH3FgdN0ib1MzuAd1L/GK6J7U/XC/6NpA
/rl/dL0h79Ezuu+j76matEK/Wzm4d6frPytYD6VRVYJ7ZbrOi6P7aAvgM5NO
SkMGRNdC8lcVGasKnpMe0f0mXdug6NpJXqtSdA9L66dUcH/pDmLp4P7SncSy
0X1t7fcTo/vs2uMnRPeUpS0nBPe4Vuqc4B7UauIpSWOVO8oG975WEcsH97vW
EU8N7oOtJVYI7mHqmR4ZnHeUa47R+oZXEI+L7mtrfVaI7tlJr06N7mtL08pH
9+OkhxdF9zTnw/Wje6xztQaie/HStIrRPUHp2BnRvUKt7ZOi++zSltOj+4nS
z5Oj+/vSkNOie47Sz1Oi++/SHOVu5eulxL7RteUDcJ/onvhW+K+Uv5Triwf3
M28nHhzcd72V+G/KXzfBBwb3V28m6qWA8uAcYongPt6SYH8uD67a5fDgfu8i
YpHg/u1twTWIvPD2aC+0N+lqseB+8uLgmmR30t4suFbVvMnzTCp4Pi8JrqN1
Xy2Ttui+VGfuSNewLbo2kxa1D/Zd8gN5cI6ep2cU7BPklxrCT8FbiAcF95Zv
0ZoPrs21p1oEa5pycQz2JPJgBwT3nLUv5JeUT9cE696upIGHwNPhhcSm0fW2
uEN0T1nrtkl0Ta65ahTdG9U1NI7uZeu5NIzuU+tZNI/2GZq3jtF9Vf3uldF9
WN1Ls2iPomchPyzfKG/cKbqHq/XfObrPq31xWLA3k8dpEe17tDZaRfsbratv
iP0450b469weT7WP+ht6pnq2/yRfNJtjf+Z+pyMf2DK6B6E10ya6d6+93zq6
dy+tax/d99e+axvd65cmXBr97kF7uV30e4LlWg/R7xikA+Wi340p7x8d3H/W
OVWje+jyLUui+1PynEuje2Ty3mdGvy9RTlwZ3eOQb3w8uoZXnloV3R+Rh7wr
ukcgL313dC9DPvzh6J6C8t0T0TWz8vvq6H6KfGDl6Pc0yt3LovuD8q53RPcH
5dnuje59yJ8/Gt2/kMd4JLqvIZ/wWHQtLS9RLfqdgfL48uh3DPJyK6K9rHxm
lej3GfJyG6J7NKop6kS/m5RnuCe6F6Pa4c7ovqH84cbo3oo853nR7zjlNwZH
98hU89aCZZ7kN86Ofh8m/3Bu9DtOeZh60e+fpCEXRr+Xks40iH7npL1ZO/od
m3xO9eh3rvItNaPfO8qX1oh+T6Ya5Jzo93DyLWdFv19UPbI+uhej2ue+6J6R
6ovzo9+tag0Pie45qh5fE93PUl1QN/pdrPq6Q6P7g6rT10b3ueSx10X3s/7n
vaPfn2nN/xdOrMiA
"]], Polygon3DBox[CompressedData["
1:eJwtmgXYFkUbhXdmVlAsDMSgQVApKUUBBQQRRAmRNAiDBinp7gYpFVQUECUU
G+zu7u7u9jf/c3P2uhxn7p1932/f3ZnnOc9ZKvcd1nlozLKsqf6Xq/9e/WD1
FdQv0oEv1V8kPkz9fPEX6i8UH6p+nvjblGXjxANClq0Rf67jF4jLqp8r/lH9
UHEl9UvEf6gfLa6hfqX4f+rHiI9Sv0p8kr5vK9/H94gfUV9f/Lu+v4H4UXED
8R/ihuLHxA3F/xM3EjfQ528Wn6fj14lPURuquck6FjRXX+0mjc/V/LWaa6M2
UvMzdKyE5uqpbdf4HM2v19wZ4rvFl4ovFrdUG6LzJ+lYprnrdbyMhu/oWDXN
XSPeV/yauJL4avE+4lfFFcXN9Jkt4v463k+8Uf1B4rc0X0W8TlxK/LK4vHiD
+EDxm+LK4tvFVcVfimuJW6gN1niijv2nuT/VLtX4aPWrNVdXf2+duJf4fHFt
8ZXiHuJzxb+pHyk+Uv1l4tZql+j7pulYrnN/1/FRGldXv0JzjXTsOnEfcR/x
T+qHiSurXypupTZMn5+iY5F7rXaLxlfpWG/NHSfeIO6r8/uK71R/pPhrzdcR
/yoeIa6mfrn4DvXVxF9pvrb4NLVRGs/UsZL6roPUlmrcXOddrrm2aqM1P0vH
9tRcHbW1GvfU/Hma+1n9cHEV9cvEt6mvIv5Cn6kpbqjzrxX3jr7ee9XXFP+o
+XriU9VGaDxdx/bQuXeoPa3x7cHr42PxueIO4sXi78RTxcODr+9n8WrxLPFV
4nJqpTQ+VMfW6m/9ovk1Gs/Wsas197v4avGi4PXKmthH48Myr5UfNb9E48k6
tlZz9+lYLfFP4vo8n+L+TBGvE9dQq6jx0Tq2NXrNHRp8D1iLf+j8azReHLx/
WHNlWXuZ1+IbGh/C2hZfK/5N51+l8cLg/VJdrYLGR+nYFs1XEO8nPpw1EL0H
SouPyLw3uKd1xSdmvtfHiKsE/4abon/DseImmX/bseI64hPE94gf0N8vy7PW
sUGaO5prDn5m26P34IHicpn35sPJ185vGKq5o9QqaXyMjm3T/CeaP0/jjsHx
6iPxOeIzg+PhQ+KK4jLiIbmvgc/+EHxtv2r+cvEc8TXir4gb4sPVLyDA5o5P
6zS/ReMj1Y4I3gObdc43yef3CN6/XyXH227B8fILcT/x2cH79TNxb3Hn4PX8
ubivuEvw/vkyOR53Dd6/m/Q3Dha/La4q3lvz88QnRMfvH9QPEVeMXr/fa34u
8U/nX8F8cf5Y8ZXEf503SFxe/UJxc83fKx4o3iz+VHy+uFNwfOBvHhYcw7iW
r5PzS/fg+P+3+AbxKvH14v+KeL1WfKM4ETPE14m3a1w/em+xx1JyDD48OGYQ
mwMxU+P1OrZV40hMYe2Kt5Ef9JkHxEOin8e/Rfy/UvM3iP8SbxavFG8S/0nM
F68QbyR/iTeJLxNvyL0myhT7Y4e+s4Xm79N4UPT3/SPeJr4i+P40UTtd4+48
k+g1cIjG7wavDfZAefEnwXuDnLFJ412Zc8nLmu/IslI/UXNvqD9bvJf6yeKX
1Hfg3qifIH5e/RnkQvXjxK+r78L+UT9J/KL6M4nd6seLL1Tbpr/3oI61So5x
xLqnMufGMTrvNvGT4vbixpo/SdxO/GwRc9cE5zxicffoZ8szriVeJv6CfKa2
nL2itlHzO8VNNf+muKvGpdRP0XctVP8R+YB7Hh0ziZ0v6jMDcmuG64NzNlri
w+j9fID6mezn6PV4oPpZ4p3qjxN/o88MEz8gPkn8s3gE+118svgX8Ujxw+Lm
4l/Fo8RPiFuL/xSPFu8SHy/+Vjxc/KT4VPFf4jHip8RtxH+LLxWfo7Y8OCfW
QGtovrHG3+nYJbk1zfEan5JZ67yl1k3jvdVP1dwH0fmmtPoZ4vei49X+6qfn
XlOsrX3UTxNfpLZd3/eQjrVO1lDHiVtm1lZPq52m8T86NlZziMOtwXuEvVKl
yEdnRuebXmrLgjVB9WRNsZq9mllr3Jb8t1hDrKWO0bmFHFNVc7erPZz5mri2
HmpLyCU6Vo1YqvNLaPw8OURzV4hLil8gh4j7E4M1fpGYp/Obic8S92HPEOui
YyMx8mONbyn0HHuIvXSn+KXM38F3NVVrr3EPHXuHtSDuyZz4a/ER0bGZGE1s
v1WfvyfzmmPtrdGxPcTPkaOJ9Zq/lVwXrJd2cE/IRcH6Z3W07n4WDaDBqrhb
VmbPiMuKV4j1X/Y0eVd8fnTuIIegdW8lJ2r8WZHP0CxorR2ZtQx/k7+NBkO7
EZPqavxpkb/I0eTq98WDc2vEy4M1ONqRa+Ra+Q1ot57ipcEa6chkDUCse13H
BubWB39n1qzohVnkXB17U9wreY+WFO+Vee+Ss8nd7OEbo6+hVKFvuLZJaneL
XxCflXxODY3fK/J9Vx17RTxFx5dEX8Of7PfM11a10DMdovXP8WrN9Nm23GP2
Ps88eM2z9k8WDxSPZ49Gazz0ccNo7cc5aI9/gz+7f3It0Iy4Kt4vWYtTT7XP
XVOgnxtF1xr7iieIm4hPF58YnUvJqeRijo0Tz8987t9Ffq1VXBvXjFb6L/i3
dFGbiTbQsUOT1yhrt1yxdtkDncVlovdGV7V5wTVABZ1frtArp0Xn87bR2oVj
zJ2tY3PJ/eLy4ubiQcG/4V+de3SRD8+O1rN7JdcfjcXtcmsqtN5HwVqrVVEP
DIuOB03Ed4kvjM6vaDa02sfBWo4cQC64KFoPoFnRkh8Ga9ma0bUnNeg/xd8c
I56d+Vq6ixcE10CVkmMea3l4dLxpnKwH+kXnb2oG6tHjo2sJagzq1eOiaw9i
3ArWYnTsY42yVj8I1r7EcJ5Fl+jYfmKyXrkgWi/UKvRNt2h9WLPQF12j9T73
lPq7dvS97qY2P7iGqahzzxLPCL6GsuJXo3NDSdZF7me0QNwu+tmRg9HOBBFy
8wHJtdnJ4g65Y+xycafo2HsCz0jf30nHXoleIws1Pj167bDnLxN3jo4F/M3W
wWuMazk4uTZqqXFHzR2SXKu1Yh3m3vPs/ZeCax9qgr35W8G1wh78nmBNg7Zh
TfMsT41e6+Qz9u6+0dqpTHLtfoq4U+57Qu3XOvpeEcPRIvtFx/Zj1PcPXqPU
ylXV+gTXhNSGeAyNxC0yew94BtS3x0Z7CdS0nFsvutalRqZebRBdO7Pnxwc/
A2IBwRz/o260d0CMmBB8T4kdXPO04GfAb6GGR3/Xia7tW0TXbtRw1Lpdinw6
OTpfHV7Ui22i9TnPjFxeIvpZ8gym6vPLMj8bnsH04GfIs2ENTBIvzrw2zhRP
FC8Sl05ueCcnRc+xBplrH7022VN89ozovfabPtswWCOhlT5HxwbnKHLVo8nx
u3yhj7jmS4v4x28h/owr7h9rGb0wtbg/rFVi+JTi9xDb0SCTi/uDNqHGph6Y
Vtyvx5LzW4VCT3E/8TemF/eDmEUtzj3cHcty61P0C7EHPbq60K/obWLUykK/
ErvY09QC7GH2OjGEWoCYSGwhpo4t4jnxlPy9pMif5GdqAGoBao7dtZP4LvFz
4vPFS6O1CRrlXnE/tW8za2b4brXPNP5c7R6NH9TnF+kzn4h3snaTx5+q7Uqu
QahtqKmoTe5BA4mfFZ8nfiB3vkVP9SU2i28RPyHuIb5fvKvIx334++I7xM+I
z03O99QHeCLniHflrg+oF8j/O8W3BtcLPcX3iXeKnxf3TvY4FhX6EK+OmDi7
yEfESmLmnCIfEUtnqrXKrJHRyjOS4yGaFm07PXk/sKfZ27OS40fTIn/PIedm
rlmIj3OTYxkxkP0zOzl+NCvy7Shx9ayo2cn3ue8Nv4nfVjr3b+eecG8OzH1v
eaY82wNy3yvuOfd+X7XHM99j7vX+ue8N94x7NyK5lt1dMxMrxE0zeyJ4I1OT
4zseCl7KOHHtzB4K9SKatzd7Qf3s3PUF3s/3mq+b27PBu0HT433i+aDP12fW
l9Rrcwu9gJ6fmOy3HhXsx00SN2LvBPt3E5L92RrB/uTkZL1Uu/h7U5L1Cx4O
fsnYZK+ncpHvV+rvfZy5xrsLLZHs5VQq9MPo5OuvUOTb8cn+cPVg/25Msh9T
sdAH+6g9Jt4hvjN3Y8w9757sCeANoAHaJHsgAwr9hx7Dg0Hv9y/yBR4FXgX6
H+8aTwZvBg8DbxuPp11wzUV9gL4bWOgl9Bz1A/U+Gg2tRn3SqsifaDX0TK9g
zYf2o+asVsRPalFq2BbBNT21LTVsyyJfflQ841OK/M2zxx/pG5yjyFXkP+qZ
AeK/omtY4nO9Il7jEeEV4Tnh/eLxnxZcg+P94+Hg5bCm8H7xyPDKqKnx+olH
j2h8U7AeJx4tjvYw1qt/KriG13+7axs8JrxSanS8J94xtA2ucXn3gKdF/dYn
c37G88L7uiCzd807hjbBngfvHuaITw32ND6L9qTOCK6J8arw8PDyqJm/L/I/
9WJf8S/RnhneWb/MXjT5jLXFGkMP4AlUDa6h8Aqo+Y8J9hDwAm7PXS8/mLle
uU28Jbh+7oz2Fd8Q7Al1TPZPqEWpSfFTdmh+c7CH1gGtKr5RfL+4U3I+xY+t
ktm7vjm3X4IfhP+CJ4Y3hqZul+xx4XWhQdsm11PU4mgItAT1PfUimhxtjgdG
fUn9SL2P54b3Rr3ZUnyTeEOwJj892XMi37fIrNfQb8RaYi5aBM+pQbAewIvC
86gV7HHghZCT2cvsaWITmgBtQM7GS8GTKResGfBq8FBqBnsseCt4QicGeyp4
RXgiTYLrObwSPA9iPTEf7YgndkKwJ4NXhsdVP9jjwfvCE6sX7AHhld0hvjk4
hnRL9sgaB3s+eGd4LCcHe2p4L3gwzYM9NLwZPBRiHzGQ2nFv8aOZv5PvJr/j
gX1Q5NuSuZ89a4S18kLytXEPuZfkzDfEM6LzDTHsNfG06Nj2fPK185v4bXnu
tcAz49ntkfvZsWZYO8/p/GaZfzO//SD1X2fWDOiIErn9DdYka5M1RewcGb3W
nkl+FjxTnu1TRT5gT7A3Xkx+9qwR1goxlt9/SXTsfTZ5LXCPuFesKfLpqOjr
Zc1y70dEr+Wnk/caa4C1cK/6bzJrIDwAPJN/M/sPeClokrc1nh2dj9E474jn
ROffxcmxmRhNfY3melc8Nzpfo0neE8+L1irEFGLDIUWsQQO9L54frY2Ib/gP
pYv8tSTZD6Bmpp5bVuhp3iFSD+Dp4JccUMRDNNbrGk+P1gNLk/0F3vFRD7BG
WCsLorXa8uR6jnec1CeXJXvhvIOjPkFz4b3MjNYTC8Q9M3tc1EMvFfqJNc3a
fiV5b7Cn2Ft4bnnwO068ODytGPwOAa+LnE/uRxPwLg8PKwt+p4m3RcxCy46P
jmXEQLTehOjYSAxEH42LXu/3J9877iFeDhoDrYGm4F0gOb56ka+If48UeowY
QazAEywR7KHjFaJBahTxm3enDyZ7TXhMeE0fintlzhHkivvEe2b2qPCq6hb7
t3ERn15O3vvEEGIJMR4tPLGI/Y+L62TOEeQKYjJ6bnQRqz9Izm1oBLTCk8m5
nRxMLn4/OdeSA8mF7ybnMnIcue4d8VmZcxzr773k3EeOJleTM9CXY6P3KzHr
VfHUIpa9mhwriZHEyieScxkaA63xRnIsI4YRy95K1hpoDLTGm8mxDQ2CFnld
3D5zDCQWvpYce4m5xN63k7UJmgRtMj9Z+6CBqN/JKeS2wdG5Bg+Td3OVM9eL
VyfXftSA1LLzit+P54D3sCnZ28EjoR69Ntl/wSOh/r8mudalxqbWvjK59qZG
p1YfkPz+kDXD2hmY7OewPvAnLkiOJexR9ur1ye878ZSody9MXuvEHGLPRcl7
gz3AXrg4ee+wZ9g7G5O9HDw4/JRByX4W73R5t3tDspeOx4q/sirZP+HfKOAf
bkjW4mhy/J2tybUpNSre+xXJtTM1NF7i5eI5mT0xvLE1yX4K78jxt7Yle728
o+Fdzepk/4R37Phda5PrfTwLvIvrxKsye474MeuTvSg8BbyFq5LfR+Mp4C2s
S/YH8BTwD7Ynv//CY8Zr3iLemPkdCH7ZjcnvQningL/WP3kvE4OIRcOTtc/u
d9LiFcm1PDU9/suiZG2LxsX/3Cv3+kKDEW9K5dZiaDT269Bkbco7Yt4VH5w7
PlHjEs/RrPsVuRAtOzjZz+SdNn7VJcnvMne/QxePTH6Xu/sdJPk0d/yjxiV/
LEzWmmhO/NghyX4n78R5N7452RvAI8CP2zO3VkQDEj9XJvtd/BsE/OgyueMP
NTv54P8QiijI
"]], Polygon3DBox[CompressedData["
1:eJwt13XUVWUWB+D7gXQjjUqMIBiESomEKCEpSijdOqSUIKDSYY/SUg4gMYRF
6FJAJJUSpVsFYQZQGDFHmGcvzh+/tfd+zv245557zvteSnTp92jfdKlUaplk
kHHpU6mraalUObnPvMPBkeySuYTcydax59mP5mJyO/uEbWYXzHdIZfYR28sy
q/XYY2y/fh/Lpj7MWrFD+v0su9qQtWaH9W+x+9Xe7DmWy/yNZGUNWEt2UP81
y6LWZy3YAf00VlntwZ5hmc2fyxnzrVKevef4ctZGfZHNZuXNuyUdq82asN36
7eyK+R6pxTayXSxNrcUasz36AyyX2oS1ZSf0B1lutSlrx47rl7En1ElsFitn
3iinzX+L68/ed/wlllOtyRqxY/oVrG0cY3NYBfNXcgOrw5qxvfo9LL36AGvK
vorPyXKoNVhDdlS/g/0vvm+px7aznewvc3Wpz75g29jP5rulJtvAtrL/mitK
DfYZO8tKqV3ZAHZF/zLLr9ZN7oPT+ufYf8xFpTRby15ld6rtWG92VX+BVVOH
sIksu/k1uYu1Z33YNf3rrJzagfVlqbhHpT4bx6ahouZ1cb3MmaUge8vxN1lF
tTPrH39qniz3JJ9jYDwf5n/Lbaw7G8R+1Z9nZdUnk3vtd/10ViWxISyL+Sdp
wMaz6ayIeYZUZU+xoSyreYrcy7ol75HRPFOqs15sBMsZ107KJPf4YPab/hJr
Gtc7uTdKmN+QCqwTe5qlM2+S8/HsSqXk2r8Q52guHs8w+5RNZZWSzxvvkck8
XM6ZC8ezxFY7PiKujbmIlGJr2CvsJrUxa8PO6y+y2rF+sNdYXvMouWwuKXex
9Y5vYMfNNyX3xhI2lv1uLpuc81a2hV2MdUmqsI/ZZ+yE+Wa5jS1l/2Dl1Y6s
H0szj5Zf4zXxXLPNjo9hv5nLyL1sC1vPDpjzx3rH5rNzrHTyHcW98Yv+FLtZ
bct6sovxXbNrsd7Es8R2su9YseTejXv8R/3b7CF1EBvHCsZ5SAc2i61kd8f5
SvtYG9kKVtE8Tx5kA9lYVsC8Rp6PtYJ9zlqa50odNoCNYfnjekrXeH+2ilUz
/yLt2Ey2PFlfvpA/zFXloeTaZ74hlRqmrmU72SNek2J92L/YemOdWJvZcPYR
28Was1XyNJvHPmT1zH1knzmX5GDzYu2PNT9myc7mxjPAvjZni7A5rC/bb84j
Odnb7J+srjqYjWeFzAPkiDldfJ9skeMfsn7qXPYBqxvnJofMV803ykLH57N6
6jN8Aisce5HPNoJ9zHazR1l/OZwWN1kqlU95x/E/WLc4J7aaVY33lFv0+dir
cX3Mmfx7z+rXsB2ONYu9iA1g77LNrD4bJmfNhWK/YKscz+h1Q9XV7EvWNNZ1
6cEWsLWseuxZXtefrWSbWAO2UBqx4ewVVsz8jjSOZzvOjxU3L5ImsXYnz2+s
Lxn8e4PZB2wbaxT3vPRmS9k69kDsT143iL3PtrKGbLE0Z6PYm6yU+ar0YkvY
p6x27DvSik1mi1jZ2HekZazd7B12e+xZ0pMtZp+wWuYr0ppNYYvZHeYv5U9z
NanLtjme3vkNVN9jW9jDXrNEHmWj2WRWOv5Ousf9wNaw+8wLpCEbxl5mt5i/
je832ct6sQvxjLKj5hukAFvMhrLvzHljzWIr4/lhLWLNY1NZGfMxKchasq7s
jP4EK6y2Zt3ZWf1RVkBtwboke+1l1izWZDaXlTTPkhqsD3ue5Tbf6BpMin2d
HWMdWX72EtvOTrDOLB97MX4TsOOsE5sU9y+rkqwR8VuvW1xr85/Xt+PUVHYk
3kdtzjuyb/WHWV71EdaBndKfYSWTfSvW7Mv6iSyjWpk9yPbpv2fFk30/fgv8
pD/NSiTrffwWuKT/gd2qdkn2+J/1J1kR9XHWg53TH2J51GasPTupP84Kqa1Y
N/ZD3O/s7+qMZJ2Me21CfEhWgd2v3aWfzWrGGsVeYHnimZSd5mup67+7p8ce
y3awv64vo6lprCfby7JIVjY71gHWOfY0toBVjvOQPeYMkjn5TbOUPRZ7GpvC
bjMPlpOxlsZezZbFesZOxbopRdly9iz7Pu362hRr1LuxN8U9aM6Ydv13U+zJ
Q+I+N+eOvZqtYLmc/Fh1IzvI2njNk7LLnBZ/z2bEc8a6qG+whayKOae/HRN7
ODvAnmC52Xi2iR1m7eL7YRPYZnaEtY/7h02M3wTsKOvA5kgt1o+NTH5vZPO6
kWwd+4a1YtnZqNjr2T7Wmq2UTux1Np9VMufwutFsA9vPHmerZQhblKw5se4+
JbvN6SUTmxnrXrg6Pe36/7dqmv8P/OqjpQ==
"]]},
Annotation[#, "Charting`Private`Tag$22017#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwt0csrpWEcwPF3nDnOHBxMs9IU2WmKrRRbKVZTNmPHaizYmqUVa8IfINYS
G7mf47aZ5D7jnia5Lhi3JD5PWXzfz1tP79vv6Vfa3P697UMURZ26V3i/0Yn6
sqKokIMs4SgrOMcarrKBh2ziNVv5wl/Mi0VRN79ygN84zCqOs44ZTvKUj1rX
f11qyjAbnOYmZ7jFWW6HObjDef5hmn+Z4S4XuMdF7nOJB1zmIVd4xB7znvFJ
x7rTlVrMtcZGplnLMVZyiGXsZxG7mMMOPvvfz3AH/uA+6/mb1eEeLOcIiznh
u398UIFudaEv5svnZ6bCGfOYYi5zmcMkk0zwE+NMMMbssFPG+aqPYT/hLMwp
I0S9Hufv+38Df9xIqw==
"]]},
{GrayLevel[0.2],
Line3DBox[{661, 952, 458, 660, 1046, 868, 662, 1047, 869, 663, 1048,
870, 664, 1049, 871, 665, 1050, 872, 666, 1051, 873, 667, 958, 1129,
668, 1052, 874, 669, 1053, 875, 670, 1054, 876, 671, 1055, 877, 672,
1056, 878, 673, 1217, 953, 879, 954}],
Line3DBox[{675, 959, 1130, 674, 472, 676, 1057, 880, 677, 1058, 881,
678, 1059, 882, 679, 1060, 883, 680, 1061, 884, 681, 960, 1131, 682,
961, 1132, 683, 1062, 885, 684, 1063, 886, 685, 1064, 887, 686, 1065,
888, 687, 1066, 889, 688}],
Line3DBox[{690, 962, 1133, 689, 963, 1134, 691, 487, 692, 1067, 890,
693, 1068, 891, 694, 1069, 892, 695, 1070, 893, 696, 964, 1135, 697,
965, 1136, 698, 966, 1137, 699, 1071, 894, 700, 1072, 895, 701, 1073,
896, 702, 1074, 897, 703}],
Line3DBox[{705, 967, 1138, 704, 968, 1139, 706, 969, 1140, 707, 502,
708, 1075, 898, 709, 1076, 899, 710, 1077, 900, 711, 970, 1141, 712,
971, 1142, 713, 972, 1143, 714, 973, 1144, 715, 1078, 901, 716, 1079,
902, 717, 1080, 903, 718}],
Line3DBox[{720, 974, 1145, 719, 975, 1146, 721, 976, 1147, 722, 977,
1148, 723, 517, 724, 1081, 904, 725, 1082, 905, 726, 978, 1149, 727,
979, 1150, 728, 980, 1151, 729, 981, 1152, 730, 982, 1153, 731, 1083,
906, 732, 1084, 907, 733}],
Line3DBox[{735, 983, 1154, 734, 984, 1155, 736, 985, 1156, 737, 986,
1157, 738, 987, 1158, 739, 532, 740, 1085, 908, 741, 988, 1159, 742,
989, 1160, 743, 990, 1161, 744, 991, 1162, 745, 992, 1163, 746, 539,
747, 1086, 909, 748}],
Line3DBox[{106, 347, 107, 348, 108, 349, 109, 350, 110, 351, 111, 352,
112, 353, 113, 354, 114, 355, 115, 356, 116, 357, 117, 358, 118, 359,
119, 360, 120}],
Line3DBox[{750, 993, 1164, 749, 994, 1165, 751, 995, 1166, 752, 996,
1167, 753, 997, 1168, 754, 998, 1169, 755, 547, 756, 999, 1170, 757,
1000, 1171, 758, 1001, 1172, 759, 1002, 1173, 760, 1003, 1174, 761,
1004, 1175, 762, 554, 763}],
Line3DBox[{765, 555, 764, 1087, 910, 766, 1088, 911, 767, 1089, 912,
768, 1090, 913, 769, 1091, 914, 770, 1092, 915, 771, 562, 772, 1093,
916, 773, 1094, 917, 774, 1095, 918, 775, 1096, 919, 776, 1097, 920,
777, 1098, 921, 778}],
Line3DBox[{780, 1005, 1176, 779, 570, 781, 1099, 922, 782, 1100, 923,
783, 1101, 924, 784, 1102, 925, 785, 1103, 926, 786, 1006, 1177, 787,
577, 788, 1104, 927, 789, 1105, 928, 790, 1106, 929, 791, 1107, 930,
792, 1108, 931, 793}],
Line3DBox[{795, 1007, 1178, 794, 1008, 1179, 796, 585, 797, 1109, 932,
798, 1110, 933, 799, 1111, 934, 800, 1112, 935, 801, 1009, 1180, 802,
1010, 1181, 803, 592, 804, 1113, 936, 805, 1114, 937, 806, 1115, 938,
807, 1116, 939, 808}],
Line3DBox[{810, 1011, 1182, 809, 1012, 1183, 811, 1013, 1184, 812, 600,
813, 1117, 940, 814, 1118, 941, 815, 1119, 942, 816, 1014, 1185, 817,
1015, 1186, 818, 1016, 1187, 819, 607, 820, 1120, 943, 821, 1121,
944, 822, 1122, 945, 823}],
Line3DBox[{825, 1017, 1188, 824, 1018, 1189, 826, 1019, 1190, 827,
1020, 1191, 828, 615, 829, 1123, 946, 830, 1124, 947, 831, 1021, 1192,
832, 1022, 1193, 833, 1023, 1194, 834, 1024, 1195, 835, 622, 836,
1125, 948, 837, 1126, 949, 838}],
Line3DBox[{840, 1025, 1196, 839, 1026, 1197, 841, 1027, 1198, 842,
1028, 1199, 843, 1029, 1200, 844, 630, 845, 1127, 950, 846, 1030,
1201, 847, 1031, 1202, 848, 1032, 1203, 849, 1033, 1204, 850, 1034,
1205, 851, 637, 852, 1128, 951, 853}],
Line3DBox[{867, 957, 656, 866, 1216, 1045, 865, 1215, 1044, 864, 1214,
1043, 863, 1213, 1042, 862, 1212, 1041, 861, 1211, 1040, 860, 645,
859, 1210, 1039, 858, 1209, 1038, 857, 1208, 1037, 856, 1207, 1036,
855, 1206, 1035, 854, 655, 955, 956}]},
{GrayLevel[0.2],
Line3DBox[{251, 459, 1046, 252, 472, 278, 1134, 486, 292, 1139, 500,
306, 1146, 514, 320, 1155, 528, 334, 1165, 542, 348, 556, 1087, 362,
570, 376, 1179, 584, 390, 1183, 598, 404, 1189, 612, 418, 1197, 626,
432, 1206, 640, 446}],
Line3DBox[{253, 460, 1047, 254, 473, 1057, 279, 487, 293, 1140, 501,
307, 1147, 515, 321, 1156, 529, 335, 1166, 543, 349, 557, 1088, 363,
571, 1099, 377, 585, 391, 1184, 599, 405, 1190, 613, 419, 1198, 627,
433, 1207, 641, 447}],
Line3DBox[{255, 461, 1048, 256, 474, 1058, 280, 488, 1067, 294, 502,
308, 1148, 516, 322, 1157, 530, 336, 1167, 544, 350, 558, 1089, 364,
572, 1100, 378, 586, 1109, 392, 600, 406, 1191, 614, 420, 1199, 628,
434, 1208, 642, 448}],
Line3DBox[{257, 462, 1049, 258, 475, 1059, 281, 489, 1068, 295, 503,
1075, 309, 517, 323, 1158, 531, 337, 1168, 545, 351, 559, 1090, 365,
573, 1101, 379, 587, 1110, 393, 601, 1117, 407, 615, 421, 1200, 629,
435, 1209, 643, 449}],
Line3DBox[{259, 463, 1050, 260, 476, 1060, 282, 490, 1069, 296, 504,
1076, 310, 518, 1081, 324, 532, 338, 1169, 546, 352, 560, 1091, 366,
574, 1102, 380, 588, 1111, 394, 602, 1118, 408, 616, 1123, 422, 630,
436, 1210, 644, 450}],
Line3DBox[{261, 464, 1051, 262, 477, 1061, 283, 491, 1070, 297, 505,
1077, 311, 519, 1082, 325, 533, 1085, 339, 547, 353, 561, 1092, 367,
575, 1103, 381, 589, 1112, 395, 603, 1119, 409, 617, 1124, 423, 631,
1127, 437, 645, 451}],
Line3DBox[{8, 667, 23, 681, 38, 696, 53, 711, 68, 726, 83, 741, 98,
756, 113, 771, 128, 786, 143, 801, 158, 816, 173, 831, 188, 846, 203,
860, 218}],
Line3DBox[{263, 1129, 465, 264, 1131, 478, 284, 1135, 492, 298, 1141,
506, 312, 1149, 520, 326, 1159, 534, 340, 1170, 548, 354, 562, 368,
1177, 576, 382, 1180, 590, 396, 1185, 604, 410, 1192, 618, 424, 1201,
632, 438, 1211, 646, 452}],
Line3DBox[{265, 466, 1052, 266, 1132, 479, 285, 1136, 493, 299, 1142,
507, 313, 1150, 521, 327, 1160, 535, 341, 1171, 549, 355, 563, 1093,
369, 577, 383, 1181, 591, 397, 1186, 605, 411, 1193, 619, 425, 1202,
633, 439, 1212, 647, 453}],
Line3DBox[{267, 467, 1053, 268, 480, 1062, 286, 1137, 494, 300, 1143,
508, 314, 1151, 522, 328, 1161, 536, 342, 1172, 550, 356, 564, 1094,
370, 578, 1104, 384, 592, 398, 1187, 606, 412, 1194, 620, 426, 1203,
634, 440, 1213, 648, 454}],
Line3DBox[{269, 468, 1054, 270, 481, 1063, 287, 495, 1071, 301, 1144,
509, 315, 1152, 523, 329, 1162, 537, 343, 1173, 551, 357, 565, 1095,
371, 579, 1105, 385, 593, 1113, 399, 607, 413, 1195, 621, 427, 1204,
635, 441, 1214, 649, 455}],
Line3DBox[{271, 469, 1055, 272, 482, 1064, 288, 496, 1072, 302, 510,
1078, 316, 1153, 524, 330, 1163, 538, 344, 1174, 552, 358, 566, 1096,
372, 580, 1106, 386, 594, 1114, 400, 608, 1120, 414, 622, 428, 1205,
636, 442, 1215, 650, 456}],
Line3DBox[{273, 470, 1056, 274, 483, 1065, 289, 497, 1073, 303, 511,
1079, 317, 525, 1083, 331, 539, 345, 1175, 553, 359, 567, 1097, 373,
581, 1107, 387, 595, 1115, 401, 609, 1121, 415, 623, 1125, 429, 637,
443, 1216, 651, 457}],
Line3DBox[{275, 653, 1217, 654, 276, 484, 1066, 290, 498, 1074, 304,
512, 1080, 318, 526, 1084, 332, 540, 1086, 346, 554, 360, 568, 1098,
374, 582, 1108, 388, 596, 1116, 402, 610, 1122, 416, 624, 1126, 430,
638, 1128, 444, 656, 657, 658}],
Line3DBox[{445, 639, 655, 431, 625, 1196, 417, 611, 1188, 403, 597,
1182, 389, 583, 1178, 375, 569, 1176, 361, 555, 347, 541, 1164, 333,
527, 1154, 319, 513, 1145, 305, 499, 1138, 291, 485, 1133, 277, 471,
1130, 250, 458, 652, 659}]}, {}, {}}},
VertexNormals->CompressedData["
1:eJyMfHk4Ve0XNkVJKpokRaJZUSnEWTRqIqlUSlIaRYUmU0qDUpEhJCWUIkWZ
OQ8yy0zmmcgYyhTn+J7dPrv2e67vd33f+8+5Wu9j7bXuvZ77Xs86ex+pY+d1
Tozh4eFJ4uPhGctD/feUQX7e53x2q0lbjOL/vBilZqN5bxhZULWH+PcPNY8l
bPz5hJH8izVFxb0cbl1k/bHv+TSCP10ZoQMjn54ZNsCt6N9/7C/3DuPPxwxN
/t/mr4VaoPnjwB972ntVHg3Zu4wb5f2SuU5t0Dz064/9Q7iS1PGUK4yhU782
spgd8Ej05x87J1C7yTY/o9ZadcJZ494/9g358U0HBqyZ3OtrbztsXbDRgcnt
//Vnt69LFz9mcsdzab0262SdO5M7/m9Fjw7fuenJ5M7XvFxhTth0byY3PpvV
XMVeLnvG5MYT/30p8fcfeAj8HBiUnwfq7J9GH0ugcj/7/Cf7VJC5R9o3abNr
r08sAvwpSXw+WUraVRpGpkiI58IlY9aUo51lIBg68seeeZG1CKangfq7kS9V
qAoKd5D2F+ob+y/Fx8O85SMqC3/XQK4QaW9SbXiQqfgOzvWxVj2YWAcZncP/
wfl+O6unfE0dNDeRdk/zyeV4PcLrV9DXP62bGoz9I+x/G93/+YCSrTgehONJ
pscjU7p8Mo4f4fjbDWjxq+upDeI8Ec53NT1fjWJtFsYHYXxe0PEp0hTpwXgi
lQ7i3/f+4onv68RAfF/dBYj7d4dB3d9un5GWl5UN0DR12CDuUhwc20DeXxyf
VTWOD+OnxsD4UXF+e8iWitArhvVL2AP+jZkgE8vBv4odlnA3C/BnJ8Kf033Z
f+wLx3/wLC9FcF5rtDHgXibYSZH10F8/oT4+LxgK74yO5duRAUePkvbXppkm
8gbTmXIeo28mJKdDmRlpt/I7s4KZF4y41yd/0vmM/SPsn0X3v1jtbD6OB+F4
JiXQ4uEVS1fF8SMcfzs9/pt8Eq9wvgjne56eb+rJSwMYH4TxGaXjcxPtFMB4
IkEP4n7b/cUT77dkYr+ZDHqv+xF/lkHtu6xrv83zTZrhxdymoI4wP9CSGPxj
x3XzhqibSWzzKem47v7WTwW7j1FTDBpqBg0ix9/DLCDjx/k3Eflfm/x6XRzG
j8KhJ2uLd5VTNFjsXfpt29ZAKC4g7ePd8x7Puu0PLVfU1UXx56xfpN3sgfDR
7UVSTPb8tJYT7n7w7Ddpz2aujMXrUeJykxX09YG8DunYP+L2v1v7+iiOBwX6
rx5Dj2d+7JcpUFOMamKn80ylxR/gaPcB54u+JI8APV/+eA1bjA9KipV0pePz
42BEGcYT2dxNrjmWcuovnhhnJwLnV/Usgx/xekwazpoEzpkScfVdYX6IhvNj
Auc5AqHbvuD9SsO5ncB56I7FiZnH3yMazuP4Mc43QlS3JeC6o/Jy6tzcSeC8
Ukf0rebWQEThoON9pIzAOWhC3InZGD8KNwXR9tnFNfOYAj8WBJx290MUzo8O
TRcSw+uEx/Ueo6/fdX/DzGqM84mDb9/T/Z+5qTwTx4O448m+pD+JwPlab856
evzGzU9eEzhXMasU6fm6rjLQJ3C+F/zUgY6Pk6WKP4GzeTgr8MDAub94Yt4w
JvTAj7VCfY3hDSZV570+I44Eb2xLbRRgXopDRv94Q43gjdPdJ48SPEfjjRkE
b/REOh5/1ZiJqH23ropdSuzPaZtEwhLxfp3K2af35kzlqcC8UfKK2fT6Xiai
9rXWyTtWmAdATmQVm8CDwkFm8NeThjGyTN6goJiJyemI4o2H041DCN5Ibnw9
Zhxt/T3/z8MEbyx4a1RL93/J4GA9wRvc8eSofZxJ8EbEsWRDevwhTAcNgjdq
PQeO0/Mtsfv8kuCNYHnGt3gaPrX6g5YYT1RXdXrlvB92f/HEOqi2Duug+cnU
EAtpByZNB/OOYx2Ubjqcj3ke0XRw2Bbrwei51gRCH2g6+GIO1sEXB7c0YR1E
NB30IHhNe1iKtwbHS8UZ6j253ALr4NXFkwIW/a5BlE59PvHleAben8vKXwk/
xHWUxqmfdGE7q5ntW5jiEo8LKtbUIUoHX4mG5OD1iHv9zKXhfIQOVoXzB9L9
G91+Z4TjQR2mS9jVtHh+MlPqcPyIO/7Aa66CRJ45C00QPd8PD6JiMD6IG58t
PjP2YzwRN56UjqsKF/p83fqQSfUhlH1VfpbkW0YWovoWyv7RQm8Loavcfpy7
3YV9DBsQ1RdR9ryctFHiPlP3l7Jrblf9gvsuRPVdlN3HLViCjfcfd18nnjrZ
WdGqE53m9HX/r/X/y///iud/xf+/8v1f+HDjies5ncC/1efcjjs3/+EvPDyy
KESlEnlP01xnm5+JUszJ+/tu2nAtS7ESpe4am8fGn1vXkvFceT24KAHKkb7W
PTSlpQnxfej/Y1/Q2u+hqPIVBfHw/NQOaEe9O0l8npesSsyOzEW9B0SmsB92
ow0/O//YV3wrzJabl4hOGNdmh+n2olmxbf+Jf2jO1zXGfb1o9r3WP3Zl+WcM
vB641/PlfsvD/oHb/4zwm2dwPMAdT7zcJiUcP3DHf7vrTQnOF6bGMAro+Xqf
MRLF+MApx2ANOj7nN0sEE/zAjSfm5xbivvKsnL6Wb/8/PrFp6R9oU2pDwckj
hbaiyehCM1kPbkt/WRHxCSz+fFMJ40fFWdnaazAxpg31JLkHvmHXoS17u//Y
15f8LBVd0YI0xCwNZuFP6zU//tgPui67KiRVj/beq4211+9AfGVdf+yxyRd8
o9cWosAv9k/fF/xAZg2kfX4Xwn2dEUN37LkHvLe6UfxP0p59fnIMXg/c69+m
1dzA/oHb/7qOqhgcD3DHM87D0AzHD6fCXvjT49eVdL2D84WAgwGP6PnOkIgs
wvgANz4VSV+7CL2z2563a9GMf3qH+43jxH4rd9Gv33j7nz7mW/bzv+7uRslX
prCPM96hOXxknBPzfiYRdWMzcV2pPK47qn6aRH6JC8/oRbtco5977M1CKxpJ
u9Jw1yIi/3OC537HYPwoHO59ZwToMlvQlPZVTsiuBB1Q7CN5VV574uxj5ehI
hWG2OP48NvDf/ft+AuNL+4kKJKNB1ond5gh1vB6414tJu73C/oHbf5ZysDSO
Bx6kNVcT8Vhw4vEqGVyO4weNpvJX9PhTIk4gnC8MfcqqoOe7JVtqLMYHdqZF
2dDxmW7TrYPxhOAYDX/cJzNpfZ0HgXOATbCpqMSZv/1ermW/KIGzpryogCHj
Hcz+h3M5gXNKVosssV9pOO8hcP4yblaT294soOJcN9xlQODc0DmWl6g7Kq9U
Ecd2Aueek8bz4+1KgMLhQnj2KwLnBQt2LhbD+BlxcKsXysD1bMEYs/GjWOuJ
CqBwton56kXg/PTlkcn09SK/p5YTOHP7P8evco3AuZ4TD3Xfr/CvOUrgnGJq
KuFOi7/K2aGRwLn+zLmF9HylcoalCJybG/eHHKXhszJlnS2B8+JF/mJFH04y
aH3dXeL8smFAX6lozM2/5xerln7Hdswbhp57t+J9Aab/eMNgN+YNnyIhNsFz
1D6qaO29LoR5Q3zVPAbed0DjjSvE/rTar1FA7Fdqn3qULZkzCfPGQvPI+Xhf
wzjOvpboZLYQvCH3a0FPCMaDui9UPfNGaylg3gDE4Y3k/buMcV0C9/oJKidm
Yf/A7f94+o0bOB5obFQrpsezuW7uMhw/bBeTU6THrx42XQfnC9z5yqzTcsH4
ADc+T4aHrxPn62Nz9gYn+d9g0Po6A1Wsg4sMY3M0Kv7NN6YMj4y+xzrIjOEf
i3keaDqYN4r14LLThgSsC0DpwuXXg6OJWAf7pm+LxzoClI7ItPbLKWNe26f2
6DfBc1ScWVUza3KxDvodDZHEOgWUTrlMnjed2J+yAucqiDri1kFnab3tWAeB
0sGYJcateD24X9cvo693SWxfmYd1kNv/Om03aRwPcMfzU3LN5CSsgzcmOMbQ
4398JzsN5wvy7i8T6fnGik//gfGB2VVqE+n43A3eshrjCYuT2LcWj/s33yCj
92Yql92Jbhjz4O98qegy/t/XvZgThjLWv6XNo8j5iBdTVcvqAX1+9UKBuM4T
pmOb+SEf2ryr5BLuZ68/Zs5CDecCafMxcxnPwIzrt5hX9ikczXNqgyZO31VV
f6fVKsKGOaU+J439f5nXJRjc26Rk1QlUX6cUaoR1/SqDe301Oa9jcPvnzOsY
3PF4nraeOHfrEwZ3/GnBfpffqnsxuPNV5h2zYY+nN4MbHxLHZwxuPO8bjL5Y
eSUT3AxHd5nKxMCRteT6UrNRyWD898+PEP9+yKD8RH1P3YvXI7z+BX39aeuu
kCDcR342Jf59/+96DQ0McyjuL0d4tD8fjIU78//jH/Gnd0y5KOL4d/1axpt8
vB6418+wPS612tmb8WJY+q3s6Vg4V0zar5QQ9fCcIVg1mkC3c9Yzue0PK4j1
3kxuP3MqpLtx/MAdj1jxqEHQmlhQLR69bjcvCE5mkXbNgroKbEeE/QbNbl84
mmBzOxY9mXL097QLQSCRSdolQu7dwnbgtuP4RuX+xuHEoOJpH9aszhN4xhzo
H00oMQuCqX2k3bufjP9UnXsH3d5yr0dQHvvRriX+7sFfP5JEGY16Mbj9iBwN
SMbXRdzXxfHUEnZuP+O2RCYeV/ZmcF+3XN02P2FyKVS6sVczij5DoitZh6WP
8Tk7wYNxxJJ94uWVElAeT567O/exZZT7ikDXiZ06Yygfnu4m1/PtwZ+S7oyn
6TZjWVvrQK6SPG92nmUfyHyQD8GZrIjg6BIobSV5o02Y+HRheD0YdpWKaoLr
O4ZI/pdnib8XzYLtU1kmEiUV4H17hIObsO9TeSfGh+qre7/qfwfRGJKvxo1b
NjAilwz1diP7ZrlXQ5kSub7be29A0sFbDBn1/u8Hxduh/ha5T9fFagXtnh4D
KpLWacfW10LWeHL9hucizJIvFoyi7RZmAV87QGMMud91+zcfyg99A3W/qtu+
CteBYBeZl/HaBRkmB64xudcrvO7wwetR3S/9Fvr6Gh72VI2C20zueCYNnbfC
8SAVyZFcejwP5ZffOe74iMmdb8gnLxbOFzXYqerS8z3gZNa69ZYrkxtPoU03
l2E8EcZzPx1PzZzxSauqnzC575eC+B1DfL9QSCbrNf1+yZ67KiSyyItpwFUP
Bz/bK+N6QLgeKuj1cPSenc/j1d7MIx6jqzcNp8GAFVlv0JlRiesN1bixDej1
5q9j/eCzYSPIxg7v4hsfDdtZZPxd9cPCAyM1sMyedegbKxkKOHEKNDM3brIr
hagelln1pQyYt4GjF3zXbbbn5cOkh2yzsDVZ8FGZjHPGvDpvbf004JuktvTS
4ixoLiXtV28F5FZ4xwIYjAaPKGfCGwUyzvBPfhtT9+H7fu9FNN+6DOAz4vDb
sYZ72I647aMMxwHsB4HB9QS6ny1dYZH4umjspFEN+nVb5tu64DgRjtOaHqcw
ajmO80LRPTY29Lzub32siHFAGAdXOg72B529MG5ILnY4mY7b65ShuSWKLeB5
g3fHh0O+cN2J1CP7RUzvuQH18FVC+7J2yVtgziL9lJbaKDlPK4c58zWKvrqE
wE0b8rolB9QU6m7kw8rom49OioWARgMZp9eo6rmqzGR4/8EjtntOEJi7kvne
F/pwx6EqHKRrf6jY7H8NPNWk3UL5kM2l6S/hw/KVM6RO+YMTh3+ifyx4he0o
Z6cnP90evK7jHfaDvISsFOl+MkTFbuProlZZbQ/6dQdjUzVwnMhVXeYGPU6F
4uuaOC90szx4gJ5X7OlV/hgHZPyU3+0/OFi7L8G4IUOXTfJ03F6nKPd/xXg6
fFKfF3bIF/3Dk2VH4Bnc/FFub8lb9A9P1jwCz7BeQZUKlxD0D88ERQLPR8EH
Ss+KhSAqTtGSKmcCz3UfV4T8mhOEqLy2afDkEHg2rFcvs9v/GlE4oM61cQSe
cScdlsuc8kcUbkNBIR0Enm72s5bR7fUWCr0EnsfuxFXS/UReEPYj8Gy32PyB
ft09Cxg7CTy1DG+n0uN0C9mxmcBzwtNpEvS8zAW3uRF4LtUREqLj8CZj9jgC
Tz/hyz2hNNwCdEYWEft987KdIfzjo9EOTt121w9H9OP9bhp95kwzKxnR9vsC
Yr8nDel/rrmUgf7t91E7Yr8X3tUS/LQmC1H7aFb4mHRiv3/sush3ZXEWovbd
5BO2cpV4vx9Lnh3MVs5E1D5dA+4ZxH7fseBlxLh1GYja1zpTYJjY7w/178bQ
7TOOXl+F/SD7dWve0P2cMxDKJvZ7t9OFMfTrGtp+sCf2e7j+2Qn0OBPjxiwh
9vs2Po//5GVedzcN44DWGL08RccBNrWqEvt97AydB3TcytXZPgjreJ+S5x3M
q4jiVazX8kpYr40jf2+bOZSPKH7uPGvrnIF1ecc9/8vvoksQxfObsP6GYP1t
lg83kyypQE85ejF7UdgpQmcd5dc9F3OvRqUc3fE/vumDNtZTn5zDG43W1yJK
v6pNq3bkYd203JCcUSJchygdHOUxScB2xG1/l6Jajf2g72s9NtP9CD3P2UXo
nfkkax/6dTsDo+fjOFFEm+JFepxz8hSCcF7od9f0/+TF43B4LcYBpd2o3krH
4e6B4w8xbmiQCzfOuYCndcXxtb/60pCC9eh/7KzNTE+sg4jSQco+P+6RBtZT
tKLyP99T82w3WSEwP6oJUbpM2Xd+m9qB9R3N5Og7ZW+WnOWrJ96O6m79Z27M
0/S7dOerrx1oy5if/1/2/+Xnf113x/+IU/p/5MX+Hzh0cuHWuoRVWTOuEhXc
FwgwfZKGeF6T90X+/XBYq1IlerXuQcPkgFI0uYM8HwVGD71bO1KOPj9o9mld
2oBuK5Dfi0W2DxgMq5aiMTkpB0I3f0fnPpB5mf4YK71tfBHylVkuvTKsE53L
I+cGaW169gtEvqCullvspTw9yEaJPBd3i158vUcpHk1dyB5yONuLkrzJc/TG
QwXBOkrxwG2fcWWPMfYD3H4CqzoE8HXhJdd189wbtXGcwMcVp/28oE84L7hp
t/s5Pa++ztLXGAfwKmv8RschJrwyE+MGgavjPtBxy9MduHSsqBXNV9kh5hSe
iPS1yPlVR/ev2Ve2tSPW5ouqersKkelksh5E7M23bxZpR4Myt8Y4KFSjq0o9
5L67+9P78c/vyG6Sg/3RmU0odICcw0xtEnBb3dqEJugkvqyTbEUDmqR9Yop+
lboa7kNyM8weretEpdNIu1ij++Tk2jzUeUVr6bXBH+jeBNIeyDNBC9uB2y4w
ItKD/QC3n4mp1bfwdUGQ67pwRvIJjhNU+R/eoMc5fcevgzgv+H6M/09eVzh5
yfRXimEcYHW73mY6DgslZu/HuMGBG+mz6bgFDV5edvF5N7o9+0BUVMQbZP6J
nFOZX/9VuILVg3wEvD73RcWh3U/ayXobWR37bnkv+irTOq3HLg1JVpB1svRr
n8dPdjcqPZeRyW+Yh6aOdPyxL8p7oDspqwNB+tqPVoVF6Is9GadZmKfqpt9N
yKLNtmaGcimy4CP1ceqh5sySNSXo4VVGtvvNctR9l9x3eTnPB7EduO1CPFs2
YT/A7Wdt9rG9+LqQb33cl37dxRotL3CcYF5QFErEKcKJsylEKgXnBS/XhovR
86pMdMvDOMDSKS1RdBw2vuxYhHGD1EjLjXTc3g5eBgLP2fbaYhERb8DsL54W
rQSeT58faeqNigMans0EnvG/TiR02aWBxD88kwg8JwgKm48xzAMqzudomxuB
Z2Xj/YfXCouAyqtt3rHbBJ5TKhqPT1MuhUscHN5GNm4pxXgukLq20PVmOfRw
cLv5JUsb22GiVuYUuj1VbsJlAk/Za6f16X5mq8r6EHhWcV3XbveZXALP8aDi
TI/zgL5FD4HniTCTenpeRicW/CTwjPXXzKPjcGmc72YCTy8PodRwGm65ulcm
Hsf7XePTLv9H4YlwmFO3nd2/2oj9vnm9W/rBXYVA1bmw/c89W/B+t18ZsuOu
QjVc+bffrVzwfv/QtHo83kdA7SMBcFijgPe7p3zBFLzvgNp3apdXNK3H+z3o
rk7Jw3WdQO1TZP/AndjvDwVm2F0d/AH3Ofv6CDvLKgXvd267W5PxKPYD3H4C
lUXX4evCQYd3IvTrmg3v0sVxgtXzKH56nK5OsWI4L7hZqLaJnpfnUukGYr9v
4cKhgzVWGOMGcs6P/ei4YT0KrsN6tPrFQQvMq0DTI+92rEcrEgrzMA8DTY8e
KmE9Ktx03wvzNlC8HdE+IMrCehSQZ3wI8zxQPP8k9Pnd7ViPnEQOKWBdAEoX
EpW9li3CetQ4XX/yMp4eoHTEYJ6S9F6sR9PyzwjcO9sLlO40Oll57sN65DTL
ZxzdbhD85QX2A8isfBLdT8ywpxO+LjhzXZdV2TQLxwntmUJ69DiDppi64rwA
ac3wpOd150GNM8YB0jTqC+g47Ld56oFxg0hosqLjpvKE0HkvZq+a1R36ed/k
JO4Lar2Y6u/dC+hzA6cf+O8kPZlLfK/bE/MHqq/gb8Sfam7Mc8eWGc2nzTEC
jYug3ekhM8hA6nSJ/neg+pZPQw2/b8+0Zx6Lq1A+JN4OVJ9TzK97Lpt9jTln
9+1+3BcB1Rcdmj14Y43ZJQa3PWekMOHdhtsMbj8PyDkMI5jrukL+Dt3S0a4M
E644V5cGfdp9woOxlCuv156Wra4lXgxuHK4FsdvCFIrBOY6tv1cjGfIESfvv
WNYL9cfZYFvEvrjXuQBsR8m+9I0su/pn/mfIyWDJ6ciWQ85y0l7zmBWoPj0S
YhHrwe2jdRAeSl73/bOPs448fAVbIuJW561tAq0nZJyQIdpVofgANtVFBzC7
WmChEMlvSVnkHCytMKJ8ULYdflwicZBu5My1CufY3Yiph6JJpP+t7cvCDzyM
QGPYce80cxqg7TBZJ+E+q9haXnEoqU1lm0tPA/xUIO1O+atXzxNHSCpuRCE4
qR6WV5D22+/OG2x8HI8GFlu77ZGogdr1ZF0ZnMpyP/MxEiX7shOO1X0FZV4S
n1t91qdviDWAbeLwfmLu4cAk/ciKsg4mqFQCXyjry+zuVBjvR/q5aA1LeKuL
IOQ5q/Db5VwwfUjiJsBm1ZnuzganG7bJL2YVQVUWaQ868uKVpHsyfO5ntM1K
KoGjT0l7fEPRdO3xMXBqh81y1qYKSF5I2tMW8OgRc8Irj7N/nnCuhosPyOse
efzMgTg/ro60tXY+nAPKkuS+0Jla96DqTSw6V4f6j3sVQLkPmRffUt3e5YOp
qP60hPC670UwcZhzXeYqw2KjPLROlH14f1kxiO4n7UtzDt4Uki9G5yVtry6K
LgLvRvK6EtZtfRciS1G3IkuzfzQPonJIu7l0rOSGF+XIJYqtSczf2maSflKM
f28JvtEMu57ezSHmHq9ESB5I9GcOPk6ogyNbs2wOmoXBr/ucOeFcyLhWWAoj
XXF3pCfHwrTnpB8PVbUscfV88GjbczzTOBHsw8m8FN8cli2QS4Wt+1U2PE/+
DJ8VSRwW7GRuuuMSA4YuYyUfGqSA/nnSfmnz+w3EeXxZHvOjVkkqOFwn7YG2
KwOI+Qa/vuTcob53oNtF2k+vN1ep/haBDN7/iPKpC4esNNIuJyP569BACvL8
JCe3sCwOXhuSdns7npHJIgVontiY9PXCSdDjSsZ5htcnUy+pDB0OPil1A+Pj
wjmPf9O2YYw/XofKV8tX74xNAp3rJA4Mex/zTtEmZKiY6EHUYdcDav4WM0LM
iz59m5BPn3u0L7W5T8yLmCKOO/VtfFGHBOnnQz1jFTEvWpu47tO4Qmc09T55
3dcGCarEvMjCf3qm21MjsP5Bxvmr8pkVMS9SlbDNOq/5GH48I/PK7rZzIuZF
c3gaAuqXeMHeBtLulHntz/xt8MCpu4/sfUBwkLTPUMn+My9K4Vv7yc3eB1F2
P5nBFmJedO1Setf3JV6I8vPLWtOVmBdtln734YrmY0Rd1+fFoy3EvGivY+FI
+VMjRMU53y9/CzEv0r6oMJNd4AxUXunbBp8S8yKB4Zk5B218gcKhXb15PjEv
2iuek/aeNn/bEmElhHGGLd8XXCLmHhTOcN1mIr4vIDzhTKRmbBKi7kteDMMb
30fQ6pU0uYnP9dR9HKc02o7vOzzaorhgo3ASou5785LjfIcHUmDN1ou9i8vi
EFUnBdtPGOK6gojCGxK+deGIqivpi4UxBJ6V48r7RvreIaoO77mXDxH7vQbM
72qXpCKqbtWf7n2O6xzt/BCb88ggBVF1PseUzxDvC+SfKBj1IvkzovbFBbeW
fLyPkPyhCU+zjBMRtY9iU5Yn432HNGTuJyyYHIuofadcYPgN71MUL7rB9JBZ
GKL26d0DU6XwvkYTD/CoEXPL15x93bya1a3+ohxyq6ZdI+YeFA8oa7PGYN6A
vUO/1QdG8xDFG46jrNaJ8sXAZ52gvji6CFE8o+3Fqi8yygPZ+RYHD5QVI4qX
Nql9zMM8Bq53K6arfC9CFI/Jqt0leA9EVs+WOOFVgCjes1zpm0js9wcOCoEu
h3MQxZP3fl2JIuZFCiJMz1PO1Yji1cXRCtd2jY9BBYe9bNibKhDFw6pX5wHm
bWTaEy8wO6kEUbx9Y/kUQ8zzyMvl1HPfWUWI4vnFcQsLeaqLkOXYjmUtl3MR
pQvbrkxvQiqV6FS3cIJ4dyqidMT9yfBUrDtoi4n0W6IOKd0RYLDV1rm/hZO+
s2SJucfvi2T8mn7E86KRAIV5XVi/EKVf/OPY1+BxPBTc/6S6V6IGUXo3Ysd6
MUccQbteXzTWR0Tp41gDFmunVxwk+TzuwHqKKD0dt/eL3/6HEWC8SP6EVk4D
ovRXUFFnPzF/WyLtevRmTD2i9LpvPfG86EzmQjuBiCHZdtTF0ff8Y8Tzog9Q
TueTw6irBVH9QO6Ou8n7H75CE6yX5+H+AWly+ge7V8TzopGo2Pjr+DtH6xDV
b/DOtBLqzf+MXk6anIn7E0T1J8LXqp3gcTYSPvqlF/cziOpnfqTabRCtKkIW
4o3ORB2OziHxef2KdVOxuBTZHXMPIeYeL7eS66UTRk6xzxSjnQdU1cLDSlHl
chK3pb4DPaaP8tBrVY1fRlX1iGciiUPmuQEPRZVUpH33C+/AmBa0fBuZ17iH
C53FJkQh+aQl7ScL25DcSxKHIZGibLl5vmgTVLNXi3ai+s//ec6TJ8Rxx2Kv
xk7kJkjaX5mS86Iuy01CTo09aFwueY57favDW2xCOji7zN8FY7pR5WXy/OIb
07iR/34WSA3MlPFVbUeO0Zz5TBjxXGImvLNdbFA59A19Kybj1JAbPco+kwIL
33v13PCoQ0HbSZyfDBHPJcaBeUIMY+RMCdpYSeLz9CHxXOJbeJVc8p86HL/i
6mYpx+9I4aTfEmLuEaFN9rHHlAZ4P87/ju75HlpiubAIyV4hz0djDw1ELMz9
hg6IzTXQMa9FrHASH/a+wYi45nq0lG/MFDfBZvTtJBn/dClxsey5FWjCwE9W
cms7OryEPJflbZDrXjc1Hz2x8TkSbtSNvq7kPCfWIeJCzN/C+QtSDs3pReu0
SNxGr5RvJOZF107tzTqzHa83Jtdr7bwZ5BlRCUYCnh+tLnYhvtuk3XDHm/G9
+vXwXP93mmZLGzr0m8R5vI6L657gBhCs1v5ivbsZnUkl71fLskm/lNc3wBaN
rxdvTaxHneqc51fB5Jtych3wHtMa6MouQavdyDqPuLFc3tCjGn451/kSdZg7
nay3xyejPh3a2I2WFPHzRke8Qf6m1NzsUuh8gR400LRUl68mEbl4kOcyMdvI
xUNW3Ugp0M8lQB7zOpu0r9nYk3x4cycSm5IdwD+7Aj38SfopZjsZ5R1vQQJL
7/T3hjeg2mHO3GaWo7cQfx3abxm++aTZd1T3mszrs0jaLOI8LpjfYl9q04l4
jMn1l0WjWMS8aKmzkFj5lRp0wozcF8un60wrm94ElaN753wyqkO/r5P3vUSH
5+7FXW2wWtDEatneOvSQj/Rj9f274Jx3nWAg17sVkqvRqQwS/6lrtl9+Z9EF
xvqP+g5tKkPNCmT8jQ+vn3Ra3Qk+cq139uXmo3cupJ87Fj4bH95rg7C3w/xE
HerEkHX1dnCtCjEvssye8J4+9zB3/NVEzIuUvnptfPomHIKCyTrpV1CoJuZF
H1I+WrkXhIMfg7Tf2dv/ipgXCSq9SAtdGQCV7STO2rN2XCTmRa7bK61NnAKR
IB9Zt8V6rbuIedHOV4EbRIRTUUUoqY97H0UlEPO3t8t95cRbC9GsEPK+J7O9
iTkSLBgraz6rtRAo+9x1zWeJedHNWxc1hYRTgfIjx19zj5gX6clZ7z/sFAjU
dX9W88cQ86K2RrSOuTIAUXG6D04uJOZFeTrXVz0tCEdUXlM1d5QS8yKHBbdX
+bwJRxQOEZtfLiXmRTtWvqyLpM3f5vpd7sQ4o0+i5Y7E3GM3B2e3kN5pzqs7
0Yk7WePwfYFgzn3J8T6/OsSiCz0yK5bB9xGo+/jF84cTvu9oRb+WICO5Gqj7
fqnwTjOuE7QM6YYs3VsHVJ2Ur32piesKmUWvmvDRqA6GOXV1LnvabmL+1tl+
1qfkSg2c5NQhpC51JuZFM8b7pJTYdAIvp25njb+7YBJ/HTzd8NXqhNl3qOfU
+ZxnBxrwvoBGgznL8L4Aal/cSpbV0d/cCUsPhCnyza4Aah+5yd22wvsO5lun
e/rL54McZ9+lGHRX4X0KP3ybu8bUJAK1T9nL47/ifQ1X5n6RIeaW1L4uExnh
Pe5RjXYWBJ0k5h45HB4whZH8dcl16BjLugzzBqzi8IZK31DRuvUNaEOs9j7M
M9DB4ZkogUHHvcENKFq1zBvzElC8JKj45QPmMbQ+yMkS8xhQPDZyLPmdV0Ql
kr6jpoF5Dyje03Il52/jf3+5iXkSSjg8aexGzot+hVQmY14FilcfqD2YpDo1
H4wzmvdhHgaKh7ckODjkzK2A+ks+mZi3geLtH+e0bsU314Ng+rc0V8FmoHje
1VLZeVHuN3Cap5Sz27wWRji6cO2GWSXWEdj2uyfh2sIiWMbRkXQp5UasO5B5
SzeMqMNwju7knhl1uhcahMQGdVWuDKVB2wVSp6Y4smo/qcShE2+YZ7CuAaVr
cl9GAnnPpiB3Hf65Nz3q4C1HBwsWDYl+hkwkrvfEDesmNHF0s/nDz/7x97OQ
dcO7o1hn4T5HZx9qjBiKT0hHjfXeF7AuQwVHl5NWk/O39OWnpLGOA6Xj9avI
eZFi/v1ErPtA6b7U3jGX18zzhXhtXQsF0U6o4/QJTZ1R0yQmRMF8Rr7KqcI2
WMHpK54FzHRYp5IKAf68y3AfAlQf8nzJFzuzR3lw2lKLjfsWoPqWg/OtNvKc
LYarBR+VcJ8DVJ8TZjtqoHLlLax/PnoiuzANAsxJ3PaZOVhjO9r8fPQ83W56
1v17mEIxcoljO9LnS89TWWpFn0tR/r1N2U8C00B8B4lznarRcmwHL+kLhXT7
Ec/0JfdDg2Au1/3SOlWhvOOJN6Ofa+53lXiOQNKbocf1/E+ht+29WVVF8NiP
Ld47Ow1MOeeCI5bszX5XSmDyBRyf2n2GEmc+tteHLSIclA96R9k+kfjvsg3I
9YMnWT6x+7NAcC5rnfjpClDwIvG5XssKitydDCjFKm9pWw0MNZN1Ml9a1q1F
JgZWajFsz9bWQdwJ0r4xZn8sMbfRa5+zr+JlPTTN/u/3m0kZ8fdv19RDyhjS
LqeeJVKAzyN67c9209erbWXqYv9opZb+Lbr/hR6HU3A8CMeTQY9HubzVH8eP
BOfaiNPjz3RRXYrzRXpHbT/Q892llu+KcUMYt8103K7q2giNG64DndfDagv1
EmDNes57XpeGk2Wsm8BZnXhO9i7j6kWSl14tZ00fp1MBgftY1zunZ4HsS/K6
ZV623sbjiyDBgsVrXJ8HuR6k/4mvbXfVns0ELHnZz+cXQK0SeV8ua08P5dmN
4GibrdEinQJwfMp5nkGZRyixNRgU+thPW6QKQCuXtNtdfB+Q8Wgy02HwiKcw
XwFcriHt+aLTDuL1CK/3pK9vH7oZj/2jo23oIt1/i/VtUxwPwvGU0OPJmnfo
A44f4fibz9Li1zVrVsb5IpxvCD1fJ7UNYhg3hHHLo+Mm2X4oBeOG8g/hdWr2
f3Ez0rEaZc/8BnlXTygnSoeC1wip7+ue9YONdxucPrzzs6D3NcbKbnK/+22I
rx9TUgO7DQtlnh2NgaZ55HUfZNm+bntXDLcs4p1DW+Nh6zwy/pgDtT1ZUpkw
SaIoPOZJPPDJkftFtk/TsrItFu5nPPtcaBILwoGk/f2N23IzX74Gj8ppGhW7
o2FCEYc/NdWl8trnMhe/Wy464BsF4pznfA4lp53A65Fx8Y319PVis9xeYf/o
fsacErr/JKvSSV+kMtG7w3Jx9HjOCQYl4vjR/GX8j+nx3xjdMYTzRXMlQ/bT
853VEj1xdOY31Co2aELH7bvSo+0YN5RV4/XtyHKLv7i9sPl9lHhfeNxYngnR
kYbMVGly/dCpX2+J94t3Tlk340f89r/vTbwZtvEh3iN2HTe4qPv7BabSb/I+
jm1idxPvEUsL2EnsEzJj3tnJeT7BebSPeF97/rg6K711F5hXzpF5JR7bkkK8
Rzw0/kLnKUlT5s4K0p4rLhpBvEf8gS/xYfGyM0whzvvCCcU2jCkHpZihY3mO
shtO/H3PbpewdCPxvnYqn/znhQH/1lvt/NZFvK/NLyC8aHDHP/+OZlWCxHuz
V8YtXiQz5+LfeI6+dJtMvEf8fvzimqZxF//GvylhYjDxHrGekHD+aNr5v/lK
WRWZEO8R6/HXTfyw3+AvbmpnB5nEe8S+n77LlH5R+PtezwkdlVSinoU6au8l
SYci6r6oPrvcYI3rOX9o/n6TtReZ1H0J2GD9nqjnExv37np+NAZ949xfxyzk
TdSz9GZ9wU+t8Yiqh+gDBjNw/cAT1ocd8U/iEVU/BS46xUQ963qduPDVJBZR
9abq8dCdqOca4Quoanc0ourTr9z03kGhBUxWq6PtkG8Uouo5ptstg6jnkOrv
ifT1ZwJ1Ooh6FrGdZ0r3L3v3xHyinrnjWa9VHUrUs9NAA+sjLX7j/ilfiHq+
F2u6k8iXqudBS75SjBvS1A48SsdN5Mz8Xxg3FDbmUbl/4qW/uFnpsvz4MT+r
mZW/X6SXgNZyeEbs0vAsgp9r0tzEU0Xsmdc4PBO4nPWeH/Pz0JgNb7qmZyEa
PxsR/DxtZrb1ufo8RPGb0Gu2BsHPrcIfPr+YX4AoPtx0ZXckwc+/72XZLtYp
QBR/Krd4rCH4+VfFq/TvUgWI4ttY8cNrffvXMKuiT+eK8BUgip8NS6wuEfzc
/nZ3Jn39XPVRJsHPu7Xu2tD9G2iu2EDwc35ndxI9nng9CROCn1tKLlnR4xe5
vSMa54uUj8gH0fNd2uYQinFDmTfnuNFx85Cdu4jg52vL7bTXxN/8i1uRN3uf
KNbLkYztllgfEaWP6qfZAy7HSmDO6vQv8zIcmK2CVF9hO2cK7ius3kbJR2Fd
pXR26CRrYgzuKwKXNU6cc7oCUbpsV8tqisB9xcRnP3hk22oQpeMF/R2MZtxX
rD+7fKVxbR2idP+WPDl/Wxt9clXly3pE9QmDIPzu06RNzDHso2fu1NSjZE5f
sfTdwCdizsm9/mzRXCPsH4UsslxF9x8oLBqN40EKUrrsZbR41mm824TjR9zx
O0qtX4LzRVM6zsrR8zVD5PyNG7eP4quFXI+VIG7cRD3JuVySEOuJdE0m5gFy
vdpptimxXv9WzBpt8Xt/1yd0Dkuz80vRxGtd+q/HVqKxP8j+9mPy0IaWmSVo
i8iX04ZPmlDoVbIfHl4+GJDvWogKJnqFHxJpR4oKJF+teSm7+GdtFvop0Kis
sqAb+fOQfbufHPkcl/v2FZfiSnvQ+e/t/+nfvK+Ib71o2ovuppDfm/eZkfM6
7vXvlVvXYP/A7f/hdR1rHA9wx5NbqbIbxw/c8TMmFYvjfGGFe70BPd/8WVct
MG7gGvHBj45byfvYfRg34MbNXGaoZsHUFnRsYcE7lJqChDcOULxxh6h/52tn
45oM/9V/eX//LNX535FfbeGMs7El6EM9yT/e0X3nfFe1oHWjOiafB+vRXUfy
nLJXpL94cEIT0hs8dOv1ju8oxI7znh3/1p3nHKpRm29okdTDThTWS54Tl4yt
aZynl4f26i3p1LzVjQxZ5HlZ6/Jz3NcdYezdk9Z/aF4PGg4i7ePLRprweuBe
v2Dll8PYP3D7X37oSTSOB7jjCVhWaI3jh0IzvbP0+FNbkyVxvrBUcockPV9F
q4gkjBvopiwOpePmufOWA8G3wrmRk693/8Mtv/NCwKIxP9DUJ376uTJR6EJZ
N6evu+xO9Cfxl0eOfF96iSnP4XPdk5fl2QHdyHjTk+8OPFnowDgy/ouXLq+u
2tWNGq9urzUZKkY5r8l8Q8J6Mve5dSDNUclbaSlVSIWX9A8VUUWxG74heePi
3p3B9WjBFNL/+uMM+69hJWhMdf6S7dWNyLWQjF8n9QXGWYuxe+zXsgq/JuR1
gIx/SVhpCF4P3Otn9sqXYf/A7Z8/iR2H44G68J1m9Hgq5FdswPFD5r4HNfT4
TY1UiHyhSyf2Jz3fuRlarhg3eLbi7ho6bvOcTz4k+mF2X/1/cDt9o38y8b6w
8oRQlc8fTjEfC3dRfZ0N8X5x6Ftn9+PKy/72Jzt//cwh3iOWWus7UeaVJXP2
MLl/i81/KRLvEatfnmfE9/U2086Z3L8zN3dvJN4jvqLxMuPGEyem/AoynsJf
39KJ94hHVvXMUz3pyoxdSeJz4KLzAeI94pNvk96GzHNnfrQi96N9Ruaf9+LV
vxqu0X3g/revc7HVMCHeI46IkUoT63ZnhnHWq4/bl0C8R8zt/+oZCy3iPWKW
QtL95bkP/8YzuEtUg3iP2N1E+N0hlVt/43+8dSCfeJ/ztKLdy6bNVn/z1Sx6
NJV4jzhFQH7a6M2Tf3Hz83U/TbyXKLDdZaGZgvxf3HI7L/QS9bylNk0gRyYK
zv+t5/4eop5HZKribx+6xPhXz2vPEvUcWPXU8i5PFuzn3N8Lly4/IOpZTGpe
xLmhYqDq4X1Yz2JdXM9zqzyrU1KqgKqf3ybpjDhcz0/epg3sCK4Hqt6sFziw
iXp+3DhOdFt1I1D1eXeNyr2Ry2cY8e82JpT7NcFTTj37aRstLsH1fDmoYzJ9
/fSAQnnsH7j9W5rpquJ4wHhzUS09njpxxVtEPf/Wav5Mjz/mqpcJUc9iiQ8v
0/ON2HOAdzGu5xOixh3ZNNyUdRpriHrOl7mplLzb4i9uF2WGHBZifr4kx6uI
eQYonsHn7pULMD/rb4jQD43+d34s6e/nZWB+ZoTqvT8TWwLvOXzlGd13/SXm
59GUtjmY3+AOh990RPqvD2F+Dr7sJY75ECg+rO/kvWOC+VmyuPYM5k+g+NNj
4qujUpifY7QnhGG+hWMcvqV00PJZQQzmZxjh8POB3t2H5mN+dn1/O5S+nv/5
1/vYP3D7n7La7TaOB4Zqi+bS4/G0m7sBxw+3z6eJ0uNXuH+mn+Dndxc//iff
23d8HDFuIBQ9RZmO2yu+kwsxbuDXhwwPWf/DTcyTpaOM+w3l4zVnsW4CpZtJ
ncMTeApKUX976wGsszCGo7PhyUOTWnFfsf35igtYl4HS5ZHlg7KFuK8I5SnP
wDoOlI53Re1Z1of7iqPCcbux7gOl+y1y/keIeaDjVUdH3CcAd18heHf/CdxX
ANVXyIXbZRJz1/FJ6B59/fVoBWvsH7j9VzLMpHA8wB3PrO/sWTh+2Lw3w4Qe
v+JtCx6cLwwJz9Wj57va6thWjA/sWC9iRsdH3/naLWKeVnkwNvC3w72/8zSJ
p2xRYp523p2d0apZCOu9yfVKuqy3xDxtrjPr/KEx5TC5nnPuyGZ9JOZpQaet
DU4nVEMqZw4Z12aZTszTPr1iOvCfrwNlX7L/LNnxZnoB7ntL5HwuTD9cD4Kc
vv3SNGWp4ykajAVNqodr0uqhewppX33+hRwxN/MSrj4tv6AeXqmT9hnqG0KJ
uZnLAqtPv7JqofUDab/SJ/CYmJudvWftWO1SCWv0yHgm6Q3KEHOz2Wwby8sb
vsI+zvMAS7uCHxFzsyhd9g9HpUx4XELatxaekCw6UoJir48aXJXxArEJnO/l
7W0LWsYVw2AO655ldzY89CHXP7Gw3eZx7guojoCP2op8WMr5XS8kvl6ad2YS
aI+/LrAvOR/4n5N2tdBfu/l8woAtcF04uCIfHuST9rKSPaaZig/g0Jja6Nau
fLCpI+2zlT8+PmKTjvjTkOLFsAIYyyDt6RqhkU7jCpHAS9u307/lQwAnnpEL
z1j3dMqRgShrQg1/Dqx6R+LQI+17dcmdOvTZjSXWXJAMPgdJ3L71Nn7LlGxC
B3LZeZH2r6A0gNxfT5Off28zywXZNzrWr8TjobSZvG59xuaiqhdJoHxnzvaT
snGw6tboH3uGe+GWe0FhoJkw7Uehegz4p5D2R4bXXXIq3WDXa5PK3nHRoMSZ
b+To/EzU4ytExsm321KMmGB0mzPfu7ms0Dy0Eh0sDlFYohoPVnlk/JP9G6qN
Tzcil42DvBknI2GI835TbTDDSHxCK3KxfdOp6RkA61eQ3yNc3V4Qcm3bZ1Cf
prIlcq4Z7H5HXtdzapy9wpIw6LW2HLYSM4X7naR9Xlq33azbrjBu/277oj5N
uMkm7YtarN8HW1YgPevE9Wv1DKGE87yQ4/D5O+9VG9F8s5RzYRPtwUiR3HdW
cUnCLe6tqHZnUHJbmAssSiG/71jRb+Fd7RwOcd+sk6tsY1BPPOnfZpnF0JGT
nvDbTnBifXsUai0n7c82p99yE6tHij+N9z+Z+wnd2885J/pffXP0bTOabOix
3+SIBwoe4DwP0BXDn1sZAONtxN9MUSxAZZy6uvxG4dbR/fXokP8EEy3PcOS9
ivRz8Bd5/oqulbxbblGOEjn7KzWdPH8955OwutHYiApaSf/Cq8jzlyTvp8u/
rdrQ2jCSl9a9Ic9fpy/vtxSp+IG2XiR5zGoNef6q1B+4Xhbeg3rXdPyHJxka
/GE+x3oRqiV50mQ5ec5SHRSTk9jajbpiujj7izxnHQsf/z7xRjs6WkzqyOI8
8pyVviLs9edl35CyKBln+VjynPW+WEXl5Jkq9OgleV++zyTPWdclNLWZw9lI
tp/zfnc4ec6qnt1c9onxFCkJkLildPdtzLjYgnRHnfezF9ShA7pkvuWL+9PO
3G9Ce6VBUfdZM9LjfC85RUHt6VGeWnQyuUVAUa4DXf5K4iD+Q0+46XoBGpsS
wZo3tRuZviXzKvlwuGzFPF+k2urwLGSwG1kPkzr78KmRJ1uzEa5NW7Dr8dtW
JNrIeT5k7e+bch+b4ard1aipbxrRxDbyuvNvDOyY3tgCSl/Vt/caVKCxR0g9
7Vr8vPyDSAtsXFZ953nnF7Slg9wXP2ZPKukNbYLdev5WN/LfopmbyX0UnNg9
5+L3TnRqtkLsKqkylJ9AXtff3k/0xd0WpDQobjjBvBbttyZxmBe5+qVYZBUy
FPw5I/ZxAzphROIvXx7UPV0nDlW7XVpitaIJ4fL+Yxc1Xibps+MHRMy/GMzr
U44OzydxYB8wU62/2g2daaIJkzIL0KFcEgflYsNIk/s/YJeObz+vbgraP4ns
K/pD140VzW6HSt8qDTX/d8isjoxH5yO6dzO9HR16O/JCYPFL8O8g7au+uA6v
VGxASgHJGcWCHvAxl6yHuzYlMWLHMtF348HiYlU7CD5C7ruWn4kC9Wt6YdSi
kp1/OgA9UiP1+maZfHewfw9YPWs9Eiblh+44kPUctkNtw6tdPyDgU+zUY4xn
6EAwGafAz2C2p3oDipu0kr+qvwG+ypI8MENtw66XsXlIaUpx8pvdTVDnTM4J
H6kEHKw82g28H6WLOlSTILKHxGdh8DXLRwWdMEM/bNqR1y/BcSZZ/2MUfQ7N
0PmCqnr5Jo0Ed8OaZhK3zh5phQPVzWAZH6oA/vHg9pK8L/tt2TOwrgHWtQ9X
aLpmzPke0Jnre8DDNfe34z4BJRr993s31jW2But2CYoaX/Xyy8GnMMJ5bu2Y
JTuYWB8voiEx9fS/viJX6v48vB4u7NT+SF8//388N668jfUd8xU8PjWyS9Mz
HCi+qruY15BTGYDqfthaTlYsAIrftDnPS5tyPS+9adfvDsyTcHChz4JzRzyA
4smWaz6+mFdB8lzhVbe5n4Di1Ve9ht2Yh9HymvU2Ne1RQPHwmJrTlzBvo/Cu
Z7MrbGOA4u0VnOeHfbieH57xeEAA8z980uhY0xnmgij+F9o7chPrBZyb6clg
TrRHlF6cusN6jvUF7lTwhVrqGSJKX0SDW+aK3XZF6U+tTzj1ayJKj+pjQ2Kw
fqHfN+t5w8VMEaVfm3PY8VjvUN3tbc5f55ohSu+ecZ6/zb//3+dvD2RemYx1
E6yKD+3U8gxAlG5KisW/wzoLn3tKTTNPRiJKZ9lTmc+xLkP72NDHy1TjEaXL
TjKjwVjHYdKNG7fSjZiI0vH7nQv351a6oXjxbWv6xkUjSvcvmMq54D4BRapd
OflVPQZRfULdicsTq18kIQ/+Y19Oy8Yhqq9Yn9bKxn0Iag1Ykx8oHo+oPiSG
87zrRq7nXR3ch7fjfgZ8dD2mRtm/QlQ/M+2cjQDuf2Dsye3JuP9BVP8jr82y
x/0SnAy5sK6WPwdR/ZJEjK097q+gY4LP7Rnf8hHVX2kulLLB/Rhktp9ZZhaG
eZ3Tj/VJRUrh/g1piP/sbOvKR1T/5qq/5hju91Dq8sSl7yryEdXvbVNxE8X9
IRpR1p6mm5yPqP6wW1NBCveTKEriqpX6inxE9ZM5LkGuuP9EOjL3vlt1ZyOq
/3xnQs6x605ofaDrl7wvOfe+uPL7ogdKmciF09/q+pPzbYs+EaErG74iqh8u
MSfn2z8cP9ytcalEVP+s0ErOt3sX5vzsy6pFVL8twdv5Z74tY+QtvnJBPaL6
86sK5Bx70F1BpTatHlH9vJorOcdWTB3UmHG4HlH9P38UOcdecHai8rjzdYg6
L/CwZ/6ZY68tuHfzTEI1SuGcL66tJefYdt0O8ofHlCPqPLJPgpxjj2x5dqBN
sxBR5xdR/SGX/dXNyKvdiUfNPx65c/hwwrD7DMyfMLbhpAbmT6TA4c8GDTMJ
zLfIRrd33NHXLxHFtx0NkYswPyPQ8J/RpZqEKH4WZpr/8I3Ng0P58uVvdzeh
Wg6fH4mUz8L8D4UeH8dV9zcgiv8lsru3Yb1AC0WS1QwYz4DSC5ZK3w+sL0ic
J0PvnZQfUPrySv6XINYjFHE5XizjdABQeuSXUeY1+1gmTDlelrOMYYco/VK5
Gj2C9Q7aTEN2sQQ9EKV3M9XPOGF9BAnZOKXZi18iSh93nr9kjvUUlXUGnwL/
d3CRo6feU7ulTO//QAef5CzC+guU/u45vdYO6zVygvp2ocwC0OPo9aBQlzvW
dyRlDUY8PuVA6ftd79COmTpx8Jv/ylTLFU0gy+kHPp8xM5sdWQW7fW/yxjxu
AKp/4GtVvYr7DfDy+WQx3rwWqH7D/Hi3N+5PQERw3NKVUmVA9ScfDYZv/wxt
QhtTHh7H/QzM4PQzz/mG/EJFWhDv5foZuP+BzZz+53RZ/6IZjS2IZ/qHqh6D
ChjD6ZcM4/puy39sRm8vWJ/D/RUIcvornsoyjVHNRjTAn9Ph/LYVqH7MUZn4
vTVfSL+ko4/7N6D6tyPD0f243wMp94Ofcb8HVL93cIJNpyFPLZjcfOe5Vq4D
qP6wXvb7zbP3m0CkzSVn3zOsV5x+sme/vFjmxRa4nXmFF/efQPWfK56w9hBz
D2NGygLcxwLVxx5pGh5LzD2SHykC7nuB6nsnRQ2NIeYerpaHP+I+GZQ4fXJo
+xUJYu7hI7sxHffVQPXVm55MmEfMPZj+MltxHw5UH27bRPzu2VZGRoFVDu7b
gcnp2903OAwR8w0l+X2uuM8Hqs/fNm+XMzHfaOYVeoXPBUCdCw4v/LiMmG+s
UQy+g88RQJ0jxvJ3SxDzjQF3KeLcAdS542ytND8x3xinFmSNzylAnVOEn9vG
dkgUQG4EWzxiUwF8CCX3+8E9rBmfdLPhUyFrdeO9Ulg6ibSb+rHebt+bBtvi
RzzLtavgsSGJ27hTyywvmSRCwBOrgycTa8Egm/Sf46i4Ndk6Alq22iQLjK0H
B33SXnY8zqF0ySs41zkiJBNYDzc438e9HsoR/aodhXSF5t4fXVsPL1RJ+7Nu
06I1Rkko7YbN/UbZOijwIe1OKgKBC/elI3WG9eFzvNXguoKMZ6VSxgE53RwU
hBvUk6vLYGktaX87YGec6VqAKvxtdTWzCuDBIzIvJ01UdW7aV0hArI8PL2fD
5muknX8yu5N3MBcuttpCvFg+jJlE6kJPvYHyBfVUSOo90jbUmw+F50n7x9QJ
zbwzYiF3yHbrnqUFUPKetCeN9TLNOP8G+Ea0+k6JFcC2Qk5/NTdrdZNYGsrN
QU+cXhaAwC7O8/kZjoYV6vmIFYkmeQ7lw/tSMp4NeVYlv2VLkPgem6sB5rlw
Vpa0RyYezJZ0rkIdV1kF7ux0UFYn8+Vdox+38EY9Kt8/4nq+PQ4C+Tm/G7M5
oemBdj6cWJfbXLEpHhqTyetOKJhzzc83BVb8/mKxlxkH906QfGi/NvLEXcUo
cHIfNTnXFwOrwkm71gIRcXP5AGhTfrCydkM0lHF+D82hoEdrY2c+6g0LtHRS
YcK0d6T/V4uPsFUbytBgdv4DlxvxMPYYGX91/f4LLmPr0ZuXK8fUy0XD/X1k
nDoh46L46r+hPqkZ1zb2hIDqFVIXAquqrhPvZzF1l+28J2sMU56T150cxxNA
vJ+l+Wxqlb7YEchqIu3xJj88iPeJ3ksfuvTq13K4OEzazSpu/nl/6pRp3CH1
8Xqw1JHzvl4D05N4f+rZcT6rtxPNYYY0GY+esNNM4v2p1rPKjU1hZuDpSu6v
iGI0tvp9JOhkS7Ju5cYgpUjS/3XjZw0Si/xh2xqt5TVy0SjiK2nPtB+/YPL9
OhSi9HlP1+oIFMmp54g1y8wkfb6h1D1Xp0w/+xZtf0vm+/P7m7npx95AUFCd
orVsAUrN45wvso7MXr2kHjlOdeVRGYpB5SqkH021ESELzGOCOk3O9UGlyNGT
tN+3+t291r0ElS45fIIp3IDcv5P+G3sGLaVnFKNyl3Fjx/S1oC4LUmdvyfDL
Nxjko+VyaU0qEp3oXDjJq0tf723fsS4dDTzRXXLaoxtFbCL5bZ6F6icN+Wh0
nE/Tz6W9B+3IJHUW8fraS07KhOyEotcKN7rRi8Oc7yUfdalUiRfA1sv5V4Nr
O9CdYtK/n+6n427uxTAmW3923McWVPeYjGdH/MvsI8UlcGCd61aVino0OEzG
3zs8pqMV89uLt3ctIs+XooP+ZL5tB38sPPOiFCr2JghOD0hDBZzfpRlZcLlF
3qkFuda5ucd8qkGKr0j+fD+1/81Ck29oiuzmbZbC31B+ExnPhxbBx9NT61Ez
62WaKaMNZWqROq5yQUvJ7XY5+h3v5Sh7tgud5cyfbXe4hJllZ6FlQZPXfML4
XBQl8z1SYLRS/0EDuMc+jrXd1YZqcsn1ncNlbmZ53+DJ5POvu1Z/Q+z75HVn
1BkZVdxvgfg+S6e4xbVo/gPO7wZ/EPp0LL0FygN5Sxxzi1DfSxKfj+fFNvu8
a4b4yz8Hco99Rjz+nO/NebqPXDfvQvMVCn8FXC9FMXrkdRUEnQbDH7SiXOs2
FYejNUhsFalf6jpTz7253oDMj1k+vTq+AbFdSP9fdYrWu9wuQqkILbnb2YhM
tEj8p9nPL3uU2AWvNPLPOUEFMncg8xWZsb/s6ulu0PK75vl0ShGalkTq+6dT
Z9db7egGp0WNv3Ti01FOBbn+4fGmKqZ+F1x8fnrW4NEIxGdF4pA5d8dV4v2C
WwFLWQLxXjBPkMTBrjPekHi/QLj15rEkwbsAkmTfslgpcIh4v2D54hRhXdWj
EDqV8/yko24Z8fz/mcZwflWf50h4H1mfElPd6ojn/2u3vE4Pl3JBk1M5zycL
rl5LPP/vtKvC/izDGn2JJ+O8JRUxbdf6RqTSeSxY16EBpEvJ/of3tnM9+2wx
SmrrezWNrwmc5pD4WAT6Rjy+0g0yBs8mfFmcAmmBpJ/z8yZff/GsC1b3Nfl2
HvkIblvIfL9KSx0Rx/q1Zv74WhnPbvjeS+K2MKHOIGGgGdCE8LfvHZNgwIK8
v/9rDtCozbTE/ADG40bSlYdioIzDD0Ibewg+QUo9aIKVbAGkcfhE53/MAc6y
f/tjXoLXS7N1pp59CxQvHfykr4J5DByNCw93rI4AisfMrqslYd5DUSVJQZWY
zyne++idXVH1PhJNaJhz8GZuDFA8Kfc/5gAv0ocEid/Z01e5WPEzzAxRfLt2
OcOZeM+3Y4rwx9SJ5oji5/sNNquJ93x3DR6anjVeD1F8zlwvmku8h7tikZZo
8sByRPH/tFvbion3cKsjyzULxY4gSi+MFC8TvxeH1u+1a86QNUaUvlDv4SZy
zQHe+FmaYJ0CPfvNOpt7QhClUxcOMLZgXYPmzH2fGzD/U7rW/YWZj3UQ7B8u
7nO7EY8oHfTb8AOwbsL5sWiqiwoTUbq5X23FW6yzqEZyJKB+QzSidDb28aYM
rMuI8ewt3/m+GETpMt8l1fdYx1H+uXC2LjMOUToe9Dv+B9Z9ZBSN1Ko3xSNK
92P/xxygfhILcP8AlxvW77nQHoeo/uG9yYgM7jegqWpT2BN2OqL6DaNhhgXu
TyDT9HnlK/NcRPUnp7vZSrifgYVxmj9wP4OofsbAZP583P/Ag48Bj5xfFiCq
/zmbqZWM+yU0uyNJ5oxYAaL6Jbdfcb9wf4XP+T8M9y4tQFR/dXRzvSzux1CT
h2/b7958RPVjtyQVw3H/huadfCTCFMtHVP+25UyqF+73UN7HPAGny9mI6vfu
eLClzZSKYe2cO/LWZ5NRI2cOkPrCdneGawHsHciIxX0jovrGHXqsB8t1cyDu
lPrzU6vLENVnpvuxTi/Ylw7iTTfMTHirEdWXpuvPm437WBgd2LiiSbYOUX2s
duP4JcXaUeC/8/xGHsV6RPW9gXeiXpUseYWkZW614T4ZUX2ysP5r1c/WEehQ
2+cbE3DfRPXVT+co+VuYJCIe5hufU4m1iOrD/SR872zbm4YWRhR7VmhXIapv
NyhIeRymm41WhExtwX0+ovr8568XJLRLFKBdl4p98LkAUeeCjxuHotFAMwp9
8GDmB8ckNMjhH5Fz21izMQ5PJLbOXuDZjSi+mn7y4nzMb0jBXK2t68j/6dru
XpqK4ziOR5QGko87jQqFKctWampe9OR3pWUk+ZRgDlGHC0p8CNM2piuFdFpp
ojnTZl4oXRRiYPhE+puBsrJp5cPEmTPndKVMvJiOTLPf6Hxv+gvOxYHP+3U4
fDsI7lvNu41iuofE86ItRXd0kOAe5utG1HQ/gatQ93L2mAnuZ17hzGjshQUQ
zPW/vl5hIri3pdvSMMddW8kJQ2pSuAJwn3sbbUbHXdtUnZ/TK14t4J5HRYTp
HXdtVslmluBFM+D+yz4F8x13Z+818blvwsUEe9Gvc0pz3J2Nr5s73V3KCfYl
zCOg2HF35ptodD3e10iwR78NeUKSukoiSyQednEnYL9WXLvltHfkZIZJk9Cn
BeydJbvLR35rjWSe1bY0uo2DJ9vHuNHVq9UDq2RM4n3gCRjgDtvTCH/RHO0v
pHi1uCmtC5DL9ne+4sMI7TVEHrukkjmbYIft9UDgZXFn5U/gbImylWIjYN9b
0/Rm6gHglOmKWounAD0QVCHf19y2RLyEWzXUD7DT8u/9qtrslRKthexlTDLq
DbCx3gi9tpE488hCom9GuFCfAPpEsbT+IP/zIjkSpEygnoFt1jOj9enfqH9I
uWkzifoH0D9zgfd3FeiGQRa6be94tgboJYFBKlKVTcOspsib+grQV7M5AmCG
5uF0wvkU6jFAjzknx+X459DnTcYuyd0XAf0WInQjIdUWqC1YtPW8NQJ676Fs
a3KFOrnBvTCTuhGSWTc+H9pUiyf0hBm6HUOdCejMH/xfnHrVBNGXdgmoSwFd
OnMwvH328FfSkSFtoI4FdKxycDiKt/8jWbun0FD3Arr3sYVffSW4B3xFf7qp
kwGdfKiOsxxzRgulPIuQuhrQ1Q3T0qqF9C8QP/Zy9zkfK2SxDudUtfvxmQlo
4ka7UreDlXU7z86MnFLpgWHGb1DnAzqf+z1g+S51cggTXUa/CwC/C/D/xdP/
/l/8Bcudqt8=
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
ImageSize->{360.8392763127996, 246.938988841212},
ImageSizeRaw->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->
NCache[{{0, Pi}, {0, 2 Pi}, {0., 0.00002835407498298355}}, {{
0, 3.141592653589793}, {0, 6.283185307179586}, {0.,
0.00002835407498298355}}],
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic},
ViewPoint->{3.041103309846449, 0.03717934987169338, 1.4833436401535816`},
ViewVertical->{-0.4383354315213735, -0.005358919020253795,
0.898795489229839}]], "Output",
CellChangeTimes->{3.801886661716386*^9, 3.801889662245392*^9},
CellLabel->"Out[99]=",ExpressionUUID->"731d0591-4abb-4ae7-8a8f-a252ef0c284a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]2", "=", "0"}], ",",
RowBox[{"\[Phi]2", "=", "0"}], ",",
RowBox[{"R", "=", "5"}]}], "}"}], ",",
RowBox[{"Plot3D", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Psi]", "[",
RowBox[{
RowBox[{"2", "R", " ",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"\[Zeta]", "[",
RowBox[{
"\[Theta]1", ",", "\[Theta]2", ",", "\[Phi]1", ",", "\[Phi]2"}],
"]"}], "/", "2"}], "]"}]}], ",", "R"}], "]"}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"\[Theta]1", ",", "0", ",", "\[Pi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Phi]1", ",", "0", ",",
RowBox[{"2", "\[Pi]"}]}], "}"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.801886691410286*^9, 3.801886696690218*^9},
3.801889711061906*^9},
CellLabel->
"In[100]:=",ExpressionUUID->"9670fa52-71fd-44c7-a4a4-05a591e73124"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJx13Hu8TlXCwHG5HFKESnSTbphoSr2apE0liVDNOH0ijeadFCNpZqSRSo0x
MammC3rTRRhqmoypSCXpSroQpRPJpXILx/04jtO8zV6/9byf3/q8f53P5zvP
7LP2z7P2s8/a66npr26+8vqqVapUmV+9SpVq//uz08cPTe9+/P1Z/vPJbNvD
Ezb37X559mDFgi9OmPNhe3zcJ/PnzR8/NLvsz5+vbzJnZfTygde/0Pjbh7Pm
nafMXD7m2+jHXdiq3/GDn82eu6zPzU3mfB/947m1G/625WvZuOZ/Gffizu3R
O364st03tyzMlj93w5DlY3ZHH9ngVzXLbvssa9Sq4y/2N90XffnAuStffHJ1
dvWME85qMqcieq16Lw9dv3p99tGEynubNq/SAX/69W5n31unNNtSMvC2F3ce
FP3DelP+MOKKXVmdY1bccPG8atGLmlz47MYeZVmray69avmYGtFH13+qc/Gj
+7NuT8zu1L+4ZvSrXhpV5fzXDmQ3rzqlzf6mB0d/cPO01aXDKjM6511Xtndn
3J1xd8bdGXdn3J1xd8bdGXdn3J1xd8bdGXdn3J1xd877fZ90xt0Zd2fcnXF3
xt0Zd2fcnXF3xt0Zd2fcnXF3xt0Zd+e80+6kM+7OuDvj7oy7M+7OuDvj7oy7
M+7OuDvj7oy7M+7OuDvnPSqSzrg74+6MuzPuzrg74+6MuzPuzrg74+6MuzPu
zrg74+6cn/dBHdwZd2fcnXF3xt0Zd2fcnXF3xt0Zd2fcnXF3xt0Zd2fcnfPz
q5F0xt0Zd2fcnXF3xt0Zd2fcnXF3xt0Zd2fcnXF3xt0Zd+f8PA5OOuPujLsz
7s64O+PujLsz7s64O+PujLsz7s64O+PujLtzPt5Dk864O+PujLsz7s64O+Pu
jLsz7s64O+PujLsz7s64O+PunI+rXtIZd2fcnXF3xt0Zd2fcnXF3xt0Zd2fc
nXF3xt0Zd2fcnfPfXz/pjLsz7s64O+PujLsz7s64O+PujLsz7s64O+PujLsz
7s757zk86Yy7M+7OuDvj7oy7M+7OuDvj7oy7M+7OuDvj7oy7M+7O+fGOTDrj
7oy7M+7OuDvj7oy7M+7OuDvj7oy7M+7OuDvj7oy7c/7/OyrpjLsz7s64O+Pu
jLsz7s64O+PujLsz7s64O+PujLsz7s75/9446Yy7M+7OuDvj7oy7M+7OuDvj
7oy7M+7OuDvj7oy7M07nxuv/8eqJc15vn//8sP3EQX2Kznz++tgfp/+quYOy
1u1qdcCPLGlxx8QulfH4uI+f//8adfDxcR8f5/g448c5PuuQHJ/X4349x+H1
jJ/fy/hPe33onafOeb59/vP19vfPmtv15CG9s1O7d3m14YxaHfC9uz+56LNB
hdfn/3ujDn49zuvpwHHowOsZv4/P+Dk+4+f4Hj/H8ev5vZ53HMfj4fcynh7D
vt9X0XRhXC+9qNepD7RrNiSrXaO8VkXTkvh7Xzp9wbU9rn8wOq/Hb/3uzg+G
l6yNr3+j2wOLa06aHJ3X4zd+MOLB/U03xtcPnPHglA47XozO6/FeL9xTPGzA
tvj6Dc1mnf9Yrbei83r81EsvvH94yY74+t8/U3zm+iUfRef1eJPzLtr+2oHC
en7/06Ye+NP2z6Pzerx+k4tnt+1UWM9/5pji6pPKvovO6/Ha9TsdPWzAD/H1
O1Zd13LUoVuj83r87rsnv3HNJYX1/3YzJ/+y2is7ovN6/I7ykwYPL6kaX7/x
qN/Vf/nyPdF5Pf6H301pOvE31Qvvz33Vr98xel90Xo8P+f7kpa8dKDxfaFc+
Yc8nx1dEj+MJfsv1U0eueKDw3GHUHTO+PuLrA9F5fbZizPCzlh6I70PWb/0+
xP1+w/2+wv3+wf0+wf1+wP3vjvvfF/e/I+5/L9z/Lrj7x+OoM+6erNO6J+6e
uHvi7om7J+6euHvi7om7J+6euHvi7hmPo564e7Ie6564e+Luibsn7p64e+Lu
ibsn7p64e+LuibtnPI564u7Juqt74u6Juyfunrh74u6Juyfunrh74u6Juyfu
nvE46om7J+ur7om7J+6euHvi7om7J+6euHvi7om7J+6euHvG46gn7p6so7on
7p64e+Luibsn7p64e+Luibsn7p64e+LuGY+jnrh7sl7qnrh74u6Juyfunrh7
4u6Juyfunrh74u6Ju2c8jnri7sm6qHvi7om7J+6euHvi7om7J+6euHvi7om7
J+6e8Tjqibsn65/uibsn7p64e+Luibsn7p64e+Luibsn7p64e8bjqCfunqxz
uifunrh74u6Juyfunrh74u6Juyfunrh74u4Zj6OeuHuynumeuHvi7om7J+6e
uHvi7om7J+6euHvi7om7ZzyOeuLuybqle+Luibsn7p64e+Luibsn7p64e+Lu
ibsn7p7xOOqJu2dcXz34icFX3fD72BN3T9w9cffE3RN3T9w9cffE3RN3T9w9
4zqbesbjhJ50y3+WtHe3Q8sOO6ZkzGfJ35ULhpzV7uWdS5K/K+uH9Vt3++va
XRVfjnk3+bvy5LB+6G6d+x1SdPqc55O/Ky8P43S3emGcyed4GKe7sc7sbuPD
ON2tZRinu7XsdGPZ2C2bkr/H858bk24b3v5L4wHF65NuC+457idfjPk26Tb9
ghltO81bl3S7t8oFXV/auSbpduO8T3uf2Hx10o1xutuhYZzutimM090+CONM
/h4P43S30WGcnr/9wjg9fyc02zKn7tRdSc+aNdu8dfG8nUnP/OeOpOd3777/
6Y/PYdyzeGq9FZvqbE96vjfy6nVNm5cmPQcu6Lh85sitSU/G6Z61wjjdc2gY
p3uuD+N0z6vCON2TcbrngDBO9zy65d+GFi/dn/Qcfci2u8ZuKU96lm065953
apYnPfOf+5KeXzy7cELrdmVJz86jG0zqX7w36fnKjb2ffXrwnqQn43TPMWGc
7rkvjNM9+4dxumdJGKd7Mk73nB3G6Z7dJ8w4+pMR6XpRUa1lT26qk64XzR1a
dmLR41WSz5ch64+d9uNzPPfMf/6Q9Pxg7KJrZ46sTHq2vemIGzY8eSDpyTjd
k3G65xthnO55axine/YO43RPxume54ZxuucDR9+3b8dR6XpRpzH/vKPu1OpJ
z8p9yw76SevqSc9Z/ff96cfnnO45qOS42tddVi35vM5/Vk0+r1e90q/BhH5V
k89rxumel4RxuucPYZzuyTjdk3G6J+N0T8bpnosn3vjFj8/Z3PPeQ8de8+Pz
TPdsP3zm6m4LayY9927+7Nc/Pgd2zxm9yzeMXFeU9Lxh0fE3PT24KOmZ/0zX
3xinezJO9+wQxumeZWGc7sk43ZNxuifjdM98vOl60YL7+59XvPSQpOeIyrHz
bul7SNLzZ4P+ddHYLbWTnqVfff7+9GG1k57Tu+3v+k7N2knPvnObLP76kXT9
jXG658IwTve8O4zTPRmnezJO92Sc7sk43fPKSU3HXfvVYUnPfLyHJT3njxjw
5KN76yY9/1B6/4kzR9ZNep7Z98W/fVi/btJz4yfLf7LhyTpJz0ntK16o1rJO
0pNxuifjdM+3wjjdc1gYp3syTvdknO7JON1zYf272l7warpeNPXSv1Z8PCJd
L8rHm64X9Znz8ohNddL1onO3v3/hbcvS9bcjW3xZvejxdP1te9/v33v4unT9
jXG6J+NM3p9hnO7JON2Tcbon43RPxumeG6/c0mLpn9L1onfH/LC572XpetGk
t+q/sLVBul6Uj7dBuj7cuk3r2k83SHr+14DOu8b3a5D0rP9Mr1mntGqQ9GSc
7sk43ZNxuifjTNaHwzjdk3G6J+N0z4Mf6d34+ivS9aJvF920YsdR6XrR/Goj
nhix6oik5xPnPfTLulOPSHrm4z0i6dnz77PWtWh9RNLzzHULps4uS9ffGKd7
Mk73ZJzuyTjdk3G6J+N0T8bpni0+W1hr77HpelGNOis/GLmuYdJzTcet9zV4
rmHSc+7wKj2eHtww6fnYSw3qn35Ow6RnPt50/e2Kk8959NJ30vU3xumejNM9
Gad7Mk73ZJzuyTjdk3G6Z9eGPyu7d0OjZL2I/UvuWXXUNcOnDGmU9GTfl3u+
untElTerNkp6Ptrq4be6LUzX3/LxputvjNM9m4VxuifjdE/G6Z6MM3n+G8bp
dY/Lw/oM3eh8RnDvt/l5WLfBOQ7n6+PgPg4d7Kxr+fjx+9Hh+Oz/ZL2L/Z/s
W8PZt8a+UNz7QnHvC8W9LxT3vtC4/qZ9obj3heLeF4p7XyjufaG494Xi3heK
sy+Unqx3uSfunrh74u6Juyfunrh74u6Juyfunrh74u6JuyfufbY4+yrpzHqX
O+PujLsz7s64O+PujLsz7s64O+PujLsz7s64O+PujLsz613ujLsz7s64O+Pu
jLsz7s64O+PujLsz7s64O+PujLsz7s6sd7kz7s64O+PujLsz7s64O+PujLsz
7s64O+PujLsz7s64O7OO5M64O+PujLsz7s64O+PujLsz7s64O+PujLsz7s64
O+PuzDqSO+PujLsz7s64O+PujLsz7s64O+PujLsz7s64O+PujLsz613ujLsz
7s64O+PujLsz7s64O+PujLsz7s64O+PujLsz7s6sdyX3dcGT+7rgyX1d8OS+
LnhyXxc8ua8LntzXBU/u64In93XBk/u64Ml9XfDkvi54cl8XPLmvC+7OrHe5
M+7OuDvj7oy7M+7OuDvj7oy7M+7OuDvj7oy7M+7OuDuz3uXOuDvj7oy7M+7O
uDvj7oy7M+7OuDvj7oy7M+7OuDvj7sx6lzvj7oy7M+7OuDvj7oy7M+7OuDvj
7oy7M+7OuDvj7oy7M+td7oy7M+7OuDvj7oy7M+7OuDvj7oy7M+7OuDvj7oy7
M+7OrEf5+8K4e+Luibsn7p5xfUw9cffE3RN3T9w9cffE3RN3Tzx+n/Q/+5C+
LKxrfTRu1NmnPJTl+2m+if5sabezB46YluX7QjZHb9P2+Tnf9pmT5fsbCutp
E1ZN+nzQnvez/Dl9YT2tbOJFXfb2XZblz5vLoi9485y3S975Osuf8/0QvfHz
d3ZZdPi2LH9eVVg3u6TTvsEHLdyZ5c9dCutm7ft0/+Oxi/dm+fODwrrZub97
8aXpLfdn+Tp4Yd3swLzRLUbceiDL1zFrRd/eb8H7KwZVZvk+p3VxPerspwZV
ffXBqVm+X2dT9Cdmdetz9QOzs3w/R2Ed7PvSfoP3DXsvy/dP7Ir+m2anjN3T
eWmWP18vi75u2q4Pu162KsufwxXWtebf3v3GezrszPLnSYV1raGP9+rT4/K9
Wf5cpLCutWHZ+yfsf7s8y9f3i6JPXnTflW+feSB+/xd/64mnNlTrWpnl+402
xXWh6mdtq/LRmy9n+b6Z0ujtq7WsPfKHd7J8/8eu6KtmFi3efcanWb6PYW/0
ivtnfj536cosf+5VWC/6Z0m/c+5ZvCfLn99Ujz6+zcr7uvUuz/LnEEXRL13+
wO1FWyqyfD29VvQvb318YJ2zKrN8H09pXG95+Mjtk+uOfDvL93nsjH5luw0N
djdakuX7KvZGb3TroNU/7b0iy58bVY/rJJdMKC17ase+LH/+URR929qHplw6
vSJ+Px3f2WN8acNjKrN8H8nOuC7x3nsLe+6qsjjL90Psid66z2mbJq0tyfLn
KEVx3WDc1kc/uu+/K7L8eUCt6Ie2ePj3J1SrzPL9E3vi3+PdO27YefiAL7L8
eUbh7+VTqj5Q1mLzgaxVmO/8fVGi+Y57vuOe77jnO+75ji/UfMc933HPd9zz
Hfd8xz3f4/m+M/nX5b+qzGox38PfBW3CfB/DfA/+lOd78C1hvl/CfA8+0PM9
+Dee78GT+R78Ns/34Bs934NPCfO9GfM9uOc79+ee73gHzXf86zDfO4T5jldq
vuOe7/gEzXe8i+Y7vkLznfveRzTf8Z9rvuONNd9xz3e8VPMd93zn/tDzHT9b
8z3en2u+457v3Bd5vuPM9/y54MT4eXrBqWvOWlPvqvicroeeA3KfgHOfcEY4
DvcPbcNxuL/Fub9lfuF8nvL8lOPz/PSQ/+wXfzd+Dm79Zsy1s2f9Nsv3de2P
fl6zvQ/2qvd/9v8E3x6et+b74OfHz53Hbt7WqnWnwVm+z3t59BOa7LxpWZex
Wb4/bH/0Za0nHHdE82+zfJ9TZfSF9S+ue0GNLfF5Ln5eeJ57WPjvkHD9v2/X
tPKr//6bLN9H/ln0lat7Hl970egs3w+9JnrXihlP9pw5Kcv3e5VHH5Sd+9xH
7b/J8v1VldGf6di8dP+BzVm+/6bwvGDWd2XFI39aeL6MbwjPl/N9/y/Hz53v
Dr7lsR4f9Mum/We/+NLC+v8zr3zcvuuoLN+fvSb6Cz0nlXT641NZvs94Q/Rl
p7Xu/NJJ/8ryfWnl0Q/u8mWbP1+1Lsv3V1VGHz70kE9n7dmU5fuECuvzZxzb
vXuNaduzfL9L1ehNi+/avH7x7vh8HOf5+In8d1rC592FTdr+7OKN12X5fvcl
0X/x62PuGrLonizft706+oJ/rR2ydvLjWb7/eH3086cv3dys5z+zfB/t1oK3
vX35SWPfzPL9duXRJ/e8/e0ON6/N8n1jB6L3fG7ri7ds25jl+58K6+R/v2Ly
xaOO357l+3iqRu/1yF/ePfqK3Vm+H6V69Gm9Gy/p2HRf1inMR9Zjz+1f9MKQ
er2y/PsGiwvr1ZdVXFs8/s4s3ze/Kvqaw05ucOc747N8//d30S+7dNPx59T5
R5bvY94S/eTHRqy95qQ3snyf647o18xuPPvbSYuyfH9hYR37/OuOvbx81Jos
3yd3IPpPv1ryaMsNG7J8v1dhHfuUP5e1qzmuNMv3LVWN/vCn45/qtmRXlu+/
KaxjF89tdf74V8qyfB9JYR17bY2JTQ7/cn92GNeT8HlXGq4nC7meBG8Xricf
hesGny8Tw3VjU7hu4CeF68bd4bqBfx6uG2+F6wa+KFw3GoXrA58XD4Xrw8Jw
fcBX6fqAc304N1wf8MHh+jAsXB/wKbo+4FwfxofrAJ8vm8N14NlwHcD/R9cB
3NcB3NcBnOtA63AdwO/QdQA/U9cB/MRwHeC/gxTXPTTfcc933PMd93yPrvmO
e77jxZrvuOc77vmOM99vCPOaz9Ojw7weEOY1/lWY17PDvMY7h3l9bpjX+Ama
17jnNd4uzOunw7zGT9e8xj2vcc9rnHl9eZjXOPOa/WDcP3g/GO79YLj3g+He
D4Z7PxjOfjDuQ3Dv+8K97wv3vi/c+77iccK+L86X+x+fL+7zjesDOl/c54tz
vpwX7vPCfV64zyseR/sDcfYHcl7cd/m8cJ8X7vPCOa/4/ZrgHj/u8eMeP874
GWe8H9M48eT7g8EZJ+PBPR7c48EZD7+X+yj/Xpzfy/FxHx/n+ByH+xaOw+tx
Xs+85u9xz2s8+X5rcL8fcHfGk33dwT2vcc9r3O9/3O8f3P9e8Tjevx2cPnG+
h/uWZL6zzuD5HjyZ78GT+R48me/cL3m+s/7g+R48me8cx/M9uOc791E+L9zn
hfu8cM933OPHPf74PQiNH/d8577L48Q9TtzzHfd4cI8H93znPsq/F/d8x318
3POd+xbPd5zX/3/rAOwT5vrPvnpejyffA9L3pjkO12Hvz8e5znB83MfHfR2I
1/8wL/i9XG/9e3Ff33DmNeOJf+9rPLjHE6//mqc473PGyXXb48Q9TtzXH5x5
yvhxjx/3+OPni8aPe556HYDz4vPF54X7vHCfF+7rD8685nxxny/u843fJ9X5
4j5f3OfL378+X9zni/t8cZ8v7usYzvWEDrg74O6AuwPuDrivh/E4+n4Eny/J
9SS4rz9cz90T93UD9/nivi5xffbxcf974b4+4P69uDvHzwtdr7ieezy4x4Mn
3wMN7usA7nHiHmf83NH7Afd1jM8Xjx/3+PHkvwMQ3O9/3PMd93nhPq/4fSid
F+73Oc77nPPi72KfF+7zwn1euOc17nmN+3xxn29cN9D54j5f3PM6Hkf3IX5+
8W9AH4rU
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[{Polygon3DBox[CompressedData["
1:eJxNmXf8T+X7x9/n3HdDKqQoDWmgkpkiqVD2pmwhZe+MsilCyWoglE0aiEpT
pb2nfJsatKS96/t8fV/37/H4/XF/rqfjvN/vc+5z36/rdV2nXK8hbQfnhULh
Wv4E4gJiCeILWaHwA6MSfBLxHcZhcAnid8TPGZ8xDuf8psTzOb4z82f/YhzG
8SbEuhw7Fu4IN4MPghvA58BHwW3hi+Hj4E5wc/hIuA18Efwe4wj4H8bb8KHE
YsT/6Dw4J77KOBAOxDcZh8BFia/p9+ADiK8wDoAz4suMCP/LeCnzff/NeBHW
XPzJ2AWXLOgDhcLvjLPA04jv67rhSHyDUQQuQnyLUVT3TfyAUQo+kPgbowZc
kfgLoxpcnng6PzQG7gufAA+Eu8KnwaPhPvAZ8DVwP7gCPBK+Ai4LD4K7waPh
h+E1mif4Mrg1XBzuBreEi8Fd4Rbw8fAAuAt8IjwY7g6Xg4fAl8EnwUPhHppX
uD58Nvwv41y4CvEfRm24suaVc+rBNbPC/yawDqEqPAreBq+GT4VHwJfDJ8PD
4J7wr4zqcAXiKRwfDveCy8NXwb3hivAo+Eo9/7SWmsJf63vhY4lf6fNwGeKZ
aT41P5XTXOkeq6T71T1WSvOgOa+a7l332wSeCV8NN4NvgMfCveCV8Dy4L3wX
fBvcB14P3wo3hWfB16Rn1z/Nc/V0v7qvamlude8Xw9fBI+GG8DR4FFwPngwP
gy+Cr4WvghvAU+ERcH14CjwcPjutDc1PjTSHmud+8AZ4YVpvfeHOWsvpWfRO
z6In3E77WusPLktszvEb4XHwEHgTvAz+VHsVPoL4mdYTfCRxr9YNfDRxt/Y8
XJzYjc/eCy+GP2GUkWYQ92jNwaWJ32u+4HLE/bpW+ETil7o++Bjix4xj4EOJ
HfnORfD1cCd4MTwD7gzfDs+Ee8DL4TlwT3gFPBeW2G2El8KXwXfCN8Ft4fnw
FLgdvACeCreB58GT4S7wEngWPBTeDN8Bt4dvlobCreG58CS4BTwbHg/XTOtZ
+7co3AFuApeAu8Ot4LnRe+8LBOk2uDb8LXxrtC58A98SvR++hq+L3vO74Juj
NeIreH70ftsLXxv9G+/B0+CS8H/gedH7bQ+8IHq/fQnPidaCz+HZ0VrzKTwd
LgW/Dx8Trad94KOj9fRKuHS0nl4Bl4nW5b7wDdG68wl8Y7Te7YZvitagz+Dr
4dLwB/Cx0drdD54BH83xD+FZcBn4Y3gmfAz8EVwqWrt7w6PgP+EX4avhjHNe
gRfBjeDv4IXwhfA+eBwc4dfhxXBjeD88Hj4YfgPeCk+CixIfYkyFDyduZlwD
H0y8nzEWLkLcwhgHH0J8gDEZPpQ4gVEEfpPvnAgfAr8FT4peE2/DI+CfuP7n
4Kvgn+Hn4ZHwH/AL8HD4R/hZeBi8D34GHgP/Db8MXwPnfOer8Fg4wK/Bo+G/
OOcleEp0bngXnhqdM3bCk6N19p3ga7yU9dmYz3wO94JvCP7NWnClpJnaj9Ph
S+G18AK4A7wOvjnzvC6Ep6X9K828JfMzuQ2+LvN6nwGPzjxPl8CNkh5qT03M
/NzmwBOUi5JWj4EvgdfA8+Gu8D3wIrglvEzXnNmHSAM7ZV5HfeCOmfdED7hN
Zu8hPWybeX1dCXfIvAavgC/NvE57w5fAreA74Bszr5f2cMOkA9KW2Zn3zeVw
+5QLpO1D4W+k3fDpxAeZ0+Kaq9w+StpYKvMzbAlfmPkZtoLrZc658kgNMq/x
FvAFmddya7h+5jVyPlyN+BGjInw88VvGOfAZSYflSU4lfsGoCp+iZ82oAp9M
/JBRAT4u8/pqDNfJvM8awrWJ4/nd7fDd8KPcyxvKQcR3+feJ8FHECZzzJHwP
fBO8Q/MpHYNfgLdkXuMXw7Uy74ML4OrE1/UM4IMz74kL4RqZ13Ij+NzM/qoe
fJbum++cAA/Wveb2D/JUtXL7K/mu3vAD8HJpFvwgvCJzTpdvWQVfDm+F75TG
wQ/BK+H+8KPwWnhYupd7U37RPGyAB8CPwevg4fAz8H3wCPhZeCO8WPoBP6b9
Dj8Hb8rsnTQn98Mj4efhzZl16G2dD4+BX4K3wtOlzfAO+HrpKPxMZu15B34c
nibth5+Gp2jfw0/Ag+An4Lsya9tOeHvm57ILfipzffAe/CR8Nfwy/AA8EH4c
Xg/PlB7Dz8HbuJ8T4CHEXwuuGYoxvk6s2kFr4Aviw5zzG3E/403Gp4x9jN3a
V9JaYsnMx75Kx1WfqNb4g/FDOl+feyj4u/W72lP/d+73xN8ZXzJ6cfx14pzc
x39mfJJ+/6d0DbOUZ4jPZ75e3cPn6dp/TPeyL/12lr77+//3PbqfPYwZyl3E
Z9P1/5Lu4dt0/l7GN+kzmouJygnERzPnllfgBzP//550zvO59680fH3ufbEd
XgeX1jOFX8itz8oFm+Cyenbwl7m9h3LoPrhLwXn5i6Rdyr97kvYq5+5N+q88
+1Vu7y0d3Zh7Xz8V7P/kA2dzbEVuHXtc8w+X13qDH8qtITvgbbm1SDlrO1y5
4Fz2LFyz4Bz3XG5tVB5/IrcWKScuz/3cd6Z81K5gT7I5t2ZKz57KrWnSgydz
a5pyqPLzq1oj0sDcNZF8yC9Jz+V/Pkxaqjz4bm4tUr5+B76oYD/wEdy84Lz5
Gly3YI+xM7ceKqe/l1uXlNOljVpvD2f2Ba/B2+DfUn6Rl9uVW1eVc1/NrdvK
3a/n1kDl7jdy6568yo8pT8m//5Q7L8vLfZe77pNn+yHlNfnJ73PXhvJ1+3N7
TvmuT1MeUd77OOUaecWfU86Sh3wzt64q5+xO+UUe8pOUj+Q/H2E8nfbynHS/
j2TeT/vTGj9dXlb7h3io/FnB/rZocJ2rfN4Y3qI9Jc8SXDcpZzYK1uGc4w2C
Pby0tkmwhgeO1wuuNf4l1mfcB6vQbxqs7VH+KHddpvrsCHmvgn1gOflR7Uli
x2B9Pozzd+Suf6dw7JncvYupwXlLmi9P+EduX6Ea61h52YJ95nHB/kT+6KRg
3/IDsVlwHjmAz54c7G3kF0oGewP5nTLBXkhe9Ok0/1rPpwX7pZ+I7YJzjdZX
bXi1dIhYK9gL/UGsE+zB/gqudzRvS/ie84I9mHJd99xzdTvH68Lj4UHJX+m5
9IfrwGPhAcrJ8ER4iL4HHgcP1PnB3u9PYo1g/6PfrB7skX4jtg7OifLMbYJz
hzxz8+Ccq7zXKji3HsTxllpb8IHy7MG+7h/iBYy74b+JZwR7y5+JbYNzmbx3
pWBfKr9ZFV6qOSRWC/aEvybN0b6+Vr+Tu6cxQb+fu9cxEd6Quy4eCd+ftEU6
syx3nTtQaw0+E7466bB07yqtx9w9tDG63ty17Si4Q7AfUF2wNHddPEDzlLu+
HqR7zV0Xj9Zc5tbYwfDKpHXSwFW56+6hwXlJ+Uk5VjlN+UV5RjlHuSdLx5QD
lXfm5+533cCfeSnfzSX+mtvrqpZcnbsGHwZ3D877R3DNa3P3XkZw7PfcXlr1
6ZrcfZjhWm/B+ask5/cM1r2j4G7BvqUE/FbSH2nLO0nPZ/D/b+fuDV6f8ojy
wnj4A7gzPAt+P3fPcKZ+B24GT9eags+DJ0sbcvfuxmnd5e5NTdJ95O5bTtO1
5O5VXgdvivY3Wntbc/fuxnL8ltx9SNWYnYP9WDHO6RLs0+SVusIvwsU53inY
y6lO7BGcd46El+TuY/QP9n7K16pzb83db1TtvCV3T+wa7fXcfU7V14ty9xVV
Uy/M3YdUDf5gtJ+TXn2W8oL0/Pbo+keado7WLsc3EntF97PEvaP7RJvhumkP
ShO6RPdB1nOsa3SP4y64W3TPZQN8eXQvbFPaj9qn+p7j076T7nWP7svcrfUQ
3UO5Bz4/uG+pzx4V3GNZRjw7uK9yH3FgdN0ib1MzuAd1L/GK6J7U/XC/6NpA
/rl/dL0h79Ezuu+j76matEK/Wzm4d6frPytYD6VRVYJ7ZbrOi6P7aAvgM5NO
SkMGRNdC8lcVGasKnpMe0f0mXdug6NpJXqtSdA9L66dUcH/pDmLp4P7SncSy
0X1t7fcTo/vs2uMnRPeUpS0nBPe4Vuqc4B7UauIpSWOVO8oG975WEcsH97vW
EU8N7oOtJVYI7mHqmR4ZnHeUa47R+oZXEI+L7mtrfVaI7tlJr06N7mtL08pH
9+OkhxdF9zTnw/Wje6xztQaie/HStIrRPUHp2BnRvUKt7ZOi++zSltOj+4nS
z5Oj+/vSkNOie47Sz1Oi++/SHOVu5eulxL7RteUDcJ/onvhW+K+Uv5Triwf3
M28nHhzcd72V+G/KXzfBBwb3V28m6qWA8uAcYongPt6SYH8uD67a5fDgfu8i
YpHg/u1twTWIvPD2aC+0N+lqseB+8uLgmmR30t4suFbVvMnzTCp4Pi8JrqN1
Xy2Ttui+VGfuSNewLbo2kxa1D/Zd8gN5cI6ep2cU7BPklxrCT8FbiAcF95Zv
0ZoPrs21p1oEa5pycQz2JPJgBwT3nLUv5JeUT9cE696upIGHwNPhhcSm0fW2
uEN0T1nrtkl0Ta65ahTdG9U1NI7uZeu5NIzuU+tZNI/2GZq3jtF9Vf3uldF9
WN1Ls2iPomchPyzfKG/cKbqHq/XfObrPq31xWLA3k8dpEe17tDZaRfsbratv
iP0450b469weT7WP+ht6pnq2/yRfNJtjf+Z+pyMf2DK6B6E10ya6d6+93zq6
dy+tax/d99e+axvd65cmXBr97kF7uV30e4LlWg/R7xikA+Wi340p7x8d3H/W
OVWje+jyLUui+1PynEuje2Ty3mdGvy9RTlwZ3eOQb3w8uoZXnloV3R+Rh7wr
ukcgL313dC9DPvzh6J6C8t0T0TWz8vvq6H6KfGDl6Pc0yt3LovuD8q53RPcH
5dnuje59yJ8/Gt2/kMd4JLqvIZ/wWHQtLS9RLfqdgfL48uh3DPJyK6K9rHxm
lej3GfJyG6J7NKop6kS/m5RnuCe6F6Pa4c7ovqH84cbo3oo853nR7zjlNwZH
98hU89aCZZ7kN86Ofh8m/3Bu9DtOeZh60e+fpCEXRr+Xks40iH7npL1ZO/od
m3xO9eh3rvItNaPfO8qX1oh+T6Ya5Jzo93DyLWdFv19UPbI+uhej2ue+6J6R
6ovzo9+tag0Pie45qh5fE93PUl1QN/pdrPq6Q6P7g6rT10b3ueSx10X3s/7n
vaPfn2nN/xdOrMiA
"]], Polygon3DBox[CompressedData["
1:eJwtmgXYFkUbhXdmVlAsDMSgQVApKUUBBQQRRAmRNAiDBinp7gYpFVQUECUU
G+zu7u7u9jf/c3P2uhxn7p1932/f3ZnnOc9ZKvcd1nlozLKsqf6Xq/9e/WD1
FdQv0oEv1V8kPkz9fPEX6i8UH6p+nvjblGXjxANClq0Rf67jF4jLqp8r/lH9
UHEl9UvEf6gfLa6hfqX4f+rHiI9Sv0p8kr5vK9/H94gfUV9f/Lu+v4H4UXED
8R/ihuLHxA3F/xM3EjfQ528Wn6fj14lPURuquck6FjRXX+0mjc/V/LWaa6M2
UvMzdKyE5uqpbdf4HM2v19wZ4rvFl4ovFrdUG6LzJ+lYprnrdbyMhu/oWDXN
XSPeV/yauJL4avE+4lfFFcXN9Jkt4v463k+8Uf1B4rc0X0W8TlxK/LK4vHiD
+EDxm+LK4tvFVcVfimuJW6gN1niijv2nuT/VLtX4aPWrNVdXf2+duJf4fHFt
8ZXiHuJzxb+pHyk+Uv1l4tZql+j7pulYrnN/1/FRGldXv0JzjXTsOnEfcR/x
T+qHiSurXypupTZMn5+iY5F7rXaLxlfpWG/NHSfeIO6r8/uK71R/pPhrzdcR
/yoeIa6mfrn4DvXVxF9pvrb4NLVRGs/UsZL6roPUlmrcXOddrrm2aqM1P0vH
9tRcHbW1GvfU/Hma+1n9cHEV9cvEt6mvIv5Cn6kpbqjzrxX3jr7ee9XXFP+o
+XriU9VGaDxdx/bQuXeoPa3x7cHr42PxueIO4sXi78RTxcODr+9n8WrxLPFV
4nJqpTQ+VMfW6m/9ovk1Gs/Wsas197v4avGi4PXKmthH48Myr5UfNb9E48k6
tlZz9+lYLfFP4vo8n+L+TBGvE9dQq6jx0Tq2NXrNHRp8D1iLf+j8azReHLx/
WHNlWXuZ1+IbGh/C2hZfK/5N51+l8cLg/VJdrYLGR+nYFs1XEO8nPpw1EL0H
SouPyLw3uKd1xSdmvtfHiKsE/4abon/DseImmX/bseI64hPE94gf0N8vy7PW
sUGaO5prDn5m26P34IHicpn35sPJ185vGKq5o9QqaXyMjm3T/CeaP0/jjsHx
6iPxOeIzg+PhQ+KK4jLiIbmvgc/+EHxtv2r+cvEc8TXir4gb4sPVLyDA5o5P
6zS/ReMj1Y4I3gObdc43yef3CN6/XyXH227B8fILcT/x2cH79TNxb3Hn4PX8
ubivuEvw/vkyOR53Dd6/m/Q3Dha/La4q3lvz88QnRMfvH9QPEVeMXr/fa34u
8U/nX8F8cf5Y8ZXEf503SFxe/UJxc83fKx4o3iz+VHy+uFNwfOBvHhYcw7iW
r5PzS/fg+P+3+AbxKvH14v+KeL1WfKM4ETPE14m3a1w/em+xx1JyDD48OGYQ
mwMxU+P1OrZV40hMYe2Kt5Ef9JkHxEOin8e/Rfy/UvM3iP8SbxavFG8S/0nM
F68QbyR/iTeJLxNvyL0myhT7Y4e+s4Xm79N4UPT3/SPeJr4i+P40UTtd4+48
k+g1cIjG7wavDfZAefEnwXuDnLFJ412Zc8nLmu/IslI/UXNvqD9bvJf6yeKX
1Hfg3qifIH5e/RnkQvXjxK+r78L+UT9J/KL6M4nd6seLL1Tbpr/3oI61So5x
xLqnMufGMTrvNvGT4vbixpo/SdxO/GwRc9cE5zxicffoZ8szriVeJv6CfKa2
nL2itlHzO8VNNf+muKvGpdRP0XctVP8R+YB7Hh0ziZ0v6jMDcmuG64NzNlri
w+j9fID6mezn6PV4oPpZ4p3qjxN/o88MEz8gPkn8s3gE+118svgX8Ujxw+Lm
4l/Fo8RPiFuL/xSPFu8SHy/+Vjxc/KT4VPFf4jHip8RtxH+LLxWfo7Y8OCfW
QGtovrHG3+nYJbk1zfEan5JZ67yl1k3jvdVP1dwH0fmmtPoZ4vei49X+6qfn
XlOsrX3UTxNfpLZd3/eQjrVO1lDHiVtm1lZPq52m8T86NlZziMOtwXuEvVKl
yEdnRuebXmrLgjVB9WRNsZq9mllr3Jb8t1hDrKWO0bmFHFNVc7erPZz5mri2
HmpLyCU6Vo1YqvNLaPw8OURzV4hLil8gh4j7E4M1fpGYp/Obic8S92HPEOui
YyMx8mONbyn0HHuIvXSn+KXM38F3NVVrr3EPHXuHtSDuyZz4a/ER0bGZGE1s
v1WfvyfzmmPtrdGxPcTPkaOJ9Zq/lVwXrJd2cE/IRcH6Z3W07n4WDaDBqrhb
VmbPiMuKV4j1X/Y0eVd8fnTuIIegdW8lJ2r8WZHP0CxorR2ZtQx/k7+NBkO7
EZPqavxpkb/I0eTq98WDc2vEy4M1ONqRa+Ra+Q1ot57ipcEa6chkDUCse13H
BubWB39n1qzohVnkXB17U9wreY+WFO+Vee+Ss8nd7OEbo6+hVKFvuLZJaneL
XxCflXxODY3fK/J9Vx17RTxFx5dEX8Of7PfM11a10DMdovXP8WrN9Nm23GP2
Ps88eM2z9k8WDxSPZ49Gazz0ccNo7cc5aI9/gz+7f3It0Iy4Kt4vWYtTT7XP
XVOgnxtF1xr7iieIm4hPF58YnUvJqeRijo0Tz8987t9Ffq1VXBvXjFb6L/i3
dFGbiTbQsUOT1yhrt1yxdtkDncVlovdGV7V5wTVABZ1frtArp0Xn87bR2oVj
zJ2tY3PJ/eLy4ubiQcG/4V+de3SRD8+O1rN7JdcfjcXtcmsqtN5HwVqrVVEP
DIuOB03Ed4kvjM6vaDa02sfBWo4cQC64KFoPoFnRkh8Ga9ma0bUnNeg/xd8c
I56d+Vq6ixcE10CVkmMea3l4dLxpnKwH+kXnb2oG6tHjo2sJagzq1eOiaw9i
3ArWYnTsY42yVj8I1r7EcJ5Fl+jYfmKyXrkgWi/UKvRNt2h9WLPQF12j9T73
lPq7dvS97qY2P7iGqahzzxLPCL6GsuJXo3NDSdZF7me0QNwu+tmRg9HOBBFy
8wHJtdnJ4g65Y+xycafo2HsCz0jf30nHXoleIws1Pj167bDnLxN3jo4F/M3W
wWuMazk4uTZqqXFHzR2SXKu1Yh3m3vPs/ZeCax9qgr35W8G1wh78nmBNg7Zh
TfMsT41e6+Qz9u6+0dqpTHLtfoq4U+57Qu3XOvpeEcPRIvtFx/Zj1PcPXqPU
ylXV+gTXhNSGeAyNxC0yew94BtS3x0Z7CdS0nFsvutalRqZebRBdO7Pnxwc/
A2IBwRz/o260d0CMmBB8T4kdXPO04GfAb6GGR3/Xia7tW0TXbtRw1Lpdinw6
OTpfHV7Ui22i9TnPjFxeIvpZ8gym6vPLMj8bnsH04GfIs2ENTBIvzrw2zhRP
FC8Sl05ueCcnRc+xBplrH7022VN89ozovfabPtswWCOhlT5HxwbnKHLVo8nx
u3yhj7jmS4v4x28h/owr7h9rGb0wtbg/rFVi+JTi9xDb0SCTi/uDNqHGph6Y
Vtyvx5LzW4VCT3E/8TemF/eDmEUtzj3cHcty61P0C7EHPbq60K/obWLUykK/
ErvY09QC7GH2OjGEWoCYSGwhpo4t4jnxlPy9pMif5GdqAGoBao7dtZP4LvFz
4vPFS6O1CRrlXnE/tW8za2b4brXPNP5c7R6NH9TnF+kzn4h3snaTx5+q7Uqu
QahtqKmoTe5BA4mfFZ8nfiB3vkVP9SU2i28RPyHuIb5fvKvIx334++I7xM+I
z03O99QHeCLniHflrg+oF8j/O8W3BtcLPcX3iXeKnxf3TvY4FhX6EK+OmDi7
yEfESmLmnCIfEUtnqrXKrJHRyjOS4yGaFm07PXk/sKfZ27OS40fTIn/PIedm
rlmIj3OTYxkxkP0zOzl+NCvy7Shx9ayo2cn3ue8Nv4nfVjr3b+eecG8OzH1v
eaY82wNy3yvuOfd+X7XHM99j7vX+ue8N94x7NyK5lt1dMxMrxE0zeyJ4I1OT
4zseCl7KOHHtzB4K9SKatzd7Qf3s3PUF3s/3mq+b27PBu0HT433i+aDP12fW
l9Rrcwu9gJ6fmOy3HhXsx00SN2LvBPt3E5L92RrB/uTkZL1Uu/h7U5L1Cx4O
fsnYZK+ncpHvV+rvfZy5xrsLLZHs5VQq9MPo5OuvUOTb8cn+cPVg/25Msh9T
sdAH+6g9Jt4hvjN3Y8w9757sCeANoAHaJHsgAwr9hx7Dg0Hv9y/yBR4FXgX6
H+8aTwZvBg8DbxuPp11wzUV9gL4bWOgl9Bz1A/U+Gg2tRn3SqsifaDX0TK9g
zYf2o+asVsRPalFq2BbBNT21LTVsyyJfflQ841OK/M2zxx/pG5yjyFXkP+qZ
AeK/omtY4nO9Il7jEeEV4Tnh/eLxnxZcg+P94+Hg5bCm8H7xyPDKqKnx+olH
j2h8U7AeJx4tjvYw1qt/KriG13+7axs8JrxSanS8J94xtA2ucXn3gKdF/dYn
c37G88L7uiCzd807hjbBngfvHuaITw32ND6L9qTOCK6J8arw8PDyqJm/L/I/
9WJf8S/RnhneWb/MXjT5jLXFGkMP4AlUDa6h8Aqo+Y8J9hDwAm7PXS8/mLle
uU28Jbh+7oz2Fd8Q7Al1TPZPqEWpSfFTdmh+c7CH1gGtKr5RfL+4U3I+xY+t
ktm7vjm3X4IfhP+CJ4Y3hqZul+xx4XWhQdsm11PU4mgItAT1PfUimhxtjgdG
fUn9SL2P54b3Rr3ZUnyTeEOwJj892XMi37fIrNfQb8RaYi5aBM+pQbAewIvC
86gV7HHghZCT2cvsaWITmgBtQM7GS8GTKResGfBq8FBqBnsseCt4QicGeyp4
RXgiTYLrObwSPA9iPTEf7YgndkKwJ4NXhsdVP9jjwfvCE6sX7AHhld0hvjk4
hnRL9sgaB3s+eGd4LCcHe2p4L3gwzYM9NLwZPBRiHzGQ2nFv8aOZv5PvJr/j
gX1Q5NuSuZ89a4S18kLytXEPuZfkzDfEM6LzDTHsNfG06Nj2fPK185v4bXnu
tcAz49ntkfvZsWZYO8/p/GaZfzO//SD1X2fWDOiIErn9DdYka5M1RewcGb3W
nkl+FjxTnu1TRT5gT7A3Xkx+9qwR1goxlt9/SXTsfTZ5LXCPuFesKfLpqOjr
Zc1y70dEr+Wnk/caa4C1cK/6bzJrIDwAPJN/M/sPeClokrc1nh2dj9E474jn
ROffxcmxmRhNfY3melc8Nzpfo0neE8+L1irEFGLDIUWsQQO9L54frY2Ib/gP
pYv8tSTZD6Bmpp5bVuhp3iFSD+Dp4JccUMRDNNbrGk+P1gNLk/0F3vFRD7BG
WCsLorXa8uR6jnec1CeXJXvhvIOjPkFz4b3MjNYTC8Q9M3tc1EMvFfqJNc3a
fiV5b7Cn2Ft4bnnwO068ODytGPwOAa+LnE/uRxPwLg8PKwt+p4m3RcxCy46P
jmXEQLTehOjYSAxEH42LXu/3J9877iFeDhoDrYGm4F0gOb56ka+If48UeowY
QazAEywR7KHjFaJBahTxm3enDyZ7TXhMeE0fintlzhHkivvEe2b2qPCq6hb7
t3ERn15O3vvEEGIJMR4tPLGI/Y+L62TOEeQKYjJ6bnQRqz9Izm1oBLTCk8m5
nRxMLn4/OdeSA8mF7ybnMnIcue4d8VmZcxzr773k3EeOJleTM9CXY6P3KzHr
VfHUIpa9mhwriZHEyieScxkaA63xRnIsI4YRy95K1hpoDLTGm8mxDQ2CFnld
3D5zDCQWvpYce4m5xN63k7UJmgRtMj9Z+6CBqN/JKeS2wdG5Bg+Td3OVM9eL
VyfXftSA1LLzit+P54D3sCnZ28EjoR69Ntl/wSOh/r8mudalxqbWvjK59qZG
p1YfkPz+kDXD2hmY7OewPvAnLkiOJexR9ur1ye878ZSody9MXuvEHGLPRcl7
gz3AXrg4ee+wZ9g7G5O9HDw4/JRByX4W73R5t3tDspeOx4q/sirZP+HfKOAf
bkjW4mhy/J2tybUpNSre+xXJtTM1NF7i5eI5mT0xvLE1yX4K78jxt7Yle728
o+Fdzepk/4R37Phda5PrfTwLvIvrxKsye474MeuTvSg8BbyFq5LfR+Mp4C2s
S/YH8BTwD7Ynv//CY8Zr3iLemPkdCH7ZjcnvQningL/WP3kvE4OIRcOTtc/u
d9LiFcm1PDU9/suiZG2LxsX/3Cv3+kKDEW9K5dZiaDT269Bkbco7Yt4VH5w7
PlHjEs/RrPsVuRAtOzjZz+SdNn7VJcnvMne/QxePTH6Xu/sdJPk0d/yjxiV/
LEzWmmhO/NghyX4n78R5N7452RvAI8CP2zO3VkQDEj9XJvtd/BsE/OgyueMP
NTv54P8QiijI
"]], Polygon3DBox[CompressedData["
1:eJwt13XUVWUWB+D7gXQjjUqMIBiESomEKCEpSijdOqSUIKDSYY/SUg4gMYRF
6FJAJJUSpVsFYQZQGDFHmGcvzh+/tfd+zv245557zvteSnTp92jfdKlUaplk
kHHpU6mraalUObnPvMPBkeySuYTcydax59mP5mJyO/uEbWYXzHdIZfYR28sy
q/XYY2y/fh/Lpj7MWrFD+v0su9qQtWaH9W+x+9Xe7DmWy/yNZGUNWEt2UP81
y6LWZy3YAf00VlntwZ5hmc2fyxnzrVKevef4ctZGfZHNZuXNuyUdq82asN36
7eyK+R6pxTayXSxNrcUasz36AyyX2oS1ZSf0B1lutSlrx47rl7En1ElsFitn
3iinzX+L68/ed/wlllOtyRqxY/oVrG0cY3NYBfNXcgOrw5qxvfo9LL36AGvK
vorPyXKoNVhDdlS/g/0vvm+px7aznewvc3Wpz75g29jP5rulJtvAtrL/mitK
DfYZO8tKqV3ZAHZF/zLLr9ZN7oPT+ufYf8xFpTRby15ld6rtWG92VX+BVVOH
sIksu/k1uYu1Z33YNf3rrJzagfVlqbhHpT4bx6ahouZ1cb3MmaUge8vxN1lF
tTPrH39qniz3JJ9jYDwf5n/Lbaw7G8R+1Z9nZdUnk3vtd/10ViWxISyL+Sdp
wMaz6ayIeYZUZU+xoSyreYrcy7ol75HRPFOqs15sBMsZ107KJPf4YPab/hJr
Gtc7uTdKmN+QCqwTe5qlM2+S8/HsSqXk2r8Q52guHs8w+5RNZZWSzxvvkck8
XM6ZC8ezxFY7PiKujbmIlGJr2CvsJrUxa8PO6y+y2rF+sNdYXvMouWwuKXex
9Y5vYMfNNyX3xhI2lv1uLpuc81a2hV2MdUmqsI/ZZ+yE+Wa5jS1l/2Dl1Y6s
H0szj5Zf4zXxXLPNjo9hv5nLyL1sC1vPDpjzx3rH5rNzrHTyHcW98Yv+FLtZ
bct6sovxXbNrsd7Es8R2su9YseTejXv8R/3b7CF1EBvHCsZ5SAc2i61kd8f5
SvtYG9kKVtE8Tx5kA9lYVsC8Rp6PtYJ9zlqa50odNoCNYfnjekrXeH+2ilUz
/yLt2Ey2PFlfvpA/zFXloeTaZ74hlRqmrmU72SNek2J92L/YemOdWJvZcPYR
28Was1XyNJvHPmT1zH1knzmX5GDzYu2PNT9myc7mxjPAvjZni7A5rC/bb84j
Odnb7J+srjqYjWeFzAPkiDldfJ9skeMfsn7qXPYBqxvnJofMV803ykLH57N6
6jN8Aisce5HPNoJ9zHazR1l/OZwWN1kqlU95x/E/WLc4J7aaVY33lFv0+dir
cX3Mmfx7z+rXsB2ONYu9iA1g77LNrD4bJmfNhWK/YKscz+h1Q9XV7EvWNNZ1
6cEWsLWseuxZXtefrWSbWAO2UBqx4ewVVsz8jjSOZzvOjxU3L5ImsXYnz2+s
Lxn8e4PZB2wbaxT3vPRmS9k69kDsT143iL3PtrKGbLE0Z6PYm6yU+ar0YkvY
p6x27DvSik1mi1jZ2HekZazd7B12e+xZ0pMtZp+wWuYr0ppNYYvZHeYv5U9z
NanLtjme3vkNVN9jW9jDXrNEHmWj2WRWOv5Ousf9wNaw+8wLpCEbxl5mt5i/
je832ct6sQvxjLKj5hukAFvMhrLvzHljzWIr4/lhLWLNY1NZGfMxKchasq7s
jP4EK6y2Zt3ZWf1RVkBtwboke+1l1izWZDaXlTTPkhqsD3ue5Tbf6BpMin2d
HWMdWX72EtvOTrDOLB97MX4TsOOsE5sU9y+rkqwR8VuvW1xr85/Xt+PUVHYk
3kdtzjuyb/WHWV71EdaBndKfYSWTfSvW7Mv6iSyjWpk9yPbpv2fFk30/fgv8
pD/NSiTrffwWuKT/gd2qdkn2+J/1J1kR9XHWg53TH2J51GasPTupP84Kqa1Y
N/ZD3O/s7+qMZJ2Me21CfEhWgd2v3aWfzWrGGsVeYHnimZSd5mup67+7p8ce
y3awv64vo6lprCfby7JIVjY71gHWOfY0toBVjvOQPeYMkjn5TbOUPRZ7GpvC
bjMPlpOxlsZezZbFesZOxbopRdly9iz7Pu362hRr1LuxN8U9aM6Ydv13U+zJ
Q+I+N+eOvZqtYLmc/Fh1IzvI2njNk7LLnBZ/z2bEc8a6qG+whayKOae/HRN7
ODvAnmC52Xi2iR1m7eL7YRPYZnaEtY/7h02M3wTsKOvA5kgt1o+NTH5vZPO6
kWwd+4a1YtnZqNjr2T7Wmq2UTux1Np9VMufwutFsA9vPHmerZQhblKw5se4+
JbvN6SUTmxnrXrg6Pe36/7dqmv8P/OqjpQ==
"]]},
Annotation[#, "Charting`Private`Tag$22545#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwt0csrpWEcwPF3nDnOHBxMs9IU2WmKrRRbKVZTNmPHaizYmqUVa8IfINYS
G7mf47aZ5D7jnia5Lhi3JD5PWXzfz1tP79vv6Vfa3P697UMURZ26V3i/0Yn6
sqKokIMs4SgrOMcarrKBh2ziNVv5wl/Mi0VRN79ygN84zCqOs44ZTvKUj1rX
f11qyjAbnOYmZ7jFWW6HObjDef5hmn+Z4S4XuMdF7nOJB1zmIVd4xB7znvFJ
x7rTlVrMtcZGplnLMVZyiGXsZxG7mMMOPvvfz3AH/uA+6/mb1eEeLOcIiznh
u398UIFudaEv5svnZ6bCGfOYYi5zmcMkk0zwE+NMMMbssFPG+aqPYT/hLMwp
I0S9Hufv+38Df9xIqw==
"]]},
{GrayLevel[0.2],
Line3DBox[{661, 952, 458, 660, 1046, 868, 662, 1047, 869, 663, 1048,
870, 664, 1049, 871, 665, 1050, 872, 666, 1051, 873, 667, 958, 1129,
668, 1052, 874, 669, 1053, 875, 670, 1054, 876, 671, 1055, 877, 672,
1056, 878, 673, 1217, 953, 879, 954}],
Line3DBox[{675, 959, 1130, 674, 472, 676, 1057, 880, 677, 1058, 881,
678, 1059, 882, 679, 1060, 883, 680, 1061, 884, 681, 960, 1131, 682,
961, 1132, 683, 1062, 885, 684, 1063, 886, 685, 1064, 887, 686, 1065,
888, 687, 1066, 889, 688}],
Line3DBox[{690, 962, 1133, 689, 963, 1134, 691, 487, 692, 1067, 890,
693, 1068, 891, 694, 1069, 892, 695, 1070, 893, 696, 964, 1135, 697,
965, 1136, 698, 966, 1137, 699, 1071, 894, 700, 1072, 895, 701, 1073,
896, 702, 1074, 897, 703}],
Line3DBox[{705, 967, 1138, 704, 968, 1139, 706, 969, 1140, 707, 502,
708, 1075, 898, 709, 1076, 899, 710, 1077, 900, 711, 970, 1141, 712,
971, 1142, 713, 972, 1143, 714, 973, 1144, 715, 1078, 901, 716, 1079,
902, 717, 1080, 903, 718}],
Line3DBox[{720, 974, 1145, 719, 975, 1146, 721, 976, 1147, 722, 977,
1148, 723, 517, 724, 1081, 904, 725, 1082, 905, 726, 978, 1149, 727,
979, 1150, 728, 980, 1151, 729, 981, 1152, 730, 982, 1153, 731, 1083,
906, 732, 1084, 907, 733}],
Line3DBox[{735, 983, 1154, 734, 984, 1155, 736, 985, 1156, 737, 986,
1157, 738, 987, 1158, 739, 532, 740, 1085, 908, 741, 988, 1159, 742,
989, 1160, 743, 990, 1161, 744, 991, 1162, 745, 992, 1163, 746, 539,
747, 1086, 909, 748}],
Line3DBox[{106, 347, 107, 348, 108, 349, 109, 350, 110, 351, 111, 352,
112, 353, 113, 354, 114, 355, 115, 356, 116, 357, 117, 358, 118, 359,
119, 360, 120}],
Line3DBox[{750, 993, 1164, 749, 994, 1165, 751, 995, 1166, 752, 996,
1167, 753, 997, 1168, 754, 998, 1169, 755, 547, 756, 999, 1170, 757,
1000, 1171, 758, 1001, 1172, 759, 1002, 1173, 760, 1003, 1174, 761,
1004, 1175, 762, 554, 763}],
Line3DBox[{765, 555, 764, 1087, 910, 766, 1088, 911, 767, 1089, 912,
768, 1090, 913, 769, 1091, 914, 770, 1092, 915, 771, 562, 772, 1093,
916, 773, 1094, 917, 774, 1095, 918, 775, 1096, 919, 776, 1097, 920,
777, 1098, 921, 778}],
Line3DBox[{780, 1005, 1176, 779, 570, 781, 1099, 922, 782, 1100, 923,
783, 1101, 924, 784, 1102, 925, 785, 1103, 926, 786, 1006, 1177, 787,
577, 788, 1104, 927, 789, 1105, 928, 790, 1106, 929, 791, 1107, 930,
792, 1108, 931, 793}],
Line3DBox[{795, 1007, 1178, 794, 1008, 1179, 796, 585, 797, 1109, 932,
798, 1110, 933, 799, 1111, 934, 800, 1112, 935, 801, 1009, 1180, 802,
1010, 1181, 803, 592, 804, 1113, 936, 805, 1114, 937, 806, 1115, 938,
807, 1116, 939, 808}],
Line3DBox[{810, 1011, 1182, 809, 1012, 1183, 811, 1013, 1184, 812, 600,
813, 1117, 940, 814, 1118, 941, 815, 1119, 942, 816, 1014, 1185, 817,
1015, 1186, 818, 1016, 1187, 819, 607, 820, 1120, 943, 821, 1121,
944, 822, 1122, 945, 823}],
Line3DBox[{825, 1017, 1188, 824, 1018, 1189, 826, 1019, 1190, 827,
1020, 1191, 828, 615, 829, 1123, 946, 830, 1124, 947, 831, 1021, 1192,
832, 1022, 1193, 833, 1023, 1194, 834, 1024, 1195, 835, 622, 836,
1125, 948, 837, 1126, 949, 838}],
Line3DBox[{840, 1025, 1196, 839, 1026, 1197, 841, 1027, 1198, 842,
1028, 1199, 843, 1029, 1200, 844, 630, 845, 1127, 950, 846, 1030,
1201, 847, 1031, 1202, 848, 1032, 1203, 849, 1033, 1204, 850, 1034,
1205, 851, 637, 852, 1128, 951, 853}],
Line3DBox[{867, 957, 656, 866, 1216, 1045, 865, 1215, 1044, 864, 1214,
1043, 863, 1213, 1042, 862, 1212, 1041, 861, 1211, 1040, 860, 645,
859, 1210, 1039, 858, 1209, 1038, 857, 1208, 1037, 856, 1207, 1036,
855, 1206, 1035, 854, 655, 955, 956}]},
{GrayLevel[0.2],
Line3DBox[{251, 459, 1046, 252, 472, 278, 1134, 486, 292, 1139, 500,
306, 1146, 514, 320, 1155, 528, 334, 1165, 542, 348, 556, 1087, 362,
570, 376, 1179, 584, 390, 1183, 598, 404, 1189, 612, 418, 1197, 626,
432, 1206, 640, 446}],
Line3DBox[{253, 460, 1047, 254, 473, 1057, 279, 487, 293, 1140, 501,
307, 1147, 515, 321, 1156, 529, 335, 1166, 543, 349, 557, 1088, 363,
571, 1099, 377, 585, 391, 1184, 599, 405, 1190, 613, 419, 1198, 627,
433, 1207, 641, 447}],
Line3DBox[{255, 461, 1048, 256, 474, 1058, 280, 488, 1067, 294, 502,
308, 1148, 516, 322, 1157, 530, 336, 1167, 544, 350, 558, 1089, 364,
572, 1100, 378, 586, 1109, 392, 600, 406, 1191, 614, 420, 1199, 628,
434, 1208, 642, 448}],
Line3DBox[{257, 462, 1049, 258, 475, 1059, 281, 489, 1068, 295, 503,
1075, 309, 517, 323, 1158, 531, 337, 1168, 545, 351, 559, 1090, 365,
573, 1101, 379, 587, 1110, 393, 601, 1117, 407, 615, 421, 1200, 629,
435, 1209, 643, 449}],
Line3DBox[{259, 463, 1050, 260, 476, 1060, 282, 490, 1069, 296, 504,
1076, 310, 518, 1081, 324, 532, 338, 1169, 546, 352, 560, 1091, 366,
574, 1102, 380, 588, 1111, 394, 602, 1118, 408, 616, 1123, 422, 630,
436, 1210, 644, 450}],
Line3DBox[{261, 464, 1051, 262, 477, 1061, 283, 491, 1070, 297, 505,
1077, 311, 519, 1082, 325, 533, 1085, 339, 547, 353, 561, 1092, 367,
575, 1103, 381, 589, 1112, 395, 603, 1119, 409, 617, 1124, 423, 631,
1127, 437, 645, 451}],
Line3DBox[{8, 667, 23, 681, 38, 696, 53, 711, 68, 726, 83, 741, 98,
756, 113, 771, 128, 786, 143, 801, 158, 816, 173, 831, 188, 846, 203,
860, 218}],
Line3DBox[{263, 1129, 465, 264, 1131, 478, 284, 1135, 492, 298, 1141,
506, 312, 1149, 520, 326, 1159, 534, 340, 1170, 548, 354, 562, 368,
1177, 576, 382, 1180, 590, 396, 1185, 604, 410, 1192, 618, 424, 1201,
632, 438, 1211, 646, 452}],
Line3DBox[{265, 466, 1052, 266, 1132, 479, 285, 1136, 493, 299, 1142,
507, 313, 1150, 521, 327, 1160, 535, 341, 1171, 549, 355, 563, 1093,
369, 577, 383, 1181, 591, 397, 1186, 605, 411, 1193, 619, 425, 1202,
633, 439, 1212, 647, 453}],
Line3DBox[{267, 467, 1053, 268, 480, 1062, 286, 1137, 494, 300, 1143,
508, 314, 1151, 522, 328, 1161, 536, 342, 1172, 550, 356, 564, 1094,
370, 578, 1104, 384, 592, 398, 1187, 606, 412, 1194, 620, 426, 1203,
634, 440, 1213, 648, 454}],
Line3DBox[{269, 468, 1054, 270, 481, 1063, 287, 495, 1071, 301, 1144,
509, 315, 1152, 523, 329, 1162, 537, 343, 1173, 551, 357, 565, 1095,
371, 579, 1105, 385, 593, 1113, 399, 607, 413, 1195, 621, 427, 1204,
635, 441, 1214, 649, 455}],
Line3DBox[{271, 469, 1055, 272, 482, 1064, 288, 496, 1072, 302, 510,
1078, 316, 1153, 524, 330, 1163, 538, 344, 1174, 552, 358, 566, 1096,
372, 580, 1106, 386, 594, 1114, 400, 608, 1120, 414, 622, 428, 1205,
636, 442, 1215, 650, 456}],
Line3DBox[{273, 470, 1056, 274, 483, 1065, 289, 497, 1073, 303, 511,
1079, 317, 525, 1083, 331, 539, 345, 1175, 553, 359, 567, 1097, 373,
581, 1107, 387, 595, 1115, 401, 609, 1121, 415, 623, 1125, 429, 637,
443, 1216, 651, 457}],
Line3DBox[{275, 653, 1217, 654, 276, 484, 1066, 290, 498, 1074, 304,
512, 1080, 318, 526, 1084, 332, 540, 1086, 346, 554, 360, 568, 1098,
374, 582, 1108, 388, 596, 1116, 402, 610, 1122, 416, 624, 1126, 430,
638, 1128, 444, 656, 657, 658}],
Line3DBox[{445, 639, 655, 431, 625, 1196, 417, 611, 1188, 403, 597,
1182, 389, 583, 1178, 375, 569, 1176, 361, 555, 347, 541, 1164, 333,
527, 1154, 319, 513, 1145, 305, 499, 1138, 291, 485, 1133, 277, 471,
1130, 250, 458, 652, 659}]}, {}, {}}},
VertexNormals->CompressedData["
1:eJztnHtQU1cex6/gTCsRtYovfC9WrXRll4qRQqEtttj1iaWIWtDCZgTc8cGq
W5WdQDYoDx1WG4tVGx6lgNQWFCkVl1d1bQMCitAqUrE8JQmERxCFcLO79xfO
aZ2eTK8NDTs9+YeZz9w5+Z1PzvdnvPklcwJ2rBNZMAxTPJJhLP/7t1Avvv/2
SmkBA4/wk/r/PTTudTp9etDxZMRP9wGf2KKvFPjnIn7vO+AO8fpPBZe/QvxW
KPAVzey0looqxGtXsxyP8NOX1TjdQ7y5sZ/jrici9iTXNiPuW93L8TF1kiPC
A22IB23r4vibkzyWBe/uRHxdj5rj5Yu2Crf1dCFuG93K8e/nbPddkI95hrWS
48UF+4+OkHYg/q/udo67nGvUzj17H/FJf3/A8VWFrU0qUQ3icz0HYJ0bVu2h
207mD3L40+FOPVPP1DP1TD1Tz9Qz9Uw9U8/UM/VMPVPP1DP1TD1Tz9Tz8PF8
nxXHbL8qQ9evZcEPyX/kIW+f5FsliFeu0P8q65M4aX2+15PqX6wXV9ZlH8E+
DXVeuTBZE9+Th7isEjjf60ke+K7Pt36+uSPVEzJgd2BmU+IgZ2L6gW9s39zt
dDsb8XdajPOugjXSaJfLiB/6yDifHSje97nvdcRLtaxR3tjOxnovvI14zsEB
ozyXrcs9XPc94n+06DfKPSsipuzJakH8dZdeo3zz/WOyuBmoPzCPstqM8sTn
5XkLj6P+wHSGKI3y6oOCv7xSifnvaluNcqcDWq0sET/vuzK1UT51e+aNuCbU
95iCp7uM8mlM8OLbZU2Iex97aJS/1ussjJz/LeL3WuB18UyxlC+aivnflANP
dA75niu+54Tv6873deT7upA8U5/UJ/VJfVKf1Cf1SX1Sn9Qn9Ul9Up/U56/p
Uz4wdm1tFPZ5ifr8WT6ptyfzRvNL+yH1SX1Sn9Qn9Ul9Up/UJ/VJfVKf1Cf1
Ofx90vsepr1fRJq3IXFTrcN3/cfmP5nB+c/H5taYwbm1x+ZCGcJcKEOYC2UI
c6EMYS6UGZwLHfvjuVAm+KfnQpnBudCKH8+FMtN+ei6UIcyFMoS5UIYwF8oM
zoVSn6b1+dhcpeHRQT1Tz9Qz9Uw9U8/UM/VMPVPP1DP1TD1Tz9SzGTxTn0/m
s0bp0JB4KgddX1kPflw/3tET8/JVxJdIgV97anO37fmbiNuEgbfoMrbU5eFd
xOtf1nFc7Hc0XPEU9vZxCNy37LoqUf45TY2f176b46M/s3j0p39jD/F94Oew
x6oLf7iC+e8HgF932BAyrxT7SdwMfgRNqXmJua2Ih2X0cDxfI0oVLvsO8X1p
UOfs/AS3s7cyEM/Xwn53nK9ztSq4gvguGfCT8wtLVssqEa9IBQ9Bd9j+Yile
P+0ErB8wMym2wxHfvw3pAw9Lz0g8j91UIV7cDB4cRc+Pcy7F+/1EDfuVJwg9
VozH50qggPvP58YHh0+/rER8XoWW45GCXdmvPIPP86ZeOM8ZjWNrOkTo+79M
aBXsS/varGTJ3huIj66AfQmbWPvlz9QiLlTDvtbcyXp/sn8j3q/0EcdXH5Sk
FOpxPcLTUM+0MZOm79yA62cdoH5vZ/vXT5RjDxNV4OGdKZnvbQ3H9+e/XgL1
25ZU6UKv4fv/I+RQv1TFbir/EJ//oy5w/i/KipLcohsQ9xvVx/Ekf8mINntc
p+NKOCc2vm0Cmxp8PpezkOuXprf99YimHvEiEaxz90TS4TYR+n46o/CCeqxX
XD8ruoCvj42C6z90lPjb+uLzef4BPG+Djb139g98LjP4fH+BcMwFMf5co0QD
r0uWheSSpxT3gYunoA+UhM7w2XUN53Tku3B9Lc+8lxHyHkPIe4SZ8m5FyPsl
Qt6dwtS7e0U47zN6YL87CXk/Tch7CCHvgYS8O5so75mEvP+DkHc5Ie89hLwv
JeTdi5D3NTzzvo6Q9y2EvE8k5D2SkPc8Qt6TCXmfQMi7KyHvtTzzLifkvZ6Q
93ieeVcQ8v6mPqE77HQ04m/roc5XCZ/Tkd4nrCKsQ3p/a0H495T0+Wlpf9zJ
9GA54oE6uN77i/rGnKs4751BkHfi7yfovnWzGXUK8WcHYJ1jnXGWpZPOI35E
BXzBQUen2h14/RdnaDgeleEcZiXC69vXGP88129gVoM4PR7xG4bnFWsLJ2zx
zkLcRwM8r6Sw9OmLxYjvPwe830sSaTEV11NVBvVcmV/9knIxft5Xl6s4vjtd
+dUbtzF/r9T458uj2K2HVJ7o91IYkeH3Uja113kq7T7F7zO7gOdWO0yIWlKE
+BsFwAVsQVLVnnLcl6YArxamfOIl1eC87O/guE/KTr1iJK5zaQ7UP65EYbfu
HuZsHtTf3VxZdrEF17/vAVxvS/h8PJ3NtF/f8k/EGwz7Cuh2D7JJOIOvN/T5
eUXuOWOC8hHXKoDPfEG81vXFa4iXLwU+V8Neqvkc5yW5DPIy92uPlfJv2hHX
2XVy3HP26OIzVbh+6zng/4wqXbyxBe83MAP2u9HrXOrdRZhb+MB+Mw/sihd0
4vX3W8H6kawmIdI6Fr8uhtzZP0yIcrNNRdz/IXD1zVnLrANx/w8z9H+dyF3/
EatAfPx64JPVrGqLxzeIbxwH/eR4pubLbCvcn9fshf5s91aDWrkA1xmjgDo/
OJUmiU7BHopiwYObddSdgHa83y8/AA8b8uLElnsxH58NubONeMHvkA6fq32W
cK5S7qba6F3xnIYmDv5fVsGzn6QQ+oaM0DeeI/SNaELfCCD0h3Ce/UFnov5g
TegDW4a4D6w3UR/IMFPenzVT3hcSct1KyHUfIdcTh1mupxNynUbI9XCbBzPX
3Je59muu+cCh3tdQ12+qOk1VD9/n5bs+8ffTCNfTXBv3SfNO8/5L6hlueSfd
ByDN1fOdu+Y7n2+quW5TfS9gqOfMh/r7C+aakzfX9zJ+a/sl9ZPh9v0Ivv1k
qPvGcOsP/+994LeWd5pr478n/B+4YpXm
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
ImageSize->{360.12108943216566`, 217.9928362642476},
ImageSizeRaw->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->
NCache[{{0, Pi}, {0, 2 Pi}, {0., 0.000029068220138466253`}}, {{
0, 3.141592653589793}, {0, 6.283185307179586}, {0.,
0.000029068220138466253`}}],
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic},
ViewPoint->{-0.3229375965573488, -3.1772016615640193`, 1.1185262225288317`},
ViewVertical->{0.03342607536867222, 0.3288603845853228,
0.9437868111686248}]], "Output",
CellChangeTimes->{3.8018867265286922`*^9, 3.801889740303474*^9},
CellLabel->
"Out[100]=",ExpressionUUID->"a2a5b14e-ccbd-48b5-8e14-35ea7371ffa1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]2", "=",
RowBox[{"\[Pi]", "/", "2"}]}], ",",
RowBox[{"\[Phi]2", "=",
RowBox[{"\[Pi]", "/", "2"}]}], ",",
RowBox[{"R", "=", "0.2"}]}], "}"}], ",",
RowBox[{"Plot3D", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Psi]", "[",
RowBox[{
RowBox[{"2", "R", " ",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"\[Zeta]", "[",
RowBox[{
"\[Theta]1", ",", "\[Theta]2", ",", "\[Phi]1", ",", "\[Phi]2"}],
"]"}], "/", "2"}], "]"}]}], ",", "R"}], "]"}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"\[Theta]1", ",", "0", ",", "\[Pi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Phi]1", ",", "0", ",",
RowBox[{"2", "\[Pi]"}]}], "}"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.801889771616781*^9, 3.8018897720835733`*^9}, {
3.8018898074616833`*^9, 3.801889808448044*^9}, {3.801889839275155*^9,
3.801889839734996*^9}, {3.801890016361005*^9, 3.801890017053177*^9}},
CellLabel->
"In[106]:=",ExpressionUUID->"3145c817-fba8-4253-8ac9-2df1a740717a"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJyFnXVUlUsXxgGRrgOCHdh6xU68ymu3KDaCnShgByKg18QWUeRaqNgdKOo1
MEGxO1EUFAvFRNDP4cwzM2wX6/vrrPVzmHfPMzN79qTOA/w9BhsZGBhk5jcw
yPf7t+XlpVs6lljYWP+7prHruYAhCZXstMVZF+6Wir3kBj77VrsBjLeffTu1
ZOxDwT0jPPowXrH1xr13Ql8I/skuzpPxbe29/UvGvhG8r+GFHowvrzhv+f6M
D4IXXRfajfE724aOvxP6WfDwneW7Ml7IpXnXH87fBS+Yb1cXxnvtLlWrZGzW
H+kTI37Oca5ooNH8394bOWl/hqFG7bEu+mBoixP5NGq/i1ebHndC82u0vB1W
H2o5vLupRvXxf1yu7g9nc43qCZ31uj5089g9ZICqM/jFfzyOLbhpK3QGL5b6
bmtAV1uhM/jLOx9beN+3ETqDRxm4l2/sZyN0BreKv+WxtpCN0Bn8UaP8BoOe
WgudwQ9H2Ya1vGwtdKbpoTPNHzpTe6AzeAq3HzrT8kJnqg90pnpCZ71+b9yS
Bjr3VXUGT2iVdv7jMKkz+K6tG6ozO6EzeMnkjQe/jbQWOoMfO3bg3fmxVkJn
8H8Gn3jksdJS6AwesmLzmrRsC6Ez+MkuY6pHnLEQOoMH8fTQmeYPnak90Jna
D53Bd/DyQmeqD3SmekJnvU6f3SyOdPJWdQZf0vPhoaOVpc7gbY8VL8DaD3QG
f5S1V1d1ipXQGXxD9LM9TAfoDN5+UKDTnvHmQmfwwOHvwnxNzYTO4OsO9arQ
sY2p0Jmmh840f+hM7YHO4A+4/dCZlhc6gy/i+kBnqid01uuR5VaE6AxedobB
EVVn8DIeBQqrOoMvS55XRNUZPKzbtBOqzuD+lvuqqjqDd0ovfFzVGfxwjPFg
VWdwd54eOtP8oTO1BzpT+6EzLS90Bi/N9YHOVE/orC+3oWY1KLffAK9X6Vii
6jfA24TMbKT6DXDHiwYXVb8BfmbjJ+sLit8AP5mx0bSL4jfAXQceu6b6DfDW
H3oPVf0GeH2eHjrT/KEzeBy3BzqDO3D7oTN4K15e6Axeh+sDname0Flfvt/+
noyD4Kd+up9Rx0Fw9/igI+o4CO4V2KivOg6C16t0v5U6DoIvmuE+RR0Hwdtd
reKijoPg26sknVLHQZoeOtP8oTO1BzpT+6EzLS90pvpAZ6ondNaXw1ybTuI6
yqEz5dCZcuhMOXSmHDpTDp0ph86UQ2fKoTPl0Jly6Ew5dKYcOlMOnfX2Wmn+
jxb6qDqDr502Ov7xYKkzuGuDM65VVkmdwafdfb/tQYLUGbzfsgGPZqRLncHf
pz4yLmmlEzqDF/fsnv2pmE7oDN76bkrt1aV1QmeaHjrT/KEztQc6U/uhMy0v
dKb6QGeqJ3TW22Wnva5401fVGbxMQYvaT8OkzuCfZ9xMYnZCZ/DMtvfGlWis
EzqDJy2I+TV7ik7oDF4s1S84fbPUGbyS6ZkFF+OkzuAlesU6XrgodabpoTPN
HzpTe6AztR860/JCZ6oPdKZ6Qmf993Xajesb/VWdwR3ejd2wZYfUGbyXf9d8
n3+3H+gMbtO9+9Snk6XO4H267F/MdIDO4N0PWc+v91XqDH4zrGO1y072Qmfw
xc7tp/Z2thc60/TQmeYPnak90JnaD53Be/PyQmeqD3SmekJn/XcctBdEZ/CL
h1tvVHUGD/G4YqzqDP6ra+dgVWfw69esw1SdwZeP3bZQ1Rn8Vlf7mqrO4OvO
FQtRdabpoTPNHzpTe6AztR860/JCZ/BErg90pnpCZ31+jlrBSrn9Bviwez51
Vb8Bfr9VqReq3wCP+rg5QPUb4J/3bDWZo/gN8P6nqs5W/QZ4/hLZ4arfAD+w
okgJ1W/Q9NCZ5g+dqT3QmdoPnWl5oTO4D9cHOlM9obP+7wpqe8g4CL5hjnGi
Og6CN5s1ook6DoJvH1b6gDoOgg+vv/SlOg6CD7QI0KnjIPjRoYkWn5VxEDz0
xaam6jhI00Nnmj90pvZAZ2o/dKblhc7g0Vwf6Ez1hM76fy+snSdxHXjgoa0+
alwHvvLTej81rgN/P6XWGDWuAx87z2W8GteBb3rjM1GN68BLPLk8SY3rwCPn
tpqsxnU0PXSm+UNnag90pvZDZ1pe6Ez1gc5Uz8KpO4+Ujj3mpv+95DZ+zBqH
k4XttITpxSvfDb0leNXGe1yWZNhqqWfPX9+f8VTwkca19p6MsdVWN1za1yba
WKP8v0AD93WjTDSaz+P//BrX/NtMo99F/vrvv3A7lrz4du8AG214QsjiH86v
BHePHdLy2SlrbUJqsc3OFdMFn7XtZnh0Scn1+X1wM1nlUr5AloUWM/z7zBYn
MgTv1fh268rPzLWA9IWl9874+QdHen1+Blp2KafxanrKvWMPhqRZG2rgEw4X
asG+C67PL5927UTaUWbn1MwyowLvGQmus+s6kJULeoLfGOCWxnRAfX17fWtQ
zjg8Yb+jWl/gaSO6u6r1Bf56b6Vzan1Rjvqi+aC+6HdhT32/fc0WvLXQal4+
2j2ygZ1ITznS6/+9kNb43KmeanrKkR7rzFPT+g5S/QDaT9LHgEc7zaXfAH/a
YeAgtb+AO3slH2LzSvQXmg/sod9FP6L5oz2gHY694eMSudFK1Dttn6h32p5R
L7T9oz3r+8F3t4sT6g9b/V62T/BQoz7L1tZAPX0V7Tn2y6fZPi7mvD4y/+BI
j3xqz6zg2bS3ifBjSP89w8qcrV8hH5oe5aX9DvpQO5Gelgv6IJ8Eu/WXfF2t
BEf6I3ZLXMYvtRT+AfwY4eiPKTvtnrJ8oCftp/DzyKdO/Wot2foedMZ6Wql9
1Q2Xxsj1QJE+vNLZR0PzCz2R/1Rj75NMZ+iJ9LV4/tCTpodu9LvQDbxAwTd+
LxrI9Uzk87Tm0zEjh8pygTeY4vw3q0fYD37tnWHTuw7mwm9Q/wM9qb+CntS/
QTdwiyNab9Yv0H/hT+q/3fmU9TuM4+ADyp+4oPZTmh7+AePanPXhw9T4Af6k
lNvSYWr/pRz9neaD8Rr9sd3rS9uLP7QS4zX4wLezd7P1Q4zX4A6ejR93LCb7
L9a9rUZW92L1BX3Ae+8b9XSJ0q7Q/m1t55qyekG7QvpKHWrdvRgs2w/lsB/5
TLwU1oG1B7Qr+l20K2on+h34UyNf11fHZf9CO/zV+24LxlFe2j5hP/i4/qk2
lxT7KUf8hvZTo07IF6Yn4jfwXSeLX2P6o/2DH6xneZvVF9Kj390undqOrScj
Pbh/8NmyTGfoRjnqneYzx2qBV82/v7mFWr4PZuVwsfQ9PnuiiXZh4fCG3W/8
EHxvZ8fFLkVMNQtdyyIBPr8Er35qdP45p8y08m2aLgy899Gt9Vz7KKZT0X0m
X2YrnKYfdrGE77pRX0T68UuzfFn+sAe81l8VZjF7kJ7as6XDj3ZnTDP/SA/7
af5IT8uLclH78V3hn9NGrv5+3US0c+RTMC1mMhtHYD/Se466frP2s/ziu5TD
Tpo/2hvsObF/hKfLcRPR3ihHetjzfX3wLDU95X8dmxhUPnaHm/73mNutCU6t
z5az08p3bHvEabeZRjnKK/QpFuHKyot89H/3O/6pXPnqRReZD+Vot7Rfm5jd
XJNm/cHNzLRuHPMr063/PXStnvT/dBxvGbpnqk30J5F+4Z26V899lftWdByB
f8B+x/ftqbdSDeR4iv3TQybd9zKO8Q751OPjjmOl+8Ym/xpoFxdc7MP80NS9
Q24yO+G3oVvvnr6DmR+GDojHdrweOVidN6FcQbGWKWy/GHZSe+AHYM/HtT1/
sfSwn5YL+qC+xg3+99v+V6aCoz2cq77Y5sBvnnblTuWXa7Lz5DQf1DvGnS5R
c4aq4xTqfVNtPUd6qgPSU92gJ80HetLvYlyg4zU49PGLaLZ5ZBNLMS5Az+c8
vkK9gKdznaPbLMm6HGLI26mh9tLhk53hMTmO0HgP9UXrV99u3rmdm9ErmdXb
jY2DPxj8zgfjKY3DwdEezt/oM4nZD7+KfBpdeJ7V8rSFqC+0z03FR2WxfgH7
6XdhDy0X2gn80vGXMfVrH5ftgXL4T+TzdFjDiq1+24Pvwp4hAxfGFHsp9z1R
X/v5eId89OUz0rLnFD3c2lHGz3S8ruPT+tOKIUYi/4FuofMfRlpq7gFvvmc5
x4vzMOWf9F/t99xWs8ifaZblfE+0w+jUTjn7nuBI3/rybL/gcbbahJSghMB7
z0T6I80KebH04Ei/ynt0u4pmttow3h6QvrJ5i14sPTjSt3hTKqbDRhvNc9f0
7gE+70X6lKz07iw9ONLHzzNcUbqjjah3pA/YUCPn3BQ40mubnIOuWthoJRs2
+3A0W57XahFRMOf8FTjS9wwd4mHwxFrTlWxxyLVl1h/pwWl61Be1B5zaM23a
huNereT5LpQXnJYX9U71BEf65lzPyWM3Oq8aYazR+gJH+kheX+PflL1xNFue
H0N7AKftYfTg6BkPFslzZWfuX83ZzwWn7Q3tEP03vsdBk1azZDsEr9N5fPfX
O2xEuwIP9z1zekyitWg/4O+uVPHol24l6hHc7H1Sp5NfLER9gZtwjnoBNxrz
PXHSGEuhP3j9AztPri0u+x39LvQEX8bthG7gtXm5oA/VAfogPjfMqn33trvU
B9xroHV2bC2pD/imQZEe0w2lPuBa57b95//2Y9ABfOj6X2VnvpD+CrzrvC8/
SjmZCx3Ax2R67U3xsRDlBY/m30V5xXyE24nygv/6oS8Xygs/Vn59gftqecE3
9HE3PKKUF9zC+lcv9l2UCzyifQcPtVzgF/p8KOislAv8wBDdabVcNH+Ui9qD
colzTdx+lEucS8m+ZKm2c/CZlcP6q+0c3HzRx1tqOwd/eyhgJGtv8G/ga69U
zmTtFu0fPKvrqBlq+wfP5Bz6gBdsOe5OX1/Z/sH/SktLVts/eBq3B7qBm3D7
oRv4dF5e6Aau4/pAN5wPSdzWd6M6ToHvcMoIVMcjcV7l+/j+6rgDnnB93g11
fAGf9Ff5o+o4Ah5059xmdbwAv9PwdLA6LlAOPWk+0JN+F3pSO6EnLRf0pDpA
T6ob9KTnQKAn5dCTcuhJOfSkHHpSDj0ph55/2Mn1pBx6Ug49KYeelENPyqEn
5dAT5z0Ku4Q38uoj9QTvMs//ccRCqSf4ucAnSb1ipZ7go+pWar7nkdQTPOZG
9R2PM6We4AHGWdO72umEnuDPhrc23lZcJ/SkHHrSfKAn/S70pHZCT1ou6El1
gJ5UN+iJcx1evZr1XjNL6gke8irqc+97Uk/wwyE9Hhk764Se4L5vWrne8NIJ
PcG77/63WrX5OqEneMlqxs0275J6gg/bG1fi9WmpJ+XQk+YDPel3oSe1E3rS
ckFPqgP0pLpBT5zf2G6R+bD9KqknuKm71+unBjqhJ3jo2vArZj2knuAxN41n
d18j9QR/UP+zzbjbUk/w8e8e1S7+S+oJPq+Fzb2SheyFnpRDT5oP9KTfhZ7U
Tugp8uflgp7g5lwH6El1g544p2Hz94FHqp7gDjt2vlH1BLdd1u+aqif4sLBq
c1U9wacsHKZT9QRPGTGjnqqnsGfDjQeqnpRDT5oP9AQP5N+FntRO6EnLBT2p
DtAT3I7rBj1xHqNPvp7ean8Hb/RmzHe1v4Mvtw9/pvZ38IvXtmhqfwcvvuJB
XbW/g4f2fNZW7e/gDRMNKqj9nXLoSfOBnuAl+HehJ7UTetJyQU/wxlwH6Ane
j+sGPXHuosWNg5o6HoE/ONf5uToegZ+5UfyVOh6JcyadPDuq4xF4hQqvDqnj
EXjs08uL1PEIfPyKCzp1PKIcetJ8oCf9LvSkdkJPWi7oCf6Q6wA9wVty3aAn
1tPc9pX1UeMlcI/ojb5qvARerc2jUWq8BL73nz1j1XgJPGWR8QQ1XgJv/ur0
RDVeAvf99GiSGi9RDj1pPtCTfhd6UjuhJy0X9KQ6QDf97z03h2LWPdq+kXG7
1TfbovdCb7lFL73yOv9GGbdfGF/r74MZ19zafR9we3OwjNt1fF++xZJXvq/6
2Qrdljz7lHU/9KxbMZeEHZOm2grdyvL10nVunUPMDtkK3VoPsTSpGrvD7ee1
62PGG0rdOnE7U53SC2yrZiN0s+N2hu2stcVrs4zbE7mdk3sWjmhc1lbohvMD
Hr6nMr8tl/F2lZbDvi14m+YWvW2WqTrv0/++cqvTb5HD9fNy3vfy9LzCPt1T
3cKTu9nkqyfnHcNOXO9dumKS28ok+1kJU+W8A/mfjahd/EsPS2G/Jc9/SrHw
mV9KWAn703j+BXZbVdn1yUrU41yDJu0OZDx1a33Cd29ELzmPGMK/23b+4lXq
PCKiwttYtg46sfzWXOsSpnzfofITu1Otmsly6X8/uu1Y3b5417rSfuRz0Sr9
6ptOZsJ+7F94dN5a7e12OU+fyPPxfXz/wtwsOU/vEW33gO2TLKpt/31dhJxv
Yl138K3RS71Xy/mmz4Xmd9j6bheXJrnWW4pU2TSR7TuVJusPc/n6/4ku5wzU
9YdvafXmsP2ru8tK91TXH4ryfAyjCm5OXGwq7P/O00/dZXG8ei1p/72t8RFs
f+z2wwld1XUG7C9ofstzrZ8cGtZ7K9t/y5eVe/2kY8TuIldCDLUV13vmWmfA
+rPWZOMqpgPs/2/it9Js3+ZI8dZmURHSfuQTOm9QYsJcaWfvnP73y61H0NYK
rB5hZwJfZ37ZqvE5Vu+ws4FvgaFsXTzq0pxc6yGLisz//rFgfu1Nj4Ubcq0/
56yvG2ttnDueYO0Qdv78ftOwck1jrc6roFZeS2W/eHx4iH3EECNt2MOT7qz9
w37kP+LAmAOsv4j1WJ5/+5KtX6/qYy3qBflXjkx53G6sLBfW21NK1i/J+inK
he9+dF9jpbafq6uG3WX7MKs/tr5+vpwcL/T7n2Zaw5/Xp8Xr5HjhFrg3qUO8
qbZ3y8Pznx9Jv/eVn4vYM6Ow0/fl0u/t7p35ckayibbR70ws8z/we0Nz9mNN
tB0msVeYv4I++t/82rPUck2Yf4M+sDNwVPxM5g+hD+y87Z0vmvlP6KNxO++2
6XGZ+Vv4PZzfKPFgaCjzz9BB/x0r7UyBMzsSPaUO+n1dS23+w71nw4KlDiE/
F5wY3c9SO/WhWY3xC+W4ifNmo3e+i6qwQI6b6Y9un98SYKFZZjxx3hYkx039
frKFNnx7DavwIXLc7PdfyatPlplrR1u3Pvm8tfT/sHNbasC2RT+lDvHczmUl
Wzyae0OOm9O4nS6bL6b/jJbjJuyc7n7QrEuAHDdh5+zOTk67u8pxE3a2GV8/
+Ep9OW56RDkv7/O7HbzZfd9TjYf1dv0ez8788HyQKHU7FeKzJvyrjeYxSLd2
oKGMhyfn7O/ZaNVrdblVo4yMh2v027/pks5GG1KrgmuHOjIefpWzf2Wt/edf
sEJCAxm/Rbll7cpXxVrLjh3Q70pNGb/Bzg79t8Sd3SXjN9j58PTLNTVmyvgt
jtu5yT066mRnGQ8HcDt3vi++tXNBGQ/Dziory5X8cVfqBjsP7HGcXDhSxm+w
c+7t7FzrCfG6YNcmR3Sa3+cTuea/+v03ndbu3jTbPZlST729Oi16c3Rcn5ZS
T/3+s06r4n7OaHyI1LPBh/NNJ92000Y26nHz1Vapp34/3E5re33I682npZ4f
+r05F9b/9/csDs5bfVnqCTunvik60tdazteEne2mzC+WJvWEnWe3NfCJPSz1
hJ1fR886fiBA6gk710xqlbarhpxfwM6/+wZeW/BE6gk7V/pNzbWe8MrjbaUb
Mx00KzL/PRv663W/9g7a4MmTcs1/o+J0u97ZO2hPg65fVee/envttXSHmnPU
+W+vmnVrWqyz18b+em+rzn/1+5n2WszjhXXU+a9uvWdMORd7zcVzWK71BNg5
cuHkXPNf2Bk95UZddf4LO5+f97VT57+ws2pXoznq/Bd2xh4oc1Wd/8LOw9OW
5FpPgJ07yXqC+bLehQd3dtQiCi3NNf99cdH3wceCjprToLSbrF5Ef88Xsjrk
cQEtPGbCO1aP0FN/zrSAljk9O47VO/TU21tA2/JXpB9rJ9Cz2/aY5Eo1C2g1
SwQvZu0KetZIvhB96JuDVsM7zJ+1Q+gJOws5NAlj7RZ6ws7Gm1I/sHYOPWHn
h+9b77F+AT1hp+uz+yasH0FP2KlLDzrL+h30hJ2utevqWD+FnrDzdvmAXOsJ
lW7Fm30tVlDbF1iiiTr/zW/9MGFGspNm1Xt7EPMb0PNp83fz7bc5ad6rppVn
fgZ66s9NO2kzHVfvZX4Jeq48YK+rWs9JC7p+aBvzY9BTb6+j9s3HaQvze9Cz
c9l64W3OOGpfui+9yPwk9ISdR6zr+TK/Cj1hZ7srkTWZH4aesPPca6vmzG9D
T9h51WrII+bnoSfs/NmmRjQbF6An7LTuWbgvG0egJ+zM6PXeS+3v7Zzqf5vz
spBW5Wi1IcddpJ44f7KqV8NZbPyCnkazvAI3ji+kXQl+WZKNd9AT5zNtMzcX
YOMj9DzyOcTgpFEhzSCwzE82nkLPcJewuA7xBbWlbu6v2fgLPfX2FtS+bl91
mI3X0BN2vn5ifp2N79CzArdzxLxmxVg8AD1hp3XDhGosfoCesLPK/QE7WbwB
PWFn2dX2riw+EftZ3M4l9kcvsngGunXi8824wHWX1TiwFp+fHu4dHqDGgVF8
PnuxXat9LA7Ed1fkwS/zeWhbPl+GPVVI/uA2ZN6Neq/O7TzN7QTvQubvsHNH
k92uLU8ku53vN7wmi8NRvxfIuXfwS4Sj3jfxfKy1jFgWb4O/4/NTBz4/Be/G
53e+6+LnWXhZSv9G5oNoP3T+iPaA+eC7a23Djv8n0+OcTF2n551ZenDMm/qE
eh9n6ZEPTY925cXnR+8W3Jha6KOF4H73ilv0b59Ps27g24mVC/UInnzMvzSb
74PT+Q7aFeL52Ucc+6jrKsN4/L860idTXVfZw+cLczb6vWHtBPmDzyZcI/MR
tB/kv4rnD475wt98XoP2Q+0Ep/MjlAvxuZ/ZvAHMzyB9XpzOL5AP/IPF3Yzd
jCM9uCXh1L8hH3qOBRzrPGev5xuxz1r2L/CKifFjbJ/L8tL0aD9Yb9E6ljqp
zkO3kX4hziFwfo73O/A0sl4k9rX5esI0o4FH2DoD+A+y/gC/OpKvh3R8nxnB
5vvgdH0G/hbpO/D04DjXt/XTuS1rBsp+0Z3335G8/4LfI3bCbwwj9z7AffLg
9D5IXhw6ePJ++t+TfcnMb4Cf4Osh1YeYbGd2Qgec65usu/yhjI2p8A/0PAnS
u/J1j94Ht/1kuoFjXWUeX1eBbsh/Es8fHPl48nzwXZTr/dYfYy+WlfUFHupd
/RHTX6xLcz/znPsZ6EPvfeTFoY8v8WPgv7i/+ouvn8BOrJ+8uD1mL1uHFOf0
yDoM+hfWE6Ldd/vl9Bfu38DLx4dOU/sXTQ/+x7o973c4R9r3yb9vep+U66Lg
jaY08cqsKfsduEeTwIi7A2T/ouegUC56bgr1ktc5K/SXYfnrtGP1CP3peU58
l55TQv7gK/l5J9Q76nHECvedzP7/V7/gZiH1pjEdUC7wpG/RhbxOynpHu73s
XNb5YVmpA3jWySUPj66X67qUQ3+aD9o/1lc/Ni/9+r8apqK8WP/8PvVzCFtf
Bb/P/Um3F4731fR0PRYc+Wfw/PFdmj848u/K80d5aT0if+oPoQPtv9CTnjPE
d5F+Lu/X0A35DypT7vbAMrKdIH23fVsyVI5zVlX4OS7kg/RdeXrw49wfVuP+
EBx+LP2J79hxj6UfTiHnvcFfEg578rLfn48vZ295d2b5Q2c6boLT/Q5w6Bld
zHa7ep5tJMlf7G+SciE9/HCjRv/ZGy6RcSD6xWPeL3A+H/tfX26/yPX+JLj7
nhZvvMfJ96DAKxq+qDXD3Fackwd/UWri15fb5HtQ4B8OPcrO7ivfgwKf3cTG
ka334n4KeKuqK7ull7AR9zhoepw/p/nj/D+1B/fjwMtz+3EfEPtcCd2NZ977
x1boA/5fzMe+qj7gFpO/dEzcLN8lA+/c7/C9zhfku2TgBzv8Gzj4o3yXDHzw
T+Mf5RpYCX3ACxr++nIhxlLoA954c+H4fLMthT7gTjw97h2Dm3E7cZ+Rlhf3
OGh5oQ/2xVoufept11TqA37k+09vVR/wTp+vPK7jJPUBr+vgYnv/lnwPDbwO
57Af3J3nA/vBW3B7YD+1B/YjTvP0e3eYvVMH+8Ht+Tt1sB+8rulKJ/V9P/D6
6SWc1Pf9wOn9PnDc40P9guOeL+oRHPdz0c5pPmjn9LvQE7wetxN60nJBT/Ce
XB/oSfWBnohLLZ8N6a+2B/BbpD2Ajz59PEVtD+CDjhwqxuodeoJ7Jg54z84J
Q09w4+G3+mdXlvfLwIMi1q4qWUTeLwZPWBeXUCfKTOgMHsjTQ2eaP3QG78nt
gc7UfugMPoqXFzqDm3PdoDPVDTojLl1Zov881S+BvyV+CTz0+mkv1S+Blwk5
mbThjPRL4LE15/qzc9HQGfyI412/w67SL4EHBUVUjFf8ErizQXa26pfAp/L0
0JnmD53Bn+T3W8X8JHQGH/zVNp35VegMPpeXFzqDR3DdxL02oht0xjrAzs/2
zZs8lzqD+9V8lWt8BF+WZBMUrIyP4KODPrVXx0fwveFTC71SxkfwNS1mlPup
jI90PxQ6g8fcbfqPOj7S9NCZ5g+dqT3QmdoPncHPRSVmsXgAOlPdoDPVDTpj
PaThNvuc/S/oDL7E0yrXuzrgyRYNDZIWyHd1wJvU7T89Nka+qwO+MXLmwp13
5H1V8FP/6EbffC/f1aH7qtAZ3LZ74QfT88n3i2h66Ezzh87UHuhM7YfOtLzQ
meoGnaluIp7h+5txHwau7DdH6gxuddvIN1c8w7nJmE6H/B5IncG93vWJ6+As
3+MCD1nkXO98T/keF3jnzQmlskLkO1HgKf9uedVtpXwnCvzV4RneU6OkzjQ9
dKb5Q2dqD3Sm9ou4iJRXxEVENxEXEd2gM/Y3Jzfacc97g9QZvFjYFz9VZ/Bx
Ewd9aWsl35cDTxldwXPSQKkzuPvcrq72W6TO4Folj9TAe1Jn8AJrj9Ts8FXq
DD7YaXzd5obyfTmaHjrT/KEztQc6U/uhM/h4Xl7oTHWDzlQ36Iz9Tf8uj3Pe
/YPO4A/5e3TQGfxNki7XO37gs251CVLf8QOPWJq0RH3HD3yCo9cC9R0/8K7j
9lRX3/EDLzTuQJD6jh9ND51p/tCZ2gOdqf3QGfwdLy90Bh/FdYPOVDfojP1N
k5mOD9T2DF6ftGfw6bveflPbM3ixq0u81fYMHtxiWGO1PYPH2T18rbZn8Fb9
Quup7Rnc7HPvhmp7pumhM80fOlN7oDO1HzrT8kJnYQ/XDTpT3aAz9jfrtdCt
Uv0zeCPin8HHFax1TPXP4GUXm8Sr/hn8+vUybqp/Bl8fdqqS6p/Bx1SvkaH6
Z/DK2xsNVf0zTQ+daf7QmdoDnan90JmWFzqDN+C6QWeqG3TGfkpQ1dic89LQ
E9xmnL2pGleAF5j3fJ4aV4AnrC8XqcYV4DvK1w9S4wrwLcsXHFbjCnCrzIBX
alxB00NPmj/0pPZAT2o/9KTlhZ7gIVwf6CnsjLHNiSv+yjm/e1+swyT9/aSt
Fmir6fddngtunhxXaoLOVtOfT30teMLGOt/YOox+PU6uCzW18/3J1m305yDl
ulDFxkNz1nn0+3DfBE/peShnXUh/ruuX4J2OzshZ/9GfT5LrP8supH5h39Wf
s5HrP02mls9Z/9GfF8kv+Kh3J/6y8rXV9OceTAUf9HFrRMeHtnwfzkzwousO
5OxH688TJ4t1GL/kIi23ZVhr+vO4aYKbHF1Q5FYRa/FeCnh+s4QGgV7y3Q/w
gDrmQ5pesxTv0oC3sulR9uI8+a4FeNT+5nEx8Vaa/vxQPsHrXc4f5LvCWtOf
g5HrQgdaRubrMM5G05/nMBF8rf+IkzcH2or3OsD7904OelXYTtOvR6eJ9RzD
uvvyd3htqenPiX4VPKP8Zf+BB8z4uSW5znPZMuXR6rZW/PyNseD3ffZcPXrQ
mp8jMRE806lCtNVzG34ewkzwSadX/VrxQ74riPWK4AoDHdtUtRbvCop1j1K2
qbazbMS7W+D9Uxo3qHjClp9HMRHz8YSmN1Y1+K2P/lyFmeBrvFcWtY601Yby
94Uwr1ze7Wyi4T5LTX8uRM5Dd08Iaffvht/zKd6PaJyPfkTnBehHdB6BfkTn
HehHdJ6CfkTnNehH4HE8H/Qj+l30I2on+hEtF/oRnb+gH4GvKxw5mO1rm6Ef
8Xg71KRrSpSjTgtFP+J8TtKMNC93nexHnPtef73cMUCntUI/4twzOHREqXCd
7Eec91m5zt1hnU72I84HDTI4tbOvTvYjzruu/mFzuLJO9iPO7/bqHVYk1U72
I863rj38OSPcTquAfsR5oeCjM9h5JPQjxL31FzfZZLFEp+nPu6cLnmDqe+jW
BR0/b/FJcNv9ntYN3+r4eYivgm8tOPmfF9k60e/As31c3wX/1gf9DjymScqC
QZV0ot+Bbyk/ybXoOTvR78BHX2r7fWlnO208f78I8WRA8q5Fho904t0bcCcT
uydGpvbaV/7OFbjrzoN3ChSzF/0XvNVN+yYj2ulE/wUvsOzyjcvP5bt54IH9
5s9tMMKOn1PJEHFgyNjhukXJOk1/Hv2L4K98w9O2Z+pEfwcvGD18xYJXdqK/
i/RGj9zDp9iJ/o54I3VRBcOTkTrR38ED74/9p/dkO01/vmqVGx0v9PdkrrrR
8UW/3/PYjY5H2C+m95XO55wTSpL7C9yfe2N/jZw78uf6gN8+73bM8ry5VjPn
HPNPwUu3WVV0yghzzZenh99bWXRqMkv/i7dD8GsFerRi6WvwfMA7lzx9+NtI
c+10zrnqn3/koz/vK9ddvx84YZWx0kK80wX/eeHe+f5sfMR7QeA+nhvrs/EU
/RR8qW/lFep4B75g9DMHpo/G6wXrVEOfNrii1gu4ZeS1KLVewCf8M7wRqxf4
Pcrh92g+8Hv0u7CH+sPqnCMeu7GiaM75H+RDOeJetJPWXj8asnU5xIHg3sYj
fYOVdTyaHnEg3R/E+1Fob5N5fIL6ovEM6ovGP3j3DOMv3l/Ni8OfgOMd17z4
Ht7f0Z59umS0fZ1spn3IueeQ+Ud8gvf3kA/elc2Li/fleD6enc+OYPsIeK+P
ps+Lo/0jn0Idm5SeEinfyaTlyovj3TmqW15cfy7cSKPxG86XIj3euc2L++Rx
DuoHH9eEf7izoxDL/wQf18BrWwe7sfKiHsFbnC3Ws/kKc+G3xf6R26VgVo9N
+Hgn9qE+zNrK6vE9r1/K9fdhfvyRD/Sk34Vu4MUXL1g056IFv6eXJOK9hdyf
ID6hfgnxCfVjiPPB1y8MWs76EdYB6PxLrH/yfjS04rnm6r4JuF23Eu5sH0es
f3K+cs2HeLbvI94f5vVu1mnXWFau/9fvRDt/kFWV6ZNXvxPv+vL0tRtMXcT2
3cS7xJx3n2/80CjOTL4/TLh4BxLj18dEN7YfJ94/J/b8v35By5tXvxDvCmL/
OrHAlvlFrfJs/3g/EO1k5MqmR1h66EnbD3QAP/LvL4d8ig6U57WPDJ3FvIa/
/5wXz2sfGe+jiv7L3y9FnCz2zck7qJTjHVSaT17+My9/mJf94n1p0h4QJ4Of
7fr83cff8YM7nx+BZ49cYbTWXXmPmvjtbB7PgH8KnTWfxS2YT4GfeRE18mhd
6R/EucE6ry60XCzrXcyje4ZvYFx/T0nGOdU+bijD7BHvVfL8Z487dZftLyN/
mg/yp9+9nce5As88zhVgHEc+Udz/oB+B/12p6bR8GZZivID9GyYk1o1OsxTz
C/BOU/zfs3m9eO+UlAvnnSzIOSj4E/DVN557sO+uz7kvly36hd+l1quY/vCf
KBd935JyzGeRz7ZpGfcPaXJcAx/B+6/+HpTk2/w/nC0YKe/tIi7CfXzLnHsL
Z4X9IdZlWrH5PvoFuFXkqX/Z+oC4h0h00L8vcEro1iyuaRG2zqC/b39H8MhR
oSvYukQIH9donHOKx9s0zhfn6Mi8wJa/Zw7dimV1cmXrIRf4/+8g+nu3SS/Z
+kkKf6cd/P2VrgXZeov+vYODor4cJ100jPhhq23OORd+Q/B9Azy2s/Uc/Xnr
p/L8xq9LD9j6D861guMed2m8V8zb51OL5GC2HqU/b3dN8EbX3lxg61fwV+Dm
la72ZOtmh3POTab8sV+vPz/39o/9ev096o9/7Nfrz/3/uS8fxdst3ZeHHwBf
zfNBe6PftUW74usGMa23T2Pzyni0K85HH53/9cTveWgibz+Yp5c17pkzb03j
7Qe8+cKIcDbPRVwEfnV1zAs2L47j7Qe8heM+KzaPLsTbCebdV85+yZl3x/N2
At52nfNNNk9HOwGv8swjZ17fgPt/8JoNd+esA8D/gB/8J+sxWzeAPwRfdmZB
zjrDCt7eME/v7lgtk61LbOXtDXzUwpV/s3UMtDfwBQsNlrB1j7s552VfCj5l
ov1Htk6SzuNJ8CGpneawdRXMl8FDs7N0bB0G8Tz4ysrbjrJ1G/hP8FJrUrey
dR68q4x1g0xt3Uy2LoT2DL7W+K/vbB0J8Se4zdWkCLbupH9/IVVwhxmlndg6
VQJ/Hxi803nveLauhX4BHtOuVS+2DvaK+0/wYr0ejmPrZpjfgZdZO3stW2fD
/A782WPTj2xdTn8f0ljw0Ds937B1vKF8fo34tnT3+jn3H334/Br8+4wZOfsU
h3g/BTdObDafrTc24P0U/ENH35x9EPRT8MyNg3L2TdBPwf97PiJn/2Ud76fg
vQr1z9l/QT8FnxmQPpXlg34Kfr/fuZXsu/p7nnL/pVLAmJz9l0459xXl/otP
+zATVi6kxzhiyvdNOvP0dJ+lDa9fup5/idcvXf+fzv08/CfueWGdE/6wzb73
z1l61Bd4htM6T7Z/gfVq+KUve8d5qvs+4CfnfqvP7Ee5KEe5wD/zfPBdum9y
m/dH2O/B4wqsD8POT9xOtH/wML7+g/exwdvy8t7NI17qmUe8dJ/bg3HzCt+/
wL0P1NeEPX/tbDpf3msDv51yanJ2NfluBvhMR4eN427I+xrg1jsqDUsMle98
gpcLr1Spmod8NwPcaKH/0JYu8l0g8LStlcOcesl3gcB3BZg3nRYu3/MEn2PV
Zva3JHlvC/wWtx/3yPIqL+pROxbw+bqDvMch4tgzbdo795L3OMBLmbzd93OH
fA9Zxr31t67ZLeM0mg/sBHfj34Wd4ItLXRgXkCLfRQGPH3LltEuUrBfU78tS
l0Z/LiLvP4L/DHDsVNVLvrsC3m/VifPzhsn8wQ/WcQ36a6i8t4h2tbPw0m7q
+zngMQ43f6rv54i4a77RPfYuDdKjX+zwvWSR3FWmB085OHHtoL7yXSm0f4u0
qlMGH7AU6cE3JowacSRM3tPEOmT6fjsPp9ny/i+4f8fum6y3y3vT4NWXRRZd
GC/vTYNn3uvibfpM3psG77Cu2nvzT/LetMj/68i9zX/J+1DgpktLVX//Qd6P
Bp/jP6jQssfyfjT4wb/bf757Rt6PBp91v9PhetHyXiR4llfKhvYhsryIr+J9
b+x/ZynfMQC/sihx9u+vyfbM+Zc9JkP9hst792L/6H3f5/tmy3v34OVabg4Y
Hynv0YPP8/961XWwvEcPbv1u32h7V3mPHrxI2UeVaxvLe/TgS24Xv9TijLx3
Bv6j1uqTxafIekS8tzD91sC3s2W5wC/5LT985KgsF3i/fqUXD3gqywV+sVPA
wzXfpP3gmy02VV/9j7QffODRITvWatJ+8NI9Rj6uly7tB9d51nQwCpPtDfFh
E/eGduq7HODnrOvWVd/lAF8QN/o+e38D9oCvKDAw17sZ4NNc03O9mwG+/3ab
nHce8F3Ee683L9pdK0l+F3yq7cILI7/J/MFfeGjWpT/L8oJn7zIyKrpc9hfE
Vy79qmRaREp7wO8virN9HGKX57wV9xnhD8vtcxjC/ADSgy/p0K8N8xtIL+5f
rN+xivkZ+A3wO6uijJlfQnqxzqZrdU99rwy8za45v9T34cENe5r2YH4S+cC/
WRtMmcb8KvIB/3Dl+2Xmh5EP+P3kyl7Mb0/LIy7Ka76J78JPTvg4Op6NF+J9
Cc7PBV4LYeMLvgv+7850sxvKOAj+a2DqUDZ+QWdwt1HtH7DxDnaCFxz35jYb
H9GPwH/yfGC/uC/Avws7EXdtvLvrqDpeg2c/vLBIjU/Am7tV28jiAfQvcV/+
jedgFj+gnYM7vj9xlMUbKJc4B97lWJgan4AviPjRmcUzKC/4hxXx81j8g/KC
P7nZ9BSLl1Be8CxuP/oRLa9o59zv/b16trXaL8C3b49MZ/0I6eFn9gW/MGD9
DnqC/3xQw5L1U+QD7tEm9jTr1yivmHePTt3G/ADyh98wHTUo1ztF4P+eLJzr
nSLwfCXDcvwSvgtuVX7UffUdIfDw9lVyvSME7jipdI6fhD3wM23MphVgfhX2
gBcwu5TE/DDsAa9iG7Wb+W3xrhfnTqahtZmfh51iX35Xu6drFH3A7c1jlrFx
BHaCVzI6fYyNO2gP4LNsRg1l4xTsF/7Q/2ccG9dgP/idozOvsnEQ9oMX3pNR
nY2bsB98S0bpyWycRfsH7zPc7x4bl1Eukf5J7RlsHEe5wBMqj3/Lxn2UC/zH
4W7+LE5AucA7+psuYnEF2jl4jWebY1kcgnJhXrnpwLetatwC7vLlyUkW56Bc
4K+PvP3F4iKUC9y/2eayLI5Cvxb52y1qxOIulBe8/7k5J9Q4Ddzw5/wsFteh
vOBzlgQOZ3EgygueMaZYeRY3orzgi06d2cXiTPRr8EMjTXqyuFTcU+bjjvdf
/o28Xsp3UeDP7ZPeD2A8r3MUea3HQh+MR/T+ODjuiYt70NweC49gSxszeb8e
6fE+Q17rsUgP+68E7GrE8kE90v0m5EPtRLnyshN8Enkvguop3m0g5UL+VGfk
D36Z2y/iWzLvg84Yvwrx8U7cE+ff9SPv59D6+h+XiwR7
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[{Polygon3DBox[CompressedData["
1:eJw1mgn8F9P3xmfmzpTlZ1eEShFtiux70UalBakUKpFo31RaEWmhRYVIQtYi
IpQsJUtElArRQiFrKbv/8/4+9/96dTrP3O+d+5m5c+45zzn3VurUs1WPLEmS
RSFJ9C85XP9tkv5VjT+nSTJQ+CC1/SQ8QPgA4QWSi8FFkswUPkf4f8KThGsJ
7yH8oPDZwnsL/6h7+wvvp7blki7Ch6r9ZeE2wrfqt6bnSfKn8CThpWrvJFxG
fd4Svlr4EOFlwp2Fywp/pTGvEd5LbbMk5wrvo/aJwrWF9xTeoTEHqd9YyTy1
N+UZ1P662quo7SfpJ9TeWO37qv0jtbUWHiz9nqS58HH6+3rhq4TPEV4rfIXw
GcKTJcfzDLp3ndqvFD5LbSuEWwoXwnMlzYT3V5/31d5K+ES1VZbUEW4o/WXq
OflV8kbwbx3Mc0oWaD4qSL8heUW4ovRrkueFy0svlSwWriT9pmSR8JHMFfcI
V5Z+T7JCuKr0ixr/Uo0/Qe/+ga5Xqb0Gz8b7C1eXXivZKHyy9KfMtfBJ0msk
XwqfyG9pnI4aZ7yu3+Ja+ih+R/KhcDXpg/Ve4ySNEn+DG1N/k491b2+13aN+
rwXP54G8b/AcHiT8Ls+tvx9beIzxcZx/c+Od0u/QT32OKTw+78X7LWde1H60
9Mjc9txK12/r+h3pKtJHqt/han9Y972sPodLfyp9h+RHtS+UbqB+RwmPVN9b
dV1JeLhwW41xqPAM3dOB+RZ+HLvI3OcJ4VuwZ11vxf4ldXTfS2r7Qm2vqE9t
6RckE1kv0vXVp7LwCPV7TtcTsB/pabo+VOP9rHs/1/XLaq8lPV8yXjiXPkJ9
vhH+Xfgp9btI/b+Svkft5wt/LtxVfzuB+WHdZF4jC4Rn6W/VhJdJPyipKrxU
+nFJE/19g/Rtkkxj7dAzXlJ4nHG6Pq/wHN4kPFp9Uuk/1NaR76b2ubr/2sxr
5AXhmbnbb1W/F9U+iXUq/ZJkCr6C95PcjT+R/kDypPCR0q9L7sc2pOdonJOF
35Neo+vnhKtKr+T9hStJr2aOhI+VXiaZhQ+RXi6ZLVxO+kXdf4iea430W7p+
CL+EnUgeFj5M+rfc/uAf6fd1/YTaK0p/InlW+BhsWDIDG5ZeIrkP3yg9T3KH
cCr9iGS48G6N9YzwWOFMeqFkMj6E8STjhAO/LxkmvEv95wiPFP5D+DHhUcJ/
Cr8qfC++hfeWjGZ9qP1J4VuF/xF+QvgW4b+FHxe+Wfgv4XX6Tpt0fYr0askG
4TrSn0g+w1akP5as5/tJV2e96d4zow+5I/rVY5k7tZ+m9raSy9T/NLVdKnwx
fgObkixXn9PVdozwMuFThY8TXiF8tvDxwiuF6wrXEH5X+Hvd317Xl0ufqbZ2
wm2ETxe+XLid8BnCVwuX1rM0FG4j3FrtpwpfJnwp7yg8VM98QOI1ulvXI9T/
d+lhat8/YbFprRReQ1dKP6a/l0+8hltj9/hD9b9R/fdQ+3+535956E0MUp+e
mWMfa/kf4Y7SD0l6ZY5H1XTP28QO4dmS3pljR218sdrPFb5GcrXaG6uts/BV
+AbWo35jiH7rb+GHUq873vkBSTnhCvr7nalj+A6+ucAxie+tKFmc2G8/ItxD
/f5kXatPzcS/9WDhtZpL367249R+gdqv0/UNam9GH913GPavv1+r9i6Z+1SQ
LEpsP0cKv5o4Xpwg/KFwPeGawu8RH/Gpwq8Lb9b9V+n6Sum6aqvFGiPOqq2D
pL3az1JbZclriW21nPCL+E/hQ4RfwB8KVxJekjhmHZHbT+IvDxd+KbE9Hya8
MLE9Hyq8gPhOTJNsz/xsDfi+es9K0ht0/V1mm/9K8kNmW31Gsie8QbqH9C3q
X1V6XuEYfqfGfkT4xsy86FHJoMz85GHJwMy86EXJnZn5zMuSfTVGE+luqcfE
L7+k64mZ+dILkgmZedErkv3hNNILJXdl5kgLiJeZ+cMNGuNWSQvik66HZeY/
HxHjM8/bEslcYghxm3ifeU5WSdZlnueV+ALhmqwLyZDMfOlVydPMsfRTktP1
PC2kn5AMz8x5FvP+wodJN2Sdqs8c7pOMyswhF0lmCpdjDQU/c23ioK7vyMwN
npeMzcwNxgbHWWIaMaVQ/4y5x1fATQvHo+/VZ7n0L7puEeMgsWy72t8hnqp9
W2a/tEXyS2Zb3Sj5MbMdso4OwYcLb5L8lHmdEvt2CV8hvVnyc2bf9ajG3Vu/
tSJ3rOyq+7tKjwnmCayvXvr7bZIDJLdH3rJSuqdkdOp4v179vsnsJz+TbM3s
Y+n/E35M432n68a6fli/1aywzXYpHNPxDfjF3yVnqr2l9G5JZ43TAJ6jtorE
Gt6J9anri6S/kHyb2Uf9on69Nc5f0j/o+nq1l+Z5+D21fyl9f24/eU5uPgev
+05/u05yOf4IH4WPwL9Jz5Acgc+X7pSZb8xTn+nCvYS/Ff4X+xWeKjxVuIfw
VuFpwj2Ftwkvzj0PY6XvVXsf4oXac3gJ6z14rgbF+SodfRe+s6ukXcpH1bdV
v7/hohqnrPBfwp2EDxPWsCV50BXqdxwcgHdQ+064inRdyW9wFekywbkSOdOB
fHPhTcKbiRWJxyK3GSz9i9rvyx2P4KU34UeF30rNN8hHyEu68f2FX6a/cF/h
7altFxveJt08OJch7+gMT0xsTy3w/6lzlsm693q1bUnN1+HtnwlPEb5B+OvU
a5Hc6nP4CbYgvAT/KnwJ8wCvFD46de6DDyB3W5V6rXcQXpPax7QXXp3aF5Kj
kd/crfbuwt8IzxDuJ/xD6vXJOv2auJH7+cdjV5lzRnLHUZKRqd/5e/3tO+nz
0KztxLnMbfEdN7Om4nvxvrdkzq02pP5mfLtJ6v9A5nyWvHZMfDbmYb363BZt
4Gt4nnCDzHGe3yIXPVR9PiK2qv1vfJLwlGhT/ybON57O/e0+yO1XvhJumXkd
rxFulNn3fEr8zbzWVws3lP4D/yo8J+YRW+PamZh7zsmbR6tPW+FP1Gc3sUX4
kdT2hF1NSJ1X0/9j7IpYJDw79fpeS3zPzLHWCzfJ7LuqMEf4GeFTsEPpkZnz
VvJXcmdy2+fU743c7c8Hx8l1whdK3wX3InYFx8zPhZtljrGfCTfN7F+/EL4o
s+/8EpvN7F83CDeXrpN7npnvRoVz84Xk05Kj9CynSXeQrpF6DZOzwiHrZeaz
cMtzMuev8Ku60uM0ZinWbeFcFr5xrvQicgq17yrMG+CfZ2XmwiW8V/rqYPsk
hhEnlwmfmpkjl/C6zHG1hA9njp8lvDdzjllf+NHg3AH+c1LmHBdOUiNz3gxP
Oz5zXg6fqZM5L4dTnZA5Pz2fbx3Mn5if8zNzebjWeZlj9WvCJ2bOcfCHDwfn
ynCn6pnzYLhTtcy1AThSzcw5DtzpOP6ue+thM7p3qK4vFF6uub6zcJ7WL/f3
4LvAecZFH45/hhsSF+DR+FVyk3XBXH4v4ZmpecFdwqUy5zjkwqUz8/o9he9P
zQvG4EMjZ4W7kgsvyF0/uVtjPpg5z8LJzlb7iYJT1d5AfdtI9kmdr5K3whnI
aclt1+fmmHurfZauU8nXidcSeYP+nExWW7/gNX5yjHHkYr/H+JanXp9Z6hyc
dQt/J8Y9qra+uvfAxHkQuVEp4Wmp612DWFPB+UrBu6i9Hjl04pobuU5p4Xvw
+XDuxHzvWd1bDVsU7q8+Z6h9Mc8pfLrwIt6jcPwoJX2v+q/CHqRnq22o8G88
b+F4OYacgjik9p1qnyU8RHgHvjfGKeIVtRRypT7BcRP7J5+7Ofc78q5bdO8b
wqdE38I6OjuzrWLzJ0uPD37OprqvI/lX5M/bCnMCuNwwtQ1NXX/5XtfXMUfk
CqnjxdH4ndzj3Kd7KWKSyzyf+hvDD58U7hjjRhXePzU3Iy8ip6kuPV/X3YVr
4NPwjYVrcw9p7AvwX2oP0sdK/se90m8Hx7UmkZ/CT4hr1OEeFy6fuVY3R/hw
6fka6zThH6RXBHMAuAD5IrXTJalzwbrCr6fOF6lnvibcNtZ/jpe+sHCtjJoZ
/BEeeYTklOCaFfXGS3TdHK4j6RRc36gd60AHShomzkWobb6r61ODa18lNUnp
8qlru1PieqkuXVVtuxLHVHw6vr1x5OPwsa2RV8D94G/kKPAxeOAFkvOIS8xh
ar5EnH4VX5A4FrcU3pNvHRyz4E4bU+c08AQ4D7kvdRh8zTWR08FLHgqet4ti
vgVveUd/r5+6/kjNkBy6rPS9uj4/OF8gX74ixsq7UudA97B+pW8Otpfzc+c3
0/EJmeupc4UrZ64vPoMdZq7DUBeqkLkOOk/4KOn6GqdU6nx5dLCNNdKYx6fm
o+Tw1PsqJ85/qRdRz9kvc80R26+n9qm55+Td4HwRHgjXvTu3T8A3kFNSZ35b
7dPI24XfC84d4VFwLepg1KyqZK4fzxQ+WHpU8HqCUw3Q9Zl8n9T1yVnCZTPX
oR8ULpPZ32LDv6auNz8mfIT0hMK1vL7k67nzzvl808J1qG5wotQ5BdyC2N1H
8rHwrujPL4y5S+3UfP3DYH/VFh8WXEO7nL7Yt+Qk5jTY51Oj3Dd3fXUIHI98
WriV8Fu51zs1ovuDY1nL3HEfm1+bOz8dk7rGgo9lvayKsaZM6rUwI5irt1Bb
RbVdG9fUuJiPkJc8FczNLs6d18HHqRVRJ6IGDn5auB02nHsPgHcvqZ/mtu85
wfVN6pxNpP8JtjFsDZ5JDqN/JfGwTpwH/NOJ0b9Rz6V+QK5XIfoK8k3ssVbq
mlFp/e156cHSeW7bwEZK5a6pDpJeHMznJwvvk5sbwBHI2apG30igfFpqoPR/
wTXYATHGnpT6Hf4NruX2hw8LPyDcS/h34UcSc4m7CtdP6bM7uAaLLW3PPc/k
Bb8F12l7C+8Mtk/stHHwHMBfdwXXePvkrkFTc8Zvk0dg592JpXHdPaW2D4Lj
3WW58wf808Fqm5e7bkD9gBwYu50r/af+Ni3xXgxjkZuMiuuO2E3+xx4W/hC/
SP5GLtAi+jD8J3tNK4NjbhtiaObc4gu1Z7nXGvsX+O8jU3NufOhe0aeS38Lr
Loj2RJ6LrfXROA2xuWhLN6fOkVtj8/y29H7xe7FHA4cnTzw7uMbN8+2MtsyY
+Fj4PLkc9a0id139Rt412Dey3/R3sO/CPrtHf3JDcI2VWiu+lOIksfu64JjM
vOFnu0ReDb++M9j/XKT+E4K5DbXH4ak5AT4Re+a9Ggg/m3pdH8R3U/8ywtOF
/wr25+yLsWdE/KCGCmfrn5q3pbl9IPtW5PgDU+f57FGxTsl5Q24bY13cFONQ
6+i7BqTOPbB/7Jm9NtZmv9R5IGP2lWxkDvXbZ0k3J6cJru23yz0fXaJdst/0
n36nE/Wk4P2OnupzYYxxNYK/d7n4/eE/xLhPpJsG5wVtpFsV5gzsHQ3O/A0/
0PWb0VeVijG/coz17BNhn8+wZoM5P7EYn1EhzvOq6A/p80pqPgMHxabx6dh4
o9Q8g9+AhxPT386dK2K/2Ni63HwAfk69i+fkuelLOzaNr62X+jngMmenzp3e
iM9CntYqNb+H51CPQm/Ovc/GeMxHo/j8+L0Pc2vWLzkY472Su04HJ8THHh3j
/tOp+SYx6iXhM9P4fIn54L7Rp8C5KqXOgXsFx4OlqXMOnu0sbCX1usMPMn8V
4/yMyMzlPtX1u7nXNXW8y1LX1k5ObdPVoo1Te2POmfu+mXnN0vjtsYHncs8n
tsFYZ6RxHhPvn9KHulLb1P6BOb0+jdxb7R/n/j04efXI/Rbq+tvccZZaE3Wm
uqn3p6kDnZt6v5a8jvyuo/osCa4FTcm917BXfL+1wXtSV+XmrL3it6Te2124
s/QnwbkVOdbsaIe1pMumrmXDJ6i389zPSD4N3tu6UmNeHOd8nzgHPaNdfRm8
p3Z1jCPUyB4Lrg2Cic3UFvZQ29wi+qHYPjqOwzvgN6hp7oePDs434UE/Be/9
9dDYG4L39TrHuewWvx/73SOk2xNjg7k3dfLVwXt5HdT+VfB+bhfhNyVLE9ck
4Uf4murRl+BTaqauzTKP03XfN8F7iNflXmOstRXx254Sv+/ayHOw+Vpxblnr
8DPmlfowto7Nt1PbmuC9wivU/+vgvdquwluD92rhct8KT8XPC2/CdwtfK7wx
eP/6GuI7fiJ1bXRLcI5Prv9DjBclnDfYtrHh84JrZeWktwXvBV+fm/t2jbH1
x+A91u74othO3sC5lE7Cl6q9eeH60JOFfUjbaPPUxzYlPufC/uTmxPtl5MjU
d6k1sde3RXin9IAYU9hPnJi6JkA7+4DsC7AXOTA4v2Dfk3rgt4n3//oH17HZ
f4SsERv4bfa7tkn/lbnWR/2gPFygcN2TNTKkcJ0U2x5cuP7Lt6Amw3pYnbtO
Ti2UmMG5hEqJc5r50f5Y09Tx8Fkrc9cksYmPctcDqXWwh0H9kNoF5wiohZLr
7RP5EnG6fXBNldyNmvcJ+IDUnJt9PeqH5PoHRQ5Jfat87tyfWhr79XDT93Pn
sIw9v7BNY9vU7kJcY8zFgblzK/abBsQ+5Ag1o/3znThzQP7E/uCQ4FyBPeL+
cRzWKftj2B9nlngHage8E/tsuxOfR6JuTE2Yuj57ejsSnymibky9d484D9xL
jP4m97tTrx5auI6M32M/Bn+CXxkczK/Zm6Y/924h1jOPiffLBhXet2DtDy9c
f8FH3Ve4hjKCNSXZT/c+mdtnY8Nc31/43AlFo37RrtLEfLt1jDUPFD6Hwb7V
vYXPnQzXODMKn19h/3pm4bMg7AFtzO07H5O+u/AZCPKCpjGeEcsmFz4nAfcb
V/gMBzx8fOFzDPDtiYXPQ8D/xxY+ywLPn1L47AU5xR2Fz6/AbW4rfHYBHzKp
8DkP8ogxhc9D4FdvL3xmgvXO2ZbLYnw8KdgHwnXvKXwWZJj6TC18doQcsHus
kZHr3VC4Rkbudn3hmhF8bEDhfSb4WI/COTA548DCe07km8MK18Xw7aMKn+fA
140sfFYDXzeicH0NH35j4T0tfH7Pwns85IO9CtdSyft6F66t469GFz63ga+b
Xvj8ylDhaYXPtdwkfEvhMxz4+W6F61bw5L6F93jIX/B1l0Q76V9434XceVLq
GiY+5+bC50jw530K7yW0Fu5XeE+IfGRz5FTUSAfGdbdR95clPiWeZ3gm+cT2
wnbSMsZf8qb/51z403+iP8d+m8dn2yN3fYyzW3sKP5r4XNZT0eaxfeyuaRyz
Vby3fuJzGtRX2UukPlZio8FnluiLLe+IsYbckJyoQeSPcKv2qXPSSyMX4vfg
xnBFOCP7Pvgkapz0bRL7c2aMswGcEWAflVyaGs9euWsgnFWDQ8InO0Suy/4s
+7TwcOLvVcF+EH9IPZNYTI5HrW7v3PVDzunB8eCLl4SkJG8i/+kWfHaFvOrP
wnkTOck1wfks9VL2m/fPXafiLB/7cOTv7H1dUHiv8tnC5z2pEfHdP0zNeRiH
3JCzHNgb+eSg6NOuDM5TeIaLg3l+o7gOm8X5mR7XI/vvnCVjfn7MvU/cLPox
9udZw3AMuCX12a3MR+76BrWFA3LX0DiXyDk8eDY1angpnJY8qGbkhZzPJHcm
X6O+8lGMcexTr4yxjxo49VbOl5LXH51734Sa9Be5+Tl+r0G0s/qRZ5DLU49n
b5d9YfYxNkeOCof5PLiGz7mFxjEeUoviDNbo2L9K7to7/pz5hxvDkcnHqVdQ
tyDvKamT8ny56+TEUJ4HXss6LJO7ro5P4LwNZ2nw598F749wfmN75KVwqnJx
TLjrL5GblY9cqFUck72rZdHO+ZbkJawD+Dg2CY+ER8FX4a3kcuRB1MY3RU7L
uQ7Oz9G/VhyHtY+NYHPYHjUkzieQp1OH45wl+SfnIYkrDeKcc36EvIJ9ZuaR
uhbzSq7Efh/7fr8G7xlxJpZzDeQk7IHDe6ljsO/9WXB9En7+f5KvYJI=
"]],
Polygon3DBox[CompressedData["
1:eJw1mmWgJEW2hLuqsnGHwW2Awd3dYXF3Z3B3X2RwHdxdFnd3d1vc3WFxd973
TeT7kbdPVFb37a7KPCciTg0cvNNqO7a9Xu8z/hRe/9P1ekvwOjuvX/d7veU4
ODv49qbX2xq8Cce3JF6DY/vynnE8RvwGx24hHo2xDPgR8OXE7/D+1YlHZVxB
PAfvn4h4dc55htcxOGdF4ieIryQenbEC+HHPJ36P96xJPDrjauKxObYx86+D
byZek8+bmHgpju3K99kQvCl4EHgq4nd5zxrgCRlvEn/FmJe57Tj3K95/O3iC
Jr/5aOIBHBtM/BbHbiX+mmPbEU/LsQuI32KsAp4HfCaffwl4JPBqxF9w/niM
zZl7h2O3E4/P2AL8LvgO4jU4b0nif3FsN77DqBxbhPgBjl1K/A2ftwPxqh4j
HotjGxG/xrGbiMdlbAZ+G3wb8ZZ83r+J1+LYc7x+y3t25HVO8OnMrcI5KxM/
5fUj3pZjBxJPybGNie/j/JWIn+TYVcxPwNgH/B34buIFmJ/Q3w7eADwT7xmX
eJX6mceBpyfent+yDfPHg2cEu6i26+d7+n335vUQjn3M6/bgnxlHgT8Cb0f8
E+NI8F/8v2ObrKGfiO/i89YlPpy5Xfm8D5nbFvwj4wivH+dcRfws8WnMDwe+
xPUDPhW8B+/npbcWeB2C9/39rnPwweB3wfuDLwYf5HoDHwC+BDwE/CP4JPBt
4GPBP4FPdj+AjwMfzP/7ELw6eE3w7l320ZrgtcGHAD4CrwFeC/xsl99/Cnh3
8HPgHcGngfcEPw/eyXsH3gs8C3i8JmtiJz+bz7uI+UeZP5n5Vzm+IXhKXg/i
2C+ccyr4TuLj/X91r03SZL/OwPwA4vkZyxFfxViW+X8ztxPnXw1eDrw/eGfw
lOAROXcBxvLEZzPmY3535rdn/hzw/OA9wDuAn+5yP08G7wb+L3gH8KngPcAv
gHcGnwHe2/zg+gVfBD4Q3Of3XQx+DHwK+GbmVwMPAe/Sz75yf33HOJRj5zK/
APGexDuaf3j/1eD/gk8H/8z8KeA7wENdj+D9wBeCD/D6gfcAnwv+N/gl8K7g
s8D7gA/j8z5zr4A3Af8PvEWTvTMYvC+vIzG/fpv9sR94ZPAG5iLwK+DdweeA
93NvgccHrws+x/XhfgJvAt4M/B8+ezTwJ4xfOLY/85MTb+hvZX4S94T7H3wW
+BLOnxg8Aq+T+1t5HQf8OeNPzjmMY9MQb0p8HuefxvwA8BeMvzl2RpP/f5D7
kHOn4vMfBH/E3NmcPwB8E/gV8JnmB875CzwT5y9O/D3HP/CzGBOCLzbXE3/s
/rU+8P4biV/2f5lPOedY8A3go8DfgoeCbwIfY/4DHwe+EXw0+CvwMeDrwUeC
PwYfAr4CfCj4E/Ch4Cv9reDXwHuCz/PagT8CHwy+HHwI+He+z+FNcvZ/iD9l
/jDmr2L+cOY/Ax8Ovhp8RL1fI4LXA68PPgI8CXgL8Fbgw7tc/83BW4J3AR9d
16j5bi/w8MTrEK/H/B/8zyOa1KzviIcyPwPzOzC/LfN/cuyoWh+u8LcwhiNe
m/l1mf+NsQ3H/mdO5NxB4EuJJ2L+ceK/3KPg+8AngBd1D4IXB39I3DEm87P5
H+cTP8NnzEU8F8cuIx6BYzMT38KxC4lHNAeBbwVfZK0yp4AX874Tr97Pb5nT
tdBPfVzCnAP+DjwSY1bzJ8cuJl7Y/wlelPe/T7yQOQO8CPg94jkY94BnA79C
PCfjXvDs4FeJ52LcB54D/Jr1ifEEeEHwO8QLMp4CLwx+l3gxcyx4CWsN8Twl
6999YD2Yu2S/uG/M1yvyvRduUnPNp6d24T9T8Po586Wf/Xgl51xgYWGMwcvQ
JvuzkQO435vst6l53yjEU3PsWl5X8p70knu/Ib6S/z83eBv+1//A87sHm3Ac
a/6q/dTazTj+K/EoXkPw/a5ffy/HBzXhYHKil0ty+2LeM+JXSnL34t4D4ufl
P5W/XEP8KmNB8JLWDOKRvSeuH45d4vVh3A+ek+/3umuJc+Zp8p2PJH6RMV8T
TnUj8T+uIeKzm+S3Z0v+17bWfvNrPd8acrPflWOPEy/A/NvE85bkI/OS631R
ft+0lTPID2bl2O3EMxK/SDwj43rwIPB/iadjXOP9Aj9NPD3jWusj+BniGRjX
gacCP+vaZtwGngH8AvFAxpng0cEPE0/EOBL8D9/hXuKZGLeAp2P+OfcK41bw
9ODnif9Vsp9v5PwtwFMxLgCPy/xjxNMwLrceg590fTAuA08MfsK9xDgK3APf
R/w3v/8c7zf4RPCUjPPBA8CPEk/BOA88DvgR4n84/1zwA+CTwNMyrgBPCn7K
etFlLRRePwEvxeusfNeJeqkfj/P9ZwPPAb6YeJkSPndTk/w2v3zZ/NokH85X
st7PapLfZmfcDZ6V//ey95PxKHg+8JuuXf7H1Jy7aS+aYT6OPUY8P/NvuT8Z
j4DnBb9BvCyfP5NrpUm+XcR6Vjmj/O/hEm4+mPgz5idhHA8eDny/e5VxBng0
8EPmPsbp4FHBDxJPyDgI/CufeQ/xpIwTwMMz/wDxwV3yhbXxd/BsjDusf8y/
RLxkyd6+pkn9XrDkWl7UpP6/zPt2cz9w/r7gY7rkw63a5I+lS/jzDdYM75d7
FvxpvV4zgF8Hf1Hz2/Tg18Cf1/0ynXu4F/3m9ZsG/DL4k3r9Bpbk6/dq/py8
JP++W/PrFCX14f2aT5fidXq+y58c+7iNXpN/DTRnEE/WRQ/MYs4gfpjXyRhj
NdEzk3ZZHzOrqYjHZuzlfjEnEU9Zko8/qPnkQY4vxFi6iX6brKQevFPXz1gl
+f6Ful+HY3wFXrZLPtlcPtdEA23RJWeZu8yR53eplQc00Tw9czmf9x7hd7Ue
HAX+Gjx33Q9jl+S7F2s+mQX8NvjrWq9mAr8J/rLWl/FK1uurNR9MULLeX6v5
YOKS+vRmXS8Tlqz312u+magk/71R89nMakzwV7UeWg+sRdaklbrkd/XXjLV+
LMPrnHJ5NaDcn/lfXO/EdzJ/GvhX8Bjgu8APVf59bBu9/mDVG8e00dMPVD1y
dBu9+Xjlxye20a+3dtFzB4Ovca9Wvjy0jV5+rPLdE9ro32vBG4APaKPnT+6i
d3duwydO7HKvdmrDN67vomcObOMH3F9SD+frol8frfvp+Db69wvmN2+ifa/1
88A/MD8i510PHqOETzxX68FlnNcxPuXYbxxrOdava9X8cVGJ3lm11vt+Fy0+
eZM10nXJN3M3WYPncn5LPAnxp/3w4dZ6wZiIY/1+6v80Xer725y/KnhW8Jfg
MUv4zfO1Pg3vdzY/dvEnZmP+Xea/rfxNv8O9smblXHeU+CnuTf2aqSvfH63+
z3W6eBvjW0/NPZz/Dvibyt/kEHIJ78mFXTwIvYhFzWH1mnht3M/m2h/AG/jd
zb/gb/vxNNz/N4B/7MeDGRl8Kfjnfjwj9efd4PG7aAj3oHvxJ+Y3ci27JsGr
tbluXr+z9T+65A3zx5NqAY4dQjyp+bpkz3pfvD+X1JzgffH+yD1er/lngDqL
cZKapEv9UKtOzTkv1Vw3HnghxiqMRXn/TXUNuBYWa8IFvYdeV6+v3O0y8M5d
OPvS/axB16J+zL/68VTm7aLP9Vo+Kqmtm4A/Uas28WL2t775/Ti2Pvhl8Mjg
G1w/XfyRk9VS4FG7+CengM9kPEw8T/3+rinXlvd7tX7WkGtp2ybe15j9+AH6
Au7f6bt4At7vU+oaci2Z7/UCZ2YMZmwvf69rfNha5/xDS97je3dpw+9/5Nhx
TTwcvZxr/Z9NNI/ax/l9m+Tsv0s4rdxWf0Pv6+L6v8xx8tdfzAlNPDi9uE9L
vK3B4M9L/EmvnTn+57r+BnU5x3PVS00XDu/8lcRr9/Id9JcGq8fAfzdZH9+X
eFXmOHPdGV247i5N9Jq/x1gO/FzJ+Xqh+4B/UPuUaGk5rNr+45J7Lad6jPiz
ku8+O+OJuv6Hc09z/uW8bgz+tY3+X5j5jcA/t9HTC4E3Bf/VRt8vVsIxB3bR
/3JPPQm9CdfUUua7Lt6oe+a3+v0GgYeAfy3xdLfucg29lscxtqo1/V7ioYw1
e8mx5trFzce9eCB6IfqNrjU1tdraNeZaG7uJHri8/jY/88uaD+aq3+myyqnk
Vl6zX2p+abvsEffKtF3yofd/xy5+1TrM7dfGX9Zz0ZuUc+jFbNRGm03ei3fi
9XKPTQFesh+OJlcbVO+P1+ufNn6Iv0fOJneT4+jl6PlcBR7Yixfk/bik8uXF
+/HnDmuyZt0n6zFWaqKp72jyGzZukjP9bfrZzq/fRS+7V60HK9T87O89tMk1
3LSuh0ubeAxL9JPPPVfNtkIXDi4X11PSq5CP6R2Yj8xLeiB/NfE49EYusDi1
0Rhvms+Il2/DMeWaekoLqU168ZreaqOt5TBymbO6+NfmfHO/nP+sut71OtTQ
aumxe/FC1dhqbTW2Xqx7XT3rNdPPNN+rndXQQ0o81BPAY/biraoB1YJycL0Q
c8F0vVwj14Oe6knEY/Xitbrn9f+tQeYC199mTWqMe80cYK6QF5obtm7jTcjJ
5ebuB3sds4HX6IeT31D/54UlnuhLTTxpvVI9zR+beJh6ne5HtZ+cfsV+PN4f
mniOer9qKLWUGlHvSA/VXol+t96qnvm9TTxNvXQ9oXuaeKx6RXrsdzfRz3rv
eq6PNvFw9WL1QB9r4uHqjaqZ1E5qOL0rPdnvwfvW+qfn/FMTD/y5Wh/1/u0B
nGE+MNc04YxyRz3SP5t4bnqn5mz9hwW65HJz9HDmzza52z1uv0gO4N7XY36x
yR52L+vpfwDeuhev/zB5trUQfGcXz/fNJnpRL1hP/OcmHr1e+ZlttNtB4Be7
eJZLyr178TL1XP9o4hnqxerp/gYe0ovXqwf9S5OegN60Gu33Jp6h2u3DNt6R
mkXtoqehtzFi3W/WT9eL9eWWEr98sV74grxBvbtJL3xCXqFfo7ezCHhlP7+L
3ry0jf78ootevaaN36DHPzXxDb14/1928Seurf7AI228Dz2QrqTnMW0bz9Ze
yEttvJv7e9E2egiTt+mZ6C3oEU5mzuzFO7y3jVegZ/BnFw9hYBtPXW9BT36a
Np6uXv23/I69if+oHMucYm45v03/6PsufsXNVY/7mX72PdVfkXPaf9q7DRdV
s9kP3KuNlpOD2r/apw03tSZNVnOb3OuPLn7K3VXf/9bFT7mr6vsfuvgvt1Q9
35T4QQ9Wv8Rr5rV7uPozbYk/9FD1V/Ss5/K9vXjZI5X4RU9Wv2bkEj/qqern
jFDiBz3Rxo8dpcQveLr6L9Ye/QL5sf1JPfW523jueu32sGYG39lLb0uP9opa
z47q4hlcWeuR+UqPfKw2HpHeuZ76mG08YL12PfMxwGf14qWb766q9fDYLp77
2G08I714Pctzaj05rNbTE2p+PbALx7ut5ke535MlXMaeo366mu7Wmk/VenIk
uZI90+tKNJ7esp6y2k/PdGjN99br69p4b65x1/qtbbwz76H30h7OBG16RPZ2
7HFN2KbnZ+/LHsBIbXp09gb0/EcAn9hLL8CewYhtenr2EuwRzdKmp2LvyB7A
yG16RvYGLmvjBblH3av2DPttehb2Eu0RljY9C3uH9gTHb9Ojs1doz3A8tW0v
vcRn2nhHrgnXhj2GUdr07Ow92ANr2/Q87I3Zo2rAR/fSu7JH2bXpodi7/IDP
WLsJp7A/bs/A+i8Hl1/Lr7bvwtn0slbj2PK91AhrxWkcW7yJ5tXvU+OYu+wR
ms/UQOYuc7z96Bu75C41udpcTvoxn9eAzyFetaT2WJOsTeoH+4Z60K9UvThd
F79YLnFXifesB/RaiaehN66HrdexQkmt0zPWa76p5L1ivWT778s0WYOuxd26
YTbPsJ6rfEAOLZdWo6vV1bz2LvS81MJq6sVrfldr6/HYm9Az0/sx/89V96f1
ZOcSv9U9495Rz1pvXvD3lOwR94o9Q/mi/N9ejRxQvafntEStT7NXPi33HFDv
zyIl2qpw/nlVL6i15TTqHTm/3F8+NcTcV/JshRxSb+GqkmclfObBZx/kmPoE
+gVyTzWoWlSPRa9lnRLuIkeRq1zKsSmaeAr2A+QkcpNxmvj1Xn9jOaD3z/sz
duU78pGVwQv2wmHkMsuX9Jb0qJ4u8RD0EuQIPk/xFGOOJh6J/ad7uvi7+rzq
37U4tk0vHEGu8EiJ9zh8Ez62Ygk3khPJjd5wfRNvwPiwRMOqZfX4fL7D9a62
cM28XnL9hnlnjPdLelb2rsas+cpjzvmZPr/i5/ssic+0vFOv94pN9qB78fqS
foc9lheIVynhZnI8uZ6ehN6Emsb+i56F3oU9fvszK5VwPzmf3M/9oXfiPfHe
+Pl6LfbYfP5k25JcZc4z960BXq8XjipX1WOds9Yv+cuOJbXCGmGt0EPQS7DH
cl8Xj0GvwXvgvVAfW9ut8W+ANyzhRnIouZQejV7Nh73w9We6PJ/xey/8UT/D
ZzU8dm8XPWnv3h7pbeD1S7iXnE5uJ+eT++nh6eVtXZKrzeHm8jvkk+DvGScw
d3xJvAXj9i5+iN71DHzeQ8RPdOkH64nqjVpDrT1btqmtm5RoIzmt3HaLklxu
jjXXblzCdeWQcsm1S7i8HFouvVEJt5Qzyh2f6nKtfmOcztxWJf0Ia4a1Y90S
rq1mUDtsVpLrzfHm+i1Laos1xdqyaUk/Wg2nlluvhPvK2eXum5fUAmuGtWNX
k1+Tnrx6yj3gXnCN+vyT+1Hu4Z5z7+lh2yvVc9fb1nO2F2uPQC96WE+16kH1
4W4ltdYabC3etaQWW/OsfXuWcEU5plxzl5JaaA20Fu5Qwk3kJHITexT2evTM
7V1s7x7tpSZaG+2B2DvSM7c3Ys9jgapH7YXY87B3pIduL2Svkv6fnFXuqr5V
z9oTnrHEP9RrVJPoh+jh6eXZU7Cf6TNcq9WaaH7YpoRLyBnkDvpra3fJGebb
DUq0hxpCLaEHoxejXlff2d8xV9lje7TEP/u9zTME1iP9lm970aj6I3uUcHM5
udx8d3NYLxxHrrNdCVeQo8hV5GhyNT3s85nbqYTLyQnlhnqmeqf2AOwFqKE2
7aUH92BJz2eOqg/sBentWSt9BkV/3B6FvVE5rr2LORgzNnkGxHpnT2Omylf1
B/QLZq58Sv9g4i7cwGdCfJ5lqRItrY5XH9ojsXcqp7Z3MqynW/mRvRF7PlNV
fWMvSI/cXq4cXe9cT99er5xer3/MLr9Vz/ebJpx70qpv5Fvyr8mq/pFf22Oy
V2mPwN7T6F1yhTnj6yY9oEFVf6mf5PiTVH0k95fj++yFmkPurwYZrfJXtYn6
bLzKB9Vv6qsxKj9Xbw3r+bbRMGoLe0j2ltUQ9pbst1kr9bf0ueyv9Ss/1/fZ
r+Rae83VDvuXcBU5i9pFPt1UPin/VzP2Kp+UX6vJhqv8Vq2m5rTXrYZTix5U
wm3kOGrrH9rkel56x3PenCV8R42gd/NjG+5lGjrRnFrSD5Zjy7XVuOr1Ib3w
afmje0VPTW9NTWYvW82oVlO/qn/Vm+ov+4m/1Xqk9tTL/73WF58NXKGf+qGH
YL9L/m6tsmbJ/+VPU/biCeoNHliSG8wRel9qwHErX1cbHuA97UWjqdXUkMNX
PaEeWbRES6mp9Ar/aMP9vCb6UmrIAVW/qC3VvKNXPaYWXqYfP/qFJv2qfd2j
vWh4tfw+JVpeza32VlPrz+jfqLXtgfmM5ea99Mash/Yenpe/9FPP7b+90qSX
oF/yRZOenf6HPQB7AXrY+t36g9Y2a5x6Y6Qutdhr+l6T5031gs1Z9lvt+fms
7Ga99ALt+fmMnvXYXuDqJV6Zno/ejz1nn+2x52Uv2p60z/bY47VXbb9HrrdN
rZ/6T/o/g8EPy2NLYo/pDe1dsjZcI3ol9ih91laOYO/SHqjf2+9v/XdNuDa2
/v982M9zM5v00gtVL5ib9Vw3rvxIruxzlvZe7EH63KsepvrHa+y19h7KR+yp
+lyDOVa/zP6Pz9bqYazcj7/ltfCa6HfZX5Sb2mN/ut4j75X/c9l++lEed958
bX9phC4cSj/eNePa0U+TL9kz9VlqPRX5/fL9XAuvgddirhJv1rWpd+pv8rfZ
Y16un/6mtdAe4nVNesA+h6RnZW/YHq7PZuvR2NvVgxm+y3rQm1Gvj1D1tXpX
j17uKwfW79OT8dkLPS69Gp9HHtZL6CVp/B+79gCY
"]],
Polygon3DBox[CompressedData["
1:eJwt1ne8VnMcB/DnPrcdqUh70r51K+2rYTSkQVFUVigjDU2aSIkUkkJDRlZD
KYrSXqQUDavwooWyI5H31/P88bnnfN/P93fOuef8zqjYq3/nfslEIvG85Jb6
/nwFWsqH6gq5Eokm7LC6rexh1Vhj6aaenpFI5GXDMhOJi/T9zK6UA6yunnys
v3q1vmbsCX352QC2hjVnj7MCbCBby1qwqayR8V3ZNJaHDWWN9R1ibWQ3q6qn
KTuivkz2suqsBTuu7iRfsmxWl32uzpEtrDRryX5SXyH7WR3WUK5WT81InZMh
9lvPyn7WXD5g5fRcwA6oW8g2Vp6dlmvVM40tzoYbW1DfsNgna8+eY0XY/ewL
1ostY2ex0fF/sR5sESvMxsR5Zz3ZwszUhbqOvcrKK0ezc9kU9j27m21kRdnD
7CC7i61hZ7NH2CHWj61lSdaLLWJV2Rz/Qwa7iS1kVdg4feewSeww68/WsWJs
MjvKBrIN7E/j74t9Wu8rJ9TF9T2m7wc+SN8mXoI9zn5kg9lmdiH7gbWXz1iW
sc3ZMXXHOF+sNsthR9XtZB+rwTJZb/Uy26vNHra9XKwPe4tls4msGfuRdZDP
WS1jz2T3qN/X15HN1VeIjWC7WDf2GjuDDWdbWYc4V2yr8fXUbeJcygT1NqnP
2qoryzz15piDrLU6Q8arG9je17Z3kWy3vYqsElunriQLWCLuQblG/bTx+dLz
qgUrZ/0VdtJv49TDZZP1EvJCTBX1vbJFXUpeYnnV98TxqEvKiyyPeqTsUFdM
7/cs9SkZYfu32F9eae3YllveGnNCXz7rbXKn5lbMsYnsTOvt2H0xZ9i/7LS0
Ym0lf9zv0ttvKyzH2MeXfs+Wlel7a4RsV1eQ+ayQure8qP7D8YxhXxt7dcy1
eFaxLun76Dr2TPpeiLm2m93IZrFjbCjbx25is9lxNox9yq5nz6bnaczJPewG
NjM9T4ewvawPe4mdYGPZN6xLnEO2ibVj81lXNp59wrqzlay9c1A4ngGZqWPZ
arlPXzM966SBeqX6Khll7GZ2ub4FfFVcc/X6eCaqJ6lvlRf0/c5G6/uKj2K7
WVV5kxVTX26/heI5k5n6P7ZY3sFf03PK2AfZIXY7e5X9zcaxg+w29go7yR5g
37ErbK+JZUdpzhdb3qnvdX3/qMfrO8wGsDdZbpnCfo79s9XqIvGsjDnCBrK3
1fnj2ct+Z4PZO+oz5Cn2Z5wztkZdVGax03EMjiXLspZ0iveZZSt9N+u51Hq2
49mo7ivz2b/qCfqO+O1KY3NiXNxTfInlyLjX4xhivsnFeloae0OcFznbb2Mz
U4n1U/E/x770NYhrZ/235P+3bmKwnvpWuqh/lXiED4r7hb2hTsokdoxNj17r
XS27Sed45lpWYn3iOshV8Z4wdo9x1WSp385V95clsU+ZzH7S248tjn3Ko+w4
G8bWxv8gs9PPl1vk+Thm//8odEDfzWxuHDMbyfaznmwGO5J+3n8c59zx7GWN
ZAMroSebfapuEvcDK8lKsjnxLDD2IfaFsWXZUnZO+lhibjTV2z2urb4C7F5W
Tt8yVkzmsF9YabYgnjcynX3ParN96saykRW3rVJsnjpPev7FvToz3nG2Xybe
V/wSPWVkofVCMkPfUb91iDmjXqK3JpvMLot7Lpl67sbz9yHWNs4hm8fKsgks
h/WI42UF2QhWxz4+Y03jvmal4nuDfRNzTHawSqyzDFW/Z+yFbHbMUzaErWI5
bFbcg2xwPDdZUzaT7YrvM/W7Ul29WH2p3KjvmfR3SbzPy9vvu6x0HDc7Ge9f
fT3VczNS8z/ug04sPhKXslrssbjf2F3xbGFZbAqraHurWNk4N+xvVp19pK6T
frbHO6Ua26bOkuWsYLyzpI5ttYrtxHnXM5Hlsl5XSvptedxDvIe6uzQ0doZl
bna7ba2IZ6d8GHM53qOZqXdtvHO3xPPGejXrLePejutoXDc+1dhveV/b2857
sOnJ1HfOALaL5dF7B3uHNZIdMUflqWTqWyq+h3bqu4Y9yb5Lf3PtYNeyacnU
d1h8c33EGtneQdY63g2sip4V8R0R74e4Dnr3qvPquzOZupZxTXeymmwXqxfz
w9giLIt9rL5AVrOirAbbqa4bc4YVZlXZB+qa8jYrwKqw99U15C2Wj1VmW9XV
ZRnLzwbFMaoLyjR2Ip5/7Ft1Q1nPKudKvQfifdDBsnHMH9uqICv1lJGX9f3F
z2Pr1efJQpZh7Plsg/p8WcSS7G5Zri4gT7I/jP0PAHiGzw==
"]]},
Annotation[#, "Charting`Private`Tag$26285#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwt0TsvZVEYBuCF43IwqEQURKFxa7Q0Esy4U45O5ShMYhg0EpUTjRliRCZu
EVSioRPN0YlmMOM6KCf+gCjEsxPFu5/17mSvb2XtioEvfcNpIYRpGbWI1oPR
Q0YyQiiynGI5Z1nHeTZynR3cYz+POMRTTvKWST5xiS/cZjwWwgFLeMwUq837
Jmf6CKukOT2Ec72FF2zlH37kX37iJdt4xXZes4M37OQtu3jHbv5jD+/Zywc2
OVeteePyqH9ljdQ712+9kikWc5/Z3OKz737yP2d4zQmeMMFDfuYu27nKBn6P
5jHJsui9/WLmjUmhnmCG7EiBvsUP3GQ+N5jHNeZyhXH+Yg6Xmc0lZnGRmVyg
UeFHtD/n6ApCqfL6/v/fAFAwPYY=
"]]},
{GrayLevel[0.2],
Line3DBox[{882, 1153, 594, 1179, 1154, 1365, 1076, 883, 1155, 1366,
1077, 884, 1367, 1078, 885, 1368, 1079, 886, 1369, 1080, 887, 1370,
1081, 888, 1279, 1436, 889, 1371, 1082, 890, 1372, 1083, 891, 1373,
1084, 892, 1346, 1374, 1085, 1180, 1347, 1375, 1086, 1181, 1511, 1156,
1087, 1182}],
Line3DBox[{894, 1280, 1437, 893, 606, 895, 1157, 1376, 1088, 896, 1348,
1377, 1089, 897, 1349, 1378, 1259, 1090, 898, 1530, 1271, 1272, 1091,
899, 1379, 1092, 900, 1281, 1438, 901, 1183, 1282, 1512, 1220, 1184,
1262, 1527, 1093, 1221, 1185, 1380, 1094, 1222, 1357, 1381, 1095, 902,
1382, 1096, 903, 1383, 1097, 904}],
Line3DBox[{906, 1283, 1439, 905, 1284, 1440, 907, 616, 908, 1364, 1384,
1098, 1270, 1529, 1158, 1223, 1253, 1254, 1252, 1523, 1159, 1225,
1256, 1257, 1255, 1524, 1190, 1228, 1099, 1227, 1191, 1229, 1285,
1515, 1194, 1160, 1231, 1286, 1509, 1230, 1197, 1233, 1287, 1517,
1261, 1202, 1235, 1100, 909, 1385, 1101, 910, 1386, 1102, 911, 1387,
1103, 912}],
Line3DBox[{914, 1288, 1441, 913, 1289, 1442, 915, 1290, 1443, 916, 810,
1205, 917, 1513, 1186, 1224, 1187, 918, 1241, 1514, 1188, 1226, 1189,
1274, 1264, 919, 1362, 1516, 1245, 1192, 1249, 1193, 1246, 1242,
1251, 1243, 1247, 1195, 1250, 1196, 1248, 1522, 1363, 920, 1265, 1275,
1198, 1232, 1199, 1521, 1244, 921, 1200, 1234, 1201, 1520, 922, 1203,
1236, 1204, 923, 1388, 1104, 924, 1389, 1105, 925, 1390, 1106, 926}],
Line3DBox[{928, 1291, 1444, 927, 1292, 1445, 929, 1293, 1446, 930,
1358, 1519, 1237, 1206, 931, 814, 1238, 1207, 932, 1510, 1161, 1208,
1162, 933, 1518, 1209, 1239, 1210, 934, 1211, 1240, 1212, 1526, 935,
1273, 1163, 1213, 1164, 1525, 936, 1260, 1165, 1214, 1447, 1350, 1276,
937, 1278, 1268, 1277, 1269, 938, 1294, 1448, 939, 1391, 1107, 940,
1392, 1108, 941}],
Line3DBox[{943, 1295, 1449, 942, 1296, 1450, 944, 1215, 1451, 1359,
945, 1360, 1452, 1216, 946, 1361, 1528, 1263, 1217, 947, 829, 1218,
948, 1393, 1109, 949, 1297, 1453, 950, 1266, 1267, 395, 951, 1166,
1258, 1454, 1351, 952, 1167, 1455, 1168, 953, 1352, 1456, 1169, 954,
645, 955, 1394, 1110, 956}],
Line3DBox[{106, 483, 107, 484, 108, 485, 109, 486, 110, 487, 111, 488,
112, 489, 113, 490, 114, 491, 115, 492, 116, 493, 117, 494, 118, 495,
119, 496, 120}],
Line3DBox[{958, 1170, 779, 957, 1171, 1457, 1353, 959, 1172, 1458,
1354, 960, 1298, 1459, 961, 1299, 1460, 962, 1300, 1461, 963, 653,
964, 1301, 1462, 965, 1302, 1463, 966, 1303, 1464, 967, 1304, 1465,
968, 1355, 1466, 1173, 969, 1356, 1467, 1174, 970, 786, 1175, 971}],
Line3DBox[{973, 1176, 658, 972, 1395, 1111, 974, 1396, 1112, 975, 1397,
1113, 976, 1398, 1114, 977, 1399, 1115, 978, 1400, 1116, 979, 665,
980, 1401, 1117, 981, 1402, 1118, 982, 1403, 1119, 983, 1404, 1120,
984, 1405, 1121, 985, 790, 1122, 986}],
Line3DBox[{988, 1305, 1468, 987, 672, 989, 1406, 1123, 990, 1407, 1124,
991, 1408, 1125, 992, 1409, 1126, 993, 1410, 1127, 994, 1306, 1469,
995, 679, 996, 1411, 1128, 997, 1412, 1129, 998, 1413, 1130, 999,
1414, 1131, 1000, 1415, 1132, 1001}],
Line3DBox[{1003, 1307, 1470, 1002, 1308, 1471, 1004, 687, 1005, 1416,
1133, 1006, 1417, 1134, 1007, 1418, 1135, 1008, 1419, 1136, 1009,
1309, 1472, 1010, 1310, 1473, 1011, 694, 1012, 1420, 1137, 1013, 1421,
1138, 1014, 1422, 1139, 1015, 1423, 1140, 1016}],
Line3DBox[{1018, 1311, 1474, 1017, 1312, 1475, 1019, 1313, 1476, 1020,
702, 1021, 1424, 1141, 1022, 1425, 1142, 1023, 1426, 1143, 1024, 1314,
1477, 1025, 1315, 1478, 1026, 1316, 1479, 1027, 709, 1028, 1427,
1144, 1029, 1428, 1145, 1030, 1429, 1146, 1031}],
Line3DBox[{1033, 1317, 1480, 1032, 1318, 1481, 1034, 1319, 1482, 1035,
1320, 1483, 1036, 717, 1037, 1430, 1147, 1038, 1431, 1148, 1039, 1321,
1484, 1040, 1322, 1485, 1041, 1323, 1486, 1042, 1324, 1487, 1043,
724, 1044, 1432, 1149, 1045, 1433, 1150, 1046}],
Line3DBox[{1048, 1325, 1488, 1047, 1326, 1489, 1049, 1327, 1490, 1050,
1328, 1491, 1051, 1329, 1492, 1052, 732, 1053, 1434, 1151, 1054, 1330,
1493, 1055, 1331, 1494, 1056, 1332, 1495, 1057, 1333, 1496, 1058,
1334, 1497, 1059, 739, 1060, 1435, 1152, 1061}],
Line3DBox[{1075, 1178, 792, 1074, 1508, 1345, 1073, 1507, 1344, 1072,
1506, 1343, 1071, 1505, 1342, 1070, 1504, 1341, 1069, 1503, 1340,
1068, 747, 1067, 1502, 1339, 1066, 1501, 1338, 1065, 1500, 1337, 1064,
1499, 1336, 1063, 1498, 1335, 1062, 791, 1177, 1219}]},
{GrayLevel[0.2],
Line3DBox[{399, 755, 595, 1365, 400, 606, 426, 1440, 615, 438, 1442,
624, 448, 1445, 632, 457, 1450, 639, 470, 1457, 780, 832, 648, 484,
659, 1395, 498, 672, 512, 1471, 686, 526, 1475, 700, 540, 1481, 714,
554, 1489, 728, 568, 1498, 742, 582}],
Line3DBox[{401, 756, 596, 1366, 402, 763, 607, 1376, 427, 616, 439,
1443, 625, 449, 1446, 633, 458, 1451, 824, 845, 640, 471, 1458, 781,
649, 485, 660, 1396, 499, 673, 1406, 513, 687, 527, 1476, 701, 541,
1482, 715, 555, 1490, 729, 569, 1499, 743, 583}],
Line3DBox[{403, 597, 1367, 404, 764, 765, 1377, 428, 871, 872, 1384,
440, 810, 811, 842, 1519, 812, 813, 459, 1452, 825, 846, 826, 472,
1459, 650, 486, 661, 1397, 500, 674, 1407, 514, 688, 1416, 528, 702,
542, 1483, 716, 556, 1491, 730, 570, 1500, 744, 584}],
Line3DBox[{405, 598, 1368, 406, 766, 767, 1378, 863, 874, 768, 873,
1529, 769, 838, 802, 1513, 849, 803, 843, 814, 866, 815, 879, 867,
1528, 827, 847, 828, 473, 1460, 651, 487, 662, 1398, 501, 675, 1408,
515, 689, 1417, 529, 703, 1424, 543, 717, 557, 1492, 731, 571, 1501,
745, 585}],
Line3DBox[{407, 599, 1369, 408, 875, 1530, 876, 877, 386, 860, 1523,
770, 839, 328, 1514, 850, 329, 817, 772, 1510, 822, 773, 460, 829,
848, 830, 474, 1461, 652, 488, 663, 1399, 502, 676, 1409, 516, 690,
1418, 530, 704, 1425, 544, 718, 1430, 558, 732, 572, 1502, 746, 586}],
Line3DBox[{409, 600, 1370, 410, 608, 1379, 429, 804, 861, 1524, 805,
840, 854, 855, 1516, 816, 857, 856, 844, 818, 1518, 823, 819, 461,
641, 1393, 475, 653, 489, 664, 1400, 503, 677, 1410, 517, 691, 1419,
531, 705, 1426, 545, 719, 1431, 559, 733, 1434, 573, 747, 587}],
Line3DBox[{8, 888, 23, 900, 38, 307, 1227, 53, 348, 1251, 282, 338, 68,
934, 290, 83, 949, 98, 964, 113, 979, 128, 994, 143, 1009, 158, 1024,
173, 1039, 188, 1054, 203, 1068, 218}],
Line3DBox[{411, 1436, 601, 412, 1438, 609, 430, 806, 807, 1515, 617,
441, 858, 859, 1522, 820, 853, 626, 450, 821, 1526, 864, 634, 462,
1453, 642, 476, 1462, 654, 490, 665, 504, 1469, 678, 518, 1472, 692,
532, 1477, 706, 546, 1484, 720, 560, 1493, 734, 574, 1503, 748, 588}],
Line3DBox[{413, 602, 1371, 414, 798, 835, 1512, 610, 431, 771, 841,
1509, 618, 442, 336, 1521, 851, 327, 451, 774, 1525, 862, 392, 463,
395, 881, 643, 477, 1463, 655, 491, 666, 1401, 505, 679, 519, 1473,
693, 533, 1478, 707, 547, 1485, 721, 561, 1494, 735, 575, 1504, 749,
589}], Line3DBox[{415, 603, 1372, 416, 799, 836, 611, 1527, 432, 878,
808, 865, 1517, 619, 443, 809, 1520, 852, 627, 452, 880, 1447, 775,
868, 869, 870, 464, 1454, 776, 644, 478, 1464, 656, 492, 667, 1402,
506, 680, 1411, 520, 694, 534, 1479, 708, 548, 1486, 722, 562, 1495,
736, 576, 1505, 750, 590}],
Line3DBox[{417, 604, 1373, 418, 263, 1380, 433, 275, 1235, 313, 1236,
276, 396, 1277, 378, 465, 1455, 242, 479, 1465, 657, 493, 668, 1403,
507, 681, 1412, 521, 695, 1420, 535, 709, 549, 1487, 723, 563, 1496,
737, 577, 1506, 751, 591}],
Line3DBox[{419, 757, 758, 1374, 420, 800, 837, 801, 1381, 434, 620,
1385, 444, 628, 1388, 453, 1448, 635, 466, 1456, 777, 778, 480, 1466,
782, 783, 494, 669, 1404, 508, 682, 1413, 522, 696, 1421, 536, 710,
1427, 550, 724, 564, 1497, 738, 578, 1507, 752, 592}],
Line3DBox[{421, 759, 796, 760, 1375, 422, 612, 1382, 435, 621, 1386,
445, 629, 1389, 454, 636, 1391, 467, 645, 481, 1467, 784, 785, 495,
670, 1405, 509, 683, 1414, 523, 697, 1422, 537, 711, 1428, 551, 725,
1432, 565, 739, 579, 1508, 753, 593}],
Line3DBox[{423, 761, 797, 1511, 762, 424, 613, 1383, 436, 622, 1387,
446, 630, 1390, 455, 637, 1392, 468, 646, 1394, 482, 786, 833, 787,
496, 789, 790, 510, 684, 1415, 524, 698, 1423, 538, 712, 1429, 552,
726, 1433, 566, 740, 1435, 580, 792, 793, 834}],
Line3DBox[{581, 741, 791, 567, 727, 1488, 553, 713, 1480, 539, 699,
1474, 525, 685, 1470, 511, 671, 1468, 497, 658, 788, 483, 647, 831,
779, 469, 638, 1449, 456, 631, 1444, 447, 623, 1441, 437, 614, 1439,
425, 605, 1437, 398, 594, 795, 754, 794}]}, {}, {}}},
VertexNormals->CompressedData["
1:eJyEu3lYjl33Pl5SKlKRSiVDkykyJ2qRSkiINFNJxhRFKJVoEEo0K6TBVEgD
Gu7dPM/zPM+jQqXIby96Pu/ze4/jPb7PP9fRepa1z3XuNe19X9dSY3ONkzOY
mJgmWJmYWOgzeeo3/c9D4e/Tfvo5BF5MU5mPMnwVOkZ+BIkGpkAm08tjQh+G
4MxnslJvpa+C/4y+5xPxxdAa/FtWvG0Q7MJWb5Urva/wsWpCdsPmqum/ByDN
VypVINVWQbe4teQ1b/303/3g80HcvK/uqsKG8chP0seb4EDd1Ib97X3wy3cA
gvZbKTz6/MT5xfNmWHBMWJbraB8w/f3Pwf7hJ0Ey3AwJqpIx+yWo3HbN93NW
Fxh+0/qi0/qG35eksD61YayYtq8ybd/khs8Nv+A7jLGiv3gMpvE8lPUsWLvY
kSFS/Rc/U/hf/M/PL9djjbzHUGH56++SkL/+sj7Nyn+/4i7j49e//CjM+MtP
3u0NzjLHvRjLpvlcNs1nxf3tPyfpvx9hbOcUb7NT+PschJG4HQkSIiVQ1sZZ
8H1LMpybp1e323MQZDZFPrljWgzuN+P7XOlT6+T5L4vKBsCR5YX0EbEC6JgZ
ULFpSTUoOMf298X3g6RP9uuDjllQvcg80PpxI7TbdJsdt+mDzrrIT7rnkoGj
8zCbVHQLvMy92WOs1QtZUqNyh6reg0Oj0vZvkm2gWywjFXCv5/94Ht2vFDrx
vA1meYTH71TqgRMBFQ1UnzxNv7IN9bWaFkmifsF1x99655LJqm8XmNC+iVhi
M9qPVPs4QfEQZd4CP8Rz6lTYWcRzeXVaLsVPvn0MDUL8MVb2g4hf3WNogPpL
3M4v70R/P3Ls60R/hT3utFJ+SIWQdC7ykyTwrQL5kR7UiKT7Qbi7fLaIt7kr
/H0Ogn/Mh7tv6L4W+BV7Ydz9ffZDLFdQSV5HAzwojBN2So+FwX3r8gNX9EPr
1+btVym+lGgL+wOUP11d+UOIc0Xwtru2GQ0wPyqh6edgKeT9enCBfOgFizvO
XCIZtVCoJwrC9LlVc1UMa0EPhF4bWVhaXw7nHva5iaq0wGZ27bUtFd1wIE34
jK5aFvitfXYqX6cdONS4Dj/63QWNA0yNq0WOMTIyOMZa3Ttgc8xv359hXXCq
sG8D1Sc3Pm05g/pqzQNHUH/E6RIrtU9OL48MQvve1wMk0T5rrsUoxUGa1SLO
I57HylpvEY+UNfeITUYD4RR+PoH4C+/YeyH+vutDi6m/JFyd3Rn9vSQ1oo3+
5orfraH8EI7NQkLIz/wbwrnIj/oXsWjKJwnPkrmLfP599oOVXOZezLd/4oX7
ubM+5t0lA5ULJrNawfVA5CXuuU9A+nJ8e/G5XuiX9VTBuCnas9r9AI07X9E2
MYyfHJUSv4vjbVB9XTfPki8JhmZofu1N7AYmU5P7f/w36tmsTfljOyimiTyo
fpdc4J/TBt+luhdEp5SCgbH3/XDNLtB/LnhruLIJ8iylDg3R5/OmeHHHpE6o
PhgzoHZVn+F6Yvdr2fZOUKsLStui3wnB5yo8qD5hebb/OuoLSzbyov6XL6V8
1D4puryQH+2Xfyr9Yz+eN+gaxUOcx/aoIJ5Z6ydMEA87+/UQip8s+2CZgviv
f+juRfzh4l5A/SWXtQM80d/sDQIr0N98do+9lB+i7mTgjvzoRfD+Qn52B4Xk
UD5J94mG7kBa/8IfaHAjn7kezcuQZ4e4oXGsc67ihVYoNyi7zYw8z9go2D9/
7hPyoui1dAm180vs0wbkua1ihjPm65qwstV/8rRB+RLyfGeenKs1XxJ5Y9fE
1Edxcswwl0ee587xtMS46z28/gr69TVjroUf5VmqaUotNqWU/Hz29AXyMJH0
TBX5Oj9hEI78nVI/Joy8hftFZG7VPckwuHHWm/JMMsN/VCPPu17JnqH6xMpY
4hHqD7K+50d9mwpLU2qf7G0I1kD7akXP36J90S+rBJBnQ7ODnoinwq3SC/EM
vgUz5NmnvP0e4j9bXzUT8a+1Wi+CPP8Msl6C/jpr34Q//o7vXoc8C+3nzUJ+
9owt4kJ+VG9+SUSeD1vYPkA+Bdi4BJDPE9P9iXvUW8Mv+Bojf7ovNKrev4p1
o3UHvyfNC8LlcqYV86Jja1X9FVo3ZKROdGOd25Lx/Snm0bVzTSY07yCMt0Pk
12Ap+RWaHYt5J7zwxychmp8y2pxdmK8Zb0aaMU+XRvQpldC6se6nsC/Na5J5
NuAw5vWD76ILMM4MdLJ1kY/kmcKOyIPCoPMMaRF1xrK9D6to3SD3pd/FYN0Q
XtempEP5enKsRwv1JYuFL6G+4q1mcWqfsLIUPkT7AQGHDdD+p2ieXxQPkc/z
r0Y8P4ZmlSGetW9852Hd6G/t2YT4T23ak434NZZ9PEHrOGHfe2sc/d1+7u41
9HfrOe6tWDfmpF1hdqb8POzqGkZ+Hu+u2Y51Q6ZDYxvyuZlt7kvkU7C8aC32
0fzF/cmBG28ypIa8VbFu7/U++Vic9kGdgbS80S3JpPy1zCTW+W1egx+xH9hF
+Z3F/hAvHTOFfeFMf7znIdoH/dOLt25eUk0WL58xo5/2EV5DnhCsa5G5V58h
XqcNrdcR52dDnRXYBxewu/DRPkU03tzrwD4lJ7fs/UGany/lu8UwjpyHW+T+
3QcvuBhcpn2Q9A4vbMI+yFr78voBzKtacwnUf63Xvx31Z47vztShfVDg3EF+
tG9ssKkb7Q+qigZRPOTM5RWeiGeq6oo94ilc3depQftgs/Z2QcTff/TCV+yD
nu5xhdRf0pw/dRr9Lc7KnUR/X6oNvaD8kG3v5Z4gPy8XjEwgPweJbckP2gfr
vTiykc/bhXqayOc/+Hdm55jJHL/N8Pv9dw75R86XrrZBJDCFiEaLWeHc8o/c
qXw2YF/dUuKk8m8725qOcdO5iGScV96Jc9E/8sPOnOq4z8V89SG4v//I29fK
dKw+3kTa+KzNce76PzzHh29i/vWxfJP791zHycnWyRhuJu7WeWV/5rr/h/7/
sv+/8Pwv/P/L3//Fz3/z+XqnXeU4/feFVr87kX+/Im1rtBOtuSeFva2QsOaU
SSzenUTEjNefd64cBOe66803f+WSw1WT4Q70GfTtY6bq3UG4fmHJmNW2THJ/
JIH34ulS4uKxIz9BbBAUubi3544mk2czGj9x8leSddy322MSBsBcz2mDSmUc
6c73OL/hSTURfRI1/6DpAOw67Pp86Ug4yfGKCJUXrCWKMg3Gi9f+x1+DJq4r
el61JCvVvGORyABohMjziI+Ew45DO0JQ3yNf2Qj1X5Vu+b67Mg781SJOo32Z
lDncaN8p7l1szmgyZHycSkA82szx3Yhn+fEEYcttmXDdYmIR4p8drdaM+N3n
vC6w/5ULz4beEvTX5cmbVvS38AqXOVtbISQfXFWM/DDvbXRHfqbjGcaf8ZT/
O57ZGiasaH0mJmXSS37rXWYICpRV4/6yfj/U22xaQ2YpguZDuw9kY+uPfdm7
B0DaSO4W4ouJ3emK/I1Yp/b9wbln7Fq6Yim5tUPaeHxrFjl0t7/lyqJBkH9+
ZkyQL5+0vuR0W0ifgaYxs8rPDcJ4n/bVltlppLH4xNZDbkVkozCMKYcNwrJB
p+LdCtFE47fDF66iYlJSvSXNJPs/8ePtaFkRJ1VCng5OHtlSPgiqK2Ytp/rQ
sVBrGPUFRkg66g9WsUS1zk6DujuvpdH+wbHaPrSvbzg3i+KACxfu2iOeD2NH
fpZRPFs3JHdQ/HCnwtUD8aeNnixC/BpO5YMc/JUge/O1L/or65/OFkv9PZKX
cJvyA9n5808gPx9UmoyQn1WqGR+x33lxz+dDPvf3O2cjn6tOlm3+k2+/OQ3F
DE4z9p14fRrzbh17Wuazrw1kskXilNiYH5Ez3LoxQ6kfRjY8P4pxc79sNJXG
EfnxueYixo/irPDZS2MqyJfGG5fcAt6R2Q5PnEY5BsGEf1gY/Q+OqtJQpfy5
HxttRB4erkw4uv57JnFqcd0yKy2WLO7fXMZiMAQsDb+04/Z/JF1H9HJi6fNl
7uzAioT/5OPnS4P7U0o/EluBnTcs64dg0bFVsjH7P0LO5+4C1M/JUHiO+qd4
XIvWfc+EgWN529B+2l3dGrQ/72BhMcUDExYOuxDPHv7zmYhnoSpz6pKYCli5
zswB8R9Z3/AQ8SsKBadTf0G5WaBZjPpb5PtdB/3N3fbWOPhrA6y4G62I/Fx2
/MaJ/EjuNTmL81us0Hwl5HMp8549yOfqaZ4v/hJfvUTSVGH/NM/pfD7W1A5h
PvhaZNmYH+QVvmFFO3EeO/YqUJ75j4YKYL4mHu3bhuuWOHy+ijxzByftcw54
B0zFqlcQZ4/hywfI85LdZuEqNO6cMzaXoV9xdV/4KQ8kU0g9Z2ZaLDTI+3Yj
D5odFnnvKF/xA0qHoyl/qRud4/7Ns/wZ7vqk0o9w7rW7C/J8aOt9eeTZ73rq
HtSPnv/oFepfOHqiHHlm8B5NQ/sLWX81oX2to62lyPOOHUXPEE/dablcxCO3
pEuI4oerxnYGiD/UfbkL4m85w9aDPLN5/ThHeQYl8TUa6O/OncmHkefReE4J
5GfvqBQ38pPPI+6GPJuf4WFBPqPqRjchnz9Tc9dgPzh88DI7jXOFi4K2bzDO
237y92HdCBy16PW0+wCPfterYV7kkS1HsG7YehSFY517peXyE+vGVu4iG6wb
Tiyai2jewcdHo+2YdwZbdQqEaH7O8owaovUDmKvsv2Oeaqql8WHduBX36tZB
tyJg7ypgU6F5Pfp28WdlGmf3mXKvIx/iJ29X/7tuHByY5UPrBsy+X2iAdWPz
/TkYl+Au9cAa9WMnHpeivkxFbS61D/vLKmzRfrzfKia035AaUYB144jRk5+I
58onBxasY8FqT80zaN1wXFzDjPiPDh1OQfx+VntCqL/gFu3/BP1dbyA2iP4q
NK251ULrBoglViA/4x/5ViM/pYHP9+H5Wn7pNhbk0+rYpVDk8+lsqVs4h2xz
meowc3FUSDg+dhzr9qHd40s4aR8U4NJYI7o7CUyu1upgnW91CuzEPvjdcLOY
A/YHtZcF2BeWeTdXXqF9UG99v4/F6VKI6W3Nxj5yv+724nxa17be4Z+PeNOL
uUcQ54r5WY+VaB/stbOSp30KophuLsM+JVAgsWsJzc/d5c5pGEf5/bMN/t0H
i6Qqu3W9aqF3QQSrKO2DuTKdIitonO1U12L8ibvtoIX6WaaOeXtoH0xR+bEO
7X9syeVD+3OUZKZonYWYJ6ULEU9IzZJJxMPrXylzmfZBn/bcYMQ/MPddLeLn
fZBdg376d+XMwqdI6cxG9NfLW2ghB+2D+t3Z8siP4l7xs8hPaFYowTl5dq5q
PvJ5tFx4E/I54899ki9j7597ptsK2r/+ziG2SQ8qH2W4MEy7mVTp3AKHXpyz
xLnFdmzdXvE2d8Y4z4AY2vv79yCM3Kx498bAh5GixSmA910DWlmAc5FVydsY
es5nHAoS5MB9/vt3P7yaqRLVV3eV0XKh6D2du6DScZ0dzl3blcw0gvZbMbKk
owww/y5eYTn07zlNxcsqjs518OCJ7fC/57qKaX3naX3mQ4852Z7aKFRP2y+c
tl+1L8s+r+KeQnbgXzxdxX/xMFdZCHivcFVI1f6Lf4vOX/xzXtgvK/nirLCW
96+/bdP+DooHnPZmeaTQ3/WXn8vhf/mJ+ntfpxA1zefENJ8z5+Y6V8amwMxH
wU9VbaOgOXBFcVvQEGzSC27xYab8Bm8INp6XC6ss7y2dxzkETd4mIqd0GJAb
t0Feuq0cChftjt07YxB4tgrpn9ZhkOvJPHIo53HIeI/y0O1nXvgyp5DkouTH
aOdRE7cw2pHcnN5UEZtCvjrWPMd1iy9MVuC6ZefmflC7WgUeZWJS7HalkP9A
PPeEWj8YfN0/eqO1HE63SPHvkamFX02iSsZKfSCWo7BIyL0YSnn7P/TebobO
CW6rU0t64TrX8nWzjSjv+idDVYRr4FJQL8sPq254OV6sq7K3Bop40ybFT7VA
5Mpl2pnv6Xnz+q+bVE46+TNHUa5aonUI5ULxp0WUqT6PTbOaxKkWsneW80WU
zx5KFqByUr796n6U6wQduYTyMyxLUjmNmgmXVUb6buEaUrZDaSaua9DldmWh
ezH5vEUuh+Ik234YOCBO/9nuvNQvwh/PfZ36RYZZh7TQr7KuOwH7rlYRF8X9
CykPxJNbn82E8jDqpHUX9+v03pfNSrZRxFpubzXylrrjkTHuV2dYqfaJeblE
2F5RBHl26nC4bEz3q/HAXUu6LyR6IISB+/LMumOTCd2v7OUS5iif8/PQJ5Tr
ugb1etH90p695gTaMeL1XY52rjJ2sZTR/dJYzjeC61Zczh3Ddd3EtDmJbAp5
vntcM4cpinhLClsphgxBcLTISiqHaztM/sgL4mZZolys3OVrCtWPHMt4TOXg
PbRSF+XfFGbFUzkI9ZQEorzAfpE+yvM90+fy9nso8O/f3junJmr67yFYttwr
Q8ExBQ7PP5srT5+3WNv9FU8OweRlbhmM+z67HfQ8Y6/w9zkEyZfqOsboebLz
28AsvIc2awxrxXNlTM/I0p2OKSRkvI2BdhL55ZzQTqVFu2GOxUNGp9rfda9M
rztxZaBsET0vFYlEnET7f59DIC24vSP8cAaJVc1LOijcBqlsmceXifRAnKKT
EI1Pwje5KBrjc1ffsT/xeU2pRd6O7ruc++XZGM+3siZlcd/nCodE0fgnraMy
f+L/6RvZP/HfVTL+hPGlAzh05v+8dOchI+GYWKv6vi5w5/75qyGgE+r2Ljtz
NimI0cm2SMcgvBNSRNw67m1Oh80F7tuW+HeAbbnRsDdPF7SFn+V335xOOEe2
bkD5pJhtN8qz/W+MnJKk//9i867Xyp8Z5x8atL8W6IQmKYucmJRScuaTSBje
k5kum+eN91cbdvWhPomY0v+jv/hVbxvqu+xnnKV5Rxbbcjth3knsN+kYp/Gv
xL/uK8VJJr+rWCPOYKfWE4hTOtQ1mvpFpMZf9aNfXZczCtGvPYbijzJTWkhq
osV8RaES4NO8MtG0qQdiD88VfCvWQa481c0/N8uJoam9Mp6ZrRv0bfgEqBxy
eIULUD53PVsCysNZ2hdQO3Qe4BXcJVRCFKVsJJupHXVW9y6ap7Db5tR7zNO0
dWZfEKf42jIvvD8dT/DOdGB9yTBz8KrB+73UPWpKY49bYZbK6qZulWri9eKI
lfOsLtibfd3O1/op2ZL/Ru/pmS4i1xogG5vbAW4uSo/uUv6LPq88S3kmLAW7
qpHnjJSEELw3dFyXLLyr5yWDHQ7lov2DL60E6H6RN2P3TVGfDU6Xo77U8ng9
ui7RbrlfhOtKJd06ieuqFUwJj+1oJ6s+68jGmhWQovTybZtfdkGS7GGJz8UN
ED20yDy+uIH8/LIvIHVeN7TpuobgPe9C5yuVeB8Za6cajvv4f+e40aXmLXs6
SWhefNL8UbqPrBrDtP5AFdNJMaw/cf4fRzAOHeO38WAd1tuj+KdewWsxbYxb
4uHUJEjr8Ikg9nKsb8Iqlz0xzmeLsG8JO5wBt5liGDQvSKVY32XMi8tQkYT5
O7w01BBo/omfYrqHeafYJlOOv3805O7Wwd9DcoXKuzFPWb6WLFVAvcigE6h/
7aumJ+pnL9XMnzPsy2ANN1+JeXrc8SIP5ql0ne9SUZqn7HzHthuesFcwif1h
/Od3PVkZX6wPOgsH96BciryxQDnPtnojmu8KztN2VG79tZMxsKmT40EeEYu6
O0dxuAWiZhpVJ3n3QFPoTBu8N0w4G3kU70FD07he4f1hikaQgOLJSsJ85uXz
nScrYUea3bN7hX0Q2xrrTfcL1rxKZflgVgCJqefn4349czorO07jSquq8kKn
SjUskHt8GPf3n325FVD4gO4LuERxBuG++OToC75bXg5fPzKbc5xrB64nWaWp
Np0QNNm5gcqJ6Oahcyj/fP9kEcqv+P2Ng0UDglcxLjZxv3HAeDjz6qk4XZeA
L7strjvDdLEhrvvENO8xxtUN6dpfURTn086IuYjz3meFhbrb2gkXR8vcwKup
8FhZu61SrxsqXJfm62xrh4GzqSJPrqYSaYernFVUfuy2+zr0N7z62mGMz0K5
XVJop+mBf2cExb+pZ2M9xUn057kOIE4AqWIqJ9bfYxtRfm50zxeUP4SL7Mij
WoLDJ/okp8w+lCKfm/aO7cDfewKi+mrxHndPTkMC8v+rJbxh1oM8EMs8K0T3
i6hZRg/jfuUFen3B35/eyFdA+xVXRl5SaxDeJ59k73RBfgP5829GePkzpC6+
D0Oe181Xv4/5EHboqw3K64Ytnv2Rj75vxfvotiuDamjnzKJ7r9HO/JXRo65B
5WBSxTiv8LadsPoM860U64T6hW3e3/jaiP4iwSet6jVkqfH5p8O6nVDq8Xxl
HrUj8ujCkTKrLPJlP7/vVHcn2HQdeEzl8MUkX7bAKguubRL1RLnIpo4lKC/4
ud0A9Y/Kvn+K8uH7/mqjfG1Qx8zM0aheA3LR363Qvlxrh8l9iscmLF5b/m07
cLQmzUU8q2RtIykecGcqu4d4oheteoD6/HOeJVB9Mk/ypTrqR6d8Z/mDfz67
DLVP9uzuWYT2Fe3MXFA/xU34xB2qb5suZYj+OtlYz0L91U8VfNGvjtZr2xF/
aVasF+LcNlu8Zg0bnadY4y8U6L1n1JoONshv7QTWg8opaYInGePmu75iP/G8
4f6nj5z4sNLxi1IXiFk1S4a35zCesvIE2491AG+87C0qJz9VPSRQzjs5/BTl
zIFjJdQ+CbJfb4X2VX7pd6D9MLHQeS7KzbBvoL/nNn2udm719N/eSeNn7m9n
5WZy2ijlC8qFRrc8RvlQ++Vk/NuEu1eU/juyolfhBcoPLdvVTuVEvM8M7ZG9
89f6oNyeMcfFuykKljK9Kl5eEgyKiXlSHF1DwHmqxY/KiWjcwz9ytbKQP/K6
MLWOmUvPMyzT7rKfpv22SmdnAfrLsYt1vJURRezmpe5+8D4YCvuPqJtQ/dTk
qdNtjCgoatz8R17TqLMf5X71jLs0r0FkhsQhzOs56g23MK/Hq5/dmTuzFZZF
dlgwFVeCYWClkHp9F/wSC4ykfRwiOhpfYB/X7dTww/pvvjDe4Dp7PYgsJbs2
sbWAF+NCxW6ZLph3MWkdtUuGxyPOYf1oCLnti/YTu9niSmSriV/Wd/XupEby
+vxYWvShHlD7KpZXKlsNc09Wfu1KaoTHXjpBKA9d8diD9h3yPHN5E/ad/JSe
57gu5+todoqTaM7Or2MuriSLn1+UQJwzfULbuWn9XXFTmJ23317h73MIeJOz
5qbFezHMi7tMfLuDIbUhPennxBAsX+5H8Pee2mHjw/j70iTv6Y34u48q654P
FA+JdRb5gXjuuUcFI55li1x34u/KmasP6+HvzE32L4+gfnqKjg/1C+6Yv9VE
v5Z4OuSg/ti90Owovg6obdKTgBvF8NHuyQ27J53AvCuPDeUCGooKu24Uk8Z7
iy1RPn+nPDeVE+X367aifLJz9XmU73ng8wvlJjMfs6KdV4ncGiifPMGc8HPC
g7HmxN4jgdSvv3/T85eY4WHkIf/3/R3fhBwVTI0NOZAHi0b020OheJqHv38P
wZSFT9TcmigiuTmXE3n7+xwC7bKbnSi3ExDciXa06g//kTs7Gbw5K/ZQgXV6
3ajpdQ8vKhal/Zr4B2gQ7NdlDxOuYL/+PuGyZOhFMZEx23m7bqKV8IybBZka
dQM7L9sqnNMGfUwlcL5aGam5AOcrG9vPqrgvluHJWsizWOmpg8jzZfV3T8Ni
Gkgs3xOWM+q1hMe+w8JFuAdamM744Zx2snQNL8578heXjeG8J35rxUfcr22z
H2nh/uYdMdmKdkzcs+PDYxrA4Nf9k6fVayGF64EK2pG4uC+RzuGQdKIK5w24
ckzSCPHf4L3IoPjB1LX0HMUPmuw23oj/d875KO+pSujeFldXZtECXK/yzJPk
uyE+/9adq+z15FrTwVqaF6T708lvmBe+Vjca6brkw7omfVzX9J6KAq77+ZtQ
M/ULbhV8/Url5N7osBHKF6R4ZVgnd8K98dvvhyGEwSV//6uvQyc0cEIalROJ
73c+oLz3Uc93lN/K8ubzmqokuSajAxQPyVngmY54LhVpqSRntJLMMzp7mG+X
kiNTglM3N3ZDXAizIDudTxwCby/GfmdYua4X+92npqz4xaGFxNR4ZriOXSvJ
2rzdTnOsG3g4N5fTfk0WHbVqC6L9+lXcNTbs1yVNy4rMhdqIo8GNW459BUR9
SGvJV/du2HdBvalpfgl8am28cvx0IsTeXPT58vNBmLp1pVxU11fhcZ2+YIVb
AbzU/ZpRtmwIROaYNHcEFANL4SdGSXQ+zO/S693BPQhLrh3dmTDrocLZWwM+
AkXl8FPUUKZDcRAu7de/uvZhIRguqgtbrlwBYuLhlrfWD8BUZbuyvaizApcj
h/vDVzVgfM95wv/gAPSb8jaZHssF/tEtz5vP1IHp4pcNjlL0XOwcdctD3Ubh
jsK97E+HGiBlT2VdycV+eL1KKnuoKR18mZ7HPJal5685fimjC/rAXvXUipmf
rRVG/ZfoBNU0wb09EhnOKX2whbVk7GxdImypNPj1bV4rXDfqVChd3guha52z
h9MuKswajlz+MKIZnpl3NTIf7INvW8V6P16PhJy9OQditrRBXqor/xanHuCR
OEt6w84y5kzrv5zW9zx5fNbn65HEznbVH/1ZInELUH9JWWvPLeerjG/TeO5M
41kalDbbrC6R5LNL/UA81i6hsojH4tz4sx8bnRiHpv11mvZXYJem1ZemdLJi
tP49+ltR7p6A/r7aaJW1ocOJwT7Np+k0nxtvux89dSyXOFivdEI+DzIn/uFT
qYKNvU/YmdE1vV9Ji//ul9cR1wUyDwuJV8saB9yvsdtbLXC/0sPOPuPWuseo
rP8bD2N6f+NBJyBBojOgmDxnfRiL8VC54UgLxsP3rO2rxwPuM2pV6nPb2xiw
x7kuUTx9CGy/WFTReCO/ZvK+w3j7GHHyT7xtu7msJv1tAyiuEpy5fm40NN4+
LDQF/aCnHmnic7kRyvyrnh09ng5Za1wqsiL7oOFA0/mipY0gxddwUUOpGAI+
94+XsPdB6r48ziea9dBPsmfId1XCm6sHnnMc6IXFijaRCefToeXHG4Wzbu2Q
kPSlhIOpG7gDje5TOYn7dRNQPvf1YCnKDy6/qNcUWEoWeqrOOC7YCsE8xXX2
H7rB6+KdFypN1WSm7Jfk5LQG0P41wDRl2QMh7w9+CNKsJ8l245K4rs+PnR9w
3b4zZjMoTrLRQvg24ryxtWp+KcV5RK39IPWLJNd6hKFfAnNTatEvFZ+RdsoD
ka0KnYE8tPPKCyAP7pJi4VF1LZC0713Ak/0B8Mtf1fu8Wy8sWuik79HcCg4q
5ipssyJB/UZ09aXMHtgX8bP/95s22E+enlru8Al2nPnKYcfVA8LRxcleq9vh
d7/oOtfBVFgdsv2VmXE32Lixyd/haSDz5G5cVFzaAnNNgwc25naCGM+2Bztk
24gN/2iemVsFFKl2dcpsonXynjSLrmo7UTkT3/GjMw/ErzSwXyBdcFdi2TBd
l0TJ1hjjumsD0tlwXUO5W+oUJyGz9h9AnO8/9rUizh3a3D7ULyLIcvzIU+qX
zbe+p+jXxu7Ynegv9xHvqef7A8i9mvQqlHfdrtiA/gYbhOdyzIoka8rvjKAd
7vJFhejvfNeDNqscPhHxe1L8uG7oYztmF+pXWDKz1q6lLSRv89Ex9OvIxs/l
QP1i8WBZYOFWQQReXphAv7jfz76rQ/0yW87a8bMzj/jeWLwF/VLbaJCKfnVp
ndJG+6p3exejfeNtL6TRr2ML+lcjHuu9qWOIh+uKkR36tZU5oAHx/7aeeIv4
lTeoWWGcm/4oMaH7S9aezduA+1scMKriTeN8oHge0TqeTnZ+H+XPpvGgN1a/
ppDG+ZndInU0fsizgzE7MX6sJGwKA2mc39jBb03jjWzUWdmI8SYRstilMbAU
XhOYOCbYSs6nRXM40LgVMU8K/UzjXyDJTJrGOdl86ORPjPOOOt2P8TT+b0m+
X4Vy9zO7h1A+M+ujVUFmKYm7oLEiXbyVsH8eDr8U3A2v7mS9Uabx3+6yQyQl
rYEIRieKYfwb2O3IpHjIpkYbG8Tj532+CfHcYdmG+ElzaO8A4q+R4wLEz1Fw
P5D6S6Z+nqhBf2tHN05h/KveaduD8f9clycL+TFe3imP/Py8Ne91I+1Tti/r
txudTiQ7dz1vwLrxdmC8t532Iz67pUml0fnEM5T3F9afK6ueLJemfac8QpZv
hXIFGSlRdsY6Zhviw3mS9pelHg7ltB6SNwOV/VgPlQX2DwzSPlJwf1MCratE
/dr6bKyrBb7Hfp2h/eIpswfz93mtpIJJYwfWZ2270dE42hcC19ltpHWePJdc
uxrr/FfRX9UxtP6v5Hy9CeUep4k0yu/sPi1M7ZB7A8dZ0M7Piu+KaMefKyad
rku4mY9+xHWzu67m47r3yjSiKU7iGNGUiDjly+K6EWfNzkdz19D6LHmVdYrW
Z8J0SckG/WKT1f9NeSAjTO7vkAe7XTyTyMPhu+teUd5IXhDzgCHlLaqkpxF5
m75/YMoS9LpwpoZBgqXUbPan/9/vpEyzN3zsKXMrIOG1HVVY5/+Rz5do0KL9
gpje2rIN+8U/8osXGj7RvkOO8kkNY9/5R97gbJlO+xcJdmmvx/71j/yResen
wJomEhgv8hX74D9yxy+bRWk/JZ9G9nZgP/1/yf+Xnf+17qX/gZPvf/j1v3go
+C/e2gydWdS2FZFiWzPJ+SGfyRKL7neDDYNg+1jufdmvPCKyy8N2pD+LCF+M
z3kfNgj3Vmwp9OHIJu9ndZbf9Comx0avGx85NAjLuERc9APTSPZGJmUfxXKi
v4j17utvA/BQzfAUS3YS4WF+6+Y+u4qUvlnzs/LJAHyqfTZ7PVMMmXuCQ1t+
qpqUbz5x54DuAJznzbC/xBdKCo6pPbi1vJZ4+hUW+UoPgPOSkadWfKFg5rjJ
A+VHAnwKUW4qWvh6A1MM9L9rPoJ2FNJDnNDOpQUyuC7M63P8s+7Coi1/1mXe
Y6OpF5gGJvJL1BCnAouGD+J8PubS4MWRDVZ64i3o1651566hXweOfLpX8isP
vhRJhiIPnF/mdCEPl9JL5PZuKwJXY5VE5O29XHUu8nZGkCusnFFDWKvsNU/I
vCdhn590sckNgL2HdXrlQCVhYj1Rf4efQU4PsMsahAyARX9x7OPYMiLVmxTz
uD2d3Ks9R/ZPDQDPQkUZyxXF5EF4e03Dmxyy/IZbp/beQYAPN+z2xGYT9Svh
srdOFhCJlQGuYc6DoBvaf2LyQzLpPqUnWM5RTEJ9Kr12fhgEzsDspoqq96Q2
+Lnh9bpi4pQ//6hG/iDouW1Wo3KQ8lcxQrngmh1aKF8rs1Hu54dk+GDTwId2
grfOcEc7GyR0Lu+NzQb5GlVpXPfMkXxbXLd+QjCA4oSppcp9iHP3c4cqxLnb
43Qy9QsenI2qQL+6lkAi+mXc3LyN8gABelvHkIfJPDYN5OFrae0RyhuIG1cZ
IW/b/Vf/QN6e6kta+h1vJOUx6XNu1XiTCO1RI4/l/fDea2T2jnl1pD78h1Xz
0VBybTjBtm+sH5KNpoQjDKqIkqrihR2GEeTck57YX4kDMKJkVhWqXEbKzlwT
tr4TRTSc3AK9zAeBERQ562BYAVEMXPnReWMMaR/UNZ5kG4JPV8WjrSXSCc/h
lw1fVsSRg282JTKuD8FcNubfx0xjiKOEpRG30UdyMrBq9eO0IVgg8XypgWkM
tDUMmaB8fYTvOpQnCzRxUDvgpnqiFe1Yhwykop0za30+03VBrDfnPa6rkJKn
heuef3dtdphyGYSFlC5AnKWqul6IU0r+piD1CwQ2nhFDvwyuN8ehX1+OJzpR
HsCE1SizifJw1S3VEHkw3H6E3f94I3z2YfQ7Ut5WzkvdirxVMZS4qJysrt3U
erPGG/qznsmi3HQ4aBD5fKlVnkvtQHOQgira0X1lnoh8jv5U9ZE3jAAjORF/
XDeY44wqxUn86qW3Xb4TBZ7VE+6Ic7OEojjyyb3ENO32xhjwL0k4iX75Xwke
uUz5DDhvd2FwRRykH2KuQB6M3cR26lA+0zZz5c4x+gglb2V3IW937mpLIp+J
BumpKGc5obYV5TWz1s/9w+fjO6Zox3phcg7akSn/noR8/tpzNQnXXeEapI/r
Wtp4b0U+uU+0/sEpwa3hiTh9z+4yQD6reb8bol8KE0wR6NfpLTODkE8lGfV9
yMNPz5d6yAOnvzUL8qn+macXedvatmsb8jYqoJqE+S7msWncWOY91BkLtGHc
bjwvF4z5LvRbwNyVnwFfOcOUMM5fPTgWhvm+5vfiTTQvwLM5Mgvz4phNeBjm
e+Ut69M0j6Cqoq0e88hPot6B5h0JbVno43iyAOLeHnTCvNv++3blBM33rYZM
H8s4iuFmq3445qnJoxbOcprvDm0nhq/VFUO3vfoZzGueU4JKlTTfRc37BlG+
qD7LBOVnd8m8p3UDOtKNo9GO2XLzp2hny7pKMcz30bwOf1xXrSP3Dq6bOXq0
BfP92WjxCcQ5I2h1BeLks0jWDaT5HnKAbQn6NVCW/xr9ElnaPaOK5nvv9x8G
yMPUdrb1yMP8LQzlCprvIje6O5C3ptfrM5C35TZbjffTfjRyMFhjXshnkPa9
Hoh1dZPKBq5y2o8UWSYmhvuzwM2UkYt1uKzJZtKX9iNXS48LtG7DYc67Rli3
X0vnnz5G+9GTk4Yx3orlcCsjzQPrvFmJqDQr7Uen5zLPp30BBCqOzKmifaFm
JDtShvaj8AuG22kfgZNzmB5hHxkOkVK7SPuR8qob/rTvQNfYwz99x1FUZ/Y1
2o/02m57ozzhy9JclN/O2h65ifaj40XP1qMdrjlWLmhn3++l0XRdmBkgzovr
Lr/rw4nrmq6NmGlA+5Hc7bFExJm0tjUQcQblTrnTPgsPSu0t0K+WkaOWf/qs
oSwz7cvwIX5TN/JwbORbLfLwfV1NLu3jcJTPyxB5m9/WGIa85Su1L+Asvs8o
CxsXaKHnWf7nCnl4nt18Uk57SPI+45hJYgadE2AtN3stzglbVdcrtuU9Ynj6
ZGrg+Vr0gsB2nCvi/OZ4RnndZ/h9tPPHc/rcwJnjOIeQmG+eHuo2DKV9+U54
3r8azDGAc8uh/UsMZ362Zlx7bWpP5xyYknjM4kLnHLFvr6qH0y4yTHe5jXtG
NMP8b3t//nsuujgtF5uWi1eX/az9aKXgOG2HVfKvHc6knuKCTS4K43v/rrty
el37AsEVt53cFF5N45Sbxmm8267OJNFFQdH3r1+c5n/92tTEzP0m2U3h8TQP
6tM8BB2SXjEpWQjf2dotAlIS4bwvIcLtg5DL717UNJoNB37Ur1roWADzraxm
+dwcBLvmRBPPqFT40Lumsji+Au7PvpjcmzAAh5lYFy9//RGYfWJYL/DXQbrF
XX6dqn6Iuh0wppTwEsSaloxuHWmEt6PNm5PG+qD1fOnEzOYHoDixfe2YdzMs
zEwfttLvg1MuenXiWRcVtH5osOeytoDX3L7IZME+8Dh+bo/vjUjC4F1536Ct
FT74H/3ZkNYD60OzZVgjPpGkR7GN+VdaYPNAnFz3817Ytey4Ef/NJGLB49Lj
N7MJ9K/vfyNC+kDgV+9ahlYSkQ5J4mzeXQtLr3bv3TjSD7ucdzfM1KqH3c6P
ClYLR8PKOTJSXr79UH7KYPkmozpwHX9SFFKQAW4P5bXLTvVD5CqH7LF5NWAR
Ic9CnpZC5KeX+TKDfdB5rOehsV0kJEs9mXxm3QYbU2u1PI/0QPIqO6lWeo77
tuzym+9q7XBsXr7lwo3d0GJzvrQwpIjsWCMjcXdnKxi+BjVhnh543M57nGd1
GaluOW6u86gJ2MW4V7xY2gvOnuorufrKCHPUOZl5TnlgrMPudOjpAHjOUPGx
cikl+q5MKw9cToS3y9LGBc8PQkRsp+TAvRYYCJ1yPXokANQmvh1IZfRCldat
dBfxVphcejdp7aIPcM7gh9zaXb2w5Z3og4a9rWApeqTl+I8UKI5XuHumsQdu
cn8pE8yqJW4782cc8G6BCTf5bAvxLjCufLhrrWUzMf/ivjh7ZR2sENtnNlzT
BZaqs9aduNpC2KNFTtg0VIBq5ra8xuvdkDiSlGf0rJkcW35NMpsrD/TU1Ow7
b/RC5cUrJnfZm8lslY0ZD5+lwitB9U8+an0wJBK0X/loI9lxquJ7wdxoWPqN
Q9lgfj+ElwWo4P1D5rKA23h+92L3K8fze6mKXABPeytkzj5k0OccRghLN9f2
vB6QS2y1I0ltQGSF7LiLX5B1Tk89BMV7QFvfSSjkbgtZ77zgs2dYPbE0YdcY
CeiEGv0Zu1ODOojkJ56Wl4YvSKDu3hcF97pArdn2HrVD1P31H3AUv4DkMnc3
tHNL+9cjui7RaTve1uUcBlvVDBfguvu8wrzwnqGA44gs3gudIBLBiPOSrE6h
0tFGUDK0PFxIz9GvMs6bol8cJ9fWurE3A+Pbs2+PnqUSPn6vn8jDVMmDAMob
9LJNvqO8keb7xt7IW8kw2ws710widzlgs+CbdiJhXil9K6MLEoM37Kf7SGrl
tj8x+pFCmC4ovMB95ErnfUj3ncyx5ZRct+gDOZA5pIP7LjKh099/r4VU+kTI
6R4JIAMzr17GOFG0E9C3dCkF22PaPQcvJ5Iji3mWLaRx9c305Ko5fWVgwhQ0
Z75THukQWRiCcQhr0975qVWAkOXbxS++lpGJXk7J99f7ga+2b0/z+XTwYdnu
S+OfjH0cCcL4599+/O1xu0ji/lW5jeYLEY4aNMN8uXGhcqNlayoRDJZtEDnb
SuwbhWqzk3og+hLnTaXEQrKsbLvkIzkaRx2zbbNte6H2x8sdG43qyAcRp6Vh
BRlkULvBHvPUxEiLn+Y10XbQDZYWjiaWH5WPYl6fO5Kylys5GFZG3c74Wcsg
ESvuWBwidO7doHSHhysKmHwGnipWFxDxAZMYh9lDoO73Zc+1vDiYJzLq22Zf
QW6/kJIyYh6Ea6uN1D9rJUETW+pDWk+IomcZYD356qrGyXczCWoldgTR+kNC
mx7mYv1ZNSd37YyIT/Cr7UEfrVdERuSsPNar54uEtnrfiAQr73WXaH0jR/qu
zmtM+7/vg5gOSzBP5bC2kJXRpjFYD7+aC3lMNT0g9m+l6ka9m8lbs3iJy7R+
Rh912L0z4SUp1NyrLjfSSMo8kpdivS09t3OdxOuPZEJaf8CMv46s8WqSwPoc
kzV5qP9mHjHZNPfaA4V4Mur6eeQk3xBozwg7IamVTgoZ5+2C0rLJm4TEeMHJ
Qbg6f5t2WHsC0bu6smVbdQlhac8pOOw6CByVpx+6MEWRtyt+Zi2OriRes76s
5Kmm8eD39NNNyWASfDu12byoluglzZWy5xgAoUvztdvGnInhrhbZST46p9+X
5eRX+M89gDlLjXAW3d9FXT7DW7z6oMriVlHKwlCIjlA547Wwjnw5a3Lz+Gg/
hHHO3K0oHQWv6zqF/etqicLOVLvTdI69tOJUqe6BWOiSH3ncEFVDDqzbuiNh
7QA8u6JcVmscB0cnz9xWMK0i6vXKk8IvBqDaoGjO0KkY2geu3S79XEYcG3Pq
MzUHoTBq9Yp20XeQdNffXOBHPnnN7PWuXHgIXrT9uLhPt5r0CH3bEbnxPYlK
+6L/22kAFkvF3B25VE5sey2sykyTycYiw3mqswdBzscx3cmWnrcXTMWveplN
9lkctA1Ro/OkskCFinQOIXMOdeVuLyYHhq0DTdUHoeCzYL11egrh6e+dtZhR
RgL1cq/OWzQIQ0JdSlt/xBLBnNbnLynPo8oac8Zy6bnv3km7N0KhxHiKezJk
Rg2J8rh97pPZAKjN3PRhsuE9aOj2ViZyl5LHFi3Ol58NQr/IPNFn9wlUtooE
rTxXShZPxNpKmwzC7a41bs9HMsBBcvHpXUKlpGfbtevt6weh+KJZpk9PLgg4
XRls+lZMNk+uPiZN8aS57dq35EUhBE/c4Mt0LyDyV70aT0oPgsgJB80a92Kw
aY7ctzIik6hr6M7oNh6EZLN1Db/mlUD22smeGx8+E40Lo68kIwbhR7PiKf5P
DUQ0X185vdqbjCa6uApr9sNPvd0rL/XXEKU6YQ/Ly69JUo+MZtemAYhYX1S3
pb6CjC7VlWgOjCOzC35qbx8eAFuzywvyPUpIYXl1A7NlMhmPe1PYZkfjk5//
/hvZXMJ9UmeJ3dsMIuNxXGRPzSCwrmd8uaGQQjI1vzLlhOSSXVXrfYBpCCRY
Y5g6G98T0bg3SV9GC8mMs8/dj0zQ/dJf7uppHgO1eYWL9rMnkV3HHs2ofD8E
hhZXlg9Gp8FOeVH/lOBkki53v3ye9hAkrlccoTMjKHJVXxEfTCFW79qCb7UO
QvaLM5uTv5eA7Xatamm+VMKceNhezmgQfgtP7OpQrYCl447DexKTySs/zS98
bQPQsXfumbWi1fCAlU/Zgi+BKA/smHX+0gAskij6+fBcLZyKy725kcah1jFi
pzt/AB53GP85/5KPG5bjOS4vIfHP+dfqNOQLLqgjWXXmjLcbAmEiccR4dKIf
lldJPLI6WUWGjOY8zz/qA3qXW9d0ZA5A7DpuZclDZeTKA2W2vU9sYO0t7UZC
50BrP2/jtYkFJOmp0dYFXB6kqaVwSb/oEPjuO//x9sZ0wq+t03qaN4wYhrLd
UXo4BJMPcrwWWMSQkbOL7X9YRpHojVHj8aU0j86EJMy3iAGe0PCmUcsoSItf
x5JA5Ydr7rdQOzDbd+WXE7xh8GlVqBvayZ/Q9JBJLID21YU6rFwe8NKpkhvX
vamtdJ7ihNZAf51TT2wI54XPVYizLCRHl/oFSyPl+kqP+pCTWZmy6BeYR92j
PEB02KokygOZtyL/IvIg6hbEg+ffC5861+N9gj3f6y1/7hMu8Kg+OldL6mpG
+CjP4OTmfwF5djzJ9pnuC6ljf5t5gS8BRJOP/zxH9yU/6uUmuo9EOdnlPd1H
MDux/DvuYzm/WgXddzIi+IuD7jtwszmZ476/HjvATuOEHHp5ME5sMAW+rlOO
wzi5p5FnPhCdRnK0Z19KDk6G7DjfDowr/lWu4ffNY4hz/bySvexJoPWJZQHG
4dCe8JM0buG+ulH00GghBBw98wTj9tlruX4a55BtHSieHZILLbYyzzHOE5Zt
aqd5AcFf5Q7feJsB+TopSzAvXJlf9dM8AjPvqztpHkFG8fcYzKOhkCvDNO/g
g57m2sbAOOC4810X865S6xCD5ik0LxdSv3T5NaSp22zCPJ15+OAvmtcgam24
Kq3aG47HmxhhXgtWJLn+nldCGuJtrG0/fAYH9oOWWAfko3O31LoXk5ql7Okr
IjJBb6Cmp4vWjeMHerqXvSgkmW267BnuBcBrZJOOdSZdgs3NtyeXXN6rak3r
EljzzDLBuvS1ZZcnrWNE0rBWmtYx/C7IEeuYzdt7skH3Cblxd/AkrXuwMGOh
J9Y9rSPKFhMN74mpzXd9WidBzC/4MdbJdUrucz4IhULbgg+coTNqYFPxxxNY
Vy/5nF+w/UcsXE8/pkPrMDxOY52HdXgqg93qanoKzDY/5SDKKIMhVtM7WLeN
PLYb7JbOARfnL3dpnQf9xyHBWOd/7wpY42xbDGx7fJRpX4B031pL7Atmg4/f
0j4CX3gqXpSaJkOT47n52Ec02ifWq+lWw53T8ysiaBzWJvJsxr4TXaD+1Ugx
mJSapB69msAAXW0lZt7kISgzXsMYEH1HfNZGCtD+BXEKIm+wf81+vGj5t1Mx
xDJR/hztd6BhJFmG/S54Zo1jk3Ec2WIkIU77I9jtWMQkQvtjxLUWy2MHYolm
0f5ltJ/CpuMmB7GfNs76xbtDOor8/pDb6VdXC0J86g+w/wqs3HydsTCU1Kle
vUr7NSilSjpgv/6nv/PedviaKdcMtT+PcMjS/s43rL/++5gzHOJOFKDzAMyJ
E5uH80DFMaNBV8lgUNS68ZTODzB0s2Edzg8JmZlVd5ii4EGGvA2dNyCYXW8j
zhuqKzujwtsTgON1jjudT0CGt70c55MR3xsydJ4BuZSDM+k8A1z5Q6k4z4ic
6l7PT+fAXWKuh5nrGOC4u0YH58Ae9oGB+XQObC65G0rnQNC58SoC50BVjZmf
btA5sPLN1ut0DgR7PtbFOAcOS+Xvs8uLIy7bVl9Deb+y1SKUP2SMsjyMovX9
Q0AGnpdJ3uYkPC8v3yDxmNonLc8fhKH9Je8ORKL9jRM9N5tHs4m1vKoYnrsH
BmumvGkday7y/8ibHEwWWRzRRJycaYf1EafGuqpt9PxOxh5nXcDz+48fIQw8
v8e3Bj30p3O4P/unWXQOh/csZb/f0Tlc/7++45ia/o7DcFpu+l/fd1gfT2Uo
JxZChn0HP523Ye6JUxdw3o7SP3qKnk8h8oGeCZ5Pl3c3rsTzKc+VknenFZrg
OHfbpNbHGuBl9/J+ldsNR1q45tDzIOzojbiO58GGSr1mPA/+tn8oR8+PEOKQ
I4Hnx1k68Rfx/Pjj62zT2YJVxKHSL2qGLj1vjg9wz1XtBrOu9R5rqH6OwuF7
OSvriNC9spuor/Kt8xCnYBVkvk+opvpkncHTTagvs7PGleqT0vX7PFDfUVPf
CfU/FN9hexjYQo5H246z1VWQD6llryyMusGDeSKEm567B36UvqJ+kVcLPm1F
v1odbXxH59UQszmZXPS8Tz5z6HOvo+f9hCcVPvS8Q/IjT3LheWd1e5c0nnc6
OkWv/pAshPXDs6bovhDm7YuqcV8uCXiFN45mw5v2zzOFHAvIEx9XDrxXSRMW
nnKPSgW7SwMCJfEVZDDBKx/j5DO7/E8PGj+2qx/OQXnE/TfpKFf5EfT4Oo23
4AcO3ngeidrvI4bx9vRpAAu1T6Jrzs5G+7P7rvCifcE7wXO5abwpsax+juea
jTsdP2K8Pf1SGzlO46culycNceaGHuhAnAvDdZI4aLzdDV6RjuejS21ulzDe
Np9O8tCldYZfaEyM1hkSvIOLDesM/6t376gcmopZxFGeHjXJinJni0m/3pt5
MGytOornCwNvaw5Ter74XB84b5CeOzbviS30UIiH0Hqpejx3NG8WlR+g+jP1
ompQ3sJT2oVyKz47UxNq315SVRPrm9HS7795qP1H6WUnlpZ7K7xR/vseyz6n
v++xtOxacEXcMwX2+Jm/7gtjAB+3oNPvK0OgmKV+ad7TZHLMsuuL3YpCuK5Z
V9pfMggJgcm8kp4p5MGLVn/Ut5CcvIL6z+zZN12m51Dn/Acl9BwK0bLfc/Ec
apViUEjzgvQxzP7kxcRvdzPMi6+VU6E074hHYv54OM27LwpMf/KuoO/aszEa
P44SU+x4X2RT/7Yc74sawq21UoM6YPedtkd+hi9gcbDBS7xnePby0g6Ub3x1
LRXvH27ZX4hE+fIajVh710z49HzzFnreh28y+xbhef/IVoWXglm1IF+gPq7u
3QKur2rq8X5GaPWxGqpP9Cu48H4ANnuvFEF9jZg7K2OeFZPaw4raP3a3w4bz
obMtD3bB1Qc9kzR/ibiTcTfmr6f8K0fM36d6543xPuSuZn4I4uQxhyeI55/v
PpiYqvP//d3Hf+Ta/7/vQV5Ofw/iMP09yK7p70H++U7k1n/J78jyJRvTuhGx
VO+ebUMFCbxjXYN1o8141Y9TtM50rbHO0f5YQ/YIF/sjzuILKw3lvndCzUpx
Lp9jEYx1ztcPp+zthC/9AoUg2wbHcjWF8H2SI9Lvp/B9kh+1ip/5KW9hG3bW
HfBuIeOWAQR5ey3/O/gG5flbt9dWvFf5ej5ODnm7U/v7BLVP9hitO2ZdHMH4
mO1yAO0PRHC3Ujtk7xm3UrQz/9e5eLSTZvDB64xvHWzepv/SU7qZNN0vzdLv
pfvbpf3rw7Ni2PPo1F3KP8nVq+VD/o+8lR6gdQYW18zmxjqjO693EuPk9vR3
Hzr/9d2Hw7Rc97/kh3fNWUbrGBAtFoJ1TEFTch/WsXWXnz7ZRev5auOQtXh/
ErAg1hnjNou9fGtBSBGozQpddndnK3mUo3UB7yEFuk5fsmxNhTNKPXV4DzOD
U7Ya49+L+dclzC8Rs6+iA2EM0nfI1f5PvoQWZPI8TYbuj1XP7FcUkuQ9Nysx
v5S+ZguL0fzaMp4ghfo32o7fRX0tX4uLU80PFZZP39s/DP57bz985va1Hqts
sprD/2igayvcmE2kRfV7ICuLbVhweQmJdJUZ4hBthllDi/tjdveCydWZZp2b
qsisfWYvS66VQbxD+be8tf2wJv4hvgcFjHOanfge1NArmz/vQV18vSRgB42H
X/d5MvC9qYuJ6s0YD8pBR6Tv8DRA7g75E/ieVZeZ9i98H0n4t9rAWd86In78
FdB9hPsSO9/gPlb+1/cXa6a/v7ibUB+qQ9ft38M+gu8pZa0VXYLr3nE8N+BM
7YusHNHH950mupV/oP2i1Xz+HZuqwNNJ5g3FT1zTJxfnr/3P9z7/vb/CMl9j
BZaXwCkXEOQUbSa7Zh1ji6U8vPILDOqyyobNqhkGlDfSf1xGGXm7Wu6odq66
A+YrhZ6eO/qAIWSYdW6JcRecquCXuHWpEzj8bLm3vHrMMN985JJ+YSdErNBa
RuUke4HnfJRvKWa/jPJHo+7a1A5ZXJx3DO20L3A2RDsDcvnn+i51kEOWsbp+
DTnkmere+6E1nRCjWnkr9G4L2KrxHnUPq4evB1XU8H6VV9JRtf9SBwgvvWhx
vyEHxjULbqF+rj3L4hCq//PbuQS8j41YWLgf9YvYysypfUjSubIK7Y+Y1t5D
/Y0aB69S+2TQx8UK7bcd89yH+nM1xZWofXLxZMM5tL/bYasr6i85NNxN9xHO
u4/I4j46vuSKwn2c/3zPl2iaj1LxVgZYD+sHbvJiPsJkkh/NX+IY2/YC8/e4
8Y9M1I+xWZGs0lQNe9aUReF7hjJzNX//suyBlIG9UzSvSZaK4gPM6/HVV3jQ
TolA5A7zwGay9hQJTZhbDeUf6oc1H3TDsRN1jAuBzdC25XFW4txqsvmU+Yyj
VH60r9ZRmdq/1JQqju9xucjDKnyP62tkUijVJ9d1FSpRf3L+LR7UT9h+OprW
QzKv4XQd1sPop2JvsB7ui9ZbrMJcRzrjhHYd8KwnNb4xzVd39EDz9Pvepv/1
vnfrtNz4v+SBUvfmU/wgv9UnCfG/0FTjxHXfb78ou5u5DvgPdmWqe9bDz8a3
n9C+2XnLG1a0biTdvViBffPTsH8x1o3W665lhbTO5H3oF8HfO9auW6OBdeYO
32OFwsxS4NPVXZgu3gqK8tvu4fts/MF3Fah9InGrKwPtP3bQ/Ij2mZJLZKhf
cO1QMqBfK1R+1qO8dMPsJfwubcS1b9mzALoP5+TLQgZHuuDX4bK3NC/IT7dE
Q8wLjubJnZgX4e9T3SrdCsBN6+e7smX2Cn+fQ3Bw03axC4X5YJ+4gO2+QzFE
S8lJ7OUdhMQWDdlJzxwQk/sS2ctXDb+aR03Pf+2HzwqvhN4FpoOenXrAkE4j
ePTcTHP90AdXstncZmckwimW88t20z4m3KfPe82T1mEX5TFzu0hoTuScMbO2
FS5mXxOMzf3Pfa8+k9yvNwfagG9ghYzk7R7IO3iS6aJdJOE8Zs2M+mGH4gRQ
38RiXQFXRiKZeFq9CO1LuD7kRPszhsavUDzkGWe4D+JJUd+SjHjKdM5EUPzE
w+GsHeI3VbI4i/i/F3/Y0lVSC6vC/d+r3f0E987nLT/d3g9Km85a5x+qgexd
D+6+PHFD4e9zAAQ/H1W13lQH6W9FHltN5EBj0ZaDzHL9MGU8mBm3rBbMor64
S+mXg1fTAv5Jwz5Qsf1pqClZBSrv0vl72+pAgFN/yvt4L4ztzWlKSS8BnZ4L
dVmXWiB9ncUBhwM90FDnde1AYBo8YZzjP7ugHXgOvn/6/Xw3rLeYb3fN7yhj
mf3zD7MEOiBjI9elRbzd8DrK4yTVJ9oXR/7oOyYqPkP9pAfblShOwsOx9g9O
k/INhxDnK5vfKtRfsrr5/6vjy8N6brr/P21o0UIbNwqFFGlBRR1ESopItKoo
JBWtUlKiyFIRkWgj0aaVtmnf933f9+UTlfb4zfTtfu7Hff2ef88113mfc2bm
dV5z3jPHMoL427hTSZD4eynXRwH7i1Y874h54uUit8+f8wXxt4Tpso1DXztc
s3EcDs4Kg+uaAl/s+IbAE0Q96LXa4JPoZfGNL43kCvQGHqX3DMGa4N5539wO
aLufwnRbPgWmPFt33MX+3rkRV35RvBPWztRMPLPOg/mpF64iYQMwS/tXKpaj
jB9XGZ9j+cGWE15ErtcoPY71oNqPa1YRPXYGhyWJnhi9Nn1sD1qe9n2M2LN5
+kEasefajOk+Bq029NeHjq3nnGzlHmgbaRN7/CeY7QwYO6FKRGXN+z6DtDXN
rzSSzQZhy//1h4G7i33/9NI0lvrDaNfKrnol1gWW55j6+5+Yp7WeObKh5PUA
ZIc7sqev6QY53QepTby302zEbi/f0dv/n/d9FIr+//d9Hw3lzuL7vm1L7/s2
L73zpaWcXHzna7b0zjd76X0uLcVu8X0u49L73L/fA9JQAhbfAzb/6z0ghXLn
j/eAa/1UVmM70WqJb1bbn9xOi6eRZiB2fsiKp8V+IZpjquxRc5fT9rYNCBG/
wvo5buP4oJObornDu/XT1KIcT5H4nGY7lkX65+yIcnB5o3JYzqJIdDWJz17Z
0/xkPRTd1Qx7nxWGDv8l0EPi76z0lZOsh6jN45oDgpZp4o1ikST+GlIKMWQ9
lNUw69yRT0ErivdpkHkc/WjlTNbD9hQONR/rPHR+sOsjmfc+9CNGj7cTun/N
h5B77oiVewW5J+wzNeX0cnc79BeKvmff1YRmw90W7Gj7ISVgmwsI1kJ2olRd
71AnspjcH3z9RB+ks3EHvtA6krYljqOk3qIXvTgcNvm7rBeUk0454PHIY9ve
ZjL+BaN3ABm/erzPGetHmRrWwUT/c66EeaL/+A3WSHJf+bmg6ntizwdvP2Zi
jyznD3Oybv0KZoyJ/SFDrHHE/t+DR5LJujXQ7hYk/h6UXq1G/BW/HCVB1q0w
1/EJEjcPmuJ6EjdHub0Usm6vPl4vTuKmMr/clMTNZrovqhfjkt6F/Y9UPL4i
qu3FI2Sf5oV33yrCuMTvyvnh4dCtNPW7KRlkn5Z6PaGxwbj09QdLv/VsAZJl
qfAg+/3MyVvbxzY3wkNuSebw+Gqk/eOGQ8eJIdiy0GC+v68WnOam35L3AQ+r
1BbvRU9LNUhna1ZAUjMnu1BwB9Icy9/kgvPL7Sn/DyoYl9yiM+kxziCpIyE5
BGdqsj++uumrkHYt3fIpxiWU2tHhSXBpS3CkkSrGJcfkkMXxXU5bUsj4MN/h
vVg/+pg9x0b0S/GKbib6t2c8NVPfUodm69e5YpxEDfs/cL/AcaO7GO0Qv6kR
vaD52YxxFZ3zuahBcDUhx8Ac+4tmjT//JP7SbfKyIP5mloc547ghBdpX+SRu
vu9OnSBxO6aVm4jjhl4WOfuRuE0W18aRuHE39RwLxUckwwDPNQFe6Whnyb4v
tlVUaF7BotFxoQTSNu3zEP7snFabUOK0UXAURGsYb5D3JP0q2gE9r8vRMZW8
KXKfmcbe5ss0zo9/bSz/jfML4rvy/ibJL5YC0tyROD/WspaF43yEeM8+LiT5
6NcWdT0mnB914/VIfkRihbbcJH+tv5kTY4bz4/4FtmG6Rrw+3ReE/js/fjKq
KsH5EU2HMqqT/Bg95/bcFOdH4en9I2Q8s/9jYTL+bNq1aEacH5c7pG0m+tsS
nXmJ/gOtE+zYHqRqpfqO2IMoTqXEHo6U160zOD+aHZ3pIvYL15aZEfuTBGe1
TEuL0b5vXy9jPoDOm9BJED4QH5+5F8cNeRfHTr/DcXt12jmWxI2PjjWq/UIJ
mmSI8yRxi2YKfUDiJmclF35kfRF63ibXYrAhDVle+ujTyjwKwflfxlrx+AGJ
6jAyXku8OZiMfz8j/cAmIg8lvFc5MdNahOjixre7faICnc/7jGrHLGSrN6qe
xlyFej9SfiRuw/EflGiUTk5FJ2p4DKRaa5F+L1NuRegICJ0v87ahiUOxfDW8
o44NSP3UNv4iuRFoBPrb/bwhyG3NWftQ+ia0OuNS36G5f+q097SdzZJcm9DT
8B9KHHj99NB+ejvIGwKf6Q/eJONft+/sJeO9enjX29HEQXpDMxfRz8X3ch3R
b+cjR5VKToV3BbcuEHukRY4WEHvSn1rzVTlmwaMkFT1i/+WzJpSv2H7dDfvj
rSLywCB5nyHxt7PN+gDxt7hj3Tv59UVw7v6QmSGOGxv3+mgSt6U4Q/rtw37/
HWd50yPGYjO1qMX4009RiEd+h9ZfTUUjEJ892lmI13/G5h/yz+Ls0qQFIjvJ
+udYe1iDf74K7fzEms3rmoXo62Yf29NQ4ZmLk82wSznKLH2tOBhZiM6+EFGG
XVRwsTDqUtAuQMsMDykc4C5HrWZ66gJqVNhuylwUviMDcd5RrO9iqERbhA4r
i1+iwq4i5gXhs1/Q0EOponciVah0nG9g1vKfe+whO03fX31SheI1OBd22FFB
b5a7GI+HEXOlxfGhxY8Wx1sXP6BG7MgANr7lVUT/6bPpB4n+qO1jeke1C8As
pEKe2DM1vk+V2NN2J/8xth9yuvMsif2xPa+PEPtV9m95zzdfBS8/ZNQSfxlW
Jnwi/lq+C63YNVMLN/wbRHbhuK1Hu9xI3M7leqgRvP35PX8nidsus6ZCEjdH
2gNvR440o31rytDLL+/RymXiC5wRw/BU5RILzoMo/WNtsvxR87Ts327RBM9v
mr0LlgqoR52hJ7i6hmKRIX9quq4Z5lc+IeaSVtWIYX/xwxHNZMT1YdKvlZ8K
KzgvT1ICylDucLyv9ot0ZPfgQf7XJCrs8K1tcnmag+prLI4ciM5EQ2dEvdvF
RuFOo+UL+uZ4lGDOtmX4Zxa6xswk7Oj4z7sApj1Bq1kuZKOH3dWrr70chRFJ
cRq65niY2btsGxm//4K2KBkvReWbx/rhMGfbQaJ/lcuwJ9H/0cFpK21AGT6f
bPQk9sj2S8QTe0452V7B9uM8ciea2D+wyv4NsV/V730M9hf0L5k1dWJ/rynt
TiP+TvDTNOO4AcejF+kkbkHR0yMkbtltjsaEPyTMpgWSuK2yl3pJ4iZa4J/R
/7MF2TLc81MOO5y2hubr+JDCMOxa6u9XvXrXuzVfN6adXuJv13VnSn5uaETa
Im/2V5kfSdMs4ZwM2jMCeYMFMWlpNSiH5QUXf7BF2jajWM9QXirI6xZkH2oq
Rzvg9oU1jSZpNtnqfumtVPDkpXH0YMpDHyaSfYbuWqZdjmKu3mk/Cnmm/Hu8
jRPR4IGuDYk5lmm3a7YJxbX8E2dp32cViRG30sqX+pfOv50//8w4EdoHQkcj
9lilve9LFSTj0SkpX6wfhHb87mSutUxrHi2uJPrPawQekG8qh2GNyVxOOZO0
D+WmD4k9Tqu/62H7IeBndHvlM4u0lRn174j95+72V2F/wdTqhhMLm2waRSpj
gvjrYf9pAccNLksr9fc3HUx7SF/eReLmvOOwPeG9Ug+5VqzFcbOhvgMSt8eT
qaxUvJ4ZOWwY8byA8XuaTjIvGdnjJ8h6ZuW7cux+9zW5u28e+5N5kaz0EZbG
6zlh8PhePL+gp/n+A5nfbfQz8WQ9b+FbyTKsmQwuyMqHrIfk4JPSeP2gOh2j
eq0X6RCgczCJrB//HAuqM17PSo535CA6E/LnFT+Q9fawYzD6d1M8ilRlXDH0
MwuaXKbk/3s98+/QqmC6kA133ar5yXruT3IxJ+s5bEUSLRm/JzxPmoyPYEgI
I+uZoYxJhuhnLtZ5S/SnrNq/g6znteXMzcQek4z+RXucT6vUkPU8cn5gdgjb
fyfDwJPYv9rSkhn7C9u73s12YH93XKeNJP42Dn4VxXGDIQ7ZuRc4blqnhxpI
3AxVsrLJej5pYbGTxM2EJ8WBxO3xvSZPgs99vBeNMD7D2bA7FwnOBM/bvib8
ZHfCWZYnejflmsK2JBOcqTnkIEHw2bBca4bHNQuiamjfELzaxCgbQ/BZX9Cx
eiCyEJDHVSWCb0rNRSmKGJ832/N0Anc5RC8bUCR4GHfXS4Xg8+6bn9wxfkLN
Ridtgp8Toe9hO8bnNOeIWxhvoT7Nb+a/8Vkw9Ikaxme4q/qAaSfGZ/7MDvkd
GJ/d65JsyXiPUe1xMj77A6MDwectNmYuRP/QvlQ1ol/MSy6O4PP9tMR+Ys/F
I81niD1C1/ftHcH4XJpxs4DY7z1Ut5fY7842q4r9hdwCCpX4W7uu5yXxN57+
Tg+OG9xvydchcasdPKhO4mb6w3iO4HOu5NmpxzhutTQKH0jcen8Hsh/FfGNC
fwMj5hsgcu/qPZI3T7PfLyS8oi3HvXK6tQhuGXbtJHl2QvwBqsW8wtytbSCV
uQpgx4kRwiv4OM0uymJeMRUmlr+3tRa8vU7VkDxudi9TzxrzCuZBiX6qYwM4
87LsJHnfqaTudR/mFe6J5zwwT4BSf9bu/+YVSk9F+765NoH21+0mhFfc0X/B
NIp5BaPhEzcyXsEvv42Mt1m48P0m5hVsuy62Ef2pMrabif68p7cD92FekX8v
tZjY89cTlyZiTxMNg0AN5hUzpXzjxH6JQLt5Yr9EgFCpNeYVgxx534i/Pgt2
+4m/nW8KDilgXqEW7rWaxMdKz8mTxOfmyYrs6oclEFElua+u3llONayvkNSF
xpgOX7jZWwwhsZYz5iJlwFwVQlkpSoUQIeurUZEFcHrWQS9Dsw54Mqe2reYd
gYo3wbtd/bPh+TEnT7+sFjgqZvBdqGkIuHbSJ4XkpsBZFKHDqNABu2lcwvbG
DEKQYkZ5s1MEXJiZcbFP7YS0BW4G27YB+JJazmavflhOUkk73FChCz7lZqZs
9xiAmuX6YuaZKeiv/cFvAnw6QKw1/hP/7UHM6woLW15lo0+HbHtiM1vhUvfG
fQk+Q2CaO+q+/EkBOnTRqsg4ph4urG65YVw5DJJv0x3PWBcjK3PdrvynFdAy
qy2/7vsIyFhJq6+eL0GhQV4Ott8ywUpNttEggwosmgZs55+XIMd3K3Z2unoB
r9dTw+UbR+HZpJExY1gj7N4dwVibWgnqO4yHrj8cgtL7B4JHmuqgiadBN+lu
I/DF2E2mYx5ep6Vj4vCtEmI0lvFvHWgH3iTDZ+/uDEDWsmGW9ady4ftaKVvT
lC74zVUUsMOzHxT3zjqxt3lCh/36osC5bmh3ZjvssbUfvp70Mo1Nr0G/aEXX
yzK1Qtb9bZUinIPwifvL1xtmDehguPp7ydBaaDLlXp7BMwQhNE9Lujc0oTNJ
n+2iNUqhx0JW8/HMEBw/f1NaOBafm3jOnJB1SQfr8aiLCQXDoEUfmp1o0YC2
83QXTp8KgD3rX/6wODcCrEkJfz0064SkHr255ffLoEW4ZeH6j34QpbDYvTBK
g93TEft2zfaAyMO08CtjvbDyRpM7u04n8jn7fvMmvRIIVzJNpG7D576rSfdM
YjrQwWx29sZPWeDSyrJKTHIQLolf5Oni6EA8TwPY9cwTIE4r6Gn90CAMOOXV
VjHgvE9D4VuhFQCP+VhLFSOHwOKRxkRLSBdaK19aKRPqC6JKTN15MAAxor/v
Ffl3omM29+ZvxXjDj7eb3mgzDEKZy9NqhrMdqBtm8zeuegJ+fsEnKN2D4Dj+
veBRQAcqeeExEpIag2KpRZtTXg9CM4/cvgXvdlQVvXEyq9Yb9Ytc9f2uOwQK
XucYTz3IgODGmQsg242aVVjDTxj1Q/pI6vf09EY02dGuF3k1Gh2YTFPT+z0M
yu817qSF56FNypf2S3QVoIOSLF7quVRQU+a/3myfhTSTn/wKk6lEXJQJy1VK
eP9+nzzpEp+KHHrcOmOhFr3dmv/4V84IFP2lndW2EIt2S9Ckx7M3IP7w5LdG
GiNwfEcpvyR3CHqmvVdVKKcRmZs6Ds4x/vOetJhaIU2xaELlm0I9fvXj891z
i03ztHHQ3lila5PWgCZNfnwP3DUCYXsd9lenpsLFS6e0e1TqEMtRXU067xEY
t3bfZOiUBWbPta5fjKxCZXMmXM6sVEicORA6FZkHgb6l4YkeJUj1IO8RdS8q
uPaMMU1vKIKGw1u6ezgzUDl3ij/tHBV+Xhp3eWxdAhaPr6wyY/RCD4VjWYcx
zhQ/Vjx8gbMC8e6hlqXuzEdbjjWvSJClgk+CxWGBoELk5DXL4aRYivi9REdz
9Khwc/eU+mmPTPSkskVLQq8CnXvv2YFuUOGb5e0naSJxSJQrMmh5USVS3NaV
IeFAheld36xYGdzQdg4u7QjzKiR8QubeYyzPOFbYIUCbD7RRgm88M8vRsntq
l3WVqYB09W5eyC6D088Pv7niX4x8RPsuOglR4dAu+0QTsyr4/cTgywfWXLRG
Lk7u+fwIvL4VZn7MvRZUlR0lDR4mo1IZx4NR6SMg2rjlZA5jA3gNZTEEOvmj
dq5n6/XNRyBUYf5xl34Fsh1YLXHgdiqa3Nuaf/cZjme1s0fQ93zUeE7rr0L9
DJR7Ta/mPdcoiHfyK56aSEHT5V5fZUWz0JMT3v7KZqOw7tVx3U/0/kjww249
GsFs1PlFYuD5i1GQeLlgUDlQCV0HVxuN8SIUR2ff8eIUFYa2GlfzQB2UO9tt
kUv4ilSzN964ivNItdQvTWYenIc2h+VWfolGuxiM70UNDoN/YDOP4qVWMDZX
Hlat80OTWntnhQSHYSyM/+SXy8VI6myQPs2sJSAWx0wfCWyPJXXc2SgDddSs
rDbsuwT3dKeqx2NH4S6Xv72eZSi6LRHaudJMFR5kpUgaT42CPvVhcPVYHaRY
n5YRNHJG5n5Dxm7hI9Cdb+DMw9oMGQ+UD7ycdkWdX6/HOWQOw3zfgbI3AW3w
o61v2co5d/Tq07UtayuGgPUkK6fHykxkwV/AU387C2STkr48VRkF1ypJtitK
EaiTI2aZzv5sUN4t9MjIYxROlRrMX6ltAOXr53/N7AmHoK8TWZulR8CX7VvI
hQMtsEVzY0fSnqcgsPZt/G7rYRA4xmCr9DMcuaW+KnyjWgV/6YhovrSiwt5N
PaX1x+rApFC8Iq38Myh6127dkzEC8hJ8kgbPSyDntPP5ZpwvhpsLDpF84cN0
un/VfAkc/fTgDskvikVh7SS/3Ktza1W3Lga3GPV+ko+Wi/EcJ/noxNJ9p4ml
+06zS/edSj1imzGeQ/uLPGuC51Ls2WcInqst3Ts6vnTvqHXp3hG3UmXGgHgL
NLcUjjfytsEZ3zhvrqY+2PN27LLoZCO6sLCglrGyA5bfdn/lfasP0OPllv14
PF1K288m3jZkpsP8noxXYFTN2zHZCHQWh2vxeGSZo/mFjD/Gae9++HMj+sh9
WKRvbweq0z8lJX6jDx7f3mWC9aDSVxVTRM8m3/WhRM+TyjHDLskO1Dsqot43
XYf0FwZXjAj3w8itT363vlUipdknO3F+RG2y0VEkP6pbdIUON9WhLetkm3E+
RfsC9NgycD7tylWJvY7zXST7snmc75DZEVVxku88PEQ7u3C++0x3dfMXjVIk
45Vwn8THiz3QXg/Pi6Tp7sMNrl5o9fYPpmReSuS/cnLgeXldssXU7lsmqqne
NUHm5fyPPOopPC9KTffOFDytQDHlbppkXvojtyqexvwhPMnrFJG7XAxVJ3Ku
hKkidswfDp0QUCV6IhiyZ4gereearLqYP7zxWjhLvludfMSFfLeIwvTbw7oE
fXt+lYPgYcDTYEGChyvfMCZjnETCZ01qsBzMbxxlJvKoWaVHTzF+2tVm1RM5
GssaHcLyLRzZlDCeUvAV0pl865UOt+ePB5C63COflQVVsQS/GraRPkmWre7d
pG5ZPbKsHI9Hz4r9Rsl4tsKOZ2R8xOmQScwD0VPJLblMwh5ymQrjeYQHHt6c
vAzzE8S0wXyRnyT2TC/yk8KibD3MZ5A82wMhwmfkpyWfkvnSHUlMwvwH5XIa
mxH+ozm3aoTwn/6lvrI0lPY50n81ZamvbN9/5Ol/yP/uN0tD+XqZ9HHtW+o3
+4/c8w85f9+cy8l3ZfBkev1OA8tuWEMXN9ml2gcX3847+BqloX1Zl/cQfjLx
kSeU8JO8pT60tJSPi31lry31oc1ZktNT7izKzZfkqy/XzhwQrEXz2+/f6B3q
hL5J5Ef+I+xa6k9LT6Esjt+01J9WfElOQxFYlPMvyYNqK6puHe5AkzyMd595
1UHB+9Nzu2T+6VtLQ4m2IX4FLfWt/Ufe/of87362NBT9xX62/Uv9bHf+R27z
h3zPwqtVmL8hXU152hWYvw0/X0l/A/O3hKU+tzSU70Xk/pLGUp/bf+S8xf8t
/+e+U/Qf96BMVdg+PMD80E5elZvpfhkK2rx/O9Ff47JDAfsLgx6Bo8+96lB6
lN9yMezvpkTem4oWzUDpiqLY7GxHqr6+9v1hfTA8GSWviudRTe+aJ55HRLtJ
poLM47I1e02eY54p7nntLJ5H1Ki80p/MYzat3n0fPL+DiffUiZyHd+IVke8V
ck7EelAYTeRDoqeP0bKY6Mmft3HB30VXLxX9tsbfjVW8aEe+e/9gwltbkw40
Ma6RXepbi7p7zyWIaPVDaJFaHsYTmAgz2ETwJMFR+THBE8VCK1eMS6AxWdZJ
cCmeL4qL4NKbe9sNMI6BywTrXoJjgwqFcWRf5Iwk8f2FeX5Zk6EF3kfId79y
JtlH33rOKZC+HoK3ziiR85fIuE/H4rvdbXzrcjQr0Kvefmah4A4wDKz+5Xxg
ADxy7cNJX5tNZd58/meaQY0+IYX8x9kkdH9qbHMjasysHvkcXw2nPCdOkv8+
yGL9KjuTDvg83HSvxLcW6oRiIohf/+y78j/2nfSc6IgSnpfsUmF7HB/4qVZg
TOLzz76L/mPfaV92Sc6325/GGHxrqN6iF/TE0urJfzfOx6oCiioF0Pg44OVG
7R4w3Jo5TZ3pBZaP1VxKKgUow+fUUyLPCm8cJfJ3W9W2+e5uRy0a8/psu5qA
6XRoH/kfd45B6De2By0oCtgSe3wOW18g9vyzL8r/2Bd6waxy2F+UdOK4KfE3
eK3Ec+LvP/vl8h/7YoftvHT5lU60ozSO79qZUlAvCeNzYBn4r/XP/sf6X2n8
Pb/sSidctGgQNj9Tisa/8yiT8V9iqhBePxB7pSCRrB94/SyQfNdCTm25Ao7D
6P30Cuwvsrw51Uf8LfTT1cNyJDiYVkrkvzhyuonc+D//kS//8R/ZO+//+j+L
LPV/Vljq/0xb8H9y4X/J//6PTKG4/9FXVmapPyoNxXWxP2rTUn/U80t9UOko
0Yt9UIOW+qCyLvVBpafoL/ZB5fxXH1Rayrwl0aO41Ac19z+46ruIe2ZL+Cm2
hIe0FN5F+cYlPFTO/9P+o0v2S8x9FsfrARSexh0i62Fg+/4Bsh7mO9WaMH8A
xzeVrL3TdTDN20tH+IPuzVHdJ87t4Pqz652TYSPwM774ybKiHxSGRDsxbsOn
kC5zgtsS9s6L/4tXd7ByKXxuhF6xoK+9eztg+wnbdYS38HqLKrjb18HPLR+l
cuw6wefKaLTiOezPO9l968yqkfmPV2luE21oxGMkzDF3AC6V9a5db1YNWmKB
DlgOLRKs3kT+MOhJ7mPndiT60qbrjmEjop9Io1+J7Yl2AP7zvJ2IbWH2JemP
5XEhapD0c+uRqmPBelDSNW4noqfWivM50WPc9L39L6zf6kNSKfnu2zeVCUQu
8D/uFfzd95vmX/cKeL82fsb4g3Ztu29O8Ef80PJkgj/G6UxKfZpF6JnY5+Es
9i50XY7tnWBuP5TG7LZmtehEXvQyYXGM5egKZ/wCc08/7Gd8tYOc638528gI
6JWgMxyUKnKuZ3iuwkf601XohL4ifpUMsQ0Rv9r+xz2oAjaf+H7NInhVXNmG
vwv77hY+Jd/9qZyed9++DuVrV73B8Uchm2sySPw5l/pbUigH/uhv2bzU3xLL
/+hvue79xnMSKzrR6SJepy68Ny/6lVYquPdDvspsI96/aGNHuhjZv7dHDGXJ
/u0aLLi7a28neq5keYz3ewUyvPSxoTi5/z/v8dHSe/zYpff4os/u9GWkN0IZ
5cHbiKvRcMXUfS057/NuCQw5/SADbfO+4wiy3bD9k7ErqQ+0Lb1/P7j0/t1g
6f37J/NPFgve7SCYzuKRUesNrmP2dqTOsE/cnfI4oAPqJo69Dk6NgRdndehI
XaL8a8MVNZzX9FjeCxGeM8a1so/ktY+uIq2Y5yMtHpUhwvMDlhU/Inz77/fp
K5fepystvU//ziNvy3C2A1xYBiaFVj1B81EyHqQeUnfS9G2RfyfIqnlxuMR4
I3tRrwekfiImdnSsJaQL7Pu0nh8J9UUsZvRdpN7yLtFVu4qhHbicqzlWaAUg
DU5zLqXIIZjkR5GdHB3wKdK09Lx5AlLX2VlM6jkbvI5eMInpgI2tO/MaP2Wh
Q7Hf+En9J3XpHXfDv95x/+zlL0qwaADDCp57M6cCEGuf/Nbr50Ygaa3lh+2x
jcBc+jtT1iUdrUwOdCH1q/kDXs3sbZ6IvZ02InCuG42zbNEjdbPj3Qx36J8U
wOOiToNLMfVo60i0I6kHnl/x0Ln5VTbcNB0vj81sRUPHpE6S+uHY2xuNVzNT
YG/MsogAnw5kfeNMJKk3/l1XcZtSdTFU6EInTBybSX3SCEXpNDhFIPfqa4b2
qZ2oZ/VrflLPpBMorA3KTUH6Okw3GBU6kBF7VTCpfy6zDFh51z8beb+65OKX
1YL8ZmtotjcNgct3zp66Y3WoSlH/Dir/jPY0TKiTc+WGK/sClH+GwyvPqqP+
qlVow9sj8uQcOtt4Zd7wQAsa2nvIKmXPU0SJymwn59arNfcv4XMuknhpKDm3
Jxz9uhbdRc65lDP578yUIkCTzugXPhcj4z3sjuRcnOkVVYzP0bBr2b3dDbez
kEb++Dtyjo6hTXbF526UHLTfl3nOHVy4vuwj5+7ewym38Dkd3W3SMXkx7Qrs
v5viyTk9xvd+DD7XI2QswLPWyBl4hVUvknO9QcY7bR3LULij9lL6kbkqOqYl
uYfUAZ7GyRe7GGVAtEbE3pi+S6hpy8kSUjc46qdrHHO5GJLy9oRsmrVEexxP
xZA6w/Sv9bNHL7UixsbvDKp1frD9mx3tdsFhKBwFD2aeJmRw2LKj4ks0aLNR
b5E6xpHhzbS8UIf2/NDqlk34Cmfkl5uQusd0zN7lVQOV6NJO6sfvvAgYDlaX
kjpJi/ADls/0/vCYjvb7b4FsEKUPmSJ1lc/Rn/aoTaSAwtmaT/tFs6BUsvgz
qcM8qNV+FPQ9H4pf9m4q0M8AxU6aVlK3eZ6opNutXwE6OtzNcrdTob/1eTSp
89iKzK7NZWxA3MKHNN45+cOMYcvYefMR2DS15dcx91pU1DB3X/9hMnCdZRAi
dSSO3iK7q2aYWzDlxbxnzYVfejzCpO7klxxmdiG7DN3UuTJw2b8Y5m/vsSB1
KmcvbzlB2nwkxhmh65lZDgZTOqakrlU4GznFxeAGJ9P1JSLMq0DhhYQHqYMx
8lYUIZE4sMtukV5eVAmK1pmlpG5WnMWZddojE2hYa4bE9SpAlGX3yGKdTf/L
uEBQIbxVbzW/rVgKbO2Ri3U59u4tLRc4K0Alpt0gdWc+HMnKnY6XpcJaPeuH
cxuKUIycxLYezgxYNbfHktQD64Rf1M9E5qHHNCsFEz1KQH39enFSP+SK+Xnf
yCkLya2vn7gQWQW2Wi+XkXqj0Z6bn+tTU9Fpc+/MbpU6cLZ+Z0Tqk4IHu7Rm
aOOQfbL1Dpu0BkjNkaEL2vVP/fOqmFP8b/MmeG3B8pnUP032Sfy1jzsEDjD8
1hXKaQTv5GWdpF56/qeUTtdCLDxRXO4az94AvRtSA0l9VfKhLYNrfCowS9Wd
jYVaWFHTGUDqsVf4Z8ub7bNgGd023zCZSpA97uJE6rc7hHM7U8PzoNybPUq8
qwDq+1YGkHpv9wd5xujIAuT+21qC/DfpZutZ/G8yQU1ltu8tRnOZd0fJfxYf
JskpFlEqlCkY9twwa4Cjq1wDSD3fZ4ffQjrPEOzy47ePTa8BFdmVy0n9/8uB
uBpS/49feud17l/vvMSlDfxi0muQ8FuuS3g8+hTg1E/G+1QErVsR1oiEvtDv
qE2tROO0YrtvPByC9uMyfba9xdBirNBtIVKGXjrKrCD/fTZ8uNseHlkAtA07
E7H9qOkD1z5i/6ozR9dEYr/81WX9iby6foUokfMWy0VgPWjZeG0v0SNq4M5M
9KwofcfDiL9b8qSEi/w3abxkPE/+m7TW8PBhXgGcp5dvIbyCVWl1G+EVNKZ7
r2M7QXnKUZDYqZ1A2UTsXJ9l03Idx4fGa+A7qf8c50zZTuo/xvymO7G/cEa8
x5742/fx7gzx9+97mDQU/kW+ZP6ve5g0lOOLfIlpiS9xy04/IPasO7h7I/l/
4fi7IIHYk7mWRffq2hKYL9SPZuYrAX3zayvCj1NBU0qf61pwIeR5nxivuV4D
DkNSt4ovjQAL23WRC1m5kKl3C5XpNsGrkg+rX+gMwww9eDH9zIDkl5+vcfG0
A60fd8Fe5SF4UTXvXJvzFTRy8ta513UAXa7R7HrDQWAT6V+fqRgG23kFr7oN
dsJRwc3SXJiH+FkeXW+VnYSy6wM4dHM64CTf0Ecf40EYmWHNF6vLRGqU05m+
s21wWiZNtu7kENzir1L6bZOHnhW8zTXd2gRysY/OOOsPQ98+o1hsP7qfElJN
7A9ob7El9nstvzuH/UV9VJ1Q4i+kWv3+jP2lG/lwYya/ETaV10W2NFaA5OG1
/mc+DsF3cYevj8LqgU51d43Uq3rYwWhja1w/CH6zdNOzPDWQ8jxKeojSBk6i
o50PqfhcrPQqcSAxHabfl64aPtQNppbb4wuu9INrVGUE1oN8pYraiJ4bgg6L
euzuFUvg76I9dJpfyXcVDhd8It/VeizyYB9LE7rqePqjRl0uNN+T7+IzH4a7
V9YJHPBtRFMph6ujK+PBiI7nghl5/746etLHqBPu27OL8d4oBddk8yqTlQNQ
3Z6f9qWnA90K35ZdL5YDihLLi3h+DYDwtD9/+O0ONLXeSUjjxzfQODL6qM93
ECa37nmYmdSOZIsFe+51hsJ03lfN5v1DsDLC4vfFzC6klzN86I2bN/BKZBrS
bR+AKM0wJ4H+TpTiYHCl56sLPNTyfFBSPgCxtMnjwi0dSKF0QHmBwwxMtN4w
vXs0CEy+/Y+GIjqQ2JPfPuUD8Sgt0uaMgPsgBMn1i1GL2lFGgvCRlWohiOEy
RUp09xC4f+aIV3iWCb+iRz4/EOpGGueyZk/jeC6716NkWtiI1tY6t664FYdM
edZMFY4Nw+6V0916O/JR0a54VVHtfNSw++ArjmoqCPRE6ZtEZyNBN8HsILoK
dPTX0UqTK1Sw7lMXm61PR1GMPRP7uqqRQtKT8PnxEeC05HWqe/oNXX3Er+9e
UYeMtqZTTdxG4P7e6dcL274gEcFPFp3NDWh1GRODiNgIXDsQCKXSgSjs3iaB
PM4mVJa+ZqXmzDDIrPSjGL2MATOjBO36kQbEavsuqVdoBDQ2a2ibTiWBcFXD
x5jROjThf8j2pMMI3LLnFbrtmgGX/ce5xllr0LnfgwdFekfAJiiU6YpyDjyv
S9n2SKYCOQUN8yxoUeGOncOKXZ/zocRt9UOe8nyk05eRTcmnwoe323uVvSpQ
cBazyIkreSizR/6A224qNO//0Pc0pxjtiuhqPsRbgkLazJwFME/4frFGpmEi
B/FIldvzppSjsBAxOz4jKuhRrfY+CkpFm7VO3nNXqkS31dt4pi2o4C3s/LW7
OQKZ0F/vkJWuQoGDdrm8tlRwKd8jYtyeC/Lq32gvzZSjORs+tjQ1KlBp9D37
gktAauDtrFN5CSrRcpBzl6ZCcEaNN3WmAl5mjT1oMMxHx75pSKWvoYIq7beq
W7XVUCusKnvIPwPdSK1n2jI6AkxH1zG3qdWBrdrsvuCxGET9tHrsSxyOv6JL
E9/vCnTQtoS+myMVPXPN3yt9mwoPRTMe978tQicaeDQdODKQoqvAJbYJKsgX
TikrJWei+3cZVLJ7MK7wXjnLgvmh5ZRcLd+PGPTpaGs6PW02SraLWeblOgqV
rmEz+45XwtqZzxd+uiJ0fkFmcP4yFQKVlV+82lQLbn4tX8/lfUNcUrXGTI0j
cPT5+vlv/g2Q9IuGfyw4Bu3/nJlttW8ElAK/fgyMbYY3sV3thYIhKKuo8teg
9zDEctbepE0tQa7i1Ljb09fgqtlxaj7fKFzh5nPukcpGe4QnLpy7ehYEYo+f
WvdqFDr901IVHOLQhPaPXyeat4KImcHXpJ5RoKqqy2ca14G7ib53CK89aubp
2/gkfwQYlUtLgnia4Ojwik6xWSuEvOekIhcwblebcZ0xaIVVFbU1tLOXkdHT
/o7t24dBdf27e6uls9AcP2JjlskCLiuzAY4jo/DtaGxtolUsarkSLBbFkg38
zyd6ulxGoWdbpWWCeQPIhon/9Z05GhhLFj4EK49A3hfTfqnXzbCOynvNgT0Q
fnpe0z3mNwzjSqzHJiui0HitubGLbBV4SGnPWWD+729tlPx5E57fMx/Xv3j2
BYKkG30U8Xnhf51bo0NE+K8VNoJcnszY8ltx8I1/Uz7BAUsaVUPFZ5lIWaIi
A+MGPD17pJrgRomeqAXGGUit1L/LrBYCdvUtqwjOGHDz5GFcgnxtAUrZQDxw
vqVKEFwy+bK9HuMYGAY2e/KtMkMUS5r1BMe4lXyeYdwD6o0TnmNfXVDjR317
gnsvq7gWME7CKWnrDR/dvNGmTNNFnFQY3CaHcRVE7Y8edOsMRUMvZN0IrnJd
7iv7fLsDHm6p33fuB14/+398Izj8Ul7bG+M2XBIbjWsQy0GlUpotBLfjlniR
5r940d99w+r/dd605P/sAL6NYJWf7v+lMh69n9jkRvJF2Qk5ZxmWJrhytDzi
bF0u2hjRy8mP84taBL31NM6D8dYsDTgfIb+xmCqSj3RaTd974Dy48y/dA9Kv
6lGyHvdbkr/YCi5X9iemo6Q55l9Dh7qRjJNkOcl3D8UQL86PyHTG8yHOj+hX
uNA0yY/zB6sCsR4krK5+iOh5k2mzqCc6X3k//i4q2jrcSr67dvJWO/lufZ5g
5RXMT2bCdP1Y+EpQfCb9KsJPnvhZpZpgfiJTNHqq9noNahLN8CD5ffcMz8S8
TR4cj90mcG1rE7K/zK5H+IBm5/Xzu+oygc8yJwHzB2Rs9/kk4Q8St224rmcn
wa6t+9dhvoGeII5Iwjf8/Pu3I8UwNEqz6jTmJ2irXbwK4Seuw0HR1Tlf0R5x
YU7MZ9DyqyzLN2A+U2Hx04vxZwYq1rS2w/wHJdRLlxD+o5hXNWKQlYu8zfNL
MF9CveKi/IQvuc++/XwV85Op3fIHiP31ieHOxP6svmIf7C+i2xXvS/w14ijh
Iv6yNTQsw/sCWYywv8D7AjHR1iaSfeFnIzM0XREFOhH9xXgfoeWBpv1kH9lU
qJ7A+w4Nx3/jcGQPRKbGanfJvpvNGhmJN29AO2pS2/E+RalHdDPJPr1ENz+T
ZBUL97pVDkezZKM7bopVZF+/lYjU4pTOguttnQIsMlmoTMe3luBAFFtyjbpB
K5JXs94xO3MZZDvWjxPcWGexMh/jDOI5cqVo56wVPH6jI0NwpjpD9wLGJWS0
tv6pB689MKeO/0Vw6SNFUvOoQxysucQt8bRjKwoRKE0gOPbD7s4sxj3w/HXR
dfLqWVR/W12F4N7rdjt3utQSCEy425E6fQ2pyPS2EJw0ypcowriK7kS07cG4
Ci70QZMEV6WObT6X5N+AqJevGPwIjoGFEacYgsMmtpvLMW4jbyPmgbN536CP
MqRHcFucnvvO/uOViKFEJHHcFUHL/FgzwXmd5/NjG37EwBjfzSd0tNnwpm6e
k+SFk+v1phSTM2FeuOFAVk8mRAZ+uUjyyIjSVeaBt0Wws6zR7hZHBqzIaF7M
Oy/5HX34f1cAXebmoE6OVOASCNhI8tRnm3fFOK+huMajd4PGYmCr+/cSktfS
xjcaOtRWo2vBVx8d9M+AL7e8pgVxHizZ9m3Z6EwFujltn1xvmA9xHx3FSN68
/WxuHudZtE5s1UGcZ4GadFie5Nl7Ro2SOC+jc4UJmcYz5TD+KZyH5OXCR9lC
fc0R8DtL1wfncTgtx1lO8ri8gPPjx0GpkBK7RQjnfYjLc+EneZ/mVUAj5glg
Yv6CE/MEeN7K4kR4gu2QfYtnTjFsetGsgHkFFA403CK8Imm34MXjXhVgbWcZ
rnolDyQ1NkoSHuJv0HBP/HM+ulN1kcpdng8d6yLCCW/Z6354palyDlp283q+
h0wFuMwX0xGeY7twg9XZNQMl8997NMZaAycOT8sRXjSi/waZTSWhuaaDuzCP
Amvx+fuER9F6GlwyfBmDBg+mS2LeBTqJ/QWEd6m5/miukg6EWsWBdZingYuG
JTPhaW23i2hohL6AJPXAcczrAKX+tcjr3mzYw9r49Bso2z384VZRB+s8d80T
Hphtv7oe80ZoC1W8hXkjPHjXk0x4Y4y7iznmmWDxTdAI80zIF/jeSnimT9RN
S8xL4Zznyryd2vmANrq+J7x0+dkyy3HlVmR7ocKttKwF1ul0vrUZ7gOzHV3s
Y8qt8Pt65vuyshaUu14kgcj/vkcx8697FO3/ox57c+n9OA3FYvH9+F//ej9O
Q+FdfD9usfR+vEOgW/wkVzXqEas//sGyCza1Uy4fPNsHZUv9GWgo0SykP4PE
Un+Gv+uxzP+qxwqHP4tW5aoGSa4VsVgPspL7YUT0/P2/Sf9f/5v+fp9Oofj+
8T797/fsFMq2P96zuy/1c6ChpOiSfg7flvo5lH1QuozjCW+/d98l8TTanBFM
4kZhD144ge35ZrVZhfi1DO2xJPZUrdJkwXFG2/K9P5A4p27UTiTjc+NtELYf
7VEfX7Q/9fKMARlvVbx1kOS1a0o9R8i57+rNtYvnvok6hvgZfB7MFnd4Q/Jd
iCD3cg8sP7V0j0XxX/dY2v/Hf4T/B7Pn94Q=
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
ImageSize->{362.4290401212566, 235.6481356379338},
ImageSizeRaw->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->
NCache[{{0, Pi}, {0, 2 Pi}, {2.675715961772449, 4.532575608974781}}, {{
0, 3.141592653589793}, {0, 6.283185307179586}, {2.675715961772449,
4.532575608974781}}],
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic},
ViewPoint->{3.1369774092384084`, 0.03625238331938226, 1.2680924645433183`},
ViewVertical->{-0.3747306185760079, -0.004330562912604685,
0.927123621598815}]], "Output",
CellChangeTimes->{{3.801889798879286*^9, 3.80188982319788*^9},
3.801889898888165*^9, 3.8018900411449623`*^9},
CellLabel->
"Out[106]=",ExpressionUUID->"c05f908b-f690-4f4e-b09a-fb4b83f06b3b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]1", "=", "0"}], ",",
RowBox[{"\[Phi]2", "=", "0"}], ",",
RowBox[{"R", "=", "0.4"}]}], "}"}], ",",
RowBox[{"Plot3D", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Psi]", "[",
RowBox[{
RowBox[{"2", "R", " ",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"\[Zeta]", "[",
RowBox[{
"\[Theta]1", ",", "\[Theta]2", ",", "\[Phi]1", ",", "\[Phi]2"}],
"]"}], "/", "2"}], "]"}]}], ",", "R"}], "]"}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"\[Theta]1", ",", "0", ",", "\[Pi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]2", ",", "0", ",", "\[Pi]"}], "}"}]}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.8018885294395847`*^9, 3.801888542631722*^9}, {
3.801890112307804*^9, 3.801890116737638*^9}, {3.8018926121664762`*^9,
3.8018926125545597`*^9}, {3.80189264576252*^9, 3.801892646199854*^9}},
CellLabel->
"In[118]:=",ExpressionUUID->"6ba4c5f1-b775-4e04-99c6-67ea67b1e47b"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJyF3X/81+O9x/FUqvkR2RmykQzLr1ANI77l1zjyYzbZDs7hOKgUNiVUW6yd
kyY2YcY4+R1zahg7FSGlUku/f2jyo7OVJr8yinC47XV/fc/t5fa9nb/et/fj
8/5e7+t6vq/Xdb2u63pd17fjv1586nnNmzVrtnOrZs1afHY9du4N407a5boj
XL/+j917fjLwyYZfbJq5bNeJcxrwId0/HL/sgmcaev3HktUdJv4pebcDRu19
9C7TGjodd8/DS0f9OfkV3219V/MFzzU82OusiztMfCP56+/f/ODPBs9quLnT
z29+dP07yTff+rhZY1rMaVj64AWDlo76W/If3Nhml4svnNuw435Hf++jjhuT
7/rp0qN+fOq8hh9M2LVrh4mbkk/50s5/Hfjd+Q1/vOWTkR07NeuBr5r0u/V9
ui1oWLe8/+WPrt8s+dKGy14e/86Chq2/uuKCY55qkXz+hG5rDhi5sGG/M48/
femozZMf+eCrfYf8bWHDibf/4di+vVsnb9l8p3nPHbyo4eKVexz0UccvJV+/
/rEFn5y4KPNHV3q6d6U/nfFh8Tyd8S6hP51x+tMZpz+dcfrTGac/nXH60xmn
P51x+tMZpz+dcfrTGac/nXH605l+6qfn8GGlPruuHLrrtz/Xn871eTrj9Kcz
Tn864/SnM05/OuP0pzNOfzrj9Kcz/mroT2ec/nTGXwj96YzTn850Ul464/Tx
93itz67qP53r83Su6dO55ofOOP3pjNOfzjj96YzTn844/emM05/OOP3pjKv/
dKaH/NMZV146411K+4zX+uxKfzrX5+lc06dzzQ+da/7pjNOfzvjpoT+dcfrT
Gac/nXH60xmnP52VW37ojMs/nXHlpTNe22e81mdX+tMZ11/QuaZP55ofOtf8
07mWl844/emM05/OOP3pjGv/s9+N8rGv7A+Cy0+2U8HlP+0nePU38No+40NK
fXbV/tMZ973oXNOnMz448kPnmn861/LSGac/nXH60xmnP52Vw/N0xulPZ1x+
6IzLP53x6m/gtX3Gh5X67Kr+0xn3vehc06czTn8646sj/3TGW0R56Yz3Dn3o
XPVMPzXyS//0n4J7Pvv14PTP/iY4/emMV/8Zr/4GXttnfEipz670p3N9ns74
/pE+nfFBkR864/SnM75ZlJfOVR86y5f2hM44/emM05/OWb5In844/emMV/8Z
H1z8Dby2z3itz670p3N9ns44/emM05/OOP3pXMtL52y3on+kM05/OuP0pzNO
fzrj2jc643U8iFf/GR9c/A18/9I+47U+u9KfzvV5Otf06YzTn841/3T2Hv4e
nbN/CP3pjPNn6IzTn844/emM05/OeB0P4quL/4wPKv4Gvn9pn/Fan13pT+f6
PJ1r+nTGtYd0lp7xC51x+tM5++HQn844/emM05/OOP3pjJ9e5jfwFmU8iK8u
/jM+qPgbeG2f8VqfXelP5/o8nXHjazr7O+NxOuP0pzNuvEnn9HdCfzrj9Kcz
Tn864/SnM967zG/gm5XxIL66+M/4oOJv4LV9xmt9dqU/nXH+Ep39bn6Jzjj9
6YzTn864+k/n9CtDfzrj2n864/SnM17n67KfL/MbeB0P4tV/xq8o/gberbTP
+LBSn13p3371f03abeITeTUueP7qnfdeNmpxXj2/evqMBY+ufzWveN/nh//i
o46v5xW/bPXX7u/Y6e284o/33fizY55an1d8w18X/1vf3h/kVX4OueiRo0av
+zCv+JVvX7fbwyM+yat0zpr42PC1W2/WwxUf9uHXLxm6vHkPV/z2w274l7b3
tuzhKv0nhzY7eewlrXq4en7lkxcd0aV7mx6uVU/1d8vXbprSa5un897vuL/H
6/wqvs2/jjjr4uMWNX6n+Ls6H4h7Xjp4q/Jev1cuvfpez+P7PDH4x3tOfCiv
dNjzpH+ctP2ENj3w+rzfcfeu0pEPf/fipKM+fWjmlMyH5+cEd+/vjvr1lS/d
2qvxvf6ucs/X9P3uec95D+7e38kP+6Gf9tC93+s8ud99F/d+x9lhTce93+u6
ht9bRjru/Y6z55qOe78PKfOcfq/59DuuXajpuPf7kDKP5/eaT7/j2hfpaA/d
+73OU/m95tPvuHaqpuPe73Ve0e+tSj79jmvvajru/V7nGfxe8+l3XLtZ03Hv
9zov5PeWJZ9+x7W/NR33fh9Wxol+r/n0O64dl456kunG73Uc5PdWJZ9+x/UH
NR33fq9+vt9blnz6Hdev1HTc+736sX6v+fR7bc9rOu79Xv00v9d8pt9b2o1c
nwruvrYz1zTrecLv18/Pa/UrtD/y7762J8+N+MGqjp1eyav+WjtQ2xn3fseP
u2a7O/v2Xp3X6rdoTzzvvrYPs0fP/ueHR7yZV/lh17XdcF/bgT2PP/K6ocvf
zWv1i2r74L7ae5/ZuwwYe8n7eZUOO63tgHu/4+NO/OiEaa0/zGv1u9i7591X
+137wtK919zxcV6lw+7YtXri3u/4V/Z6sWWr25r1cK1+Hfv1vPtqj9/sd9x7
vzq/eQ/X6geyU36ae7/jp/328VV7dWnZw1U67KXao3u/44Pe2H3h5I8/G9/G
tfqZ7M7z7qtfd/N+Y6aeOKt1D1fptN2wzVeXj5qe/o7ncdf6PDul25abf9hm
U8flTXJX6bhnp55v0/qgqcc8tSp5q8JdpeOenUpn1JZv/WT0urXJWxXuKh33
7NTzrdosumPt1u80yV2l456dev7YUb8b1vbe95rkrunfxj079fzIrUaf2aX7
hia5Kztyz049P/O6vof1XvhRk9xVftyzU/V8i3bH7nRlv0+b5K7Scc9Ovffe
43+5ae7wzdJ+WxbuKh337NTz00d9+teze7VokrtKxz079fyfZw9Y8e4OmzfJ
XaXjnp16fvOt//T8iFWtkrcq3NX3cs9OPa+/NM6Y3ummF8dNnZr2xn6rH258
YB4e1w9Lh71Jr/rb3i8dXD8sHfYmvepXe790cP2wdNib9Kr/7P3SwfXD0mFv
0htS/GTvN0+C64elw96kV/1h75cfXD8sHfYmver3er90cP2wdNib9IYV/9b7
pYPrh6XD3qRX/VjvN4+H64elw96kV/1V75cOrh+WDnuTXvVLvV86uH5YOuxN
etLRL3o/fXD9sHTYofTofPKVb2zc1LExDuX2Todse16HKQ1bRL+G99hm5uM3
TP5snPiXHz8/dPlrab8N5x/yzdvmTk/u+bH9bhh/fftnG/pE/fb8gXucvOe0
3Wcm9/ziZ447/+uXT2/4p/FX976y31v5fNd/af/+Fv2fT+75Zw84fPqX583I
epzzG50vv2PU7XOSe/6S7kd1uWan5xs6HHbUO5M/boxLvPmqw2ePfWRucs+/
tfMrXa8/ZU5Duw7H/OHQYxvjEvv16bZ9767zk3v+6pGHD/hz53nZL3j+1rk/
f2efTfOTe36HGSf0PPjL8xuuuuruKWd+uzGOcdN+W93/+wcXJPf8oO9fccnW
r8zPeuv5RYMXr3qr+8Lknj9r2JjXtxyzoOGKS+/p+JsLW+bzk0cvXrbvwwuT
p/4PPHlXh70XZn3zfJenLz6qbatFyT0/4M3/HPnTuxc2/PC8e0esuL4xfrL1
rQPXv33YouSeP/SxcUumfbww65v29r1D++9y35Rnsr7hl+6652uzZ03JeoXf
vWH8pIvPezrrA95/5x/86rcdp+d3x0/rvs+/nTtkRn5f/KH2Ay5qPWtWfsec
X//pJY9eusvc/F74qnZ339xry3n5XfBn9zi3/47r56X++Cmvnf/Wm8/OT53x
J+fstO+5QxaknvjiFfeec/IOjXriO5/c75AXb2rUTf9y26IrNk4eOC11w/t9
a+XoS78yNXXDx/x5//FdBj6V+uAtr+g7s+vsaalPzm99u32LR/eckfrgR679
4ebbPTI79cFH/GjZcZfP/2Pqg19zULvhF7zwQuqT6xUjrvzVxgXzUh98n/7f
u2je/fNTH3yXr9110aRzF6Q++JKtr9v1Jy0b9dFvyj99ct4sykufjCs7+JSP
e/SfmjrgdKYDPqT5z45fvNus1AH/8Yzbev7i7NmpA37LOZ+5RiP+mDpk/Onx
f1rwzZEvpA74V1f9cuqLj8xLHfDW7/dc9/DP56cO+PAL93q4Xa8FqYN+Xz2n
A84u6IAPCDvSPuPfP2hq/7bPTk0d8G0n7LBw1JDnUodcl2576Zrd585MHfBJ
90wf1nab2akDPv6UcZdedfAfUwe87Zn379Gy5wupAz6z5wPrJt8wL3XAX/vJ
/v3HXDw/deC3vB3tOR1w/QId8GnRv9ABX1L6KXxut25/WvFZf0efjPt689re
Z814NvXB79uiU8sv7/Fc6oPf0f6c/xh4xczUB//gqrcmXvvk86lP5rNh2y/9
+9o5qQ8+/6IfXb5g49zUBx849ukdb//RvNQn4xCjH6QPrj+lD94t+mX64Pp3
+uD8BO0PfkzX+0544JJG3fCVe7z6yGPtnknd8KEPXX/1ZZ89Tzf88Eifbvj+
kR+6ZbxZ5J9u+LIoL93wMaEP3fif9KQbvjD0p1v6q/G96Ib7vnTD/zPqA93w
+6P+aK/wyQfuOPmyGY164r/h14WeOL+Onjj/jZ74gqj/9MSfDnuhJ35R2Bc9
8TfCHumZ8WBhv/TE2Ts98W2jfaAnPiHaE3rik6P9oWfGuUR7RU+8bbRv9MTf
5beEnhnP2Lrby5/7LfTE7wq/hW5432hv6YafGu0z3TLOOtpzuhl3XB3tP91w
/QXdcP0L3XL/QfRHdMP1X3TD9Xd0yzir6B/plunwW0I3vE/4LXTDbwi/hT54
s+jH6ZPxbNHv08d4ip9AH7xD+BX0wfkh9Mk4hfBb6IPzc+iD/zT8IvrgPcOP
og8u//TBlZc++MrwW+iA05kOxoMdwp+kA74k/E865Dxu+Kt0wPm3dMD5w3TA
+c90wAeEv02H3AfAbwkd8O+EXdABZ0faK/y08FvoYF7ZeIQOeP8Y19ABXxTj
IzrgZ8Y4iw74wBiv0QE37qMDflWMH+mAayfpgA+IdpUOuHaYDnhtt/E54bfQ
x/q+cRx98K4xHqQPblxJH9z4lD64cS59cONl+uB13J37EvgtoQ/Ob6FPxhFF
v08f/MDiJ+D8Fu1P7gsMv4Vurjk/HLptFesMQ80fhm4zB3Xt/tj6Z3Jei27t
Yp5THBTdfvnae5teHPVYxo3TbfeYLxVnRbfjzt+yVeeJv8m4a7qdEvkUx0W3
bSOf4r6y/4p8ihOjm/lYcWV0+1XkUxwa3faNfIpbo9e+x/bZMHrdi1/QZ82z
P2/fr/fSnMejw7ieEw499qmFqQ8dRsZ8L33o0OepBWfs1mle6kMH76UPHbaK
70YfOqyN/NCHDuaTXwt9chwX+aQPHcxLzwt9tNvnRz6rPrd8Y93Etvf+T9YT
9ap1rBfRjQ7mq+lDh/4zj1768IiVqQ8dpE8fOliPog8dBsf3oQ8dzIfThw6n
37vtirVbv5r7tuggn/ShQ7/IpzhSOuy0732Dey/8a5aLDtfEelfOw0f+Nqw9
eOS01muz/tDhv/uc8cDYS/6S6dBB+vShg/U0+tBhY6T//dCHDubz6UOH5Q/M
uqVL9zWpDx2sC9CHDn+IfNKHDifdMmGnF4Y37v+ig/U65aLDk4M37NbqtrdT
H+WVTuoZ5ZWO9JV3SqRDB+W17iD+WXnPCHulg/I+H+sXdFDebw34hwvW3LEu
dVDe63e6duO7OzTuq1Je64ryqbyfbFy02d5d3styaVfrugYdpJ/2FTp8O9K3
H4EOn0b63ksH6csnHS5avvMW5/Ran/rQgb3Shw4r//v87W45/93Uhw7zftNn
2fYTNjS2V6GDdVHvpUPD0IdfOXHWB5lPOnwQ6zK1f5lwxodrRqx6/wv6eC87
oo/3ep4+PeK9dKOP9aA1kR/6eG/LyD99Loh1JbrRhx3TjT7ym/1a6GO9l270
Gf7J6Kd+ePZHqRt9rDfRjT5vv7RkxrgrP/xCv2PdqurmWteL5Ue7TTf5ObCs
T8nPZfFeusmPOHa6yU/zKBfdzn6yw7yXb2zcB0e3U+/sePM/v/Rp1je6yS89
6fbM8H533PTBJ6kn3a6I9TV60u3Asx+9b067T77gt7we63S1n7qzYdP4Fvt+
/AU95XNI0W1q5Iee9PFe8fz08V660cd77Regz6x2Pzm056TGfVL0sW5PN/rI
F93oY91Qf0Gfb70z48jLFzXu26KP9cfqz7xz9hvPjTmncZ8afeRz/9KOySd9
6CB9+tBB+vShw+unrttr4c8a9zHRQdwB/4cOd05tN/7N7Rr3MdFBvaZPznd1
OajLFmOb5z4aOlg/rf5tu7v+6fE99mveo/oz8jmo9GvyuX9pr+RTvaKD9KVD
hy/deEb7877TuM+IDuIm6JP20mL47cNXtsx9LnSwbksfOqi/9KGD9V/60OHA
VTPv/cOGxn1edJDP1cWfyfiO0q/JJ32Ud6/Fs9p88LXG/T7KK76DH6u8rx79
5rXbPdgqdVBe69t0UN5f/367dp0PbpU6KK96Sgfl/c7uB990/LTG/VbKK5+b
FT9WPlcXf0Y+B5V+Sj6rDidsf8iGkWsa9yPQQVw8fejQ/N/PHHrPoDapDx2s
z9OHDpP+NrzZ083bpB3R4aZYt6cPHdRT+tBBPuu45huRz5bFj5XPNcWfkc/B
pd+RzwPLeGRUiZejw/fD//9KzIvSwVX/6L5fXHcPTh/Xq87tfPT/5U+FX7ri
tH5tfjt7SmM8QPhvzx0wZ/U+7Z5O3fgzHz7RodfVTzTOe2uHt498Kq/r8Hiv
e/byP0MWb/X5e9VX9c17fSff5e6Dzj3h8/eqV9bNX471Ds8fEON39Q3/bvyd
dXnp+B13b77iFesp8b26xnj89DI/Zlzf491xEz6fd/UdH4rxrHnaLZqIe8SN
i+t3/0vZZ4GvCX5lmQd4McZNPUv8ifGmdQ3p1H0cuU4X6Qwt/KMYx42N7yKd
ui+j8pqOcd9LobPn636NjJuMcdaMqCfSGRDjhWElfeOOC0N/6cjPkaGP562H
3hPrDuq/8Y56Kx1xXHU+gZ9v/Vc6xjvS97x1RutK2iV/Z73PPb90WBmn+7v6
vPW4l8v6IL+3rlPzn4+I+szeu4R/KF5COhmnVtZx+Cd1vYxfJ24q18Xi+SHF
L+Vv3Bn1Ddfuqj/aE/219sTz+s2avn6NnUqHvyH/njdPLq5Gu6E/XRLtaq6/
R380pPiT+kH6S0d/emek73nzz/Kj/dFuWC/TnrBr7QD7+sJ+q2gf2OPKYo99
S/+C7+X8qEiHHbHfX8Y6FM7u7ojvjnePeQzxS+wiz1OJeoWzI1w9Z0cPnHT3
P3yePm4c3TPqM+6qf3T/uxhft4/02YV6zn7Vf/W51vNaP9Uf602/Dn1w9e2h
yH+Oy8Jf/VrkR33Ic1wKV39w9Ur90f7n/En4LdYNcVf+hnv+zE6Rvnp4SvS/
tX6a31bfcv065sl3LOmYf96+cPPDtd8cWfyoHI+XfQe5vhDX3Quv/XLaRcyv
Vntxzf1BcX9rzA/TB3885ifZi3qlPe9Z2n/zFfV58x47lPppPP7VwrXbbSId
9dO4tWXhrsrl3ni5tvPGfZsX/flp4k9ynBv1oUWsz2pPZpY4c3xO8AMLr/Hn
+EnBpwXXzpwWfrX0c/wY+To6+k1cO/nIgPEvvHdhYzqT4juOfWTGtB7/x68w
Ly193Hy4dh7XTt4Z6Wh/Do32UDq4+ee+0U/h2snRH7wy8dopjf6AedGhxU8w
v1rrm+fHRZyM9o2fsyjWQ3139dN31F4ZFxgP4v7uyNAZF4dAZ1y9orP2zfyG
9PHczxE649pb6WjHtKsHRDq4eQD+AK69pTN+Soyvh5b5kFvD32gIndmD9ow/
ph7j4nvVP1xcpXqDi9tUD3BxjPpFXFwfvzDjH2NdWLwRLl5LPA0u7sj3w8XV
0B0XT0JHXHyF/gkXb0C3bFei/tAH55fSBxe/Sh9cPCd9cPGN9MGtj9MHF7dG
n5xHj/gr+uQ6ZMQX0QcXV0MfXJwJfXBxF8arOU6N8aw4cu2ueEt65rpHrNfn
PlbzUhEnk/vfg4t3pRsu/pNuuPgBuuHi+uiGi0+jGy7+im64uCO65TpexOHQ
DReXQjdcPAbd9Cf2WdANF//AfnHzA+onXvcL4/pfOuP6Czrj4mnpXPND51y/
ijhJOuPi/TKeTL8a8Wx0zviUiOOiMy6uic64OB864+Jb6KxftT+Fzrj9LHTG
7V+gM67e0jnjQcK/pTPOn6czzl7ojLMXOuPiTumMi5+kMy4+kM64uDg6pz4R
J0ZnXNwUnXHxQnTmd2jf8tyS4No3Ouc8erSTdMa1q3TGtcN0zvjl8BvpjBsv
0Bk3j0FnXBwvnTN+MOJR6YyLt6QzLs6Qzri4Ozrj4tDynJng4q/ozM+yH4rO
6a9FP0tnXH9NZ1z/TmecP0BnXJwtnXHjYjrj/BA64+Ki6YyL76UzLn4140SD
i9vMeMrg4hjpnOPxiOujMy6ejc78VvvI6Ix7ns4ZBxfvpTNunw6dceWiM24f
B53xJ4puuO9Ct4wniu9IN1xcK91yP03UE7rh4h7plvtOor7RjV+vPqd/FVx9
phvOLtLvCm4fU/pdwdld+l3ic8NO0+8Kbn9H+l3BjcvSjzIuiXYm/ajg4n7T
jwouDjb9qODiQtOPCq49pJvxi32FdMO1t3TDtdt0w7XzdMP1C3TD7QOiG27/
C93ww0s/hYtfpRsuLppuuDjhjLsNLm6Wbjh/L/9/g/N4wh+gG84fyP83EJxf
kefgiz8NPyTPZ7ePMPyWPGc8uH1SeZ51cH5Rnstsf3Hxo3DxwOwaN96kW+V5
jmFJJ8/jC85/y/9jEeNg+0zz/4sE56/m/10Izu/N/wcQnJ+c59QH51fn+enB
7SPLc8aD2z+V518H71L8fFw9oRuuXrFrXD3M80zN34f/RmfcPDydcfU8z0kM
zn/LfcIxT2B/Lp1x64N0xu0/pTNu3yWdceM+OuPGiXTG7UejM76sjENx+4by
HOTg9sXk+bzBtZN5jm1w7Wqer2q/V/hvee5ncP4bnXM/dLTbdDYvYlxPT9y+
XXri5g3oidu/SU/cfkZ64uYx6ImPKfMeuP6Unrl/NPpfeuL6a3ri+nd64vwB
euLm5+mJW4/eJ+KwzZNYBxSXjJs/FKeLix8zn5jxShHPYL0TFycjDiD380W8
hDgzXNyF+eKcL4o4DfFGud804jrMu+Hihayr4eJGxAfg1v3FeZsPMS8n7hmn
j3VlPM9PjngInD7Wdxvjev6uj7gxnA7mJXHxKtYpc39t6CAeAhfXbb0Qp4O4
bfMYeW5GxHngyiveF1de8a+48lp/xZVLPEfOF0W5rKfm/uAol7gZXJyP+NqM
i4z8WA/Dvdf6Fu691rFy/3G817qvcbF0rGPhvov4IeO7/L82YXe5TzTqP7vD
1Qd2l3F2oSe7w5WX3eW6TXwvdpfjkfi+7K5ydoeb32Z3uDgudoeL+2J3uDgx
dld1sP8h98sGt/7RGF/293TS7oLTRxw5fnnkM+0uOH3S7oKz97S74NYL0u6C
0yHtLjgdxIHh4sHYHb9XnCq7w5WX3eHKK/4794tEftgd7vuyO1y52F2OUyId
doeLWxvk/NPwP8UH5rmlweWfneLSYXe4/Ftnyn0tkb74dZye4tf5D563rqyd
3xBxaOLntIfigsTPZfsT8Rji5PqUeAbxcNoB67bWZdVz73VekvogzsS6F52X
xXt9L+UV58CO9O/i3NxnPx7+J38At99Q3Ju/q+c/4563vi4d+RTfRk/z2Pw3
z4vbEfeGi3+bEevo0hl0+DGvf66PeDjfhZ+Z8wzxPH3EteDi4sTD+Y7sYk3h
4uL4k97rXBfxMTi/a3UT6Ytf+f+49kecXM4bh58sngYXHyKODZeOODZcPJv3
6qfEs2kncesI7Np8mnlvcQPqufogPkw9lw4/2fN0EzeGix8TNy8ddiougb2Y
N851NOdYxHcXf1O5uLGMTw874p/j4lvE6+Dqs3TYqe+rHcaNd7R3uO/I36jp
aJ9x9Z+fU8dT/D2c/vyf3IcR35G9sEfxYDnvF3YkffUcFw/AHtmF8XWevx1c
nFjfJtrVvcr6l/gQ9VZ9Fg8mDgzXDqi3dR1BXFfOM0d9E7+Fi+My7st4h8i/
eoWzi1znjfpGN/WncvVWvaK/eoKrJ767+iDuS1wCLu7Ld6/jcf2v+qCe829x
/Zq4qzzPJri4KPXBdxTP5LtL5xtNrG8+0MT65o7hD/u+eW5t+MOV84d9x4FR
H/hRuOf5ybj2kH9VnxdH5buLp+I/53k5wfnPvot4Kv4zrp7vHf4z/fVfr0Q7
gHvefmPfRXvITnHnzLC7HOdGnNVZ4i2dOxjzMPl/N4I7Z6mpfu235TvKJ3vE
6zmceNfC8zzCiJ95OeKNcN+Lf5jrv5FOz/iOWU9i/ko7oH0QT6X/wuVzVuwn
xK2n67/Uk0cjHokfiJtvEf+E3xXv1Z/i3iveTn3T/mtPcN9XnJN2xnyy9iTj
r+O7a0/U2+/F99VuqJ/Xhf72BdV+TbuR8aeRf+OI9NtDf+2PdkmclfKot/bd
bBnnJtT5Gfs881yosh8Hl47zINRn9cQ5CHU+hL3jxjX2Z+a5U2X/Pu6924Tf
W+crxC9Wu1CvcOM++z/TviI/6kPGgZT98rj8OOeCXUj//vC3M84x8tk7xke4
fKrP9Xn7Qmv6xjt4/h/n8KPwus8dl//d/P+XsEfpOPch97/Ge8Xp4vIp/rLa
u/2ruPkEfmlNn93V/NhPiCvXsTH+ynPF7PONcRYuHe087r3OWcCVSzxoU+0J
nvtbI26yps+vqPnRDuDKtQ07DfvLeV12WuZb+BXsxnyvc0DyXATnpYQ94uap
7E/Gpb9j2F2e8xfze7PC7nDzeMaJuPd+y/81cR5D6Jb/j6ScMyx+Xf01L/2A
c1WcLxj5YV+5vyTysyz2U+Hyk/vkg5t3Mj7CzeewO1w+nQOuHTY/zI5yXSny
z47yHMTIPzvC5d85FLj862dx++jZHa5cuY/a/zeIcrE7XLkuCDviLymXc09w
8+TOAclzHKNczsvAc944/BBcufT7uHMAxkb/jpsXZY+48rJHXHnZY+5fjPLa
v5fx8jGeXRK8zg8437yeT65cGZ8TXDtGZ1wcs/zgx0d90P8ah5p/lr74Df2T
fv+IWG+Vb9x6t3zj4geki4vH0O7gF0acj/YCF8fCnnFxGuwHF4dAF7ye00WH
IeF3KRd+RDm3E1de5cp43Siv/Gc8c5Qr/b3gv45yyT/+UZRL/jM+Ocrlu+KT
SrnquD73S5Y4YfnHlSvb0+DyL5/4LZF/+cTlXz5x+c/zqSK/8pPzKfZDx3tz
PTu490ofr7r5ntLxfMZtlnQy7jGep2+Nv1IefEXU5zzHLHi3cn47Xu0l59nK
Oa74YUUfvHOko7yZfrw3z3MIvqScZ5vnFke50i5K3FTaRXDlSrsI/gW7CH54
yT9+aDlfDleurOfBDyjn7rKzmyL/uU8++PJyHn6Na8o4RX5L0ROXT/nBO5fz
fn23GyM/2Y4Hp2eOP4N3Ld8LP6y0P/S7sZzbj9f0lcPzTY3j8Dwnu5wrWMdr
/l49OrqcY4yvKO18nrcd6Tc1Lsv9g/Gd2YV84PW9uO+b8YXB67mIuPrT1LhM
fvJcn/ju8oMfUf4fBF7Pef5COpFPvFvpR3D5l09c/psal8m/eqS+5TkeweVH
/nHtM11qXLf813TkH6/nT9Z4dfnHbyznTqvX6T/YbxNcueQ/x1nl/27gDcWf
qfv0lQvXjikXfkDpN2t+lAvXLrFPvJbX+/VHuPfn/9cIHXL9pZwXWvfrZbxR
5JcfJR2cf0JPvKZf2yv5xut76cFPy3id4PrxjGsJrr/O+ZrgNT9452Jf+KHl
O+I1n74PvzHXQYPLv3zi8i+fuPyrb3jNP35gacfwzsW+8MOK/5DjR/U58p/7
v6Nc8o/z0+QfVy75x9UTdpvnWZZy5Tiu9As5birtHt652Bde/aIcV0Z5m1p/
T/sKPfK8/biv/rPy0qOec1LXf+mAv1zS8fsr5fnc7xs8++XQqf5fgIz3Ludm
ZPxtOa/A7/V5Or1UdKCT59NvrLpFfup6XI6DSv4zbqCcU4F7bx2X+V37nOe3
RDr1vJTa/+L+rupc+7vcFy8uK/KT/0eqtG90pPdRhVf9/xeDRmJj
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[{Polygon3DBox[CompressedData["
1:eJxFmnf8V9Mfx++5595vO6tNGpKk0EIZpWWWpFI/MjITSmUmRWRFKpQkZRSZ
qcyMMjMiW0bIzCarxO/19Dq/x++P9+f9uudzzrnnnvGep8mQ4X1Pz7Msy4ss
i+In6KdyyLL64veI6qpshzLLHtL/lVTeXPh58YYqr63/7xXVE26h8rm0Fd5e
+BnV31L1qgsvVXkLlbcWfknlDVX+t/hqlfdUeUeV/6CyQ2irsjdEnYV3U/nr
wnsLtxdeJbyPcAfhx4R3EG4l/J5wD+E9hKuKrlFf1aijd1QTbin8mT7yNvoU
P1dlLUQd1e6O4PJdVfd90SLhzuIviOrov83Vdp3a3KXyvcRXqLy+yoeLvtbz
ApXvKf6g+mokvKPqv6g6DfR/LeGvhHsKjwjm9NlX9b5Rm7vF9xZ/VG2bC++k
+u8KdxfenbkS3l24rfDTwjsL7yw8XX1cLzpMz5eqvJv4Z3qeKNxV+BLxi0Xt
hN9V+bWiacH1rguuQ91nNbZT9bxRfJNoZFqXr/SOzzWugeLfQsJHMg+iL4X/
I/4N3yZ8hPit6qu++jxebS+P/r7LxK9ImLJm6nu2qKlolugm0Uj997XaHCCc
qZ8VqteBtRB+WXgP4XbMp/Buwm2ElwvvIryL8A1qN1M0RM/b6XmxeBf1d6vG
dZzwX8EEbqt296t8lHDV3ATeLXoss9N4GovfKNqWM1Aa1xOvk95XW/xXtX1M
dfdnDfW+03iP+HrWUuX7scdy7/lXg/chY16id52Te9+uVPm43OVvCZ+jfpsK
36k6X4i2SXvmQ7V9WuWHiF+i5z1E3+u5Kd8pPlv8c9U/lPHov3fV57XsQ/H3
RNcJtxS/WP8dKWqX+txNvJneuUB4V9X5VPxOUWPhj8U/EnVUnYp09tnbd+g9
ddg3wn1UtlD0uvBg8edUXkv1Nwi/jUxIc0KdH1RnfRrnfunsPKrnJipfKj4h
9/quVvkvej4i+FubqH5N1oK9lPvsf8J/uffGB8IX5z4j7wt/oLYdgr/1O437
O/03OJ3BL9P8fKiymZwj8TGcIdEg9f+mnq9iH4m/JbpauJn4KtEV7Av2TIX2
onhv5JL4lSpvIv6GaBJrwtlQXzupz07R8qStcGPV30e4vXAh3LvwOvKNOwev
4y4qGye8q+hb9of6mijeULyW/pvG2UWeaQzvqKyv+tlZz3Myv2+NymZxdsQ/
Et1In+Ifi27i7CDDVP+UtEZNRLeo/CbxXoX3BvO2t/Ag8Vh6Ldhrg/X8FnIp
yQrG+kDmsb/M3hLeWvwV0SXC24jvqfrfCNdkv4j2Vd0/07uWpT5ROC+KHab6
X+t9X4gPQtYhw3PLvd0Ky1hkbUfhezLLohqahy5qf5ZwTeEewmcLVxdeoL5X
q24n0b2Z98CewvcJHyVcRXV2Vv0zhf9R+agkf5aLJueWM8+IpuSWP11VZ4mq
HC18sMqeZG7VprL62VH9jFZ5B85PZnlYqcJy9nmVBeFSdc5QeSncVPhpzi56
RzRVbf7Rf1Hlw8Xf54yorJPwZqp/kt53lOo/KH4KUybeMrg9e6JCdZqpzaiS
B+0v4RHCF4m3VdGF4pOj67ZQ21bpvfTRSPVuD5YhH6jO/uiy0roQPYhu3EZ9
Xq//mqp8a+FpSWe2VZ35mderFF2aZEVrld+s8sOFLxBhXKAXWolmq3yAyu4X
viidhXeFL0z7bXvhGarTT3ig8CuZ56SH8CPCxwm/IbxO+Dy1eV14SsLdhB8S
PlZ1xopORQeo7HzhYcJDOF/Cw4VPEB4vPEL4ROEWhWUCsqGd8LzMuq+98B2Z
9d2+rIHwMcLLRFfn1lPIUGTpPaI5ormiizi3mqsbost3UNsbVNZfdS8UnaG2
JzEHwiOFT0a2C58lfJrwGOFThI8Vvlj4TOFThc8THip8DDaI+ARsnmhbhvc2
R1aqzi3BsmINZ0n1eom/IrpZeC/xj0WvCh8ivl70G2sk/onoNeE+6F/RrNz7
YaVojvDetMPOQxaLPyu6Lrdt9oJoRm67ZQW6Mrc99qJoZm4b7yX0ae69/QuU
e01/hlgjdKvod9aIcYn+YI2wR0Qf5J7DLxhr7r30GWcm9575VPS28KHia0Wr
hQ8T/x7KffafE12f24b8Acp9rv8U/SU8lPfzzBqJbxT9LTxM/Cco9x7bINrE
mWSM1GMdxX+Ecu+TLxlT7rPwvGh6bpt2leg24S6lzxPyv4Oet9CeeVz8cmxn
4ZfQ5YXPH+dxX+wNre1dwTYB+2u5+Ax0r+qfzLeo/ubCoxlb4b3APmmQW17P
S/pmr+jnfaLb08908QZq+wQ6r7AcRc5fp/I7g8/9ovRM+bXif+sbcvHTxT8U
LVLbg8RfR7YI78u6iR4QPpC1Ei0UPkD8I9Fi4YPF3xPdK7w/e5A9LNwZ+SC6
R3g/1lZ0l3AP5l4U9N7TWDfRP5wR8bdEC4S7i78pmi/cDbkhmifcVfwd0d3C
PcUP13e+nHn8hb59fG5/4Q7mUeU36h1HR+vBLaJl+Rps3dx75FVkXe599Kxw
r9zr/5xw79xz8wFyKfd430eG5Jb3HwoPyb2/3kVP5f6O99BTufXjavRObrn+
ETKQuYiWOd2j5YGGmj0QvB/fQT/m3qfPYzfmPmcrhA8Vf7uwXj5bbTeI/4jt
h8zFLwn+73Dx/skOQbbuGCx3j4225bYUP0LPr2XWucgP5rBfbhsYnd4399ld
icxnjVX/qcz6mvONbO+fW/7VEH4mWAa8gG0p/pf4r9iNmc/WW8jh3Gf0bfQs
/bNGavdU8mNqi/bVfztofF3Eq4jXKG2XYp8OC8bUQT9UEn8Y3RHsq3bN7K+C
0dGjctvDL+j58mC/mGUZob62EH4nWJZXV9ly4cnB42lKv2q/hfiJ+n9S7vGs
1X9rC9u0o8UniV8pqhqMqzMObDL1v1Xms1wLG1j4Of33d+Y1+0m0VfRYjhc/
le/U/ytE40Vt0totV/vNhJ8Q/71w/9jb9waP7aRo3ahtnz0YrHP0+dni4P7w
nfl+zgQ+wtt6nhU9RmySn0TfCW+msgnBtjfPm0S/Z94rDyE7xQvx2cgA4W+C
/Wv80XeifTN8tN+jfdADRVuLHuZMY5rl9hnwHeqKbkJ+qHxdsM6szXuCfSfm
Hrm3QHg74WHCW5X2qfGt0aW1hJewb4TPFK4h/qRoNOvPfBSWmcjAZXo+S7gm
ezX5sbuLP8aYVF6ZPlTWC3tK9KieT1d5JfFz9d7jhf+ItjHxLb/K7Nfh3+GT
PKd657OenFfRWOFa4stFZzO34o+ITsO8E39GdB6yiLMiukC4NutW2O5Adzyr
5zGcU/EH9Pyz8FDxs/VcR/iR4BgF8YMvNbbHhdcyb8LLhD9DHgr/JlxFdR8R
bx59LrYT30u8U3CbzvgMwW1GizdJ39hb/GDR18gd8UOC7bZf1ddRwf4gPgC+
Hn7GxGB/EzkbNG/bC7/KWPAbmWf8YuEvhKsKryscNyB+MCydfeqdlzsW8aSe
zxfeWvhpdJfwQN7PPhEeJPwb6xD9HRXiY1TeQHiZyscKbyP8rPAFueNdxL2u
zB2b+pSzHxzLYh1PD44LMT78TGI9+J29oseFLHom+hxxHk8W3lN1Doi2nY9m
XyFfgs94SOd8Q5LP1+q9e4p/HGxT4Mt0Fr8m2o/Dn8MOwl7dI7ftg32+u/iA
JA/uF92XfMYfxJ8UNULWVDiWg43dI7evRRyjZ24f+gnhA3PbCtgMe0fHhB5X
+QG57TJ8n46540MPC3fPbU/ju3XK7aMyZnzWWWkt1gfbg4cL/xJsVx4l/Gew
vTmYsyO8U3TcrEW0LTlA5T/reapwR+GPgm3PfsI/Ck8T7iS8JjgOSRzs+Wgb
EN/tIPF78AGQRYVt1f7Md7Bdic+4T25/FJ+im/hFou2FXwmOjeELdM1tL2Pb
t8ptU+O/7JQ7boBP0Zo6yU/BXzlT4+ijPgYy74X9P2y8hqUxZXOizyk+y4NJ
j6BPTssda31M7WOF9RPx2EqlZTKymXPLWWwcHbtk3vBDL2MNVP6Gni8Vbsl4
gu1l/LW2fGvyGdFNF+q5mfDLqvMyz8IrxVcl/66x+JuiucJviT8cPc9nFvYz
jkSeq+0rep6MLCosu4ilNGKO9XyN8Hfil+u5lfCbyP3Scgx5NlHlOwqvCvZj
LhfeVnyFaJxwndx24tGcE9XpE33+qkXb2sSTv1d5GayTPknn6e90vjZmBpul
cs4e9hC2RxB+I3O7f1LbrtHxnM7iR0brus3F14uOyRxPuDvJanTWgqT78Nnv
SroMPbhX4bP4TuExRGRgGg8cef1bejc6FNvjMlFF8Fg2pf/r6r0fZ7bH+A7a
/5H6A/NdRfD38C1LWAPxxYVtavQUOmWRnrfNrCM26PlN4UG529H+1/RO5hG9
jk4gF4B9/Gear/Xp3RvT+IkTrk/vCmkM1MXnrib+VLBtfhJrkHu/sm8rRfuU
vYS/VZ320WtdqJ9do+PqranLOcoce3kz2Xujkm/Xm32lelcJtxd+L9hf7yH8
OetduvyF6HgPOYgvgmNOxF6+DI79EA/5Kth3wU7ANliY7IRque0V7JYGye/B
TsCWuDfZBtgA+EAnsOeCfT7sgU3Behf9Wzv5JSeyz1TeP1p/1ojWWSeztOKH
ReuZ6tExjKrCTwT7T9gJ2CdLROdkthkeTHbC5uIHRttyW0fbIMS2z8gcm6ki
vlTPAzS/L2X2p6YknYJuGVTYhiemhF4jztw3GmOPEdOtmzBnoGo6g5xF6lEf
uX1UtK5H5/8vF0JuYP+kP/k+bD5svxGZY5HYk8syy0b8WGIbyFLiHN8XliHY
FPgm/dT+2Mx749eEB4h3i/Y7OKcDUjl1t032CfOwKXremL/KhWOYkwqvMWt9
tf6vVDjOeaV4VdGllGMfFY7TXlXYDv4P38haFY6XEjeNhe20ieJH6HlgqhMK
234X48AVttkmiP8dvXasIXk5bMJLCp8BzsKl4k1Kx5OJK/8WnQMhT4EN1jh9
FzEhYlLMV93cMnx0tN2C/clckOMgh1JXvE2SY+wx/Ahi0Qsz21mcO95B3JP5
JA46P9VhrxDjRjYSdyWe1ya1RUcQa/yxsO2Bf4kPij1CHeTge4X7RR7OCM5v
kTsbnmwq9hD2Vb2EydVgh49MmPwNeSXs8Cbp2ztE7yPOETIE2/yywvrlZr6/
tF6j3beF7QFsVWzOdqktfWxR+r3kNFolmYN+wZ7FrmVO78s9liq57dbtgm2L
lUlvLs2dN0DfbZ/bV2qf9jZ99En9fBd93jn3C6N19Aj1MS/aFiVmeHu0TUvc
8rZoe5V45vxoG5VY4hPRdtE52M6FY+/E4MlT4et21X8PRNsDZ+j/xcKtkZ/C
i6J18chkpxNnIMfzSLTMPKuw7Y8PgF1C7pKc3dnJhievsSqzvY7di/17SLTP
je+wT7DPgKz/KNoOH6+2azg7whcW/p96TTL7buQ6txQfWToXNEn8tGi/48Xg
nEaXYNvlqWg7+Tx0bLT9MLxwLpsc6+nCd0XbNsRU746264i7PhltN54rvAw/
R3hMYZsS23KSyupVOK/JPt0/OgZCXKhm4XzQZPGtgs8+e6VR4bj3rMKxYOJ3
xIy3K5x3vrmwHOqd9m0z1lh8TuGyXqn8m2Svsof7pL23Lu059t4Z0Xlt9mW9
3O1oz57GD71K/68u7Wtvm8770Oi1vE/UsnCOey62QOGc0Y3itQvnE68vvOZ7
pnXfpnCO6QbxOoXzjNPF64quF55ROOaIzLwltaM9vtaWySachswsnDu7RnzH
wv4CfkONwrYiNuP3GudQ4YuwkwvnuWZiFxfO000V37xw/m4KZ7yw7Y0NjqzF
ZyFeif5BRi1nTtjznMPcfhf+18fZ/2OdxD6Pid7L3ZNdfbLKhkfrMPxU4oLc
lzg2OA5DbpU8GnuC3N4R6V1DUj/0R2wNf2xu5twjcTdkIrm//kmWoiuRDdiZ
2KP0/6n4kYX7oT/qHp76GZzeS24NWXO28KhoX/uY4Pr41hPD/9tTfhx6Jvre
R73oPM6q9J5L0jfimw9OsopxESM4Qc/DovOmOwTnUdlz2O3sQXQLOga9zh2L
dam8YSo/NvN9Azi6eo80Nt43IH0X+uHnwrnIvZNuxd7G7mbfHh/sszMe9hR+
PHG5ocE+LT7RFcKVS/tQ2M5rCtuuxwXbr8R4mVfiG8TG6BM/ijVhbfDZkDMn
Bdul5KyJ1X1SOOZ2YrBNRcyPOk0zy60Tk+win87YiK+Qe0UeEs9Ar2EzrUgY
nYYdRUyAsRGXI27IOSNWR65s4P/2cLRexQdHZzI/6ONnk9x5rnAshJgIMpf8
PrKWuA53FbDNiKNgg2F/cdegVqrP+HjvEL4hug5rSBwDHYgOpj1ybGZ0jqt+
Kj807Xn2O/lt7DfOwwcJs3/Yn6zvBWnfYjuMS3v+vCTPOqa9PS7tAeLUnA/y
yZxZ2pJbP0t0fnB+mX7Gp/ro33OCdTC2ADYBur9XwshSykcnTP4XuwYbqnEq
x/5Gjp6bxkTOlHdNTeNkXzTPvUfGpGfGQ/x8h9z5+Tkqa5c7ds4ZuSa1JVdH
HGBuwpwZ+qAeff6Y7CXy8uRpW6X3gsn5tkx1x6R+eWe/NAbik2cF64Lx0fHP
l4LlHPEXxpSX7hOffW1u+6tLbl3aOe1bYhTMIbbi0mQ3Yj+S/yHnQx6Y+ypj
hSeUziVhC06NzjWTU8Z3wI+Yl8rJKWF3YUtXQR8Fx2bxa/Fv88w69cqkY7H9
J6R9Q76Ys0+8mTmakuasfarDf9zPQT/Xr/A9H+4YofOItV8dPBeV07uQBedH
x9gXBcfgJ6WzvzC4vEF0bpozhn3aJu0xzh76mnlGt3LfjBx7bb23YXQOYFx0
/n0K44u+a8UdLO4EsJ/Hskej83XIqDHRe+HctB+qp/Egay6IHj99cndgauqT
8TOHrEHD9J3cl1mSfMacuFTpWCd684DC8TryqgcWjumRVz2ocEyMXCc+IPkm
FAJ3CpAn3MfrWTgeSG6He4GVk3wg/0EeBJ1IXOjf/Vh67dkD3C/AD+oR7Bfi
v2+T1ph7E8jAltH/UefQ6Ng6tj36i7sPrBW6CV8SnxF/ER8ZP/HwaL9xv1SO
rc4cc/+CXAg5DPQUOr51mvOBuXN2+wofWjhPR853f3Rn5jw4+RryJgdHx6+Q
Jdz5mVU6Fo8vtiHaZyfXeVPpuD/+3ezSuQF8tPuDc3Os79zSuQT8xBmlcyHY
ureUjvXjS84snS+ZkOz2rsF2NPFwdDpnkTPLWeaeEfZwm8z5L3Jh2CfYKeR6
0NHoxr6F84DkqRslu4v8eL/COUFypjeWzrXgh3YvHL8lF88dGXzyXaJz0fiR
3Dc4rHCejpx4g2SnYWsRkz8o2M8md/CvHlH5J3o+OEt3D6JjO9wlqJziJPRP
vpr9zrlbGx27I//7c3RMmPzvT9ExYfK2G4PjfuyfT6NjPtxJ+CW6nDzyt9Fx
Zvwp1pf4xvzCdwXJoXOnZWN0DIoc9A/RcUvyy/9E37fBB29T+G7hbeJ/Rsdz
yGX/KHxE5lwzeV/yv8S9yPccnznHvV/hfChn55voWDf56I5pv80TXxcd0yY3
Tb6Ge7V5hfOt2KXYafUKxz+5m4E/1S2dF+J169N76yNPM9/r6JhkCjqHu3qM
jfsJrM1B6eygC8YmmYStRewCOwu7FnsSu6+5yqdnvkdB3hlbDd2/e5IJ5Aq4
e4UN3VP8q2hfibsNN5fOqxEzIV6BTc39rD0K35+8vfD+Zp/3ZlzRfhz46+iY
PPcHuOeFLcGZnVM6b0d85q9oWYfMu7V03gv/a0Hp+3P4IHeVvquHn3J36bt6
+A73lL7zh4/zanRe8gLhldG5xbHCi0rfn7tVeGHpe3X4R8SdicMQV5hfOh6N
L3NH6ftw+Ercd+KuGm0fL31PkbvKT5a+y8g93tf4ZtUZhzwufa+RO9KLy3Rf
WeW3l84L4tfcWfqO3fSkB3dM67uk9B1l5vP+0vc+8R+rFY4j4UPVrfBdYfxo
4p/cB65ZOs5CbAfdy/1t7ntzb+qE3PccWFPu5XYXPp89Ulh+cp+NO9bctf43
5h+dh+XOUv+059EjdSp8F5l3VVf5uZnvI+1U+P7zLeL3lb63ii98b+n7l/jL
l5XOyREDmVg6f4n/fmnpPB9+/ezofC53oshnIbfJexPDwe5jjR4ofT+Sd91W
OueKv/lIme7j4iOUvpPNeby2dG6JPXBN6XwJMYHLS+cUiZk8VPoeMPLk4dK5
Ge69zyudl8UnnVo6t0EMYUrpHAxxiadK5xG5wzytdJyaub2+dJ6P/TC5dP6D
GM7VpfNPxFgeLdPd4tJ3hYhfcYf5itI5S+I2xKPw8fH1ryqdyyFuc13p3Bj7
/LHS94+5r35l6Rwn8Z+lpe/jchd9eulcO/GZ/wIUdtSY
"]],
Polygon3DBox[CompressedData["
1:eJwtmnngVsMbxe+9M2+LLKVFpFXIlrVEikqlskYpSyGRNUIRhSylVEhpsaRQ
RLKEbCUkWsgSKaRSFBItwo/f+XTmj/l+nzMz933fe+/cec45z617Ue+OVxdZ
lv2sP1H/YynLBuVZ9qLi5uo4Wm2a4vUan6mx7cKXafxw9b0fsqy3Wq+Ev9T/
6sJl9H+IWn/FB2n+IxpbqeNf0vFNhJ8V3iD8ivAumvOjcF3Nb6Q4qO92xS+o
r5nm/qV2ufARwvM0foVaT+G6wh/qfzPhhvrfRe1cxburbdTYNrU9FH+r1l7x
o/q+sfrsevq8B4W/En5e+AT+Cx+k41crflDzpyp+Wm204lqaM1nxA5pTU/Fh
Ov4JxWs092XhjcITOXfhCmWybISOeUzzr1NfBfWV0ZzBwkerfau5X6sdobil
5u2s+fsIj9bcZZo7Q3OvU38/jf+kvqMVj1d7TrixWlvFB2j+BI19q/kvaH5F
9f0i3EjjrRTvq75ywq8Lv6b4X83vo7iG2gLFe6tvouJBmlNDcZ2Sz/Ul4eUa
P1+fcU66/lzP39TXSfhx4c8VHx/8+89V66b4IbVpip9VG8uxap0Vz8h8Pbvr
mMqKX1BfFZ1vOX3fMMW7q6+s4ps1f6iw/mUzOEfNf0PxFh37qsYv0cBF6l+l
vj0V91C7IPc9vlBxY805nu9S3weK65f8W95V3zf6rKFqd3CsPm8vff+Jwdey
m9oFim9UG5DO7yjN+UfzqwuvFX5W8d9qJwpXVntf8QOaP0XxJI3fr/hWtZHC
9YQHKt4c/dmfcs6KD1R7WPF3+uwX9dsaqFUXfktzXi/5+65iPahvqY7fX317
KH5DfbMUV1Lfr8LHCJ/ERWKN5H5mfkq/70rhFsJfcK00/pri1vq+31mvao2E
v9acdxQv1fxDcq/Z5xX3V2vK71Pf/RqfxRoSHqTjRwg/L7yncH/hwcI3af6x
rD/Nv4/v0nh94ds1Ply4jMavF54t/Bj3V/g4nn+eoZKfB85lCaeieLXGTxDu
oM+5V/iq6O9fqL67hGeofy/hm/V5Qzh3fj9rUePDhF/SeE2ufWF8qsbnCo+j
X/f7auH9hBdp/t0av1H4GNaG8EjhK6N//wLhO4WDcG+uvz7vUZ4l4b7C7wg/
ztrS51YT7lf48yYL7yTcW/hW4WvVPhbuIpzr+68SXiB8lvD/FD+l+bsI9xEe
JFxWn3+D8BzhicLTNF5VuG/h83+SfUL4WuHbha9Qmy98hvDf/H61D4U7snYV
v6D5NYRvEb5H+Bq1xcJns8nr9/QWXqSws/B/il/V/H2Eb+N7NT5J/8sLkxQG
aryvft9R7Je572+/6PW0LPf6eELzKwhfo/m3CV+ttlC4k/C/ir9jvWhuJfW9
onilWh3F12k86Pt6ac77wqcK/6m4j8YPFv5MxwzlegofJPxp7vM5TW2IcC3N
X6m4p9pbwu2Ftyg+Xe0e4drC35ecz47KvUfO0Gd1FZ6iuInGf1K8m/oGCH8g
/GTJ+aer5h+q9pXGTtb5tVB8gubcqzkXa/xNxe0Ub2Z/UntbuIPwVsXd1WYK
txTeqPgCtVeEWwn/pvhCrrnwicKbFO+q77iF3Cb8BPlQ+GZyq/Bk4XPUpvL8
C69XvErjh3G/yNe6fpeqb7bwycLbFJ+hNlJ4X+FViruw5sglwj+SL3T8QOH5
wk8Jfy/cLOXT1xV/o/Ntp/gRjT+k8TbBuWul+nqqr5/6Psm8F+2q77+eay58
sHA54TOFHyKfau5qxS+qf2/hAYXv54HCe7D3qu9v/b+GPVLxktzP93lqzwk3
1/yfFXdSGyd8iPAPis8lXwkfK7xB8dlqjwkfKbxOcbeS8zl5/Vf2A31fy8RP
2GPK6/v6KZ6r8UkaP0ttLL9feI3izmqPCh8hvFbx+WrThY8X/kXxZzr+APY+
9U2HC6lvnuLTNL5d8eVqHwifLvyX4nc1Z3fN30/fXdL1uUP/H0h8ZpDiRprT
XPEq9c1TvLPa/YqPVN97Ovae6FxdXZ9XSccXwldzr4Qf0dwj1Zqk/ew9xdU0
frfwYo0/w9pXayb8Pfmr5PzRTvFFCv/T3Jpqw9lPNf+5kvlWFY3/oL5p8AW1
e3keNf4s11u/uUPKP53Ym9XXQ/H/1Pe14iPUjhZeQQ5WXEPHD+P51fHThIfp
mLEa20vtMMUV1fcg3IU1qbk5+VDxLM1/WGNVWE8aP1N9H8HdornY/hrfXdfj
AI3X5ljNeUNxC33mkbnXKHvwB5pfTfgg9ZfV/L6aMyczV9pFeGf9XydckzWi
+F84pvCrOnZ8yfn+qdwc8zjFjwTz5Ms03l/jhwSfC9f0LMVr1TpqfKj+V9fn
M/lK/XtN8ydo/uFqjYWXa/5ccgX5TvFt6nsumq/xWy7kmiruoTmzFLfR8X8o
PjSYy12jvnKsSeGuip9WPE7jN5T8bHEu5fX9lfQZtwp/qPEpHE8TXqrPmMOz
E3akhewKjd/C/iHcOvGJ0xRX0fF3ko81PlXjF0Xnv1dzz387+PkdXJgPXBid
v2Zq/GbOL5hfPKjxMfw21pfwS7mvX49ovjNLeIDwRO6T8JWF8cXR/AO+RD56
Jvj4Gwrn6ynsQ8JV9L/QiVwSnf/eyZ2Pekbzh9m58/Ol0fvRu7nz6c/CpxFz
jop7RfOJ93Pn5/JqI3JzuzsU/xL97H+k799J3/ercEe4k/o+UVwhmDvumXtP
hJfCT3fLnT/KBz9bVYX3J/cG7w+tcl/vg0rmK4uF31RcVZ95l/AiHfs0e31w
PhxSmK/ND87Pw4VHCd8lPCr3M3W34kfDjkc+u7zw/ZgTnF/vKczH3kJTCN9d
mA81CH5e2qh1VLw4mO+N0vho1jtzOFeNv624IU34C+HZ5GbNH5P7mb1H8aJg
vvUA2krjtXQ+I5gvPF34YLX9hT/W/LcU947+PXw+fBM+Al++qrCe6UDOFc6E
vyn5epKbydGnBOeznRRfr/GK5Mdg7tFUfb2C+Qj69FKN71bGmoz81jrlM/QB
3LRJbr21Ino/OSHtF+ifdzJzCjQc938/xQvSfnR98Fo6XX038Ayq/2TFtdSe
L7ze6nGuaT9vrjmH5dYU7C8H6pwqKG4fnN9bR/O93xOfPzE6v2xK/KFVdP75
LfGLY4O1LBz/JrRaNP/4IeX/o6L5x9rEfxpF64V1iV80jt5vfkz5tVFhvYsm
HhWs19l72ufe/5tG859fUn7sEM03/0x8qE00P/0j7V/tovnh1sSfWkTzv42J
L50czZ+3Jz7TPpqvbkv87gzhL+AOiS8eG83/fk58gf2c/a8tOSPYH0DLco25
1p+pnSo8pnC+/Vz4NOGHCuvHJcKnCI8unC/fC35+hxXeL+cG5+uhhdf7KuHz
hScKLxZeKXye8GPCi4RXC3cTflz4Y+GvhTsJjxP+UHiZ8FnCY4XnC68QPlt4
gvCCkvlYF+GHhRcKrxHuLjxJ+BPhj9ivhUcU1ncLhdsK31c4/y4QbiM8snC+
4Xk8Sfj+wnyhLjk4t4atyf0tmZ/US3yF/YlcUCVxGPaHMzJrZHLqvGhtXJ88
ovkfRvO7AxIfZD+EH6KhTyc38rwr7hrsl1yr/300Xl99fYI1L9qXZ366cMNo
Prcq8Ts8DPJfw5Tf8IzwjmrDmbi3mrOP4i7B+zP5mVy6d+Ibx0Xz5V8TP+wo
vFT4n8TfzhT+ktyb+BseGF7YM3Dkkv0bYjwTvJMY/Tzw3Uel7+S7ef7JFdvS
+fHsH8FeFe1N4Jnso+MfFZ6cmWPUFh4tPCl3ziX3knPIPfWEb0zjozJ7UrXS
8U/m9rTwtipH+x18Bn4VngfeB54P3g/XnGt/Zm7vipxZNTjnkUtPV9/niv/S
MdWCNVq74P0T7dYv2DNhf8FL6BzMCdkPtnD+wRyCfLZW47sFe0r4c5uELwr2
cLoLnydcN53PSPXdx5qL9s7w0PCnapSxJ8c9ODSaU8EhuZ9r0x7JXtk8tzYq
F8z58RTWwFXKOCe21PEfBGvc24P5N9p3jzLOWXC2L/V/T+F70zP5YzC/fTj3
PeReVheewL1X2xrsaeFt4WnhbR0SrRe+T/rhHOFvoYGaC9E6V/g7haVgfwAP
CG4Dx8FrGRLNBasVXk+dhJcJ/1dY3+ORoGPQM33g4xpfrjgP9he6CK8gPQbr
77OEvxL+t7BfME/f9Sf5JHGmi8OOVJqVU39PxftpTtnc95x735XnQuOb05ro
ikZUHIL9g+X631l4vMY+Kplvj078A26/NF17+ioJfxHtteG5FcJXRPsPcCy4
FvcHL+I+4Z3IB3A2zk+f/y33ItgrxDMsm/gzXimeaZ74UKvMHGg3+HD0Z9XP
7FXtUXIu5h7uqfirYG0BZ6lc8v1FG41P4/PSWmFPZG+sqjYu95x1ab1MLtxX
LX0f2g0NV6HkPQx+c2PhvQ3eC38dDn9mfQXzFdYP66gM90T/d+Z5VVxD7ZLc
65t1zn3h/vRIfKZeyXsJPuzeie8wVl5tOpwjt9fKZ16W7veFin9TX+VgT3VV
5j7uP3sX++eNib/AZ4jRKHsU9tzrZv5NVwb77SszP8/4sfiVaK/zhLsH6zT0
2i3CfYX/yX1tuV5ct53QsbmfsRmF9yie/bcL713UHNoqfj1zLeKnwloIjgJX
2VzY+4JjwDXw0BsnzoK3/k1hrwDPoEF0zeGkwh4ztYiy+k2X5s6BdYI9jy25
cy65Fz41MLenjbcNp4XbomHReLsGn9vBak25HiWvpSFpb9m15LXIHsRehMfM
+h+Y+Bl7Bmu5V+G9hHzYNzdnhDtSA2B99035kRoLzz41mGuCNQxaBs2DV9g/
rTE8d7QqnH9mWnNoATQb2g2NhvZDY6G90HRoLzxUvFU0At4qGgothYbC68Oj
wauBo+PN4snhzaEB8R7RZHipPNNoNfLXgOD1zvONp7kwPY94nXioeLP7ZvZW
8Yjw/tA4eEdoALRAg7Q/UvNoireRuRaCRkOroenwVgem/RT+gHZA0+CN4JGg
ddCoeNdoErQrNQvqBdRY8Iypb6El8P0q6358lDv3skauCtZceOVoIrQYmnJ2
2r/xgtFUeN1oXrQW+3Ut1klurxsN9FNuDgYXQ1Otz+25obXQyBty16zQzmi6
NXnyR4I9WLzYI9N+hgeLF4sGxLu/pHDNhP38teiaw3GFa3jUIqjBNStcg6M2
tyFYTz2lvs80tjnY/54uvAy+EO2nviv8nXCdaL9taWF/kfW/IbMG5vn+O9gv
fynps+3B9YAXhJcL/xHsXz0n/JXwX8H+94vCK4R/Dt7vpwh/Lrwx2I95RvgL
4U3Bfso04aXCvwf7Rc8KfyncoDAXghPBKfaN9nu/LuxH7h/tpy4v7PexJ7A3
rCjsL7JGWCt3Fda3bwb7WXcW1qdvBPs3dxTW56xJ1uZNhXM5+/fqzJ43++2C
tNbJQeS1f4L9x5dTPmP/WZPZg2V9zQz2Z24t7Gc1CdaX8LcdNaxoP/STwv52
9Wj/8uPCfvh6ze/J+Qt/ylpjz+fZFV5Scj5BX+6S9u/GwXqUPZi9mHrinMwe
+HnBHvE+hT1CvGM8sUrC/TN7ZXhauxf2rPG6qJlULewxU0uh5ro1t0dFLRaP
qtB4r8zeFR5f5cIeON7f1MK5njXAWsDjrFLYo8f7nIluL3wNuZbUcNGokzPz
X2qGZ8JFMtcS8QyohZZP+wHkoXthTgW3gnPDvanlwT9f4Rqo3QTnCq7xtihc
H6X2i6d6YOGaLV7rksLeNPeEe/Ne4doDzwzPDp5+3cIeKF4/nn4d4aGZvX48
ufqFPRG8OmoQ9Qp7rtQmqAnVKKwHqBXhAR2Q1jjeEDW2vQpzfmpveNo1C3vA
eN14rg2Fx2f2YvFwDy1cQ8bbnZqeGTg4egMP+LDCNUu8YTyawwvX8PFuqIHt
XdiTojb2ZuGaNfptcTSfG57yDfs/mr9Nyt/kZzQ8tRo8A7Q9HgC1FDQ83sDl
wbwH/rNN+OrgvEx+/hOvIdpLQ5OjzfEYqL2g6fAero/ea8k/8Hv4QduU71kP
eCitE3/AW4HDUgvDs4Db4jlQS+EZwIvAU6F2g2eC14JHQW0HTwXvAg+GWg4e
Ct4MOYPcwW+cnX4v9ZpKwnOjNQh8GM8Pfx+Nja6ukvgl+gmdjF5eF62Z0E68
k0H96rJo7v4He6zil6O5+Ra1mdF7Pns/HtcrSQ/hi5HTfkj6DZ4CX4F/T1C8
KTMHnJr0Gs89z//v3N/oewFHpT6Eh47uR//D59EY1PrwaNAeeAD4mvibeAPs
Z3Uy7zlvROen6Ymfbo3WXGgvPMf5SY+iSzjHF2O2QzNRu8QTQkuhcail4iGh
fWZF//aL0ufxzgh+zznp93M/agfzpe3pfOCvPdP6mhPNp3ql9UX9nncLeMdg
S/Q7Loy3TNcPzQrX5Z0O6td4EHjtePZ4EzwDPAvsqQvT8wFvhj+jTx5R34G5
nze0L/kUPxlPZIniT9Ua5N7z8ZPRy7yn0C39HjQ72p2cS/2emn+LzJ496wU9
Th2CesT6aE+D2hSeIV4Hnhm1VjxDvDQ04RmJP6MV0Zgd0/7J/sh+yX5KDbtz
tCdCbQtPEq8EjwefG78b7wdNhDaiJkK9Bo+T2hUeO94nHgFeAe+kUN/gHQZq
SR3S70UTU7dBQ6CV8VTREPALvFY8FbyV9ZnrbxvUTsnNkamfcH0nZX5nhXdX
prJ3ZNZMrwqfr7Y18z3m/Qw0E9pprvDx0Y29fkzw2JToc+cakFtalOzf/Z47
v55QslewKXd+xTPokVnboA3fis61PANPK25Zsl7+Izff4v0RtC97Fv4b65ln
o2J6HgfxzGfOmeTObtF6Dl2Hf/1O9N7CHvOM4utK9sN5BnkW9w325/DgNur/
5dF8Fl6LP96qZL9xc26+1bZkv/Kv3PysTcn+5vbc/KpZyf7oL7n9zuPYL8nV
uf3OU0rOnRUTX2xfMh/5Lze/a1cyH/k3Nx9sXrIf+2tuf7RpydwYjozfeWzJ
fuaPuf3QY0r2M9fl9htOVDtXeFtufti6ZP/1z9z88M5obgFHgaucVLJ/Su0Z
ftukZP90bW4/9mg+U/iH3H7s8SX7w1w7/NY7orkOHAgudFc0N4HDwGXujuY+
cBa4y/DoXEzOJHeOEB6cOUeTqx+Izv1wLLjW/dFcCw4AFxgZzR3gDHCHYdFc
gJxP7r83OhfDEeAKo6Lr/3AKuMX46FxOzif3PxTNXeAQcIkx0VwCDgAXuC+a
e8BZ4C5jhcdk5jxwnwnRXACOAFcYF80l4BhwjYej6+dwBrjD7tF+Fp7CIsVP
kLMycyq41ZMx5ebCWv+W6OuP5kH7kC/ROncG6+cB0VqJ9YGWGhitldBQaKlb
hTtk1lBoqduFz8nMQeGit0VzUTQ+Wp/8g7YaHKzXB0fXS+GwcNmnot/3wDPA
O5go/GRmjwGvAU8S7kltBK/ysWjvAU4KN308WnuhWdGuk6K1F5oMbTY5+n0H
NBnaDP8PL5s9jb2Nd5h4B5B6FO824Z+Ru8khvI/HGmYtX5BZu6FpDk58FK2z
Q2PlXvNoLzQQ72agGdBGPIM8izyjaDVq+NTyeUZvKlkTHZL4I1oJTxVvlXcy
eT+AmgPvlqGJqEVQI1ma9iP4GXtAxaQX4MNoJmqbeGJoKTTO/LQ/whXgz5WS
noAfU2OhtogmovaCf4d/hI+En06Ng3cN0GzUPqhpoPfR9+hr+NF7ik8p7Gez
B7EXoXnRnmiwPOkR9AT+EveKe4bfRE2Ldz+oQVDroiaGn4T/gP+EBuZdG3I4
uZwaFO+u4AFTm0Kj1U58H32AJ8y7JWhovGJqbrzbgwalFkdNjneT0KjU6qh5
8G7LxMy1EPQPuYCc8L+kV0JhjYwew5PGm+YdQd7vQBPWSnoErYheqZP0CHoA
jZ4lvYV2xy9rmPQB/go1Q94dQkNTS0QDU6tF86KNqSnxLgMamVoT+m1L0nvo
O/IpuZV3Rnm/lJoL7+bwfii1GGqqvIvB+6vUWk+LfneSdzR5f5OaLO8a8c4g
tVremaXuSv2VegyeP97ompT/2PPZ+8lZeAVfRn/X4ez30Y2Yd4x5vwu9wTvF
5GhyNTmF3ELOwdsmp5BbyCl4EeQIcgU5iFoeOWFjyq/U5tArvBNNTiY3kyPJ
leQ4aoXkNPYu9jD8RXIeuY8cQ62QHEuuJQfjbZDzyH3kRGqDFZMnhV9ArZvn
dXiwf0qtgpxF7iKnLUvnz7tss9P1hqPAVeAweAPUQHn3CD1FbZSaJ+8KUeOk
FkpNlHcY4BTUSsnx5Ho4ALVOOBBcCE6D9wCngdvAKfCWqBlRO1qdmf/AMeAa
+KvoezgMXAa/hNo8mgHtwDutvG+LnsN/Z8/BP8OTwQ/Ef8SrocZErYl3aHlf
9/9bcto3
"]], Polygon3DBox[CompressedData["
1:eJwt1gfYlvMeB/Cn922phFJW4yq9ddraO1Rv2trRQgtpkQbtknBSMio0aRxH
dZFIStNuadHSEjpFVA7Fwfn8vPd19e1+v5/n97+feY8SvQa3H5SWSqXmSw55
PnsqtRXUTk+lJukF9cflPZZLBrN0/Ul5X69pbmis1cvYwUi2I1sqVZot99gi
fjLmZDGrok+RtXpuGcKy66/KMb2KzGMV9Hr2N0f/2f66sMP2t5AfYZVlDiun
dzf3vd5c1rE67GXZq98o01gxfbKs0XPKIJam17X2Zf2C5+jMDnmOxfw0qy/L
WG39MXlXzyEDWTZ9iZzRG8jy5HknyWo9uwxIxZtLpUZ4jkz7bSpHUTd2vxTz
98eetxBfqdcx95J151knjx3kFdhj7BCryday4ewW21tlJ2tl7RYpGd+ZzDCb
z0yGDLR2rX6NuYUem2puI7tchrPcellz4/R95iqxd8xVYzPYKXYb28Zmmd3O
isjjrLBexdx0/Vtzmewzc1XZM+w71pRtZTPNbmM3yGRWSJ8hH+tXy1h2pT5d
PtQLyGiWX/+H/T2i77S/MmyF/U3jm9kVMpLl0Z+S9fF9e/xhllN/Wjax/DKC
XaaXtr+h+if2V5ytZs/IR6ygjGFX6BeT3/Yb7Gl/P2Lda7YF2WjbMTKSPWv2
EzOFZJzHrtJ78B/0FvI+q8uGslLWZMjtbK/tc/xTM4VlPCug95R79Ws97l9q
jv/KWzuJHfSaa7D3WEU2mR1mtdg6NtvaHayoTGHX6HlzZP0mJnp8guTR/8k3
mMknw8zl0iuH6yfMNmSbzfbnD7Prk/cd77+SuafYcXMN2Jb4vFlZ23JyFztp
exObZu4bc03Yp6w2e5GdYx3ZAVadvcC+Z63YbjaMVbKtnJ51zvnZthDr4O+f
zE3VC+s1ZKa1P7DWHtvFa7HZaVlzMb8/Xhcbz75gleM48r5qslnsLGvD9pjr
yc6ylrKe1TPXR+Ikuc5cHvaqud7mLrB28TtimWZuZq/ov5nryb42dwtbxP5g
vdmpOG7ZYvYn68P+wzLZ68l54wH2Ixtrn8/pR83VYztZQ3ML2SXWg51gjdnS
OIlLP5szrBFbov9lri87zeqz+exX1o0dZw3YAnaRdWfHWBP2b5Yu/ePzZq3Y
quQ4ivPG76wleys5l8Rv6DfWjK1IrhVxjr0Qv3W2Uy8vs9h13tdtbHlyLo7z
6Xlz+eNcZ7vfa6kex6C+2exV+hBeXDboTfmy5Fwc59hzfHQc6/qB5PiI39oY
9iw7wuqyHayttZ+zCjKbXWtmnDyvHzNXn30ex3Vc99guVo6tZ6Piusf2sops
U5wT4nrGdrPybAMbwSay7cl1MI7VkvE7je+er2I36gVkCjuZHB8F9YnWvmbm
F9aVnfX4eDaXnWYt2JE4jtk8doa1ZEdZc+vfZHnTss5bcf5qwz7TM2Q6227d
cJmgb7M2g60x9yh7gu1hFdhG1s7aL1jV5Jpc3Ex79qVeLS3rnmEXWyr/1Zsl
199mca6TsWlZ17e4zq2yv9bWbmHF5AmWz8xDMkb/0FxR9pa5B9lotoUVYSvZ
RnalXsLfxeQh+7pLfjTXWj4w18hMC7YyOa/FNeCS2UEszfaeuI6yLubmy369
rLwQ34e+QA7o5WQmK6Xfae23emN5h1VlXdgJ/WZZwSqyITJK3+Q13sDe9Hxz
2D5WKvns4/MbLI/qG8xdH9cWc53t7zhrmJZ1HxH3Pp3YYb2O/IuVYS/Kbr2E
TGVF9A7mDuq1ZAkrze5mP+lt4nNlt7Je7LzeNr4T1oR1Y6f0THmX1WB92a96
p/h9sObsHnZOv10+Yo1ZV/ad3kRWs+rsJdmjl4zrJSuqdzR3SK8tS1kGu4N9
ozeSt1k19ooc1W+Suay83lsGxGvzWeVO7l96sQfiu2C52AJ2v/39j3WTfayd
mX7sot45jkPWIq6p7JLeRXawluw+9rveNY5r1pb1Z3/o3eN6wdrH62B/6T1l
P+sYr4P9qfeQL1kH9iDL4TX1ifMO6xrfOUuP184OszvYQJaN3c0Oss7xG2LZ
49rCvmJ3xrWH/aJ3lK3JsXVvPI++2WdwOVtiTb9YzzbGvR9bzPrGc7P1LC9b
FM8X955sZbas+/15cXzEPSpbk9wnxn37wDhPxHfLCrNlcfzEZxPnL5aTzWcD
2LD4HuM+lr3O7ovjOo5Jlp8tjXuC+KzZqPS/b4lTc23/D0sviC8=
"]]},
Annotation[#, "Charting`Private`Tag$33306#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwt0rsrxlEYB/DD634vgyykZKNkpWSllM3rfhsYWDFa+AsYzGQUL0mSW2a5
3y//gEhug8vnJ8NzPs9yzvfpnFPWO9IynBRCmFDJmqj/Vs9qNhZCARdYylVW
cZd1PGQTH9jGJw7xh2PMSQlhisWcYQXnWcMVNnCPK3xlivAjJvGTrckhHDPO
E7bxlO08YwfP2ckLdvGS3bxiD6/Zyxv28Zb9vOMA71lk3nemyn2I5ldv0fnm
OmQzd1nPBKs5x3JOR/s5ySyO8st5g3xknHds5AFruc1KJljCZfteGJOfH8Lf
I3xgn3ncYy53mMMtZnOTWdxgJteZwTWmR+/FtCiHqVyiqLBI0WHcMqV3DaFQ
//T/B34BshJC9g==
"]]},
{GrayLevel[0.2],
Line3DBox[{923, 1192, 1209, 1270, 614, 1208, 1206, 1247, 1551, 1118,
924, 1287, 1288, 1556, 1119, 925, 1402, 1120, 926, 1403, 1121, 927,
1404, 1122, 928, 1405, 1123, 929, 1317, 1464, 930, 1406, 1124, 931,
1407, 1125, 932, 1408, 1126, 933, 1409, 1127, 934, 1410, 1128, 935,
1538, 1202, 1129, 1203}],
Line3DBox[{936, 1207, 1318, 1539, 1248, 1193, 1213, 874, 1271, 1212,
1210, 1249, 1552, 1130, 937, 1400, 1411, 1289, 1131, 938, 1412, 1132,
939, 1413, 1133, 940, 1414, 1134, 941, 1319, 1465, 942, 1320, 1466,
943, 1415, 1135, 944, 1416, 1136, 945, 1417, 1137, 946, 1418, 1138,
947, 1419, 1139, 948}],
Line3DBox[{950, 1321, 1467, 949, 1211, 1322, 1540, 1250, 1194, 1217,
878, 1272, 1216, 1394, 1420, 1251, 1140, 951, 1557, 1290, 1291, 1141,
952, 1421, 1142, 953, 1422, 1143, 954, 1323, 1468, 955, 1324, 1469,
956, 1325, 1470, 957, 1423, 1144, 958, 1424, 1145, 959, 1425, 1146,
960, 1426, 1147, 961}],
Line3DBox[{963, 1326, 1471, 962, 1327, 1472, 964, 1214, 1218, 1215,
1555, 1273, 965, 1253, 776, 1252, 1195, 1274, 966, 1293, 1541, 1219,
1292, 1220, 967, 1558, 1294, 1295, 968, 1427, 1148, 969, 1328, 1473,
970, 1329, 1474, 971, 1330, 1475, 972, 1331, 1476, 973, 1428, 1149,
974, 1429, 1150, 975, 1430, 1151, 976}],
Line3DBox[{978, 1332, 1477, 977, 1333, 1478, 979, 1334, 1479, 980,
1395, 1542, 1222, 1221, 1275, 981, 1255, 778, 1254, 1196, 1276, 982,
1297, 1543, 1223, 1296, 1224, 983, 1559, 1298, 1299, 984, 1335, 1480,
985, 1336, 1481, 986, 1337, 1482, 987, 1338, 1483, 988, 1339, 1484,
989, 1431, 1152, 990, 1432, 1153, 991}],
Line3DBox[{993, 1340, 1485, 992, 1341, 1486, 994, 1342, 1487, 995,
1343, 1488, 996, 1396, 1544, 1225, 367, 997, 328, 1256, 368, 998,
1560, 408, 1300, 1226, 999, 1301, 1302, 1561, 1000, 1344, 1489, 1001,
1345, 1490, 1002, 1346, 1491, 1003, 1347, 1492, 1004, 680, 1005, 1433,
1154, 1006}],
Line3DBox[{106, 515, 107, 516, 108, 517, 109, 518, 110, 519, 111, 520,
112, 821, 289, 113, 332, 521, 114, 413, 522, 115, 523, 116, 524, 117,
525, 118, 526, 119, 527, 120}],
Line3DBox[{1008, 1348, 1493, 1007, 1349, 1494, 1009, 1350, 1495, 1010,
1351, 1496, 1011, 1352, 1497, 1012, 1397, 1545, 1227, 1278, 1277,
1013, 854, 1258, 1257, 1280, 1279, 1014, 1304, 1305, 1303, 818, 1015,
1306, 1498, 1401, 1016, 1353, 1499, 1017, 1354, 1500, 1018, 1355,
1501, 1019, 1356, 1502, 1020, 693, 1021}],
Line3DBox[{1023, 694, 1022, 1434, 1155, 1024, 1435, 1156, 1025, 1436,
1157, 1026, 1437, 1158, 1027, 1438, 1159, 1028, 820, 1160, 1259, 1197,
1231, 1281, 700, 1230, 1228, 1260, 1553, 1161, 1029, 1307, 1308,
1562, 1162, 1030, 1439, 1163, 1031, 1440, 1164, 1032, 1441, 1165,
1033, 1442, 1166, 1034}],
Line3DBox[{1036, 1357, 1503, 1035, 708, 1037, 1443, 1167, 1038, 1444,
1168, 1039, 1445, 1169, 1040, 1446, 1170, 1041, 1447, 1171, 1042,
1229, 1358, 1546, 1261, 1198, 1235, 378, 1234, 1232, 1262, 1554, 1172,
1043, 1309, 1310, 1173, 1044, 1448, 1174, 1045, 1449, 1175, 1046,
1450, 1176, 1047}],
Line3DBox[{1049, 1359, 1504, 1048, 1360, 1505, 1050, 721, 1051, 1451,
1177, 1052, 1452, 1178, 1053, 1453, 1179, 1054, 1454, 1180, 1055,
1361, 1506, 1056, 1233, 1362, 1547, 1263, 1199, 1238, 887, 1282, 1237,
1236, 1264, 1181, 1057, 912, 1311, 1182, 1058, 1455, 1183, 1059,
1456, 1184, 1060}],
Line3DBox[{1062, 1363, 1507, 1061, 1364, 1508, 1063, 1365, 1509, 1064,
733, 1065, 1457, 1185, 1066, 1458, 1186, 1067, 1459, 1187, 1068, 1366,
1510, 1069, 1367, 1511, 1070, 299, 858, 342, 236, 304, 830, 302,
1071, 1563, 424, 1072, 1460, 1188, 1073}],
Line3DBox[{1075, 1368, 1512, 1074, 1369, 1513, 1076, 1370, 1514, 1077,
1371, 1515, 1078, 745, 1079, 1461, 1189, 1080, 1462, 1190, 1081, 1372,
1516, 1082, 1373, 1517, 1083, 1374, 1518, 1084, 1239, 1241, 1240,
1283, 1085, 1266, 783, 1265, 1200, 1284, 1086, 1313, 1548, 1242, 1312,
1243, 1087, 1564, 1314, 1315, 1088}],
Line3DBox[{1090, 1375, 1519, 1089, 1376, 1520, 1091, 1377, 1521, 1092,
1378, 1522, 1093, 1379, 1523, 1094, 756, 1095, 1463, 1191, 1096, 1380,
1524, 1097, 1381, 1525, 1098, 1382, 1526, 1099, 1383, 1527, 1100,
1398, 1549, 1244, 388, 1101, 349, 1267, 389, 1102, 1565, 429, 1316,
1245, 1103}],
Line3DBox[{1117, 1201, 1268, 1269, 866, 1116, 1285, 1286, 1246, 1550,
1399, 1115, 1537, 1393, 1114, 1536, 1392, 1113, 1535, 1391, 1112,
1534, 1390, 1111, 1533, 1389, 1110, 768, 1109, 1532, 1388, 1108, 1531,
1387, 1107, 1530, 1386, 1106, 1529, 1385, 1105, 1528, 1384, 1104,
790, 1204, 1205}]},
{GrayLevel[0.2],
Line3DBox[{432, 891, 616, 1556, 433, 794, 628, 1552, 458, 877, 775,
800, 878, 879, 471, 880, 799, 1555, 844, 652, 483, 1479, 663, 494,
1487, 673, 505, 1495, 684, 517, 696, 1435, 530, 709, 1443, 544, 721,
557, 1509, 732, 569, 1514, 743, 580, 1521, 753, 591, 1529, 764, 603}],
Line3DBox[{434, 617, 1402, 435, 892, 893, 1411, 894, 895, 797, 801,
798, 1420, 843, 846, 776, 845, 777, 807, 1542, 804, 805, 495, 1488,
674, 506, 1496, 685, 518, 697, 1436, 531, 710, 1444, 545, 722, 1451,
558, 733, 570, 1515, 744, 581, 1522, 754, 592, 1530, 765, 604}],
Line3DBox[{436, 618, 1403, 437, 629, 1412, 459, 896, 1557, 897, 898,
899, 802, 1541, 806, 803, 847, 849, 778, 848, 779, 812, 1544, 809,
810, 507, 1497, 686, 519, 698, 1437, 532, 711, 1445, 546, 723, 1452,
559, 734, 1457, 571, 745, 582, 1523, 755, 593, 1531, 766, 605}],
Line3DBox[{438, 619, 1404, 439, 630, 1413, 460, 641, 1421, 472, 900,
1558, 901, 902, 405, 1543, 811, 808, 850, 328, 851, 780, 817, 1545,
814, 815, 520, 699, 1438, 533, 712, 1446, 547, 724, 1453, 560, 735,
1458, 572, 746, 1461, 583, 756, 594, 1532, 767, 606}],
Line3DBox[{440, 620, 1405, 441, 631, 1414, 461, 642, 1422, 473, 653,
1427, 484, 903, 1559, 904, 905, 906, 1560, 907, 816, 813, 852, 854,
855, 853, 781, 821, 819, 820, 534, 713, 1447, 548, 725, 1454, 561,
736, 1459, 573, 747, 1462, 584, 757, 1463, 595, 768, 607}],
Line3DBox[{8, 929, 23, 941, 38, 954, 53, 969, 68, 984, 83, 999, 98,
1014, 288, 113, 333, 1259, 128, 1042, 143, 1055, 158, 1068, 173, 1081,
188, 1096, 203, 1110, 218}],
Line3DBox[{442, 1464, 621, 443, 1465, 632, 462, 1468, 643, 474, 1473,
654, 485, 1480, 664, 496, 908, 1561, 675, 508, 818, 687, 521, 881,
882, 823, 883, 700, 535, 884, 885, 856, 1546, 714, 549, 1506, 726,
562, 1510, 737, 574, 1516, 748, 585, 1524, 758, 596, 1533, 769, 608}],
Line3DBox[{444, 622, 1406, 445, 1466, 633, 463, 1469, 644, 475, 1474,
655, 486, 1481, 665, 497, 1489, 676, 509, 1498, 909, 688, 522, 822,
701, 1553, 536, 377, 825, 378, 550, 379, 857, 1547, 727, 563, 1511,
738, 575, 1517, 749, 586, 1525, 759, 597, 1534, 770, 609}],
Line3DBox[{446, 623, 1407, 447, 634, 1415, 464, 1470, 645, 476, 1475,
656, 487, 1482, 666, 498, 1490, 677, 510, 1499, 689, 523, 910, 702,
1562, 537, 824, 715, 1554, 551, 886, 782, 827, 887, 888, 564, 889,
826, 858, 739, 576, 1518, 750, 587, 1526, 760, 598, 1535, 771, 610}],
Line3DBox[{448, 624, 1408, 449, 635, 1416, 465, 646, 1423, 477, 1476,
657, 488, 1483, 667, 499, 1491, 678, 511, 1500, 690, 524, 703, 1439,
538, 418, 1310, 419, 298, 1264, 341, 236, 305, 1241, 303, 588, 1527,
761, 599, 1536, 772, 611}],
Line3DBox[{450, 625, 1409, 451, 636, 1417, 466, 647, 1424, 478, 658,
1428, 489, 1484, 668, 500, 1492, 679, 512, 1501, 691, 525, 704, 1440,
539, 716, 1448, 552, 911, 912, 913, 914, 828, 830, 829, 859, 861, 783,
860, 784, 835, 1549, 832, 833, 600, 1537, 773, 612}],
Line3DBox[{452, 626, 1410, 453, 637, 1418, 467, 648, 1425, 479, 659,
1429, 490, 669, 1431, 501, 680, 513, 1502, 692, 526, 705, 1441, 540,
717, 1449, 553, 728, 1455, 565, 915, 1563, 916, 917, 426, 1548, 834,
831, 862, 349, 863, 785, 840, 1550, 837, 838, 613}],
Line3DBox[{454, 788, 1538, 789, 455, 638, 1419, 468, 649, 1426, 480,
660, 1430, 491, 670, 1432, 502, 681, 1433, 514, 693, 527, 706, 1442,
541, 718, 1450, 554, 729, 1456, 566, 740, 1460, 577, 918, 1564, 919,
920, 921, 1565, 922, 839, 836, 864, 866, 867, 865, 786, 791}],
Line3DBox[{601, 762, 790, 589, 751, 1519, 578, 741, 1512, 567, 730,
1507, 555, 719, 1504, 542, 707, 1503, 528, 694, 515, 682, 1493, 503,
671, 1485, 492, 661, 1477, 481, 650, 1471, 469, 639, 1467, 456, 627,
1539, 841, 872, 871, 430, 614, 870, 793, 869, 868, 787}],
Line3DBox[{602, 763, 1528, 590, 752, 1520, 579, 742, 1513, 568, 731,
1508, 556, 720, 1505, 543, 708, 529, 1434, 695, 516, 683, 1494, 504,
672, 1486, 493, 662, 1478, 482, 651, 1472, 470, 640, 1540, 842, 795,
876, 457, 875, 874, 796, 774, 873, 431, 1551, 615, 792,
890}]}, {}, {}}},
VertexNormals->CompressedData["
1:eJy1vXlUT9H3N565JEMkQ8kYMg8VSjdjiswhYyJTJEMDmclYQmaSkgakeVK6
ZChDISEUkqmSSObouXvf+3rW8/2s1e/5fdb6/frnrHve9+57zuuec/Y+975e
u3b2yyc61FRRUdGtq6JSSyrbbmvdYvzsBBFlTNcbn1cllwluSUHH7V4liNN/
t5snlYJenVqGyxLLhN0rjrb4+idB1K2qN00qBZ/ymFs3E8qEw37OzXtGJ4hZ
NbNnSaXQNPTahC1JZYJv5uICvToJYvfxF65KpbDQZ9bC9ZfLhBvNbp5++yNO
vDnZ4YxUCnenRAmrrpUJxyq3bb61N1Y8FOwdI5XCml9Zxip3ygQjr42Dp96L
FvvPm2gglUJckbUQ8rBM+BS412jxlUjRZURqDakUNCdr/MrNKxO2eW77Z5tz
QTQ4OOHN9JwLQvanndaVb8uEpqme3wZcCBFnj2jXZeCFEKH7s9ga7p/KhJ6V
049l6gaKzi80W0ulMPd9SULKtzLh1e9Fmn03HxWN1P81kErB2zI1euyfMuFk
9hgt+4Sd4nJDs+1zE3YK+Uard2T9k3BbeCWk0tU29V8V/U0yq+SyTACOwBV4
Vof/iy0Zu+m8773/raTr2irnl01e3YXwT2rdfdT/G/x/9F//nvAfFOjP+L9o
OobxfzFB9CP8ezRzZPyHBicx/poX/DcS/r/u7mP8D+Q+ZPyb+AuGhH/R01mM
v9W4uYx/399LTQj/BUWJjP+E9rUY/9zpvhYS7uJO7eaMv66uBeN/tbD1A8L/
wWBDxt/w9j3G/1ZbwyjC/42ROuPvtuAF438160Rtwt+9iYoG4f+19Arjv1Q3
vhXhf7OGjP+/r6sYf4xLjFPgAxyBK/B82kLYt3bDGRGlYaNTZ3Ur/nv825ip
tiH8XxtdZfyHdgtn/NOtr3wm/NXHejH+w5f1Yfw/9vA/S/jH681k/NPrBjH+
vrZ9DxL+3/ycGP/vv08x/sM0eo4l/P/0N2H8CyL1GX9TW/MBhP+/hSmM/7t0
NcZfr+rWYsLfxdA+iPBvcn0u4x/wJO0X4T+svA3jvzIhivFfo3E4gvAvvdH/
+V0Jf6fNtRIJ/wb31rRj/B/94fHfe2Ey449xhnGH8QZcgNP/Df/QP020J867
IqLs9ON8h2PuZcLekWtpvohd109ZRdeNmeTO5x9U39WD7Gofacv36ZQQxPZ7
FT0fTO0IylzL7br6biy3Z/t7i3uE/5DO2Yy/Wsp+xj/vWs/9hP+vz1sY//v6
eYx/ztR/6wj/JkPtrhH+e65GMf57Hj43I/yFjeMZ/yfxVox/UKvMLoS/4ZJM
xr+onQHjv/3VVifCf8LM2Yx/4y2zGH+N2ePrSriLuY1aMP7dnEIZ//nZWisI
/zu39Xj8Z8TUZPyxbmIdxfr53+IPHIEr8Kxu/Xny++9GOu9kUvlauq6Gjzqf
P8HBYDDZHdvlrwXdx+O5C9sv6+Tdh9rRQfUwt+vX9FXcnj1N1t2ndusH3eN+
TBixl9v/9M3dg4R/K811jH+scTbj36JWMq8/u/3l9WfcAXn9udBv3gjCX/fZ
J0vC32LnZzPCv32T0taEf+Lh54z/Ie0RjP+oEiN9wr+lyTHGX+fsKcb/4KxP
jH+fJG3G3+pXCOMPPwS/BH+EdRPrKNZPzHPMe8x3jEuMU4xP4AhcgafpR+3F
KvmxIsoGte/5LrpVJgTqRu6j83Z0zKTzhUXht/vT+XX/TG1Ndvd1Lx9K95mw
uITtD9cN6k7teHti53xq15Xhy7g9oaVTH1C7XVdZ36F+eJg5c/svu5oHUj9/
mmdQf4V/a2O5v22DRx8i/P06rTxA+Aes/sL4P4+070f4fyzOnUr4t+n7m/F3
b+TN+OeuiptM+EecPfKT8PfbtHwg4T/08ZXZhL/WgruMP/w6/Dz8O/wQ/BL8
EdZNrKNYPzHPMe8x3zEuMU4xPoEjcAWe3pOS0h74hIkol/v9Gri3pEyoH3Vq
DZ03eeQgvk4trwk/r5LOr/i51vuY2IfuY7H6PdsfkLnVlNqx+XrYOGrXxr7r
uD2tDv9m/CsHmD6lfvT/M4LbP+dR+mHq5zaLhRHUb93r57m/M1Qv7iJcRt7V
9Sec+l76xPgYbFzWkfCfWVG7D+H/cdoaXn/mezTTJ/yX6RZ+XCTh//TxDB7/
iJMQNyFegl+Hn4d/hx+CX4I/wrqJdRTrJ+Y55j3mO8YlxinGJ3AErsBzx6DK
Jxs040SU03e/GzY2o0zYuMxrC523fuaxrXTdwftF/LyGzHTjdU372Elrus9e
lzNs/8nODia8Dv59MYLatWmfH7dn9uSJedTuJ0PVb1A/HLztuf0VSxqepH4e
WB/K4z/k+w15/Rc/0LgX82J/HiWc8sV3jM8Bqw29CUfXObstCFeTQ50ZT8Sd
iEMRfyJOQtyEeAl+HX4e/h1+CH4J/gjrJtZRrJ+Y55j3mO8YlxinGJ/AEbgC
z0ZbfbWNfeJFlL9bDz7Q/kqZYNGtPq1X4lO1V/S8BNX4tvy8FsfV5nl1IfPD
ILpP/3w/efzvXGJO7RDjtQdRuwoqI7k9WgbNGf/vhcmp1A+j3S7c/vLrtuep
n16v9Ki/QvvTN7m/E3v787qQMWqCH+EkDlAdwONfieMR1yOeR9yJOBTxJ+Ik
xE2Il+DX4efh3+GH4Jfgj7BuYh3F+ol5jnmP+Y5xiXGK8QkcgSvw/Lnj3+oi
rVgR5bjb1gOXZErza+il5XSeR99pHDeVOE3h84/v79Sf7I4I+TSM7tNmkYx/
1Pu6A6kd1gVx1B5BMBO5PVEW+x9Su/+O6/6I+tGnizW3/0DRiQDqp+GPSaHU
bwP7AO4v9kXYJ2F/hDgecT3iecSdiEMRfyJOQtyEeAl+HX4e/h1+CH4J/gjr
JtZRrJ+Y55j3mO8YlxinGJ/AEbgCT43dQdvI76JsNtOM/W/M0h8UL4mGM405
bkpUt+DzG5oeHsDr2pxdA+k+xxwj2P6tNHMe/3/KI82oXc4pZ7g9X34u43YH
pXox/obDJ3L7sc/EvhP7TeyLsE/C/ghxPOJ6xPOIOxGHIv5EnIS4CfES/Dr8
PPw7/BD8EvwR1k2so1g/Mc8x7zHfMS4xTjE+gSNwBZ67b51abd4nQUS575mP
w7oUKZ454e5G5xU316VSmJ/Wm8+fZbWU1jfR/a36ELpP+JyLbN9+1Bieh1Pz
Jo6ndnV7uZbbg3079vHYv2OfiX0n9pvYF2GfhP0R4njE9YjnEXciDkX8iTgJ
cRPiJfh1+Hn4d/gh+CX4I6ybWEexfmKeY95jvmNcYpxifAJH4Ao8Z8+JdDHd
niii3Oy/Ntg9tkzwL83awfjvLvGk61b9zWZ/EVPvRV+yOy/Sw4zu0zktiu3j
PQjei+B9CPbt2Mdj/459Jvad2G9iX4R9EvZHiOMR1yOeR9yJOBTxJ+IkxE2I
l+DX4efh3+GH4Jfgj7BuYh3F+ol5jnmP+Y5xiXGK8QkcgSvwTAvZltLjfLyI
srBBX5OtorSfylJZT+f1/byY9w3hBs35eeG9Et4z4f0S3oPgvQjeh2Dfjn08
9u/YZ2Lfif0m9kXYJ2F/hDgecT3iecSdiEMRfyJOQtyEeAl+HX4e/h1+CH4J
/gjrJtZRrJ+Y55j3mO8YlxinGJ/AEbgCz6X9A7TreyaIKAved1fzuVT9e6Hq
9ssq8t+m/1l+rvb9RkDLYPNPJldElA17T5ik71EmNB9jZ9Mk7pKI0i7T0t02
WNo3Dfcs07lyXER5XzVryqLfUjt11oxKKzkvonS/30bz+Hspzln90WyfR6KI
8kdVtzOXpHktWix61bQ8TkT5eEtXJ18a5663TtSwSBRRlt4aU/I3TnoucZ3b
TTsdKaJ88mCxzZx8ad8x60CO9/dEEWXw2uMjk6Ok+K3Ysd7ATgkiSvdFhsFp
0npuUZl3ve+FBHFS4OE3UikccylSD5aeF47xO+rX30/NlcazuMPNnMe1YQc3
Hs/zdH+K/667ixENxwbWuOEuRGZEjI2Rxj/Ow3U4f+NMaz5P6/b4+lXSdRte
X+Tzz651uE/3M+6/SqT7G742bED3xTF+Rz2uhz3YQTvQLrSnuueub1BkR3Yq
vMbwdXMfh/P5OMbvqA+Y0vJc/+R4EWVpQq53Z2l9MH3U87P7zgRhv5H5B6kU
pzqpXlgrjdtDlV3L6HiTg5hHv3892IPrxWX9MpZlLBL1XPa1X56xSGjTZVnW
R8m+XlMfPo7/tKC5s/S76hxHrodd3Af2cR6uw/mwi/vAPtqBdqE9pxv78nvw
B0v/LaF52dynhNdDHON31D9W9/xIz+P6gU8p/+f4wTF+R/3EnOEcZ9ROmuJI
9obl2/F8xzF+R/3aCSGVdP04Lz9vsvdwx0h+7jjG76j//7v9bUdY8nuKSLOB
/N1g8Kd23E4c43fU+55q/Iiur+WzKJzszbs7i9uJY/yO+phmZykeFr1P65Md
odOHr/L7EOUYv6P+rcmPZ3R92mP9KLLnXGsI28Exfkd9lOHybXS9a4XdUrJ3
u4EBtxPH+B3181YNfkjXv1xX14/sPe14kO3gGL+jfn/rDH6PMP71Lt5XTd3U
nu3gGL+jXqiySKXro7ul8vxWaebIdnCM31G/7/uk7XS9l915tqdmU8k44Bi/
o75eee/HPD5+bLpK9ga6tGE7OMbvqE/bMtKVrm90aC29DxfOa/yW9+PKMX5H
vdWXdLIjXry67A7Ze3RlMNvBMX5H/cgWfXif+e7PbfJ3QmuXZowDjvE76vdX
7L5J1+9qEcf2tsT1ZDs4xu+onz1zCvvRGV13sj3xhvw+E8f4HfXBJ/7weuqw
8VkC2ducZcV2cIzfUe/ooc/Xd66y30T2XC7L3wtwjN9RX+f3kjy6/njSVZ5P
IfVbsR0c43fUx65vzN8hispdOC5el/yDccYxfkf9oKW1+fklqWTGkT3jD/I4
xzF+R33ei7m8XqSKTcL/z/mOY/yO+urih/923ajOjl75be5/0zFNLtN1Cf+0
uZ04xu+or85/TQwpfk/n7Uv5yfdf1uwH3xfH+B311bXn4ZSJ8XRewOuyD3Td
m4J6fF8c43fUH3px4P29ghgRZbeuv3Scs8qEwQkhb+m8w2+Tw+g6f8GYz8cx
fke9Rp24PSt9EkSU6+P3D50g+aPFmi1pnIsj1vRIouumOE7j83GM31G/1PxM
WeSrCyLKKW7r/7yV4mHLmvWSeZ7YHuZxndHOm8/HMX5H/XF/p4gJDmEiSrFX
imZ2ibQf99Pm9U4j7sQNuq5sdWu5/coxfkd9raqJvkd3xIsoTf4VPLW+UiY0
nnEym9fNS5W36Lp32Y34fBzjd9TXPqB+a+WleBHloTrT3nST4o2cf1lJjLPV
D5qnwp46I2SclWP8jnrNGtPXLoqIF1E+2NqxsaNkp1v/bvl0Xp0H0el03eqO
8jjBMX5H/Wx7vZX2m+NFlD0jF2qvkPq16Yb2PTqv2baJGXRdrdF6fF8c43fU
Xxx97FcHX2n9VMoPP+zHm1yq3i9XF+f7+9+hOFXoEbGKr1Prk83n4xi/o766
8e87o4Ljit5NprBfPvniErfzv23Pf2unuvZUt564mGfE0rHemcW8TnjZ720g
x+0+V2n/gLJCJYf3ERNPBj6l88Z/r7pC1129qMXnTyh2o3Er3nq98RL9Hj/S
get3uydlFnaLFlE+qfPn7qnH0jixHcN+OXW47TW6TrSQ45YLC3N4HvpqrM6i
35OSm8vrRq8JmjeTg0WUcV8WLX1UVia0W7iS/e/uOTvpfHHlOjme112YRuNN
PBH0m+8zX2ss1xf6bXi0dmSCiLLSoaSxirR/SX/05zWvm0evMB6PbGQ//qBq
Gfdz1XTL27yO9pXHv/6Cf9oBdxJElNMdj5UWkX/fMovHh2uXUTzvXh5qx+f/
tprM8Yf3hp7UX+HOeTuuT7da96rR/DgRZef2k8cdv1km6Oh2p/OFI7pz+bk3
fmjA5+dvKb9Lx4vnved1a3ryeK5PPPF555/EBBGl6J0ebCvVDx56kJ976Wft
NLpuRcfFfP7bMa3YH/da4cb+LXPvZK736fy6YNvKBBHllrduUZXSPDK7//4u
rydOixjnBaFN+fwXO1uyXYutJbxueZhZc/2R7KvjutS+KKJ886DmzTuFkp9t
+o2f17jnTuxP38zV4fPL99zU+Pg7QVRKIayFT43MhOrj/Op4Gv9f2ZkREahF
dlqnxLKdNbvc2E51vBG3tbodyI6V0QC2M6ziGttpdMGsB9mZNCL9b4lkZ+ZY
u/9HOzPrD2hOdpautGE7IX7FbCc0fk8rsuN+IozbE/xgEdvxGD2evvuIDedN
4X3D5rOj2M7KPhf4+5DTSg/+Xlc+J47txHRe0YLsbOxl1YTsGBjNZzs/67ZY
QXbqDHjqQnZUbsjvb9fp2HUnO6U/93clO8ODa98mO5naV1uTnTXf61VRv7Ys
3s92ZkX4LyM795vbrSM7H/eZsR2LIHNjstPnZ8uxZKfBEPm7rXZpOeN81KNJ
JdlJKD3Pdor+HuDnFWo6i+O1LykmbMdg+AJ+7za++yTGp7HTUbZz52o36o/Y
0u5yI+rX3MINbOdc3bbuZCev+1iOKzfoNmU72rGh3K/k0g/8PnuGXizbKcic
yuNnbH996p/w8NtCthM8rjnhIrYfNJDsCYuP9mc7KjnNTMjOjReFA/h55YSx
nV0z7NlO7cwUTbLTc+RmtjM5NN2D7Gg+SKLvdEJ6tgrbGRWsR+91xT0v04zI
Ts0+8WxHfeQ/ul40mfe3IdnRP+vBdmLa9WF8OoTV4++uf7M6yfuvnqd6kZ2/
uV2pXcLl0zfYzh+LvWznb0AO29FatZ7trNPS2Ex2CmOuULsE3/I6Mg/nn/Ok
kVYhYqVdZMnLbQmiqv6x3Mc50ro06n0tq5tS3NJo+n3LmwnCwoGW39Wk+TvK
4/Py3EzJfu+psVIp5Kof9M+j9885rjk9pPY0uTk/TyqFG7GnVt2R7ju33Zno
sBkJ4hFtl5tSKcRtmea1VfJ3gubctk2eSPu6sNJJUinY51sOPCvZaV/a41+v
0/HinT6TSqRSsOjlWHFVijc2l62dOHqFNP6T3zhLpRDb++CnWpIdl9uTbwb7
xYnLl2TlSKWgOnz/FvsbZcLtOZ3aPr4aLwboGNSRSmFcWm/vGpKdZ7ZnWr6e
Eiu6TK0zTCqFSwf6PNW7K8X/YzSLbt6OE+0vb6+QSsHFx7bA8XqZMN8g++PY
mlFiso5RilQKug8/h119XiY4hUWVjq4XI9Y0P1cslcJJs2bt/LLLhBZ+PRoc
qQoX397TOyWVQorr11k50nq4wdbRt+/wKDE+3tFBKoVNSae1g59J8edwwWXZ
iTCxpnbDEqkUemzP9/OQ4sb9pkkZPQ9dFE27D6+SSmGiVs9uia/LhM9vDiV3
exskuowXD0mlsE+YaDStXNqP+NZc7GJ+Tjyz5MFrqRT+zstbu7y4TDi5RU2t
4pG/+FBFf/HXR/7CgDVj/jb9WSZcdk7K+XH4rFjs/TRbKoV6BaOvOH6R9lMR
qt++ux0Sp2xp/lIqhZxtYf8cKsuErkdOLToRfFos+lP/1/Hg08L8nZk5k3+U
CV1KVbT6BXqKVzfEVfYN9BQWDGn+R6uqTCgO9mpxrPKweCL/ZHOpFDzeR1W8
+CPhMNnzSXah5D+WLHojlaL1Fa2V06TnXmFU8OxZyQmhV+COOR5XIsWpGU2u
zpNweFZz4DazpATRzPfQdKkUvsbubT6N4qjexy9bSuPZc8nEIqkUGi3zvEzj
WefQVv+P26VxPnHzNakU4hMyn22V/NqbDmPcPArjRdPB8dZSKQzxjVY1T5Xi
q5josC/JsWJ+U/G6VAo7SjxOat0uE5rfzKwnCDHii7DgCjMhRhi6p+iTzwNp
v+btqtlse5TY//GH1023RwnmHpuGbn8q9ddi8uirBhGi/jidvlIpvLyWv+5w
QZkQHtC6hvvbc+KAQF1jqRT8iheGzywqE/5lH9uSOipYXLN2pLNUCi0+nvFx
+yytY+sPexjbB4hG99yvGNkHCF8a5mt6f5f2LxG7Cy+VS/uZ2PxUqRQXeqZ5
/pPmV1raI8MR7xOErXtFQSpFy4VdLwyTcPh2xnlbI6MzgsaB0uz2mpfEA57l
OifvSXH+lBMTtxQliDcTVztJpVBx37i7kXT+ofgRZ7xPSutbvaGXpVJwDysZ
X0vCbZ2n5j6flvFilOuyU1IpPNDOdkxMk55jjdaOLYpixc4H1gRJpTD2eA2V
rrfKhJ7Nnvbu7RYjdrm6wEwqhavtUsI23pfGeUX7AV/To0TjibNaSaUw5Xuf
bva5ZcLfd/utx16JEBs2q91HKoX71qMnLX8ltbP26iOrd58Xm6pbZUil4GXQ
1WjYhzKhama3+ht/B4teC//oSKUQP7/9WQ8pPmxltIvbPfic+lbqx6frVhOo
/aOn+HI/B3f+Mpz6bRRmx/3da9biYEJxgpAdZblBKsV9zjsKe0r19X3scgjf
Js2nM9667bYwzq57htxKa5UgBqeXXJVKwUXtZkCVFE/aerpkDzCJF9dnZj6V
SkHthcHayqsSPifGq5g1jxO7vTLWl0phXJ9B9oMypH1iQK9jehEx4uNpdnFS
KSzvNWTCUum51DMpUb+vFi32/fSntlQKf/tEPRj4RKo3tkovNogUJ83ddU0q
BbUtPSKGviwTjr0/fnJJrwti2tIpjRx7XRB8Zuk07/C+THg0JIPH91Czw040
3u9vuMPj/Naw7Twf9hb39aP58Wl7Ds+LQmE0z58TBulXaD69L/fgeVRYw/9r
10/S/MnL/SCVopnZeO1WUn28fUDNhckJYv+j6wZIpeC206vbaGk+rgx3WubQ
O0EcVf7SVSqFVpp5DpslfNwb951aMDNe7K9Sa7JUCrazS5cIEj5TfRbZ2A+L
E3VihElSKaiPN79mmV4mzBs5XkfjfYzoGtu/i1QKl8xGv7PJkuKE9mOmnxsd
LVaolm2VSuGAWYKRhrS/yHcauvW8S6S458/xBKkUio1t9jV+IcUPE+V13PHz
WF7XjYqn8Xo+M701+4PUfO3O5B+uV+mwX+juGMJ+pcnJI07kZwZnD2H/ErD6
HPsnl9MrzMhfNRj5eQD5qT5HC6xPfpH87p+VVIpVvXqOqiPVvxw4a3GU5Af9
tzVxkErh4ZTcqRnS+AnLHvrU/3qCOH/9oQ9SKYxVHfa5qYTbrcD8tHrS/uTo
u4NZUimsffk1pqaE24SRx+vs2hAvjnu0W0sqhYn7RpptlvbLxgvMDD2d48RW
NS+MkUohbvOoDlOlfURsWrfjP9vEis03OIRLpZAyrWKRaWaZkOdUrrnFO1p0
v3O/uVQKd/yPzMiT/HtgE1X2f4vP/9Ymf2h725D9YINVGexHDVdsuEV+NTdx
J/vTXoUL2B+3ORNWQf75m/Z29suFSUvYr3fq3C6B/Hz7haPZvw8ysbxA8cHy
Z0WbKV44OcKV44TMpkf9G35LEIbsWr9JKsV3FRddP9N31Vv1Rtg8TBCfHJ4y
RCqFXdYdzidL59c6auK/XMIzYn1+kFQKgQMj396Szv/x7KEX2c357RpA95n0
z4Xt2zRfkUbt+D6yWwq16/HwUdyeZ5sG/aJ2b3668CP1Y6exK7d/cN2O6dTP
Kb6t71K/R6cEc3/b6A7qTLi8Pbq4F+Hk+cuc8Znleawp4di6U1IHwvVQTXfG
M+jdz0uEe1CL4cH0HD7ZxTD+7sIzfk4X/l3k51bn0Uh+Xl96vK5Fz/WAdcOa
9Jwvhmzh53td7UY6jYNZun+SaVwc09CJpfEQctT0J42b3/VmZNI4ssg05vGT
Hl1QuOmnNJ4W27+SSnG+wfWA5xI+DTsNN1bTDBZVXSy7OH2IF4PrNNu/XlpP
1N4+eybFc2LxRo2nFNd96nOO47oPOfoUt4mxTbyfUfy2rZ43x29jBgULNO5P
5DuZ0Dzw3mjIcZpalvMimid9ennY0rxp7nGU58u2Hf9a0by6N2npv0fSPHPP
m8jzK+DYwG80D3f3vlxA83LBNUeej5edbdxo3g4d7nqC5vF6lVCev+LU32No
ns/wn+VK876Nxjee72OyIwxpXXh3vIc2rRPGM4x4ffgT1mgZrSMZqjuG0rpS
kNaD15PN/jE2tO4ManR7LK1DlyxVHGn9qd8jdAWtU092L6BS1E56yetVo6q9
nWlde92mqyatcxMS9vH6VrRrcB7FLV7iZYpfxDFRPThuGZjVsIFL5jrh6+qF
k69/ixPDcxMeHpP8vr/NvCUUt4wqLLWjuGVejVsct7T3Ur1H6+ymJxbPaN3V
MtnA6+32F64XaF1ulnc6gtbpesNe8/oc4zp0Fq3jn/U2z6F13XzGbV7Pre6/
G0nrvtf+0wnkB/oufKhF639Rk7l3yE8MuRHzivyGjmrxRfIXZR8MvtyT/IrL
sVWa5GdajbnH/qWB44Gz5IcKBpUeIr9kMMeZ/ZHl5f6dyG/5mc+sQ36s9fpe
7L+ybALzyc8N1fqYR36vS25N9nfeZ1c9JL+ok5F2h/ykTvQe9o9fHL6QPxV6
2698RH510JJz7E99N6v2pbjFvN6x3hS3tNlpz3HLkCVWQwz0w4Ql2w2dB6ol
iOtCc1bQfqTrgQ0zyH+H/bxPpdBooA378XqzA8+Sv39hlxFE/t97fQ/2+07q
mroUH3QJD3q1QYoXNhuac5zQZL0NxxMrzp/cTvFFnXPGHFdculiH44+ltndH
Uzzyp5E1xyFGX3oYULwSoLrIhOKX1VPqcdyS4ZIlUHwTlqJKcY6Y73iU45yX
X65soXioX/+UDRQf1YrQ57io4XzTMIqftK4cO0zxlPaTAI6j3NpEn6J227l3
CKF+FLYz4fZPDne1p35a7u8/jfod3mI09zcrcdkBilt+Tf/tRXFLUBc7jluG
Nlp5h/A9tevUc8L7+epYxvnNIZufFEf6LWuyjuLK2UtSOZ58GjloE8Wdc1qr
bKU4tNvWoxx/Vtm15jj14q9GtSluVV3uwPHqMTtjjmvLTszoQ3FuR40fHN+a
tWpZQXHw8ZiE71Ip6iYc4Xj4zv70JlL8LIx9rflFip/FkkbPOH4e1TYwmuLs
YQ2t/Snubm99k+Pt29ZFVjS+36vXmU/j/Zd5uRy3FNc+R/Nhy5CjF2l+rDr4
kedFwKaMhzR/yj9mPaD5ZOG8i+fR4uOLiiluqbitQ6X4aOAijluq3sr7kIba
RrwvqfdD3o/4h3e5RfsZt1YLFtL+Zq7Oe97XjK16eon2ReZa9t9on7S77kh5
f9S/Ko32Vy0uFq2k/dZ4x0+8z+pq/Eyrl7RPy8v7e4L2bVUTh/F+zXTdhLO0
37vc09qN9n8ZnSbxvm/txq60fxQmfrcvoH3kzrhuvH989KUPr49f/e1/0Hqp
Mnkhr5O5780bUdyS2/pEM1pf3Uv687p68/f1+bT+Hkzq6EDr8cH8TbwOr/h+
15zW66DGNwbS+u2jZszrdq1uj0dT3NI4In0oxS2hvpM5bvHykfdvpz5db0T7
uTpr5X3c1F/NeB94MbpmjR/SvvDUlhDeDz4b1Y/3k7Y/p+RJpXjq8FTeV2ae
SeN96YfuXSNpnzot3pb3p+GXPyXS/ra4h9Fh2u9+sizhfe6FQZ69aJ+sXty2
N+2bnSIHzqb98qJ2p8Jpv631Pj2P9t8PzPqeo333uQ9G/cgfe+xo2YL8c/jX
WeyXs0rLs8l/f55Wye8DNHYfZD/+4eNR8vvCm3ObOG4J05rNfr9Lw+BbFB+U
zvG9TPGC9YeeHCc4VEwM5HgicdV+ii+O7HTguGJAN/UTFLfMDvp9gOIWr9xt
HLdU9z5fvBV+gN+3jP3nxN9treTvj5+V95CXlPeQ+/4vur9pzaIKiS/1ZW8I
88eb1ZjKvCn1+bVZ33L6+gLmO4ctiWGe1c6Jo5iPNVd9L/NzZx66J+sCTloY
EX9L03Em83mPvJ7NPK658w0HEd9rifkl5j9evViHeV9Pb/foTvywkQu6M184
7c4c5omV3B9fSHzKY0O6Mb+sz8Q05pUV3RoTSPwzv6pGzEer/+Qd8zCfRnxr
SHy1dC+ZvxlSLvM2S4V/zoTLWP3kvYTTqc5/GZ/vYif+3l/jiDm9XxRMFlry
e6pbayxbEj5T4u8wPiMGJjM+3f9kFhE+vTKPMz4Dl8i84rnWyacIH3/DxYzP
5PJ4xudNrdP7CZ/HhSsZn3OHzzI+CSvKiecmGr0Yxvh4TDNkfI5prRhI+Gxv
kcz43LOsx/j8vXBxGuGzUd/0OuFz1Hky42O0cforwmd9QXfGp8fW64zPtxmZ
kYRP8HEtdcLHMPw943N7r7Eq4fNzVxXj03qwzKvsfLSzFY2Prbnu+qwTUsbJ
39UGxHsWjp6vy/qjvl/6MD6FXf52InwOnoxgfDocP8T4VJnv/0j49FU7xPjo
ug1mfPQepPgSPtnNN8i6ufaPGJ/h0+5sIXzqP50nEj7vGoUzPr3Djg8nfBZs
HcX4nOg/mPH5krS9N+HTuui6rJuraMn4BMf4OBI+qtftmO85oZsd42M68F0l
4RM6UJfxaesQwfg0r3szhPDZpd+3kPikSQtlHml1+jjMH8wn4PPBuRmPG90X
d70In45XGjI+6Y0nMr+wov8GtjfKZRLbsfKyYT3GrgpZn9ElVtZlHJ/5Vsbn
1nrGxyMmh/F5MTR2A+Gzft2GJMKn7pubjM/JrXpDCZ+LF/QGET4+/rqMTzPt
Xx0In/eXshkfdbP+jI/RGeeZhE+tZssYn4e3l8k8fN35zNesVUfmz/rMkXmz
v4wDuH3qGZfesX5k2FhZ/7v4Bvfnr017Heqf2+1o7lfOh46MT3OLgG6Ez7Jl
5xgfW7MhPei8ZZbn5tF1O+o58fmB39syL/NMVWkG6wuuuLF9tbaGrONaEHGH
+JzCtQCRcfCbvHU367vta5xhfffW14zDqZpnWCfgeFp/HOHws3MF86WTGj9i
Xm+NhgeaEw5tkuVx8vWvXxfCYUPPFycIB5NZQYzDkJlLGHdTg7Y8j21OJvJ9
tTvsl3WUO5Z/ovaWNB/A7dQxPMQ41N/1kXVMK81Xcr9iXjZkHFYm2hry9wRL
b8ahcadN/N1kaK8Ieo8upF/5xPUmBXsG0PXT1xZMJnuN3NzZTtnhy4xP8cWa
OXT/5Tk2fN9G+tuY5y1c12beq49eJLfzx+7P+wgf3W19jxA+iU6fGZ/l88/2
InxGlXYgPYuQ/aclj5Pvlfk6hE+DrskWhM+jbpHMf+6+SNZZdJiSxzqLCFNZ
Z5GTN4fx+WAUQqUY7BTG9838liDrwzUePaf2bjy1jNtZuGQn4+OzI9aY+pff
di73671ay5HUf5f1Hr0Jj/OfAxiH2rYz6DuKWL5ei74bCJ6Vsv8arpLH3x2C
Rj1nfYz1DC9ZlxEYwvqNvHp7LOk+5hr72b6pi/4Txu1yB9KdCWOGT+b2uFmn
HaV230p+GUb9aHIkjts/ML5yD/Vz6faDzC/2S/7I/T16tKwT4XYl4BHx8AW3
tssZN/gz+Df4tfiuboxbv4saPmRvVt8LbGez/WrG7UxJLt8/q1U63zf27X3G
bWdlAevjwlX2cTu9qnrbUX8i0uJ6sS5ZcwX3yynvDPOThbq/9QiPRkvl73dT
Zqwof14cL6JsMi9klZYUx5Y27sV49ou7wbyzXZ7yurT2lTXrK0IO/hxO9p7e
OsZ2dqqmsx6yyPaPQPePHBnC99163YT1A8M2hqdRe/tdWMztXD2kwJ/6M37K
TRqPQt12Mu/9rbfI43B6+tZjhMfvT8WMw4eDSbweWfV6wP5/16LaPB+NFf8X
r/hD+MHtQQ6X6fp1uVGeZK9pwjm2s3vzRsZzes7fA6z37PVE9rMPZrPepPm2
LF5fr9bcyu1s8G78HOrPELWTval/vVVkPMPmGtL8FFwb9uN56VzxQtZ7vsxm
vFqd0mGe2C0/bVk/tfLMajpeUrmC+IfCn06yDrFu97OMW1zdpjQeBQebeLa/
/ksF6Y/EX/+mXqd2xa9w5PbsUGt/jtptP68u6cWE+T+vcvt1d+hy3NNr0woz
Wp9spo7jdcl2pxwHeGxW57hgSxtVxs1B8Yvwk/CPWc7uyYSba/hM9hulYWmM
W/gZd9JHCXtNco/R/T83lsfhk463sqh9149s4vUmLNyB2+nr6DyW+nPh+lT2
Y8LsTdyvlhbCYP5eW38V6aVEYd8pxu3mvMUbWO9hr8LfD8eYdWF83Gc/Ir2P
mHS2P+Ek3J2VyHae5Y9hXcTDWQOYpx99R9ZHXE/ty36ogV7YI9YxLb3L/uhP
j3GxhE/DKaZzGZ9WMxifuWrpjE+biUd7Ej5dVdowPvCLJxQ/Cf/4oE+nEMLH
xPzBDsKnZ/oL2Z/WdA4ifBaOtedxbWEdzfgYt4p/TO177T2C27vW25Lbuct/
Hz/vMaFXab6INj4XuV8ve4ezjmPv9FlGrHfxlHVMv5vq83fQueGB/N04rZXM
v13fL42v79z7LelBhIzTp9jO424NOK41yht4keKUg81fcfzW2bMj4xPW6lgZ
4dPBNInxuZI5h/26SvfUpYTPg1Zy/Oy2KYfxeaM1qz3hc/WkMeMDfwn/Cb9p
0ciP9F1ChNl81rnUuSn7kZFOPuGEj2ao8xHCx6l+BOPz8J6nSPjMidDldcLP
YBXjc25KQ9YZPbz3kp//h3A5fraevpzHT4fKEsZnzLlQWYd4X45HR662qUvx
6cJjclzazd6ghOIz6+y/rPeJHPSbcbgS1IpxCBp9ogbFL8FF5xmHuDsejMN7
h1lWhMPhphsYh7OWpW0Jh62Nb3FcUNBAXn8sFb/orPhJ+MfpXW1PEQ6j5zzi
uOPDpVJZb17RmOI0IdrWmfyI+HW3vO5V9t/H/mb0pmgaz2KMubxvmnG3nMd9
QOM9vE7oacjjxCHQinEwHlaD44Sgt7Lex8hf1uP0thpQn/Q4d0VZD7XmTSXj
83vs0FaEz+uMFMbnV2jnWjROvD947iR83qvIcaznG1mPc3+WP8d3yf3kuG6U
1qLdrIfqsLQH4bMmM4LxMXtxhdZlYXVxzzaEz++oDI4H4P/gD+EHRxvdPEn4
DLXP2Er4nFGrzXqcPV+28zqzxE6d5pMYGnWO8el0aBHP8zVGJtmET6zteMYn
7P1mC463PUea8X7U2kfWgz/QMmc91JfvzMs4ESTr0XoqfDlfhS9XX+HLlb3S
22ieFCJuMFg+TiqFzv0qz83/VD0f9bRyHPIf9dHTH2u+HhMpotx63mtk4gvp
vlbqQ5+6RYtllsNqzHBNFee/1Js0JlLab+4/YKuX5ip+/pmYErokSYyttSzD
4Ym0j4s1PhowLFIY3je+dle/GLEiUNNjolS/ZZVxw/Xv4sWBHVLrDEh1FG6/
7D5U52WZULPzlNeHQ2NElBfiQoK87pUJM1PzVz5tfFwcHt2k4JFHtNhWv8jg
23spft7eo6OJ21yxpu0F3TY7E8X7r262HfVMijcaq3tcnBAqXF+QfOHFdWld
WnMsYpL0vCwf7rah7x19ezzpR987Jgmt+HtHs4ld69I4+3ZDHndfv8jjLbGd
biF9l4/Y3ILfx4zYfoHfw5xXjmOV31FfPqO2KdkNa9Z3KN3HPsuE7U9sfL6E
3osN8jzK3/fssiz4/Vit8ne6sYNixYGhTs6uUReFOha5J45L+BQ80+lJ72db
DWhB72mFhPzl/J72oMJX7KPwFf0UvmJ0z3fDHp1KEFV8pmbf8h4mnHLec1kj
v3qdxRml/qpSr63UZzy7k0LfJ/RULX7S9wqdmGD+ThFza3qzP3FHxPPBkW9+
xx0RTIe+sDzxp3r7Km92elN9TkJr5oNFrNHkdV5twPOk2RIur/ec/jLIMFRI
W3+/hpn0XKIUXUY7RZdhpugyqqvvLjycQPjqGOnqE94jQ8bK362q0Wu4jR85
OGN1vHht3ZPce33dBb0PGX0tXkl+MPgp6wVMx/5h/lHeg19yvD03dDThfnBH
Nr0vF98easj4H13c9j3hUlj58xXhNO3cMsbnrsrlSfS9wVh35mr6/rAhMJu/
O6z91z8tt3uEOF/vdurEf16i95d6w3+XlQkbG2i7sm4hzId5aq1myTqFyQWp
RTQ+Ohf9LKDxEn97C4+T553Cl5Pd0TNVhtB98iJbaJP98uEpWdSOdoMty6ld
tV5v4fZ8U3XaS+/LLmkM2U/vz0IMIvm92eQeWawvCFcP4/c9berIOj6ch+tw
vtXSGIHw7dannQnhfeLHCMY5v2ottVMcPynpG7XXqVIez9+rwj8utYoTn+V3
X2h05IJgOe1P/TuPy4SQLluILyGuNW0/nHDt0U2X8RzZs3CXTa9E8avvIkdT
temiV3bOfdvnZYJhgvUL6tflEa0/UL/8L63kfr1U37fq2op48eKWZRo9O50V
J7V7McL5qeSnavoQH040/tuWeWjDx9Tlfp3/kJT6MV2KM3b2fxExOlTo0j+5
/ThpvIXfP8Lzc1zhap6v56wGcr/aaS4f0XNconhLb9DLOQ8ni5N7r7n/S1pP
Wno24bjOvlYy88ui/8n7iNfjW5pRf0bXu25M/euxtwv3a+PbVqXUbpUdb7gf
a3/Pldt/zmMGPT/XdRNW0fNccCiVx8mW5MCKu/UTxFd3Cot7tA8WC7MbdG0k
rQPFqZF833NxZTvpvu4z3/I4qd2xYSnh3uyQ12d6Dtvuj2H8t4YasN3vq6dP
oftEzM1i+3kHe3I7OlWalFG7nifN4vbUUY8cQ+e9Gt3kIF2nUbCTzzc+vDqH
zo9+ZfSZzjcsd+Pz2ys6h9r/oYNoM+x5L8Ixp/OaGYTrR4dmjGd1/qWjYqdi
9P+00yvdWvXL+QTx9GOb1bvfSfGvR2eDMul5deowLiB7W7T4fe2SE6qLU8Wo
lM4D5kp+59TiTWvJ3z2778r+LuVkFfu7WR06l9hNjxcfVYUa+Pi4CkbCP5PD
0nxvWNbl+BwHd7Hq0CXNfuOTxPdd/wyOk3AOnxpyb61mhGh019kvcoG32GKw
XZXGZ2mfctvv5TidSCGwax2bBy4xYt/8rn9r5kr75bpqVtd6RIsoR28cLByW
xnnLl/UHn3nZXZjaUKd2QkKCWHYopN11KX548MFsGvOovP7OIpxdGqvy/LWZ
PIvGtzBXqPGWcL6bLz+Xdh69+Hu8y88z5oTntK+9Gc+UotWWG08niHMTM4Kr
KkMEh+xjo1RyyoTlTjUW/xh+XFx/2HzraadoUdfyrbraB6lfev0jLEcmiLZd
Hj48f2mO4FVmk9FQ8uPLVjQanto/UdTY0mzoVLsZYoapZitLad41sX1ZlHB5
vvis+Ma/C8sSxfw6b1Yekcb/K+MaDbz/xouD/BcV9DYNFlcs1rXtIOHm7Tpp
/L+aocLl1b1mrfCTnlu9gzm1pfacD9C/2EMvQURZFN727dsUKQ7plJk/2qCr
4N5sTvohCYeYTQ19UyV83v56x7zHYbP+J++xOh6+55cqE/J3BX9PxzyS/N2E
RYHs73SONgx/Ih1n5ci/D7eR6y9GfEqk62unL6kgexMe5rMdxFGn/yOOknn9
J1P+Z/kZ9ab/WV+dX66u/UZ3Gj/PXxIiokybrzEvVxq3rk0CuD/oH/rVw23F
Wdat7C19RfZaG0xk+63j1vC4GT9a5zXhZt5/OePme+EX88gHZF2+wnzwEUay
DvdK4t1rB6T10HGeyfZdlkJTo3UD+0j21c91iFr1eq7wtm/HhH+GCeKMgEKz
wdI4CdK2zGQ9SGYh6W/Ee8k2bEeoiCOdiJjZ0oFxm9XYjOu/jV+6v+n5OBFl
g5IDti1vlAnjL+lvmTZppZBY+WxX2Kl4MbSLl+MrKd7LPv6Zr2+m9p3uI1pe
7852Er4Y+hL/ZFNiaTTxT9pqnGP+Cfhk4JeBV1bd953q6qvjn1dXr9VnVUey
E9zLkO08/iqynQVnM5hP81f0PU3+81TL8+w3t963t7CsSBAbTLjSWSqFpmGN
9L5J9bqPbywNLpX8x6+OllIp9Exf1EdXav+v3a/akf1rtU3Y/sJz6XLegzG9
82l9d7BL4rhxse4qXufttOvNJjsdFje2ITsZ1ivYjm2uFfOcH186ye8Xj6V4
sh3r3h4jyD/F3qjN/mrK6qrz5KeG7uq5sZZUb7vvkrNUCh2cjg8YIdWP1XzD
780sej5k3b/hQDU5f9G/dTTORMfWabdovLl3vcrjbdPP33eJH2N6r+934st8
URWYJ5N49/4g+g56beX9cfRd1DGtLn8PLR3/cDI9x8V5MYvoOfquGcrP0aGW
Lbf/zb5g5ldvTQrm9k9yKjhMOI+MbnCIcP5psIdxjrp/sh/hHBHgbEw4l1a1
Zpx7DpxKuIjjtq+fQfj0auvO+HT78ozzejjp6TOffGxWNNs/umEuf7dWt63D
8deR446Mc/uYv2xnz8Z7k8jOzCnebGfetZ/83tbW3lcgO196yfx289tjmQ/6
3CDdnHDOT1XjeCCsuIEb4dzuR8xqwvntt2DGeW8NJ9bxLtR7zHFLLfeP7N97
/HlWQjg7NWvJfKGDLWT/i30L9jHYv4DXC54v+L3grYLHCv4q+Jrgb4K3Cf4i
+IzgMYLPB34feH3gsYHXBj4beFrgbYGvBb4R+EfgHYFPA34NeDXgkYBXAj4J
eBXgWYBfAZ4BeAfgG0x1sA+lcZO/JGI7jaOnFzfL81Th74LPCx5vdesMeJzg
dYLPCV4jeI7gN4LPB34feH3gq4G/Bt4aeFfgYYF/BV4ReEbgF4FPA34NeDXg
l4BvAp4J+BbgX4B3AZ4BeAfgG+RP6mNJvIWxU6zMiLfwWHcJ8xagQ4AuAXoE
8HrB8wW/FzxX8F7BdwXvEzxQ8D/BdwT/EbxH8PnA7wOvD7w08NTATwPvCjws
8K/ANwL/CLwj8G/AxwEPB3wU8FPASwEPA7wM8DGgr4DeAjoL6DGgz4AuI2bt
uTJad4QrMfyeoPu+Sbz+IM5u/x/64uryFYA3DB4x+MPg0YJXCz4t+KPgk4JH
Cn4k+JLgSYLnB94f+H7gsYHXBj4b+Fvgc4HHBT4T+E3gNYHfA74PeD7gtYDn
An4LdCnQqUCfAh0LdC3Qs0C3AB0D9AvFZU15vC5Z02cTjd95qZt53GIfgn0J
9iPY52Pfj/0+eMngKYOfDD4u+Lng5YJvCv4peKfgTYJHCf4keIHgCYIfCD4c
+HHgxYEfBr4YeGLgS4E/Bd4UeELgDYEvBD0P9D3Q9UD/Az0QdEDQgUAXAj0I
9A/QQ0AHUeB21YTW30YDHpnSetx1Wlteh7F/w34O+zi878D7D7z3AL8ZfGfw
nMHfBZ8XPF7wUMFLBR8VPEvwLsG3BL8QfEPwDMG3A/8OvDvwz8BHAw8NvCvw
sMC/gg4KuijooaCbgo4K+inoaqCzgb4GehLoS6Argb4CegvoLKKCtF9R3LD2
Z3ER64Mml6yg+AH7YeyPsS/G+yC8H8J7IfChwY8GLxq8XvB8we8Fb/V/81gV
/ir4muBvgrcJ/iL4jOAxgs8Hfh94feCxgdcGPhv0Y9CTQUcGvRn0Z9CdQacE
3RL0StDnQK8DnQ70KtCvQLcC/Qb0HNBxPHpow3gdiBv+kvB73fsW4wbeM3jQ
4D+D1wueL/i94LOC3wpeK/id4HuC5wm+I/iP4D2C5wfeH/h+0NFBVwc9HXR3
0OFBfwcdF3Rd0HNBvwQ9E3RM0PNA3wNdD/Qt0LtA5wJdB3Qe0Hd8jIjgeG/d
9n1etB5o1FzO6wB4z+BBg/8Mvi/4v+D9gv8KPix4sOCDgh8KXih4kOBFgg8J
PSH0hdAVQn8IPSJ0iNC5QfcGvRv0XdB7QecFvRP0T9A9Qf8DPRB0QNC9QAcD
/Qt0HdB5QN9R8c9jGPmzyab5w8m/Pdi0kP0a+NDgR4MXDX4w+MLgCYMv+7/5
swpvFjxR8EbBF4WuEjpL6Cuhw4QuE3pM6AChC4QeEPo36OGgg4MeDPow6MKg
j4JeCjop6IKgE4I+CLoX6GCgf4F+A3oO6Dgscwfw+1tzmzpvKF5b1GYlx2ng
T4NPDR41+MTgF4NXDB4teLXg00JfCr0pdKbQo0KfCl0qdJLQTUIvCX0g9ILQ
CUIvB/0cdHPQj0FPBh0ZdFPQUUE/BV0QdELQB0HfAr0LdC7Qb0DPAR1H50s7
9tL4G3wkiEqxxdsFPA7xnhTvTfG+FO/f8T4e7+HBzwZfGzxt8JLBUwY/Gbpc
6HShz4WOF7pe6HmhO4UOFfpT6C2hv4TuEvpD6BGhQ4QeD/o86PKgQ4MuDXo0
6Kygu4LeCnoh6IegG4IeBvoY6GKgA4EuBHqQ+sUd6fuHsC14cz9aX0/PsOJ1
Fe+X8b4Z75nxHQLfJfA9Ajxv8L7B94aeGfpm6Jqh14V+F7pd6FShW4VeFbpN
6Dih34SOEbpG6Bmh34OeDzo+6NOgV4NODTor6K6gt4KOCLoi6Imgn4GeBjoa
6EmgL4GupJZLIb3nEUbHN39LcUHqMjlOw3t5vKfH+3l8h8Z3aXyPBv8bfHDw
wP9bnjx4seDJgh8L/ij4pOCRgk8JfiV4lZYKHw78OPDiwANro/DCwAfTUHhR
4EmBHwWeEHhD4AuBTwN+DXg14JeAbwKeyTGF5w3eN/je1eEDHjB4weADgy8L
/ix4s0UKfxR8UvBIwW+brvDdwHNrpPC9wP8C7wv8J/ChwIMCTwi8IfCFwJsB
jwb8GfC2weMGfzt1dmIn6u/6sX25v5UdU7i/agrfF/xf8H7BfwUfFjxY8NLA
UwM/DTwtUeFtga8FPhP4TeA1gd8Dvg94PuDXvlH4tuDZvlX4Xu4K/wu8L/Ci
wJMCP+qBwhPapvCGwBfapvClwJ8Cbwr8IfCJwCNapfCHwCcCjwj6B+ghoIOA
HgD6AOgCwI8HXx48efDIwSsHn7xls1f96DmNa+/D/POicvn/F4BPDH4xeMXg
d25X+J7gebZsqcu8RhuHYcy3ddx8ku2A5wfeH/h+4L2BBwf+G/hh4IuBJwa+
FPhT4E1B/wA9BHQQ0ANAHwBdQKDCmw9QePTgz4NHDl45+OQPw8/wd5HuPg8o
345o6iK/twdfE/xN8DZz2y/k9/ybbpdwHpuUazJPD3w+8PvA67NSeG/gwYH/
Bh4YeGHgg0HPAH0DdA3g/asqOgDw/8GDBy/eSeHDg/8NPjh44OBZgncJvmXt
ni78fD+YaXC+8/mDznO/wM8DXw88PfDV9BX+GnhrBxUdAnQJ0COAlw+e/l6F
n1+k8NHBTwcvHbw38ODAfwOPH7x+8PnBXwefHTz2ZQp/fZDCZweP/e/4hKCW
KhHCjPGh8Q3tY8VJ1wW1Yile2pg7ZGDBpPHCBfHygqFSPDj/je8u+h7dV2dR
pyXFR4QdTqaDpVLsNef09R3SOgkewzGl1Ff4DIvVgtddNUsRW4e1LJkes180
sbFtcFWKB9S0Sw4+f3tB+BLiZnV3RZx4/pLx1FbSfT0r1y4duW6SeHh2ybob
loliLbPXO+pLcZHj+2upXdXPiiEzzqvX3BgvvvpwvO1Mad+XpXJ0Ro5RrLgn
xCbKd6SXELdx7+oz0joDfhv4buC5xSm8tHCFpzZS4adBZwjdIfSG4L2BBwf+
G/LLIN8M8sycCL3crN2BBNHsyaiw4b1DROeT9/3SpLgI/Dbw3cBzQ54j5D1C
viPw3sCDA//to1dP87vPIsWq04mjxcknheAv7iZa0r4YfDjw48CLQ/4a5LNB
Hhvw4cCPAy+uujzD1dUjnwvyuyCvC/hw4MeBF1edHfDYwGsDn626+pvlDsyH
qN0v6R/Fy039pnGcDN4beHDgv2lH/ua8tJmbU3k9fziyjZxvSuGxgdcGPht4
bOC1gc8G/hn4aOChgX8GPhp4aLvvfnge/i1etGv/q17dn2fFmPmx9oul5wh+
GPhi4IkhPwLyJSBPAnhj4JGBP1bHcMaLro3jRde8GucSnTcINvNeP7aS9vXg
k4FfBl4Z8gIgTwDyA4BnBt4Z+GbHPl/PDewtrXvX81Ifrw4TFh0f5dRJGp/Q
w0MfD108+Gfgo4GH1vT7V/5evvr0P34OZkdayTrK9Xb5hPM5JzXCW0yM9mac
wT8DHw08tH1Z3Xjd1p8cx/nHBt2U8wyDZwbeGfhm4JmBdwa+Gfhh4IuBJwZ+
GPhi4ImBBwZeGPhgyEeG/GTg54AfBr4YeGLIG4U8UsgfBX4Y+GLgiWFdPf0f
PDHwwzr+x/cv8MDACwMfDDww8MLABwPfC/wv8L7A6wLPC/wu8LfA5wKPC3lS
kDcF+VLA6wLPC/wu5PtA/g/k/QDfC/wv8L6QtwJ5LJC/Ajww8MLABwPfC/wv
8L7A9wL/C7wv8LrA8wK/C/wt8LnA4wJPC7wt8LXAu/pPntJ/8KZMwY/CeeA3
4fzq8idX933zXMhX5lEdfGpczL+P+CzzuFJfcj7SctNRnCe4Knohn++5Y9Lg
xrmHhG1eq2vXsogWz+wbd2lgUZlQ17HrRTpPc+ZozodqHe/O5xdEqBfSc/G0
7krroXB92kJ+Lq6NUnPpvEO/tPn+4X/15TzkCo8KvCrwqcBzAu8JfCfHmzco
D7hQ4PaV+i1WNZvKdlzPDOV8nQ6HdDjvaPIYOd/ynoXbRo5oZye0ebovtdNw
afyMj3vXTHqOv9QKKA+ycP3MQL6uYadefH51fIbq8gSWVjThPD/RL76fI57V
yBGnmGdVHa/p2slzlF9JLL932oXyLBUtj+I8S9X5r+qe4ywlD+cyJQ9nqJKH
s7r6mh+7Lyb+TMe9WuuIPxO78xLzZ+a8duH3SP2S992m53Xp2RF+XktS97Be
4t3L5xy352w4y3ZK6geOo/dWAbHCEnqPZeFuze+vLq7uO4d4PiVPjowjnk/E
qA3M80lTz+O8o6LmUM4beafeT/n/Jbma9aD3sYFBtyzofWybSAt+H2tbI1cg
PlLVscEGxEfy+9iG+UiGvf15f+HbM5P51x5G8v5iUdBK5hetsnAdS/f10/Xn
+9ayGMD7Ds1eD5intOb9bb5v6YRl7Ofel6vy91LDJwP4+QYMEJ7S83UIe59P
z/fm+T38fH0KRr6i9f/wd0Ne/zeuWs/r/5mYun703M/X2htBz/3i/sP83Ds0
CF9Oz/fw59lUCoHNg/n5rj5psJzw33vzCPPEvuncYfzPGLRlfnb9LCP2P4Gf
ZZ62c1wTbr/OzEBTbv99mS93wjp9EuEfH71iLuH/edsMxr/WsSaM/+FN75ln
5Rkm89mqy5/wRsnvgHwPyPPQX9GdQocK/Wl1eQZU9rfhfKnnXm5u/3/q2VWU
PAjflLwIyIcQpOhXtyh6VuhYoc+EXhM6zer0+/+tvh762BhFLwud7AxF/wk9
KHSg0D1CBwn9Y3V6+XIlz4WtkvcC+S6Q9wF5IJD/4e+tztxOp5YzDaido0xl
3Rb0utDvQrcLPSr0qdCl+ig6zIuKLhN6TFNFl5it6BShT6xO5458HA2U/Bzn
lLwcyE+BfBXIU4F8DW+U/A3I27AgWZv7Vdt+Ba8fJiqyLhi6WehooZ+FXjRX
0Y9CNwr9pJ+ip4SOEnrCUYq+sK6iK0TeEOQRQf4Q5NFAXg3k00BeCeSZQH4J
5FlA3gXkW3icMYP/r6tqi8/MfzTy3sb9gq4VOlfoW6HzHKDoPqH3hO4ROkjo
H60UfaCtoheEThD5TZDvBHlOoMf+qOizocseoeQ9eabkQUH+E+QBOa7kBUE+
kIqBH1ln+jtmHOsHp3z3535Bnwy9cqWiUz6q5E8pVvKpII8K8olUKvlFkFcE
+TXKlXwbyLMBfTj04lGKTnzNJUfmg27pcIhxDguUda/Iz4J8LcjTgnwlyF+C
vCXI34F8Hsjj8U7JZ4H8FshrAV06dOr9FX069Nj1FH02dNlWF1RZV7j9wT3G
bVlX+f8sI18M8scgbwzypyCfCvKoIJ8I8osgrwjyayDfBvJs1FTyUCAvBfJR
TFD086sUPT109NCNQ0cO/Th01G6Krhp66jyVJcwbPiPeYV2tfxdZL4k8L8j7
gnwvyHuireRBQf4T5AFBXhDkA0G+DOTPQN4M5I/4oeSTQB6JGYr+H/kAkAcA
unfo4KF/z1Z04E8VXTj04PqKLnqdopOGPvrRiyR+jqpbjvN6VXlHXodtfCM1
ggZeEr921GnweNsZIc+x4bDiLGm/udd8If+/Fk8t+n964pYdxjwvtMK9+P/r
3dgxgf2db3IV+9OtLeT/ux1S6M96viGer7m+vrqcz9p2zzje534S5H1uccex
nHc7aMIc1it9657H55srvMZYhecIfuP2mpnPibcx+sHLMuJxLD3Qifkbtaap
utL31rz2uy/S99ax3Xz5e2udF3fj6Xt388yJGfS9e1DaSP7e/e5423q9T8eL
Ol/6f6HvyWOKzPk78hTjmfTdU7xvMTOfvn9qHlzM3z07GrxQG1czSpx27fRj
4vs8tFvLPJ+3/i9TiL9S3nN/m6NV4cK1pTkziccSpTvc2ulEmKj+91GSVArt
pu4+STwNv5MbY7u/DRLD1389IpWCl09dQ+IhzHu9QOf7I3+xzQ4d+2+P/IUb
7laV9J39kxJvx/xHvL3j1Vd36u+JLYe5v/OG7ub+PhfHpFJ/Jz97w/21rZK/
7wvPPDWov4dfdeb+rnrYk/trdnqQLvVrSIzpB+pX4dJu3K89yyPbS/0RNc2e
j6Z++atbcb8cnfrcpX7NTJmktlzqV0TqmxPUr4w+7u16SP2K0av1gvo13HV/
f+rXEncz7ldm1mhN6lfi3Nncr8fKvl7jP/b1yQvit1G/uk1cx/26OHwh9+tf
3cQ71K/kIZ24X5cj1bhfVsHHW1P7D+dqf6H2+/5pze3X0q0pUPsDhofbUPsb
dNPn9j/wG/ac2r9zjBW3Xzsil9uv4ul+i57Lxis/N1L7m+xQ5edimPz2ILVn
9KQR3B5TG2Nuz45WmU3ovp3atvhG910zpwvfNyVoT0O6r9ZjVVO6b/QrR75v
Tt1ts+i+WfblATQeGrjvk8eDq6EK2SlwvlZTKgXLK73ZTlVzd38aV0OnxTYi
O98a/2M7cW/vlBLPTKeWdlM6P7y/IZ//sWFKX/q+nPGhe3P6vuzcaj5/X54x
xo/4RcKUnwExNK7X3izm8dyp9+w3NA4ivLe+Ix5F5Zo0Hg8/37dLJ3wnTqgR
S3jf3TBRHj/T+zEPVaPpjK2Eh1q/lYxD+3sTjtBxxaw4wkkwvr2O6/fsfEX8
YNFz7t04snf6hzXbKQu9V5PGYZ8qj2K6f7SdHd/3UlxlLrVvs+cu4r8LsV3X
cztrHsnrQ/06Gbi3JvVr8s6j3C97Dc00Os/9tVcQXfe1V9utdP68sXO4X3vO
3qVSLLNNZ/s+9u+YryzU6Mr85ZJCS25PI9f1p6ndm14X76V+TDkr96u2XQXz
N7yjLhzh3/9u5fofocFX6fp+U/Yyf6e3i2yn/8aezBue+dGN+Uhb84byff8a
eHeh9pvUufe9QGr/r8VZ3P6wWkMuUfsnf58SSu0P7dSN2x9fw7iIrm90wpjw
EVe3Osd2aphr8Livk/Yume5fuWsA3/dru4O+zKf/+ZHxfzprB7ezT+fBzCvS
M/GlUtCpYcTnq5fpt6L21DdOUSE8Y54/5fZs8XRN4Ly67a9GU3uGLmjO7dk8
7wvxrIQ5wX+5PYvdZF695y1Vvq/rXr/jdN+GH934vokH3zUl+xfTr6mT/e8B
mWz/8eTADLIvrBzH47Cy8zt+vrPVa7Sj881GHG1I56/ID5J5g9Xs4y4Xy+P7
dBN5vM9Txnl1+zX9+U6B9D4i2OA08/oiEmUdR/vf8nyYai3Pj1XKvNhxVh5n
+5RxN1oZb9Xty+Bvair+Z5zidyJLV/B7EI3w46yPPpwq31fYK8+3y8r8+6XM
uw+F8jjWaCSP6xJlPOfXlsfNj27yOPqpjJ/q9mUtFT/3PV/2eyaKvzuj+An4
DfiLxs5buZ0bz1xknUue+zFu5ypl/mM9wDrQL1ieV3HKPPuozK9Oyjj2ry2P
6xBlPOf1k8fZQ2XcXVLGW3X7sozPsj8OUvzzWMUvuyr+7Jni36Ypfm2Y4idS
FL8Bf9HqyCx+7q8++/tSv5rdXMr9KleR5/9tZT3AOjBZmW8uyvzDvEtvJ8+H
6Vvl+WGlzIv1N+Xx3fiAPN6rlHF+XYkbbJQ4AvFD7QLZ725W/PAKxf8uU/xZ
w3qyf0tV/NoIxd/A/5gofseywWvu16bb84jvJLa/Mon7NcFf6wCddyndLIiu
s3sxi8/PvyqvF58Fef34q6wbo87K83mAMr+XKfP65XJ5fgqT5Plar4s8TxsP
k+enqCbPVw9lnnYX5XgoqZMcH71T4iLf+nI8FLxKjo8aL5PjogMX5Tgj54Qc
d/xQ4g1dB5/j1K+o+JFHqF+lE9dwv7ocluMnz5RhHE9dVeKog23luMRoiByn
vFPikxGP5DhgZ5AcF5xS4oHvin/SUfwV/NThL7l83yNvHjKPbMZbT75vgzpy
fBasJ8drPfbJcdqEQ3LckzVYjoO+K/GP1wg5zkDcgXjjlBIfjNGR44XVSpzg
qvhFR8VPBij+cafib+oo/mez4nc6vHI8Ru18O9aGx/OE8J3czqJnrTle3DJA
jh9br5HjxnFKHDalvRyXjVXisWab5LhnUZYcB6VflOMf1VI5XumSIccvHkrc
MtxFjksqNstxShclPhmm+G8bxZ/HKX68meIXR4fJfrKX4h/zFf9Uofgr+Klz
w+yOUr+mXdA6SP0K3beL+7Vn/RiOF63bC9wveyVubNP3F8dn+zTWcLy2bLsc
p2lfl+OqOovkOMvZTY6vvLbL8VOCiRxPhShxVENVOX4qfiPHU0FKHNVKiT8e
KfEI4pBFil//ofj5TYp/76z41yGKv9VV/OxqxS/uVfwk/GNuvW2sM1mz5Ab3
90jJCu5vwn/kjcH39wu7bnF8fLNwIcfL6vfkOPlj/sc+VL+9TYoF1d/ysOT6
Hsr3XV3le6+F8p23uu+/HS7Y8Hcpzxoj+tLvf0PHcf02Q7thdGxuO4W/I322
6Mb10Q138Hmrnu4aS/UPTfpx/ebaOwZS/df5gYOp3uLveK6vH7WJ7RR0akPf
LcUAX2OuL7EdxnbnOzVlPYjO0gFcnxiwnK4XOuzPpuvElJC+XO/VwNuM6o+Z
9BtD9T/bN+f6awouUQpOwGebgssbBSfgg/ZtU9qLdhYp7VNX2ntaaWd1eSrs
CjucoH3ZjZtVvC/TU/Tm1X0HiWzUaBvVT3u8idfvJ/YnuH7Xvsu8jqvUbs/1
zb5N5nqDn5n03U482WwR4x3wzJbvW7vBGE8aT3sda4bS+Hr41Z3HlZWmMf3f
BdGrXWwotae11yFuj1Z+R9ZBL5+rwzpoK0Nvtn8msj2PP4N9M0+x7mmSG9c/
fDNkFN13qooWPwc9B32+7/8COUotJg==
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
ImageSize->{341.9249111281491, 116.77666580645048`},
ImageSizeRaw->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->
NCache[{{0, Pi}, {0, Pi}, {0.11506642429984786`, 0.31726046159002336`}}, {{
0, 3.141592653589793}, {0, 3.141592653589793}, {0.11506642429984786`,
0.31726046159002336`}}],
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic},
ViewPoint->{2.3594037423675083`, 2.425116942360076, 0.04496439013599124},
ViewVertical->{-0.009266246113981946, -0.009524326014906579,
0.9999117080507244}]], "Output",
CellChangeTimes->{3.801888559562628*^9, 3.801890157626231*^9,
3.801892639211084*^9, 3.801892673279256*^9},
CellLabel->
"Out[118]=",ExpressionUUID->"30b2dd54-18f5-45ee-8d6e-9696a32d99dd"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]1", "=", "0"}], ",",
RowBox[{"\[Phi]2", "=", "0"}], ",",
RowBox[{"R", "=", "20"}]}], "}"}], ",",
RowBox[{"Plot3D", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Psi]", "[",
RowBox[{
RowBox[{"2", "R", " ",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"\[Zeta]", "[",
RowBox[{
"\[Theta]1", ",", "\[Theta]2", ",", "\[Phi]1", ",", "\[Phi]2"}],
"]"}], "/", "2"}], "]"}]}], ",", "R"}], "]"}], ")"}], "2"], ",",
RowBox[{"{",
RowBox[{"\[Theta]1", ",", "0", ",", "\[Pi]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]2", ",", "0", ",", "\[Pi]"}], "}"}]}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.801888981987007*^9, 3.801888993308877*^9}, {
3.8018890655273647`*^9, 3.801889073915987*^9}, 3.801889270274333*^9, {
3.801889421985284*^9, 3.801889423094659*^9}, {3.801890273348009*^9,
3.801890282189543*^9}, {3.801890431969071*^9, 3.801890434637516*^9}},
CellLabel->
"In[109]:=",ExpressionUUID->"ec08b2f4-8c07-4bfb-82b2-045c5a32553f"],
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJzV3Hvc1+P9wPHcpZJD6oeZc47lrDY5dB80EkLMMgqxIcawjVAsflmkchiN
iTllmMkxMjmPDrYi6g4hsQ5kkcPdQf1m9/t59fD+PvrD77F/9tf3cb/69Pm+
r9f3On2u63192p101pEnVzVp0qTNmk2aNP3XZ7e/X3v3YVuMqPE5ashxV2/4
5w+7XL18Qv1W416uxbu0XOf6Q3c5qbrHkOlztxz3VuHHX7Zoi+fev6O6ffc7
H5wx9IPCT7pyyKzLLn2t+t4ex5215biPCn9zz/nv3HH4suqR7a8c+fDiTwrf
57ym/T+csknNjHtPPXfG0M8Lf/+sPk81TPtezca77H/UsnZLCv9swLKZfxt3
cM0xY7bqtOW45YXv22HB5G3aHVfztxtWXN6ufZM6fOig1ovWuPhnNQtnnnH+
w4vXKHx5h/PH3/29X9Ssu+mbpx7wdNMKvkufg46eMXTNCn7ozY91O61Xiwp+
1tvb7bms3VoV3N+88ulvn/zzjH+vVeP1POPrhX+ecf55xvnnGeefZ5x/nnH+
ecb55xnnn2c8e86c58x5zpxn/tRP1+F8+tvnfdtvMXqjf/nnOV/PM84/zzj/
POP884zzzzPOP884/zzj/POM888znj1nznPmPPOkvDzj/Pj/eK7PPtV/nvP1
POf785zj4Rnnn2ecf55x/nnG3w3/POPbh3+ecf55xrPnzHnmQ/w848rLM75e
6p/xXJ998s9zvp7nfH+eczw85/h5xvnnGZ8V/nnG+ecZ3yr884z/OvzzjGfP
yi0ennHx84wrL8947p/xXJ998s8zbrzgOd+f5xwPzzl+nnN5ecb55xmfEf55
xvnnGVf/eVY+7YtnXDw84+LnGc/zDTz3zzif/vap/+cZ93vxnO/PM14X8fCc
4+c5l5dnnH+eS7zhn2dc/8+zchgveMb55xkXD8+4+HnG83wDz/0zzqe/far/
PON+L57z/XnG+ecZHxfx84xvFeXlGZ8efnjG9T88i5d/nnH+ecb55xnnn2c8
z5/xPN/Ac/+M8+lvn/zznK/nGR80uPH+POP884zfF/HzjG8S5eU5++FZXPoT
nnH+ecb55xl3f55x/nnG8/wZr0vzDTz3z3iuzz755zlfzzPOP885Hp5x/nnO
5eXZ9xsfecb55xnnn2dce+EZ17/xjOfnQTzPn/G6NN/A+VFOPNdnn/zznK/n
Od+f5xwPzzl+nn1P9pw5zzj/POPmnzzj/POM888znp8H8XFp/ozXpfkGzo/y
47k+++Sf53w9z/n+POP6Q57dL3vOnOfMecb55xk3/+G5jOfhn2d8VlrfKPdJ
z4P4fWn+jOf5Bp77ZzzXZ5/885yv5xn3fM2z/5c9Z85z5jxnzjNuPs8zzj/P
Zd4U/nnGp6f1DXyT9DyI35fmz3ieb+C5f8ZzffbJP8+4+RLP/j17zpznzHnO
nOfMecbVf55x/T/P+LtpvQ7P6xt4fh7E8/wZPynNN3D1k0ecT3/75P+7c//8
xNbjnqz16bmAf/zZg+bt++MbOlW/Pf7nNR27tKzD83N95v72//JzaOb+9ilO
f/ue7/RojMf93S/HmdcnXZ9/d3/7f+6/05P9L95+3H21PsWz/WEHP7HRmJZ1
uPv427/j/vbpPuLz/1qe0HfgNUs2qHZdjt91q4vf/zt+v8b7uN593N/1OX7X
rS7+Ut/i/lc/tXSnbdauXGdWn++rW/fIdduOL/d/YGW/TR+dXlWxnqme73bM
51Pa3vZ64a/UzWh14O3NKtbl1P+NHnx4u1dWzC78k0sOWFp/ZvOK9aXy/P7o
GXM23mV+4W2ff3j+6Xu3rFgnUc7Ws67t+cAuiwpXnjxvLOve4SP3V8qNK+fq
5j/KjSvn6sZr5S79WJRzdeOLcuPKWdHf/pf/vqv7HVf3u6/ud1zd7/7f/vse
fuFHS5a3m7hqv2Pkip3W+mfH6lZrLm25vN3M0m/0aN/mpuH9binc9a1rjl0w
6Yje1ef94+JJA2e+V65/ZOmUITcOmly461/c856D2j5+Y3W/SYOuXtZufrl+
+rDRf9p6r0WFu37FTSe322Lli9XH3n9prwtP/2e5/uUL9p0y7c51anDX379/
h/GD319Qvf1BXUcMnPlpub7b4Cl/+qz/tjW46+/b7YLdpo1uUbPlvj/45C9f
rdqPm/NM680Xzt2rcNc/+Ie7O33+z61q2mx5wGP7dFu1H/faTevsPqp978Jd
/6tpt907bUz3mlZtum1y4ekry/VXf3D5wtFd+xXu+jPW2+26DXY/puaSS+54
qs+Bq/aV2t5wwEdf3nlKzUVLtzl74MyqivaI53Z3wS/vbDfqZ80qrsfz9ed+
tO20v3xVuQ+I5+vPOXn04DevqtwfxPP16pt2MHXidutfVz+g1Cv8/p8uqz9q
UNdSf/Becw6efNLfepV6UvazDtivYWSL60s9wXtWL3vi9oueK/UBH3NWi21e
+PEH1X5ffPgHY6969a6q8jviv/+qe9WS1p3K71X2p3bsPmDm6G7l98KrLjmi
YVjno8vvgl93cNWHB7U4ufjM/R5vmfOmP5i3ssdbR3/+UPFW+sMX37u37tAh
xRu++5ILN9zuikOKN3zsqaPuXdr9yOINv/aomXdtevTVxRvedXy7ew5r+Evx
hvf9/uQ2LX7/TjVv+I5HbL3Dz3puXLzhPa/8frclh+xRvOGnXvrxIe/ctH/x
hl+5+Jd91qz9Uam3+PpfPTX/ptN+UrzlcYE3/eJPI07eyj5nlIs3/ObwwBv+
bPJW1onDM2/44vhdeMPfj9+RN/zYHvXXPn9FQzVv+CY77zdjwdQNizd85R77
b7C49W7FGz5v5nWbfXBN1+IN3/qUkc9c1O2HpR7iw8YMmLdw8onFm+ehEdEu
eMPHRjviDe8d7Y63cn1qp/iHRw6Y9HW75q2sR241/vWv+wHe8DsmNPYbvOGt
+hy544T9Xi3e8LdOfOmAOc9/Xs0bvlaLvkNOP+J/ijf8jEM3H7V4yE7FG37K
HvsuXDCkrnjDx9U/vu0Xhx5R6mFZfzppr7m1u/YtPj1HPhTjCJ+Fx3jEJ/5k
jGt84muN+ub4iD8e4yyf+Nk3vf/v8ZpPvHrWVZ2+Hvf5xC8Z1uW8wcNuKz7x
G3fevH+rNaYWn/jR/cc2VK34tJpPvGH2xZ0XvLJ+8YnX9/tim89W7lB84q+0
eX7A7GVdik/8rpFj28y697Dis+zvxHjNJ35wjPt84vUxf+ATnxXzED7xx2M+
wyc+f4fGeRGfeE2HvVt1mn5C8YlP3q6R81niifvwiQ+N7+UTfyHi5BN/KMrF
J945PPCJTwlvfFq3eCE884nPjd+FT/y9+B35xJfH784n3ifqCZ/4w1Gv+MQv
inrIJ77IfDV84lvu2zgv5ROvinbBJz415pl84pdFu+MTHxHtlE/81mjXfFrv
2TT6AT7xydFv8ImfF/0Mn4VHv8Qnvnb0Y3zib0S/x2fZH+jd2E/yid8d/Sqf
+NToh/nEz+7Z2G/ziTeLfp5PfNsYF/jER8Q4wif+qxh3+CzrkT32GPLq02cW
n/jvY/ziE98txjs+8QUxPvKJV3VsHE/5xDeN8ZdP3HjNZ8k7ME8Ln3jLmA/w
ie/6ReP8gU/8+ZMb5xt84s1ifsInvujJxvkMn/jeMf/hMz+f8omvNazDVa80
Obv4xNvGvItPfHjM0/jEzev4xA+OeSCfeIeYN/KJ727+Fj7xj6K8fOJrhh8+
8ReST3zn8M8nvnb8Xnzif4jfl8/8/M5n5nzi88554o1x7c4pPvGr4nmBT/zj
QY3PF3zib8fzCJ/4b+P5hU/8F+Z14RMfFu2RT1z75RPP7R0/J/oHPvFXoz/h
E58T/Q+feX2Dz8z5zJw3vEU8R/OGHxXP3bzhx8bzO2+4fp43/MoYF3jDjSO8
4XncwZvGOMUbvkWMa7zhr9/QOA7yltd5eMuct8zVw8x5K3mpsY7BG/5qWg8p
6+vmaeGt5BHH/IQ3fGrMZ3jD30jzH/zJmC/xVtarY/2KH599xwx//et1eH7W
aWi96cyhf60du1bjvgk/E87t1OXRxc/W7hz7LPy0if0E+zLq2zXvfbb8jaGP
ljwW3raN9Xb7Prx1P2Xt5ruOG1XyQHjrGXHK6+Bt/YjTPlQZlyNO+1a85X0Z
3n4XceZ1np3TvgBfO3fr1zB84Ru1n4cf3nzOW7HwhK/3j3ib9/yV3z2914yS
B8XbhEs337F+6Oslb4e3u/cbs0+3p6cVn7xd3mS/Qx5Z/ErxyVu/p1/tvXX7
qcUnb+Lkk7d1Ik4+eVsQcfLJ26SIk8/yHB1xZm9XRJx5PeeUiDP7vGGHhePW
G/1+7cbhgccWLfZ87oCn5xRvfPrs+vx2DV/XWz7/8deXXn148exyPZ+9Rq//
5oJ1ZxfPfL44+Jg57dq/WzzzecaE/Wc8OPjt4plPcfLMZ8uIk2c++/v9wzOf
cyPO3cMzn0dHnDzzKc7s8/SIM/vcZOe7+vea9mEpF59XrP3PXw9fuKB44LFh
QefLX2ixoKJ++rRPx2f9PRNv6NhlXrmez+5XtL3ttF5zy/35fLxf73tuPfsf
JR4+xckzn0MjTp75XBJxvhue+Twt4rTvzOfMiHPb8MynOIeEZz4fizizz8Nu
GLPJlEGr8mn5bN7ytVsWrLsq/5bP8f0btm5+06Ligcdz5272x3btF1XUT59l
XzV8Tho++fgHB39c+mE+9zlzg1Pn3bKw3J9PcZbfPXyKU/x8PhVx8szneRGn
fBU+e0ecs8Izn+KUj8Hn3hHnoPDM51WbDFvy6XdW5cGWfZahD1y03ujPSpx8
rljy2ho7dvyslIvPsactueyApxdX9J8/n7l5qxN7LK7tv9Y366dP4x2fbz9+
StsbTvm0dkDkafApTvfn88CIs3vEw+fKiFP8fIpTefkUJ898lvWq8MynOLcJ
z3xOHdWvfqMxDav6+fB5+TrD+3Ts0lC+l8/agQ++e+jEL0ucfH754es/Pa3X
lxXj+JjeS+cNnvNFRf956uQtzrz17C9qn2j5zfrpc1Lb31z69TjIpzh55lOc
7s9nXcQp34bPhohzUsTPpzh3j/LyKc43ww+f4qwPz3yKt8w3wueEEaft22va
suKZz0Erhj99Tt9lxTOfe/38oR8MX7i0eOZz0azpL9194dKK8f3uQ5cd8kKL
pRX9Z9/xW05957olZb4hPp/6DT4nRpzyjvi8JOJ8NPKU+BQnz3yK85GIn09x
bhHl5VOc9eGHzyNvazfy+Fkry7yizJciXp75fHbQ6bdc/+WK4pnPCxaN2PrB
wSuKZz736PvwXS+3WVExz5w/ZcaO8275qvbYNL7fVrv8/qY7f1XRf4qzS6qf
Pnnm87mI0/V8XhhxygfjU5w88ylO+WZ8ipNnPie2+fU++z2xKi+Xz9EHXbP8
74NW5eXyKV7zED6PG/fooAXrrlE3OzzzufcnL3U9/7VVecJ8btjhjWbNb1qV
F83nJ30/evG3J67KQ+ZTnNcO/mb/Kc6K+hmfPPMpTtfzKU6e+RSnePgU50MR
P5/zj1zYYdplles/fx268sO+PVbl3/J523Nt7v+4bdO6XcMzn+I1DynrvR33
7Njq1qqS/8nn90/v/tnvTqmqy89BbW4/dux2u1TVzUjzT3HWpfFdnDzwKM5c
P33yXNZ7I07X8ylO9+dTnPtHPHyudV3v7558ROX6zweTz3zz0+9Urv8823TQ
zYPeblY883nzvteesN7oZnXGOz7Fax7C54/+NHZOh47Nimc+95gzYfRjDU3r
OqfnI3Hen+af4qxL47s4B6X+U5y5fvrkmU9xup5PcY6K+/PZ4fWJLb/crHL9
Z81135o0eE7zCp+z9/94WNt7m1esY4wf2OTwW89uXndZeObzxkfattm1c/OS
T8tn2Y8Kz3wesW3n6w96Yc26t9Jzujg3Tc9H4rwvzT/Fmcd3ceb+U5y5fvrk
mU9xmm/wechGezVcPq9lhc+c78dn1W/6DLzz3JYVPnPeJp9PfD6oyTNVLev+
Nzzzef0uv33u0Ikt6nYIz3yK1zyET3G+l57fd4g4O6bnI3FOTPNPcR6Rxndx
Tkv958iI84nkrWesz5wZ+6fi3j14fj79Yfy//Dzl3/P1PvPvyMNmNd9c9yvn
tK7rOeeCi/qUOOXhfHF1I+dndfk/8kzmxvozD/Iomsf6v++VJ7Bf7L+oD6tb
d83rh753+GZ1t0xo+mbF+knnT9tt+JNJcyp8bj99mzdnt11Qm+vhpbcv/+S2
H1Z+78WbXnTHsx+sqp88PP/y5T+p3+yWch/1pO8952878oPKPKVhnQfM6npz
VUV7ueKBZSNO2q1ZRXu5rMPAukufXfP//b3/KT//qfi/rWf5Xr5fPqH6h6uf
6l95not8MPUPl++k/uHyeeRb4PJV5A3g8i7sf+PyB+zj4vbB7Ufi9nPtAx2e
2rv9jMy1k8x58/vIq+St5MfFOjZvuHw53nD5YLyV+0S+U8mbCS6fhzdcXgpv
uPwK3nB5Arzh9rvtR+L2bXkr8SdvmetfMudTvZZ3yicuT5VPXJ4hn7g8Oj5x
eWJ84vKg+MTl8/CJy0vhE5dfUfIArAdHngCfuP1u9RO3b8snnn1mzqf+QF4u
n7g8Xj5x+Zl8lnWsyKPjE5dfx2e5Pu7DJy4Pik9cPg+fuLwUPnH5FXzi8gT4
xO13q7e4fVuey/cmz5nzrH+Vz8wzLv+ZZ1y+K8+4fM6SXyi/Keozz7h8PJ5x
eWU8Fx7tiGdcng/PuHyVkj8RXN4Fz7j8AZ5x++Blvza4fV6e8ezZ/FQeeDn/
In88+jeecfnD5X0oweXH8ozL/+S55OnEPjjPuDw9nsu6TuSJ8YzLm+IZl//D
My6PpZynDS4fg2dcXgHPuH3zcv5Ifn3sC/Nsvi9/nmdcvj3PuHxsnsu6YIz7
POPyaXnG5YvyjMt75BmXv7cqn6yRy0PjueQBRT4Vz7i8IJ5x+S084/I0eC73
iTwEnnH77Dx7fnLugGfcOQWecfntPOPyt3nGlYtnXP4tz7g8Up5x+ZA84/L6
eMblp/Fc8n/jd+cZly/EMy7vhWdcXgfPuLyFMk+L51HnNco8zXmOqP9lnma9
N9pRmacFlw9f5mnB5XuXeVpw+cxlnhZcXm6ZpwWvT/0GLk+yzNOCy/cr8zT7
vdGP8YzLvyrzt+DyiMr8Lbg8mTJ/cz4m+luePT85/8Izns9VlfWAOH/BM24c
4bnsX0X+PM+4/PCSDx1cnjPP+NA0DpZ4YtzkGZc/yTMuD5BnXD4bz7i8LJ5x
eUc84/Jq+PQ8mn3izq3wiTuXwSfu3AGfuLx6Psu+VszH+MRfSPM3XN4Un7g8
ND5x+ZN8lvsH5zPfh8/8vXzi8pHUW8/x+Vxh5jzj1mF4xp1z4Rl3joNn3DkF
nnH59jzjD6XnDlz94RlX33jG5aPyjMur5BmXH8gzLv+NZ1x+F8/WRbLnzHnO
nGfcehfPuHMxPOPOffCMO7/Ac1m/Sc/LuHxynguP/pNnXH4vz7g8VZ5x+ZY8
4/IJecbly/Gc1y35zJzPzPnErR/yWfJqY12FT9y5Dz7xKWndBjeO84nLJ+ez
5GvEPIFPXH5vyWcNLk+VT1weJp/lvEWs0+4UeWnWf+xry68q51pif1aeEG7f
XL4Lbl9S3gZuf03+QVnvinV1+764/VP7l7j9Kftwef3KflLm9kUyt66dubw3
6znyheRv4fav5ffg5X04kaeC8yPfAufHvizOg/1FnAf7ZHndyX5P5vZXMpd/
Zr1FeeVR4corHwhXXnktuPLaB8Xt29rPw5XLvlRe/7G/krm8LusY4pf3g4tf
ng0ufvuIuH1P+2H44IjTvk5eP5FX5HlfHpT8GFw89tVw+4D2h3D7WfJpPOfa
J7K/VfKtvB812rvnCO1Oe8fVQ+0d9ztq7zhv2juuXNo7bh9Qe8ftJ2rvuLwF
7R23X6m94/aRtXfcfqj2jtvXkz9q/s+PPEicn9Leg/MjLw0/KOIs7T04P6W9
B+ehtPfg9mFLew/OQ2nvwe3z2qfE7Vdq7+bh8jm1d1x5tXdceeWHlXyxiEd7
x5VLe8eVS3vP99Hecfuq2rt5r3wD7R0Xv/Ze8qnjPto7Lk7tHRen9o7bz9Xe
S15ExKO94/LitHfc92rvuH1h7d28SB6d9o7rB+wTG9fyfnEe78wTMrevnOdR
5reZa1+4/WLznHKeJuZd5fk9xiPnvMxzSv5+PI+YB+bnRPuLOX77nfk53X5n
vo/9xdyf21/M67f2O7OH1cVjvzOPv/Y787j2beP5tuW9MvZ38/Og/d38nLK6
8upPy35r5FGsHedDyr5ejIPyOPF8PgJ3H+de+HH+xbmOPG+RD4rrB+Q14vm8
QKlv8b2t47xKnic4N5LnFc4/5HmI/E5c/ymfEhenfDt8dsq3x+W5OeejPrj/
H+N8CC5+5zHyPMS5Alz88lDzfeRT5u+VF4iX9+1Hfhue89sLj3Jt7T1mMZ9x
H+dbcN/rnAYuTucNcOWVN4+rn/Jr8/XyRMt58bi/fMccj7y9HL/8M5yHbtHf
ln0E+bdxbqecP4j7OCeD+17nPXAenFvAlUteO26eJp8Y95woLzbfR34nXvJR
I0+xvO8h4pRvh8sPlDeGy3NrrT+JfqI8J+pP0jzKObSyLhrzZ+es8HJ+LfoN
XJ62POM8n9k4+ofcr06M/gH3vfoHfI/43r2jf8B5k8ec5yH6hzxvcY4u9+f3
RD+QuX4AF6d+oKyzRZz6AVxeesfoB3Dx6wdw8esH8vzHewDzuKO9Z669Z669
45dHubR33HOW9o5vGfVQe8fNq7V3XHm1d1x5tXdceU+Ndp3HU+fKMnc+KnPn
fHDnfbRr3O+oXZe8x2hft0a7xuW9a9e4/G3tGpeHrF2XfMLw0DPaNa6f+bbz
om87b3Ff85Mn2zfu97lvmbfE/pTxFb8/1nuNT3h9rLfrx8v7NmIdW/+FHxjr
rvop3H6o/qWc04r9O+08zyeVP3Plz1x5+eh7zMX/9qC8ZT4WHpS35F+l98/g
9h2UF7e/o1z4tCivcpX3+UV5lSvXB+XKXH3KvOTTRLntpysXLp9BuXD5JMqF
y+cp5/WCT4pyiR/3O4o/12fxZy5O5RC/OEteUHr/Dy5+8eDPRJziwYdGnOLJ
zx2+V1xdox2V/IDgb0Q87l/ysuN73b+sa6Xz+77nF70a62fJLw0+Pu7j9/b8
sSDW4Xks5zKj3ZXz8sHr0/sb8bdSu8ZzfSjrSFFe7Rp/OfIK1H98u7he/cEv
TL8X/lTEwyd+T8RfzoME75TeN1Xe+xJ+SnsPzk9p796zFfcv7d16V27vwUdE
/KW9B5dfUdp78KrwUNp78PPT+xPwJ+N7S3v3Xrr0Hi3fL19CuUoeenoPJ/5q
6rfx6am948ol/rLPnuo/PjDKJf5yji2976vs50b84sT3j/hLPlDwv0f84sHF
KR5cnOLBL039fNm3Te8jxX8Q8bg/7nvdH98r9Vf+3/S4v+vLefHtv/kes7Jv
lc6N6g+M7yUfyHsh0ns/8IZ0H+1m8Q7ffN8sfmKMm+5f3vuSxnf8o/jevM7w
Ufpe9dd8w/fixmX/H69N73kr7+eL+iAe/LD0npOynhBx5nWG91Oc5T0EUW/F
iT+Q3ruLz0/zKzy/pw7XD4sfn57mFXj3KJf4ceXK6wzvpXKp7/Jay7kkz/UR
j3LhxgXlynmSvq/kZ6b6iT/md4/y5u9VXvz19F4aXP+gvHh9es9eed+wehvl
xc3flLec10/vSS7vmUjzZHxmml/hxnce8NlpPMWHpfGlrCek/jnHzwOe+yt8
evLj+/N7lXHju+vFZb7HJz4t3af8nqm8eXxx/7zO4P647/V74RPS9+IDUn3D
10jvgczjiHjy85d4MhdPOVcUcZZz5cGfSnHiT6d+AB+Q6gNeleZXeTwS/+qe
EzMXf+blvSLBzZ/V/7Ivk8pV3neb+md8fGrv+MD0Hk48z6Pw8p7PKFdeN1Cu
zJUrc+XCzdu1azz/jninND7id6f+HH82teuyvpHmyXjHNO/Ca7f/5jwkPxf/
H5Kq/3M=
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[{Polygon3DBox[CompressedData["
1:eJw1mXfAjmUbxu/rufRVWlKalL3KStKwyc4qI7uFEBEio2FlhsrKioasBiUZ
DQ1CRZNCpFKh6Guv73d8x9Ufp/P33O73eZ/nuq/zPI/reIvc2LdVn1yWZVfx
TyS/Rz6dfChkWVd4BDwN1k2T4AXwKcdl2RJed86TZX3Jk7n+KNfzcX05r2/g
+mnwMrgrfCq8FO4CZ/AMuCV8MvwU3AkO8Gy4FZwXfgLuAP9DTIdbkE/i+mK4
I3wcPA9uA0d4DnwdnIMfga+F88Bz4dbwH8QDcFPyl0Qj+DLyd0RPuBr5N2IS
3Jj8KzERbkT+hbgfbkj+mRgLNyD/SNwD1yMfI+6G65KPEiPgOuQfiCFwbfL3
xGC4Fvkw0Q+uQT5E3A5XJ/9OTIabkL8lboWvIn9D3AhfST5IdICvIJ/Id3wc
bg9/RTSGq5K/JprAl5PXat3hk8kDyQ/x8kme135e1+d1ZfI+oh58Cflzoi5c
ibyXqANXJO8hasMVyLuJWnB58mdETbgc+VOiGnwx+T2iHFyEvCuP99hF5E+I
K+Ay5HeJi+HC5A+JS+GS5J3ElXBZ8gdEZbgEeQdRCS5G3k6Uh4uS3ycugYuT
3yEugi8kf0E0gC8lv0rkg/OTtxIl4ULkLUQJuCD5baI4fD55M1EMPo+8ibgQ
Ppf8FnEBfA75TaIQfDb5DaIgfBb5deJsuAB5I3EWfCb5NaIAfAZ5G1EWvoD8
impGtUd+WTUD5yNvIE6ATyMfIBrCVcjrVDPwKeT1xPHwqeSXtI95tieR12iP
wnm1T4n83LOaIl8FT4C/g5+FR8IH4RfgafBheCU8Hv4WfgK+Dd4NPw73hj+D
n4NHwd/Aj8E94E/h1fAs+Aj8DHwf/DW8BB4A74Ofgu+AP4efh6fCh+DFedxT
9sIr4GHwl/DT8HD4K/jJPO5He+DpcBt4GzwTbge/C8+A28LvwHPgzvD78Lw8
7msfwvPhG+CP4LlwF/gD+CbyvdTIw6xdb60RfC/XehHj4blcf5T7b+H1J/z/
QrgbvBNeAN8Mfww/DLeGt8Kz4fbwdvgh+Fp4C/wg3Ap+G54FXw+/By9Ntbof
XgR3h3fBj8Cd4B3wNLglvBleDg+FD8DL4EHwF/BkuAb8BjwJrgq/Dk+EK8Ib
4QlwBfg1eDxcBn4VHgeXhl+Bx8JF4A3wGLgwvB4eDZ8Pr4NHwefBa+GR8Lnw
S/AgOAcvh++GT4dfgEfAp8DPw8Phk+FV8J1whFfAQ+G88HPwMPgkeCX8MXw5
XFrrRPzDM1kWvU8n8ozm87on14+SF3C9N/xfeKHugX+CF8G94GN6nvAUuDk/
/xY8FW4Bb4IfgJvBb8L94T+5/ym4H/wHvBi+Ff4Bng93gw/Dc+AB8N/wUv0s
7zGVz/ZY8N6fBj8eXE8T4Hnwi9y/gNffc38P+HuuzYO7w0fgufr8qr3MNfUR
16twfynydeR+XB8T3Mtvh0cF98uOcD/46nTPaPgy+AZ4EFwd7gEPD36/rvDA
4DW+CR4c3F87wf2D50b/9LvUw66De8JN4cHwxODe3xa+LXgW3QlPCO7Z7eA+
wb2/Ddw7uGe3hnvB18B3wZOCZ0IXeEDwHOgM3wGXglvC3YPn0m2q0+CefQ18
U3AvbwbfHDzT+sIjg3t5Q7hrcC9vAHcJ7uX14c7BvfxquFPwrOsN3wP/yrr/
o5GaZkgLuFvwDGkO3xLc+2vB7eBz4Nrw9cFzoCbcNngWXQ63Cp4JNeA2wbO0
F3w3/ANcOfOe13yoCrcMnml3wGODdcp6eCv8O1EErh48H0rD9YLnfylS3WB9
8TL8DjxFtS7dF6x9NsDb4F/4fX/Bge/4pPoT/EnwbO8ODwvWLPPhZ+C74CXw
S8Fz+xb4ruCeORteCh+FL81c46qFR+HngvXRU/Ca4DlWAW4UrNdegd8NnoeX
wS2Ce7F68qtaH94rH7w9Zy32DPxK8Nw7B64YPDMHwPcH676B8LjgPq96XAT/
zPv8AWfqDfAO8JFoTfc0/DL3jFM/gzcHz+SKcONgbbgG3gSfCFeCmwRrwBXw
hmBdNggeH6x9boaHBM/qwnA17UN+342Z+/Mx7qmSuTdKf/WB7wuegXPhp4Nn
+DJ4ffCsXgqvUw9Kz3R78BxeC2+BZ6bP/3Zwj3kN3pH2gNbzteB5OwdekZ6p
nt2yYI2wSJ8neOY/Br8QPHMegZcHz/mFer5prbQf1qbnpWe9Eu7P9ymo55xm
vvrYxmDdsVLfXe/DPRdojVPf7ZXqrnmqQdV469R/tP9bpNrX+rRKNa6+p3k+
HJ4aPCf7pNpvk2pH+6Ft2hvaDx1Tz5kcPD8fhhcHa5YH4SeC5/Og1Mfap56m
Xtcu7avxqXf1TPUr3TEMnhI8t4fCD6Q+qX47IngGloDrBM/A4nDt4FndCr41
9W316jtT31bf65H6tnpp3+CZfAV8XfCMOgMuHTz/r4dvTz1Tvah98JyvC3cM
nvN14A7BOr0bPDStiTTPnODzxxR4YfD5Y5xqJHju3As/BP9FnAmXDdYUjeAb
4ak808Kqj6R9NJs0gzQ/88Mlg2f4WXD5YO1wCXxNsKZQD2yWeqnqq2mw7lA/
aR6sEYrCNYM1QjG4VrDWKAPXT7Wp3lgjeOYfD5cL1ibnwpVT/9T5t3iwXjgR
rhQ8z7ktKxY8h3VWLhE8n/lKWangOV8AvjhYd/wHvihYF3BMy8qQb4muC9XW
HXm8XkuiteRIrs8I7r1lM+ufr9Pnl3Y6kr67vscXac9IV3yf1koaaWf6LtI5
H8NnZ9Y2E6J7gnrDDPidzOfxafDmzGfth+Atmc/XD8NbM5/NH4zu/5oD6pPn
ZdZOeqabMp89pXnvg6fz+fel9ZdG6hjdY9Xvb5LGzXwWvjm6t/x/HaL7v87X
46Jnk87sPaWnM5+ve0X3EPWSW6Pnjs7a+1O9aA0/T3tAemx89OyQP3B/9FyT
P9BDZ4DMZ/O9aT/omU/n+rbMnsZM+N3M3sVHOe9Jacgq0f1B9X1xdD2qLsul
vq1zdAlpwcx6+6JoHaUzddloDaMzdcloPaazc9XoniBt2TBau+qcUiZa5+jc
3SBaH0rz14+uR9XlFdH9TRq1eHQ/UT84L1qH6BxdCu6Q+WxeLLpX6J5Z8HuZ
vZodOdeg9OoHOdevNOeHOe9nadr3c+4n0p8dovuAvAv16hcz+zPtpZUz+xhF
o7WffACtT7+0VgWje5d62KXRWlG9ULPv2sx6vki0JpRXcGG0tpRXMDJ6zso7
GhU9yzTTxsDrMntHX5CPEPuJw8RR4iCxivs+J6/UzCG2w3uD//+bdM/P6We5
nD2fc72v4J+f0vvo/eQtaZ/sCvarVCM7g/2w3XqfYK9rj9432APbC38b7I3p
M3ynn43+DPos+p3fps98KPWfouo/Oes3+RV/5Kw35Cf8mfqAeuFvOesleQuH
4Asz+wA/5qz35CfIA9N+/kz9DS6f2X9QE5PGkF9xLH33f9fvWFoH+VWLyS+q
B6Z6Uf/5LmfdIl9CWqVkZr+icbQfqPO1no36xsfBXp322244RGs5eSYxWgPL
V5E/ob63Omdd9+966Nx5pT6D5i3Xl2f25YZEazN5ZYOjtZa8u7HRelgeoPSG
Pr/8urui9aE8wAGpD0unDI3WP9JBOhM3htfk/Mx/S/tDPtxM9bRg/097/q2k
tfQc9wR7ljvhA8E+5afwV8F9cxf8ZbDf+Rn8dfB763fsy+xfqid/mvbkT+n6
kbQvtT9y0fpfvtOB1Nvl6e3Oec+oj+3JWQ/L/1H/PyGz//NlznpYflGTVKfy
PQ6kZ6ezc11ibGaP4pJonS//sHLqLarTy6K1jXrgNqJQ8DroOe1P9aI9fTDV
2ibi7/RMtxLnB+8laeyDaf9XS/1BOmJzzhtPz/pt1WDwsxjBPRsze1NXE0My
+5/1Uk9WP5yUdLvOzpplWnOtffNo/SavRt/9nsw+6jVpNukcsEVzM/j5VorW
P/JRJ6Y61XNuFO2ByyNqnfpwr9R/NDfld10brYvkJ49Oc1N10Cz6vC9faHi0
9pbf1SnNtf5pb6uPyZeTlzYGnh3sl2tGfwQPTH1P+3ZQtLaXR9ctWv/L/5Gn
dTf8IPf35fWqzB6dPKpR+jzBftJoeFbwTFRNyVvrE63D5Qd2jz5fyH9rGq3x
tFbyrRfAz0pLpzmudegSfUaQv9c+zVn5eDcQj2f2ozpHnxHk+3WNPkfI4xoW
rU9Ug9dHn3Hk77WI9qvlrbWNPmvIe2wXfU6RJ1k42jeQV9wyWrfLK2tFTM/s
SZ6W5ot8Lfn90iFLpL3TPJIuPjfaK5DPfH70uV6+Sulo30O+94lw9cye8BnR
HoL85/LRPol85vzRfoJ875rRuk7+ZN7os3/B1HvrZfbNTo7W5PoMJ0T7APKf
T4/2IuSN/5OzVpe3Vihae2iG/p2zbpfPViBa58vH+yvn99SMOC5ah8uvOyna
l5Dv/XPO5wV5cfmivQ555ldF7x95khWiz6rynKul2pFvWTt6/8hrvTL670Ty
Ic+O9l7kw1dPe0Z1fWr0WUZeYsVof0B/f6kVvSfl056jfZbZ25fHop6/Oj07
rZV88sujz1Py6OpE14j80hrR+lNe6/8AYMJG+Q==
"]],
Polygon3DBox[CompressedData["
1:eJwtmXW8XcXVhs+euXzFCa4tnuISKAWKuxV3dwjubiU4wQmWBEJwCJYALQ6B
thAsQIGgQUrRFCgt/fA+z++dP+buec7sc+7Ze69Z613vmXf3gzc/qPR6vSn4
08fx5Xb8ouv19mXyPjwz/BN8BPwePBP8I3w4/Ofa6w2ET4LPhz9gfRb4Z/hI
+G/wZPCX8EB4IjwD/D18KPw73n8IvAWvXwq/y3FG+AfWD4NnZn0DeCleHwy/
xJGXev9kfR94a8Zj8Hh4Mv7RCiweBG/GeRf7/+Hz4GtYHw7/Fj4A3oT1C+GX
4cHw1awPg1+FL4Cvha+Bl4cPhDfl/IvgV+Dz4RGsXw2Ph8+Ar4SvhF+Ez4Sv
gq+CV2FcCF8HT/L7s34uPBweCq8IHwxvzudfAj8NnwRf1OX7V16fw/vBGMv8
BsYE5tOw/hjzv3D+8fD58AWcPxge6/dj7U/wW/BQeBTrN8CX8fpT8Nzwo8xf
Yfwf/BW8H+trcP7R8PYl3388R+NjEut7w//hOCX8HeNxFv7K+Scwv6DL/XyV
134B/wveH16N9SPhbXn9CngCxyngf7N+APwVvKDXw/Ek+PP2/V9k/V74Z15f
Fp6T4+nwlxwXgKfmeCL8DcdF4Bk4ngJ/wXF+eCqOJ8D/4Dg7XDgeBX/K5z8I
j+Pzx8DbtvhwE9wEfwY/BD/D+j3GJ+MseCj8KfO3WR8G3w7fCK/EOBseBn/G
/O+s3wY/CN8OfwiPgh+C7/D7wLfDD8N3wv/k/84HT8nxePhHjgPg2TkO8n5z
XBienuPJ8Mq8/zB4K3iI8QUfDm8NXwZ/BI82Vvj8u+DV4aPg7UricwzHj+FP
GPcwv4PxPvNPGfcy/4LzX2I+sUv8TAavCM/L2pnwqvAR8Dbw5fDrJfFgXBwI
T8P6GvBCvH42vF3bLwfDN3u98DPwBM7/IzwtvCa8MOvnwB/DY+AnWL8b/gS+
B34SHu3/gy+Fb4RHwjPB68NL8v5zjS/4EvgG1q+FfwlvDv+W9fPg1+CL4etZ
H+H+Y5wCXwp/wnwB1reDVynJZ+Pgk+GLu+zPp+AT4Qu75INn4VPhIV2ex94t
Pk4oed4btPfvVpJPDoBHwqeWPJ9N4NPgvUuuZ0bGEvD6fN5Y5v0Y/eE13a/M
Z2AsBK8NP858H94/HD6xJJ6W9zWZ9Y+YT8/4NbyW+YL5dIx54JXhR5j/vn3/
PUvux0yMJeENWH+C+ayM5cyn8F/Mn16j1wf/g/lO7X4ezvtvgadkTO7zYP1+
ny9jbngl+GHm6/cl/h+B/5/5Ni3/Hliyn/Zq+er4kv0zC+M35l/O/zPzA1m/
Dh5UEh8zM5aCN2T9SeabMv4EPwX/zHznFg9HcP6tLR94/zqOD8EbMe4yl3H+
9y0/zQZ/3b7/LRyvgOfg+AxrH5bcT5Pigz5fxh3go6x/a/5kXA3fBX/FfAvG
w/BzcKE+bd6X/PIs3MGfldzvX5Tcn0kl1zN5yfPZivEo/ALn93H+lvAj8PNw
hfu4vhXgeTj/DNY2Y9wPP826hfftkuf9LfwAa+u1+N2lpB6u5zXCD7D+X+br
tny+c0k9XJdxM3w/698w35BxJ/wY/B3zjTl/ELxXyX5bk3ENfDfr//J5t3q2
a0m9XJ1xJXwb619aH/pyf2+Fv2C+FmMEPBr+mvmuvH8IfBTvHwX/UPMsfI/v
3aXlgyNZvw2e05xofuKcccx/5WfCO8HPGfuMdbx++AXmc5nTrE8+X/eKMQTv
A79q7DLW9n7AzzM/quXzc0vqw0I+Y3g/1l9jfmTL/+eU1JcVGMfC57H+sfnI
azYfw88yH+A1en3we+Yf96T7EX6Z+YLeY+8v/Dfmz7d8cXmX/PsCfDp8RZf6
+lx7Hpd1qQc7MJ6GX7NuEw/9zTnmG/gV5tv3RQ+8Ck/B+nzGhPkKfpH5/O4R
eA/4JebzGhM+T3g885X7opdGwp+7V/n/+8Mbl+iRE1o9uqikni/tM/N5cf67
zJdh7A4fA7/P/HvOn61LzbX2ntjqwcW8/z54NnMQvDnn/JX51OYoeKku+3F2
cyC8BfwU82n6sp8HdNnvk/i8J+CXunze1k2PHVCijw6Cr4dPK6k3UzH6wfO1
/bNpu9/7sH6d+63pv33h6+HTm764sqS+Le4zgA/l/W+Zq8xJ5iN4IvNlGXvA
x8IfeP8Ye8LHwX9nviRjJ/Mr/A7zJRg7wofBbzNfmLElvD88gfki5gyvB36d
+Rw+I3hr+Gnmz9TUu0u66O11mn7cqUSPLuo9MR+z/gbzxRjbwAfBbzJfjrGX
+Rn+sC85zFxmjjuTz3qTcRnzm7vcj+lrvs+iJftnqpr4W7Bkv81Y8/mLl8TT
DDX/f7GS/dmv5voWKdm/P8Gz8Nnb89oTNfV/W+ZLlMTrnDXxtWxJfM9Vs79+
U7KfZ625f0uXxPPFNXpaXW38Xwa/Bd8CTw2fVrN/Li/Jp17js0yvKrn2K+B3
zGfwtPAl8OvwjSX7bVDN/lJ3W4/OhcfDV5f0K+fAL8DDS/L75fDb5kN4GniI
99T7CU8Fz1ETP8uU5IPZa+JjQEm+mLomf/UvyS8b1fQfu5fom3lrnt+KJfEx
d038LV+Sv7qafDdXSb1dq0bf7lCSvxZu/dDqJfE4X40e+F1JvCzU+qvVSuJz
kZp+bI2SeC81+feXJXqi1uSTX5Xs5x/hrkvP9wjz70vy8ywlemSemv2xQkm8
T1mTHxcoyfc/lOTXWUv0wOQ1+XT+kvj/tqQ+zFyir6yf5ru5S/LFv0vyy3Ql
ekn9bT7pV6K3zub85+FhJfW3f8t3q5bs77Pg5+ChJfXeHnqhLj2tvfXnXTS3
4WRvNbpEk79rTPHe6azZXWLkypqYeqtLjBhrU/SldzOmLlIrMSb1oun/w9zm
3V7RnvGbms9Xy7/U1l+EP+hF838J9+Pz3zHXt/9vzL3Z5RqNRfeIud976N5x
j5r7vWfuXfeotdRn6N51T1tLfQbudffQG13uiXvLPWptUbO7d92T1trNetmr
xrS1zhxhrBvT1kKfsbHunrZ2GePu9a9L9Om0Jfp4/xo9d0qJftivRq+cXKJH
7GEX4P3Tt/vv8zC392v3w3vgs7i95N4cX+MvXFCiD+1pl+jicdjr2jMv1sUj
sZe2p7XWWHPUknoei3TxTPRC9Cz6d/FA9DIm1ujFO7v0RzvU6KdDSurpFjVa
Z2BJ/3lMTa4dXKKfD6/Ru2eW6LOBNXr0pBL9eVyNfjy/RK8dW6MfzyvRq0fU
6MWzSvTfVjX6bL+SfnaPGv13TIk+27NGLx5bot+M0YnwqJLYNeeobVbvJRfN
X9OPrFRSPxar8XvWKtE7s5Wcb7y4d+15t2/vtxc+zXvSpaf8qaTH37KL5rX3
/3VJ/Gza/p896u4tvuxdz2jxZry61/VU9FbUwHpF9tRqBfe4e12PwN7KHsFe
Qc9hxy49ql6ENdPaaU+nd6XG00t4oBftd3aJ9vaeem//UNJbGJPGpj2kvaSa
WO9HDanXoGZQW6pJ1CZje9E+F5Z4W8agsbhlSa96ive0RlPplTzei9bSc1uj
i6eiF6dnt3oXz0QvT89utS4eiV6ePa7e3b699L4b8drgLh7QMubOEu2qhl2u
xuPR61Ez6KWtXNJr+ox91np0h3TpofXu7MkP7lKj3e/LlWjdXdt+tyc/Gt6t
l17dntre2h5E700Nqbd1XC/acm2fSZcYMpb0jDbp4hHpJR2tpunimXxU4iGu
2sVj0VvUM9oYXqYXL0nf097RnsveS8/o9108GL0kPYmBXTwEvQo9jX1bvtLr
0LPZCF66Fy/Hnl7v5e5eev1Fa/y9NUv0rj2r3oaa2F5WjagXMq4X7XhYSe8z
At7R2lLSK7kn3ZtqVL28q3rRrvbMelH2zPbS9uBj4Gt76c2PK+nt3LPuXXtq
valbe+m17anu66J57bXske/p4lHYO9tT3dul57bX0iO7o4vHoXdmzjJ36UHo
9Sxd4/etX6IPjSFjacMSP2JAjR+1QYl/oEZUK9rjqaWXqPG31inpB5as8bfW
LdHHS9X4T+uV6OPvungZ8/TS6+pBLdPF89ObUqPf1KVHVLvrkei92cPpnehx
6tWq4fU+9Wz06uzh9HLsWfV69QjtZfVw9Ib1tPR27KH1lvUw7K31tFeB5+3F
69ZDm9jqq97sNSX11vquFrzJ+9RFM6odryjp1dScak89Gb2qi3rxauyx9bb0
XOy99yjxltV4aj17QHvB03rxXvX89KbtWfQC9Zj0zvRE9J7sIe0lB/Xi7dkz
2jue2ou3qKelt/WHXrxHPQG9cnsmvQJ7Br3sc3rpJXYs8ULVjGpHeyi9O3s4
eyvz9fYtn7t/jHFj/dASf9w9q3apbS+rsfQ6rGFqLzXyCy0fqp3V2K+1/eP9
UyO/3kWjD2n31/2l53hpjSbTi7EGqtXU/K+2+20vcHNNrvAZ+izV7E+1fD6o
5cOTu2g+85E1yVwyR6tVaoTH2/4/vj3PcS2/u7/tIZ5u9cLnu1tfYsGYUG/Y
E4xv+dz4GF2Ti8wx5hrj58VWHwa3+jKm7VfzzR01frg50PunRtBrUxMc0+rT
gy2+rVfW/AdaPjii5YtRLZ+YH+6pya3mTHPnmJrrNUeaK9UYel1qloGtXo1t
+c16pOZ4rNU/tciufdGyalz1ghritpbPzE9qttEtf1kv1Sh6a2o4tYsa7u6W
H9V2apJbW35Uq9ijnNfqhfG3S1+0rBpaLW3PaO9ojbJWja2pVdYoa5X5dniL
b/PrYzW535xv7n+8xu+xJlgbnqzxL6xh1rIHamLbGFfLPFTjP6kh1BIP1mgJ
NY3xYk92adtf7l8117C2n7Zq9eD6tt/N52rAoW1/qQ3vL+mV7JnGlfRMshpI
LfRwjRZSA6mF1Ij3t3qgdvxjjb+vplJbXVOjZdWsatdhNVpVzax23rEve8k9
5l5zv5/f9ID7f6e+7D01v9p/575of3sKe4vhNb2QGlgtfF3Nfjdnm7tH1uRu
NbRa+toaf0fNrfY2R1zX8qG5Q408suU/tfN9NdpQTae2Mz8OafnM/DmiRrur
2dXuV9doc3s0ezX11RldapD5Tj2kPvI3zmXhe2v8aDWH2sOeUm/FntJe852a
WmiNtFZaA/VK7JGtjXq6K7f6MKnVNL2fPXupdXrAK7V6pjf8fk1ttgZbiz9Q
A/RSs63d6hdzlTlL/aFHZT8zfauH6jNj2xhX3+lp6837G9yEVoP18tVv1mZr
qt6THoG1Vs9sQKun6mE9Ar1OPRm9A3t+vSI9HL0ANb5ekXpPPagHoFelR6E3
oOegN6XHoxehh6C3paeht2APrVemR2Nvraent2c/pff+bk2uM+epddRUeom7
9qK11BjqUfWs2kPPQa9NT0gvQr1gLM/Q6vN7NdpGzaP2ub1GO9oD2AvoAfjb
if2A3oD6073unl+cc2+p0dJqTLWmnoRenJ6XXoWegZ/lZ9pfvFGjddQkahM9
C71qPQ69DD0Jf/vxNwG9Cj0Pf4tRn+qFqJ/NReYk9bKemN62no1emR6bXrUe
i96bGkpvdY9etJU9sr8l+RuGvbP9l7XFGmO/pefjby321HpBt9b0DvYM9g56
Kupl9a79mp6NXqz9k17OqJrfq+xB7EX0VNyL7kn7r9tqehN7EnsTPSB/W9Jz
0RuyJ7Q/2K0Xff8/TyslEQ==
"]], Polygon3DBox[CompressedData["
1:eJwt1nn8VWMeB/B7L6OUqUg7Ldr3Xat2Lb9oV+nXvlHaN0XbVCopTaFFm0GE
wgwzmAmRGdFmQrTaIsXY9xTv79zzx+f1PN/3ee6555x7nuc+5YaO7zEuk0ql
1skfpNP5qdRSsCedSm1X33xeKlWclWaDWHuWYZeyoqwPa8F+1i/GLtcOZFez
tHFH5EZ2L1vEeqjbGTeX7WBPsNGsGmvKbmHDWVlWmTVkU9kgVorlsGVsL3ue
TWdF2WVsAGvHUuwatpztZy+iW1hndifbx15gM1gRVoz1ZS3ZGf0qrLF2OhvK
ShuXl+1lr7Jn2TxWgpVhg1mH+FpWm7Vmf2JjWBV2OavERrKuLD9rxHLYEjaV
1WWNWWd2B5vG6rGarCWbw0azyqw8q8smslxWnF3BarFxrA8rzLqxVexFKZ3O
XnNpVk09Wt3TuIKsPmvPFrKJrCYrw6qzm1gvVojVYW3YPDaWVWUNWAe2iE1i
tVhFVp9NZgNYCVaXtWXz2ThWjdVj7dgCNp5VZ1eyTux2NoXVYQ1ZR7aYTWa1
2WWsIhvBurB8rByrycay3uwSdjEryLqzK9m3+lVZE+0MNoyVMa4wK8J6s6vY
L/olWXntMHYNu9C46qwZu5WNYOVYKVaBDWfXsrzsjyzN2rHK7GP9Gqy5diYb
ya4w7hJWiPVgjdh3+hedH5PM82KVdE/ol2U1tGPYdexiny3I8rIcVpt9pl+I
FdB2Yw3ZN/oFWB5tJ1aLfa5fiTXQTmEDWUnnq8VasbnsJlaJVWD12CTWnxVj
HdlitiuZC5PZ69Ij+S0nsGbqtsbNifePPc5GsU3ylbqqXMDedvw/rEvyvTFn
Gqnz+Owe9izbwiaxU7KA/YNtZuPVT0l+1opVYF/pb2BfqCtKPMo34zPxLmjb
s2rsB/1/xhzWXsvqs3P6f4/fTtsmefbx/D5jd2ifZ9uSNfG0LGHb2VY2Tf2p
zI9zsAfZOPX/ZCV7hT3NZsf1uqif1c2lDDvu+Bd8rXZ3su4uVH8uK9hO9hSb
pf5S7mMH2E62TP2JzGJPsI3sRvVJmceeZg+wseoTcivbxtazkeqPZSZ7nG1g
N6i3xzvNuibvUKynV7nmCezJ5Dv6sX9JSdaFNWC/6f+N5dO2ZOXZl/r/Zi20
E1g/VjHuQb5WV5c87KDjG+P+Yr6ks/9Fb8UzZ2W1vVjT+I9Sp13LLvZMJvtb
/sh2xvqkfk4yxp5TZ4x7Ld6hTPazP7FXYu1Vj0rWv1jbX451mw1lOayIeqv8
FvNFiiVzcFucU1uflWQn47mx87Qvy9nkWrbImXh/pDB737F8ruVbdZ3kfO+w
F2LNSq4vxc+qH5Dv9V9iZ+I9Vd8v37G6ko8dcuwv7Bt1TcmbnO8xdk5dQ4qy
j9ij7Gy881KEfcgeYb+qq8il7IN4T9hF2tYxb9jX+h+yqdqH2T1ssPq/0o8t
ZdNZW3VT9zaU3c+Ws87sOraBHWX72O2sF1vPjrC9bDHrydaxw2wPW8R6s43s
GNvPlrB3ZQRbzRawrup3ZDhbxeazLupjMpZtYstYX3Ub55sdzzuZvzE/jsqY
eOfYUtYn1i/j7mWH2O5kDn4gU9hD7G42KO7fuM1sR6zLfAU7JCPVa9S3GddN
PcC4R9hJdoTdww7LDWwtW8i6q7sbt5odZLvYfDaQPco+ZUfZKtafbWGfsMPs
bjaIPcZOsWNsNRvMtrLT7Dhbw9bHWhRzMv3/6Zw64PgQ47bF+sbeY2sdyGUP
sRPsXbaSvS+T2WZ2Fxuo3iFVWC5rywqoj0tsJu9jd7Lr1a2cb3qyjpeSX9l+
6ZvJ7n1in9NavU/6JP/7sR9qpT4Qz5AtZzNZB/Vbcc9sBZvNOqlb+44ZMfeT
/4phrDkbHe8/W8N6xhrEJrK/sk0sl70Zz5r9mc1iHdV74x3MZPcbsQdpqW7m
s6Ni7rAScoa9Kl0z2b1e7Icaq3dJt0x2jxT7nCbqN+T6THZfdzNro94TcyST
3TfFnqaF+iOZxrawVWyI+qAMYXexucncejt+Y7aSzWE56pekKuufzu6BY1+3
O+YXuy2d3dc1V78W71smuw+LPVdTdRP3lsvWscXsavaejI91JpnTsd7/DuC7
aYg=
"]],
Polygon3DBox[{{951, 530, 695, 254, 255, 1016}, {1095, 647, 455,
285, 284, 882}}]},
Annotation[#, "Charting`Private`Tag$27903#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {},
{GrayLevel[1], EdgeForm[None],
StyleBox[GraphicsGroup3DBox[{Polygon3DBox[CompressedData["
1:eJwtkzlMlFEQx993LRAUjwUajwRbtPPGxMojMWpiNGrsVmwBK49GMNFYqYka
axWhBArAMzbs2mkBaKIWiohnvHZ11wSNv8l/isn/982bb+a9N/PaCt37uuIQ
whEswa7wUUQnoxDOw+NwCW6IxPXoTfzT8Bv4O/oem8OW8t2O5tGPxKyGh0ma
j+Xfgf8FvAzux38OHoOL+H+lqrcd/c13I/61aBVbAK9Hc5lqHyTmH3YN3ov+
xa7Ce9APXmuI/I/hxfy3Dqvj31t8HyLmJPYALqB92EP4KJr63jYQ/wpeAQ+Q
Zz7VvexGK6n2vQ3NeUwH8V2+bzvXWbiZtbvwaY8bgU/BWaw7sbp2L3fgH9gw
vCTTuYrwsVR5Lb+tjXhfLibav+3VztgD1yLtszvVfd2GX7K+PIhrQX2axL44
W7++En+CuK1oHXG78D1CP6PfsFnsAmurYvkr2AS+Mlr1mEVBZ7Jam6i9n7UM
zVLNkO3Z9l7Afz2o1mXrDXwYvhFrLxZjZ7N46+9PeCU8mGhtzuv2w8/ht+Q+
k2h+rO99iebT5uETMWuC7rwKdwTds9Wagl9HOpP5D0Q6xzs/b464FnwJeXrh
0aC+253VfNYtvur/PCVPG/H30SdYI3wPLWFN8Fis/s76WS5hpaA5tJmfYL0T
LXteu/vjxAwEzVgrnJAnhXvgwaA3UuO/LUEzVvGeWm+b/d3tjDQXC+GNaH2m
u7M7tzpl7529IevFtL/lis+JvZVn6EykGbG645Heme1/Cv5D7Zy9S3IO2Xnx
b+b7Pz5Gm18=
"]], Polygon3DBox[CompressedData["
1:eJwtkr9r01EUxd/3vW++Fk3VQNRBHXStjiFUXUsLUgexqGv/gCSb1EUsFJxU
sNC5/ohjk6EJbcFFE7d2aGKhdnDwJ0pBDajFop/DfcPlnXPvee/dd949M129
WvHOuTKREp8hp1hzrDMkZompxLmL5H6Rm4Qvgzvk/oIP5Jzrg1+Texgs3oCf
eKs9gPfhj+EZfIhYBR9izz9qOc5IwQtorsGvwzvgXmL6L2hPwzPW29TGiDq8
TX0ADkQx9pex/2ZqvegO3XUD3nXWo/rJ1DP4Obk/6H8SH8GfiEGwO3W39qh3
aaS9xXm77H1H7ZuzPYvePDkHLnrz6gL1r/D3xBK5lNwJcpfhx4P13I731+Bv
0QyDf5OrUbtHvCB3LLH3rBCXnP2Bzle/r+Cb8Ca6+/Be7KUZPZpIrCd5dwXe
AnfJ7YOb6M8700irPx4Hj8S/L/D+RvR8h/VZsHkoo6mm5qv8PQhf96Y5HN+q
vfVge0fjeypECXyU2At2hs46iWbbm0Za3SEvGsF6V0/qTZ6/1Owk9hdr4C3q
efiGN4/092e9eVeKZxc0k95mVLMqD+6gfRqsLp16kyfypk3ubrCe8pr1+F7l
NAvz3rQ6Q/P5KJ7d0izDj2hmvP2p7prz9tfyRN5oHr5rloLhD8QP8H8KE3YV
"]], Polygon3DBox[CompressedData["
1:eJwt0r8vQ1EUwPFT95WiCK+Jwa+wYhM/UonJj0SQSATrw1pMbHQgJiSInWpH
NVASPwZaf4CWBAsWDBIDbQz43tw3nNxzPufe93rPa70zPRzKE5E6wkt0WSJz
QMIjEqV2lMg4FsFesFtsHevBYuQF2BW9L8uc3cYs7BL7oN5jb5a6lSih94Af
Y0HyAHZGHWbfCRYg78Oa6eXI97FG8grslHqefRdYP1aJnWMrlnmeTd6LNdHL
ko/hu6zPWAZbY88otoM9YWlsFZvCiqivqbfo/VIPWSbP4Ck8rMxvsbA2rBp7
JY9jXtYOrAZ7Iz/A8lmDWC32Tv6H+anvxMzRx6CjWA5rJ0rxR3yA926w3uiZ
YovsmcBsj5mD7c7qBy/DirFv1hA2SGzST1Mn8QVlZtWAjWCd+ltRR5Q500L4
sXv6k5z1USeol91v6RDlWJWYe+vZx5S5k75bHPtUZlb6XKF+rzs//d/Qz0lh
R/Rm2NeNLWFJ7BCbxf4BGGRPrA==
"]]}],
Lighting->{{"Ambient",
GrayLevel[0.8]}}]}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwt0bkvBGEcBuBvd7G7EolK3EdERASRiE4lOtWWVHQUtESipdFq1P4Dalfj
LKicizjX0UhI3J5B8c7zezOZ75uZr25wNDMSCyFMyItE85NcyG48hGJmWcMH
tvKNXUwnQuhlKfvZyGF2cpw9nI7uW/TdXMYtz5bzQ6/gtp7MC6HSXCU7ekqv
Ni9F+zKt13JZL+K+NS95wCse8ppHvOExb3nCHLO84ynvecYFa+X4KufyLI8y
5732OMM1TnKBo5znAGeZ4RS7OcYODrGBfSyxz5c5zk17xfiZ+PvBG3rcN32r
X7Ie3dc/zavmDwb9HSv6GwulPfoXbGOKLUyymQVsYn50DrHfx0MDoy3raZmw
6HL3f84/YZZAfA==
"]],
Line3DBox[{308, 11, 694, 270, 710, 271, 1018, 272, 711, 273, 1122, 700,
274, 275, 1123, 701, 276, 1027, 277, 702, 279, 1028, 259, 790, 75,
775, 60, 760, 45, 746, 30, 1010, 229, 247, 15, 243, 235, 314, 14, 312,
13, 310, 12, 308}],
Line3DBox[{852, 151, 866, 166, 881, 181, 896, 196, 1012, 231, 248, 211,
244, 236, 480, 212, 481, 213, 482, 214, 483, 215, 699, 289, 719, 268,
1023, 267, 718, 266, 1125, 709, 265, 264, 1124, 708, 263, 1030, 262,
707, 260, 1029, 261, 852}]},
{GrayLevel[0.2],
Line3DBox[{721, 1008, 492, 720, 1126, 924, 722, 1127, 925, 723, 1128,
926, 724, 1129, 927, 725, 1130, 928, 726, 1131, 929, 727, 1034, 1209,
728, 1132, 930, 729, 1133, 931, 1014, 1024}],
Line3DBox[{734, 1035, 1210, 733, 506, 735, 1137, 936, 736, 1138, 937,
737, 1139, 938, 738, 1140, 939, 739, 1141, 940, 740, 1036, 1211, 741,
1037, 1212, 742, 1142, 941, 743, 1143, 942, 1015, 1025}],
Line3DBox[{748, 1038, 1213, 747, 1039, 1214, 749, 521, 750, 1147, 946,
751, 1148, 947, 752, 1149, 948, 753, 1150, 949, 754, 1040, 1215, 755,
1041, 1216, 756, 1042, 1217, 757, 1151, 950, 758, 1152, 951, 1016,
1026}], Line3DBox[{762, 1043, 1218, 761, 1044, 1219, 763, 1045, 1220,
764, 536, 765, 1155, 954, 766, 1156, 955, 767, 1157, 956, 768, 1046,
1221, 769, 1047, 1222, 770, 1048, 1223, 771, 1049, 1224, 772, 1158,
957, 773, 1159, 958, 1021}],
Line3DBox[{777, 1050, 1225, 776, 1051, 1226, 778, 1052, 1227, 779,
1053, 1228, 780, 551, 781, 1161, 960, 782, 1162, 961, 783, 1054, 1229,
784, 1055, 1230, 785, 1056, 1231, 786, 1057, 1232, 787, 1058, 1233,
788, 1163, 962, 789, 1164, 963, 1022}],
Line3DBox[{792, 1059, 1234, 791, 1060, 1235, 793, 1061, 1236, 794,
1062, 1237, 795, 1063, 1238, 796, 566, 797, 1165, 964, 798, 1064,
1239, 799, 1065, 1240, 800, 1066, 1241, 801, 1067, 1242, 802, 1068,
1243, 803, 573, 804, 1166, 965, 805}],
Line3DBox[{106, 383, 107, 384, 108, 385, 109, 386, 110, 387, 111, 388,
112, 389, 113, 390, 114, 391, 115, 392, 116, 393, 117, 394, 118, 395,
119, 396, 120}],
Line3DBox[{807, 1069, 1244, 806, 1070, 1245, 808, 1071, 1246, 809,
1072, 1247, 810, 1073, 1248, 811, 1074, 1249, 812, 581, 813, 1075,
1250, 814, 1076, 1251, 815, 1077, 1252, 816, 1078, 1253, 817, 1079,
1254, 818, 1080, 1255, 819, 588, 820}],
Line3DBox[{822, 589, 821, 1167, 966, 823, 1168, 967, 824, 1169, 968,
825, 1170, 969, 826, 1171, 970, 827, 1172, 971, 828, 596, 829, 1173,
972, 830, 1174, 973, 831, 1175, 974, 832, 1176, 975, 833, 1177, 976,
834, 1178, 977, 835}],
Line3DBox[{837, 1081, 1256, 836, 604, 838, 1179, 978, 839, 1180, 979,
840, 1181, 980, 841, 1182, 981, 842, 1183, 982, 843, 1082, 1257, 844,
611, 845, 1184, 983, 846, 1185, 984, 847, 1186, 985, 848, 1187, 986,
849, 1188, 987, 850}],
Line3DBox[{865, 995, 1196, 864, 994, 1195, 863, 993, 1194, 862, 992,
1193, 861, 626, 860, 1261, 1086, 859, 1260, 1085, 858, 991, 1192, 857,
990, 1191, 856, 989, 1190, 855, 988, 1189, 854, 619, 853, 1259, 1084,
851, 1258, 1083, 1019}],
Line3DBox[{879, 1001, 1202, 878, 1000, 1201, 877, 999, 1200, 876, 641,
875, 1267, 1092, 874, 1266, 1091, 873, 1265, 1090, 872, 998, 1199,
871, 997, 1198, 870, 996, 1197, 869, 634, 868, 1264, 1089, 867, 1263,
1088, 1020}],
Line3DBox[{894, 1005, 1206, 893, 1004, 1205, 892, 656, 891, 1275, 1100,
890, 1274, 1099, 889, 1273, 1098, 888, 1272, 1097, 887, 1003, 1204,
886, 1002, 1203, 885, 649, 884, 1271, 1096, 883, 1270, 1095, 882,
1031}], Line3DBox[{909, 1007, 1208, 908, 671, 907, 1285, 1110, 906,
1284, 1109, 905, 1283, 1108, 904, 1282, 1107, 903, 1281, 1106, 902,
1006, 1207, 901, 664, 900, 1280, 1105, 899, 1279, 1104, 898, 1032}],
Line3DBox[{923, 1013, 690, 922, 1296, 1121, 921, 1295, 1120, 920, 1294,
1119, 919, 1293, 1118, 918, 1292, 1117, 917, 1291, 1116, 916, 679,
915, 1290, 1115, 914, 1289, 1114, 913, 1033}]},
{GrayLevel[0.2],
Line3DBox[{291, 493, 1126, 292, 506, 317, 1214, 520, 330, 1219, 534,
343, 1226, 548, 356, 1235, 562, 370, 1245, 576, 384, 590, 1167, 398,
604, 412, 1259, 618, 426, 1263, 632, 440, 716}],
Line3DBox[{293, 494, 1127, 294, 507, 1137, 318, 521, 331, 1220, 535,
344, 1227, 549, 357, 1236, 563, 371, 1246, 577, 385, 591, 1168, 399,
605, 1179, 413, 619, 427, 1264, 633, 441, 1270, 647, 455, 717}],
Line3DBox[{295, 495, 1128, 296, 508, 1138, 319, 522, 1147, 332, 536,
345, 1228, 550, 358, 1237, 564, 372, 1247, 578, 386, 592, 1169, 400,
606, 1180, 414, 620, 1189, 428, 634, 442, 1271, 648, 456, 1279, 662,
703}], Line3DBox[{297, 496, 1129, 298, 509, 1139, 320, 523, 1148, 333,
537, 1155, 346, 551, 359, 1238, 565, 373, 1248, 579, 387, 593, 1170,
401, 607, 1181, 415, 621, 1190, 429, 635, 1197, 443, 649, 457, 1280,
663, 470, 1289, 677, 704}],
Line3DBox[{299, 497, 1130, 300, 510, 1140, 321, 524, 1149, 334, 538,
1156, 347, 552, 1161, 360, 566, 374, 1249, 580, 388, 594, 1171, 402,
608, 1182, 416, 622, 1191, 430, 636, 1198, 444, 650, 1203, 458, 664,
471, 1290, 678, 484}],
Line3DBox[{301, 498, 1131, 302, 511, 1141, 322, 525, 1150, 335, 539,
1157, 348, 553, 1162, 361, 567, 1165, 375, 581, 389, 595, 1172, 403,
609, 1183, 417, 623, 1192, 431, 637, 1199, 445, 651, 1204, 459, 665,
1207, 472, 679, 485}],
Line3DBox[{8, 727, 23, 740, 38, 754, 53, 768, 68, 783, 83, 798, 98,
813, 113, 828, 128, 843, 143, 858, 158, 872, 173, 887, 188, 902, 203,
916, 218}],
Line3DBox[{303, 1209, 499, 304, 1211, 512, 323, 1215, 526, 336, 1221,
540, 349, 1229, 554, 362, 1239, 568, 376, 1250, 582, 390, 596, 404,
1257, 610, 418, 1260, 624, 432, 1265, 638, 446, 1272, 652, 460, 1281,
666, 473, 1291, 680, 486}],
Line3DBox[{305, 500, 1132, 306, 1212, 513, 324, 1216, 527, 337, 1222,
541, 350, 1230, 555, 363, 1240, 569, 377, 1251, 583, 391, 597, 1173,
405, 611, 419, 1261, 625, 433, 1266, 639, 447, 1273, 653, 461, 1282,
667, 474, 1292, 681, 487}],
Line3DBox[{488, 682, 1293, 475, 668, 1283, 462, 654, 1274, 448, 640,
1267, 434, 626, 420, 1184, 612, 406, 1174, 598, 392, 584, 1252, 378,
570, 1241, 364, 556, 1231, 351, 542, 1223, 338, 528, 1217, 325, 1142,
514, 307, 1133, 501, 705}],
Line3DBox[{489, 683, 1294, 476, 669, 1284, 463, 655, 1275, 449, 641,
435, 1193, 627, 421, 1185, 613, 407, 1175, 599, 393, 585, 1253, 379,
571, 1242, 365, 557, 1232, 352, 543, 1224, 339, 1151, 529, 326, 1143,
515, 706}],
Line3DBox[{490, 684, 1295, 477, 670, 1285, 464, 656, 450, 1200, 642,
436, 1194, 628, 422, 1186, 614, 408, 1176, 600, 394, 586, 1254, 380,
572, 1243, 366, 558, 1233, 353, 1158, 544, 340, 1152, 530, 695, 712}],
Line3DBox[{491, 685, 1296, 478, 671, 465, 1205, 657, 451, 1201, 643,
437, 1195, 629, 423, 1187, 615, 409, 1177, 601, 395, 587, 1255, 381,
573, 367, 1163, 559, 354, 1159, 545, 696, 713}],
Line3DBox[{692, 691, 690, 479, 1208, 672, 466, 1206, 658, 452, 1202,
644, 438, 1196, 630, 424, 1188, 616, 410, 1178, 602, 396, 588, 382,
1166, 574, 368, 1164, 560, 697, 714}],
Line3DBox[{693, 686, 492, 290, 1210, 505, 316, 1213, 519, 329, 1218,
533, 342, 1225, 547, 355, 1234, 561, 369, 1244, 575, 383, 589, 397,
1256, 603, 411, 1258, 617, 425, 715}]}, {}, {}}},
VertexNormals->CompressedData["
1:eJzdnHdYFcf+xo+ILWpERaw0FUVBjCJGMRzAYEGNBRULKootGhERC9hAsHcs
aLAAsaIiWMCWcwA1kNhQsGAFDbFHQECl7m9nz7x7Zs+zXmOuuff5Xf7IPLxZ
Z2fenZnvd3c+g7mXj9tEPYVCUbeKQlFZIfzk1+jnrGJK/ifPkf+PZfuwKPI7
1y4syoHRucK9d4leyJeMHnTjdPcqav6X83ypZK7/8/QfrYj+mC9F3aXTzafh
a7oT/Qpfirpxn8MDWhUNU5dznBlfKss48pPr2HfKD388XDJFncdx9/hS+Yrq
7auX+RU8mKNO57hpfKlMonqKud2pbycvVh/huEi+VE6lukL2J+8/ocNH+Ar9
Q/4ftNFct9BG6n/rIo3/l3X8Pybn/5MnlaqckfE/09fjDzn/Awz2DZTz/+ir
W/ly/vveve0j5//SqOaq/5L/GJcYp9DhI3yFb/6qA9Yqbfn3/HcJ7nNTzn+b
YrdKcv7/or/7uZz/i6YVuMv5b9Zi7ys5/0dfODRXzv9d+fE/U//P/EP+036K
8x46fIFPH/HfbEDXOb1V2hK606D2Mv73fMwp5fwPamN9Tc7/nLUWZXLrTwuF
2Z9y/jfcmedG/W/D+u99dEoR9T+V9f/ka+951P9hrP/1kiuf/kz+o91YR3X9
P/Zp/ou+Qpddf266n6yleU5Os9j1/yfLb23k/N+4MfOZnP+Nv6isJzf+zYY1
fynn/530voOp/81Z/5NfzS+k/t9h/T/aced86v8I1v9hyd5Yf2L/ov9CO5i4
JPGfWUcl/jPzXuI/M06prvFR66tG3z0ieV/zm0oVSuh/DHueRJ6TW1btl9aM
/+8i59Ug9V66uLCc9X/m1YZ3SDsmcdNPsv43jK1Wk7S7dsXGLNZ/ryW+r0k/
o6qcu8T6P6/SzqHE/+gjXWxY/1eMcioj/g+eorrJ+n/Ka+pi4n9Vh9Y/sP6v
flGqJv6Psj9/lPUf6xrifJn2uQj+M3FJ4j+zjkr8Z+a9xH9mnAo6fISv0GMi
ts/vmtZRhRK6Z/Sg5eQ56fU/a8iuP3n1zTuSel/c2JvN+h8VHSqM/41rC/ax
/rdfaF+LtPt8zPgbrP/LGrzNJ/2098z+jfX/+6yQkcSXBBMnif9rv171nvjf
b+qbS6z/Dc4FLCT+n3kwUrL+I04gb3ql4z/ivK7/TFyS+M+soxL/mXkv6BiX
GKfQ4SN8hb4y6njUAAtHFUro3A3/5uQ5hZQn3mPXn6nzj7Ug9bY1OnOJ9b/m
+apCO7Z42fzE+v+q7QlD4v/+FyOvsP47NzQsIv10UEy8wPpftrXdCOKLefQq
S9b/uLywCuLjtjMDL7D+I+4iD9X1H3mTrv+I87r+M3FJ4j+zjgo65jnmPXSM
S4xT6PARvkK3+WWJ38A4JxVK6A0Sbr4mz2mAXkga67/ehuSFpN66bZP3sv6X
2vTPJ+2o66u3l/U/O39RQ9Lu6BbvUlj/F71YIPgfMNYkmfU/btCTccQX+5IF
rVj/kUcir5+q4z/yUF3/kTcx/gtxHXFe138mLgntwbqJdRQ65jnmPXSMS4xT
6PARvkI3uHvzZNdDDiqU0MPHxywm130zeUEG6793qqkPqffwifMJrP8Xp3HP
STsWp3uGsf5fTH9vTNpd+V1uKuv/2bC+JaSfQy58l8T6r5D9yRP9R16v6z/y
UMZ/IU9C3sT4L8R1xHn4jziEuIT7Yt3EOgod8xzzHjrGJcYpdPgIX8X5Mr1r
hh0fd1FCt7pTHkmuWzRY6cX6n2SX4knqzfX3jmX9nz/XpYS0I2v3m0jWf/Ny
dzPS7mT3zYms/x/y+V/4L+SRyOsZ/4W8E3ko47+QJyFvgv+I64jz8B9xCHEJ
98W6iXVU9JnOc8x76BiXGKfQ4SN8hX7VKfBA67bOKpTQly1TPiLXpcV0PMH6
P7xg8mJSr8+El3Gs/8WpdpXO8O2oHRW/Uef7wyf5/DH/kdcz/gt5J/JQ+I88
CXkT/EdcR5yH/4hDiEu4L9ZNrKPQMc8x76FjXGKcQoeP8BX6ufYXZze16q5C
CX1D0KOb5Lqvl75dzfqfuOmc8FxzXu89Lv3+8Hl8/hf+C3k88nr4j7wTeSj8
R56EvAn+i3Gdxnn4jziEuIT7Yt3EOgod8xzzHjrGJcYpdPgIX6EvG71i+pBf
nFQoobsoZv9OrmuUr/dA5/vbP+rzh3Tk8cjr4T/yTuSh8B95EvIm+I+4jjgP
/xGHEJdwX6ybWEehY55j3kPHuMQ4hQ4f4Sv0buvuNeg6xVmFUuvDh74LJRl4
Hwkg79HHpx8JYN+j/1H/Nx9pHWts7qxCCd1tpnX0VL49fZ0e2k+TtAftQ3v/
3n1RL+6jvf5D320+rX6Xk+lvva47qVBqr0+qVG/2OP5+SYMMZo/72/V/YdM7
3pD/92dXjdteV6hPrJ/Wi/v8vfpRL+4D/ZuHPc6cslqiXsxxJ/lS2ZmO83Z9
PdRyesrtPio5fW0fL9l6RsefiJfTp7vXlL0+ZNn2U3L6pKuBP8vpZ+udOy2n
f6o//9/1sGN3k0n/J/tmJxI//ld8QH/Qv4/1C+MA4xrXQ8e41tUxrnV1jGtd
HeNaV8e41tUxrnV1jGtdHeP648+x9/XT4334dWGUMmienzivK7jALm1W3lBV
cO9a8aWDVn9U72FIOK/v3B+jDNfmpdxy53f1ylXFXERbvhT1Mm7Y9+fnXVeV
cR7t+FL7Hs2Zen3fuZm6lEt040ulVvcc5r/1vaqUCxzFl+L1Xz3N7aWsa6cu
5zy/4kvxekvvlastrjfk46vPHL4UdadaCUOr5bjyumNbvlRy1Icgn3Wd/O53
UFdwjk35Urzeantdx9PDPNTvuaz6fKksQdxffqfZoC49+esjSgd26Slen+iQ
URAcPludyZn+yZfKFHp9yxn7/LdkTFYXcOu9+FKZS/XTJ/r7eqUHqhdyif34
UhlMde/kZjPrDZulfsA5evOl8grVM7qNejtgyCL1as40nS+Va/9H5qNCEXft
iH48/1yzn/OlON70g8JcOjktdtAPmvLY8tViUS/2DH/cpW6YqjjCYl23J1uY
8eZYdibzMhlv2/lS1GMf1TlS3LSQH2+mG/lS1Kd77417/EN9/jmahvOl+Byn
NCuxGzigHRkPtfhS1Lu1j7Xva+rO67E1+FL8PvO818iyvs0nqYs40+d8qcyn
utugtu+i6vupH3Oef/KlMoPqaRmr/R1uLVCHc4G+fKnc9refY1LJO9cnfH8G
Wr13faL1TTHDuEVEkoO+YuxgvhT1L5O+X7R/2kqHWk4Nv8kZulrUSwMXdK7+
PlRVGnh+69BOoVrfnucPzj2bws+75fdfn00R9aEml1OLnHLJfFzPl6Lu9EPX
zY61vyTzYj5fir6tsx7taffGic9TZ3TnS1G/NTuz6QzXIcT/Yh/XIcpy6sMI
69wVer4T1O+4rAl8qSzAfBkfOq/DNV/1U44bzZfKO1SvvKzXu7bD56ujOcff
+VK5+6N+RtL2xc0k7dX6FiT0R19hFkX6B72GYoXQ/xqKN87ED+hVFN8MrRgY
6lBFoR/geS9U1LvoLZzj8OVq1Xuu6GLfEytFf7YUhnQlz6OMu/SyOf98xOdy
KLoLeX4VXCJ9nhp9qneN0EbHW/Lty/TjS9G3t78XREbEKtV6iiQfvhR1kxsW
ii1+bryfA+5v9nNTVlAfGr00qHM60YtfxxKLTiV6KYvgT0xySdKaGeqXXNYf
fKl8SPVjKdPmN7oboE7gAj34Uhkj+ukkzAdrl35dyPzAffUUZsL8GZCz4BiZ
T9CrKcyE+dbgQdpRMv+0+op5ZH5aXglTnOXnK/SKB0ONA65scdjcP+vb4jZh
ol6SdX2DzYBgle0wi6Y2D4JEf15NajElll8vjN5tttCsHxrdMrHJzBL9yuq9
RnOH8KXoT1en2xZzg5qrg20sKvOlqPd3N11zY1439WGjXcP5Ujs+H019cnrn
QLUqs9ZFvhT9bGs74kefL8epG6i3LeJL5TuqX5jzR3nkxunqkJhHN/lS+TvG
Z90yRdVR/uqyFrYvqozyVyZQnaPxo6XRdiGeaP10EuKQ5y1rWxKXtL7NEOLZ
o2q1NpL4ph2HQUJc/HFd4WwSJ6HP27ekCYmvy58XBpB4C32MbePWs/qHO8yL
uHPXaFa4qBtZGx4O2TlT5XzpfW7muhmin426lPRYv/W2alm1nLJ1W2+L+t1e
FQ27pSrUtzK75dinKkTfLDrPjL/5nZk623ziGr4U9fQT+rNr9OyiPtinWMmX
ol45vtl21frv1Ovc7o/lSzEuD61s6dTvzBh1+37R1flSWUx103G33yfWnKb2
ubHqCl8qn1G9mMZpleUrIW6XaMetEO/T+64dRuI/6q+iGCvkDXlclf4kj9D6
mSTkH2uPecwh+Qj0qpdCrEge49b5jQfJa6Cv6njBhuRDVZe5dyP5EfQTr+eU
OZzc5dDlXIThhFu7tN+X+rdsOZH//ZZ54jby/8XxufvOYPLv126IrsbmV2Pb
jxtN7tffO6P8LZNHHbkXv460r1/IEzs2X7o7ptcY0p/gNv4t2LzI58HECaT/
asPQ1mz+YxEV8x3xKyJ4rSGb5zzjEu8Rf9vU3Z5H/IbP/DpSlTyPM9Wa25Pn
g+eir8geTp7f/NCpW8jz5EQ9qAd53ofPRXqT54/2FE6eGUbGx2HzHTFkvEC3
m74tj4ynOb971SLjC7pLE4Uw/lJvTOpNxiP0zFx7k4tLfRzWjGyaO3eKNl89
FN662v7gcFVuwGijHEdtXrqq4mIUmQ+THrrVZvPPsrFVo8j8GRx2piubZxrt
qRZD5puhycXhbD5ZUGfdt2R+7nhgVZPNG8Me9WxP5nNh+o9v2PzwAhfxlMz/
La1f5PKlGutANhd4j6wXm1MnPyfrB9aNci4ikKwvvUyiN5L15p12PP9K1iP3
HKccsj5hXdq73mokWb+SRpctJ+sZ7jthrrEeWe9ePbjaiqx/4njTd+lB1kcP
5ZdBZL2Ebjhq3wyyno5SuTeJZfIxG852dtucIAfr0y1dO/YOFvXeCw+/t7cM
U7kkpfp2SdPmY9l+Qx3J+r7J2daXzceSVtz/lcSDZjPdvdl8rEPHn1NI/Jj5
wmMBm4+lhngOI/Gmx91GuQOYfGyZ6Yuc1U2ClZ3uryzlS/Vo6sNJztGLxK2a
Ld38SRxD/HrNeT4lca6xb2gxiXuIdyVc4isSF2dcWS7EScTHOuMMhTi68/AF
Glc1uvWi9tNI3O0W1mE/icNoj9mhZ5NInP5pfMGPmrit0eOOb79D4voSg+oe
bJ429tnyFyQPONinw1w2T4ub3ySuSepKh42d9qT5lK7S5iH99tS6kxGqisze
+jZ4uDZPc3QrG0jyEvXtl+Fsnrb7kk0FyWO6HD3rxeZp9Sa3vkTynjPzdvVj
8zSF7E+eY3nwIbsbV4KVIbGnvuZL9UDqwyGab01vW7uE5F/Iu55xgV4kP1v/
ZqiQryFPOxX5YgbJ57rn3BXyO+R1T9c9KSX535WQWSYkH0QeeKBtHUeSL7Yr
HDVBkz9q2uO0rc4w0u4Nixap2Pzt8o3VU0g/kxqXlLD529ol0yKJL0GBgaPY
/G2++47zSwaFOtjcinC8fVebvw06N/Phy1qrVTa1TlaKiNfmb38cy11FntPV
jo4v2PxtypguU8hz9b6cfIvN3z7k54f03S6V/JotDlGuszGcxZfqb6kPOzhu
MnlP8BmZPoe8N+B9YV/I4GzyXlFz0Loy8p6B94vb9YyekPeQoclB1fvx7yV4
H8mZqjYk7y15e5YoyXsM3l8GJvbJI/Oqu2njAWxedy4oaz6Zh6edA8+zeV3K
+6+mkXlbsXJOCpvXRV8tmEjmeWjV193YvO5EyYOrX/+yxeHkstyX3Tpq87or
JZNMO80IVpV84dvd8mdtXmfwxs+OrDuHr3/Zi83rPtXPD+lBCTY55P05wWhQ
OXmfxnu0wdl7U8j7drmBeRB5/8Z7d1hq2RDy3m58sWYgeY/H+/tRpXEBWd+t
jzdqx+Zv961XCvHA9UJpDzZ/87/sKMSP6ZXjTrD5m7eBwdck3jyZ7XuQzd/0
Y5rXJfHJZNXTn9j8rdFJw+jTfDzbNCj2+bVgbf427cVq0ws/+Kk21s507rDY
5z+2b1K27uxE8v1i5MDMheR7Br5jHFlr+JJ8B8l6f7ycfBfB95BtK5PrkTxj
77cDhrJ52shr/i1IXvL4zqFpbJ7mcaRRM5LHtMrOmMjmafqJzi1J3mPqsyeS
zdMStto/I3nS9bnlIWyedmLVniJLPq9KD/tzFZunKRQbtrVaTvgDlNCDftPs
lwSN1uFgG9H9lXs6HPJ5OQ4wLEHxVo7DjD7fWZYDfxZ8SZYDd1ngmifHwWb/
kT1DjoPdGep69p/lkJ28Nb4knWb3lfQUcVX6TbRVoWTq+SSu+E7e6kQ5P/2t
jPTluMrOE3Jkue7ypDayXPGSLfl/yvm5p9/Ps+T83Oj6ClxxzD/EFV+n/W/+
V/jhci5xc3yxswql9vrIcjmf7xZy7eV8rv9KT/b8wi99YxRyPp8cG/dKzuf8
gfmUX01szfpsUGb6RuNzYBrr86o7tQI0Pgd6sT5PNR189jPxw7Q/SQmfxgmv
qMdyYpUUBpHmj1xUKKFvSFpzW+Pzqcaszw+OX7OX8/mnBOcMOZ83juwly8mP
S46S5YTjdrWhPkdYsD43THsDTvga67PdgSzKaScOZ31u4WxyRuOz46m/6LPQ
vhoHK+nJ8ajHH229LOfztD85O6nPke/JfvQPh0qPsOM5zSknfsFWJxVK6I1v
nw8g192cWzCI5QFiGh5sQ+odcbp9Ouvz2yd17pF2BJg+OsX6nLk0pTpp9yql
TTbr85QMW4E7XPpt18usz22nzhpCfB48bIeEhzwcNvEd8Xl2tcmZrM/HFxkI
HIBpmusY1ueFyyIEbkN/cpc4HZ+F59rq4EFZ7nfHCaWszxdXNUyX83nW0qjO
rM+JtleciF/dGvaJY31u9fKdx4GMbiqU0A29En4k495y7bcGrM+hPWq1I/Xu
y3DKYX2+2fF4DmlHtan1DknO3fikCrxg1g9bMlmfCy/b5pF+Tu94/SLr8/HN
fsOIz0f8u0m4X9cMt1Lic2h0nwzJ+tz/VRDxudnR7yTcNdb3I7eXyfK9X5iF
PpPz2SzMqEKO760xJvg+63Mt6/UPSf/PFc01Y32usA+wE/iKaSEz2XXjWcQY
p7IRnVQooa/OrV+HXLdpctZj1ufV5v2F9ehulaJrrM8hd+wFzu+E2/vdrM9f
DplrQHy265d1jfXZ2t28gPRze9P0VNbntd/ZCNzVoOR0a8n5pqt9i4nP7p0q
LrI+Iy4i79DleBc2GDtUzuds8+sv5Xyu6GvIsT6nRESrSX+quuY9Zn0efKXX
W9L/eIc99Vmf3/y+vTZZZzPWJYSz4zlqUnvP7WucVCihpy1Ul5LrmjlvTGd9
dn1W6kHqDQ+ukHBclQMOviLtyJiyTeLzCrukBsTn6kFFF1mfDfrZCLxUv+Gb
zrM+d4x1EXx2KegtWTeQT7QZO2qGHK+LfETrc4TACz086DtEzuefrMxfsT73
MG34iLTvfeoEyXmN/OYDj5P+KHu8lYzneqOrC+M5y2nwV6zP8VFfXCd+vWnc
p4j1uUXKTyGbtilVKEV/gncIecn4RxXXWZ9PHZoxh9Q7xqf7EdbnNvs2vCbt
2D57aQTrc5Opxo1Ju4OG20l43apJRm9JPwv76Ut4aeS1a/OX6HKhgs+Pf0uY
LfVZk38gH9H6HCj4/P5rEwmX2+zcCiEeNK4+VuJzaZvU+6R9O72GSLjojs9G
Clz01X5BEi53c6+gg6T/PjGBM1mfK325SBiXXf3f7WB9btSwsPfciUoVSuhe
u4aGkutGj34Qzvp8+asxU0i9PcZUPsH6PCfWQPA5c5n+j6zPDba5mJB2lwbn
pPwVLvcIF3iC+LzN+LqOz1mexOebJhMDdMazkH8gH4HPC53thLxwqEtbyXiu
tsNV4J8PHXDLZX0euyU4g7Tv6THX2qzP3XP37yH9Wehskcf6XKVeyDHS/41d
f5X4/Ed4/BqBP49x3ML63Lystuu4Pk4qlNDbNTES3mdGFRUHsT632mvzPak3
reCyhH9eHdW8lLRjaWUryXj+kJ8f9lmT7/baNOmMzngW8rYTG6pIOFvkH8hH
4PPhVfZCHC06dUtyzmJkwVcC56y6OeIN6/PKHeeF+ab3o4WEs7WYVz2c9Mfd
OOMl67N7WjvB53GXl09kfd4X1EXgPDPbmySzPk8dOb9ByCpnFUro1XtMfkiu
i97d4iDr88RetoGkXnV896P/BGfLj+d44nOn5C5nWZ9/SZg+VvC55UUJz4n8
A/kIfK48Y2U74vN8oxESntm303JhnTK65iPhadudOyr4vGHkyGasz6O2lO4g
PgdsalvI+hw73VrgadcYbp3B+hxm0mwv8avPntL7rM+2Z4uPR193VqGEvixv
k/Cecrxeo7D/JE8baxct5LsXDSpLuFlbi1lC3rbefnoQ6zPyD+Qj8LlhnFpY
n+fZp41lfR79crHAzR5+2bCY9fnusYRzxGenGD9T1uc5zW8I6+AZU1U567PH
8HxhnAXm/jaP9bl9ZNdI4tfCsT3vSM7tOv3cZLtPuEqRdD4izy38s/v5W4c4
dc/7TiqU0Ac1abVBzzHc4XLa2g0rQrTf/a5/1XCOVdl2B78JDxq1K9vOvGd1
2q/5fU0a+f8fu69B9mFf8t0Z36Hx/dnya64T+e5fRvcB8P3/d4NtJWTfZain
SR7Zh8H+y+fy4VN1cG5mT/0k/FvK1O8I76cMutZHwukd3DrkrBzn6ffGWZZH
/W/1q22zmwly7eloM0iWUz3X9apsv/B7nYvrZblE1xv1ZHnCB+eO/UVu8EM6
OEJwhdAxLjFOoYMDAxcGHZxTUol0nwUcT6SEO9JyKk4Sjgu8BafD74EbKNbh
/bT735r9cOyDYx8X+7oJn3mcgKcEX6nVNfwleEzo4OTAzYk65cDAhWl1DecE
7gk6OB5wPdDBo4BPgQ6uApwFR30AHwBeAJwA9rmx7439buzXYv825jP7Cd4U
/Cl08KngVUWd8oXgDaGDnwNPBx18GHgx6OCfwENBB8cDrgc6eBTwKdDBVYCz
gM/gA8ALgBPAPjf2vbHfjf3aQ3+Zl5PXweOCz9XqGn4XPC/js8BlgtMUr6fc
IThE6ODqwNlBBzcGjgw6+CfwUNDB8YDrgQ4eBXwKdHAV4Cyw7w8+ALwAOAHs
c2PfG/vd2K/F/u3f5TzBMYNrhg7uGRy09noN5wruVftcNBwnuE7o4BTBLUIH
hwcuDzp4MvBl0MFFgZMSfaZ8D3gf6OBUwK1AB28B/gL+gxsARwB+APvf2A/H
Pjj2d7Hf+zFeGvw3eHCtnxpeHPw45h24YXDEWp81XCw4WW09Gu4THCh0cI3g
HKGDzwOvBx2cGbgz6OClwE9BB/cDDgg6+BXwLNDBYYDLAI8BngB8AbgC7Jdj
/xz75tgPxv5wsOibJu6Co9eOQ03cBXdfIl6v4bDBZWufl4YzBnes1TUcLbha
6OBEwY1CB+8I/hE6uD1wfNDBn4FHgw6OClwVdPBA4IOgg2sB5wIdfAZ4Dbzv
gD8AjwAOAfvr2G/HPjvOG+D8Aa7H+QScV0gRfdZw7eDctd8bNdy2luPWtBNc
spZT1ujgbsHhQgc/Cp4UOjhIcJHQwfOB74MOLg2cGnTwVeCtoIMTAjcEHbwL
+Bfo4DnAd4j9orwC+AWMT5zTwLkNjH+c68A5D4x/nBPAuYF80X8NBw8uHvMO
nDe4b7QHHDO4ZtFPyuOCz4UOrhScKXTwkeAlRR8o5wfuDzp4NfBr0MFdgcOC
Dn4IPBF08DHgZaCD/wAPgvUW515wDuZj6znOXeAcBuICzhXgnEGB6L+Gm9dy
9BodXDg4cdQPvhm8M3RwuuB2oYM3BX8KHdwkOEro4P/AA0IHxwauDTp4LPBZ
0MEbgT+CDp4GfA30D/mJ8yo4v4J8BucxcD4D+Q/OG+D8AfIl8PTg6+EzuHBw
4rgv+GbwztDB6YLbhQ7eFPwpdHCT4Cihg/8DDwgdHBu4NujgtMBtQQeHBC7p
Y35+SMf3F3yPwXcYnG/BeRfk7Ti/gfMcyPNxPgHnFfBeAM4e3D3mF3hx8ONo
D7hncNDQwe+C54UODhVcqugz5SnBV0IHFwhOEDq4N3Bw0MF1gfP6uz5/SMd3
Lnz3wvcunIfB+Ri8n+K8B85/4H0W5xZwjgHvv+DvwePDf3Dk4MrRHvDQ4KOh
g+sF5wsdfCp4VejgLMFdQgdHCK4QOjg5cHOf22d8N8R3RHw/xDkZnJvBdxWc
98D5D3yHwbkFnGNAXAZ/Dx4f9wVHDq4cOnho8NHQwfWC84UOPhW8KnTwl+Ax
oeP7LL7Xav0BPweeTvQNHNh16T6IyDNJOCKGy5FwRAxfIuGIYignocvFYX9a
l3/DPut/4e+afhI3yHBIEn8YnkbiD8OFSPzB/rGuD9gHxb7o5/dB5M8k/WU4
Kkl/GR5I0l+Ga5H0F/u12L9Fv7Dv+O9yd1quS8N5QWf4JEn7Gc5G0n7sd2L/
E+3Evh328T7WTvBP4KGgg+MB1yPel+7/YT8Q98U+Fva1cN9vKfcDDgj1bKD7
W9jv0uWUKiiXqst1MHwlfBaeH8MJCjr4NvBu0MFpgduCDt4I/BF0cB4JlPuA
Dl4B/AJ07LtjHx469o+xnwwd+6DYFxXbT/fzsL9XJvqj4UfBk+r6w3CRQj3g
+W5Tvg86uDRwatDBV4G3gg4OA1wGdPAE4AugY18c++TQ19P9Xez3Qsc+JfYt
oYPjBNcp8smURwSfiOvB1YGzE8ct5cPAi0E3pNwDOAjo2L/Hfj50f7oPjX1p
6NhPxf4qdPCRbSgvKf7dYMr5gfvD9eDVwK9BBzcAjgA69r+xHw4d+7jY14UO
jhBcIdoDHg58HK53pfvo2FeHjv1g7A9DH0j5OfB0qB/7xNg3xvXiPjH2jaHL
/nw+HfvE2DeGjvNyOD+HvAvnu8p19nlxHkl3X/hT24P9ROy76u4zYt8VOvZx
dfcxsY+Lfd2P7Utiv1O3Hux36urY7/xP7//iftjv1fUH+726OvZ7oX/onIj2
HAvOtWjuu4BynH/1fIRCe+6lUZEsPy89p8DwoJL8ClwjOMePnRdQaP/u9/nT
n8Tzi+chBJ3hUCV5EcNTStoJLhCc4Md4e9TLnPtBe4T2M+daJO1nzmdQXXOu
QHvOQKODlwU/K7aTcp/gQKGDXzSmPCN0d8rhgcv7GN8OX5hzS2i/0F/mXI6k
v8z5Ekl/mXMSgg6+H7w/dHDA4IKhg2cF3wodXCY4TejgC6tT3hA6ODlwc9o8
RDMfntPzWLp5CHPeSOIDc25G4gNz/kPQcW4B5xigg78Hjw8d3DM4aOjgd8Hz
QgeHCi4VOnhK8JXQwQWCE4Q+j/Jt+pR30+WZH9HzZ8hvwVuDv0Y9eG/EuTRd
XhfnrlAP+Gzw2qgHnDG4Y8ZnmR/hvsJ5LZzf0t5Xc+4I55BwX/Df4MFRDzjm
k5Rrhg4edzzlcz/Wnn/RTs17Fz3/pG2n5twOzvGgneDRwaejHnDVlpSzhg4+
GLwwdHCu4F7/bvs/3C/N+SKcN0K/cE4G52bEv19KeXrw9agHXHhTyolDv0P5
ZvDO0MHpgtuFDt60BuVPP3d/cc4H537QX5xXwfkV9BfnBGzpuQHML/Du4N9R
P7htcNzQwR+DR4YOjhZcLXTwoOBDP7cPH9IruLx048xdqgquf4el8dp91TJu
/Xfke2MZ97Quu69dyvVqQb73lnJZrViuoI131A/ke3u5zt+La7HLVuBnKnT+
Llw168ZDyPfWCp2//7Y/Y1G+3N9te7ti+hyyb7dA5++zfS4fykwfZpZe2aUq
yxpntT9R60MFt95N83f2ntZifTj6KKsT8aFCx4ftBgv9iQ+VdPiWsslB3xEf
KulwRCt3ry6S6+98244B9O/RTfon+lvJrM6q3lm7VJWyZ5h7HNH2937hb2NJ
f/UUzyT9jSko6kH6q6/IlvQ3+UC9WXI8T6My72LSrzuc5yO2XyeTnwjPcREX
OP3f6Zf54jM5ZNxWUjiuWsKMW/05czw07f9Jn23/ux9P9ZRrv3X0nRLaznts
O71fR83R+B845a+006prTKVvbvHzaF1I/ASGT+i5zWwUaY+75YqqbHtaPRwr
cAJn907MZu9bceHxAnLfWTvtx0vu+01elv21XaqYG1VcJ6u09afs7aUI4esx
y9v/QlIP5TcivkzuxX6Hr0K5wCKjx6PY/Q59Oi6DmzZ1Y/ebnqdtHkiea1mN
HgHsft+zL5ybEh9HHLjUh91Xze6nbET6mfvecRS7r92yr1tg8O1dKsOKpAem
Cdr2m75bKuxrNG+wJpfd1/imShMfUu8+i0aSv7OUfcl0E2nHoaPXOrDjbU8r
D0/Sbp9DN03Z+eVy8PEk0k/ro9tasutMJUVQY+KPybKfXVh/9BVJNuQ6q3mD
RrL+7Fv/sj2pd9amQxJ/4gZ49iXtMH74TQjrT8muRlWIP61PF41h/fEP9uy8
/+YuVc+GzptKmHFy41jt1cQHw+rTC1gfzu8OnUr+vbvPD4WsD0tU3baQ+xUu
rtmO9eG3ZrFepH0LdxlLfCjlHIXxcGxDk55sf43P/SqMhyQPBw+2v5tXurYj
//7C797ubH/9lTccyP1surovY/u7JaiNMRn/nfTfWExk+nWm3a5g0q+E8RPy
2X55eu3wJv1q5Xc8n+3XN/PNd5J6n51sYMP2a57zUOF5Wf2SJWl/oe/s9qT9
A39dMoZt/7JH7m1I+01npo9g2z/QYUt+KT8Ot906u3gvs268qNlrubBuWG2S
tLP3geOLSDtXG3d+y7bTOu2xMWnPs/a2fdn2PH2R2Y60x8DJZDzbnl3HCk3L
+fXqyPULl/ac0N53o/uKLeS+lzZMltw3qaq6Cal/pqWVZB+tRw2T/lv59p8p
PT/rC2Ye9aDfGfJ1vg+U07heTuM8rt9J14UyHb56Of3OUKBTD/IA5AWoB/Gy
nMZP6AV0fdHX4ZCN6XxT0PmH+9an3xkKdL4zlND4WkLzDtSPeIz4DF2PxjPE
N3G+0HVNXyf+tqXzHPMe7TxB50k5nTdoZxP6naFA5ztDGc17LGkeJPpD2x9L
8wWxnTS+It5CRzxrTuObOH/p+vuUrsfQsR7tp+sT9HN0PpvR+Y1+daDzJ4jO
J/Qrln5n8Nf5zoC8DXmctp2aeL+D5jvQEV+P0HxB219NPEZ8Fp8jjZdtafyE
jriCOAPdhK6zx+i6Cz2FrlNb6bolzne6LmCdgA/P6bxtR+cxfCin+WhVmp/i
egUdN8jjUH9V6gPyIF0fkHdAH0rzgB40L4COuF6JxnnoiKOIq9AtaVxBnIHe
ga7L8+g6Dd2croMr6LoIvS5dp57RdQv99aXrDtYh+HOb5qn7aJ6OfKM+jesW
NM6jfuTryN+DdepB/ot6kAcgL0A9iJeIn9AVsj/CfYW8GXk07ptJ81Ejmp/i
vgdonuFA8w7UU5/G4wwan6Hb0ji3lca9j7XnQ/pCmgfH07yYaaeQj1rR/BTt
PEzznsc0D0I9w2l+kELzBeiIu4jD0BH/EA//bvv/Rb+EvBl5NPqFfBf5L/qF
vA15HOpBfrOM5jvQW9O8YSzNI6AjfiOeQ0fcjaRx+HP314/m6xzN39Hf5sjL
aZ6O/iIfRX6KebeA5m2pNI9D/U9oPmRP8yPoK2he4kLzFOipNJ9YT/ML6Edp
3uBA84iP9ev/AJwRAlY=
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
ImageSize->{286.36438931902404`, 284.07431712721205`},
ImageSizeRaw->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->
NCache[{{0, Pi}, {0, Pi}, {0., 6.782151672921413*^-8}}, {{
0, 3.141592653589793}, {0, 3.141592653589793}, {0.,
6.782151672921413*^-8}}],
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic},
ViewPoint->{-1.6161626810947027`, 0.047578608802071265`,
2.9724996996166815`},
ViewVertical->{0.87807368658937, -0.02584982621015127,
0.4778267336642624}]], "Output",
CellChangeTimes->{3.8018893661301403`*^9, 3.801889452390252*^9,
3.801890317612669*^9, 3.801890465042478*^9},
CellLabel->
"Out[109]=",ExpressionUUID->"7f6e0222-0c66-4741-a2ef-0a7907009d3d"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["The Weak Correlation Expansion", "Title",
CellChangeTimes->{{3.800180264022499*^9, 3.800180275478266*^9},
3.800250590117984*^9},ExpressionUUID->"f8469860-fa97-4a60-9e16-\
c7b467058037"],
Cell[CellGroupData[{
Cell["Energies on the real axis", "Section",
CellChangeTimes->{{3.80018028757023*^9,
3.800180288745204*^9}},ExpressionUUID->"256f249a-892f-4165-8448-\
4758153da25e"],
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalPsi]1", "=",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "1"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]", "1"], "[", "\[Theta]2", "]"}]}]}], ",",
RowBox[{"\[CapitalPsi]2", "=",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "1"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]", "2"], "[", "\[Theta]2", "]"}]}]}], ",",
RowBox[{"\[CapitalPsi]3", "=",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "2"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]", "1"], "[", "\[Theta]2", "]"}]}]}], ",",
RowBox[{"\[CapitalPsi]4", "=",
RowBox[{
RowBox[{
SubscriptBox["\[Psi]", "2"], "[", "\[Theta]1", "]"}],
RowBox[{
SubscriptBox["\[Psi]", "2"], "[", "\[Theta]2", "]"}]}]}]}], "}"}],
";"}]], "Input",
CellLabel->"In[25]:=",ExpressionUUID->"c903323c-20ea-4825-b68d-ed54a1640c47"],
Cell[BoxData[{
RowBox[{
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]1_", ",", "\[CapitalPsi]2_"}], "]"}], ":=",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "\[Pi]"}], ")"}], "2"],
RowBox[{"2",
SuperscriptBox["R", "2"]}]],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
RowBox[{"Expand", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
SubscriptBox["\[PartialD]", "\[Theta]1"], "\[CapitalPsi]1"}],
")"}],
RowBox[{"(",
RowBox[{
SubscriptBox["\[PartialD]", "\[Theta]1"], "\[CapitalPsi]2"}],
")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
SubscriptBox["\[PartialD]", "\[Theta]2"], "\[CapitalPsi]1"}],
")"}],
RowBox[{"(",
RowBox[{
SubscriptBox["\[PartialD]", "\[Theta]2"], "\[CapitalPsi]2"}],
")"}]}]}], "]"}],
RowBox[{"Sin", "[", "\[Theta]1", "]"}],
RowBox[{"Sin", "[", "\[Theta]2", "]"}],
RowBox[{"\[DifferentialD]", "\[Theta]1"}],
RowBox[{"\[DifferentialD]", "\[Theta]2"}]}]}]}]}], "//",
"FullSimplify"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]1_", ",", "\[CapitalPsi]2_"}], "]"}], ":=",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "\[Pi]"}], ")"}], "2"], "R"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], " ",
RowBox[{
RowBox[{"Expand", "[",
RowBox[{"\[CapitalPsi]1", " ", "\[CapitalPsi]2",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ",
RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], "+",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{"Cos", "[", "\[Theta]1", "]"}], "2"]}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"3", " ",
SuperscriptBox[
RowBox[{"Cos", "[", "\[Theta]2", "]"}], "2"]}]}], ")"}]}]}],
")"}]}], "]"}], " ",
RowBox[{"Sin", "[", "\[Theta]1", "]"}],
RowBox[{"Sin", "[", "\[Theta]2", "]"}],
RowBox[{"\[DifferentialD]", "\[Theta]1"}],
RowBox[{"\[DifferentialD]", "\[Theta]2"}]}]}]}]}], "//",
"FullSimplify"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1_", ",", "\[CapitalPsi]2_"}], "]"}], ":=",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"2", "\[Pi]"}], ")"}], "2"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"],
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], " ",
RowBox[{
RowBox[{"Expand", "[",
RowBox[{"\[CapitalPsi]1", " ", "\[CapitalPsi]2"}], "]"}], " ",
RowBox[{"Sin", "[", "\[Theta]1", "]"}],
RowBox[{"Sin", "[", "\[Theta]2", "]"}],
RowBox[{"\[DifferentialD]", "\[Theta]1"}],
RowBox[{"\[DifferentialD]", "\[Theta]2"}]}]}]}]}], "//",
"FullSimplify"}]}]}], "Input",
CellChangeTimes->{{3.800180559308094*^9, 3.800180578338317*^9}, {
3.800180612067296*^9, 3.800180612401112*^9}},
CellLabel->"In[26]:=",ExpressionUUID->"d4535ec7-8743-4bd9-8dc9-a48c2508f7ff"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"t", ",", "v", ",", "s"}], "}"}], "=",
RowBox[{"{",
RowBox[{
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]1"}], "]"}]},
{
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]2"}], "]"}]},
{
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]3"}], "]"}]},
{
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"T", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]4"}], "]"}]}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]1"}], "]"}]},
{
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]2"}], "]"}]},
{
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]3"}], "]"}]},
{
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"V", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]4"}], "]"}]}
}], "\[NoBreak]", ")"}], ",",
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]1"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]1"}], "]"}]},
{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]2"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]2"}], "]"}]},
{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]3"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]3"}], "]"}]},
{
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]1", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]2", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]3", ",", "\[CapitalPsi]4"}], "]"}],
RowBox[{"S", "[",
RowBox[{"\[CapitalPsi]4", ",", "\[CapitalPsi]4"}], "]"}]}
}], "\[NoBreak]", ")"}]}], "}"}]}], ";"}]], "Input",
CellChangeTimes->{{3.80018063715947*^9, 3.80018070274148*^9}, {
3.80018127753087*^9, 3.800181329450368*^9}, {3.80018152300445*^9,
3.800181527549115*^9}},
CellLabel->"In[29]:=",ExpressionUUID->"93a4438e-3901-4102-a0ed-49f488288f8f"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"t", "[", "R_", "]"}], ",",
RowBox[{"v", "[", "R_", "]"}], ",", "s"}], "}"}], ":=",
RowBox[{"{",
RowBox[{
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"0", "0", "0", "0"},
{"0",
FractionBox["1",
SuperscriptBox["R", "2"]], "0", "0"},
{"0", "0",
FractionBox["1",
SuperscriptBox["R", "2"]], "0"},
{"0", "0", "0",
FractionBox["2",
SuperscriptBox["R", "2"]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]], ",",
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox["1", "R"], "0", "0",
FractionBox["1",
RowBox[{"3", " ", "R"}]]},
{"0",
FractionBox["1", "R"],
FractionBox["1",
RowBox[{"3", " ", "R"}]], "0"},
{"0",
FractionBox["1",
RowBox[{"3", " ", "R"}]],
FractionBox["1", "R"], "0"},
{
FractionBox["1",
RowBox[{"3", " ", "R"}]], "0", "0",
FractionBox["29",
RowBox[{"25", " ", "R"}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]], ",",
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{"1", "0", "0", "0"},
{"0", "1", "0", "0"},
{"0", "0", "1", "0"},
{"0", "0", "0", "1"}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]}], "}"}]}], ";"}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.800181587571941*^9, 3.800181589803165*^9}, {
3.800181639078681*^9, 3.800181645061007*^9}, {3.800181755208486*^9,
3.800181768374488*^9}},
CellLabel->"In[20]:=",ExpressionUUID->"421b263c-0954-47e7-9e6d-3e92847ba093"],
Cell[BoxData[{
RowBox[{
RowBox[{"H\[Lambda]", "[",
RowBox[{"\[Lambda]_", ",", "R_"}], "]"}], ":=",
RowBox[{
RowBox[{"t", "[", "R", "]"}], "+",
RowBox[{"\[Lambda]", " ",
RowBox[{"v", "[", "R", "]"}]}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]_", ",", "R_"}], "]"}], ":=",
RowBox[{"Eigenvalues", "[",
RowBox[{"H\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}]}]}], "Input",
InitializationCell->True,
CellChangeTimes->{{3.8001816879075527`*^9, 3.800181723344047*^9}, {
3.800181773164462*^9, 3.800181832710696*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"5bbd100d-b730-4596-b1f5-29dc4abf48e2"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E_\\\\text{WCE}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.80018191521989*^9, 3.80018194152212*^9}},
CellLabel->"In[31]:=",ExpressionUUID->"cacfdf0d-2f8b-44f2-b8fe-35d081abf0aa"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwtlHk41HkcgJ3zXWS2knZjybGjdCgVZmP3882Tsh4qV/QkJumaiEclunZ5
xjGtmMdDiZZ6yJFyrHg6hu8vdxuLxq0m4xpnhp8c49r2efaP93n/fv95DX0D
XU4rKSgoOH3lP58qEEysrCDKDNaPrKxIyboFHRPrRUQFzRvHzMulpOrAY6+Q
OUQVFpub0F+kxET88u2YDFG7Njv5Do5KyciqvoxOCaLYa3hd9e1SEsS18Cyu
RBTum/z7foGU3GJ1UWeiEeUS3ZC320dKUlKNExqYiApt5AWcLR8k6Z9iAp3V
GFRLi8bIm5MDZH2T62FTbVVKjwpcZ/VDP6k74rr/HUuFKrlQpfrtx15ib8q6
bGykTHFizWWdERKyN98rq3GHEjWXcD2GQA+R3z6jtctUkbLTE+7eWfmRfJnN
TPLepECxk3z7s7S6SZVRwp7ygGWi2lkhc0noINaqvxVv9Vsk8wy3if6uVpKI
raz23ZSTaoX0X586i8ipB54DI+lzxOz6O/OfWptIY7a+mmLKDLlJnL/3tKsn
+qsKzUnpNDli8Dsvx6aWqBsMNg4/mSJB7qtbq2rfEH+3yOScHBlJ+q42oqPj
BeFUfnqnnzBO3M/mJs6XPCNGPy87V4cPE67kHrdvrYDkniuWvC4dIA6HopLb
fJOBSxd5/ZEiIQMhLO9YZhGY3VI9xjDuJhUeGWLH5tegFdaicTdVRNJU9OZS
xyug3c9/S0FfDdHkRz2o9q6Dq9e2xL1Nyif1V27weZca4Ek8G2fufAbZhR7b
vayaIe58eBsnohZsbSjj1aMi0Jx2tP7aDSqLF8vjgtqg53LNnhBeNzxsHjuz
aVsnfH7pVHG1TgJpJvxweVc3ZEU/4vjxB6Cq4AJOPi4G1kyeVmjqMJzMjmNs
5veA+K+NZdbnxmFaoA7nGyTgfq8nZlQgA/arpMKDGn2Q9ji2zPHuFJy/+I3p
br9+UDkeMK4aNg3PbNJo5awB+IeTm+3CmwFxkm61REkKJZo6J2b958BITTiU
aT8EJimGQ8hRDhuEF+xUY4ZBHsJbynNdhMV5pdzg3hEYlesyc9jLMOVc5l3N
GoOHZ6NbdI0VcOseH10WbxwE++pjN7AUMddj9RqjD5+BGZhnW6mthNUcgrdF
MGVQvv9FWamOMm7Z3iQKE8pgKcDH8ihTBeekwY/93pOgiN7f37qkgo8WWK7R
W54ES/vgCgcFBg6LfBT+4ckUyD88HdKeYuCsIb1UpiMN+/3rBE4zDBzxZyRH
fIiGOwt97Eg5A3u7jLPynWkw0NHlTyshrC0UFjp50HDQg28q0kKYF3+8JtaX
hsTm01yBBcK+lvcn1cNoMKvRH1MPQ1ift84eZdEQ6r430fYmwnL2Dc32HBre
9LvbXAtHuG28731WHg1uyndih/kI3/EoPnGgiIbreGFbXQrCi1tcLkUKaah7
1R4QKUS4qzk+TVlEw1oHWruMQrg0avaUqJUGr05m+XQVwgnWPqYZHTRMzNox
/RoQdnhs9txWTMN6i+f5tmKEX4Y2vA0fpoFT1Xj0Wi/CSdst4p3HaMh1HV0u
GkQ4qPeBm+EEDTbBRocNJxDe7Oj/iZqmIUrxl1lPGmEVxZZMwSwNTYJj6YJZ
hHtKrLkcOQ06BlcO1i0gLORm7Ni5RMP//8L3Nmp8WVmh4V/1inmj
"]]},
Annotation[#, "Charting`Private`Tag$5815#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwt1Ps31GkcwPH5DuZJZbaIc2LJZUeolEoptc+H7SKHalBYYly6aSatbYsu
Ws5M2JQ5Dl1o0SaXiFpxqjWeb4WlssolmzSMKbnmNhgzg909Z394n9d/8LYI
jfQ6yGQwGJ7/9p9hpeLhuTlE22Oj/rk5NVmiNrZ21iD6xLRV4rRKTap33Ak8
pUT0/TIH6/EJNbGWPq4fHEH0WhvP0J4BNelfKL/9ToZop8XC9ldtanIiwtGv
7DmiQT764kapmsRy2ulDCYj2SmgoWhesJhmZVqkNbERHNwoFh6tUJLszMZKr
y6JbWhb0Pw2ZJkavvffYGurQpnTkko1fK0ndXu9tLznadPmxap2vPkwSN1vO
SStLLZqX7DDyLn6CbC4JzGtczaSVqWcTCVYQ1S+HDNbaUvRvbOnS67IxMjGV
mx60nEHfdHeIak4aJdWWqeurBLMknh8SbbtrhDjrXChbEa4h0yyf4Y/tQyQN
Nm50Oa8iNYzsXcXcARJ20+9Tf7aS2J996bCptZc05pvpUhmTpKrTZmGxZQ8x
W3jfgVQoiM0icPXJkpP55j2NfXfHyCO7xIhueRfh+4iuFxSMkBeXwlz4/A7C
e9750ix1iLT62x2MFbQRy62z3Jq4PrJK4yUIZDaRwiNlsj8qPhEBX+rv/rme
RIw/CLyUISOO+uXffe6WEPtYHX+W1XsykRMlevUkhxjEtCy4mtlMRr7ppTv5
+bgtnG9XKq8lJvp6my5JaHz6jN2V+vQScnVAqa/7+QW+m+IEuWvu4d0hpd8/
Ot6ErxyNe8uL/xOLon/eaf62DespPJyLuc14nvLDOVNZB+46Wbv+lPA9znkz
eGj5Shn+8tjz2ek6Gc6yTopTtctxXsItXnjSJ1xdegyuB/RgzmSRQXRmH362
21Rvr34flv6+TOJ8ZAj3WRjGNmUM4H3XuhIHxCP4h5MrQlKMvuCsO8kSj6tj
+OjxebbrwkewdoBgSCdGge9tyRrXyhvFf/EK872Ek1iablIjY47jcj3jA1N8
JbbSrezNdVNg6wyLXuShwksrj23XSZzAqlPCmSJvDdZMMwujuifxgMqEXeA0
i8e4kqAajhLnHE5oMbFiQOv6YBOOcBqLXV4lL+VQEOG7aLFlhwqzI4tcnxsy
QT/to5+2qQZXbXskqTDWgoKAnPzx6Bk8IwjesJ+tDdytF9zqJLOYQk03Vsxo
Q3GQwHKzZg5vcIt65s5gQYzoVlzHXQaoOop7DcdYkNdrmsn2oGAbv07sOcmC
+F9FPOluCi6r5U4iFQuCvIY4JVwKzI1NkhRMBIaVlfc9fSnY6Ztk22yAQJgS
UJscSkHam4MRYkcEoRtujM6PocC+1mxwfgwCM+ESN5RHQfS+zWmu5xGonM7p
tRVQ8PTjvi1n4hC8HZI35RVR4KN1ObkvCcFl37IDOx5QcBbUK+syEGjsvH4U
VVJQ96RNIKpE0P4mJUurmQJ993FDCY2g4uJUWHMrBYHv2FWKagSpzsG2t/+m
YHhqOzu8AYH7HfuHrlIKjBwflrhKETyObqiP66OAV924/0w3gvRVjincQQoK
vQdmH/QgONF908dimIItUZZ7LIYR2HjwO2kFBRepb6f8xhFoUy254ikKXov9
s8VTCLrKnSN4KgqMzX/aWadGUBlxe/WaGQr+/xdcW7ZgYm6Ogn8Aa9VmlA==
"]]}, Annotation[#, "Charting`Private`Tag$5815#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwtlGs01GkcgI3LvKfb7G6M3UZHgx0ttVTr0lL93iTJIeWWFsW6JJG0upiu
dmmQ2klol6Q2Sqi0WVLx/jG5pHEvidyVO/mPGQbTtufsh+c8356Pj87PoU7+
ykpKSg6f+c++D4Tjnz4haun11euuGSuIxixH33IOUa8HLIMDDBVEZJPpeWwa
UQ2dpQ/X8BREv6OoemQCUcbN1vuecxRkaHHvrdZuRCUdzLUeV1OQw0Gm7o/K
EdX3pfnGre3z5AzvLRUgQJQJ1xfJY+ZJSqpegpj1uadWsyymZ46kd8aE7lrA
pNBArb8bf5Zo1js7GrDVKEGgpseUoZxU7XS2ruGpUvYBsXf0e6eJrQEvXE9X
hVpzpvBx7TkZsbjvebvOWJkq7PJnHjKXEnlcgPo6AwZ1+YsV8ZxmCZmSZSTt
XalEZVSWJnIjaCLSTTApCVGQs4wtHnvNJ4ml2tlHq/zmyI+ZfxU0tk+QRGxu
vvm0nChr0M63zMeJ7zX3/qH0adLvmHI1rXKE1N3RXsBIkRK75a6vfjIYItqL
89aSAglJCr1n+z35QBZy39cNZk8Sr/zeIVXDfhLsEv1HVtYEMYk6X6KV00O8
yztrtBNGyTdHFVu9fLqI7kbFrueRg2TkmVdSWF8buRv4qPtpQT/R3573ZCas
hQTRDz0vpHST78SdbJviRmJ0Rm0PU6+NFOWm8oP4L4l6RPOi5NQmMubULdro
ICItfsGGD3orSPz+0favPQrJcb7hpeqk+6SSj+9teHGdZP++HmesuQdvaqwH
CSMNLh2IfO39ayVcuS2dObmoEJZI7C1zdzVBeNPU4Y78MugKrzA5FtUGrP68
+CWOL2CsyKHseFU3TIpltr7iergtuOntF9sPeT6Xsh31moEnzVE/kToIB3nn
bGvzWqDj7xXFloGjEHahmnwleQuuV7tihoUTkPHuVIVAqwOuZ8YX2ydPQk9B
cgMu6QJVj5BRtQgJSAyfOnzr0AO13nfvOEVJwej5WTl3phf+WcLxkgVPg3hl
1TAnuh/0U3QGkL0cgpsfS22ZH0B+LGo+x3kOnuRvt2NnDsCwXIuVtV4BeZ03
4gp4Q3Bjv6BZS08Jy51aozmiYRBufhm/jMfARaxF5eXuo8AKzbEqZyvjILHH
2t/qx6DE+nFxAUcF3zzJxit+mID5kH1mbixV7HlV4xfx+AQwUOOfq+ZVsV1M
XNyqrI9gZnukzE6JiZfrGPGTQydB3p47wJ5kYguHczv0DWiwDq4SOkiZWLzb
rM5nNQ0XZ3vXR8uZWNr6xibNmAYuRytWoozwK9NJjoYZDdt2xxo0qSPsEt7h
xthCQ2KDf5DQFGF/eQv3rScNRhXaIwsjEJYUlGlGC2k44WqRaHUaYXtd7ily
hYbSPtcN/EiE9w69ezOTTIOLysX4wViElS/HnDiURsNJPLu6KgVh31ezO3dn
01D1pCUk+hnCrdY+B1aKaFhqR7OLKYQ/1vrZ+FTS4NnKKpGIEH764RMn9QUN
47KtLD8xwhYuC3NYDTRomubft+pAWDO9NmDqHQ3eojo3fg/CTmtHlYy7abjr
PKx4+B7hRquShMA+GjYc0XXUGUfY1DI6rW2IhvOMTTJ3GuGM6khN9hgN9cI9
6UIZwsH6mwQ7PtLA4R7dVjWLsPrN4nGBhIb//4XDBCo7S2U0/AtVWH0x
"]]},
Annotation[#, "Charting`Private`Tag$5815#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8DdcYjP207rvxT7GiY7
/AfAjC06ev9I67/ERqVcdvgHwM2Q/g0jQ+u/Jt65yezwB8CGSpnwaTfrv+oM
46PZ4QfAomALofYf679wajVYs8MHwM6feKYL8eq/fiXawGaHB8DElCX/I5Pq
v5qbI5LNDgfAvvBftAvX6b+f34hvUQkGwBKkDbrRPei/FtBTTykVBcAU5a38
0b3mv8hQU0TLJQTAgxV+Pl5D5b9IKSV0IyIDwBQ7eeBXpuO/Oq5cps8vAsCh
le2YPiLiv/qKZhMyKQHA7IDtymV64L/196SVXicAwHiHQkkVrd2/xCKSNL5t
/r9zmiMkN5bavzsFf7MrZPy/wFjNfjQz17+UQDc3QX36v0ynjZi+/9O/Y5xY
5eqf+L8T5WhTsdHQv8+nHgkBmva/Xam+2qehyr8eDLAxv7b0v+WVHHYG+8O/
CiDmz+mq8r83xA75d0O5v2xUhZioqPC/k6duzd0Ipb9gw9/LHpLtvyOa1nOa
aIw/Ij3+UcWB6b/UcmcgjjCzP6los+G7tuW/SFMmczgWwT9q87Fci5rhvxc3
TptGbsk/Ln4FWQYj27+6vuvSa+7QPxN51AuWm9O/WJfxtnf51D/XZGwqr+PG
v3r6XDeLetk/d3oqjsmVrr+BxqJXnsvdP6qPOECkMK0/Nd7sP1kQ4T+OaYHW
YILHP4WrJs+Gd+M/DfRMO6xR0z8BvdwxcsHlP+B0xjR2hNs/u4ABAT9I6D/u
uU3Cd8jhPzBxPqj4zeo/poehYGSJ5T9B+4XQzjDtPyX2qxN4m+k/7sP+8IDP
7z/esh+9O2jtP5z4qIo6JPE/VZfgiOuQ8D87nzSiT13yP56ljL1MlvI/q2Fw
T9az8z8EW23tBXn0P/ooCe679fQ/zmCpp1KE9j+FSIF/51T2P7UNGl33bPg/
vp76pqae9z8mmiHoB0z6P/5a3Gpz4/g/+naE/atT/D+xaJ2VQ0X6P+v6Gw6o
OP4/82s+gruQ+z+gZ4fUGyMAQFg2npwk+fw/kEHMjBklAUCJ5z2/Elz+Pw5v
q0LDFQJAIzKRAQio/z++RLi9thoDQDpZau9oiABA/W1fNlYOBEBu42G0LjEB
QAEH0pkr/QRAi0i8W/DWAUA2SHLCSgAGQFuPl9wUiwJA+tys6BXyBkD2GT0H
cDMDQERsyJBN9gZAWQFcTmA2A0CN++M4hfoGQO+sBJpQOQNAIBobifQCB0BX
2Os+MT8DQEdXiSnTEwdAx2vdvvJKA0CU0WVqkDUHQB0OsJV2YgNALsYe7Ap5
B0CPelmSgZEDQHhVOpRCfQdAkLEkZ3KUA0DB5FU8eoEHQDG6P0BjlwNAVAON
jOmJB0A2QF7/RJ0DQHtA+yzImgdAtVAMsQipA0DIutdthbwHQFf+qOCQwANA
EkrzFb3AB0D5JaH5gcMDQFzZDr70xAdAPobNFnPGA0Dv90UOZM0HQFYpvF1V
zANAFjW0rkLeB0CYtsEdGtgDQGDEz1Z64gdAJlosWAvbA0CpU+v+seYHQBG+
vZb83QNAPHIiTyHvB0A2G04g3+MDQIYBPvdY8wdAq8BJa9DmA0DQkFmfkPcH
QPR+ZbrB6QNAGiB1R8j7B0BLrp8Ns+wDQGOvkO///wdAxqf2ZKTvA0BtpGMU
"]]}, Annotation[#, "Charting`Private`Tag$5815#4"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.032488628979857055`],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4BHHxSZGPbIaUtXT2i5KzKeF
m5HFAbkaAl0=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJnIGYC4intrVGXbfQc0kBAjcPhSeLCayb+eg7RqhEy
52w4HcDyMXoOMWA+l4Opzd6gaYl6DjNmggAXRH2+noP/E89LpsHcDqI9Xq9Y
pug5RIDU1/BC1O3Uc+iP6PZnLOB3eJ6l/W36XgOH/yDQr+jg0PTo+IzTBg7d
Np670h4pOhxuWx5+6pGBg/K1R8EMPEoO3ifYbWeLGjrsza95O1NUyeExyL54
QwdjEFBG8MsPb3OduVbJ4QwI5EDNn6/k8HXnra6/obj5PiDzv+rB9cP4MPPX
qz5pnrdWH27/5w0B2bPUDRzc1xxdzsCh5NAN9K6Jo4HDym8vK858UHRYfH8f
3xxnA4d0UHguQ/A/LFqvcHYGgl99/8ct425FuP6zIHfXKDo8iBDfflFBD2J+
hKDDm+Ktor+1tSHh8UcBYu4xLYcVIPsElBxSYu+4Me/QgrjPVMnBBOTuyVoQ
919Wgvjzvyacf+Kw09rMeZoOwpWTSs5uUXQ4vmtHL1sAlP9EAaI+XsOhVYFd
9cwXGQe/ixNj/imrQdwzQ9BBR1H+S06YClz9nEXKO/+4q0DcJ6Po4AtS76zi
EM4p1m7sj+DD/Afjw+L777fSB3MKVeDxzcTZJZ/8TgUe3idA7tugCo8PGB8W
X84TmoXSspTh8ekC4nsh+O9B4d6hBHHvEiitogjXD+PDzIfFG8x+sLt0lODx
DVaXDNV3RRGS3nqUHNYK6fCl6yk6BN6SrkncpALJD5P54f7Z4rXBYk4lN5wP
tieNG5K/ZFTh+e/X29cHLJnV4Hyw+TpqDjd4b4ullnFBwitQzaEXlJ8MeBwS
QoLUF6xUg9sHVn9G0+FNW2630W55h7Wg9Mur4xDy9vLHGY3CDqlg/+lA0p+3
gIMIKL9u0XEIBskzCkDSf6gu3H708gEAPVDUdA==
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYCYpl5cZqnC8wd7Esca0/f4XPYqJe3mDHG3MH/
iecl08n8DraVEStMz5o5mBgDwWYehxdZ2t+m65o5MICAA7fDqcNOazPrTOH8
GAXHj8l7jOH8/yDQb+TQH9HtzxggBOdX3f9xyzhbEs7njw24b8Su4NDIcrTf
cLqxg/OEZqE0KyWHA7WyFukqpnB+GgiwmcH5E4JLVKa/N3N44BrvOKtREc4v
P7zNdeZZBTj/QPe+JhNmeYj55uZw/kwQsDR3cF9zdDlDhoLDwbbl4aeczB3W
CunwpfMpQvydbO4QzinWbmyv5FCyVfT36XlmEHfvh7rnm6mD8rVHwQx/lBwi
xLdfZPBD8G9K1yQatZrA+d4n2G1nHzV2qAb5f7aSg+qT5nlntYwh/n+u6LDk
/j6+OcpGDt02nrvSNik4aLzl3Wcw09DhTVtut9FsWTg/SjVC5tweCTj/Psj/
HwUcvuy81fWX1djBDhSfMezw8IPx/S5OjPn3GMHv8XrFYjLRDOKPZRwOhWu6
b2cYmMPjDz19AAD7ft9Y
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJNIAaxQYAJSjNCxZiR+PjEcakhlU2JOcToxeVmSvTS
wl+U2EWMmQB8+QKp
"], CompressedData["
1:eJx1lGtIFFEUx9cU23Jd87k+yV01gkR8pbMzNzpG9sLUkmiptbJ8lWVCUlpJ
hOCHtrAi3TQpSmELXVTSokilTHrYaprYptGGCkYYPSgzjMw7d+8dSjxwP/xm
5p7z/58z96r3Ht6a5SiTyRxm167ZtWB2nU8rDDXOxEMMjhANPOtcY96fz0Hb
4ZOfqrw14JrSeCnLysH6hi6TTK6B5L4L+j+jHBjQxvvZI2rGOdmzcTSYcRWO
e0sYm4ZMo1GdLhA2VnrVMsSBDAe4sHpW12GfrMnFUHne7XhcAAczODok/t7+
tTWnUg61tnZlzW0OWjc1cTX35IDLZk9y8EIMOZx26iqPitcyflhm2v58jcSi
z1KJjTj/sJbla4rIr3UIFFi9/7mw1Xu6O1li0Xfl/FzQYBjOfYlYPcr6MF1g
z28F6FR3+2TvEJTrDCkOBUvAGnAyI/qHnVM9oK0kiMupk/gcntc1BDvx/gfu
UIH1X0EwUXbIEC24Q8k0X9BzGZH6Pu4Qivt9BsHmsY39Kz3diI6D9veDCsJJ
iPgvVtj9IriL+ZcL1OF+HxFgdWFCSXeNCyThedbyjMXvwyVWVQwsyl3As3mP
ZVwfjO3QwjmsP1LB2Ja4O6E6ypfMeUYLnsUXCy1rfYn/RN6uyxdQse7mSrPE
e9LfrnPUCYxpv//J1yGA2SNcmfNORfT0C7AB/79TPvZ+2+cz6AWx4n+PGFP/
NN98LJ4Hq8THbVNDMXl+c5jmz8I6nYNYfcpUXybmZQFEf69A9r3yh+WfXNsj
nwnk+Sl/5k/UG+fP/Iv9mPCDpKcLV13ZJsB7rLfPj/SvjWesD074uk8vsahH
yYMRn9c3fmw+NB9lt/RUW/QTNbz2+JbQ68wTHlfDdrw/goeQwZE02YQaxg+s
mDRaJD676aNT7BaBMfUrzntAzfp1AverXk3+tzREfJaroSV+6lHmDgSfbzQG
W4okFuerlNgL53u8lJyH+rks6v0ZTPTfQaw+PY9ivWsa4nc3IvfXLQ18aUrN
q1YhONZ5J7HKrAHThw0RM80CYwW+H4skJudBYtoPmq8Fv0c8qV+ngVP4vFq1
rL7op1riZvx9ksT0PqX76f1N6/1/n/8FX7mtFw==
"]]}, {
Thickness[0.032488628979857055`]}, StripOnInput -> False]}, {
ImageSize -> {46.16461270236612, 24.508064757160646`},
ImageSize -> {30.77640846824408, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {31., 17.},
PlotRange -> {{0., 30.779999999999998`}, {0., 16.34}}, AspectRatio ->
Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {-1.8866235694821438`, 2.492012776162457}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
TagBox[
FrameBox[
StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["3", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["4", Smaller, StripOnInput -> False]], "Placeholder"]},
"LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.9, 0.36, 0.054],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.9, 0.36, 0.054];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable ->
False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.365248, 0.427802, 0.758297],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.2434986666666667, 0.28520133333333336`,
0.5055313333333333], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.365248, 0.427802, 0.758297];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.365248, 0.427802, 0.758297], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.945109, 0.593901, 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6300726666666667, 0.395934, 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.945109`", ",", "0.593901`", ",", "0.`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.945109, 0.593901, 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.945109, 0.593901, 0.], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.645957, 0.253192, 0.685109],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.430638, 0.16879466666666665`, 0.45673933333333333`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.645957`", ",", "0.253192`", ",", "0.685109`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.645957, 0.253192, 0.685109];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.645957, 0.253192, 0.685109], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.800181925714662*^9, 3.800181948411865*^9},
3.800182395263035*^9},
CellLabel->"Out[31]=",ExpressionUUID->"1303c429-d8a4-4db5-af15-805751f0aed4"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Plot of the coefficients", "Section",
CellChangeTimes->{{3.800187742016594*^9,
3.800187744146961*^9}},ExpressionUUID->"199c3e6a-3658-459b-a32b-\
de545b86b670"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "20", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"0.1", ",", "0.5", ",", "1"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"0.1", ",", "0.5", ",", "1"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800187513233877*^9, 3.8001875150940742`*^9},
3.800252835246128*^9},
CellLabel->"In[72]:=",ExpressionUUID->"322c1b80-08e6-45ae-9fd3-61c806283984"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{0., 0.}, {9.546283751456929*^-8, 9.54628375145693*^-7}}],
LineBox[{{4.893885699864604, 9.54628375145693*^-7}, {
5., -3.419259259259268*^-7}, {6., -2.8750178326474514`*^-9}, {7.,
2.657436268861461*^-10}, {8., -1.3431262746532756`*^-12}, {
9., -1.9027717544520693`*^-13}, {10., 3.6925954123340565`*^-15}, {
11., 1.1159091652520284`*^-16}, {12., -4.816680254756593*^-18}, {
13., -3.269600709255155*^-20}, {14., 4.9143343403488594`*^-21}, {
15., -4.0029261522283654`*^-23}, {16., -4.1116729286621945`*^-24}, {
17., 9.871991212293757*^-26}, {18., 2.57850174196834*^-27}, {
19., -1.3568896514359788`*^-28}, {20., -5.673254558301484*^-31}}],
LineBox[{{1.9944750431861284`, 9.54628375145693*^-7}, {
1.9944751984220623`, -6.063551819537473*^-7}}],
LineBox[{{2.9920526642923857`, -6.063551819537473*^-7}, {
2.9920805389987626`, 9.54628375145693*^-7}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{0., 0.}, {4.773141875728464*^-7, 9.54628375145693*^-7}}],
LineBox[{{6.453132536495969, -6.063551819537473*^-7}, {7.,
8.304488340192101*^-7}, {8., -2.0986348041457245`*^-8}, {
9., -1.4865404331656893`*^-8}, {10., 1.4424200829429937`*^-9}, {11.,
2.1795100883828923`*^-10}, {12., -4.703789311285762*^-11}, {
13., -1.5964847213160376`*^-12}, {14., 1.199788657311744*^-12}, {
15., -4.8863844631693536`*^-14}, {16., -2.509565996497954*^-14}, {
17., 3.012692630704896*^-15}, {18., 3.9344814177984474`*^-16}, {
19., -1.0352246486175476`*^-16}, {20., -2.1641748650748604`*^-18}}],
LineBox[{{1.972972508559169, 9.54628375145693*^-7}, {
1.972973267956575, -6.063551819537473*^-7}}],
LineBox[{{2.961527966929543, -6.063551819537473*^-7}, {
2.9615549839526465`, 9.54628375145693*^-7}}],
LineBox[{{4.871353413114757, 9.54628375145693*^-7}, {
4.875949213788101, -6.063551819537473*^-7}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[{{0., 0.}, {9.54628375145693*^-7, 9.54628375145693*^-7}}],
LineBox[{{9.570598026074808, -6.063551819537473*^-7}, {10.,
3.6925954123340283`*^-7}, {11., 1.1159091652520287`*^-7}, {
12., -4.816680254756563*^-8}, {13., -3.269600709255202*^-9}, {14.,
4.914334340348835*^-9}, {15., -4.002926152228276*^-10}, {
16., -4.111672928662182*^-10}, {17., 9.871991212293638*^-11}, {18.,
2.578501741968344*^-11}, {19., -1.3568896514359666`*^-11}, {
20., -5.673254558301723*^-13}}],
LineBox[{{1.9473675166678552`, 9.54628375145693*^-7}, {
1.947368995494383, -6.063551819537473*^-7}}],
LineBox[{{2.9259158200062267`, -6.063551819537473*^-7}, {
2.925941836398845, 9.54628375145693*^-7}}],
LineBox[{{4.775833562839908, 9.54628375145693*^-7}, {
4.776854093511802, -6.063551819537473*^-7}}],
LineBox[{{6.508704141564319, -6.063551819537473*^-7}, {
6.536919171069466, 9.54628375145693*^-7}}],
LineBox[{{7.9176947950862555`, 9.54628375145693*^-7}, {
7.97360897702265, -6.063551819537473*^-7}}]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAU+2ENoFQeogIPC8UKZ44Vr9kO4HA4uehOj
uhRsoeoEHIye5azWfvHCDsIXcfi+TFXB7tO0fRC+hMO21DXq1ps0oHwZh2Wm
as+YnD/ZQvgKDlWforSeLyjfC+ErOVxte6xbetxrL8wdkce/nnFd+MEGwldz
+NJTmPFLZAGUr+Gw4Ngf9w6zsD0QvpbD7wf5TQ99Hu+G8HUcTO2PnBcw3W4N
4es5rD2vmW1l5AGVN3D45fRbk/GRMJRv6GBnM31jau8+KwjfyOFv+GV/985M
KN/Yod464ZhRg+ouCN/E4ZDHzYOFzMt3AgA3ilgZ
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAU+2EMZDjBa53ihzPHCNfshXA6Hd3tmVYSZ
JEHVCTi8EX4rm1RqDOWLOMgeTVk9IYMNql7CofbTW9OJqvv2QfgyDvt483wa
7q62g/AVHNYtfvBlXUcYVF7J4YGK6+rwN/5QvoqDQYDw4ivHJaDq1RyYN4lo
VXx5awvhazjEVDNt+Xf75F4IX8thymbViW9Fa6B8HYcffHdV4qRLoer1HLae
sFzD2qQNlTdwCNz9/m6IowyUb+hwyKfq2mml1zYQvpHD7Tdugdci90D5xg6+
D3cKzbk2dw+Eb+LwZfv6fOZvznsA5KJZag==
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAU+2KPSDA4yxwuBaM1+CJfD4f6eWRVhJkVQ
eQGHa8JvZZNKg6F8EYe/R1JWT8gwg6qXcPD89NZ0ouq/fRC+jEMHb55Pw93f
dhC+gkPj4gdf1nVsg8orOfSruK4Of7MfyldxeOsvvPjK8RlQ9WoOyzeKaFV8
qYXyNRxYq5m2/LudCVWv5aCzWXXiW1EdKF/HYSnfXZU4aVOoej0HlxOWa1ib
fu+F8A0cLu16fzfE8Q+Ub+jg5FN17bTSbVsI38jB+41b4LXIPVC+scOGBzuF
5lxbC1Vv4lC3fX0+87fkvQCjK1wL
"]]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 20.}, {-6.063551819537473*^-7, 9.54628375145693*^-7}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"0.1`", "0.5`", "1"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.800187517971747*^9, 3.8002528409585867`*^9},
CellLabel->"Out[72]=",ExpressionUUID->"a53c8364-c0e6-4893-876b-6076df4fde18"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "20", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"0.5", ",", "1", ",", "2", ",", "3"}], "}"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"0.5", ",", "1", ",", "2", ",", "3"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8001876171444817`*^9, 3.800187620245058*^9}, {
3.800187673002173*^9, 3.800187678678154*^9}, 3.800252849248801*^9},
CellLabel->"In[73]:=",ExpressionUUID->"3548fd3b-492c-4629-9c62-ecefcf188899"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{0., 0.}, {0.0021156556875429285`, 0.004231311375085857}}],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBmIQ/dhG9pWaLbuDdG6T7Z7LWfsZwIDD4d2eWRVhJkn2
EL6Awxvht7JJpcZQvoiD7NGU1RMy2KDqJRxqP701nai6bx+EL+OwjzfPp+Hu
ajsIX8Fh3eIHX9Z1hEHllRweqLiuDn/jD+WrOBgECC++clwCql7NgXmTiFbF
l7e2EL6GQ0w105Z/t0/uhfC1HKZsVp34VrQGytdx+MF3VyVOuhSqXs9h6wnL
NaxN2lB5A4fA3e/vhjjKQPmGDod8qq6dVnptA+EbOdx+4xZ4LXIPlG/s4Ptw
p9Cca3P3QPgmDl+2r89n/ua8BwC8Wlpj
"]],
LineBox[{{1.9709144971688772`, 0.004231311375085857}, {
1.9745661147303721`, -0.0032747913902092646`}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{0., 0.}, {0.004231311375085857, 0.004231311375085857}}],
LineBox[{{3.065442678612758, 0.004231311375085857}, {4.,
0.0011876543209876542`}, {5., -0.0003419259259259259}, {
6., -0.000028750178326474624`}, {7., 0.00002657436268861454}, {
8., -1.3431262746532542`*^-6}, {9., -1.9027717544520651`*^-6}, {10.,
3.6925954123340283`*^-7}, {11., 1.1159091652520287`*^-7}, {
12., -4.816680254756563*^-8}, {13., -3.269600709255202*^-9}, {14.,
4.914334340348835*^-9}, {15., -4.002926152228276*^-10}, {
16., -4.111672928662182*^-10}, {17., 9.871991212293638*^-11}, {18.,
2.578501741968344*^-11}, {19., -1.3568896514359666`*^-11}, {
20., -5.673254558301723*^-13}}],
LineBox[{{1.9433598102762344`, 0.004231311375085857}, {
1.9504708550012508`, -0.0032747913902092646`}}],
LineBox[{{2.871346069422438, -0.0032747913902092646`}, {
2.996447782177357, 0.004231311375085857}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[{{0., 0.}, {0.008462622750171714, 0.004231311375085857}}],
LineBox[{{4.069370050230298, 0.004231311375085857}, {
5., -0.0027354074074074073`}, {6., -0.000460002853223594}, {7.,
0.0008503796060356653}, {8., -0.00008596008157780827}, {
9., -0.00024355478456986434`}, {10., 0.00009453044255575112}, {11.,
0.00005713454926090387}, {12., -0.0000493228058087072}, {
13., -6.696142252554654*^-6}, {14., 0.000020129113458068827`}, {
15., -3.2791971039054037`*^-6}, {16., -6.736564926320119*^-6}, {17.,
3.2348540804443793`*^-6}, {18., 1.689846901616374*^-6}, {
19., -1.77850240393015*^-6}, {20., -1.4872096429314468`*^-7}}],
LineBox[{{1.8923836395248455`, 0.004231311375085857}, {
1.9058946245023767`, -0.0032747913902092646`}}],
LineBox[{{2.8112532370484766`, -0.0032747913902092646`}, {
2.92772724547547, 0.004231311375085857}}]}, {
Hue[0.37820393249936934`, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
LineBox[{{0., 0.}, {0.012693934125257572`, 0.004231311375085857}}],
LineBox[{{5.862958907000721, -0.0032747913902092646`}, {
6., -0.0023287644444444444`}, {6.746622583223943,
0.004231311375085857}}],
LineBox[{{7.299360739017851, 0.004231311375085857}, {
8., -0.0009791390542222222}, {
8.721399003122832, -0.0032747913902092646`}}],
LineBox[{{9.134653784308624, -0.0032747913902092646`}, {10.,
0.0024227118500323554`}, {11., 0.002196444009965568}, {
12., -0.002844201523631203}, {13., -0.0005791999568424313}, {14.,
0.002611678756169325}, {15., -0.0006381957231799041}, {
16., -0.001966600415593043}, {17., 0.0014165228381001864`}, {18.,
0.001109960450845253}, {19., -0.0017522895075945389`}, {
20., -0.00021979350551987325`}}],
LineBox[{{1.8462623421783506`, 0.004231311375085857}, {
1.8655637492891095`, -0.0032747913902092646`}}],
LineBox[{{2.75891431852922, -0.0032747913902092646`}, {
2.8678738747996335`, 0.004231311375085857}}],
LineBox[{{4.324161112981501, 0.004231311375085857}, {
4.700956687072662, -0.0032747913902092646`}}]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAU+2EMZDjBa53ihzPHCNfshXA6Hd3tmVYSZ
JEHVCTi8EX4rm1RqDOWLOMgeTVk9IYMNql7CofbTW9OJqvv2QfgyDvt483wa
7q62g/AVHNYtfvBlXUcYVF7J4YGK6+rwN/5QvoqDQYDw4ivHJaDq1RyYN4lo
VXx5awvhazjEVDNt+Xf75F4IX8thymbViW9Fa6B8HYcffHdV4qRLoer1HLae
sFzD2qQNlTdwCNz9/m6IowyUb+hwyKfq2mml1zYQvpHD7Tdugdci90D5xg6+
D3cKzbk2dw+Eb+LwZfv6fOZvznsA5KJZag==
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAU+2KPSDA4yxwuBaM1+CJfD4f6eWRVhJkVQ
eQGHa8JvZZNKg6F8EYe/R1JWT8gwg6qXcPD89NZ0ouq/fRC+jEMHb55Pw93f
dhC+gkPj4gdf1nVsg8orOfSruK4Of7MfyldxeOsvvPjK8RlQ9WoOyzeKaFV8
qYXyNRxYq5m2/LudCVWv5aCzWXXiW1EdKF/HYSnfXZU4aVOoej0HlxOWa1ib
fu+F8A0cLu16fzfE8Q+Ub+jg5FN17bTSbVsI38jB+41b4LXIPVC+scOGBzuF
5lxbC1Vv4lC3fX0+87fkvQCjK1wL
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAU+2EPoB1CawUHmeCEQrdkP4XI43N8zqyLM
pAkqL+BwTfitbFJpMZQv4vD3SMrqCRlpUPUSDp6f3ppOVLWD8mUcOnjzfBru
ekPVKzg0Ln7wZV2HGFReyaFfxXV1+Bt9KF/F4a2/8OIrxyWg6tUclm8U0ar4
wgvlaziwVjNt+XebE6pey0Fns+rEt6J39kH4Og5L+e6qxEl/tYPw9RxcTliu
YW06DZU3cLi06/3dEEeYekMHJ5+qa6eVTkPVGzl4v3ELvBa5B8o3dtjwYKfQ
nGt7oepNHOq2r89n/ta8DwCaGlm4
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAU+2IeCwVV7qICDzPFCIFqzH8LlcPCXfrGl
0a8bKi/gELhtVSLfk1YoX8TBjG2ugNWLJqh6CYegyQpPjgonQ/kyDjfKek44
FFdB1Ss4pL250nuOKwAqr+TwtcqJv5G7EMpXcZjVb916+kYyVL2ag94rsWdu
/xKhfA0HLYH7Ajt90qHqtRyWtazNX/fLCcrXcbDq540WS02FqtdzWF9s/nDS
SxeovIHDbzeWfieZBCjf0MFA/MGFYNNwqHojh7W3Wr426QdB+cYOv+VNOxZt
jYGqN3Ew3sF3jfu8zn4A+AZWGw==
"]]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[
1.6]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[
1.6]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, \
{}}}, {DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 20.}, {-0.0032747913902092646`, 0.004231311375085857}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"0.5`", "1", "2", "3"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.922526, 0.385626, 0.209179],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.6150173333333333, 0.25708400000000003`,
0.13945266666666667`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.922526, 0.385626, 0.209179];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.922526, 0.385626, 0.209179], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True", ",", "True"}],
"}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.8001876216108027`*^9, {3.800187674967348*^9, 3.800187679428812*^9},
3.800252851597714*^9},
CellLabel->"Out[73]=",ExpressionUUID->"e9bbbe02-9afe-415d-92f8-31790c8d6ec0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "20", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"5", ",", "25", ",", "100", ",", "200"}], "}"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"5", ",", "25", ",", "100", ",", "200"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800187696307919*^9, 3.800187699574429*^9},
3.800252870691618*^9},
CellLabel->"In[74]:=",ExpressionUUID->"d859a61c-05f5-423c-aeec-df9b4ecd1493"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBWIQjR18sJ81EwRO2kMFHGSOFwLRmv0QLoeDeM5BsZyD
06DyAg7/8w75ZabPg/JFHOIzEtxlHy2FqpdwUKzWepibNgnKl3HYvM3/U67T
Vqh6BYe8boZfhbVTofJKDrdtresl2A9D+SoOj1ZrrWotOwRVr+aQPKt78sWn
p6F8DYds3WrrDVL3oOq1HIzWhxTH5B+B8nUcftmHTA81+gxVr+eg8H2+wS3X
+1B5A4cjTwPCpguzHIDwDR2iLfhm/JPkcIDwjRzC/Q+mXKzkh/KNHd40HlkW
uUUFqt7EoXVS0kurAMYDABfXWZ4=
"]]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{0., 0.}, {1., 0.04}, {2., -0.05555555555555555}, {3.,
0.1111111111111111}, {4., 0.7422839506172839}, {
5., -5.342592592592593}, {6., -11.23053840877915}, {7.,
259.51526063100135`}, {8., -327.9116881477671}, {
9., -11613.597134106843`}, {10., 56344.53448996014}, {11.,
425685.564137279}, {12., -4.593544249302448*^6}, {
13., -7.795335553300862*^6}, {14., 2.929171526639959*^8}, {
15., -5.96482478414219*^8}, {16., -1.5317175271593712`*^10}, {
16.483430754616556`, 3.653428189939*^10}}],
LineBox[{{18.06634353153246, 3.653428189939*^10}, {
18.077807167949604`, -6.0889334670812294`*^10}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[{{0., 0.}, {1., 0.01}, {2., -0.05555555555555555}, {3.,
0.4444444444444444}, {4., 11.876543209876543`}, {
5., -341.9259259259259}, {6., -2875.0178326474625`}, {7.,
265743.6268861454}, {8., -1.343126274653254*^6}, {
9., -1.9027717544520652`*^8}, {10., 3.692595412334028*^9}, {
10.304376251162438`, 3.653428189939*^10}}],
LineBox[{{11.015229810214825`, 3.653428189939*^10}, {
11.034998125143986`, -6.0889334670812294`*^10}}],
LineBox[{{13.006596910765822`, -6.0889334670812294`*^10}, {
13.006616604119152`, 3.653428189939*^10}}],
LineBox[{{14.109343672034772`, 3.653428189939*^10}, {
14.109345839721062`, -6.0889334670812294`*^10}}],
LineBox[{{16.039984532628857`, -6.0889334670812294`*^10}, {
16.039984533576266`, 3.653428189939*^10}}],
LineBox[{{18.018648651053006`, 3.653428189939*^10}, {
18.01864865105371, -6.0889334670812294`*^10}}]}, {
Hue[0.37820393249936934`, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
LineBox[{{0., 0.}, {1., 0.005}, {2., -0.05555555555555555}, {3.,
0.8888888888888888}, {4., 47.50617283950617}, {
5., -2735.4074074074074`}, {6., -46000.2853223594}, {7.,
8.503796060356652*^6}, {8., -8.596008157780826*^7}, {
9., -2.4355478456986435`*^10}, {9.062794965641341,
3.653428189939*^10}}],
LineBox[{{11.011443829284556`, 3.653428189939*^10}, {
11.011463355344029`, -6.0889334670812294`*^10}}],
LineBox[{{13.00331556314938, -6.0889334670812294`*^10}, {
13.003315567973269`, 3.653428189939*^10}}],
LineBox[{{14.057834165905097`, 3.653428189939*^10}, {
14.05783416618501, -6.0889334670812294`*^10}}],
LineBox[{{16.02040011106987, -6.0889334670812294`*^10}, {
16.020400111069897`, 3.653428189939*^10}}],
LineBox[{{18.00941208688867, 3.653428189939*^10}, {
18.00941208688867, -6.0889334670812294`*^10}}]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAU+2M+aCQIn7aECDjLHC4FozX4Il8NBPOeg
WM7BaVB5AYf/eYf8MtPnQfkiDvEZCe6yj5ZC1Us4KFZrPcxNmwTlyzhs3ub/
KddpK1S9gkNeN8OvwtqpUHklh9u21vUS7IehfBWHR6u1VrWWHYKqV3NIntU9
+eLT01C+hkO2brX1Bql7UPVaDkbrQ4pj8o9A+ToOv+xDpocafYaq13NQ+D7f
4Jbrfai8gcORpwFh04VZDkD4hg7RFnwz/klyOED4Rg7h/gdTLlbyQ/nGDm8a
jyyL3KICVW/i0Dop6aVVAOMBACGTWaA=
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAU+2FeLrHN/WLXEHirgIHO8EIjW7IdwOaD8
PVB5AYftz9pdTx14DuWLOLxV3TL9QpzoAQhfwsEvOkaRs0wNypdxEC5812hn
UeAA4Ss4/Fjj7zatrgQqr+Qg8+lx3pl1x6B8FYfoDV1Sgs2voerVHN4br3UM
+y3pCOFrODhO+sL/qDXwIISv5cDqkfl44Z5YKF/HYfHvlQv6SzdC1es5KLKa
Xj9z7CBU3sDhzX6b+DPtPIcgfEOH2aoqIXwZpk4QvpHDosVSZ/9UJEL5xg7i
6u2rtu2eA1Vv4sAw98KkjRzzDgEA4IRajw==
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAU+2FeLrHN/WNViDxVwkDleCERr9kO4HFD+
Hai8gMP2Z+2upw6oO0D4Ig5vVbdMvxBXegDCl3Dwi45R5CxbBuXLOAgXvmu0
sxBwhPAVHH6s8XebVmdyEMJXcpD59DjvzLplUL6KQ/SGLinB5tdQ9WoO743X
Oob9tnSC8DUcHCd94X/UOvEQhK/lwOqR+Xjhnr1Qvo7D4t8rF/SXGjpD+HoO
iqym188cSzwM4Rs4vNlvE3+m/QyUb+gwW1UlhC9D1AXCN3JYtFjq7J+KRCjf
2EFcvX3Vtt17jkD4Jg4Mcy9M2shx7wgAlNla5A==
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAU+2FeLrHN/WFViDxVwkDleCERr9kO4HFD+
G6i8gMP2Z+2upw64O0D4Ig5vVbdMvxC39ACEL+HgFx2jyFn2DMqXcRAufNdo
Z5HgCOErOPxY4+82rW7KQQhfyUHm0+O8M+vEDkH4Kg7RG7qkBJuznSB8NYf3
xmsdw36fhPI1HBwnfeF/1Gp4GMLXcmD1yHy8cE8ulK/jsPj3ygX9pR+dIXw9
B0VW0+tnjhkegfANHN7st4k/074Gyjd0mK2qEsKXweoK4Rs5LFosdfZPRSKU
b+wgrt6+atvuM0chfBMHhrkXJm3k+HcUAB9iW44=
"]]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[
1.6]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[
1.6]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, \
{}}}, {DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 20.}, {-6.0889334670812294`*^10, 3.653428189939*^10}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"5", "25", "100", "200"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.922526, 0.385626, 0.209179],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.6150173333333333, 0.25708400000000003`,
0.13945266666666667`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.922526, 0.385626, 0.209179];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.922526, 0.385626, 0.209179], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True", ",", "True"}],
"}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.800187701044457*^9, 3.800252871492137*^9},
CellLabel->"Out[74]=",ExpressionUUID->"8ba9d687-92c8-4daf-adba-5aa60f67d78e"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Singularity structure", "Section",
CellChangeTimes->{
3.8001877272408524`*^9},ExpressionUUID->"0d9de29c-52d5-49a5-99ce-\
c99cd55b7634"],
Cell[CellGroupData[{
Cell["\<\
Can we give a physical signification to all the singularities ?\
\>", "Subsection",
CellChangeTimes->{{3.800187824542141*^9,
3.800187826453555*^9}},ExpressionUUID->"60a1c53c-e29b-478a-ab95-\
abe0c1c7fcd4"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"H\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "2"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800187849928152*^9, 3.800187861161106*^9}},
CellLabel->
"In[131]:=",ExpressionUUID->"bcdacb72-a592-4dfb-8fea-6c60b17ad205"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
"\[Epsilon]", "\[Rule]",
"1.26376261582597333443134119895431337772`28.795880017344075"}], ",",
RowBox[{
"\[Lambda]", "\[Rule]",
"3.04128784747792000329402359686318426813`28.795880017344075"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"\[Epsilon]", "\[Rule]",
"1.26376261582597333443134119895431337772`28.795880017344075"}], ",",
RowBox[{
"\[Lambda]", "\[Rule]",
"3.04128784747792000329402359686318426813`28.795880017344075"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
RowBox[{
"-", "0.2499999999999999999999999999971797524503437666968812564849`28.\
688084587924042"}], "-",
RowBox[{
"1.35400640077266006007664726137887625495`28.7920324215085", " ",
"\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{
"-", "0.7499999999999999999999999999954450884752717195483320444276`28.\
74260353277321"}], "-",
RowBox[{
"2.03100960115899009011497089206877300294`28.78476227290612", " ",
"\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
RowBox[{
"-", "0.2499999999999999999999999999971797524503437666968812564849`28.\
688084587924042"}], "-",
RowBox[{
"1.35400640077266006007664726137887625495`28.7920324215085", " ",
"\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{
"-", "0.7499999999999999999999999999954450884752717195483320444276`28.\
74260353277321"}], "-",
RowBox[{
"2.03100960115899009011497089206877300294`28.78476227290612", " ",
"\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
RowBox[{
"-", "0.2499999999999999999999999999971797524503437666968812564849`28.\
688084587924042"}], "+",
RowBox[{
"1.35400640077266006007664726137887625495`28.7920324215085", " ",
"\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{
"-", "0.7499999999999999999999999999954450884752717195483320444276`28.\
74260353277321"}], "+",
RowBox[{
"2.03100960115899009011497089206877300294`28.78476227290612", " ",
"\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
RowBox[{
"-", "0.2499999999999999999999999999971797524503437666968812564849`28.\
688084587924042"}], "+",
RowBox[{
"1.35400640077266006007664726137887625495`28.7920324215085", " ",
"\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{
"-", "0.7499999999999999999999999999954450884752717195483320444276`28.\
74260353277321"}], "+",
RowBox[{
"2.03100960115899009011497089206877300294`28.78476227290612", " ",
"\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.0661875945537065052950075642978412522757198688576470051505`28.\
77048471616815", "-",
RowBox[{
"0.7658850226928895612708018154320556538894811122748743846021`29.\
397940008672034", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{
"-", "0.3403933434190620272314674735228392126442119685245960440398`29.\
031045514668527"}], "-",
RowBox[{
"1.4183055975794251134644478063548087575992766865058079901977`29.\
397940008672034", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.0661875945537065052950075642978412522757198688576470051505`28.\
77048471616815", "+",
RowBox[{
"0.7658850226928895612708018154320556538894811122748743846021`29.\
397940008672034", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{
"-", "0.3403933434190620272314674735228392126442119685245960440398`29.\
031045514668527"}], "+",
RowBox[{
"1.4183055975794251134644478063548087575992766865058079901977`29.\
397940008672034", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"-", "0.263762615825973334431341198949817176809850785602562772441`29.\
397940008672037"}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"-", "1.5412878474779200032940235968860328464698285768799022062038`29.\
397940008672037"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"-", "0.263762615825973334431341198949817176809850785602562772441`29.\
397940008672037"}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"-", "1.5412878474779200032940235968860328464698285768799022062038`29.\
397940008672037"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"\[Epsilon]", "\[Rule]",
"0.250000000000000000000000000003886389665610962383822995812`29.\
397940008672037"}], ",",
RowBox[{"\[Lambda]", "\[Rule]", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"\[Epsilon]", "\[Rule]",
"0.250000000000000000000000000003886389665610962383822995812`29.\
397940008672037"}], ",",
RowBox[{"\[Lambda]", "\[Rule]", "0"}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.800187863663967*^9},
CellLabel->
"Out[133]=",ExpressionUUID->"5351795f-c7d2-4cc5-9a31-8e02d5330852"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
3.04128784747792, 0.}}, {{3.04128784747792,
0.}}, {{-0.75, -2.03100960115899}}, {{-0.75, -2.03100960115899}}, \
{{-0.75, 2.03100960115899}}, {{-0.75,
2.03100960115899}}, {{-0.340393343419062, -1.4183055975794252`}}, \
{{-0.340393343419062, 1.4183055975794252`}}, {{-1.54128784747792,
0.}}, {{-1.54128784747792, 0.}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.80018786399437*^9},
CellLabel->
"During evaluation of \
In[131]:=",ExpressionUUID->"6e4da88d-aece-4c54-b324-d3caaf423e10"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158278610743*^9, 3.800158290872142*^9},
3.800158341741818*^9, {3.800158433517392*^9, 3.8001584377174377`*^9}, {
3.80025892839108*^9, 3.80025893667137*^9}},
CellLabel->
"In[103]:=",ExpressionUUID->"bf8846fc-cc5e-42d6-b529-b0bb9ad6ef59"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{"-", "0.3403933434190623`"}], "-",
RowBox[{"1.4183055975794254`", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{"-", "0.3403933434190623`"}], "+",
RowBox[{"1.4183055975794254`", " ", "\[ImaginaryI]"}]}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{3.8001582338106213`*^9, 3.8001582919267*^9,
3.8001583424528513`*^9, 3.800158439888423*^9, 3.800258938665888*^9},
CellLabel->
"Out[103]=",ExpressionUUID->"1a933c9c-541d-4321-a1bd-2625af36f5d5"]
}, Open ]],
Cell[TextData[{
"There is a pair of complex conjugate branch point between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],ExpressionUUID->
"3467cd1e-48ad-46ac-bf17-3dea180e33dc"],
"and ",
Cell[BoxData[
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"], TraditionalForm]],ExpressionUUID->
"3fd01f7f-0f46-4986-b468-b517ba7ab4cb"]
}], "Text",
CellChangeTimes->{{3.800158583613742*^9,
3.800158635398328*^9}},ExpressionUUID->"7b0f9a8e-40ae-4f81-a85a-\
0b4e16541d98"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.8001584637379913`*^9, 3.800158464134795*^9}, {
3.8002589469477243`*^9, 3.800258951258066*^9}},
CellLabel->
"In[104]:=",ExpressionUUID->"bcecc14b-884d-4557-babf-8ec30e3d3eb4"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{"-", "0.7499999999999997`"}], "-",
RowBox[{"2.03100960115899`", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{"-", "0.7499999999999997`"}], "+",
RowBox[{"2.03100960115899`", " ", "\[ImaginaryI]"}]}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{3.8001584644905357`*^9, 3.8002589521382637`*^9},
CellLabel->
"Out[104]=",ExpressionUUID->"3ef05d4e-e8af-41c0-b0af-748113dab88a"]
}, Open ]],
Cell[TextData[{
"There s a pair of complex conjugate branch point between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],ExpressionUUID->
"b1bdaccb-1486-46e6-a525-f28dbd24b899"],
"and the ",
Cell[BoxData[
FormBox[
SubscriptBox["sp", "z"], TraditionalForm]],ExpressionUUID->
"8e9c0903-1b65-49fd-8b50-4a3cd8b8f1a7"],
" singlet (x2 degen)"
}], "Text",
CellChangeTimes->{{3.800158662872758*^9, 3.800158703136058*^9}, {
3.800158955325688*^9, 3.8001589561925917`*^9}, {3.800159692397304*^9,
3.800159701502852*^9}, 3.8001597753064337`*^9, {3.8002592717226963`*^9,
3.800259273786427*^9}, {3.800259424891251*^9,
3.8002594292941732`*^9}},ExpressionUUID->"6c283925-cd31-4f0e-9613-\
89b9bb45a247"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158369960648*^9, 3.800158370393867*^9}, {
3.800158408929471*^9, 3.800158409337016*^9}, {3.800158446099082*^9,
3.80015845077838*^9}, {3.800258976395669*^9, 3.80025898174757*^9}},
CellLabel->
"In[105]:=",ExpressionUUID->"44af6aed-b238-4a93-89e8-1340e433a148"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]", "3.0412878474779195`"}], "}"}],
"}"}]], "Output",
CellChangeTimes->{3.800158371081614*^9, 3.800158409644907*^9,
3.8001584513624277`*^9, 3.800258982393457*^9},
CellLabel->
"Out[105]=",ExpressionUUID->"5b5beadd-cd77-4464-a293-83098e0e5d37"]
}, Open ]],
Cell[TextData[{
"There is a CI between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],ExpressionUUID->
"02bb7ac2-f9c2-40fb-ac80-e666887ecffa"],
" and ",
Cell[BoxData[
FormBox[
SubscriptBox["sp", "z"], TraditionalForm]],ExpressionUUID->
"97cfaa3c-8d04-44c5-9d74-60882bf4fb94"],
" triplet"
}], "Text",
CellChangeTimes->{{3.80015883203883*^9, 3.800158852480497*^9}, {
3.800158963935526*^9, 3.800158964785277*^9}, {3.8001597693529873`*^9,
3.800159771491109*^9}, {3.800259434147972*^9,
3.800259461951907*^9}},ExpressionUUID->"82eff177-42be-4dd7-9453-\
a54f54529238"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.80015887242031*^9, 3.8001588727346163`*^9}, {
3.800259335892006*^9, 3.8002593503862677`*^9}},
CellLabel->
"In[106]:=",ExpressionUUID->"8ea8f494-540f-46b9-add5-8510ec0c1ba8"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"-", "1.5412878474779201`"}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.800158873572803*^9, 3.800259359884632*^9},
CellLabel->
"Out[106]=",ExpressionUUID->"355298db-6a2f-4e31-b53c-ce707c2ed739"]
}, Open ]],
Cell[TextData[{
"There is a CI between ",
Cell[BoxData[
FormBox[
RowBox[{" ",
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"],
TraditionalForm]}], TraditionalForm]],ExpressionUUID->
"b300b885-6f3f-4357-a6d1-5c2ea0b2dd9f"],
" and ",
Cell[BoxData[
FormBox[
SubscriptBox["sp", "z"], TraditionalForm]],ExpressionUUID->
"3a74ae82-46ad-4f8b-bf02-4b2281731928"],
" triplet"
}], "Text",
CellChangeTimes->{{3.800158583613742*^9, 3.800158635398328*^9}, {
3.800159734007469*^9, 3.8001597393953323`*^9}, {3.800159781544524*^9,
3.800159796125751*^9}, {3.8002594681654167`*^9,
3.800259498160296*^9}},ExpressionUUID->"afb9d0d5-37ff-48e1-8f85-\
39ad49f0fc79"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158879878248*^9, 3.80015888237202*^9}, {
3.800259508747184*^9, 3.800259514430435*^9}},
CellLabel->
"In[107]:=",ExpressionUUID->"4222a322-77a9-47ac-9cd7-b96c801433e8"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800158882705681*^9, 3.8002595168576736`*^9},
CellLabel->
"Out[107]=",ExpressionUUID->"a79d8ce1-ea68-4a85-bc5a-b69846a2058b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158986206258*^9, 3.800158995955509*^9}, {
3.800259521761552*^9, 3.8002595271311703`*^9}},
CellLabel->
"In[108]:=",ExpressionUUID->"09b7b442-f051-408e-be5b-ac401dacdf6a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]", "0.`"}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.800158989306931*^9, 3.8001589970199614`*^9},
3.800259529362917*^9},
CellLabel->
"Out[108]=",ExpressionUUID->"2d869042-8314-4786-b0c8-e39167a5e138"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["R dependance", "Subsection",
CellChangeTimes->{{3.80025956583044*^9,
3.800259568077898*^9}},ExpressionUUID->"f911d4c6-5cfc-49b9-9ae3-\
8e185e5e9327"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"H\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "2"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{3.800259592944755*^9},
CellLabel->
"In[109]:=",ExpressionUUID->"8af7f735-ca14-4a98-8c03-1fd2345b57a9"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
3.04128784747792, 0.}}, {{3.04128784747792,
0.}}, {{-0.75, -2.03100960115899}}, {{-0.75, -2.03100960115899}}, \
{{-0.75, 2.03100960115899}}, {{-0.75,
2.03100960115899}}, {{-0.340393343419062, -1.4183055975794252`}}, \
{{-0.340393343419062, 1.4183055975794252`}}, {{-1.54128784747792,
0.}}, {{-1.54128784747792, 0.}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.800259595706414*^9},
CellLabel->
"During evaluation of \
In[109]:=",ExpressionUUID->"b1d5ba64-9c3b-4954-ab9e-30b07e59bdfa"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"H\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "3"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800259675970623*^9, 3.800259676468936*^9}},
CellLabel->
"In[119]:=",ExpressionUUID->"f3b52bee-17e8-4410-a817-4eea81fadeff"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
2.0275252316519468`, 0.}}, {{2.0275252316519468`,
0.}}, {{-0.5, -1.35400640077266}}, {{-0.5, -1.35400640077266}}, {{-0.5,
1.35400640077266}}, {{-0.5,
1.35400640077266}}, {{-0.22692889561270801`, -0.9455370650529501}}, \
{{-0.22692889561270801`, 0.9455370650529501}}, {{-1.0275252316519468`,
0.}}, {{-1.0275252316519468`, 0.}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.80025967077693*^9, 3.8002596771397047`*^9}},
CellLabel->
"During evaluation of \
In[119]:=",ExpressionUUID->"2932b857-d006-42b0-96f1-bfa322b4f49c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]WCE", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]], "Input",
CellChangeTimes->{{3.800254865364702*^9, 3.800254870212039*^9}},
CellLabel->"In[92]:=",ExpressionUUID->"ad74092e-deab-4815-8c86-07eef5c8d8ab"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
FractionBox["450", "661"], "+",
FractionBox[
RowBox[{"1875", " ", "\[ImaginaryI]"}], "661"]}], "R"]}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
FractionBox["450", "661"], "-",
FractionBox[
RowBox[{"1875", " ", "\[ImaginaryI]"}], "661"]}], "R"]}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{3.800254871554925*^9},
CellLabel->"Out[92]=",ExpressionUUID->"8be537fb-e64e-4b3f-9c0f-8b49b03be012"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[",
FractionBox[
RowBox[{
FractionBox["450", "661"], "-",
FractionBox[
RowBox[{"1875", " ", "\[ImaginaryI]"}], "661"]}], "R"], "]"}], ",",
"1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",", "0.1", ",", "1000"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0.96", ",", "25"}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.8002549064256783`*^9, 3.8002549300657587`*^9},
3.800258350062706*^9, {3.8002583874849453`*^9, 3.800258397439683*^9}},
CellLabel->
"In[101]:=",ExpressionUUID->"0c773149-d703-4bb6-94a6-7b5cc0ce8fae"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwdiQk4FOoeh0cj0aSMJdyKRMpMNIwsh/r+5FAkWZLtVjgV3a4lJELk4rTJ
VooKSSHGUFkSH1IIw0SnQWWLIpkzGIxpxu3e3/O8z/u8z0/DJ9DpxAoCgRDz
i/+5QO1jyZSuRAPh/zOFfQEG54IFhIbyBwdu/uVmAqSO9BHqLKHB+KADo+V3
E2Dp8A+OTxEafPNOVLQYmMDhsaptnkO//pjN9nNrTMDHa3efVQuhwUNT8U9x
ozFE2+4zV7lJaKApVZM69YyhQvvoCkwjNMj5EvqICkZgVK+wSbVbjJ3zDZZj
iYYg+ZrU5NMsxulNhpzBOTq8ayeeKqkWY9KNHp/943QI6JtlojwxFpwo/Ld5
Gx0ez/VYnTwrxvV3jGLzbtBBhZpx5qmiGNeSCgePq9FBkKn40t5dhEuJesMX
9xrAy2Alz0sjQkzbdt7uSTENXix/7Zb6IMQcxvkbNfdpUH39hfXVdiGWsGT7
dKfR4FnRMYOMZ0L8RndljvIFGpQMF8k8ShTiMnJrE+kADbId91S3UYRYn7Qw
tHpwJ0Tqn1IihyxhzckSJUqEHhjzqrtyiAJsNgg/ugaoYBTDVKcuLGLRmLzL
9jdUMCQVBlZOLmI/4sKNVCYVaFsz13WyfzW7yOlWAhUo7mEOSzmLOKJ8MPMU
jQpqjfpdLuaLOPIHY3TTZQpIphazZMIWsAbdNjPOWgfYtLudIeN8TOmLtkmY
1ob1Mm0TPf18fJA+rzfySRu8hvkrDbv4mLMmYLtdpzZ8S3XYM1fFx8oennoW
JdpAmF1RFnqZj72+/Zn28rQ20J77p4Tt4ONX3aX0iYmtkGxq7Bx+dg5foE9z
Pv+tBXaW7ziR4hnslv7SNFxdE9JUtbqGeTN4WYzzA+Q0gfN32Ot9YzP4uPeR
wWAJTfgjR7VifccMnpZXf5Q9ugVifh6/WnFnBufufB54oXALlFdyd08azuDD
KXULvoZbQJkqm+/+Lx52WaoJzXLRgDfbUvqDmFy8HEBIjfVXh4ov3/yeZXLx
/j8OvrdwVIecPIuFhRgudttP71YyVYfzG2YVLtpzcQhLismXVgedda721yen
cXXu1sT0IjW4Nr+hoUhrGmt//LrFbHoTOL9+XDByewpHPRpb3fefjTDkg4Nc
4iZwYnzCZv8vquBVeSnT4vQE9orQD2hmq8IHGet6PecJjG28t+tiVWAxO0gy
Wyew5ouiWu0sVagV9z2qa/2GgxjcQzWHVOFW1txHbblv2E8+cMy5QQXs3+ns
F9wfx+c3yadtKlKGFxYZGvdfjuJd29qt1uUogVF63s/b+aN4MXKXhl6yEjz9
wviQfmUU33wrT/WIVoKSpLbrl91Gsb5o1f0+TyW41ykWhM6N4Lmg1pFQVSWI
dfd/Z7djBIeslSQrZiqCdfCeeEH2EE6KEoyWZSvAAwt2W9F8Px4VWSnbt5Kh
htzInGnpx/KV1ULXWjJ0DzMzze70Y5fpcqfTDDKI4lJOdJr1Y4NbDPPSDDK4
NTlI8GL7sDRpt0W+NxnW7mWZmJA4OL7OdbOtSA4irNofv1F/jx86pvW4mMlB
XvIVUksqCwe7ZXbO5cnCQb89x3casfByHEWj9ZosLFnMPMvs78Si9h23isNl
wYnvftRPsxNbU21q7trLwgovnXKZ5+14+Yyo0nBpDfjotLoe4LRiYUW3JcV1
DWg2r3zAVnuFMWlDzYgKCdLGiSNBZQzsXeDZ494iDU66IRE/NErx+1xZD61n
0kAOHZE7nfEEXykdaBblSkOKRCPyjSjE6xULVT5FSsP1jTH3Du99gMtOLYUf
2CkNarbDvhNeSfh8/++UL1mrIN5CgfaTkI9MAl+9LYqSgpNZVw557GhErJot
XeZ+khAZINmmeLkR3SK7Xopwl4RkyxiLrrFGFJRwdbTBVhIqJ4MNrHKakK/M
htRAXUlYZeauqCffjExvchrtZolQOLCNI7H4BiXU2vcuxhLh+8bXx4pedSD6
KjkGL38FVHddNI7S7UUsWRsuS0oCGuq2k+qP9aK3kdNuYQICtD5hf15O7UXZ
A/q/aU8RoC9JMzF+vhfl8+stH7MJsIRaeq/g94iyqzZp6z0CmDHXnr3j+AHN
u7n3kowIUJ9yr6QyrB/VssqYKZ/FaKTwU8ri0SEkXRUQXSUUokSyiJMfPoS+
7zf4TXdciKiRGzUcUoaQb1Py1afdQhRq51le0DiECtXW1fAKhEhqmsN20hpG
42pmHw0chUiH3itfOjGM2jri7OqKl1BQ3dsM79BRVEzExHv+AiRmV91+e3kc
WXYpPFpQWECKD8/s68gdR7I3jVefJC4gnXMai51V4+hkebbz0Mw8cvnH1SPs
sXFUVScRusieR8U+R9dzLL4iffMC0fOUeXR4VjJjTPAVsap2DByVm0clik43
CKcn0MNksZ6eCh95HJlKMLKdQlp2prdl9s2iAOqROIrvFPqiyvSXMp1F8cuN
UWpRUyikKOj7WsosKnmcGSLFmEJjPwMGLNfMIvGCpfdf5B9o8old0C72DHpw
+475ub4fKNqvJ3v3P2fQRJ/17HM/LspTFvfejeYhc8YhZtZeHhqEjU8Ta7lo
uaN7GDnwkE2+yrVzD7mo6fshhTEPHmo6Q98efp2LbHQcz+08y0M/BeSI4mNc
5PTQ0bw5l4c+dsdROJJcNBhbEs9s5aFqtYTvjtXT6L/y8fVS
"]]},
Annotation[#, "Charting`Private`Tag$60786#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQ3XK3atHGbKYDDGDwwf7Z0rCeiZsY4XyPPKOywp8M
cL7ZPmFZyQv/9sP4ewpFo5se/YbzzT/uOD+f+Secf9FgztniZ1/hfG+nSzeq
/n2C84+pT7hVsOE9nP8gaX9BSONLOH+X4xTFeXsew/mLHC+eXPntFpy/sK+L
+/jEc3D+pGfMjwrWr4Pz02Z1BUTpHLSH8Xecrzev0b0C5z9acXfCj7gHcP6/
i9tnnOp8BudHhb9pNfN6A+fbrAvYMMv5I5z/Ji5C4LnOFzi/zl/heU3Idzhf
usStPS73F5x//ZikFG/gXzh/15prE5ssGRxgfEne7/xP1zPC+XXtx4reyjHD
+VcUv02QWssC51sG12isU2CD8/uXJFWnbWaH81/z/9h0xI4Tzg8XepLcuZ4L
zt9iYnChyJ4Hzld8d2nroS28cP7kgyoNO5T44fzqqNdNL8MFEPrn5zNpCQrC
+U+/LL7/5yaCP29q88+mqUJwftThXawxvsJwPj/jovzjIiJwvk+Xidizcwh+
o3K51PQZonD+Tk9BwdlxYnB+5e4wlyBxcTjf0Nbn6uz7CH4h19tFM2ZJINyb
8jTpRaAknP/+XG/DKQkpOH9Ty8Nb8ZcQfFeVV8ZfLaXh/BuHP/V0LUTwASWF
Ct8=
"]]},
Annotation[#, "Charting`Private`Tag$60786#2"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{-2.3025849050279152`, 0.96},
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-2.3025849050279152`, 6.907755091016007}, {0.96, 25}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->FrontEndValueCache[{Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Automatic}, {{{-2.3025850929940455`,
FormBox[
TagBox[
InterpretationBox["\"0.1\"", 0.1, AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, {0.,
FormBox["1", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
FormBox["10", TraditionalForm], {0.01, 0.}}, {4.605170185988092,
FormBox["100", TraditionalForm], {0.01, 0.}}, {6.907755278982137,
FormBox["1000", TraditionalForm], {0.01, 0.}}, {-4.605170185988091,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.506557897319982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.2188758248682006`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.8134107167600364`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.659260036932778,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.5257286443082556`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.4079456086518722`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.2039728043259361`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.916290731874155,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.5108256237659907,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.35667494393873245`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.2231435513142097,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.10536051565782628`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.0986122886681098`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.3862943611198906`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.791759469228055,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.9459101490553132`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.0794415416798357`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.1972245773362196`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.4011973816621555`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.6888794541139363`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.0943445622221,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.248495242049359,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.382026634673881,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.499809670330265,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.298317366548036,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.703782474656201,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.991464547107982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.214608098422191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.396929655216146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.551080335043404,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.684611727667927,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.802394763324311,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
7.600902459542082,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.006367567650246,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.294049640102028,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.517193191416238,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.699514748210191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.85366542803745,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.987196820661973,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.104979856318357,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.210340371976184,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}},
Automatic}]]], "Output",
CellChangeTimes->{{3.800254907843933*^9, 3.80025493464567*^9},
3.8002583505883493`*^9, {3.8002583884215937`*^9, 3.800258398283313*^9}},
CellLabel->
"Out[101]=",ExpressionUUID->"0e5afb43-03a8-4921-a0b0-171f8b1c2ecd"]
}, Open ]]
}, Closed]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["RHF vs UHF: the M\[OSlash]ller-Plesset expansion", "Title",
CellChangeTimes->{{3.800004958258581*^9, 3.800004970460177*^9}, {
3.8000050657655983`*^9,
3.800005124042057*^9}},ExpressionUUID->"12d80845-73eb-493a-bcea-\
3b0b87d21f3e"],
Cell[CellGroupData[{
Cell["Energies on the real axis", "Section",
CellChangeTimes->{{3.800007190386896*^9,
3.80000720493908*^9}},ExpressionUUID->"1e6ffb79-24e9-4397-b007-\
32df81174525"],
Cell[CellGroupData[{
Cell["RHF", "Subsection",
CellChangeTimes->{{3.8000051404799757`*^9,
3.8000051434665403`*^9}},ExpressionUUID->"7a35c830-d09c-4c2a-ad54-\
c9c15f347871"],
Cell[BoxData[
RowBox[{"HRMP", "=",
RowBox[{"DiagonalMatrix", "[",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"F", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], "+",
RowBox[{"F", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}]}], ",",
RowBox[{
RowBox[{"F", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], "+",
RowBox[{"F", "\[LeftDoubleBracket]",
RowBox[{"2", ",", "2"}], "\[RightDoubleBracket]"}]}], ",",
RowBox[{
RowBox[{"F", "\[LeftDoubleBracket]",
RowBox[{"2", ",", "2"}], "\[RightDoubleBracket]"}], "+",
RowBox[{"F", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}]}], ",",
RowBox[{
RowBox[{"F", "\[LeftDoubleBracket]",
RowBox[{"2", ",", "2"}], "\[RightDoubleBracket]"}], "+",
RowBox[{"F", "\[LeftDoubleBracket]",
RowBox[{"2", ",", "2"}], "\[RightDoubleBracket]"}]}]}], "}"}],
"]"}]}]], "Input",
CellChangeTimes->{3.8000056226723022`*^9},
CellLabel->"In[47]:=",ExpressionUUID->"40be5691-8587-4301-ab69-4bfeda29a864"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"HRMP", "[", "R_", "]"}], ":=",
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox["2", "R"], "0", "0", "0"},
{"0",
RowBox[{
FractionBox["1",
SuperscriptBox["R", "2"]], "+",
FractionBox["8",
RowBox[{"3", " ", "R"}]]}], "0", "0"},
{"0", "0",
RowBox[{
FractionBox["1",
SuperscriptBox["R", "2"]], "+",
FractionBox["8",
RowBox[{"3", " ", "R"}]]}], "0"},
{"0", "0", "0",
RowBox[{
FractionBox["2",
SuperscriptBox["R", "2"]], "+",
FractionBox["10",
RowBox[{"3", " ", "R"}]]}]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]}], ";"}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.800005655116191*^9, 3.800005660288808*^9}, {
3.800181738766815*^9, 3.800181743949849*^9}},
CellLabel->"In[23]:=",ExpressionUUID->"30f17efb-d41d-4259-b874-cacd3b56ce75"],
Cell["We define the adiabatic connection Hamiltonian as", "Text",
CellChangeTimes->{{3.800005777443572*^9,
3.800005825433264*^9}},ExpressionUUID->"8924de9c-9efe-45a3-a9ad-\
408e2b2b698d"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"rH\[Lambda]", "[",
RowBox[{"\[Lambda]_", ",", "R_"}], "]"}], ":=",
RowBox[{
RowBox[{"HRMP", "[", "R", "]"}], "+",
RowBox[{"\[Lambda]",
RowBox[{"(",
RowBox[{
RowBox[{"rH", "[", "R", "]"}], "-",
RowBox[{"HRMP", "[", "R", "]"}]}], ")"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]_", ",", "R_"}], "]"}], ":=",
RowBox[{"Eigenvalues", "[",
RowBox[{"rH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RHF", "[", "R_", "]"}], ":=",
RowBox[{
RowBox[{"Eigenvalues", "[",
RowBox[{"rH", "[", "R", "]"}], "]"}], "//", "FullSimplify"}]}],
";"}]}], "Input",
InitializationCell->True,
CellChangeTimes->{{3.800005845720145*^9, 3.800005863070434*^9}, {
3.800008325211321*^9, 3.8000083292042847`*^9}, {3.800075430687092*^9,
3.800075439968359*^9}, {3.8001820319866*^9, 3.800182038034882*^9}, {
3.800182086112391*^9, 3.800182116687286*^9}, {3.800182186746798*^9,
3.800182187341146*^9}},
CellLabel->"In[24]:=",ExpressionUUID->"19c3a2e6-282e-4147-9930-7ff961395f5b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "10"}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "1.5"}], ",", "3"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"RGBColor", "[", "\"\<LimeGreen\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Red\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Blue\>\"", "]"}], ",",
RowBox[{"Darker", "[", "Purple", "]"}]}], "}"}]}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"Placed", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{sp}_\\\\text{z} ~ ^{1}P\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{sp}_\\\\text{z} ~ ^{3}P\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{s}^2\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{p}_\\\\text{z}^2\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"Right", ",", "Top"}], "}"}]}], "]"}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AxesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "16"}], "]"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "2.8"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.3"}], ",", "0.5"}], "}"}]}], "}"}]}]}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800005924706459*^9, 3.800005929948352*^9}, {
3.800005982530142*^9, 3.800005983014323*^9}, {3.800006131382762*^9,
3.800006149454649*^9}, {3.800006192806897*^9, 3.800006196955217*^9}, {
3.8000067027873077`*^9, 3.800006706963251*^9}, {3.800937206850897*^9,
3.800937234902536*^9}, {3.800952484422711*^9, 3.80095248463486*^9}, {
3.801197029903492*^9, 3.801197030385521*^9}, {3.801209931377737*^9,
3.801209946768364*^9}, 3.802144321900454*^9, {3.8021444043325863`*^9,
3.802144470305004*^9}, {3.802144507416741*^9, 3.80214451243267*^9}, {
3.802144619729239*^9, 3.802144651505146*^9}, {3.8021446987181177`*^9,
3.802144744970624*^9}, {3.802144790128127*^9, 3.802144791072198*^9},
3.802144832024213*^9, {3.8042358406737633`*^9, 3.804235946443109*^9}, {
3.804237195830031*^9, 3.804237196240169*^9}, 3.804247090659012*^9, {
3.804247257292985*^9, 3.8042472752992697`*^9}, {3.804247320607801*^9,
3.804247348818315*^9}, {3.804247417429537*^9, 3.804247417714069*^9}, {
3.804247448101907*^9, 3.8042474908217783`*^9}, {3.804247528891056*^9,
3.804247589748111*^9}, {3.804247672933235*^9, 3.8042477367949457`*^9}, {
3.804247930356411*^9, 3.804248000150017*^9}, {3.804248102788391*^9,
3.804248107627308*^9}, {3.804249275385282*^9, 3.8042492784520407`*^9}, {
3.804397529014101*^9, 3.80439758761193*^9}, {3.804414254240368*^9,
3.804414269480275*^9}, {3.8044143670901203`*^9, 3.804414396120419*^9}, {
3.8044144274746933`*^9, 3.804414431618039*^9}, {3.804414474363975*^9,
3.804414484182391*^9}, {3.804414716556189*^9, 3.804414717346142*^9},
3.804419404674508*^9, 3.804419441542829*^9, {3.804419471743248*^9,
3.8044195394110527`*^9}, {3.8044211032354517`*^9, 3.804421109988982*^9}},
CellLabel->"In[89]:=",ExpressionUUID->"b19cd367-957b-4cf0-b4ae-1fec45bd95df"],
Cell[BoxData[
TagBox[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwVj3k41HkcgMfVL6p9SmKjrXQ4WlnCGiWfr9qNJkdkPSJS6UCrYxPFg9F6
inZktY1jszoMOpQcZTQzn3EU2zNjZYxrmmHJVUJNjDNr/3if99/3NT58yvuo
Oo1Gc5/nf+tR+/vn5lQYdm6so4ypgJxoM67flArTGRkLnsQpwOSdKuXJZxVy
1zpsKYpRgIOYbXlkUIWUODaZE6mAoOvNkS+bVJi3UZPODlXAvTV7NVkcFcpb
dG9EeSnAie5ibLhHhZ4OVp5bjRVwPNQuwJY9jlZfwmpQKIfTnu6mU0vGMFSN
V3Bt5A2sr5gd5+cqsb6q1t/R4g1YTsb2FdM/Ic/s9/f8kzIY4dtb2pWO4gZt
h2jNnA4o09FXRlwbxpL8TImprB3GbtlsZce8xxK+ZNNS7Xbo7x8WGp0fQNeY
poPirW2w2VbmkZPXiwvGrxw5frEVFJedWM7sbrR7Z3jk5b0WqKvicGqiOvHq
nyHW6v1SsJVqFws72zFaeUauayaFaFWAkUaDBFtr/ZMG/Jqh3nXtphhXEQbu
m57OzpCAmzCk86KaEH0CoiJ0XzZBXvNc5s3cXOzWfiYImngNjNbEM6kmRcCO
fCS/TH8NLFctneKLNcD3Z05EnmgE1Ytef5GsAQymDGqZbv9Ah+7YZ8tMKWRY
v029XSAG33+3bX/OkYHzU/sV4ToiuOGd9ryA0wXby6fow1degV7RIjPP8h5Y
VXDOZ7qvHkDdlzWV1geuy4OWVAfXATdfvdQlaBBuixqYW7pfQN1OutnZE0Og
iB7/YLGzFpgyR/YtpxEIzWWpurAaBu16zVvMPkJbhWxi9aoqqNgoH7B48Al6
nQ6HL6EhyNMd85KWfwYubWjN3rnn4BYbTLlnj4FPYU9NPr8ClvW8P6ZPqSD1
h8o7p0vLIe5MYX7xyQlYFZM7waooAbtY81Tu6CQMWvbGxE0+gh2aumdr/aeh
ee/u2LrRQsheiLPbe2Zgj1NyAP3YHXBJkSRxvb4AtemrQ2tuZMJNm5XDWtw5
iGdeabD/Phn+ergsPjiXRoR+v9qMcei4Mo6hBT+pEWrd34xZzWTkso52+hiq
k98u7KxYkZ+Fm62zzCUydRI880vUd7vuott12lnvNA0i9F6Y8zPjHqbZML7S
9tEkLLmw51LjY4xPrysU6miRNAzsaFeWoHNSYGkXX4vMRor2rB4tR/On0mX0
hAWkcJdY7LGZizwOMyLNjiLl60b0Ftvw0MaLbVFJpwhVWTSdQnh4f+b+u55t
FPH1Otmt7cHDrH3Nx+x3UGQ2fvAxFcrD82qmBxUeFHGV9zA0cnloFSjytDhB
kbaMtoQpHT7e1TOwrs+myPji6qGBbj4aCr8d+ZhDkR/zEiTHR/mYHk6KjG5T
JHsbVPbN8jGhOtT8VAFFnMJ4l99+LcADp3nG+mUUSax7uq7LQ4D6okO6IWKK
rEh84NdaKUBW1PlGViNFQlaGgW+9ADXXX019Jpn/KTYzkUoFqLxQprOogyKB
nRxl06gAG00pjZI+iuQ53kptMEF0kRhVyQbn+yRBke62iII4q3itD/M/4d8c
EDkjFkn3T/spKTKUlW3+6gDiBmYEN3F8vs96/9LdYYg3LS5FPZykyPV6A1Vd
FOLytgy7lhmK9B5ske9KQky59FA5N0cRW9UftS/SEf8DxJJ7WA==
"]]},
Annotation[#, "Charting`Private`Tag$18998#1"]& ],
TagBox[
{RGBColor[1., 0., 0.], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwB4QIe/SFib1JlAgAAAC0AAAACAAAA3N3d3d3d8b8AAAAAAADgP++9Ny41
s/C/20yuphIR3z+0Chbzbo/uvzC5va9H7t0/9aAzOpZ767+yW5YyJLPcP+fn
7sAbdui/EngUAsB92z8tNNtOnaTlvy4wpgcnXdo/3oc+jUGW4r91HgGHNSTZ
P8fBpaXDd9+/d6hvPA8A2D801QmwwN/Zv1msgz6o4dY/ePdbGwPO079n5mC6
6KrVP8hIICp7SMy/MLxRbPSI1D9MwGTfegHAvyPIC5inTtM/pNT/mJyfn7/3
TWsQGhrSP0rXgnGOJq0/hm/evlf60D+NSAUKsHrDP4KONc55hM8/98XlWszb
zj9sddWK2j3NP9oS9fQumNU/rcgHO4rGyj9W4Ts9u6XbP68PhYS4Wsg/lVKQ
u6el4D8mjik6fRjGPxStCyhPteM/9Hhg45Clwz8/AlaN+pDmPzibvvg6XME/
uaYCs0de6T96Ys9Oxzy+P8dDOChyaOw/L2dGk7ZfuT+B2zyWoD7vP9LaC7DS
1bQ/6TXlKdYo8T8+TuxnGdWvP7gl3egsq/I/3rXs1Icspj/dkjykhRP0P6v2
E+WfVJo/THxgB02a9T9IkYfznip7PxHj62YWB/c/suQsFDrlhr9+caimsGz4
P/0qtwbtU52/NXwpjrnw+T97QGKzYl2ov0IEEnLEWvs/zQZmmTq1sL+aCL/9
PeP8P7IU9vElnbW/R4rThblR/j+rszdy5DG6v5wzGe4Fuf8/H2vjv6Wvvr+e
rBF/YJ8AQPYkNZNkx8G/GX5KBT9VAUDlXFHaXw3Ev7mNZd9UGgJAfyjbLQyE
xr8tMZkp09sCQFkAGug578i/TJMAclKQA0C8oDE20TDLv5AzSg4JVARAytS2
kBmjzb9/kseowAoFQGDRFH/L68+/QYVds+C9BUAa7RNqfxTRvym21RE4gAZA
WTvUmnFL0r8REREREREHQDMzMzMzM9O/lT5pog==
"]]},
Annotation[#, "Charting`Private`Tag$18998#2"]& ],
TagBox[
{RGBColor[0., 0., 1.], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwBgQN+/CFib1JlAgAAADcAAAACAAAAFAdZ5///978PT57nxOzVP514KLlY
+ve/JiCucKvq1T8m6veKsfT3v1nvHfeR6NU/Oc2WLmPp978JRBn8XuTVP16T
1HXG0ve/qspg5vjb1T+pH1AEjaX3vyaJQTssy9U/PjhHIRpL97+R75zekKnV
P2dpNVs0lva/6YJYzFFm1T9wT00n+g31v0aLS85a1NQ/I7j99r2f87/aJb7C
2EvUPy75fOawOPK/HzMhIsrF0z/vvTcuNbPwv3R2HJcVNNM/tAoW826P7r9v
s825zKvSP/WgMzqWe+u/glxTg7oX0j/n5+7AG3bov/Vr5OLrhdE/LTTbTp2k
5b8shZUJd/3QP96HPo1BluK/4eoRGO5o0D/HwaWlw3ffv4ZQHGlKu88/NNUJ
sMDf2b+O6P7D16jOP3j3WxsDztO/hLr0o0V9zT/ISCAqe0jMvxaXwY2/Y8w/
TMBk33oBwL9AqJ8k9i/LP6TU/5icn5+/zkK47JL+yT9K14JxjiatPyJWkUA7
3sg/jUgFCrB6wz+oNb1Lt6DHP/fF5VrM284/GMTkTsRyxj/aEvX0LpjVP2Ns
JtreI8U/VuE7Pbul2z+OQ69SHdHDP5VSkLunpeA/5btskrOJwj8UrQsoT7Xj
PwFhBNfWFsE/PwJWjfqQ5j+1C3rikVO/P7mmArNHXuk/VBGa42NcvD/HQzgo
cmjsP4QJFpAo67g/gds8lqA+7z+XbLxEEXi1P+k15SnWKPE/KKGhG4x1sT+4
Jd3oLKvyPyNrsI6Gg6o/3ZI8pIUT9D8elWIScD+iP0x8YAdNmvU/d+NCWVjH
kT8R4+tmFgf3PxKD+mBjCDO/fnGoprBs+D+tAQwG43eSvzV8KY658Pk/jVkw
zbFKo79CBBJyxFr7P7vjX5WW0qy/mgi//T3j/D9peLTL2qOzv0eK04W5Uf4/
Zip4oLuRuL+cMxnuBbn/PwWgWFXZb72/nqwRf2CfAEAGUTcm0V/Bvxl+SgU/
VQFABFbmCXvdw7+5jWXfVBoCQAonzC9Hk8a/LTGZKdPbAkAgO/xvwz7Jv0yT
AHJSkANAW1IdXxW+y7+QM0oOCVQEQFyPQLDmdM6/f5LHqMAKBUBLyQt7bn/Q
v0GFXbPgvQVAKYgOR4q+0b8pttUROIAGQPBYtpZBGdO/eWz7IL6OBkAzMzMz
MzPTvzt4xsQ=
"]]},
Annotation[#, "Charting`Private`Tag$18998#3"]& ],
TagBox[
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`],
AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwB8QMO/CFib1JlAgAAAD4AAAACAAAASrFtr+hI5b8AAAAAAADgP96HPo1B
luK/Cd7SL8rM3j/HwaWlw3ffv103OdCHiN0/NNUJsMDf2b/Pb91VVEvcP3j3
WxsDztO/15e1qA/02j/ISCAqe0jMv+vYDyDDtNk/TMBk33oBwL9EDJ9Q91vY
P6TU/5icn5+/qejD3hYL1z9K14JxjiatPwUndtCu0tU/jUgFCrB6wz/Wizz2
O4LUP/fF5VrM284/irdyyf5K0z/aEvX0LpjVP+JiWeiZ/dE/VuE7Pbul2z+J
ZM+GQbvQP5VSkLunpeA/6mcx1nYozz8UrQsoT7XjPxjzZLmbuMw/PwJWjfqQ
5j84u9IZ7oTKP7mmArNHXuk/5ABPgAZyyD/HQzgocmjsP2hmmLDjTsY/gds8
lqA+7z8q06cvq27EP+k15SnWKPE/SvASveeIwj+4Jd3oLKvyPwE5ewwDzsA/
3ZI8pIUT9D8//FrHd5i+P0x8YAdNmvU/ZF9vaTyGuz8R4+tmFgf3P6BdCzj2
zrg/fnGoprBs+D9jZePDO0K2PzV8KY658Pk/2MWkVW2Xsz9CBBJyxFr7P2o4
H8wpLbE/mgi//T3j/D9SPfk8/z2tP0eK04W5Uf4/hFOf1D6QqD+cMxnuBbn/
P/heFt7rC6Q/nqwRf2CfAEBZz8nTz2uePxl+SgU/VQFAO+Zgw9V9lT+5jWXf
VBoCQIBMDoG9zYc/LTGZKdPbAkCB1XKZf3pkP0yTAHJSkANAXcghL7tmeL+Q
M0oOCVQEQFGPqv2C4Y6/f5LHqMAKBUDuBWr1yR6Yv0GFXbPgvQVA/AmuO3BM
oL8pttUROIAGQF0dkuGm4aS/vKWBbpA1B0AbtJ3OIyWpvzNRliy6OAdAr6RR
/CY4qb+q/Krq4zsHQKNrMfMpS6m/mVPUZjdCB0A1UvE8L3Gpv3YBJ1/eTgdA
+krXQze9qb8wXcxPLGgHQNs1Fzo9Vaq/oxQXMciaB0BLWquaIYWrvxrAK+/x
nQdAwqimKB6Yq7+Sa0CtG6EHQMjOiYMaq6u/gMJpKW+nB0C/fHmgEtGrv1xw
vCEWtAdApNwWegAdrL8WzGESZM0HQLyEysTStKy/jXd20I3QB0AOnXAuzMes
vwQji4630wdAYb68ZsXarL/zebQKC9oHQO3rs0O3AK2/0CcHA7LmB0BaXBOy
mEytv0fTG8Hb6QdATLDfk5Bfrb++fjB/Be0HQB2zKUWIcq2/rdVZ+1jzB0DQ
KaEWd5itvySBbrmC9gdARKADN26rrb+cLIN3rPkHQAfLTSdlvq2/E9iXNdb8
B0D1+5nnW9Gtv4qDrPP//wdAMnICeFLkrb83Aer1
"]]},
Annotation[#, "Charting`Private`Tag$18998#4"]& ]}, {}}, InsetBox[
TemplateBox[{
GraphicsBox[{
Thickness[0.02853881278538813],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQ/R8E7ks4/Hz7+oClsoqDSOWkkrNLpOD8MyDQIwPn
x6hGyJzbI+PgsebocoYfynD+3vyatzNTleB8+xLH2tNzONH4zA7uIH0zZBz6
I7r9GT8wOcyZCQQ/pRzA7tjP5LAj2Cri/3EJh+u8t8VSyxB8E2MQ+G8PcY+s
Q4t4LWvmMUz+GiEdvvR9cnC+7K4F+1LfyePkg6yfGakENx/Gh9m/8tvLijMO
inD3PXCNd5xVqAB3fzinWLtxvALcf6h8TjgfrO+iqEN6GhCIKTp82fdxa/o3
EQewfTcVHRhAYIGIg/K1R8EMb5Tg/NLD21xnzlWG8zfo5S1mtFFx0Pik8nLW
SxGHF1na36bPhcZbiqiD1wl229mh6g7V93/cMn4t4ZAQEqS+wFMDEo7qUg71
v60KzmVoOtwHuUdQHs4Hu5NfEc4Hm7dF2aGB5Wi/obm6w5xFyjv/HFeFhFOx
Cpy/AhQ+E5ThfHA62KrkMGMCf5VZt6rDHU3ZNf+DlRyeJC68ZqKvCg8PSHpR
hvNP7NrRy7ZBFZI+NBTg5oW8vfxxxkNZCN9dFeKPdGmHwFvSNYmfVBxg6XeD
6pPmeWcRfFh6BQDMMEWn
"], {{8.18594, 8.94844}, {8.18594,
9.11406}, {8.245310000000002, 9.245310000000002}, {
8.399999999999999, 9.44844}, {8.746879999999999, 9.88906}, {
9.23438, 10.1156}, {9.831249999999999, 10.1156}, {10.9516,
10.1156}, {11.667199999999998`, 9.32969}, {11.667199999999998`,
8.089060000000002}, {11.667199999999998`, 6.75469}, {10.8688,
5.76563}, {9.79531, 5.76563}, {9.139059999999999, 5.76563}, {
8.651560000000002, 5.9796900000000015`}, {8.18594,
6.468749999999999}, {8.18594, 8.94844}}}],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4kaWo/2G6YYOrQrsqmemiDrA+BqfVF7OWinm
4H2C3Xb2UQMHtzVHlzPMEHMoWNN9O6PBwEFh14J9qX1iDrz+66ekaiD4CbF3
3JhvaMP1P0lceM3kvLaDiTEQXBZx2GL+41DKKW0HkcpJJWdTRBxYOLvkk9dp
O6SnAcEzQYetDk2PjlvowPkS8+I0TxfoOLxpy+02ihZx+PH29QHLZh2HGNUI
mXMyog66ivJfcq7pOFTd/3HL2FvU4U3xVtHf2npw/n8QiDeA8/uDS1Sm6xs4
zAQBSREHfpD7OQwg9rkJO4j2eL1imaLvUA1Szy0Et+8MGLBA5EV0HK7z3hZL
3cYE9Ze2QzTIPTWMDn9A6h9rOeRMTSi0KP5lL7/8hYfefy2HgCeel0wnf7eX
BfHv60Dc9f+7/fmrYW/0fyP4pjZ7g6Yd1IXzI8S3X2SIM4Trh/FlNorNZ3rw
y1586hXOjCRDhwu/j12fF/nP/nDb8vBTRYYOB7v3NZksZoLGl6FDi3gtayYb
m8P0CfxVZtYI/t9vpQ/mCBo6+IPMD2aAhoehA4v+L65LPP/sP28IyJ613MCB
Fcz/aw8LHxhfV2ul8AUVXTgfPT0BAGL4DTg=
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYC4gjx7RcZzpk61P62KjiXoedgoLVS+MITBL9k
q+jv03zmDiI9Xq9YSvQdQJSJoLnDdoemR8cr9B1MjIFAGMH3OcFuO1sUwV9y
fx/fHGUEPyX2jhuzhrnDk8SF10z8kfgghzzQg/NNbfYGTVNUg/P/fit9MMdQ
Fe6eU4ed1mb+U3FY9sJD7/9EMweZeXGapz+oQGgBM4dfb18fsHyM4O8A2R+h
4nCgVtYivcTcIQ0MMPkvsrS/Te9F8EHaZqxG8MH23kPwz4CAjoWDGci9iSoO
daBw87BwmNLeGnU5RsVhJhgg+Mkg//ywgLsHxoe59z8I1FvA/dMNCm9GC7h/
udxUS5leIcIDxoeFF4wPtjbTAEKfNHe4LV2TaFRqAIkPY3OH60KfHM+rGTj0
BZeoTO83c/gBsv+wPsT/e00dnoLiR1/fAT19AAAKfvOh
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl
k2omMe5HZgMAEs4CVw==
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJ7IGYCYg431VKmW9YOLJxd8sl5Wg5LX3jo/W+0cTC3
2Rs0LVHLYcoE/iqz0zYOG/TyFjPGaDmcAYE3Ng7TQeLaCP6U9taoy3s04fw5
i5R3/knXdMhf030744GNw2bzH4dSVmk49Hi9YjG5CDRP9UnzvLfqDs8TF14z
eW/toP5J5eUsTWkH+6ZHx2fstnZ44BrvOOuimAOP//opqTusHRR2LdiXuk7M
4fhhp7WZdtYOGiD1nWIQ8w5aOYhUTio5myLmcEO6JtFoqxVEPZ8ohG9q7fCm
LbfbSFrUQXzqFc6MTdYOaSCgJuogMy9O87SAjYOJMQiIOqTE3nFj9kDwwe6p
RvD31spapF+xges/AXKPny3c/P8g8N4Wbr/6W959Bj9t4e470LY8/JSRLdz9
S+7v45vz2MahVYFd9cwUMQd9rZXCF47YOHzZ93Fr+jd0vjicLww2TwLi3hM2
EPt3S8DD90D3viaTxZIQ95+2dVgPCu9cDThfFKSwRMPhw4aA7FnXofJvNRyu
Cn1yPP/M1sEMHP+aDjyg9PHKFuKvek1IOHy2hcd3jILjx+Q/tpB459GCqM+y
g4SrgZYDyNizs+wcnmdpf5tuqwVx/xUEP0J8+0UGNgc4v/63VcG5AAcHabB+
TTh/hwPQ4T/U4Hxw+KepOHzZeavr71F7iP0+Sg4zZgLBTjs4PxWkrAzBB8eH
pZ1D9f0ft4yzlSDp64Stw8pvLyvOHFCCxOc5W4fbmrJr/jMrOfQGl6hMt7dz
2Jtf83bmVEWIf2vsHPhjA+4blSvC/QPjPwGlZ30HVP51B0h4OqrA+XLLgRmt
Xh3OB+eX55oOq4HZhaHcAZq/tB2OgNJLk73DdpD/JbQh4XTX1iEd5C82bYj9
LdD0KawNoR9bw9Wj528Atna2+g==
"]]}, {{
Thickness[0.02853881278538813]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {52.56065753424658, 26.23854545454546},
ImageSize -> {35.04043835616439, 17.49236363636364},
BaselinePosition -> Scaled[0.3029987538415624],
ImageSize -> {36., 18.}, PlotRange -> {{0., 35.04}, {0., 17.49}},
AspectRatio -> Automatic}],
GraphicsBox[{
Thickness[0.02853881278538813],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQ/R8E7ks4/Hz7+oClsoqDSOWkkrNLpOD8MyDQIwPn
x6hGyJzbI+PgsebocoYfynD+3vyatzNTleB8+xLH2tNzONH4zA7uIH0zZBz6
I7r9GT8wOcyZCQQ/pRzA7tjP5LAj2Cri/3EJh+u8t8VSyxB8E2MQ+G8PcY+s
Q4t4LWvmMUz+GiEdvvR9cnC+7K4F+1LfyePkg6yfGakENx/Gh9m/8tvLijMO
inD3PXCNd5xVqAB3fzinWLtxvALcf6h8TjgfrO+iqEN6GhCIKTp82fdxa/o3
EQewfTcVHRhAYIGIg/K1R8EMb5Tg/NLD21xnzlWG8zfo5S1mtFFx0Pik8nLW
SxGHF1na36bPhcZbiqiD1wl229mh6g7V93/cMn4t4ZAQEqS+wFMDEo7qUg71
v60KzmVoOtwHuUdQHs4Hu5NfEc4Hm7dF2aGB5Wi/obm6w5xFyjv/HFeFhFOx
Cpy/AhQ+E5ThfHA62KrkMGMCf5VZt6rDHU3ZNf+DlRyeJC68ZqKvCg8PSHpR
hvNP7NrRy7ZBFZI+NBTg5oW8vfxxxkNZCN9dFeKPdGmHwFvSNYmfVBxg6XeD
6pPmeWcRfFh6BQDMMEWn
"], {{8.18594, 8.94844}, {8.18594,
9.11406}, {8.245310000000002, 9.245310000000002}, {
8.399999999999999, 9.44844}, {8.746879999999999, 9.88906}, {
9.23438, 10.1156}, {9.831249999999999, 10.1156}, {10.9516,
10.1156}, {11.667199999999998`, 9.32969}, {11.667199999999998`,
8.089060000000002}, {11.667199999999998`, 6.75469}, {10.8688,
5.76563}, {9.79531, 5.76563}, {9.139059999999999, 5.76563}, {
8.651560000000002, 5.9796900000000015`}, {8.18594,
6.468749999999999}, {8.18594, 8.94844}}}],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4kaWo/2G6YYOrQrsqmemiDrA+BqfVF7OWinm
4H2C3Xb2UQMHtzVHlzPMEHMoWNN9O6PBwEFh14J9qX1iDrz+66ekaiD4CbF3
3JhvaMP1P0lceM3kvLaDiTEQXBZx2GL+41DKKW0HkcpJJWdTRBxYOLvkk9dp
O6SnAcEzQYetDk2PjlvowPkS8+I0TxfoOLxpy+02ihZx+PH29QHLZh2HGNUI
mXMyog66ivJfcq7pOFTd/3HL2FvU4U3xVtHf2npw/n8QiDeA8/uDS1Sm6xs4
zAQBSREHfpD7OQwg9rkJO4j2eL1imaLvUA1Szy0Et+8MGLBA5EV0HK7z3hZL
3cYE9Ze2QzTIPTWMDn9A6h9rOeRMTSi0KP5lL7/8hYfefy2HgCeel0wnf7eX
BfHv60Dc9f+7/fmrYW/0fyP4pjZ7g6Yd1IXzI8S3X2SIM4Trh/FlNorNZ3rw
y1586hXOjCRDhwu/j12fF/nP/nDb8vBTRYYOB7v3NZksZoLGl6FDi3gtayYb
m8P0CfxVZtYI/t9vpQ/mCBo6+IPMD2aAhoehA4v+L65LPP/sP28IyJ613MCB
Fcz/aw8LHxhfV2ul8AUVXTgfPT0BAGL4DTg=
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYC4jQQmGbqYGqzN2haoq5DhPj2iwz3EPxPGwKy
Z7GbOfhenBjzL1nPQWZenOZpBTOHB2CF+g4SU69wZmwyc3iepf1t+lx9hy3m
Pw6laJnD+QVrum9nHEDwVZ80zztrZeEQHxKkvmClHpyfCnJHmy6c/6Z4q+hv
bR2o+eYOCSD1nNoOJUDh03wIfoyC48fkP2Zw/qG25eGnHpk5rAcZxKvtYKC1
UvjCETOHgFvSNYlC2hDzFpk5NLAc7TcU13YA+7/NzEEcJK6k5XBD6JPj+Wlm
DukgcTYth5OHndZmvjNz8DnBbjs7VAviPylzhxcg92VrOfD6r5+SGoHgJ8fe
cWOWsIDzr4PMa7OAiFdowvlGxkBwWR3On9LeGnX5j6oDl5tqKdMvcweP/bWy
FsdVHJbc38c3RxnB13jLu89gpxmcDw6vKDOHMyDAowpxp6iZwwaQRK8qPD5N
QPZ9VnVgAIEDpg4vQPERq+bgB4rXyaYOjaDwCFd3+LrzVtffUFOHht9WBec0
1KHhY+rwNHHhNRN+NYc6kPgMqHyGKiS8lplCwrVJBZ4+noDU66vAwxccblwq
Dhv18hYz3kHwDwC9kT7FHM4Hm59h4TATBG6qQMLthQXcfrB5ZpYQ/55Rg6Sr
WEuI+6erw/nSIHcUaMD5zJxd8sl+mg79wSUq0/UtHY7v2tHLJqDlEA1KP3cs
HH68fX3AslkLkn4WWTjoK8p/ybmmBdGfa+Fw/mrYG/3fWvD40QelKxVoetsE
1e+sA3HvDwto+tKF8+csUt75R10PzgerP6zvYFsZscLUF+rfTAMo3xzOB8fX
BjM4PwWk3wOa32wNIOnhpik8f6HnZwDIbKDV
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl
k2omMe5HZgMAEs4CVw==
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJ7IGYCYg431VKmW9YOLJxd8sl5Wg5LX3jo/W+0cTC3
2Rs0LVHLYcoE/iqz0zYOG/TyFjPGaDmcAYE3Ng7TQeLaCP6U9taoy3s04fw5
i5R3/knXdMhf030744GNw2bzH4dSVmk49Hi9YjG5CDRP9UnzvLfqDs8TF14z
eW/toP5J5eUsTWkH+6ZHx2fstnZ44BrvOOuimAOP//opqTusHRR2LdiXuk7M
4fhhp7WZdtYOGiD1nWIQ8w5aOYhUTio5myLmcEO6JtFoqxVEPZ8ohG9q7fCm
LbfbSFrUQXzqFc6MTdYOaSCgJuogMy9O87SAjYOJMQiIOqTE3nFj9kDwwe6p
RvD31spapF+xges/AXKPny3c/P8g8N4Wbr/6W959Bj9t4e470LY8/JSRLdz9
S+7v45vz2MahVYFd9cwUMQd9rZXCF47YOHzZ93Fr+jd0vjicLww2TwLi3hM2
EPt3S8DD90D3viaTxZIQ95+2dVgPCu9cDThfFKSwRMPhw4aA7FnXofJvNRyu
Cn1yPP/M1sEMHP+aDjyg9PHKFuKvek1IOHy2hcd3jILjx+Q/tpB459GCqM+y
g4SrgZYDyNizs+wcnmdpf5tuqwVx/xUEP0J8+0UGNgc4v/63VcG5AAcHabB+
TTh/hwPQ4T/U4Hxw+KepOHzZeavr71F7iP0+Sg4zZgLBTjs4PxWkrAzBB8eH
pZ1D9f0ft4yzlSDp64Stw8pvLyvOHFCCxOc5W4fbmrJr/jMrOfQGl6hMt7dz
2Jtf83bmVEWIf2vsHPhjA+4blSvC/QPjPwGlZ30HVP51B0h4OqrA+XLLgRmt
Xh3OB+eX55oOq4HZhaHcAZq/tB2OgNJLk73DdpD/JbQh4XTX1iEd5C82bYj9
LdD0KawNoR9bw9Wj528Atna2+g==
"]]}, {{
Thickness[0.02853881278538813]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {52.56065753424658, 26.03675716064757},
ImageSize -> {35.04043835616439, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {36., 18.}, PlotRange -> {{0., 35.04}, {0., 17.36}},
AspectRatio -> Automatic}],
GraphicsBox[{
Thickness[0.08305647840531562],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGINIGYC4pkg8FPCQWpenObpCyoOMP4Oh6ZHxyNUHNzX
HF3OsEPeIQ0MMPndNp670poU4PwPi9YrnNVQxMn3uzgx5t9iFbj5NZ82BGTP
UnGYAbJ3J4I/Z5Hyzj/P0fjqqnA+2JxkBD/glnRN4iRVuPkpsXfcmH+oOqz4
9rLizAQlh0cR4tsvPlB1OAMCexQdNunlLWa8A+WfkXFICAlSX3BS1WGtkA5f
+jpFBwOtlcIXXDQd1oD4ecoO/0FAXhvinx/KDicOO63NlNOB87eD/FOhC+dP
mcBfZdatD7cfHK6ZBg6poGBwU4DzWxXYVc98kYXzeyO6/RkNZBwcgcbNsDZw
qLn/45ZxtpTD0V07etkm6DvI71qwL/WcpMMGkPtldB2mg/TdlILzH7jGO84K
lHaQAMXnB12HdJB9z6QdtoDk/+g5mBiDgKzDcZB5BfoOMaoRMufmyMP51SD7
ohXhfLC7IpUcdBTlv+SU6cH5LJxd8snvdOB88R6vVyxTtB34YwPuG00H6geF
j52Ww5u23G4jaXkHUZC8iIYDenoDAMDOG9o=
"]]}, {{
Thickness[0.08305647840531562]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {18.06422914072229, 26.03675716064757},
ImageSize -> {12.042819427148194`, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {13., 18.}, PlotRange -> {{0., 12.04}, {0., 17.36}},
AspectRatio -> Automatic}],
GraphicsBox[{
Thickness[0.07062146892655367],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQnZ4GBM8+2v98+/qApbKKwzavDRZzfv6A88+AgA+D
A4z/svZx9vk1DA4ea44uZ/ihDOfvza95OzNVCc63L3GsPT2HE43P7HCge1+T
STKDQ39Etz/jByao+b/s/4PAfiYH763+x5PbPtpf570tllqG4JsYg8B/e4h6
JocW8VrWzGOY/D6QuRtY4PzC5SUb/vGz4+RD9As4oJov4ACz/waINuNxgLkP
Ej4ccPdD7OOA+w+VzwnnP3CNd5x1URTi3x5uhy/7Pm5N/ybiMGMmCPA5MIDA
AhGIukJBOL9dgV31zBUhVHlBEQeNTyovZ70UcWgDy4s4iFROKjmbIgqhXaQc
qu//uGX8WsLhLMg+HRmHHcFWEf/VpRxqQOLZcg73webIw/nhnGLtxvyKcD7Y
nC3KDttB+tilHOYsUt7557gqxB0NInD+m7bcbqPdQnC+MEgfi6DDjAn8VWbd
qg7Bby9/nOEo4PAkceE1E31VeHhA0osynH9i145etg2qDgFPPC+ZXmaHmweO
h29MEL67qoMHKD2w/bEPvCVdk/hJxQGWfjeoPmmedxbBh6VXAFUATEo=
"], {{
3.08594, 8.94844}, {3.08594, 9.11406}, {3.14531,
9.245310000000002}, {3.3000000000000003`, 9.44844}, {
3.6468799999999995`, 9.88906}, {4.134379999999999, 10.1156}, {
4.731249999999999, 10.1156}, {5.851559999999999, 10.1156}, {
6.56719, 9.32969}, {6.56719, 8.089060000000002}, {6.56719,
6.75469}, {5.768750000000001, 5.76563}, {4.695309999999999,
5.76563}, {4.039059999999999, 5.76563}, {3.5515600000000003`,
5.9796900000000015`}, {3.08594, 6.468749999999999}, {3.08594,
8.94844}}}],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGINIGZigIINCg5S8+I0T19QcYDxdzg0PToeoeLwNHHh
NRN+FYc0MMDk+5xgt529FcHfpJe3mDFGFSe/keVov+F1Dbj561WfNM87q+Ew
YyYQ7ETw5yxS3vnnORpfXRXO97s4MeZfMoIfcEu6JnGSKtz8lNg7bsw/VB18
QeoOqzk8ihDffvGBqsOxXTt62T6oQtx1R9VhJhgoOSSEBKkvOKnqYGazN2ja
Q1UHA62VwhdcNB1MQfyF6g7/QUBe2+FV8VbR39oaDicOO63NlNOB87eD/FOh
C+dPmcBfZdatD7cfbE2mAcSflSpwfvnhba4zdZXh/Or7P24Zeys5OAKNm2Ft
4PBh0XqFsxmKDkdB7p6g7+A8oVkoTUrRYQPI/TK6EHfNR/CVrz0KZrij6CAB
is8Pug7poGBXU3LYApL/o+dwBgyUHI6DzCvQh/iXUQXOZ+Hskk/uU4Xzwcp7
1Bx0FOW/5JTpwflgde904HzxHq9XLFO0HbaY/ziUcgqoHxQ+dloOK7+9rDhz
QNlBFCQvouGAnt4AakwW/w==
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4vNXw97oz9ZwaFVgVz0zRdQBxtf4pPJy1kox
h5TYO27MEeoObmuOLmeYIeawQfVJ87yzag4KuxbsS+0Tc3iRpf1tuiyCL1w5
qeTsEkW4fuVrj4IZ5ig6mBgDwWURB/7YgPtG0xUdREDqUkQcqu//uGVcreiQ
ngYEzwQd9uTXvJ3JqgTnlx/e5jrTVsnhTVtut1G0iMN/EPBXcohRjZA5JyPq
ADLWeLGSQxXIHG9Rhw+L1iuc/aEM558BgR41OP9V8VbR39pqDjNBQFIE4v67
qhD73IQdHkWIb7+YoApxF7cQ3D6wOWdYHFZ+e1lx5oGiw3Xe22Kp25gg8vMV
HaJB7qlhdGAAgQ0KDjlTEwotin/Zg/1/RsEh4InnJdPJ3yH8NUoQff+/27uD
wvUEgr9WSIcvvU8Zzq/9bVVwrkMDrh/Gl9koNp/pwS/7v99KH8yZqOFw4fex
6/Mi/9kH3pKuSdyk4XCwe1+TyWImh/Xg+NJwaBGvZc1kY3P49fb1AUtnBP/Y
rh29bB/UHfxB5gczQMND3YFF/xfXJZ5/9pv08hYzyqg7sIL5f+1h4QPjP3CN
d5z1UQnOR09PAFTGHcA=
"]]}, {{
Thickness[0.07062146892655367]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {21.23816189290162, 26.03675716064757},
ImageSize -> {14.158774595267746`, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {15., 18.}, PlotRange -> {{0., 14.16}, {0., 17.36}},
AspectRatio -> Automatic}]},
"LineLegend",
DisplayFunction->(FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451,
0.196078431372549]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451,
0.196078431372549]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[
0.33333333333333337`, 0, 0.33333333333333337`]], {}}},
AspectRatio -> Full, ImageSize -> {20, 10},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
Editable->True,
InterpretationFunction:>(RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.130718954248366, 0.5359477124183007, 0.130718954248366],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{
"0.196078431372549`", ",", "0.803921568627451`", ",",
"0.196078431372549`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549],
Editable -> False, Selectable -> False]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[1., 0., 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6666666666666667, 0., 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"1.`", ",", "0.`", ",", "0.`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[1., 0., 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[1., 0., 0.], Editable -> False, Selectable ->
False]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0., 0., 1.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0., 0., 0.6666666666666667],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.`", ",", "0.`", ",", "1.`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0., 0., 1.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0., 0., 1.], Editable -> False, Selectable ->
False]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.22222222222222227`, 0., 0.22222222222222227`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{
"0.33333333333333337`", ",", "0", ",",
"0.33333333333333337`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`],
Editable -> False, Selectable -> False]}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )],
Scaled[{0.99, 0.99}], ImageScaled[{1, 1}],
BaseStyle->{FontSize -> Larger},
FormatType->StandardForm]},
AspectRatio->1,
Axes->{True, True},
AxesLabel->{
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm],
FormBox[
GraphicsBox[{
Thickness[0.1023541453428864],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]]}, {
Thickness[0.1023541453428864]}, StripOnInput -> False]}, {
ImageSize -> {14.662804483188044`, 24.508064757160646`},
ImageSize -> {9.77520298879203, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.77}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->Directive[
Thickness[Large], 16],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Directive[
Thickness[Large], 18],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->Large,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1, 2.8}, {-0.3, 0.5}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}],
InterpretTemplate[Legended[
Graphics[{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549]],
Line[CompressedData["
1:eJwVj3k41HkcgMfVL6p9SmKjrXQ4WlnCGiWfr9qNJkdkPSJS6UCrYxPFg9F6
inZktY1jszoMOpQcZTQzn3EU2zNjZYxrmmHJVUJNjDNr/3if99/3NT58yvuo
Oo1Gc5/nf+tR+/vn5lQYdm6so4ypgJxoM67flArTGRkLnsQpwOSdKuXJZxVy
1zpsKYpRgIOYbXlkUIWUODaZE6mAoOvNkS+bVJi3UZPODlXAvTV7NVkcFcpb
dG9EeSnAie5ibLhHhZ4OVp5bjRVwPNQuwJY9jlZfwmpQKIfTnu6mU0vGMFSN
V3Bt5A2sr5gd5+cqsb6q1t/R4g1YTsb2FdM/Ic/s9/f8kzIY4dtb2pWO4gZt
h2jNnA4o09FXRlwbxpL8TImprB3GbtlsZce8xxK+ZNNS7Xbo7x8WGp0fQNeY
poPirW2w2VbmkZPXiwvGrxw5frEVFJedWM7sbrR7Z3jk5b0WqKvicGqiOvHq
nyHW6v1SsJVqFws72zFaeUauayaFaFWAkUaDBFtr/ZMG/Jqh3nXtphhXEQbu
m57OzpCAmzCk86KaEH0CoiJ0XzZBXvNc5s3cXOzWfiYImngNjNbEM6kmRcCO
fCS/TH8NLFctneKLNcD3Z05EnmgE1Ytef5GsAQymDGqZbv9Ah+7YZ8tMKWRY
v029XSAG33+3bX/OkYHzU/sV4ToiuOGd9ryA0wXby6fow1degV7RIjPP8h5Y
VXDOZ7qvHkDdlzWV1geuy4OWVAfXATdfvdQlaBBuixqYW7pfQN1OutnZE0Og
iB7/YLGzFpgyR/YtpxEIzWWpurAaBu16zVvMPkJbhWxi9aoqqNgoH7B48Al6
nQ6HL6EhyNMd85KWfwYubWjN3rnn4BYbTLlnj4FPYU9NPr8ClvW8P6ZPqSD1
h8o7p0vLIe5MYX7xyQlYFZM7waooAbtY81Tu6CQMWvbGxE0+gh2aumdr/aeh
ee/u2LrRQsheiLPbe2Zgj1NyAP3YHXBJkSRxvb4AtemrQ2tuZMJNm5XDWtw5
iGdeabD/Phn+ergsPjiXRoR+v9qMcei4Mo6hBT+pEWrd34xZzWTkso52+hiq
k98u7KxYkZ+Fm62zzCUydRI880vUd7vuott12lnvNA0i9F6Y8zPjHqbZML7S
9tEkLLmw51LjY4xPrysU6miRNAzsaFeWoHNSYGkXX4vMRor2rB4tR/On0mX0
hAWkcJdY7LGZizwOMyLNjiLl60b0Ftvw0MaLbVFJpwhVWTSdQnh4f+b+u55t
FPH1Otmt7cHDrH3Nx+x3UGQ2fvAxFcrD82qmBxUeFHGV9zA0cnloFSjytDhB
kbaMtoQpHT7e1TOwrs+myPji6qGBbj4aCr8d+ZhDkR/zEiTHR/mYHk6KjG5T
JHsbVPbN8jGhOtT8VAFFnMJ4l99+LcADp3nG+mUUSax7uq7LQ4D6okO6IWKK
rEh84NdaKUBW1PlGViNFQlaGgW+9ADXXX019Jpn/KTYzkUoFqLxQprOogyKB
nRxl06gAG00pjZI+iuQ53kptMEF0kRhVyQbn+yRBke62iII4q3itD/M/4d8c
EDkjFkn3T/spKTKUlW3+6gDiBmYEN3F8vs96/9LdYYg3LS5FPZykyPV6A1Vd
FOLytgy7lhmK9B5ske9KQky59FA5N0cRW9UftS/SEf8DxJJ7WA==
"]]},
"Charting`Private`Tag$18998#1"],
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]],
Line[CompressedData["
1:eJwB4QIe/SFib1JlAgAAAC0AAAACAAAA3N3d3d3d8b8AAAAAAADgP++9Ny41
s/C/20yuphIR3z+0Chbzbo/uvzC5va9H7t0/9aAzOpZ767+yW5YyJLPcP+fn
7sAbdui/EngUAsB92z8tNNtOnaTlvy4wpgcnXdo/3oc+jUGW4r91HgGHNSTZ
P8fBpaXDd9+/d6hvPA8A2D801QmwwN/Zv1msgz6o4dY/ePdbGwPO079n5mC6
6KrVP8hIICp7SMy/MLxRbPSI1D9MwGTfegHAvyPIC5inTtM/pNT/mJyfn7/3
TWsQGhrSP0rXgnGOJq0/hm/evlf60D+NSAUKsHrDP4KONc55hM8/98XlWszb
zj9sddWK2j3NP9oS9fQumNU/rcgHO4rGyj9W4Ts9u6XbP68PhYS4Wsg/lVKQ
u6el4D8mjik6fRjGPxStCyhPteM/9Hhg45Clwz8/AlaN+pDmPzibvvg6XME/
uaYCs0de6T96Ys9Oxzy+P8dDOChyaOw/L2dGk7ZfuT+B2zyWoD7vP9LaC7DS
1bQ/6TXlKdYo8T8+TuxnGdWvP7gl3egsq/I/3rXs1Icspj/dkjykhRP0P6v2
E+WfVJo/THxgB02a9T9IkYfznip7PxHj62YWB/c/suQsFDrlhr9+caimsGz4
P/0qtwbtU52/NXwpjrnw+T97QGKzYl2ov0IEEnLEWvs/zQZmmTq1sL+aCL/9
PeP8P7IU9vElnbW/R4rThblR/j+rszdy5DG6v5wzGe4Fuf8/H2vjv6Wvvr+e
rBF/YJ8AQPYkNZNkx8G/GX5KBT9VAUDlXFHaXw3Ev7mNZd9UGgJAfyjbLQyE
xr8tMZkp09sCQFkAGug578i/TJMAclKQA0C8oDE20TDLv5AzSg4JVARAytS2
kBmjzb9/kseowAoFQGDRFH/L68+/QYVds+C9BUAa7RNqfxTRvym21RE4gAZA
WTvUmnFL0r8REREREREHQDMzMzMzM9O/lT5pog==
"]]},
"Charting`Private`Tag$18998#2"],
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]],
Line[CompressedData["
1:eJwBgQN+/CFib1JlAgAAADcAAAACAAAAFAdZ5///978PT57nxOzVP514KLlY
+ve/JiCucKvq1T8m6veKsfT3v1nvHfeR6NU/Oc2WLmPp978JRBn8XuTVP16T
1HXG0ve/qspg5vjb1T+pH1AEjaX3vyaJQTssy9U/PjhHIRpL97+R75zekKnV
P2dpNVs0lva/6YJYzFFm1T9wT00n+g31v0aLS85a1NQ/I7j99r2f87/aJb7C
2EvUPy75fOawOPK/HzMhIsrF0z/vvTcuNbPwv3R2HJcVNNM/tAoW826P7r9v
s825zKvSP/WgMzqWe+u/glxTg7oX0j/n5+7AG3bov/Vr5OLrhdE/LTTbTp2k
5b8shZUJd/3QP96HPo1BluK/4eoRGO5o0D/HwaWlw3ffv4ZQHGlKu88/NNUJ
sMDf2b+O6P7D16jOP3j3WxsDztO/hLr0o0V9zT/ISCAqe0jMvxaXwY2/Y8w/
TMBk33oBwL9AqJ8k9i/LP6TU/5icn5+/zkK47JL+yT9K14JxjiatPyJWkUA7
3sg/jUgFCrB6wz+oNb1Lt6DHP/fF5VrM284/GMTkTsRyxj/aEvX0LpjVP2Ns
JtreI8U/VuE7Pbul2z+OQ69SHdHDP5VSkLunpeA/5btskrOJwj8UrQsoT7Xj
PwFhBNfWFsE/PwJWjfqQ5j+1C3rikVO/P7mmArNHXuk/VBGa42NcvD/HQzgo
cmjsP4QJFpAo67g/gds8lqA+7z+XbLxEEXi1P+k15SnWKPE/KKGhG4x1sT+4
Jd3oLKvyPyNrsI6Gg6o/3ZI8pIUT9D8elWIScD+iP0x8YAdNmvU/d+NCWVjH
kT8R4+tmFgf3PxKD+mBjCDO/fnGoprBs+D+tAQwG43eSvzV8KY658Pk/jVkw
zbFKo79CBBJyxFr7P7vjX5WW0qy/mgi//T3j/D9peLTL2qOzv0eK04W5Uf4/
Zip4oLuRuL+cMxnuBbn/PwWgWFXZb72/nqwRf2CfAEAGUTcm0V/Bvxl+SgU/
VQFABFbmCXvdw7+5jWXfVBoCQAonzC9Hk8a/LTGZKdPbAkAgO/xvwz7Jv0yT
AHJSkANAW1IdXxW+y7+QM0oOCVQEQFyPQLDmdM6/f5LHqMAKBUBLyQt7bn/Q
v0GFXbPgvQVAKYgOR4q+0b8pttUROIAGQPBYtpZBGdO/eWz7IL6OBkAzMzMz
MzPTvzt4xsQ=
"]]}, "Charting`Private`Tag$18998#3"],
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]],
Line[CompressedData["
1:eJwB8QMO/CFib1JlAgAAAD4AAAACAAAASrFtr+hI5b8AAAAAAADgP96HPo1B
luK/Cd7SL8rM3j/HwaWlw3ffv103OdCHiN0/NNUJsMDf2b/Pb91VVEvcP3j3
WxsDztO/15e1qA/02j/ISCAqe0jMv+vYDyDDtNk/TMBk33oBwL9EDJ9Q91vY
P6TU/5icn5+/qejD3hYL1z9K14JxjiatPwUndtCu0tU/jUgFCrB6wz/Wizz2
O4LUP/fF5VrM284/irdyyf5K0z/aEvX0LpjVP+JiWeiZ/dE/VuE7Pbul2z+J
ZM+GQbvQP5VSkLunpeA/6mcx1nYozz8UrQsoT7XjPxjzZLmbuMw/PwJWjfqQ
5j84u9IZ7oTKP7mmArNHXuk/5ABPgAZyyD/HQzgocmjsP2hmmLDjTsY/gds8
lqA+7z8q06cvq27EP+k15SnWKPE/SvASveeIwj+4Jd3oLKvyPwE5ewwDzsA/
3ZI8pIUT9D8//FrHd5i+P0x8YAdNmvU/ZF9vaTyGuz8R4+tmFgf3P6BdCzj2
zrg/fnGoprBs+D9jZePDO0K2PzV8KY658Pk/2MWkVW2Xsz9CBBJyxFr7P2o4
H8wpLbE/mgi//T3j/D9SPfk8/z2tP0eK04W5Uf4/hFOf1D6QqD+cMxnuBbn/
P/heFt7rC6Q/nqwRf2CfAEBZz8nTz2uePxl+SgU/VQFAO+Zgw9V9lT+5jWXf
VBoCQIBMDoG9zYc/LTGZKdPbAkCB1XKZf3pkP0yTAHJSkANAXcghL7tmeL+Q
M0oOCVQEQFGPqv2C4Y6/f5LHqMAKBUDuBWr1yR6Yv0GFXbPgvQVA/AmuO3BM
oL8pttUROIAGQF0dkuGm4aS/vKWBbpA1B0AbtJ3OIyWpvzNRliy6OAdAr6RR
/CY4qb+q/Krq4zsHQKNrMfMpS6m/mVPUZjdCB0A1UvE8L3Gpv3YBJ1/eTgdA
+krXQze9qb8wXcxPLGgHQNs1Fzo9Vaq/oxQXMciaB0BLWquaIYWrvxrAK+/x
nQdAwqimKB6Yq7+Sa0CtG6EHQMjOiYMaq6u/gMJpKW+nB0C/fHmgEtGrv1xw
vCEWtAdApNwWegAdrL8WzGESZM0HQLyEysTStKy/jXd20I3QB0AOnXAuzMes
vwQji4630wdAYb68ZsXarL/zebQKC9oHQO3rs0O3AK2/0CcHA7LmB0BaXBOy
mEytv0fTG8Hb6QdATLDfk5Bfrb++fjB/Be0HQB2zKUWIcq2/rdVZ+1jzB0DQ
KaEWd5itvySBbrmC9gdARKADN26rrb+cLIN3rPkHQAfLTSdlvq2/E9iXNdb8
B0D1+5nnW9Gtv4qDrPP//wdAMnICeFLkrb83Aer1
"]]},
"Charting`Private`Tag$18998#4"]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{0, 0}, {0, 0}}, PlotRangeClipping -> True,
ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> 1,
Axes -> {True, True}, AxesLabel -> {
Graphics[{
Thickness[0.10504201680672269`],
Style[{
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]},
Thickness[0.10504201680672269`]]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}],
Graphics[{
Thickness[0.1023541453428864],
Style[{
FilledCurve[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]]},
Thickness[0.1023541453428864]]}, {
ImageSize -> {14.662804483188044`, 24.508064757160646`},
ImageSize -> {9.77520298879203, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.77}, {0., 16.34}},
AspectRatio -> Automatic}]}, AxesOrigin -> {0, 0}, AxesStyle ->
Directive[
Thickness[Large], 16], DisplayFunction :> Identity,
Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}}, PlotRange -> {{-1, 2.8}, {-0.3, 0.5}},
PlotRangeClipping -> True,
PlotRangePadding -> {{Automatic, Automatic}, {Automatic, Automatic}},
Ticks -> {Automatic, Automatic}}], {
Placed[
LineLegend[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549]],
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]],
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]],
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]]}, {
Graphics[{
Thickness[0.02853881278538813],
Style[{
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQ/R8E7ks4/Hz7+oClsoqDSOWkkrNLpOD8MyDQIwPn
x6hGyJzbI+PgsebocoYfynD+3vyatzNTleB8+xLH2tNzONH4zA7uIH0zZBz6
I7r9GT8wOcyZCQQ/pRzA7tjP5LAj2Cri/3EJh+u8t8VSyxB8E2MQ+G8PcY+s
Q4t4LWvmMUz+GiEdvvR9cnC+7K4F+1LfyePkg6yfGakENx/Gh9m/8tvLijMO
inD3PXCNd5xVqAB3fzinWLtxvALcf6h8TjgfrO+iqEN6GhCIKTp82fdxa/o3
EQewfTcVHRhAYIGIg/K1R8EMb5Tg/NLD21xnzlWG8zfo5S1mtFFx0Pik8nLW
SxGHF1na36bPhcZbiqiD1wl229mh6g7V93/cMn4t4ZAQEqS+wFMDEo7qUg71
v60KzmVoOtwHuUdQHs4Hu5NfEc4Hm7dF2aGB5Wi/obm6w5xFyjv/HFeFhFOx
Cpy/AhQ+E5ThfHA62KrkMGMCf5VZt6rDHU3ZNf+DlRyeJC68ZqKvCg8PSHpR
hvNP7NrRy7ZBFZI+NBTg5oW8vfxxxkNZCN9dFeKPdGmHwFvSNYmfVBxg6XeD
6pPmeWcRfFh6BQDMMEWn
"], {{8.18594, 8.94844}, {8.18594,
9.11406}, {8.245310000000002, 9.245310000000002}, {
8.399999999999999, 9.44844}, {8.746879999999999, 9.88906}, {
9.23438, 10.1156}, {9.831249999999999, 10.1156}, {10.9516,
10.1156}, {11.667199999999998`, 9.32969}, {11.667199999999998`,
8.089060000000002}, {11.667199999999998`, 6.75469}, {10.8688,
5.76563}, {9.79531, 5.76563}, {9.139059999999999, 5.76563}, {
8.651560000000002, 5.9796900000000015`}, {8.18594,
6.468749999999999}, {8.18594, 8.94844}}}],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4kaWo/2G6YYOrQrsqmemiDrA+BqfVF7OWinm
4H2C3Xb2UQMHtzVHlzPMEHMoWNN9O6PBwEFh14J9qX1iDrz+66ekaiD4CbF3
3JhvaMP1P0lceM3kvLaDiTEQXBZx2GL+41DKKW0HkcpJJWdTRBxYOLvkk9dp
O6SnAcEzQYetDk2PjlvowPkS8+I0TxfoOLxpy+02ihZx+PH29QHLZh2HGNUI
mXMyog66ivJfcq7pOFTd/3HL2FvU4U3xVtHf2npw/n8QiDeA8/uDS1Sm6xs4
zAQBSREHfpD7OQwg9rkJO4j2eL1imaLvUA1Szy0Et+8MGLBA5EV0HK7z3hZL
3cYE9Ze2QzTIPTWMDn9A6h9rOeRMTSi0KP5lL7/8hYfefy2HgCeel0wnf7eX
BfHv60Dc9f+7/fmrYW/0fyP4pjZ7g6Yd1IXzI8S3X2SIM4Trh/FlNorNZ3rw
y1586hXOjCRDhwu/j12fF/nP/nDb8vBTRYYOB7v3NZksZoLGl6FDi3gtayYb
m8P0CfxVZtYI/t9vpQ/mCBo6+IPMD2aAhoehA4v+L65LPP/sP28IyJ613MCB
Fcz/aw8LHxhfV2ul8AUVXTgfPT0BAGL4DTg=
"]],
FilledCurve[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYC4gjx7RcZzpk61P62KjiXoedgoLVS+MITBL9k
q+jv03zmDiI9Xq9YSvQdQJSJoLnDdoemR8cr9B1MjIFAGMH3OcFuO1sUwV9y
fx/fHGUEPyX2jhuzhrnDk8SF10z8kfgghzzQg/NNbfYGTVNUg/P/fit9MMdQ
Fe6eU4ed1mb+U3FY9sJD7/9EMweZeXGapz+oQGgBM4dfb18fsHyM4O8A2R+h
4nCgVtYivcTcIQ0MMPkvsrS/Te9F8EHaZqxG8MH23kPwz4CAjoWDGci9iSoO
daBw87BwmNLeGnU5RsVhJhgg+Mkg//ywgLsHxoe59z8I1FvA/dMNCm9GC7h/
udxUS5leIcIDxoeFF4wPtjbTAEKfNHe4LV2TaFRqAIkPY3OH60KfHM+rGTj0
BZeoTO83c/gBsv+wPsT/e00dnoLiR1/fAT19AAAKfvOh
"]],
FilledCurve[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl
k2omMe5HZgMAEs4CVw==
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJ7IGYCYg431VKmW9YOLJxd8sl5Wg5LX3jo/W+0cTC3
2Rs0LVHLYcoE/iqz0zYOG/TyFjPGaDmcAYE3Ng7TQeLaCP6U9taoy3s04fw5
i5R3/knXdMhf030744GNw2bzH4dSVmk49Hi9YjG5CDRP9UnzvLfqDs8TF14z
eW/toP5J5eUsTWkH+6ZHx2fstnZ44BrvOOuimAOP//opqTusHRR2LdiXuk7M
4fhhp7WZdtYOGiD1nWIQ8w5aOYhUTio5myLmcEO6JtFoqxVEPZ8ohG9q7fCm
LbfbSFrUQXzqFc6MTdYOaSCgJuogMy9O87SAjYOJMQiIOqTE3nFj9kDwwe6p
RvD31spapF+xges/AXKPny3c/P8g8N4Wbr/6W959Bj9t4e470LY8/JSRLdz9
S+7v45vz2MahVYFd9cwUMQd9rZXCF47YOHzZ93Fr+jd0vjicLww2TwLi3hM2
EPt3S8DD90D3viaTxZIQ95+2dVgPCu9cDThfFKSwRMPhw4aA7FnXofJvNRyu
Cn1yPP/M1sEMHP+aDjyg9PHKFuKvek1IOHy2hcd3jILjx+Q/tpB459GCqM+y
g4SrgZYDyNizs+wcnmdpf5tuqwVx/xUEP0J8+0UGNgc4v/63VcG5AAcHabB+
TTh/hwPQ4T/U4Hxw+KepOHzZeavr71F7iP0+Sg4zZgLBTjs4PxWkrAzBB8eH
pZ1D9f0ft4yzlSDp64Stw8pvLyvOHFCCxOc5W4fbmrJr/jMrOfQGl6hMt7dz
2Jtf83bmVEWIf2vsHPhjA+4blSvC/QPjPwGlZ30HVP51B0h4OqrA+XLLgRmt
Xh3OB+eX55oOq4HZhaHcAZq/tB2OgNJLk73DdpD/JbQh4XTX1iEd5C82bYj9
LdD0KawNoR9bw9Wj528Atna2+g==
"]]}, {
Thickness[0.02853881278538813]}, StripOnInput -> False]}, {
ImageSize -> {52.56065753424658, 26.23854545454546},
ImageSize -> {35.04043835616439, 17.49236363636364},
BaselinePosition -> Scaled[0.3029987538415624],
ImageSize -> {36., 18.}, PlotRange -> {{0., 35.04}, {0., 17.49}},
AspectRatio -> Automatic}],
Graphics[{
Thickness[0.02853881278538813],
Style[{
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQ/R8E7ks4/Hz7+oClsoqDSOWkkrNLpOD8MyDQIwPn
x6hGyJzbI+PgsebocoYfynD+3vyatzNTleB8+xLH2tNzONH4zA7uIH0zZBz6
I7r9GT8wOcyZCQQ/pRzA7tjP5LAj2Cri/3EJh+u8t8VSyxB8E2MQ+G8PcY+s
Q4t4LWvmMUz+GiEdvvR9cnC+7K4F+1LfyePkg6yfGakENx/Gh9m/8tvLijMO
inD3PXCNd5xVqAB3fzinWLtxvALcf6h8TjgfrO+iqEN6GhCIKTp82fdxa/o3
EQewfTcVHRhAYIGIg/K1R8EMb5Tg/NLD21xnzlWG8zfo5S1mtFFx0Pik8nLW
SxGHF1na36bPhcZbiqiD1wl229mh6g7V93/cMn4t4ZAQEqS+wFMDEo7qUg71
v60KzmVoOtwHuUdQHs4Hu5NfEc4Hm7dF2aGB5Wi/obm6w5xFyjv/HFeFhFOx
Cpy/AhQ+E5ThfHA62KrkMGMCf5VZt6rDHU3ZNf+DlRyeJC68ZqKvCg8PSHpR
hvNP7NrRy7ZBFZI+NBTg5oW8vfxxxkNZCN9dFeKPdGmHwFvSNYmfVBxg6XeD
6pPmeWcRfFh6BQDMMEWn
"], {{8.18594, 8.94844}, {8.18594,
9.11406}, {8.245310000000002, 9.245310000000002}, {
8.399999999999999, 9.44844}, {8.746879999999999, 9.88906}, {
9.23438, 10.1156}, {9.831249999999999, 10.1156}, {10.9516,
10.1156}, {11.667199999999998`, 9.32969}, {11.667199999999998`,
8.089060000000002}, {11.667199999999998`, 6.75469}, {10.8688,
5.76563}, {9.79531, 5.76563}, {9.139059999999999, 5.76563}, {
8.651560000000002, 5.9796900000000015`}, {8.18594,
6.468749999999999}, {8.18594, 8.94844}}}],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4kaWo/2G6YYOrQrsqmemiDrA+BqfVF7OWinm
4H2C3Xb2UQMHtzVHlzPMEHMoWNN9O6PBwEFh14J9qX1iDrz+66ekaiD4CbF3
3JhvaMP1P0lceM3kvLaDiTEQXBZx2GL+41DKKW0HkcpJJWdTRBxYOLvkk9dp
O6SnAcEzQYetDk2PjlvowPkS8+I0TxfoOLxpy+02ihZx+PH29QHLZh2HGNUI
mXMyog66ivJfcq7pOFTd/3HL2FvU4U3xVtHf2npw/n8QiDeA8/uDS1Sm6xs4
zAQBSREHfpD7OQwg9rkJO4j2eL1imaLvUA1Szy0Et+8MGLBA5EV0HK7z3hZL
3cYE9Ze2QzTIPTWMDn9A6h9rOeRMTSi0KP5lL7/8hYfefy2HgCeel0wnf7eX
BfHv60Dc9f+7/fmrYW/0fyP4pjZ7g6Yd1IXzI8S3X2SIM4Trh/FlNorNZ3rw
y1586hXOjCRDhwu/j12fF/nP/nDb8vBTRYYOB7v3NZksZoLGl6FDi3gtayYb
m8P0CfxVZtYI/t9vpQ/mCBo6+IPMD2aAhoehA4v+L65LPP/sP28IyJ613MCB
Fcz/aw8LHxhfV2ul8AUVXTgfPT0BAGL4DTg=
"]],
FilledCurve[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYC4jQQmGbqYGqzN2haoq5DhPj2iwz3EPxPGwKy
Z7GbOfhenBjzL1nPQWZenOZpBTOHB2CF+g4SU69wZmwyc3iepf1t+lx9hy3m
Pw6laJnD+QVrum9nHEDwVZ80zztrZeEQHxKkvmClHpyfCnJHmy6c/6Z4q+hv
bR2o+eYOCSD1nNoOJUDh03wIfoyC48fkP2Zw/qG25eGnHpk5rAcZxKvtYKC1
UvjCETOHgFvSNYlC2hDzFpk5NLAc7TcU13YA+7/NzEEcJK6k5XBD6JPj+Wlm
DukgcTYth5OHndZmvjNz8DnBbjs7VAviPylzhxcg92VrOfD6r5+SGoHgJ8fe
cWOWsIDzr4PMa7OAiFdowvlGxkBwWR3On9LeGnX5j6oDl5tqKdMvcweP/bWy
FsdVHJbc38c3RxnB13jLu89gpxmcDw6vKDOHMyDAowpxp6iZwwaQRK8qPD5N
QPZ9VnVgAIEDpg4vQPERq+bgB4rXyaYOjaDwCFd3+LrzVtffUFOHht9WBec0
1KHhY+rwNHHhNRN+NYc6kPgMqHyGKiS8lplCwrVJBZ4+noDU66vAwxccblwq
Dhv18hYz3kHwDwC9kT7FHM4Hm59h4TATBG6qQMLthQXcfrB5ZpYQ/55Rg6Sr
WEuI+6erw/nSIHcUaMD5zJxd8sl+mg79wSUq0/UtHY7v2tHLJqDlEA1KP3cs
HH68fX3AslkLkn4WWTjoK8p/ybmmBdGfa+Fw/mrYG/3fWvD40QelKxVoetsE
1e+sA3HvDwto+tKF8+csUt75R10PzgerP6zvYFsZscLUF+rfTAMo3xzOB8fX
BjM4PwWk3wOa32wNIOnhpik8f6HnZwDIbKDV
"]],
FilledCurve[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl
k2omMe5HZgMAEs4CVw==
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJ7IGYCYg431VKmW9YOLJxd8sl5Wg5LX3jo/W+0cTC3
2Rs0LVHLYcoE/iqz0zYOG/TyFjPGaDmcAYE3Ng7TQeLaCP6U9taoy3s04fw5
i5R3/knXdMhf030744GNw2bzH4dSVmk49Hi9YjG5CDRP9UnzvLfqDs8TF14z
eW/toP5J5eUsTWkH+6ZHx2fstnZ44BrvOOuimAOP//opqTusHRR2LdiXuk7M
4fhhp7WZdtYOGiD1nWIQ8w5aOYhUTio5myLmcEO6JtFoqxVEPZ8ohG9q7fCm
LbfbSFrUQXzqFc6MTdYOaSCgJuogMy9O87SAjYOJMQiIOqTE3nFj9kDwwe6p
RvD31spapF+xges/AXKPny3c/P8g8N4Wbr/6W959Bj9t4e470LY8/JSRLdz9
S+7v45vz2MahVYFd9cwUMQd9rZXCF47YOHzZ93Fr+jd0vjicLww2TwLi3hM2
EPt3S8DD90D3viaTxZIQ95+2dVgPCu9cDThfFKSwRMPhw4aA7FnXofJvNRyu
Cn1yPP/M1sEMHP+aDjyg9PHKFuKvek1IOHy2hcd3jILjx+Q/tpB459GCqM+y
g4SrgZYDyNizs+wcnmdpf5tuqwVx/xUEP0J8+0UGNgc4v/63VcG5AAcHabB+
TTh/hwPQ4T/U4Hxw+KepOHzZeavr71F7iP0+Sg4zZgLBTjs4PxWkrAzBB8eH
pZ1D9f0ft4yzlSDp64Stw8pvLyvOHFCCxOc5W4fbmrJr/jMrOfQGl6hMt7dz
2Jtf83bmVEWIf2vsHPhjA+4blSvC/QPjPwGlZ30HVP51B0h4OqrA+XLLgRmt
Xh3OB+eX55oOq4HZhaHcAZq/tB2OgNJLk73DdpD/JbQh4XTX1iEd5C82bYj9
LdD0KawNoR9bw9Wj528Atna2+g==
"]]}, {
Thickness[0.02853881278538813]}, StripOnInput -> False]}, {
ImageSize -> {52.56065753424658, 26.03675716064757},
ImageSize -> {35.04043835616439, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {36., 18.}, PlotRange -> {{0., 35.04}, {0., 17.36}},
AspectRatio -> Automatic}],
Graphics[{
Thickness[0.08305647840531562],
Style[{
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGINIGYC4pkg8FPCQWpenObpCyoOMP4Oh6ZHxyNUHNzX
HF3OsEPeIQ0MMPndNp670poU4PwPi9YrnNVQxMn3uzgx5t9iFbj5NZ82BGTP
UnGYAbJ3J4I/Z5Hyzj/P0fjqqnA+2JxkBD/glnRN4iRVuPkpsXfcmH+oOqz4
9rLizAQlh0cR4tsvPlB1OAMCexQdNunlLWa8A+WfkXFICAlSX3BS1WGtkA5f
+jpFBwOtlcIXXDQd1oD4ecoO/0FAXhvinx/KDicOO63NlNOB87eD/FOhC+dP
mcBfZdatD7cfHK6ZBg6poGBwU4DzWxXYVc98kYXzeyO6/RkNZBwcgcbNsDZw
qLn/45ZxtpTD0V07etkm6DvI71qwL/WcpMMGkPtldB2mg/TdlILzH7jGO84K
lHaQAMXnB12HdJB9z6QdtoDk/+g5mBiDgKzDcZB5BfoOMaoRMufmyMP51SD7
ohXhfLC7IpUcdBTlv+SU6cH5LJxd8snvdOB88R6vVyxTtB34YwPuG00H6geF
j52Ww5u23G4jaXkHUZC8iIYDenoDAMDOG9o=
"]]}, {
Thickness[0.08305647840531562]}, StripOnInput -> False]}, {
ImageSize -> {18.06422914072229, 26.03675716064757},
ImageSize -> {12.042819427148194`, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {13., 18.}, PlotRange -> {{0., 12.04}, {0., 17.36}},
AspectRatio -> Automatic}],
Graphics[{
Thickness[0.07062146892655367],
Style[{
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQnZ4GBM8+2v98+/qApbKKwzavDRZzfv6A88+AgA+D
A4z/svZx9vk1DA4ea44uZ/ihDOfvza95OzNVCc63L3GsPT2HE43P7HCge1+T
STKDQ39Etz/jByao+b/s/4PAfiYH763+x5PbPtpf570tllqG4JsYg8B/e4h6
JocW8VrWzGOY/D6QuRtY4PzC5SUb/vGz4+RD9As4oJov4ACz/waINuNxgLkP
Ej4ccPdD7OOA+w+VzwnnP3CNd5x1URTi3x5uhy/7Pm5N/ybiMGMmCPA5MIDA
AhGIukJBOL9dgV31zBUhVHlBEQeNTyovZ70UcWgDy4s4iFROKjmbIgqhXaQc
qu//uGX8WsLhLMg+HRmHHcFWEf/VpRxqQOLZcg73webIw/nhnGLtxvyKcD7Y
nC3KDttB+tilHOYsUt7557gqxB0NInD+m7bcbqPdQnC+MEgfi6DDjAn8VWbd
qg7Bby9/nOEo4PAkceE1E31VeHhA0osynH9i145etg2qDgFPPC+ZXmaHmweO
h29MEL67qoMHKD2w/bEPvCVdk/hJxQGWfjeoPmmedxbBh6VXAFUATEo=
"], {{
3.08594, 8.94844}, {3.08594, 9.11406}, {3.14531,
9.245310000000002}, {3.3000000000000003`, 9.44844}, {
3.6468799999999995`, 9.88906}, {4.134379999999999, 10.1156}, {
4.731249999999999, 10.1156}, {5.851559999999999, 10.1156}, {
6.56719, 9.32969}, {6.56719, 8.089060000000002}, {6.56719,
6.75469}, {5.768750000000001, 5.76563}, {4.695309999999999,
5.76563}, {4.039059999999999, 5.76563}, {3.5515600000000003`,
5.9796900000000015`}, {3.08594, 6.468749999999999}, {3.08594,
8.94844}}}],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGINIGZigIINCg5S8+I0T19QcYDxdzg0PToeoeLwNHHh
NRN+FYc0MMDk+5xgt529FcHfpJe3mDFGFSe/keVov+F1Dbj561WfNM87q+Ew
YyYQ7ETw5yxS3vnnORpfXRXO97s4MeZfMoIfcEu6JnGSKtz8lNg7bsw/VB18
QeoOqzk8ihDffvGBqsOxXTt62T6oQtx1R9VhJhgoOSSEBKkvOKnqYGazN2ja
Q1UHA62VwhdcNB1MQfyF6g7/QUBe2+FV8VbR39oaDicOO63NlNOB87eD/FOh
C+dPmcBfZdatD7cfbE2mAcSflSpwfvnhba4zdZXh/Or7P24Zeys5OAKNm2Ft
4PBh0XqFsxmKDkdB7p6g7+A8oVkoTUrRYQPI/TK6EHfNR/CVrz0KZrij6CAB
is8Pug7poGBXU3LYApL/o+dwBgyUHI6DzCvQh/iXUQXOZ+Hskk/uU4Xzwcp7
1Bx0FOW/5JTpwflgde904HzxHq9XLFO0HbaY/ziUcgqoHxQ+dloOK7+9rDhz
QNlBFCQvouGAnt4AakwW/w==
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4vNXw97oz9ZwaFVgVz0zRdQBxtf4pPJy1kox
h5TYO27MEeoObmuOLmeYIeawQfVJ87yzag4KuxbsS+0Tc3iRpf1tuiyCL1w5
qeTsEkW4fuVrj4IZ5ig6mBgDwWURB/7YgPtG0xUdREDqUkQcqu//uGVcreiQ
ngYEzwQd9uTXvJ3JqgTnlx/e5jrTVsnhTVtut1G0iMN/EPBXcohRjZA5JyPq
ADLWeLGSQxXIHG9Rhw+L1iuc/aEM558BgR41OP9V8VbR39pqDjNBQFIE4v67
qhD73IQdHkWIb7+YoApxF7cQ3D6wOWdYHFZ+e1lx5oGiw3Xe22Kp25gg8vMV
HaJB7qlhdGAAgQ0KDjlTEwotin/Zg/1/RsEh4InnJdPJ3yH8NUoQff+/27uD
wvUEgr9WSIcvvU8Zzq/9bVVwrkMDrh/Gl9koNp/pwS/7v99KH8yZqOFw4fex
6/Mi/9kH3pKuSdyk4XCwe1+TyWImh/Xg+NJwaBGvZc1kY3P49fb1AUtnBP/Y
rh29bB/UHfxB5gczQMND3YFF/xfXJZ5/9pv08hYzyqg7sIL5f+1h4QPjP3CN
d5z1UQnOR09PAFTGHcA=
"]]}, {
Thickness[0.07062146892655367]}, StripOnInput -> False]}, {
ImageSize -> {21.23816189290162, 26.03675716064757},
ImageSize -> {14.158774595267746`, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {15., 18.}, PlotRange -> {{0., 14.16}, {0., 17.36}},
AspectRatio -> Automatic}]}, LegendMarkers -> None,
LabelStyle -> {}, LegendLayout -> "Column"], {Right, Top},
Identity]}]& ],
AutoDelete->True,
Editable->True,
SelectWithContents->False,
Selectable->True]], "Output",
CellChangeTimes->{
3.8011970307917*^9, {3.801209933896214*^9, 3.801209947181204*^9},
3.802144342726698*^9, {3.802144436275229*^9, 3.802144470772834*^9},
3.802144523681036*^9, 3.802144654188965*^9, {3.802144706014353*^9,
3.802144746644208*^9}, 3.802144792743145*^9, 3.802144835136469*^9,
3.8042358502106113`*^9, {3.804235880788723*^9, 3.804235946878051*^9}, {
3.804247350964299*^9, 3.804247380314415*^9}, 3.8042474198026247`*^9, {
3.804247571539447*^9, 3.8042475912181873`*^9}, 3.804247676158637*^9, {
3.80424771815418*^9, 3.804247737911091*^9}, {3.804247943709815*^9,
3.804248010995947*^9}, 3.804248108394116*^9, 3.80424927898335*^9,
3.804397614420239*^9, 3.804397645749982*^9, 3.804414282216022*^9,
3.8044143199672823`*^9, {3.8044143687422857`*^9, 3.804414396823764*^9},
3.8044144323581953`*^9, {3.8044144756208353`*^9, 3.804414484818473*^9},
3.804414755891314*^9, {3.804414814210527*^9, 3.804414814994397*^9}, {
3.804419423829937*^9, 3.804419442630877*^9}, 3.804419490975504*^9,
3.8044195401542892`*^9, {3.8044211280467253`*^9, 3.8044211306431313`*^9}},
CellLabel->"Out[89]=",ExpressionUUID->"e9ba8c85-bc48-415d-b020-e4d2f6d02579"]
}, Open ]],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8BCyrWfqqoeQBT7GiY7
/AfAYqe8bieoHkDERqVcdvgHwIKEwz2kpR5AJt65yezwB8DEPtHbnaAeQOoM
46PZ4QfARrPsF5GWHkBwajVYs8MHwEqcI5B3gh5AfiXawGaHB8BUbpGARFoe
QJqbI5LNDgfAZhJtYd4JHkCf34hvUQkGwBWVsJ+LWx1AFtBTTykVBcC5iuI0
xrgcQMhQU0TLJQTAheCMLTIZHEBIKSV0IyIDwNpww6IXbBtAOq5cps8vAsAm
dOhuisoaQPqKZhMyKQHA/LGZt3YbGkD196SVXicAwPhPw2OUbxlAxCKSNL5t
/r/sYNtmP88YQDsFf7MrZPy/aax/5mMhGECUQDc3QX36v9xqEr0VfxdAY5xY
5eqf+L92iR33+N8WQM+nHgkBmva/muK0rVUzFkAeDLAxv7b0v7WuOrs/khVA
CiDmz+mq8r9YtUxFo+MUQGxUhZioqPC/JBzXMjg4FEBgw9/LHpLtv+X1T3da
mBNAIj3+UcWB6b8wClU49uoSQKlos+G7tuW/cZFIUB9JEkBq87Fci5rhvzxT
yOTBmRFALn4FWQYj278udcDcle0QQBN51AuWm9O/FgqnK/dMEEDXZGwqr+PG
vxGzM+6jPQ9Ad3oqjsmVrr/iN/YydPgNQKqPOECkMK0/AX2pPqe5DECOaYHW
YILHPzQ3dUPNXwtADfRMO6xR0z9S1x32DR0KQOB0xjR2hNs/hezeoUG/CEDu
uU3Cd8jhPwXCkBTYZwdApoehYGSJ5T9yfR81iScGQCX2qxN4m+k/9K3GTi3M
BEDesh+9O2jtP2DEShbshwNAVZfgiOuQ8D8cm7+kDUoCQJ6ljL1MlvI/7OZM
LCLxAEAEW23tBXn0P1AxbsOiXv8/zmCpp1KE9j/tfnMg56T8P7UNGl33bPg/
ZJgy2WAZ+j8mmiHoB0z6P3gy0x+gmvc/+naE/atT/D+ytqRYxeX0P+v6Gw6o
OP4/xgYw7R9f8j+gZ4fUGyMAQACC2OfARO8/kEHMjBklAUCq9xMRzeTpPw5v
q0LDFQJACgXD8UPh5D++RLi9thoDQGrNp20N494//W1fNlYOBEAgwLBmaLzU
PwEH0pkr/QRAlWp/LrORxT82SHLCSgAGQFVVZ2176yi/+tys6BXyBkCAv2cO
fizEv0RsyJBN9gZAAFteu3aGxL+N++M4hfoGQGr2VGhv4MS/IBobifQCB0BV
LULCYJTFv0dXiSnTEwdAQJscdkP8xr+U0WVqkDUHQAB30d0IzMm/LsYe7Ap5
B0CALjutk2vPv3hVOpRCfQdAAMoxWozFz7/B5FU8eoEHQLUylIPCD9C/VAON
jOmJB0Aqzoowu2nQv3tA+yzImgdAIAV4iqwd0b/IutdthbwHQABzUj6PhdK/
EkrzFb3AB0DAwM2Ui7LSv1zZDr70xAdAgA5J64ff0r/v90UOZM0HQPWpP5iA
OdO/FjW0rkLeB0Dq4Czyce3Tv2DEz1Z64gdAqi6oSG4a1L+pU+v+seYHQGB8
I59qR9S/PHIiTyHvB0DVFxpMY6HUv4YBPvdY8wdAlWWVol/O1L/QkFmfkPcH
QFWzEPlb+9S/GiB1R8j7B0AVAYxPWCjVv2OvkO///wdAyk4HplRV1b+81E6m
"]]}, Annotation[#, "Charting`Private`Tag$263551#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8AGrR1NVVUjQBT7GiY7
/AfA39Ji6HJTI0DERqVcdvgHwLf4p4OQUSNAJt65yezwB8BoRDK6y00jQOoM
46PZ4QfAyttGJ0JGI0BwajVYs8MHwI0KcAEvNyNAfiXawGaHB8AUaMK1CBkj
QJqbI5LNDgfAIiNnHrzcIkCf34hvUQkGwCTFGQ3+WSJAFtBTTykVBcBgPf/8
6d8hQMhQU0TLJQTAuf1+9zpoIUBIKSV0IyIDwPnpZw9n5iBAOq5cps8vAsBy
rIMoPW0gQPqKZhMyKQHApTURvtzTH0D196SVXicAwKCiT0AJ0h5AxCKSNL5t
/r8NvPPEieEdQDsFf7MrZPy/SC1qhMDcHECUQDc3QX36v/VKRkZL6RtAY5xY
5eqf+L/c+FYdoPoaQM+nHgkBmva/kv45L6v3GUAeDLAxv7b0v7mwgkMKBhlA
CiDmz+mq8r+wup2SHwAYQGxUhZioqPC/4FTt9v7+FkBgw9/LHpLtv4Kbol0y
DxZAIj3+UcWB6b/zOSr/GwsVQKlos+G7tuW/1YQXo1kYFEBq87Fci5rhv4Un
14FNERNALn4FWQYj279wWst1Cw8SQBN51AuWm9O/zTklbB0eEUDXZGwqr+PG
v/hwUZ3lGBBAd3oqjsmVrr8pqcahA0oOQKqPOECkMK0/2JBTM9BrDECOaYHW
YILHPyQohToJZQpADfRMO6xR0z9SGIJG6oAIQOB0xjR2hNs/HbgjyDd0BkDu
uU3Cd8jhP154LnQZcQRApoehYGSJ5T+CkQQlo5ACQCX2qxN4m+k/Qlp/S5mH
AEDesh+9O2jtP833iu1uQv0/VZfgiOuQ8D8AfOmY04j5P56ljL1MlvI/bl+R
LxF+9T8EW23tBXn0P6L0z8+euPE/zmCpp1KE9j8g0q+2CkTrP7UNGl33bPg/
gB7t4Heh4z8mmiHoB0z6P4DZnWlrStg/+naE/atT/D+q5Q19lRrAP+v6Gw6o
OP4/qrLUGFdqvL+gZ4fUGyMAQFXPy50Sh9e/kEHMjBklAUAqtwwRd9Pjvw5v
q0LDFQJAGiMGwMRY67++RLi9thoDQE1oNkwwwPG//W1fNlYOBEBKDdMuro71
vwEH0pkr/QRAWnGdvANK+b82SHLCSgAGQCp2Hl+AVv2/+tys6BXyBkCgZAR8
1o4AwERsyJBN9gZAMoM7zEWXAMCN++M4hfoGQMWhchy1nwDAIBobifQCB0Dq
3uC8k7AAwEdXiSnTEwdAOFm9/VDSAMCU0WVqkDUHQNJNdn/LFQHALsYe7Ap5
B0AFN+iCwJwBwHhVOpRCfQdAmlUf0y+lAcDB5FU8eoEHQC10ViOfrQHAVAON
jOmJB0BSscTDfb4BwHtA+yzImgdAoCuhBDvgAcDIutdthbwHQDogWoa1IwLA
EkrzFb3AB0DQPpHWJCwCwFzZDr70xAdAYl3IJpQ0AsDv90UOZM0HQIiaNsdy
RQLAFjW0rkLeB0DVFBMIMGcCwGDEz1Z64gdAajNKWJ9vAsCpU+v+seYHQP1R
gagOeALAPHIiTyHvB0Aij+9I7YgCwIYBPvdY8wdAta0mmVyRAsDQkFmfkPcH
QErMXenLmQLAGiB1R8j7B0Dg6pQ5O6ICwGOvkO///wdAcAnMiaqqAsBOmTxQ
"]]}, Annotation[#, "Charting`Private`Tag$263551#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8AgLQ7Yom0TQBT7GiY7
/AfA57dzKeJrE0DERqVcdvgHwAMYTnkhahNAJt65yezwB8DQvF8UoGYTQOoM
46PZ4QfABVHrN51fE0BwajVYs8MHwEbySDSXURNAfiXawGaHB8DwM0H/iTUT
QJqbI5LNDgfAiLDGxmr9EkCf34hvUQkGwJcZcGykgxJAFtBTTykVBcDj8MLo
0RESQMhQU0TLJQTA+qjxwhyiEUBIKSV0IyIDwGgg8W/LKBFAOq5cps8vAsA0
9cj+bbcQQPqKZhMyKQHAStkKimc8EED196SVXicAwK9z8hfghg9AxCKSNL5t
/r91LATY16QOQDsFf7MrZPy/0bS3YlGvDUCUQDc3QX36vyNB3D2syQxAY5xY
5eqf+L8+JOYyGugLQM+nHgkBmva/6+0By9DyCkAeDLAxv7b0v9pg1+piDQpA
CiDmz+mq8r8fEJThBhQJQGxUhZioqPC/u8rZ1HseCEBgw9/LHpLtv2SHPC3B
OAdAIj3+UcWB6b8qSlndsz4GQKlos+G7tuW/2tL2AmNUBUBq87Fci5rhvx2H
gmhdVQRALn4FWQYj27+FAU2NtlkDQBN51AuWm9O/mKE5MKttAkDXZGwqr+PG
v0QSnVYtbAFAd3oqjsmVrr9PEI0SGnoAQKqPOECkMK0/25bd7wYW/z+OaYHW
YILHPzw/6dHHCv0/DfRMO6xR0z9jgIyBrR37P+B0xjR2hNs/fTqnDTgB+T/u
uU3Cd8jhPw4CBFOY5/Y/poehYGSJ5T/LPhKl4er0PyX2qxN4m+k/F67j/gW6
8j/esh+9O2jtP+eJLft6pPA/VZfgiOuQ8D8HS7FzLR3tP56ljL1MlvI/eCbN
21R66D8EW23tBXn0P9f1qhpfCOQ/zmCpp1KE9j/p8fsjOiDeP7UNGl33bPg/
gvBajv2E1D8mmiHoB0z6P0HZCM3VgsU/+naE/atT/D8p3Hsy/S9xv+v6Gw6o
OP4/4iZzNRsCxr+gZ4fUGyMAQA6gvoV/Kde/kEHMjBklAUCOL8SgvdPhvw5v
q0LDFQJAIyek+Pnn57++RLi9thoDQJqmp+H4xO6//W1fNlYOBEADj65I+bXy
vwEH0pkr/QRABnkZpikU9r82SHLCSgAGQIrSsQWq1/m/+tys6BXyBkDzx9AL
X3L9v0RsyJBN9gZAHxuy06aC/b+N++M4hfoGQPoKjCzwkv2/IBobifQCB0Di
45qNh7P9v0dXiSnTEwdAXZlH9Mj0/b+U0WVqkDUHQM3WpI2Vd/6/LsYe7Ap5
B0DplnLKT37/v3hVOpRCfQdAhspK/MeO/7/B5FU8eoEHQNihEaNBn/+/VAON
jOmJB0CCrvpLOcD/v3tA+yzImgdAv+2a+RwBAMDIutdthbwHQBdiDew/QwDA
EkrzFb3AB0DozSB5h0sAwFzZDr70xAdAAObauc9TAMDv90UOZM0HQNEVlFRi
ZADAFjW0rkLeB0Ck4Fnjj4UAwGDEz1Z64gdAqQ3hAd2NAMCpU+v+seYHQBnd
tNAqlgDAPHIiTyHvB0CtVZh9yKYAwIYBPvdY8wdAv13TWhivAMDQkFmfkPcH
QHnGseZotwDAGiB1R8j7B0Dwpckgur8AwGOvkO///wdAhjuxCAzIAMCP6FtD
"]]}, Annotation[#, "Charting`Private`Tag$263551#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8CLnT2iFv4nQBT7GiY7
/AfAQIi+k/n7J0DERqVcdvgHwEwIBYbc+SdAJt65yezwB8AaluNsovUnQOoM
46PZ4QfAaIzsQy7tJ0BwajVYs8MHwJY8WxdG3CdAfiXawGaHB8BiHRpVdron
QJqbI5LNDgfAUmLNN9l2J0Cf34hvUQkGwDAEyY1K5CZAFtBTTykVBcCSm100
gVsmQMhQU0TLJQTAoSVE3XXVJUBIKSV0IyIDwOifpjggRCVAOq5cps8vAsAo
mArfj7wkQPqKZhMyKQHAp9gdo7spJED196SVXicAwPu9Gp2smSNAxCKSNL5t
/r8KEvgjYxMjQDsFf7MrZPy/GUIR1OCBIkCUQDc3QX36v9Hd+2sl+iFAY5xY
5eqf+L/lBq3uMXUhQM+nHgkBmva/OwZ+5BPlIEAeDLAxv7b0v+dHTjS+XiBA
CiDmz+mq8r/FFJJUl5ofQGxUhZioqPC/MtrCJGN9HkBgw9/LHpLtv+R3QDrF
cx1AIj3+UcWB6b9SsqnbH1QcQKlos+G7tuW/E+MtuhpIG0Bq87Fci5rhv9qd
gzA/JhpALn4FWQYj27+vu7mpTQoZQBN51AuWm9O/9x+62wwCGEDXZGwqr+PG
v8C7x4NU5BZAd3oqjsmVrr8jaupYZdoVQKqPOECkMK0/HQDUO5HWFECOaYHW
YILHP1sptNDQvRNADfRMO6xR0z+wxQmqBbkSQOB0xjR2hNs/lyMKhOCfEUDu
uU3Cd8jhPz7EOVKfjRBApoehYGSJ5T/MwTCqRB8PQCX2qxN4m+k/aqGdm/v8
DEDesh+9O2jtP179hCsHBAtAVZfgiOuQ8D+qRTsfchoJQJ6ljL1MlvI/g2TR
hz8OB0AEW23tBXn0P/S4bSrRLAVAzmCpp1KE9j8OAH5OlCwDQLUNGl33bPg/
s9rNcqtYAUAmmiHoB0z6P8rjxzwAMv8/+naE/atT/D9vh/R/jIL7P+v6Gw6o
OP4/OeI2VZsu+D+gZ4fUGyMAQFYW4RrwtPQ/kEHMjBklAUCRj7veDG/xPw5v
q0LDFQJA/fMBfoUD7T++RLi9thoDQBRP9Y0t8OY//W1fNlYOBEB5bHUjxILh
PwEH0pkr/QRA2y4osBnP2D82SHLCSgAGQGN/Sj29Vcw/+tys6BXyBkC5UsmT
dm2yP0RsyJBN9gZAidSkiK/FsT+N++M4hfoGQIwhCo0BHrE/IBobifQCB0CX
nAgX4Z2vP0dXiSnTEwdABMXRovFjqj+U0WVqkDUHQBjLvHWY8p8/LsYe7Ap5
B0Bnxn5Kdd+Cv3hVOpRCfQdAboAyqHgFiL/B5FU8eoEHQMBYlI7BKo2/VAON
jOmJB0CJiNTWkrmTv3tA+yzImgdAQVekm6H9nb/IutdthbwHQDQj0MRMOqm/
EkrzFb3AB0AtkWiS8ICqv1zZDr70xAdAVu1VdmfHq7/v90UOZM0HQIa78OzO
U66/FjW0rkLeB0DGxqXCQ7Wxv2DEz1Z64gdANNf5euNXsr+pU+v+seYHQOyZ
uSlt+rK/PHIiTyHvB0At6b2fPj+0v4YBPvdY8wdA85eWgYbhtL/QkFmfkPcH
QDoxA4+4g7W/GiB1R8j7B0CG80DV1CW2v2OvkO///wdAY/GHYdvHtr9mBk05
"]]}, Annotation[#, "Charting`Private`Tag$263551#4"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.03519887363604365],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}}}, CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJfIGYCYgOtlcIXnqg4OE9oFkr7peggMfUKZ0aTqkM4
p1i7sbySwxkQ4FFzeOAa7zjLUMkhISRIfcFKBD8exO/UgPO9T7Dbzp6q6XBH
U3bN/2BFON99zdHlDDPk4fzUNCBwk3EA2++i4SC/a8G+VD0piH06aqh8HgT/
19vXBywfq8L5HvtrZS2Wq0LMt5BymDGBv8qsW9VhR7BVxP/jkg6nDjutzdyn
6tAX0e3PGCDp8KZ4q+jv06oOVfd/3DLWloSYx6zmYAwCmyUcfC9OjPnnrObw
HwTkJRz+fit9MCdQzeFNW2630W9xhwtXw97oV6tB3NUjDqHPaDq0iNeyZrrx
OtT/tio490LTwQRsHo+DP8g8Zi0HmY1i85kUeKDmQvkLuCF8ey2H7V4bLOb8
5HLYoJe3mDFGy8H/iecl02Auhy3mPw6ldGk5HOze12SSzOnwB+TeZG2HmWAA
5IPcNxHBB9t3GMFfr/qked5b3HyZeXGapwV04ebD+BD/cTtMaW+Nulyj47D8
1vLHhoe5If4y1oHSPA4tLEf7Db9rO7yofZx9PofXQXb5Cw+9++pQ8yQdzGz2
Bk17qOEgUjmp5OwTSYi9kZoO6p9UXs7ylIK4/6Omw3ohHb50OWkHc7B6LQcD
kPHFMnD/hry9/HGGoxycfxqcThTgfHD8v1CEh+/Kby8rzjxQgqYXdTgf4m8E
H+w+R1VI/F/G5IPT5xIVOB+cfrhx8/fk17yd2aoINx/GTwel9zAliDpnJYcP
i9YrnPVQcuCPDbhvJK7sUAlKj9ZKDmtB4aCnDMlPggg+2NkrFeB8iD8F4fyS
5SUb/vXzwM2DpCduuH2w+NsLck+qIjx+YXxY/IP5pUoOTaD03MYJNw+WXsD5
jV0Fzk+JvePG/APBf5Gl/W36XFW4fhbOLvnkdWpw82F8mP1SoPR2QRXuvo2g
9P9HBe5+WPkE8x+MD/M/evkFAFuQG5I=
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxdlFFIU2EUx6/Okos5yJDlfHBdGmXW3b3djYoovopKJAqKsh4SSs3sIaEm
lKwokx4s2Eth0pDIh8ti5oRCemhUIhhuWWggo3JQxCQGITUWZbbvjv/5oAPf
w49xz/mf/zlna053HG61SZJUlH9H8684/447Rt9Jdi9b4lGzkoH9pj/6N7iC
rb47I58t9rLRhujW0K8y1nLywz7bPYOZSfOzPlbG1mXKY1qtweI8bgt+eSvW
7W2W2WK2MxUaMVi348qy9psy5eu3QmZPtuRetXQJtn5fENwwUbrj/l4ffZ8+
V5ftS/goPxj1/U8rf082+UiftiG86u0PoX891zcv+gOjf7BVPuwift4RyPRX
KpTv8lwuaWxXqN73h8OuRL1CetrO5OOY4HB2/lI8pbBkdeDUZrePGTymFeoX
DD/AsxULu6aWCw4e8a/tmzLY/si4Kc0q5Dfyg1Ef84I++A/9mDf6A6N/sJXv
q7PQz0eDRSo22ts+OQu+RwzW4yp1x2ec7PXY7qH2g4LNdL26pOvEg3Mxe2ha
I64eaKqdfKBRPgfXd0GjemDoAUPvCa7vqkb9lB8avtOa1qjf6yXjQb1RJz/A
8Mua32ON/B1Rzw8WBQRbem2CU9wQl4f4j7XfKs2jxxKwifKDUT+X+fZi2x6V
9F3jehwe0l8i99Y0qx7qD4z+wdhXMPYZ+bDvqId7gB7cCxj3dIDfW6dK94Z8
uEf4AYZf4IvczzcafQ+/kR+M+pgX9GGe0I95oz8w+gd3cf/qqgr7FNXYEN+n
nVXs57Nk7+J7wdhHMPYV7P5yYyDxSDDuDYx7QL3//z//AckFQOg=
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {
1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4rrfVgXnbpg7uK05upxhhoTDTBCQtHCouv/j
lvFqCYfiraK/T8dZOBiDwGYJh+tCnxzPH0Pw/34rfTCn0BLO/w8C6y3h5s0A
mXfT0kG4clLJWRcJhw16eYsZ31g6rBXS4UuPE3f4siEge9Z3S4cY1QiZczai
DmdAwMYKzvc5wW4729QKbh4uPtg8O0k4/4FrvOOsi5h8mPlgOkcWbj+MD3Mf
mN8jDXH/S0sIbSntcKRtefipR5YO6WlA8EwK7j+we+dIwf1vAgqPYCmHJ4kL
r5nkWzq4g9xrIQUJv2sWcP6Xnbe6/pYi+J9A7lG3gJhjL+UAix+YeTC+84Rm
obRfig6nDjutzZSzgPCllCD63S0cwjnF2o3llSDmnEfwwfFpZ4kqvx8af8xK
Dh9A+tmh4XlP0aEErN4KIn9YEeJeVysH5WuPghnWIPjg8HVE8Pfm17ydKaoA
8e80TD7YvVqKDhJTr3BmLLKC+J9DycG+6dHxGbuh9l1Wcthi/uNQihc0vu4o
OdyQrkk0YrVyWPntZcWZB0oOy1946P1faAnnT5/AX2W22gKunstNtZTJygJu
nsZb3n0GL83h/AnBJSrT1yP4MQqOH5NzcPPB+iXN4PbB+OD0EKbkkBJ7x425
w8zhw6L1Cmc9lBxWgNz30cyhEpSfrJUcXmRpf5v+1wwaHgg+ON+tVIDzwfEi
Lwjnlywv2fCvnwdu3navDRZzfnLD7Vt+a/ljw8PccPdA0i+Cf7B7X5NJMqdD
j9crFpOFZg5N4rWsmW2ccPPA9s/khIRXljmcD46fRwj+LVD4m1rA9T8HuW+v
Bdx8GB9mPzi9+VnA3XegVtYi/Yk53P2w9AzzH4wP8z96+QQAjSwZ1w==
"]]}, {
Thickness[0.03519887363604365]}, StripOnInput -> False]}, {
ImageSize -> {42.61373349937733, 24.508064757160646`},
ImageSize -> {28.409155666251557`, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {29., 17.}, PlotRange -> {{0., 28.41}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {-2.3333330884353742`, 11.996266431828891`}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
RowBox[{"Singly", " ", "excited", " ", "state", " ", "singlet", " ",
RowBox[{"(", "antisymmetric", ")"}]}],
RowBox[{"Singly", " ", "excited", " ", "state", " ", "triplet", " ",
RowBox[{"(", "antisymmetric", ")"}]}],
RowBox[{"Ground", " ", "state", " ", "singlet", " ",
RowBox[{"(", "symmetric", ")"}]}],
RowBox[{"Doubly", " ", "excited", " ", "state", " ", "singlet", " ",
RowBox[{"(", "symmetric", ")"}]}]}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ), Editable -> True,
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.9, 0.36, 0.054],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.9, 0.36, 0.054];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable ->
False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.365248, 0.427802, 0.758297],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.2434986666666667, 0.28520133333333336`,
0.5055313333333333], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.365248, 0.427802, 0.758297];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.365248, 0.427802, 0.758297], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.945109, 0.593901, 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6300726666666667, 0.395934, 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.945109`", ",", "0.593901`", ",", "0.`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.945109, 0.593901, 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.945109, 0.593901, 0.], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.645957, 0.253192, 0.685109],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.430638, 0.16879466666666665`, 0.45673933333333333`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.645957`", ",", "0.253192`", ",", "0.685109`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.645957, 0.253192, 0.685109];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.645957, 0.253192, 0.685109], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )],
TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Input",
CellChangeTimes->{{3.8011947104686337`*^9, 3.801194730551322*^9}, {
3.801194778516527*^9,
3.8011948309452753`*^9}},ExpressionUUID->"0cd992a0-f8d4-431c-a159-\
0894032808d8"]
}, Closed]],
Cell[CellGroupData[{
Cell["UHF", "Subsection",
CellChangeTimes->{{3.800005686762142*^9,
3.800005687218752*^9}},ExpressionUUID->"950a0b1f-8163-47aa-bf65-\
f1d765efe46f"],
Cell[BoxData[
RowBox[{"HUMP", "=",
RowBox[{"DiagonalMatrix", "[",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"F\[Alpha]", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], "+",
RowBox[{"F\[Beta]", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}]}], ",",
RowBox[{
RowBox[{"F\[Alpha]", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}], "+",
RowBox[{"F\[Beta]", "\[LeftDoubleBracket]",
RowBox[{"2", ",", "2"}], "\[RightDoubleBracket]"}]}], ",",
RowBox[{
RowBox[{"F\[Alpha]", "\[LeftDoubleBracket]",
RowBox[{"2", ",", "2"}], "\[RightDoubleBracket]"}], "+",
RowBox[{"F\[Beta]", "\[LeftDoubleBracket]",
RowBox[{"1", ",", "1"}], "\[RightDoubleBracket]"}]}], ",",
RowBox[{
RowBox[{"F\[Alpha]", "\[LeftDoubleBracket]",
RowBox[{"2", ",", "2"}], "\[RightDoubleBracket]"}], "+",
RowBox[{"F\[Beta]", "\[LeftDoubleBracket]",
RowBox[{"2", ",", "2"}], "\[RightDoubleBracket]"}]}]}], "}"}],
"]"}]}]], "Input",
CellChangeTimes->{3.800005704724044*^9},
CellLabel->"In[51]:=",ExpressionUUID->"bb01d8e1-d6ab-461f-be8b-c75f50ab8739"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"HUMP", "[", "R_", "]"}], ":=",
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"84", " ",
SuperscriptBox["R", "2"]}]], "0", "0", "0"},
{"0",
RowBox[{
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"168", " ",
SuperscriptBox["R", "2"]}]]}], "0", "0"},
{"0", "0",
RowBox[{
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"168", " ",
SuperscriptBox["R", "2"]}]]}], "0"},
{"0", "0", "0",
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]}], ";"}]], "Input",
InitializationCell->True,
CellChangeTimes->{{3.8000057341255074`*^9, 3.800005736197897*^9}, {
3.80018206114777*^9, 3.800182067262292*^9}},
CellLabel->"In[27]:=",ExpressionUUID->"7a60d268-132a-4489-a887-307f3a80c51c"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]_", ",", "R_"}], "]"}], ":=",
RowBox[{
RowBox[{"HUMP", "[", "R", "]"}], "+",
RowBox[{"\[Lambda]",
RowBox[{"(",
RowBox[{
RowBox[{"uH", "[", "R", "]"}], "-",
RowBox[{"HUMP", "[", "R", "]"}]}], ")"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]_", ",", "R_"}], "]"}], ":=",
RowBox[{"Eigenvalues", "[",
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}]}], ";"}]}], "Input",
InitializationCell->True,
CellChangeTimes->{{3.8000083407776213`*^9, 3.800008341085771*^9}, {
3.80007540884965*^9, 3.8000754138783693`*^9}, {3.800075452098218*^9,
3.8000754565288067`*^9}, {3.800160270306171*^9, 3.8001602915134993`*^9}, {
3.800182047450593*^9, 3.800182076419499*^9}, {3.800182197979561*^9,
3.800182203753298*^9}, {3.800250699067483*^9, 3.800250702879772*^9}, {
3.800339076543096*^9, 3.800339100412263*^9}},
CellLabel->"In[28]:=",ExpressionUUID->"ddcd4a88-334b-4e04-ae2f-810ac917a7dd"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1"}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"Re", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E_\\\\text{UHF}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800006603566574*^9, 3.800006614030568*^9}, {
3.800166724418672*^9, 3.800166739606538*^9}, {3.800338808735578*^9,
3.8003388097602654`*^9}, {3.800338858730509*^9, 3.800338865114396*^9}, {
3.8003390258084583`*^9, 3.800339067493021*^9}, {3.800339110460679*^9,
3.8003391322518053`*^9}, 3.800339609359003*^9, {3.800347418339898*^9,
3.8003474188213377`*^9}, {3.8009524046547403`*^9, 3.800952460029253*^9}, {
3.80095249487425*^9, 3.800952496474988*^9}, {3.800952564605442*^9,
3.8009526062131853`*^9}, {3.80095275804158*^9, 3.8009527844436703`*^9}, {
3.8009530728463907`*^9, 3.80095307326536*^9}, {3.800953941361423*^9,
3.800953941906702*^9}, {3.801194869489562*^9, 3.8011948705075073`*^9}, {
3.801195075735506*^9, 3.801195080705673*^9}, {3.8011951300418243`*^9,
3.801195135590292*^9}, {3.801196928760853*^9, 3.801196934778831*^9}, {
3.8012031632653923`*^9, 3.801203163603958*^9}, 3.8012033208853703`*^9, {
3.8012099527603407`*^9, 3.801209967371335*^9}, 3.80122053516481*^9, {
3.801638194687008*^9, 3.801638230572485*^9}, {3.801742627187982*^9,
3.801742628586721*^9}, {3.80174266002608*^9, 3.801742661247903*^9}, {
3.8017993016559353`*^9, 3.801799364355666*^9}, {3.801800789986821*^9,
3.801800791816894*^9}, {3.801800926691745*^9, 3.801800953869658*^9}, {
3.801802893453863*^9, 3.8018028936719513`*^9}, {3.8018144710527563`*^9,
3.8018144719283457`*^9}, {3.80181728224846*^9, 3.801817292704628*^9}, {
3.8018200874884453`*^9, 3.8018201416144867`*^9}, {3.80191145278162*^9,
3.801911453114036*^9}, 3.801971272575706*^9, {3.801980393348219*^9,
3.80198039539342*^9}, 3.804248397640399*^9, 3.804499725824829*^9, {
3.804573013605077*^9, 3.8045730508546247`*^9}},
CellLabel->"In[47]:=",ExpressionUUID->"1975b756-0495-4b7e-aa86-45f0529e0f3c"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwBAQX++iFib1JlAgAAAE8AAAACAAAAY6+Q7///B8CNom57YRgeQBT7GiY7
/AfA5+LphO8VHkDERqVcdvgHwEAjZY59Ex5AJt65yezwB8Dwo1uhmQ4eQOoM
46PZ4QfAVaVIx9EEHkBwajVYs8MHwBuoIhNC8R1AfiXawGaHB8CnrdaqIsod
QJqbI5LNDgfAw7g+2uN7HUCf34hvUQkGwF4jjnQ80hxAFtBTTykVBcDeneUu
0zMcQMhQU0TLJQTAEz/CZ4WYG0BIKSV0IyIDwLA0HtwN8BpAOq5cps8vAsAv
OoJw1FIaQPqKZhMyKQHAEpRlQHGoGUD196SVXicAwK8Uzo4pARlAxCKSNL5t
/r8vpT79H2UYQDsFf7MrZPy/E4oup+y7F0CUQDc3QX36v9p+JnH3HRdAY5xY
5eqf+L9amqO5HYMWQM+nHgkBmva/PwqgPRrbFUAeDLAxv7b0vweKpOFUPhVA
CiDmz+mq8r8zXijBZZQUQGxUhZioqPC/GlkxH5LtE0Bgw9/LHpLtv+FjQp38
URNAIj3+UcWB6b8Pw9JWPakSQKlos+G7tuW/HjJrMLwLEkBq87Fci5rhv5T1
gkURYRFALn4FWQYj27/B3x/ZgbkQQBN51AuWm9O/0dnEjDAdEEB7eF5vuRrR
v9IV+BNu0g9A12RsKq/jxr+PUNL3aucOQHd6Ko7Jla6/Pg0rFvGqDUCqjzhA
pDCtP2AXjjGudAxAjmmB1mCCxz9Myu/DFyQLQA30TDusUdM//Zxhlv3pCUDg
dMY0doTbP3gY0t+PlQhA7rlNwnfI4T9m4UwmWUcHQKaHoWBkieU/F8rXrJ4P
BkAl9qsTeJvpP5NbYaqQvQRA3rIfvTto7T/VDPvn/oEDQFWX4IjrkPA/hwuf
IqRMAkCepYy9TJbyPwazQdT1/ABAbDjSYv5p8z+I5Ml5nHMAQARbbe0FefQ/
kPToi4eH/z/OYKmnUoT2P6zUS1184Pw/tQ0aXfds+D9P9M6uaWb6PyaaIegH
TPo/1a5m+sT49z/6doT9q1P8P/K6+zN5VvU/6/obDqg4/j+YBrHtJeHyP6Bn
h9QbIwBA1aNjlSs38D+QQcyMGSUBQOS3VW4+M+s/Dm+rQsMVAkAwpySyFlLm
P75EuL22GgNAqjnu0aAH4T/9bV82Vg4EQG2W8OM3Ltg/AQfSmSv9BEAASq4Y
zP3MPzZIcsJKAAZAANCXZb/nrz/63KzoFfIGQJ7LwMlQRLe/RGzIkE32BkBJ
Ovw+cPO3v4374ziF+gZAw6g3tI+iuL8gGhuJ9AIHQOeFrp7OALq/R1eJKdMT
B0BhQJxzTL28v5TRZWqQNQdAqtq7DiQbwb8uxh7sCnkHQIZPl7gflMa/eFU6
lEJ9B0DbBjVzr+vGv8HkVTx6gQdAGL7SLT9Dx79UA42M6YkHQMMsDqNe8se/
e0D7LMiaB0AACoWNnVDJv8i6122FvAdAYcRyYhsNzL8SSvMVvcAHQLZ7EB2r
ZMy/XNkOvvTEB0AMM67XOrzMv+/3RQ5kzQdAtqHpTFprzb8WNbSuQt4HQPN+
YDeZyc6/YMTPVnriB0BJNv7xKCHPv6lT6/6x5gdAhu2brLh4z788ciJPIe8H
QAyu6xDsE9C/hgE+91jzB0C3iTrusz/Qv9CQWZ+Q9wdAYWWJy3tr0L8aIHVH
yPsHQAxB2KhDl9C/Y6+Q7///B0CqHCeGC8PQv991YUM=
"]]},
Annotation[#, "Charting`Private`Tag$5846#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB8QEO/iFib1JlAgAAAB4AAAACAAAAY6+Q7///B8Alsm2pGzQWQBT7GiY7
/AfAHKJGOzwyFkDERqVcdvgHwMF8w8lcMBZAJt65yezwB8Au4qPcnSwWQOoM
46PZ4QfAOdjb2R8lFkBwajVYs8MHwJiwCTEjFhZAfiXawGaHB8B1BUVJJ/gV
QJqbI5LNDgfAjWVI1iS8FUCf34hvUQkGwFQ8BNDTORVAFtBTTykVBcB4YE/q
378UQMhQU0TLJQTAUeg35gdIFEBIKSV0IyIDwAQLOwKtxRNAOq5cps8vAsA/
+K0RpksTQPqKZhMyKQHAd3Ff5fLGEkD196SVXicAwJJRsFslRBJAxCKSNL5t
/r/n6L5KmskRQDsFf7MrZPy/5UJsHQ9EEUCUQDc3QX36v2Ki99KsxhBAY5xY
5eqf+L9QCBSa/EoQQM+nHgkBmva/uutf+JCHD0AeDLAxv7b0vyeOWAsQiQ5A
CiDmz+mq8r+nwAp8X3INQGxUhZioqPC/lHXHkWVdDEBgw9/LHpLtv+y3Q5p7
VwtAIj3+UcWB6b/67AqWsTYKQKlos+G7tuW//J0u+NQjCUBq87Fci5rhv2wA
CZkA8wdALn4FWQYj27/O6efHM78GQBN51AuWm9O/EWGsgACXBUC0VFlAEjrR
vwofyjRKNwVADdrcDw==
"]],
LineBox[CompressedData["
1:eJwVVHk4lXkbJoxQkeT7tAjZJkuqUwm5T5aSEFo0fBpOSX1NU7aK1tMUvhSl
xVScLC0my6Qz0zZka0KoLINsDY04+b3nvO/vWNNozvfHcz3XfT3L9Sz38xgL
9vuHTVFSUtqnkP/rW1U7RCETb0qHOx1fCWzU+IfiFiXXXCksTdg+I7ZTXYV/
L8Wef8uuAP7jyQNjpcr85D3ClpBTVfigUxeq46vEnz7k5Zjv1wSd7HoV2bu/
8Wf0C97B0x04tyLl9fednyB94l1xqLoHZ5vsqbV0FHcSskJ2/q8PN3WsY5d5
DsNsJG/W4RsSmHxoXFwlovj3734mefckGPGTpgRcodC8PGrX/USCZWaTKSSJ
gl3i6uPWJsG5mQOpprEUxfvaE3Vmf0T1V8Hp9ZsoNvdNncxN/oi2/OwyLU2K
U81hA2+Fgxg9PFR9NI5DTI7W6LSLgyhpmXZZHMFhd2SRGj9zECrl4WB3c/DR
+dvkzrNB7EsQhx0J4GDgdTk4cmIQ5ydc0M7jcL+yolEzhmBw2W3N31kW3Q8W
lDjuZrAx/LNa4T4W9faRi0wOMSgYka/qDWNR/Ox52tR4Bi4n7pfP387ixss9
kX/kMJjwV5qe58NiW6/YYv87BuUJWjuM7Fg0zPRIzd4qxc7/puVqSmR4fuBA
uIa7DMrDsY1CdRnEIxXNsk0yZOs47FH/JEX20dkuLQIZ/NPWl2QSKYSJT+fl
nJShuqx7v3ajFM6Zqo1OxTLM0jMa6c2QojPcy/CxAYuo0S+FV1ZJ0XxveLOV
MQv9XOUPETZS1DKiJJEli8my4MwwYymeRnFjp1eyyPjapfiyhhQ/nrja5LeF
hT3/WJFBB4MtaX8mDl5g4eO5fJ7aDwyS14mnK19jMTSo+811xRyqR8+k6mex
WOcgi/X7joHDNqv0NUUs0h73RVhsZWBocPDntAYWWTMPeQutGATUePAK3rIY
7y+/wzNmcCF27pOKHkW8QWDQjH8xUGkvq2A4FnrhjwUrVRgMXNdqcdXlUPkp
uD2yi8B4Q3fgN3M48ILa3u1tJgicuP/uexMOlh0B7y/UEtQFbZVcW6rwt+6w
EDwlKJqX9Vnmr8DRy/QdrhN8rIsSqgVxuKGr65uXSmB6bO1Xc3dw2Om4q3Vj
EsHVrkHttVEcMk4tMVx5jCBOtGJh+iUOhaauRjd3EIh9NHKLbnBwlsbPqQ0m
IJMd1lU5HNbdSlzK20aw/VvhCirmQLuMciu9CdK0N/+mXsxB00lixngQvCk1
589/zsG9WVk10I3A1ahuvUczh5fbp8pVnQiOvhG9Cu7kkGTsULnWnuDhyYhN
UX9xCE3yi2niEcjs3NoSicJ+McS8YAmBZY9+sGiIw4dOP+0WW4LQi5Ie8WcO
DleUEnytCa6vKd5Vo0rxce8Z1QWLCJq45MHuaRRHk0uN3SwJpmWHHhjSoxDP
NhZVmBO4+/OGNeZTbGuoCs0wIzg+RT1ugRnFLyJystWU4NGDt5M8G4pHFr8i
WoFZQf4PnsspPPpj9A8p8NezTkwNWU3xn4Loh+8VWFDpdz7GnaImy1n7mSJf
epSpbpI3RXBQ7mZNC4I/Fo5ezdxC8fhuqlq9op4ZzTVzHwZT0DeX5JpWBB6n
0zNrwyi2hudtqLEhEPL2m/Xso1AKsM2cruj/6V9r7o3EKP7ENZOhLsV85Jf1
Fk87TtEp9a7mryKwdu8XG8dTaEzxXLTamSBs+In9ymQKQaHKi3ZXAtHtcyVe
VymGohd+MvYkiLb0ym7NoPgppfWMyJdgfZ5WguA2xflNcxqeBRAY2tbuZfIp
Mrt+qkr6lmDo/lnfw79QNEQLV2rvJni5zHO5SjHF67xeblMEQeZDjTnJlRSl
j7to2BGCDcWJ73MaFfv4cckjSwX/jOBRbdtOMZFDrcZFBCPl6gVPeigWznSW
tOQr+OxWddFNQjFe/O5s628E2VXxB1+zFBV2Vu2z6ggOe64NChyjKOuPEOYq
7sO7Xo3f94XiiN/48EOWYKzxtMbEDDnGPzc9/zCXwastbtIz+nIc4a92OsBj
kNOm0qRjKMdk9NjS9RsZHA6qfHTDTI4r21xSaxT37NN9Kt3cRo6Oc34LBecZ
mIa6CIt4cuj0zyy7W8Rg/L3yLicnOUxUXoyHtSvy7yr3rHKVQ3VgOKRsqhS3
JCcX+2+QY8GwdkKUsxRx3/H1uvzl6H1dNyvsuBQbZV/GwgPlKOmr6zF/JYVp
ZGkXDZVDqW2V7wNHGWriL9laCuQovHk38yBk+AcslYxZ
"]],
LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAADeoQl9Rx8z8Apz9dLLQFQHx9vXAe
gPM/S1bNMIGjBUBRAH1VqYfzP5zh3s20mgVAJoM8OjSP8z9SZi6L6JEFQPwF
/B6/lvM/7leHbByJBUCoC3vo1KXzP+ifn6qEdwVA/hZ5ewDE8z9G5auAV1QF
QKotdaFXAPQ/EFiGCAoOBUAEW23tBXn0Pyf+vUS/gQRAG0tWIDOB9D9+iWAR
Q3gEQDI7P1NgifQ/YfOSpMduBEBgGxG5upn0P2OObDXTWwRAvdu0hG+69D/r
fqGh9DUEQHZc/BvZ+/Q/boO8u2XqA0DpXYtKrH71P/ieba4qVANAzmCpp1KE
9j8Nz2uRliwCQLUNGl33bPg/8KfxeN4eAEAmmiHoB0z6PxiItE9YkPw/+naE
/atT/D/JwShHdv/4P+v6Gw6oOP4/iH6dGmcE9j+gZ4fUGyMAQAAFDSsFFPM/
kEHMjBklAUDzOtjLUGjwPw5vq0LDFQJAzKCoKd8b7D++RLi9thoDQEzd0tXq
Oec//W1fNlYOBEDRk3XMitLiPwEH0pkr/QRAz0cW1z473T82SHLCSgAGQPgv
OzvNS9Q/+tys6BXyBkDWtb0FJjTIP0RsyJBN9gZAtBNz3oLrxz+N++M4hfoG
QLrG2iDkosc/IBobifQCB0AxR8zSsxHHP0dXiSnTEwdAKGuRfIfvxT+U0WVq
kDUHQB0L3IH8q8M/LsYe7Ap5B0DCVXsmBlC+P3hVOpRCfQdAVnuMfcu/vT/B
5FU8eoEHQDtgBrqYL70/VAONjOmJB0CBwLHHSg+8P3tA+yzImgdAcP4SdwzP
uT/IutdthbwHQA4fE0kAULU/EkrzFb3AB0DCU6rNQMC0P1zZDr70xAdATjMp
zYgwtD/v90UOZM0HQK7iRiMvEbM/FjW0rkLeB0DQrXh61NKwP2DEz1Z64gdA
mRmQJFBDsD+pU+v+seYHQDvQOi6mZ68/PHIiTyHvB0Ag5NB53SmtP4YBPvdY
8wdAyxy+xw4LrD/QkFmfkPcHQDF8enVO7Ko/GiB1R8j7B0A5iuF2nM2pP2Ov
kO///wdA4o7cv/iuqD9xu3BV
"]]},
Annotation[#, "Charting`Private`Tag$5846#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwBYQOe/CFib1JlAgAAADUAAAACAAAAY6+Q7///B8BAZiDoYIokQBT7GiY7
/AfAp989ynWIJEDERqVcdvgHwF9eMq2KhiRAJt65yezwB8DKr6F1tIIkQOoM
46PZ4QfA2IeiEAh7JEBwajVYs8MHwNq8dG+vayRAfiXawGaHB8DYPaHS/kwk
QJqbI5LNDgfAQBLXQaAPJECf34hvUQkGwLKGMhSdiiNAFtBTTykVBcDwns3T
ew4jQMhQU0TLJQTAwQg4DdyUIkBIKSV0IyIDwC3deOoDESJAOq5cps8vAsAQ
NkEAEJYhQPqKZhMyKQHAQv3WEO4QIUD196SVXicAwEGV+ypbjiBAxCKSNL5t
/r+PNlTcsBQgQDsFf7MrZPy//HBEAdshH0CUQDc3QX36v15gOEMyLB5AY5xY
5eqf+L+OIdFgwTsdQM+nHgkBmva/hkGkSGA3HEAeDLAxv7b0v+sdjsf3RBtA
CiDmz+mq8r/huMMG6T4aQGxUhZioqPC/QggkgX0+GUBgw9/LHpLtv4xim2lA
UBhAIj3+UcWB6b+8IvosCU8XQKlos+G7tuW/LrKIAUlgFkBq87Fci5rhv963
I55UXxVALn4FWQYj27/Y8Ko7L2UUQBq60JfoBNu/uzPDSo5hFEAF9pvWyuba
v9WJA33tXRRA3G0yVI+q2r/hnlRLrFYUQIpdX08YMtq/siuikStIFEDnPLlF
KkHZvxTvPdgwKxRAoPtsMk5f17/olyjoVvETQIw3OHEwQde/t1gMh7rtE0B3
cwOwEiPXv+2C2kse6hNATuuZLdfm1r+H8I1H5uITQP3axihgbta/YUy3CXjU
E0BauiAfcn3VvzFhNMyitxNAE3nUC5ab07+btH/hFX4TQPj/+RHvetO/FhZd
/DB6E0Dehh8YSFrTv1H8+UZMdhNAqJRqJPoY07/+G91rg24TQD6wAD1eltK/
mQ4w9/NeE0AkNyZDt3XSv9Fx8ZIQWxNACb5LSRBV0r9l+0VfLVcTQNTLllXC
E9K/jdQQimdPE0C5UrxbG/PRv90Wu+iESxNAntnhYXTS0b/AY2B4okcTQGnn
LG4mkdG/KwgDK94/E0BOblJ0f3DRvyqYM078OxNANPV3ethP0b+qo8WiGjgT
QAI/WUASOtG/ZuEBHIQ1E0CW8Iun
"]],
LineBox[CompressedData["
1:eJwVjXk41Hkcxx2VxjHNTCithhKVpFtCfb6hcq11pB2VYpCsdomM8pRFQhdJ
TMUKEx1IsjkqvqvDWWYIZQtFKWrMzO83M0yDtv3j/bz+eD3P672IHe4VrKai
ouL7Y/+TqAjM81cKcOS4+9rfhAz04fTnc0NCAWa3KbRWDDBQC42aafdCgJdq
mKlpP2GgO9x1V7JKBXivIvhgfQkDXWL6Xhs7K8AnjDOY67kMFFsUV7QjTIBH
PhSnJyUx0H6L6yX5Lj/8zomo1VEMZG4jqvaiCHAefejjMW8GYiYuP/5rBx8X
pmhw6hwZaCT9SCrlAh/PkYdZX7ZioLgSzYLfdfh49K5u6pOfGMi51qfM6Hk7
pl/P3SanMpBuU35tx5l2rHh3LzZRjYFuDVp1bpjdjkdmprQljdJRl0Gg+rTa
C5y72VoaX0dH5qkPg9MmWrE1n+VBhNGRLGtWJKpuxfi+v+UeNh39w/OMI6Jb
seJLzN13LDrywZ+yd5EtuMhfM8xuOx3Fy+c2M8easRn7deK8xXT0KuiQeflQ
I26+X/k+p4+G6vs8NlYVN+IZm+vYw900VLxrg2NdaCN+9ueJk1vaaeiI07Rf
m+gZpvQfWqaPaYhmcSHjk/Ip5q4JzfQtoCFnsnLCSPcJjhvYCZIQGopWHz+/
6HQ9ZlblR3SNz0ExseZpLVl3cCtPZ2FWOBW5j4l7yovL8K1zo862QVRkxq42
yq4uxTz+JvdRFhV1OztWsHtv47aKhni2PRWtM9jXpTS8gd8m3Tau1aOi/nCT
DXudruEFh0tchXU6SFDKHNjptQtrNgWtks7VQbfTrdH11WXwLN91KuKlFkoL
TejxT2yCBkvBgdEACtKRutmWer6Eqwf2HA7ao4HeHWlcz0l6A2YRnNnufjPR
WO3Pj2Oa30MkJ31r4Hl1VJxS4B90+iNkBbh1sMSqyFReMvdozgh0uwQb7rZS
Qf33jOpsDwrBfh21SmIwBS+sI80Xxwjh/ZSOPUd7Ch7VP+XOThbCvLDhKdn0
JOS0hkZ284Qwa4b04fDQJLAGK5eGDwhB9GKu49mySeigO10s3DUGbpp8Rz5M
wtOIiBDKNhGcMU5qurVfCZXyx10ibxGgrKm7YZ5KKDyuZ9/DFoFqII0wdVBC
QuoDQ168CD4n8WedNFPClvwZnXaPRNB32W/N26/f4G2IG7PGQAw2qRc5YzHf
wIf7LvXLBTHsV4QOpicrIG1HpY7qFTHc36dyvilaAc3jpy7qF4jBVVYUJg5S
gA1rRe7WCjF4cVTu6DoogGnAKed2iCF8OHbztekJ+HxVq8eBIYEbrwc9oiMn
IDbPyiQ3UwITptMUX5dxqHSn3KzIkYBe7weuysZx+Dr9xqKJJ4GsRR7zz5qM
w779CVZEpQSU3N7BbZNycDB+7uzUJYHwwaOetqVy0C4MiJDqEsBU2u/eMVMO
27zWyygLCTg5y6+mVCSDODWNWCNTAoT0iFNDvTIQs0tPumwg4NPw/PL6Mhl0
m4xn5/sQYH6l6rnMSwZ5Refq3LIJ0BYkTG3KkMKRZW6Fr/4iQI+6fDvrmBSc
S7RS2EUE6H/JcTANkIL07hmPo38T4LT2D2XNKim4Pkod4nUSUPIgT7q8mQRj
cGq2/JeAqDkrNy8uI0HeoFFW+56A0+QKh0sZJBQ2JXP4YgIMtXvzalgkTHQm
UZRUEopYT+1Z/QS0+ziOndInYa/BWT9OHQG81+ovaUwSEm4VfziUQ4B7f2Ku
2UoSLG3Ke828CVgSYJ9QsZ4E54+MgyEWBCiGVA/Y2ZHwwEGzJkz9R+9Ag0uT
AwlGUdbfCl5J4PpI/CovVxK+DzT0r7gpgdhDSLfPiwSl+9Uz2VES+EX0fSJk
948/IyuKwUYJLInEfUQACd7cWl7VFzG0JGdaLmOTsKDSoNl+RAz/AZTf1Pk=
"]],
LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAADeoQl9Rx8z++PtheFC/wP3x9vXAe
gPM/RqJn3I0b8D9RAH1VqYfzP0VKMxw/EfA/JoM8OjSP8z/e+MA78AbwP/wF
/B6/lvM/HXWKbkL57z+oC3vo1KXzP1uyzmUF0O8//hZ5ewDE8z8Twp+ghn3v
P6otdaFXAPQ/YhG+Xm/Y7j8EW23tBXn0P+su9YGgje0/G0tWIDOB9D8sw2Fd
LHftPzI7P1NgifQ/Upquq7Zg7T9gGxG5upn0PzG6XnPGM+0/vdu0hG+69D/X
hLtt0dnsP3Zc/BvZ+/Q/TtMS34ol7D/pXYtKrH71Px5Ly0Q4u+o/zmCpp1KE
9j/DSAQVz9znP7UNGl33bPg/pcSayK9M4j8mmiHoB0z6P5fErCEY/tg/+naE
/atT/D/8TAD1UR3HP+v6Gw6oOP4/Npzpg1PUmr+gZ4fUGyMAQArEUGmwmdC/
kEHMjBklAUDJ/ER0aK7fvw5vq0LDFQJASgiWEVAD57++RLi9thoDQESGUThk
5u6//W1fNlYOBECj5wiXlyvzvwEH0pkr/QRAa25QqlbY9r82SHLCSgAGQM2j
bgMr2/q/+tys6BXyBkCP+OCd7J3+v0RsyJBN9gZAwY98KsCu/r+N++M4hfoG
QEBMs/2Tv/6/IBobifQCB0Dr5vJ2POH+v0dXiSnTEwdAdD7QrZAk/7+U0WVq
kDUHQALzpvZFq/+/LsYe7Ap5B0ARkWAocVwAwHhVOpRCfQdAUfZEHd9kAMDB
5FU8eoEHQIv+vjFNbQDAVAONjOmJB0Bd7QW5KX4AwHtA+yzImgdA/PTjPeSf
AMDIutdthbwHQMb6bAlf4wDAEkrzFb3AB0BCeAfrzusAwFzZDr70xAdAaZSN
6j70AMDv90UOZM0HQHlM9kIfBQHAFjW0rkLeB0BKlnNW4SYBwGDEz1Z64gdA
pRSkJFIvAcCpU+v+seYHQIVq9g/DNwHAPHIiTyHvB0D+1509pUgBwIYBPvdY
8wdAGdPBfxZRAcDQkFmfkPcHQINspd6HWQHAGiB1R8j7B0BJWzBa+WEBwGOv
kO///wdA+nFK8mpqAcDNEYhH
"]]},
Annotation[#, "Charting`Private`Tag$5846#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwBYQOe/CFib1JlAgAAADUAAAACAAAAY6+Q7///B8BAZiDoYIokQBT7GiY7
/AfAp989ynWIJEDERqVcdvgHwF9eMq2KhiRAJt65yezwB8DKr6F1tIIkQOoM
46PZ4QfA2IeiEAh7JEBwajVYs8MHwNq8dG+vayRAfiXawGaHB8DYPaHS/kwk
QJqbI5LNDgfAQBLXQaAPJECf34hvUQkGwLKGMhSdiiNAFtBTTykVBcDwns3T
ew4jQMhQU0TLJQTAwQg4DdyUIkBIKSV0IyIDwC3deOoDESJAOq5cps8vAsAQ
NkEAEJYhQPqKZhMyKQHAQv3WEO4QIUD196SVXicAwEGV+ypbjiBAxCKSNL5t
/r+PNlTcsBQgQDsFf7MrZPy//HBEAdshH0CUQDc3QX36v15gOEMyLB5AY5xY
5eqf+L+OIdFgwTsdQM+nHgkBmva/hkGkSGA3HEAeDLAxv7b0v+sdjsf3RBtA
CiDmz+mq8r/huMMG6T4aQGxUhZioqPC/QggkgX0+GUBgw9/LHpLtv4xim2lA
UBhAIj3+UcWB6b+8IvosCU8XQKlos+G7tuW/LrKIAUlgFkBq87Fci5rhv963
I55UXxVALn4FWQYj27/Y8Ko7L2UUQBq60JfoBNu/uzPDSo5hFEAF9pvWyuba
v9WJA33tXRRA3G0yVI+q2r/hnlRLrFYUQIpdX08YMtq/siuikStIFEDnPLlF
KkHZvxTvPdgwKxRAoPtsMk5f17/olyjoVvETQIw3OHEwQde/t1gMh7rtE0B3
cwOwEiPXv+2C2kse6hNATuuZLdfm1r+H8I1H5uITQP3axihgbta/YUy3CXjU
E0BauiAfcn3VvzFhNMyitxNAE3nUC5ab07+btH/hFX4TQPj/+RHvetO/FhZd
/DB6E0Dehh8YSFrTv1H8+UZMdhNAqJRqJPoY07/+G91rg24TQD6wAD1eltK/
mQ4w9/NeE0AkNyZDt3XSv9Fx8ZIQWxNACb5LSRBV0r9l+0VfLVcTQNTLllXC
E9K/jdQQimdPE0C5UrxbG/PRv90Wu+iESxNAntnhYXTS0b/AY2B4okcTQGnn
LG4mkdG/KwgDK94/E0BOblJ0f3DRvyqYM078OxNANPV3ethP0b+qo8WiGjgT
QAI/WUASOtG/ZuEBHIQ1E0CW8Iun
"]],
LineBox[CompressedData["
1:eJwV1Hk8lNsfB/CEQSrL8+SHbpaSJEuhDXVOUZokcSNKyRSltPzKljZLi6XI
lbqW7FSIGBTJN/sgZkhEkVKNkMaMrat0z/3jeT2v9z/nec45n+9Hk3XK3n32
rFmzIsjz31tYcCjp4DQP4odlW5+cpPCnsIEb/d94YPAh7HrVOQo3yM+PMW/m
gTv/Wr16JIXz7hrHxebyILzRYDrnHoVvqzknj0TwoKf07WafbAoHZF7KtDrO
A7oKjA8XU9hVLyMnZTsPzso9WzBVQWFLdkPBj+U8QJGWsZfrKaxr+v2JvQwP
+vZqHzDkUlgtePmFPa1c0PD1qtLroPDXKO9QmVtc0FEMdY55R+FLOXNST8zj
wuys98NDfAozSx0eqb9sAR3TtaXTwxSm61NKW8NbwDSw/WzhKIV724dqQ5gt
sHcMlFUmKPzw45q21dItQA0kmaz9h8LegqBefl0zcN1UjagZCm+ceTkYd7UZ
HOQDYgrFaNyuckh8ZnYzaFqq/rKRpnHysjy5x5UvwWYqtstOlsbHVv9YyAp8
Ca7mEaM682n8e1eUSd2vJni/fpW8C0XjxgPd2L+8CZpDHv4qX0Dj215LbXTP
N4Fpyg7p6f/RWDf0mXvkVCNkaqV/XPAHjcdjGWfwk0ZIl1goNrGIxi/S7S4J
fRohTm/Jp1J1GocXJIZnmDRCt6RkH0uTxg7Av+MoaoDmYgcD4WIaazQbpUsX
NoCZfavgqBaNB7sv5pedbgAX53ZjzlIaB05QHLURDjSUZ8+31KGxtYRrOy+X
A5ttPT1Yy2mspJjdF3ycA9wbKZVeujT+oD4+bKLLAXQO9RxaQeNcffzjy0A9
vHjrfmybHo39zCIk4+7Xg0PqEbmF+jTezOxQsPaoB5Zl0dF3xHP3aKr90qoH
rfZMmZsGNO487KWb318HWdmmF/UNaVzRs2ttSVYdVLinLC0mznJcbfncsw70
rqVFGK6k8U2uil2NXh1wlP3k7hF7b5vZ3/S9FkZHM+bOEO+r/HisrbAWNtjv
7rZfRb5vWu/X5VMLOO/vpgTi5eycK33rakHZrsiwi1he71Y0f7oGfvzf0V7W
iMaTGd5JIxU14GfTft6IuHeRc854UA2IPds/upO49s6Gpz8tayAhV3/8IHGu
3OJacekaSP1ZUneUOCaU0TanqRpQT3OaB3GA2FCvQmQ1JJu2VO8lZgVwh5Tt
qkHnT3DbQswUsafU6Wo4UeNdqE280utvyWWdVcDd8ujrDPk/5c8XFA3iqwBZ
GK5vIf6930199f4qsAzp590m/tKxRc9cowqixUd6/9tvs63ueov+SmAZ1UZJ
Exdx5m/dnlUJZalW80vI+SRsEtnbeVbCkT28kH3EwWWdrk56leD0iqn8g5y3
p3G5l+v3FzD4GQkjiXflppzzKHwBw16CNYuI1ZI8Y7zXvYCMcduoJeT+5hgk
4skJADbvIj+B3O8bdfe9khcBzF9dMp5H7CM+eVMzrALK8VattyQvluNw31Cu
AuJ8t0quI1bkh1ZuiH0OE7Vp9pEkX3mNquPOqeXQmaOauozk70v0Rpe/Ssvg
sYURX06b7CdEyjcFlcHmJH9ZM5LfYB9eVF5tKVD7it0PknyrO7OqG1ufQoH/
CBVP8u+kcU1XfLAEKs4vSmpSo7G2oq2lwukSyD5o+7yRzNOYuPIB9YlikG5o
ZdeQeYvmP4w2m10MdZuEJx6qknnNa546q8qGV0tKBGuVSL4DdCMbYvOg7urr
ct+5NN45IujIz3oEt+aEHV5F5l+b9UT9zpNcOCoY+MWXofFrpmUBqysbKjb1
GDOlaGyscqB9+o/7MNX44OM70ie9p5asdtmWDKdVN1rZkz7i5aq9323vCOsf
nvRhk36TcLPWCLXYiEbbx4ZnuklfGaT5zS1joTcd6V5WXRTu6fLMT93pj1wm
uu5xX1PYL9/Gelg5At3LCjj7vIX0azyKU7iUiPp5Rv9QLyicHbUOZ6x8hJ5x
esN5KWT9muRyKZM8FP2uyC4hifTzFGP98bX5SHNkwOlQIoXDHw8qqyQ/Rptl
D5sP3SV9qFKq0JdZiDoNj7/vJv2fNeggfpJdgiJUlBI2XKCw/82oL2EtFWgh
X/ubvgOFIz2DOg4G1yNGY3fFuVkUnje2wyzX7hVKvXQmI3mnIu7zrjPxvfIW
nQv/U/6XjwIeKbWp8uN8QF+QY6/STXmcdT314OGwz+jpiMR57W1yeOlEDuWf
8BUVLZLfIrFyHu4tVH9udvQb2t44XPJJUxY73O0LHbolQEedpsI+yMjgSCv2
PLE4ASoPylqYNUsGcyav/qWUKkBbjtjEe05KY1OnFYmbCgRITP7KkW+fpLGa
im/+3VYBco7JDBoAaTwQL9thoTiKrMQ31uX5SOOApDVLEmNGUZmThdnNPinM
3inzoCBhFK1u/b7CpFMKD8+81atPH0XvQgb3dTdL4QOuQWuE7FGkZJF6VeuZ
FLbQeMnc1j6KrLl7dz+OlcJz09xOj9FCFPa0+M6D7VI4KfPG8x13hOj9T81W
oyIG9tbZkdZ5T4guh1d4eOYwMDNH9jorU4gckxQKk9MYeOxx+C7/IiGSVmH6
ykYzsHV5aH96mxBJxa2f13eCgTXQNo5BtxDpuSY/oN0ZeKJS6lHpByFavEWX
YrowcFr9NV+uQIgiOttYBdsZeKrtisz0fBE61XSfGbiMgVscLEeuKolQkI3V
M7YaA6e/EX8lryZCCUN8Jf4CBt7ZG5yorS9CgmqpeBsJBtZy2xxUYCJCarIh
nMBpSfyjX8zD3FyETEMnR9hCSZzxNdDQ3lqEjDPEjVQ/SOIAL0z32IsQ07PW
weaNJLb9/nvqyF4R6strvxzIlcRaZ6BH6CZC7K/tbHadJG64FmOgwxIhxyWV
l32I/wVyWiJN
"]],
LineBox[CompressedData["
1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAADeoQl9Rx8z++PtheFC/wP3x9vXAe
gPM/RqJn3I0b8D9RAH1VqYfzP0VKMxw/EfA/JoM8OjSP8z/e+MA78AbwP/wF
/B6/lvM/HXWKbkL57z+oC3vo1KXzP1uyzmUF0O8//hZ5ewDE8z8Twp+ghn3v
P6otdaFXAPQ/YhG+Xm/Y7j8EW23tBXn0P+su9YGgje0/G0tWIDOB9D8sw2Fd
LHftPzI7P1NgifQ/Upquq7Zg7T9gGxG5upn0PzG6XnPGM+0/vdu0hG+69D/X
hLtt0dnsP3Zc/BvZ+/Q/TtMS34ol7D/pXYtKrH71Px5Ly0Q4u+o/zmCpp1KE
9j/DSAQVz9znP7UNGl33bPg/pcSayK9M4j8mmiHoB0z6P5fErCEY/tg/+naE
/atT/D/8TAD1UR3HP+v6Gw6oOP4/Npzpg1PUmr+gZ4fUGyMAQArEUGmwmdC/
kEHMjBklAUDJ/ER0aK7fvw5vq0LDFQJASgiWEVAD57++RLi9thoDQESGUThk
5u6//W1fNlYOBECj5wiXlyvzvwEH0pkr/QRAa25QqlbY9r82SHLCSgAGQM2j
bgMr2/q/+tys6BXyBkCP+OCd7J3+v0RsyJBN9gZAwY98KsCu/r+N++M4hfoG
QEBMs/2Tv/6/IBobifQCB0Dr5vJ2POH+v0dXiSnTEwdAdD7QrZAk/7+U0WVq
kDUHQALzpvZFq/+/LsYe7Ap5B0ARkWAocVwAwHhVOpRCfQdAUfZEHd9kAMDB
5FU8eoEHQIv+vjFNbQDAVAONjOmJB0Bd7QW5KX4AwHtA+yzImgdA/PTjPeSf
AMDIutdthbwHQMb6bAlf4wDAEkrzFb3AB0BCeAfrzusAwFzZDr70xAdAaZSN
6j70AMDv90UOZM0HQHlM9kIfBQHAFjW0rkLeB0BKlnNW4SYBwGDEz1Z64gdA
pRSkJFIvAcCpU+v+seYHQIVq9g/DNwHAPHIiTyHvB0D+1509pUgBwIYBPvdY
8wdAGdPBfxZRAcDQkFmfkPcHQINspd6HWQHAGiB1R8j7B0BJWzBa+WEBwGOv
kO///wdA+nFK8mpqAcDNEYhH
"]]},
Annotation[#,
"Charting`Private`Tag$5846#4"]& ], {}}, {{}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.034013605442176874`],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIpIIaxWaBsBiifAY3NCJVnRmMTo55Uc0g1nxbuIcZ8
AJ0vAkM=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYC4hkzgeCnjgOImrlSwQHGf+Aa7zhLUMlBZl6c
5mkBXYfK+z9uGVsrOehrrRS+8ETX4cOi9QpnPZQcju/a0cu2Qc8hPQ0IwhD8
ld9eVpx5oOQwdQJ/ldlpHQdjELiMyW/h9V8/pRXBb2A52m9ojpvPwtkln5yn
BTcfxofZD3a/pTbcfWtVnzTP49WBu18X5H4VhP9gfJj/YfwdwVYR/4+Loqrf
KOAwHeT+11oOMhvF5jMt4HFYDzLfVwPOf1O8VfT3aVU4H+z+7SoOZ0DARwDO
1/ik8nLWSxE4H2Y/jL83v+btTFGo/86pwN0vMfUKZ8YiVbj/GECgQQ3ufxgf
Fj5PEhdeM9FXhYdfQkiQ+oKTKnA+2N6bynB+t43nrrRPSnD+bU3ZNf+blRzc
1xxdznBDyYE/NuC+kbki3HwYH2a/cOWkkrMiSnD3gc1/qQR3P1gfgzLcfzA+
zP8wvgjInBYROL9dgV31zBZBiLuClR36I7r9GQv4HX69fX3AklkFHt4b9PIW
M+5RcXhR+zj7/BpOqLyaA7cjn9cMTQ4HKVB6vqAO54PjZY0mnA+LX5j+81fD
3ujv1naIUY2QOfeHx0G0x+sVyxQdiP0GAvD8Avb3EyE4HxQcac/EHNDzFwCY
s2h3
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIdIIaxWaBsBiifAY3NCJVnRmMTo54YcXraNZjdRk+7
cIkDALmJAos=
"], CompressedData["
1:eJxdlF9IU2EYxo+ukmEOUmQ5L5qHBplh55vHFUbxFVTiRUFR2UWCpaldpNSC
klW0pIsW2UUxpSGRF4fFzAmFdNGgRCrctNBA1h+lIuaFEFLDMLOdbzzvB73w
XfwY532f5/2zspPth5otiqLkZN6RzMvNvHr78DvFVs1XzNiwjoO9hjf6t3st
X39vytqaW82H66LbQ7/zedOJj/ssPTo3ksZXNpLPN80XxLRyncfNuCX5RSDm
109Z+XL6wmxoSOd+++XVbTeslK9XhJU/2bb4sqlTsvh9QXLd67yd9/d66PvU
mYp0MOGh/GDU9z4tXhpr8JA+bXO46O1PqV/om5P+wPAPFuXDTuLn7b753mKV
8l2aWUxW7VCp3o+Hg85ErUp6Wk5n4qjkcHruYnxW5clSX6Pb5eFVZkyq5BeM
foCnCxd2T6yRfPuwd2NwQuf7I6OGMq1Sv5EfjPqYF/Sh/9CPecMfGP7BIt93
R9bPJ51HCrfYWj47sn2P6LzLmeeKTzn4m5E9A20HJBup2soV5ibun4nZQpOM
uLSvoXzsAaN8dlPfOUb1wNADht7jpr4rjPwUHBy825xi5PfaqtFudsxN/QCj
X2J+jxn1d6jybH+OT7LQa5HcEQl8aL2jEV9dqukYr9doHl1CwFbKD0b9P+Y9
lGmkj/u/vOoJaKRf6Atq5A8M/2DsKxj7jHzYd9TDPUAP7gWMe3J9u96XqNHo
3pAP94h+gNEv8Hmzn+OMvke/kR+M+pgX9GGe0I95wx8Y/sGdZv8qSrL7FGV8
wNynXSX817PkzeX3krGPYOwrWPh/JBn3BsY9oN7//5//AFqbSus=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
JjHitLALAM7SAnU=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4rrfVgXnblg4uK05upxhhoTDTBCQtHSouv/j
lvFqCYfiraK/T8dZOhiDwGYJh+tCnxzPH0Pw/3wrfTCn0ArO/w8C663g5s0A
mXfTykG4clLJWRcJhw16eYsZ31g5rBXS4UuPE3f4siEge9Z3K4cY1QiZczai
DmdAwMYazvc5wW4729Qabh4uPtg8O0k4/4FrvOOsi5h8mPlgOkcWbj+MD3Mf
mN8jDXH/SysIbSntcKRtefipR1YO6WlA8EwK7j+we+dIwf1vAgqPYCmH54kL
r5nkWzm4g9xrIQUJv2uWcP6Xnbe6/pYi+J9A7lG3hJhjL+UAix+YeTC+84Rm
obRfig6nDjutzZSzhPCllCD63S0dwjnF2o3llSDmnEfwS0DxaWeFKr8fGn/M
Sg4fQPrZoeF5TxGq3hoif1gR4l5Xawfla4+CGdYg+ODwdUTw9+bXvJ0pqgDx
7zRMPti9WooOElOvcGYssob4n0PJwb7p0fEZu6H2XVZy2GL+41CKFzS+7ig5
3JCuSTRitXZY+e1lxZkHSg7LX3jo/V9oBedPn8BfZbbaEq6ey021lMnKEm6e
+lvefQYvLeD8/uASlenrEfxoBcePyTm4+Rog/ZLmcPtgfHB6CFNySIm948bc
Ye7wYdF6hbMeSg4rQO77aO5QCcpP1koOL7K0v03/aw4NDwQfnO9WKsD54HiR
F4TzS5aXbPjXzwM3b7vXBos5P7nh9i2/tfyx4WFuuHsg6RfBP9i9r8kkmdOh
x+sVi8lCc4cm8VrWzDZOuHlg+2dyQsIrywLOFwfFzyME/xYo/E0t4fqfg9y3
1xJuPowPsx9cfvhZwt23v1bWIv2JBdz9sPQM8x+MD/M/evkEAD5pGh8=
"]]}, {
Thickness[0.034013605442176874`]}, StripOnInput -> False]}, {
ImageSize -> {44.0931407222914, 24.508064757160646`},
ImageSize -> {29.39542714819427, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {30., 17.}, PlotRange -> {{0., 29.4}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {-2.1769617966622237`, 10.270270589785582`}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
TagBox[
FrameBox[
StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["3", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["4", Smaller, StripOnInput -> False]], "Placeholder"]},
"LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.9, 0.36, 0.054],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.9, 0.36, 0.054];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable ->
False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.365248, 0.427802, 0.758297],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.2434986666666667, 0.28520133333333336`,
0.5055313333333333], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.365248, 0.427802, 0.758297];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.365248, 0.427802, 0.758297], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.945109, 0.593901, 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6300726666666667, 0.395934, 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.945109`", ",", "0.593901`", ",", "0.`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.945109, 0.593901, 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.945109, 0.593901, 0.], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.645957, 0.253192, 0.685109],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.430638, 0.16879466666666665`, 0.45673933333333333`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.645957`", ",", "0.253192`", ",", "0.685109`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.645957, 0.253192, 0.685109];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.645957, 0.253192, 0.685109], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.8011950936657553`*^9, {3.8011951313777523`*^9, 3.801195136051652*^9}, {
3.801196930301363*^9, 3.801196935248947*^9}, 3.801203164330687*^9,
3.801203321535222*^9, {3.801209954658423*^9, 3.8012099683477087`*^9},
3.8012205367498913`*^9, {3.801638203307798*^9, 3.8016382313452873`*^9}, {
3.801742640712187*^9, 3.801742662141902*^9}, {3.801799311304936*^9,
3.801799365273057*^9}, 3.801800792522273*^9, {3.8018009279555473`*^9,
3.801800954325245*^9}, 3.8018029078059483`*^9, 3.801814487850665*^9, {
3.801817286002305*^9, 3.801817293372366*^9}, {3.80182010385061*^9,
3.80182014316886*^9}, 3.801911476033551*^9, 3.801971279193267*^9,
3.8019804018731813`*^9, 3.804248400073784*^9, 3.804499726930204*^9, {
3.804573022560817*^9, 3.8045730538828773`*^9}},
CellLabel->"Out[47]=",ExpressionUUID->"975e5da1-423d-4c59-8ad0-8991cde1a8a3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1"}], "}"}], ",",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Re", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], "]"}],
"\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "0", ",", "0.01"}], "}"}]}], "]"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"RGBColor", "[", "\"\<Red\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Blue\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<LimeGreen\>\"", "]"}], ",",
RowBox[{"Darker", "[", "Purple", "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"Graphics", "@",
RowBox[{"{",
RowBox[{"Disk", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"Scaled", "@", "0.001"}]}], "]"}], "}"}]}]}], ",",
RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}], ",",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Re", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], "]"}],
"\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "3", ",", "0.01"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"RGBColor", "[", "\"\<Red\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<LimeGreen\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Blue\>\"", "]"}], ",",
RowBox[{"Darker", "[", "Purple", "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"Graphics", "@",
RowBox[{"{",
RowBox[{"Disk", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"Scaled", "@", "0.001"}]}], "]"}], "}"}]}]}], ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"Placed", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{s}^2\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{sp}_\\\\text{z} ~ ^{3}P\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{sp}_\\\\text{z} ~ ^{1}P\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{p}_\\\\text{z}^2\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"Right", ",", "Top"}], "}"}]}], "]"}], "}"}]}]}], "]"}],
",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{Re}(E)\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"ImageSize", "\[Rule]", "Large"}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"AxesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "16"}], "]"}]}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.804579773115322*^9, 3.8045797770117598`*^9}, {
3.804579810696821*^9, 3.804579840985402*^9}, {3.8045798826091347`*^9,
3.804579922605805*^9}, {3.804579993719355*^9, 3.804580049648014*^9}, {
3.804580258333684*^9, 3.804580302195118*^9}, {3.804580379963625*^9,
3.80458039222339*^9}, {3.804580434338457*^9, 3.8045804433936996`*^9}, {
3.804580550020213*^9, 3.804580879877652*^9}, {3.804581029793035*^9,
3.804581057984408*^9}, {3.804581106029153*^9, 3.804581148510192*^9}, {
3.8045811925085917`*^9, 3.804581193068328*^9}, {3.804581330783526*^9,
3.804581334285849*^9}, {3.804581372041485*^9, 3.80458143127977*^9}, {
3.804581748329752*^9, 3.804581753763822*^9}, 3.804581861143325*^9, {
3.8045824478707647`*^9, 3.804582449680512*^9}, {3.804582886812017*^9,
3.8045829035782146`*^9}, {3.804583405074765*^9, 3.804583417041098*^9}},
CellLabel->"In[38]:=",ExpressionUUID->"434e3915-a94f-4412-bf3b-733524d65036"],
Cell[BoxData[
TagBox[
GraphicsBox[{{{{}, {{{}, {},
{RGBColor[1., 0., 0.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw11ws41XcYB/BzP8c5zv0cs9pIlxWzEa2tbdavWuuGkK3kUlYpTKlWE9ZF
WDO3onKrrJJIlJYo9f7SjRaVyKU2t3IJJbkT47+33+N5PP/n/L3nfb+f9/yf
w+jHTQ7rOCwW6xM2izX2+/8joor1cefHz9Ajbfa5BiGtQloQm23x0liPVJzw
tRJXCOm5pa+WUkM9cqN7mktUgZD+8ny36IBWj2QuqPPXZArpEt/DzmskeiQh
fuwI6an7qxfOYOuRkNaxgkKakiwq4fVqyebRaid8hXTSzNzWsjYtGS02WlFI
LfYfSj5ZryULx8otENLCFYWtWyu1xJI5QjqxdNO9uSVaYsgUFNLBiow5ypta
ImYaFNLg0qTFNXla0jPWXreAfpi1sjEjS0uYcnUCOrViWO2foiXF98aOgN6Y
eqz0u0QtGZvWPldAk5ttjdT7teTk2LgnBHT8DYORf0O1hGkvSkDZeR94pwdq
ScBYOX8BFY13XLtti5Z4MEdAS3YVt8zeoCUOTEEBDcmLHNBx0xJmXCsBfXIv
4eCjZVpizAwsoK6Nr/OSFmkJU04joM/s9nusm60l/3sI6EOvrQmffKZFDz5V
JUU5dpto0YNPWUuqY/InaAnTXgGfNjz8dvlePS168GnF1qtHFulq0YNPs+zN
POQcLXrwqZ9bUFZZrwY9+FTumOgX365BDz51SnWmrg0a9ODTmYF/hhhVadCD
T8PiF9x5VqJBDz7NdJkSnHpTgx58Ov6s7IrnZQ168OjeV4+8Pj6nQQ8efdQ3
50BbigY9eLSXNdH8bKIGPXg06eCseT77NejBo9bhi++a/qZBj9HXu1Q3WwM1
6MGjYrGNWfoWDXrwaMaULPGGDRr04NEtWa2OU9w06MGjy+XndeuXadCDR2cd
TTM/ukiDHjwacCgAnGZr0INHCa/okuYzDXpwaeRFM/37Jhr04FIDk0U1+yZo
0INL84PSJXP1NOjBpft9nyUOSDTowaXcyXsjs9ka9ODS5V/J6j171YQZ15dL
WedFBye0q9GDS/cWdaQ8rlejB5d+xCbq8Eo1enCpX7/XE1KiRg8uFXvUDXXd
UKMHl87rl24/nadGDw5NtfthvnOWGj04tLp2nKc0RY0eHDquLqfmWoIaPTj0
zMzdqZui1ejBodtW3blmGKpGDw6961Ix6X6AGj041OBId9mvm9XowaEmje4P
Pl6vRg8Ozbf6QVPloibfMA1yaE+p4FiIgxo9OHR3458bpy9UoweHns5euuep
lRo9OLTFwaI81FKNHmwqO7Nug7mxGj3Y9InNyBdVBmr0YNMpa2Tz92jU6MGm
NCIxbJpYjR5s6v3gtPD+iAo92LRky/TLP3er0INNw58bJ7/fqkIPNn2bsuvS
1VoVerCps9H7w6sfq9CDTR0Ol2/m3lOhB5tOHwpXpFxXoQebflctr5x/SYUe
LFprMfX28wwVerBogVtsZfBxFXqwaEy7QjopToUeLOoRYutOI1TowaJNowm6
7FWhB4vaSM+s6vNToQeL3vqNx4/ZqEIPFk2tiqGma1XowaJnNHVRt5xU6MGi
/0Z4+7ouVaEHixrnpq3q+laFHiw6aVjkHPalCj1YtDmhfZWhuQrzH4HILdne
F6aoMO8R+KXldMB349/lOwIzr+hHVCre5TkCpg9mH/EUvMtvBJpUDmn9g0rM
awQsv92Rue+1EvMZhp0lZWl6TUrMYxiC4nbEnXiqxPmH4ebjzb+YlSpx3mFY
/TR/3uU7Svz8D0P+C9uBeVeVOM8w7GYp4+5lKwnTXutbcE+tfd/xtBL35y3o
XI8KrD6iJMy6xL8F1bJn+atilPj8fAv59nEVDfuUuA9vodHTqchjpxL930JC
UWFk81Yleg9BeZP/ZE9PJfoOgdGS3tBmNyV6DsFJ29xsD0cl+g3B3UaTkw2L
lOg1BF1rMpevmq1EnyHYOiO2qGqGEj2GYGKKYY+DiRI9BiEpOaTqrqESPQbB
3adt0xytEj0GIdbL+2KOWIkeg/D53+JTJiwlegzCUrsbVke6FegxCBvYO/1k
rQr0GICWBrXDzloFegxA9jmb223lCvQYgHX7Gh44/a1AjwGYeCrQ5xZVoMcA
gCLrsFmOAj0GYMfikcVxZxTo0Q+lwzVBI8kK9OgHedb5L9cdUqBHP/BcC3yK
/lCgRz8MWNq8Z7pHgR790G7mbxGxXYEe/bD8huvlNm8FevRBin9f2mJ3BXr0
gePRmUOnflCgRx/cLX11hm2tQI8+SMtpvLByjgI9+qBiZ6Ese6YCPfqgPdr0
ktBUgR59sHR8bKqzkQI9esHzjGf1WT0FevTCreusxcMSBXr0gsHagx3WbAV6
9ELwysPRlu1y9OgF64tuh4oq5OjRC21ZHo3OBXL06IHo6B9/fpEhR48e0BtX
arntsBw9ekD/IEt/aI8cPXrgZhlXs+snOXr0wEczr4wb/kGOHj3glVhisGOO
HD26Ya37WVXHx3L06IZGu4jmH/Xk6NENpmGeBx6y5Pj87IZpP7E5X7fK0KMb
ordVTDteLkOPbkgyMu/jUhl6dEHBNYW7e7oMPbogg3zjeDlWhh5dYKv7dYFs
lww9uiD92uJEN08ZenRB5EuP+2nLZOjRBaVNC2w7rGTo0QW57m5Ci2ky9HgD
T80etWxUydDjDeS2hTw7NSRFjzegOiZprGqUoscbKHM6+1T4UIoebyC93CPH
/IoUPd5AGP/5ascUKXp0gjYluGhLlBQ9OiH1ut0/f+yQokcnlFqxfz+2Rooe
nRBu25971kaKHp3Q82a+U87nUvTohGPeSd/nGUnR4zUUH1kRnyORosdrKA0J
kGd266LHaxgXm3b8WI0ueryGL3SNrf4o0kWP1+DiWlvoe0EXPV6DbLujmd0R
XfTogEXqVCfj33TRowMmSg6aD/nqokcHuMT8nFS4Uhc9OsBtr2VI5Le66NEB
XjHfl9p8qoseHTD7cKeXQF8XPTrAL+evz3LZuiSDyf8VHP3zsf6aVgnm/Qo2
3jIaEJRLiIjJ9xVMDmi7duKaBPN8CT5f6FvPOi0hG5j8XkLiVXnonf0SzOsl
2M67ZWcbICE3mXza4fbpc1HFayWYRzvsPV48Zb6thExg5m+HsBfx3X99LiHM
uPfa4OgWdd0HRhISyBRsg1PxOUWBYglh4pnWBo/XBkaXvRGTSmafWmHn1Urt
5H/EJPh/ICj4K3eW920xmcHsSyucL979JC1LTGqZ/XgBHUsl1TVxYhLNAL6A
28dPqaVBYvI14/8CrC6oPaZ7i/H7Tgv4rQvOtHYUkzjGtwVy1AlFblZi9GwB
3gdrY9Z/JCZdTIPNsG+nW5OHXIxezZAe4Zvs0qdD7JgAm8HuQmvcwjod9GgG
4yVh6SZ3ddCjCT49tDGTc0EHPZpAVWj064NEHfRoArVFzMuYYB30aASriPeq
rX10yFrGoxHGeWzQG/xeBz0awTfzxI6j3+igx3NYsH1J1cypOujxHBrvzxff
lOugx3M4Wf+0dn6fCD2ewYdmYJ5fK0KPZ7BAh1X8UZEIPZ5B+hL9fSHnRejR
AKULmiwr40Xo0QARfRf+NAgSoUcDWPl/enyFlwg96mFu8WZ+qIMIPerBpZmf
eOpLEXrUw7BB/fTLE0XoUQf5dZviqFiEHnVg/09EUl6nED3qoGZnjCSlWoge
tTC33jE7qECIHrXgN32qq0O6ED1qIcv/eYX6gBA9Rq+5Pe23dwjJCib/Gthu
ZOfl7S7EvP8F34Sg99iLhETB5PsvXEm4DL+ZCzHPf8B6zt+mI+8JSSGT31PI
Lv5s2voRAeb1FOZsswiARgHZx+TzBPqb8l4KSwSYRzX4hkctIRcF5P8HXDVw
/K1XbkgS4LxVsOxL74ZdewWkjylYCW4rHLNCvQQ4TyUM3fIODbQXkHPMPlWM
5mc43f0LAe5PBZx82PXLDEMBfn4fg59l0qQevoBQZj/KwSdseCiljY/7UA7l
CvvieY/4xI/xL4Pogalu9/P46P0IHIPCdixM5hNzxvcROPFELzJD+ehZCu+b
lvhzfPikmfF7CFtm0d65y/jo9RA63KM+8Z3FJ8lMgA8gxa6s5XdDPno8gNI7
xoNRfD45x+RfAjnrFk4PauVh3sVwLHyS6+qHPDKByfcetG0U2ptc4mGed6H6
q9zamiQeiWbyK4KvvA/U7Q7iYV6F4Dwpw0S6gUcUTD53wPJCb2ywDQ/zuAUO
49YPNlrwyG5m/pugjFV8NUOfh/PegLgPHS1/esslHcx812FuM/t2ZD0X56Eg
z9hTkXiHSyjT/zU4UjhgG5PBxX7zIWHSr3rb9o/ez/SXB8PnTMbP2c4lLKaf
S2AW6W7Tu5KL7/8XvIpvTD48m0tqmfc7D30+CunEye/qZ8K5Y53hh0Sj9zP1
0mCJye+G3W0c/PuT4NfQcMfq4eg1c/9RuFhlH+F78d3rseDqHx4QEc8hLOY6
GJKd64/H/sp59/8HSz/UffSHQ/4DZE/cFg==
"]]},
{RGBColor[0., 0., 1.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw12Ad4zVcUAPC3n5W8vd+z91Y7gqu1gqpVWxGzFFGa2jNolJhFjQiC2lJB
aDk3pMSIHYmINFsSIXuv3nud/j/fly9fnvvuOb97zz3338h70ahZMolE0k4q
kfCfn59a1G+6dfN0a32SPTKs/qYPajp8TUiqpW59EnPCp3edGDWtd2jIV0+q
XORuUcvJO+6o6cvrKcf8cl3k4qCkFcaLanrw1SpJrxQXOfg7f9TUO880NS/a
RTZ94AOqaTP3S7dOR7rIYjbaCR81zWg92PndXy7CBmMjqullMY6LDOY/Bqmp
z8wVbx4GuUhn8ahp9/WGHuv3uEgDMaCaVh45v6/7ZhepIyaopvTmgKKPy1yk
mE+vSEX9YhJGB893ETFckooOKfz5z4nfuUjUY/6oqEHHnpEuwqMdGaai0e3O
Lrr/lYsE83BPqGgQC3d1NxcR09uhot5z4tt2aeUiK/lwK1S0qd9Pv2Y5XGS2
eFQ0I8g9K8jdRUaJAVX0wq3Tg8dJXUSE21tFl8aR026FTtJKBKyiHiVvlBHp
TiKGM6popWEJi9hJPnuoaETHenc7Pnaih5L6f32y0fvbTvRQ0mHz+qw7EuIk
Ynp3lFSzhQfsRA8lfc0/t9+JHkoaSGsfpv5O9FBS73fHy31XOdFDSduW95rQ
bpETPZQ03Rx9PWW6Ez2U9GLnheaDY5zooaRLR6h/GjHIiR5K6rkg6KXKw4ke
Slrl3/OLW22d6KGgd0692LmkgRM9FHTz3fk5rfRO9FDQ4YkK9s+JHgpqrGLA
JQ70UNBoW/e6X2c50ENBA7s9+17+zoEeCuo9+vvIG08d6KGgzX1kLXzuONBD
QbO2HdrU/KoDPRT00pkuqfGnHeihoEvvRX2556ADPRS0R8rsY17bHeihoNU1
7FnrQA85jXD+/t21Hx3oIad+LNwfZjnQQ06HjX3kaDLegR5yauS8QxzoIafR
O6pid/R2oIecHmbLeWBHBxHh+sjp9Acd9lU2dqCHnLZIjyz80+RADznNlrGI
aznQQ06vNKgIaVBhRw85Xeq5V/v6ox095NST6W5LtKOHjFb/xAJ+aUcPGY3c
PbVt2T929JDRrZdKt14Ks6OHjI58vCtz1jk7esioOZNt4EA7eshonDKCCdvR
Q0aDGk9R+m+0o4eMzuhbPKOvrx09ZLQ1n8ZcO+kjJiijuctaNjo/yY4eMhry
W/ha7+F29JBR3z8nJlj72dFDRj2eFng+7WxHDymVZXNgO3pI6f1azct72ezo
IaUBzWB8fl07ekjpiC/HX/+j2oYeUmqeyguWDT2kNG7l1qWmVBt6SGnQgSYv
H722oYeUzrz6d6cND2zoIaWtX3y7s8ffNvSQ0rxP7LloQw8pDa37y9cnj9nQ
Q0pX8HD32tBDQsmAm3X0W2zoIaFSvqCX29BDQiPXZN9f84MNPSR0B4u261Qb
ekjoaPEHG3pIqJVt32P9beghoQl5LOLuNvSQ0OO8XLW2oYeEzmqzsSbCaUMP
CW3DyvNKjQ09JDSXByyzoYeEXlk/3JFRaEUPCV0V+H554Hsr5r8G+vy1LnZM
nBXzXQOKWLaBo6yY3xpgq/m3cLBiPmtgm24Yq9BWzF8NjG6fNqr9SSvmqwas
Q9mBtN+K+amG+DkW7aGtVsxHNRz1u7xw5Gorxl8Nc495Ral9rBhvNbS/ndzm
trcV9381fOLA31oxnmoILTGyFW0lYnofqmAZ/4OHFddPFZBOg07tb2clYrn8
XgW8Wg1vaMX6WQUP5y2foTBYcT1UwY4t+js3lVb0r4JRwecaLi61oHclOML7
r23xwYK+lRD/jj8W9KyE4HJfz73PLOhXCXNZuEPuWtCrEtp3OVMmuWZBn0rI
Ewvagh6VELbg7bUFhyzoUQHL2HJuGmBBjwrof9ptadw6C3pUgIJv3yUW9KiA
yMS+nQbNtqBHBexi5apqvAU9KmCM/cdPV4Za0KMc7Kw8z+tjQY9ySBzNAu5k
QY9yOMmn0cSCHuUwb/vrudvNFvQoh7b8+K1tQY9yKLjHNnCFGT3KIJS1G5c/
mdGjDHi3MTvJjB5l8KXrVT/XKzN6lIHagx1I98zoUQZRY1U1/jfM6FEGu5Yc
nULOm9GjFMaw3VscaEaPUnBeeG6/sMuMHqWQ9IAB+5nRoxSOp8tjbT+b0aMU
ZsqPsBPJjB6l0L5ht982TzajRynke7KC9Y0ZPUrg2oS5owr6mdGjBNb4SkPO
dDGjRwmww0gzrYUZPUpAfZkdwHYzepTAEz7Nemb0KIGATL6DTehRDDzcnvkm
9CiG+k0OZOSkmtCjGJIY76kYE3oUQ/DkhycnPzShRzHM58v5lgk9iqHjvkrv
B5dM6FEExWz7rj1uQo8iCHvKIzahRxGsYuUqe4sJ62cRDKw9/d3xFSb0KAJe
nicsMKFHETwSAZvQoxB28uNolAk9CmHsqn/GrRpgQo9CcLHj94seJvQohOSr
fAOb0KMQ+Go+6jKhRyEsyGn14lutCT0KgbdX9eQm9CiAz99rRI8CuMHbyQwj
ehTAOu+AYR3eGtGjANjuPZcWZUSPAqh7mDdYRvQogMdhDPiKET3yYW90/r1a
p4zokQ8T839tBgeM6JEPTk0z1lEa0SMfEtuwgrXGiB75cG7wuH7JPkb0yId5
s3KPHphhRI886LzBv3r4WCN65EFpIDuAvYzokQd/8aeXET3yYGMs28HtjeiR
B4NZuC0bGdEjD9hhFJNgMKJHLjznvCojeuTCnqE39g4tM6BHLkxky1mabUCP
XGjMx0kwoEcu8O278LkBPXLhzG2XplmEAT1ywYeVq7fXDOS8yH8OdCj95vGu
MwbMdw6I8nzYQGqJ/OYAO339qwMMmM9PsIEdR6HrDWSuyN8n8JofOnD+UgPm
6xPw47fRHAOJEPn5CFHBbANPMGA+PsJe1m4EDDOQhiL+jzA5wRrev6+BiHAf
Z0N93l51MpBVYsBsSLewA6mpgYj0tMyGs6ydnGMxkFixnj6Az8jVverXMRC/
z0DA2+dXlXrSRayXD1DGG6wcPUkU6yML+HWhX7Ke7BSAWbAhIulqySs98RT+
WeDF03Jfj/1OJtStZheGm3pyQPhmwis7L1h69MwE3k0+P6onhWKCGTBpzL8B
W3br0SsDGi5e9rH3Jj0ZIRKYAenb+QGsR48MOH+WPfP06PEeFrDqPH2KHj3e
Qzce7gg9eryHMokvayj16JEOnNevq57MFB7psMHjj40eLfXokQ5DWLS5dj16
pEE9cUHSo0ca8O07RaJHjzQ4cKFetaFAhx6pMImXqzQdeqRCo/e849ChRyqk
sfLc/ZEOPVLgPA/4lg49UmAh/57LOvRIga4TT7B/OvRIhhJ2/Gr36dAjGege
toF/0aFHMmzi7cZKHXokwdAoXqF16JEEGtZeZU3ToUcSvFCxA2m0Dj0SYT9r
J8cO1KFHIkwmP7R266lDj0Rowtrnu2106JEIvLtaXl9Hxov8/wvnOLBOh/lO
AJ8rz9iK1hGtyG8CdGHXoyPFWsznO6jkF4ZMLYkU+YsHXq1qx2sxX/GwuXnX
BvSJlvwi8vMWhrLrr2+4FvMRB5pp7AIcqiWfC1wcRPMD+JQW430D+8VPLSkV
A8bCtGtflH6zTYvxxEJTFq5qrZZ8vufHQHYOaygXa3H9xADnXTJTi/v3NSxu
tf/HVuO0hIr1EQ0ebDn/66XF9RANVd7sguSpJaJPW/EK7vDt20GL3i9h8+GK
bFljLekofF/CMFaubhi16PkCNK/ZhV+tJRnC7zmcTeMbQINez6ETy0bYGw0J
Egl8BuHjecHWoMczGLK7qdfuYA25LPL/BJ4+4ieuBvMdBRMZ3/xFGtJQ5Pcx
ZIqGWIP5fAg+bPsN8NCQnSJvD6AkhF/gNJivSBDrVKkhWpGf++DOj4csd8zH
P3CAHX+lT93JOhF/BDRgx/vMq+4Y7104x6rB84PuJFfEFw49eXu2zh3joXCH
H2Cz2Hhi/rdhIH/fM9Qd5/s3iPc7HdnnxfxugLgemdyJRMznOoj3NxVu+P2h
wK+3DxPdSKL4vhCo5u9n7rnh+BdBvI85xz4vxjsDWv7+Zdf//z8Y+Oul1b7s
d/H5QGjMw530/9/3wmVRIN2IRPzuB935+5Pmbv/fPyR3xYHuRv4DbDbdSw==
"]]},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.004583333333333334], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJw11wtYjPkXB/CZmmYSpcvcmprbO4NqN5Zcat1+siK3QuFvV6zFSq2tDa1C
LpGsSP8VFbnfq38oKnJ+ol1ltUhCFyldSPfpfvvndfyeeZ6ennc6c873c973
mdSrfl24Ro/D4dhzOZxPPz8fQ/pOtr1x5X4t+bggTbGnVkCDNoYwuhAtKTzr
N9moUECp3e+/hG3SkvutNj8cyhJQtytxT2U+WpI0822QMElA4z7K3ZJWakls
zKcjoNlbHKqmLdaSPbWfCgpo2HqzowVztMR/oNpZPwG1WV/3o/c0LRkoNlBR
QL3Tel16x2vJrE/lZgpo8FdbXA5/rSUO7BHQkWOOrhzGaImSLSigtwsOHUmX
aIkR26CACu/EVc4z1pK2T+218mmzrc69XE9L2HJv+bSFl1+4uUNDHv/z6fDp
o4LfggbXa8inaRek8Wl0ronTqQoNOfdp3LN82p1WbjHulYaw7R3i0z2qrwbn
5mlI8KdyQXzKsR+mXPFAQ9ayh0+fpZm469I1ZCFbkE9XuQ2PD/+fhrDjTubT
qFFXBynPa4gtOzCfjplfEpUSqyFsOSGf/ndpr9PsSA357MGnkltz+9/s0aCH
Ac05ZFyxKViDHgbUJGdX5WB/DWHbyzKgnkMa+WfWatDDgBY9jJnp+IMGPQzo
uvHZF/MWaNDDgI5bmjZizUwNehjQf/vT/+6epEEPA6r3xGxf1BgNehjQ3KmG
3rY2GvQwoL+fqFpP5Rr0MKDJZu0RSyw06GFAo8+EPqs31KAHj/aOL3Lc28eg
B49ejZl5T65j0INHT22V+Ka+Z9CDR7dsjXGa94ZBDx59qpHbVT5n0INHb9c3
T96Wy6AHj3rN990kogx68Oi2hKIniakMevDooF//dHe5yqAHj4p7PuhKTzHo
waPLM8feDYxm0INH3bQPE0wPMOjBo8WJPfTyTgY99OmBKrtu50AGPfSpz4aE
74t9GfTQp869ReWbVjHooU+frRUdHrqUQQ992hyfuvbyPAY99Knirmz19OkM
Ycf106fpBufCSxwZ9NCnce+uFQaOZNBDn17vPj/fXMughz49yVTUJ1gy6KFP
g3wfp80cyqCHPk36OjehnMeghx593j310bYuNXro0dw70ULLRjV66NH00xPC
UyrV6KFHl42OsHUvUqOHHh0+V7+t9okaPQbqjRY0hP2lRg89SvcKRNo7avTQ
oyH/2biOXlOjhx49YQPvf7ioJlPYBvWoW82ymM7javTQoxsM7wRGR6nRQ4+u
DVq6x2GfGj30qOeti1lPtqnRg0vn/MV8syFAjR5cGu/8Xd5gbzV6DFxfte/E
ZS81enDpxR7f+JkeavTg0r5I/6eVrmr04NLV8yQTQqeq0YNLb4ne/suMU6MH
l57Yv+j4PTs1enDpA9PW4ytVavTg0tkv5z3rF6nRg0vF76onnRysRg8uPWzm
VjKFq0YPDl2vMkspbVOhB4cGZGTe2/5RhR4cmhlcxVeWq9CDQ3O7FKFQqEIP
Dm140uO08rEKPTi04IzElntfhR4cOsl20MIzaSr04NAsp19Spyep0IMzcL+/
XVR5VoUeHJouFowMi1GhB4dq/UO+sz2kQg8OvRLacPRRqAo9ODTYuc9mQ5AK
8++HQ00eHaZ+Ksy7H146nuSnrFFhvv3gY/uHx5LvVZhnP9i55pR3uaswv34I
OTHkeryLCvPqB/ubRvedJ33Jpw/i04LF1aO/5NEH1j6yxD9GfJm/DyLIubBv
5F/m7QPb1a8uFJir8P7vgyPZWwcHG36Zpw9cZ1/yndajJGx7tb1QQtzdI6qV
uD+9YLR93/1Xz5SEXZeYXhjUX/f38LtKfH72wrUczYqNl5W4D71wSpC/P+tP
Jfr3Qo766lyzHUr07oHLxT9eWOmjRN8eGLrpRkzyYiV69sC8zFU2XGcl+vXA
1IlOHgvtlejVAwkuAuU5qRJ9esDP5tz+Nn0levSA7Nv6Y64NCvTohp/4j+ac
eK1Aj27grh9xvilbgR7d4JPafsHlmgI9ukH674RFx48r0KMbohfXXm0OU6BH
Nwx6KL/hGqBAjy7IPVW+/rSXAj26YF2oZ0GnqwI9uiB6Vaxu4TgFenTB9RMl
uQkqBXp0wfoxHssEQxTo0QWRbyaeX9UuR49O+MmtKPFuuRw9OsF12q7NVnly
9OiEhSnh3C3pcvTohGJzjwWF5+To0QkVXvPWjY+Uo0cn2K+onRUdLEePDtj/
OLG1ba0cPTogY4/Cf+lCOXp0wM7Up5kZk+Xo0QExxmtL5bZy9Bi43hJasFMo
R48O2JxSfr6q3xo9OmBG+pSFc2ut0aMdyO2fSq6/sEaPdrDoGjFblmWNHu1Q
/dsvcbsSrdGjHZZKmee1x6zRox0SB5N2z1Br9GgHbuFjwb1frdGjDcoulRra
f2+NHm2wMzKqN8bFGj3aIOu2+L1gjDV6tEFx6vm8zXJr9GiDkIth16oMrdGj
DRyOmR9ZorNCj1bISL6yNeeNFXq0Qsn2LJ9Jj6zQoxUivi1ak3zTCp+frTBk
yJ4Nw85YoUcr3Fq0Ijwuwgo9Buo1SzPMt1ihhw42HvHj/bHaCj100NE31pfn
boUeOrBePKN1+0Qr9NDB7oDDZ7uGW6GHDg6MlgUHmluhhw6+y2wKae2VoYcO
7tVMvLnxvQw9WmBqyEim9bkMPVpgSKzZw81Uhh4tsKV9akLnVRl6tEDuwhH5
247K0KMFijJnTdPfLUOPFqjuduwO3yBDj2YwLD1lYL5Mhh7NUHJq8pq4GTL0
aIbSOW8Vw0fL0KMZEs0CJly3lqFHMyy43nBjqqEMPZohoNQ7Jq/FEj2aoCrO
qM7rjSV6NMGHq2YpjbmW6NEE3zcXtOy+aYkeTeBRmn1NesYSPZrA5PnPLUkR
lujRBDVHl9112WKJHo1wPMNTWrbaEj0a4RLfThDsbokejRBXfy9SMskSPRrh
WI/6duoIS/RohCPO3gc8LSzRoxHOP3pq1N4nRY9GKDa+Nin2g5QksPk3gHD5
7zZTX0gx7wbQeKU+r7wnJYZsvg1wO8h81sFEKeZZDz97Lgl3jJGSdWx+9aCZ
4n3yXagU86qHtAtzDkf5SckDNp86WHZUtdb5BynmUQeNjO0w3UwpUbHz10HL
6+yCiw5Swo77z0eocw4MWa6Ukq1swY/gML3UVjRYSth4bD6Cd+yd4rw2CXnJ
7lMtTJ3fenJ/uYSEfgYCP1lE8Kw8CRnL7kstTCy9EmiYISFl7H58gCTBseO5
5yUkkgX8AJ09tPngYQmZxPp/gLJdqbs8t0nw+857WKSy9VR4S8gx1vc93N/e
8tt7Dwl6voeUv0wrbxIJ0bEN1oBlx+mUvV9L0KsG5k6p+7BUKiHubIA1UDvF
67A9T4IeNdC+au81XqMYParBUSb3LC0So0c13Jdw9mb8LUaPaiBhDvNjbojR
owpCvi2/FXRSTFazHlUwN2/5Y68/xOhRBWP/UsTMCBSjRyWQ+AfDRv0kRo9K
ePlUtN3KTYwelTC2sD/BaKIYPd6B2ORoZs9wMXq8g4jT4ttN5mL0eAdty8qS
3/eJ0KMCdGu2Xnn3QYQeFZClH3Oj/IUIPSpgub3Ry4osEXqUQxyTo6lJEqFH
ObyqbDnTECtCj3IYfeafH7v2itDjLezrTvM1DBChx1s45zLtieUKEXq8BZdL
Q2NGzhGhRxn4WTbku0wQoUcZxLvlRqzSiNCjDJaEXcnfOVSEHmUgG3Xz+rlu
IVnK5v8GEv1HOT6qFmLepeB74jf/1nwhMWXzLQWvn3U+GirEPEuACsg4zwQh
ecjmVwxnRra+3n9MiHkVQ05e9voHoUKyj82nCKzuBDRz/YWYx2vQk+eFTF8u
JJ8fcK/h5NUkVbirEOd9BQez28qfjROSDrbgSzCbdeC5ihHiPC/h6vjF+gEm
QpLM7lMheNs5bcvpssD9KYT7YRbu2moLvH9fgMeW9PDd+RaEsvtRALGJjROq
wQL3oQA4L3zWuSVYkN9Z/+cQWZltc+eYBXrnw0XjbXvt91iQb1jffBgRWHfw
rL8Fej6DibfmuCm8LEgN6/cUKnvjn5+YbYFeTyGnN+MrZoIFOcUG+AScl5Us
N7hgjh5P4LJJ0FsHN3OSzOafB71tJoeGDzbHvB/DA78pYzr/NSMqNt9/IM40
f/v8WDPMMxeYooaS3evMSCSbXw4E14ysu+hkhnk9BL1gZ1eVsRkxZfP5GwK+
DuPvLjfFPLKh2Nfyf7vTTckOdv4HMDZ1yruaw6Y4733Iy308Y6+PKWlk57sH
cef1Lzi6mOI8FDSZow5VqAfqsf3fhWRd3FdveoZiv3fAwyh6SdStoeQU2186
eE1/GgkBQwmH7ecW/BJwOmr26KH4+SlwMiqxTdZoQsrYz7sGxnZPtlslm2D9
JNixLD/Myd+E7GDrXQa7CZ6xqx1M8O/PwaT1c8wPthmTHez742HbpbuFlzKM
8fqfcMz9sfZyiDHhsL+HwrBCo8WhM4y//P/Buf/NkIGXMfk/QjrwvA==
"]]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.004583333333333334], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJw11nlczPkfB/CZaZppy1VzNjXXdwbFYp05wkdsbhJhLbEtdkuOHNsqscgR
m+uHhKLkLLmKpHp/UI5sbSRZEUandE/39cvXu88/Pb6Pvt/3vN+v53u+j9F6
rHVdweNwOAO4HM7Xv9+OGS1QbK1atk9PvsxJUO0qE9ItG7cxxm16kntu3Vjz
XCGl/f5cvWeTnjyss1t88IGQul459VyxSk9iJ3/0E8cKafgX5ezYZXpyMvTr
EdJHm4cWTZivJ7vKvhYU0v1eliE50/XEp7PauXVC2t+r/BfPCXrSWayzopB6
JbQ5t43Qkylfy00W0u39Nzsf/l5PhrJHSAcNCVnWm9ETNVtQSFNyDh67K9MT
c7ZBIZUknSqc2V1P6r+2VyegRnuji4GnJ2y5jwJay8/O/aNRRzL++XoENDNn
vZ9FhY58nXZOgoCeSO8x6uwnHYn6Ou45AW1NMIiG/6cjbHsHBXS3pr9FeqaO
+H8t5yegvAG91UtTdWQlewT0VUIPF+NdHXFlCwroitl9woOu6Qg77tjO+oOi
v1Of1xF7dmABHTLr3ZG4kzrClhML6LGFbaOmHdKRbx4CantnRsf7XTr0MKXp
B7t/2uSvQw9TavV0R6GFj46w7T0wpW7dqgSRK3XoYUrfPQmdPHKxDj1MqdeI
tIuZc3ToYUodFib0XTFZhx6mNLvj7uMWRx16mFJeluXeI0N06GFKM8abedrb
6dDDlAaEFXlRpQ49TOkNy4bgBSIdepjS0MjAFxVmOvTg07YReSN3tzPowacx
oZPvK40MevBpxBaZd3wpgx58unlL6KiZ7xn04NMXOmW/wpcMevBpSkXN2IB0
Bj341GOW9yYJZdCDTwNi8rKuxjPowafd1h51cY5m0INPpa2fjflnGfTg06XJ
w1J8jzPowacu+icxvf5m0INP319tpZe3M+hhQoOL+rU4+TLoYUK918T8/Nab
QQ8TOqktz7DJg0EPE/pipeRwz4UMephQY3j8ysszGfQwodoUxfKJExnCjrvO
hN41jQp6N5JBDxMaVnAj13cggx4m9FbL+VlWegY9TOhZ5lNFjDWDHibU3zsj
YXJPBj1M6LXv02MMfAY9eDS3ZfyzgGYtevDos6TjYusqLXrw6L0Ih6C4Qi16
8OiSwcH2Lnla9OBRuxkm9WVZWvTg0ZzBwso9j7TowaP3dwsl+iQtevDo9p82
/k5vaNGDR8PtoHTxRS0ZxzbIo3NKFoU2ndaiB4+uNUvyPX5Eix48+pvfwl1D
92rRg0d/unPxQVaAFj24dNYj5oc1G7TowaVnnSZlWnhq0YNLp3vsDbvsrkUP
Lr3U6h0+eZ4WPbiUc9jneeFULXpw6YqZMofA8Vr04NJEycd/meFa9ODSiH1z
T9/vp0UPLn3cq+70Mo0WPbh02uuZLzokWvTgUnlBseMZCy16cOkRy9nvxnG1
6MGhXhrLuPx6DXpw6IbE5Ptbv2jQg0NT/IsEaoMGPTg0o1kVCLka9ODQyqzW
UcsyNOjBoa8iZfbchxr04NCx9t+5RiZo0INDU0etjp8Yq0EPDhVkfZxbeE6D
HhyaKBUO3BOqQQ8O7euzbZL9QQ16cGh0YGXIs0ANenBogFO73Ro/DebfAf+r
ntfYa50G8+6A1yPPCOJWaDDfDlhlv3/egp81mGcHDJz61NDsosH8OmBHWLeb
4c4azKsDfrht/tDJsSufdjiT4C8tHtyVRzsoVymu7u/bNX87HCRRe35Qds3b
Dv2W/3chx0qD3/92OJ62xcLfrGuedpg27ZL3hFY1YdsrawMDcXEJLlbj/rRB
9617H/73Qk3YdQltA/OO8sd9UtT4/myDO091SzdeVuM+tMEFYfa+B0fV6N8G
mdroGZZ/qdG7Fa69/eXCslVq9G0Fy023Qq/PV6NnK8xN9rDjOqnRrxWcxoya
5zpAjV6tEOMsVEfJ1ejTCuvsovbVm6jRoxVUoytOTK1UoUcLLBc8mx72RoUe
LcDz6nu+Ok2FHi3gHd9wwfmGCj1awOZfh7mnT6vQowWOzy+LrtmjQo8WsHii
vDV1gwo9miHjrMErwl2FHs3gGeiW0zRVhR7NcNzjpNF1uAo9miEx7F16jEaF
Hs3gPWTeImE3FXo0w9H3Y857NCjRowk8Z+ddTTEo0aMJpk3Y8YdNphI9mmBu
XBB3810lejRBgdW8OblRSvTovHaf+fuIQ0r0aIJhS8umHPdXokcj/J1xta5+
pRI9GiF5l8pnoasSPRphe/zz5MSxSvRohNDuK/OV9kr0aIQdtYE528VK9GiE
P+MM54s6bNGjEabdHec6o8wWPRpg0r1f3918ZYseDSBt7jtN8cAWPRqgbP3q
Uzuu2qJHA/wsZ16WnbBFjwaItSANboG26NEAgtwM4f21tuhRDx8u5ZsN+NkW
Peph16EjbaHOtuhRD4/uSUuFQ2zRox7y489n/qG0RY96CLy450aRmS161MOo
E1bHFhht0KMOkq5f2fL0vQ161EH+1gerHJ/ZoEcdBI/OW3H9tg2+P+tA3G3X
mt6RNujR+fzcpUGngm3Qow6gRp5otdkGPYzge2wdf/9yG/QwAqdjmDffxQY9
jGA7/8e6rWNs0MMIOzccPtfcxwY9jHBgsMLf18oGPYwwObl6W12bAj2M8KRk
zO2NpQr0qIVJ2wYydS8V6FELlictn/xBFehRC34N42OaohXoUQvprn2zA0IU
6FELeclTJpjsVKBHLZS0jGwJWqNAjxowzz9rarVIgR41YDg7dsWpHxXoUQPv
p39U9RmsQI8aiLXc4HDTVoEeNfDTzcpb480U6FEDm/I9QzNrrdGjGkpPmZe7
v7dGj2r4Em0ZV5VujR7VsLgmp3bnbWv0qIZ5+Wk35JHW6FENvV7+VhsbbI0e
nfVCFqU4b7ZGjyoIS3STf1hujR5VcFnQT+jvYo0eVXC64v4hmaM1elRBaKv2
Xnxfa/TovHby/NtNZI0enc8/e27e0C5Hjyr40P2G48nPchLD5l8J0iV/2o1/
Jce8K8HePf5l4X05MWPzrYRkP6spB67KMc8K8HJbEDQyVE5+Z/OrgD7jPM8U
BMoxrwpIvDD98JF1cpLK5lMOS0M0K50WyzGPcqhm7HsbJ8uJhp2/HIxv0nIu
DpUTdtx/vkClk++2JWo52cIW/AJDJ+bbSyzkhI3H7gusOpn0NrNeRl6z+1QG
zrPqzuwzyEjgNyDYoAj2n5IpI8PYfSkDx/wrvmaJMvKB3Y/PECs8cTr9vIwc
YgE/Q1srrTlwWEYcWf/PYNgRv8MtQIa/d0phgcbeTeUpIydY31J4srV2fek8
GXqWQsKjXoW3iYwY2QZLQNEYEbf7exl6lcCcceWfF8plxIUNsAS+jHM/PIAv
Q48SaPLYfYNfJUWPYhitULrl50nRoxhSZZzdiY+l6FEMZM/QWaG3pOhRBDtG
G+74nZGS5axHEczMXJLhvl+KHkUw+pEq9EdfKXoUwqTw1N6DfpWiRyF8fC7Z
ajNbih6FMCK3I8Z8jBQ9CkDRIyS5tY8UPQrgQIT0XrWVFD0KoHHRh+ul7RL0
+AQNK7ZcKfgsQY9P8NAk9JbhlQQ9PsGSAeavPz2QoIcBwpinupJYCXoY4G1h
bWTlSQl6GGB45D+/NO+WoMdHCGpJ8DbbIEGPjxDlPCHLeqkEPT6C86WeoQOn
S9DjA/hYV2Y7O0jQ4wNEzU4P9tBJ0OMD/LTnSvb2nhL0+AA2g27fjGoRk4Vs
/u/hus+gkc+KxZh3PqwOW+9Tly0mvdh882Hpb8ZVOirGPN9BmpAMd4sRkyds
fm/h0sC6N/tOiDGvt/A0M80rNVBM9rL55IEyaUMN10eMebwBgTJz28QlYvLt
BfcGIqJjNUFTxTjvf3Aord7wYriYNLIFX4Noyt8vNYwY53kNMSPmm2zoISbX
2X3KhTX9RgU8bRbh/uRC2h6Ri75YhN/fVzB/892gndkiQtn9yIHTV6scikGE
+5AD3Ferfp8dIyJ/sv4v4X+FaXZJJ0TonQ0XuwfsHrBLRH5gfbOhn2/5gXM+
IvR8AY53ps9WuYtICev3HGrawl+GTROh13P4ty2xP+MgImfZALOAl3Js+ZwI
EXpkgcCwWjv+uYhcZ/PPBBhXGrG+QoR5Z8DBtLLBWTwx0bD5/gPHngQOi7fs
yjMdzva/Nj/VVkwOsfk9hZCTTK9KfVdeT6AnjXj9b79OTzafx3DzzfxrWQPF
mEcaUL8Y23GDxeQvdv5UCP7uxaE5Q8Q470OY8JBscei8rmLnuw/KkGwbUef9
3+ahcH2wsJYzqLMe238KjG1+tln+fVe/SfDFbcDU1Xad97P93QW6e2Ftz87+
OGw/d6D30Y2RPdRdnx8HN488O7jJunM+9vNuQFtVqvtsUVf9WCjP9vn1fLfO
+9l6l2HGMNM320y7no+C4a6tVkVtIvIXe384NEyPPp5fJ8L/H4WwMX2c1pZ3
5s9eB8I9m1b3sIIuDw7nzuq826vzROT/Vgjxzg==
"]]}}, {
{RGBColor[1., 0., 0.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJw113tczXcYB/BzP6dzOvdzWmOTXEatrZTZbGu+mLlVKm2kCw3psghjqeaS
ata6UeiGhqSkyKSI5yu3MkUpXdi60UVF0r3U8tvj+zr//F7n13Oe5/N+zu91
Mvxxk/16LovF+oTNYo29WBzWuyOiig1x58fP1CPtdrkTQtqEtCA22/yFkR6p
POFrKa4U0nPLXi6jBnrkRs9056gCIf3l2W7RAa0eyVxY76/JFNKlvoed1kr0
SEL82yOkp+6vWTSTrUdC2t4WFNKUZFEJr09LNo9VO+ErpJNn5baVt2vJWLGx
ikJqvv9Q8skGLVn0ttxCIS1cWdi2tUpLLJgjpJPKNt2bV6IlBkxBIR2qzJir
vKklYqZBIQ0uS1pSm6clvW/b6xHQD7NWNWVkaQlTrl5Ap1WOqP1TtKT43tsj
oDemHSv7LlFL3k5rlyugyS02hur9WnLy7bgnBHT8jQmj/4ZqCdNelICy8z7w
Tg/UkoC35fwFVDTeYd22LVrizhwBLdlV3DrHQ0vsmYICGpIXOajjqiXMuJYC
+vhewsGHy7XEiBlYQF2aXuUlLdYSppxGQJ/a7ndfP0dL/vcQ0FKvrQmffKZF
Dz5VJUU59Bhr0YNPWUtrYvInagnTXgGfNpZ+u2KvnhY9+LRy69Uji3W16MGn
WXam7nKOFj341M81KKu8T4MefCp3SPSL79CgB586pjpRl0YNevDprMA/Qwyr
NejBp2HxC+88LdGgB59mOk8NTr2pQQ8+HX9WdsXzsgY9eHTvy4deH5/ToAeP
Puyfe6A9RYMePNrHmmR2NlGDHjyadHD2fJ/9GvTgUavwJXdNftOgx9j73aqb
bYEa9OBRsdjaNH2LBj14NGNqltjDQ4MePLolq81hqqsGPXh0hfy8bsNyDXrw
6OyjaWZHF2vQg0cDDgWA4xwNevAo4RVd0nymQQ8ujbxoqn/fWIMeXDrBeHHt
voka9ODS/KB0yTw9DXpw6X7fp4mDEg16cCl3yt7IbLYGPbh0xVeyBs8+NWHG
9eVS1nnRwYkdavTg0r1FnSmPGtTowaUfsYk6vEqNHlzqN+D1mJSo0YNLxe71
w9031OjBpfMHpNtP56nRg0NTbX9Y4JSlRg8Orakb5ylNUaMHh46rz6m9lqBG
Dw49M2t36qZoNXpw6LbVd64ZhKrRg0PvOldOvh+gRg8OnXCkp/zXzWr04FDj
JrcHH29QoweH5lv+oKl2VpNvmAY5tLdMcCzEXo0eHLq76c+NMxap0YNDT2cv
2/PEUo0eHNpqb14RaqFGDzaVnVnvYWakRg82fWw9+kX1BDV6sOnUtbIFezRq
9GBTGpEYNl2sRg829X5wWnh/VIUebFqyZcbln3tU6MGm4c+Mkt9vU6EHm75J
2XXpap0KPdjUyfD9kTWPVOjBpvaHKzZz76nQg01nDIcrUq6r0INNv6uRVy24
pEIPFq0zn3b7WYYKPVi0wDW2Kvi4Cj1YNKZDIZ0cp0IPFnUPsXGjESr0YNHm
sQSd96rQg0WtpWdW9/up0INFb/3G48dsVKEHi6ZWx1CTdSr0YNEzmvqoW44q
9GDRfyO8fV2WqdCDRY1y01Z3f6tCDxadPCJyCvtShR4s2pLQsdrATIX5j0Lk
lmzvC1NVmPco/NJ6OuC78e/yHYVZV/QjqhTv8hwFkwdzjngK3uU3Cs0q+7SB
ISXmNQoW3+7I3PdKifmMwM6S8jS9ZiXmMQJBcTviTjxR4vwjcPPR5l9My5Q4
7wiseZI///IdJX7/RyD/uc3g/KtKnGcEdrOUcfeylYRpr+0NuKXWve9wWon7
8wZ0rkcF1hxREmZd4t+AavnT/NUxSnx+voF8u7jKxn1K3Ic30OTpWOS+U4n+
byChqDCyZasSvYehotl/iqenEn2HwXBpX2iLqxI9h+GkTW62u4MS/YbhbpPx
ycbFSvQahu61mStWz1GizzBsnRlbVD1TiR7DMCnFoNfeWIkeQ5CUHFJ910CJ
HkPg5tO+aa5WiR5DEOvlfTFHrESPIfj8b/EpY5YSPYZgme0NyyM9CvQYAg/2
Tj9ZmwI9BqG1UW2/s06BHoOQfc76dnuFAj0GYf2+xgeOfyvQYxAmnQr0uUUV
6DEIoMg6bJqjQI9B2LFkdEncGQV6DEDZSG3QaLICPQZAnnX+y/WHFOgxADyX
Ap+iPxToMQCDFtbvmexRoMcAdJj6m0dsV6DHAKy44XK53VuBHv2Q4t+ftsRN
gR794HB01vCpHxTo0Q93y16eYVsp0KMf0nKaLqyaq0CPfqjcWSjLnqVAj37o
iDa5JDRRoEc/LBsfm+pkqECPPvA841lzVk+BHn1w6zpryYhEgR59MGHdwU4r
tgI9+iB41eFoiw45evSB1UXXQ0WVcvTog/Ys9yanAjl69EJ09I8/P8+Qo0cv
6I0rs9h2WI4evaB/kKU/vEeOHr1ws5yr2fWTHD164aNZV8aN/CBHj17wSiyZ
sGOuHD16YJ3bWVXnx3L06IEm24iWH/Xk6NEDJmGeB0pZcnx+9sD0n9icr9tk
6NED0dsqpx+vkKFHDyQZmvVzqQw9uqHgmsLNLV2GHt2QQb5xuBwrQ49usNH9
ukC2S4Ye3ZB+bUmiq6cMPboh8oX7/bTlMvTohrLmhTadljL06IZcN1eh+XQZ
eryGJ6YPWzeqZOjxGnLbQ56eGpaix2tQHZM0VTdJ0eM1lDuefSIslaLHa0iv
cM8xuyJFj9cQxn+2xiFFih5doE0JLtoSJUWPLki9bvvPHzuk6NEFZZbs34+t
laJHF4TbDOSetZaiRxf0vl7gmPO5FD264Jh30vd5hlL0eAXFR1bG50ik6PEK
ykIC5Jk9uujxCsbFph0/VquLHq/gC10jyz+KdNHjFTi71BX6XtBFj1cg2+5g
antEFz06YbE61dHoN1306IRJkoNmw7666NEJzjE/JxWu0kWPTnDdaxES+a0u
enSCV8z3Zdaf6qJHJ8w53OUl0NdFj07wy/nrs1y2Lslg8n8JR/98pL+2TYJ5
v4SNtwwHBRUSImLyfQlTAtqvnbgmwTxfgM8X+lazT0uIB5PfC0i8Kg+9s1+C
eb0Am/m3bG0CJOQmk08H3D59Lqp4nQTz6IC9x4unLrCRkInM/B0Q9jy+56/P
JYQZ9147HN2irv/AUEICmYLtcCo+pyhQLCFMPNPb4dG6wOjy12JSxexTG+y8
WqWd8o+YBP8PBAV/5c72vi0mM5l9aYPzxbsfp2WJSR2zH8+hc5mkpjZOTKIZ
wOdw+/gptTRITL5m/J+D5QW1+wxvMf7eaQW/9cGZVg5iEsf4tkKOOqHI1VKM
nq3A+2BdzIaPxKSbabAF9u10bXaXi9GrBdIjfJOd+3WILRNgC9heaItbVK+D
Hi1gtDQs3fiuDno0w6eHNmZyLuigRzOoCg1/fZCogx7NoDaPeRETrIMeTWAZ
8V6NlY8OWcd4NME4dw+9oe910KMJfDNP7Dj6jQ56PIOF25dWz5qmgx7PoOn+
AvFNuQ56PIOTDU/qFvSL0OMpfGgKZvl1IvR4Cgt1WMUfFYnQ4ymkL9XfF3Je
hB6NULaw2aIqXoQejRDRf+HPCUEi9GgES/9Pj6/0EqFHA8wr3swPtRehRwM4
t/ATT30pQo8GGJnQMOPyJBF61EN+/aY4KhahRz3Y/RORlNclRI96qN0ZI0mp
EaJHHcxrcMgOKhCiRx34zZjmYp8uRI86yPJ/Vqk+IESPsWtub8ftHUKyksm/
FrYb2np5uwkx73/BNyHoPfZiIVEw+f4LVxIuw29mQszzH7Ca+7fJ6HtCUsjk
9wSyiz+bvmFUgHk9gbnbzAOgSUD2Mfk8hoHmvBfCEgHmUQO+4VFLyUUB+f8B
VwMcf6tVHkkCnLcaln/p3bhrr4D0MwWrwHWlQ1aolwDnqYLhW96hgXYCco7Z
p8qx/AxmuH0hwP2phJOl3b/MNBDg9/cR+FkkTe7lCwhl9qMCfMJGhlPa+bgP
FVChsCue/5BP/Bj/cogenOZ6P4+P3g/BIShsx6JkPjFjfB+CI0/0PDOUj55l
8L5JiT/Hh09aGL9S2DKb9s1bzkevUuh0i/rEdzafJDMBPoAU2/LW3w346PEA
yu4YDUXx+eQck38J5KxfNCOojYd5F8Ox8Mkua0p5ZCKT7z1o3yi0M77Ewzzv
Qs1XuXW1STwSzeRXBF95H6jfHcTDvArBaXKGsdSDRxRMPnfA4kJfbLA1D/O4
BfbjNgw1mfPIbmb+m6CMVXw1U5+H896AuA8dLH56wyWdzHzXYV4L+3ZkAxfn
oSDP2FOZeIdLKNP/NThSOGgTk8HFfvMhYfKvetv2j93P9JcHI+eMx8/dziUs
pp9LYBrpZt23iouf/xe8jG9KPjyHS+qYzzsP/T4K6aQp7+pnwrljXeGHRGP3
M/XSYKnx7wY97Rz8+5Pg19h4x7J07Jq5/yhcrLaL8L347v1YcPEPD4iI5xAW
cx0MyU4Nx2N/5bz7/4OlH+o29uKQ/wCRb9wY
"]]},
{RGBColor[0., 0., 1.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJw12Al0zUcXAPC3P1vy9v09+76rPYLR2qnaalfEWooozWdfg0btFLVEENRO
7VruSFKCBEEkItLskgjZ9+TlmxnX/+QcJyfPvLn3N3Pnzr+Bz8KRM+USiaSN
VCJhPxKZ5MtTg/pPs26aZq1Lskfcqrvxg5oOW30l1VK7Lok54duzVoya1jk0
+JunVS4SWtR80o4QNX15M+WYf66LXByQtNx4UU0Pvlop6ZHiIgf/4I+a+uSZ
puRFu8jGD3xANW3ieenu6XAXWcRGO+GrphktBzp/+NtF2GBsRDW9LMZxkYH8
nwFq6jtj+ZvHQS7SUTxq2nWdodu6PS5STwyoppVHzu/ruslFaokJqim906/o
41IXKebTK1JR/5iEUcHzXEQMl6Sigwv/99eEH1wkMoI/KmrQsWeEi/BoR9xS
0eg2Zxc+/MZFgnm4J1Q0iIW7qouLiOntUFGf2fGtO7VwkRV8uOUq2tj/l9+y
HC4ySzwqmhHkmRXk6SIjxYAqeuHu6YFjpS4iwu2pokviyGmPQidpIQJWUa+S
N8qwdCcRwxlVtNKwmEXsJJ89VDSsfZ3Q9hFO9FDSgG9PNnh/z4keSjp0bq+1
R644iZheiJJqNvOAneihpK/55/Y70UNJA2nNwzTAiR5K6vPueLnfSid6KGnr
8h7j2yx0ooeSppujb6ZMc6KHkl7suMB8cLQTPZR0yXD1L8MHONFDSb3nB71U
eTnRQ0mrArp/dbe1Ez0UNOTUi52L6znRQ0E3hc7LaaF3ooeCDktUsB8neiio
sYoBlzjQQ0GjbV1rf5vlQA8FDezy/Ef5Owd6KKjPqB/Dbz9zoIeCNvWVNfMN
caCHgmZtPbSx6XUHeijopTOdUuNPO9BDQZc8iPx6z0EHeihot5RZxwZtc6CH
grqr2bPGgR5yGub844cbPzvQQ079Wbg/zXSgh5wOHfPE0WicAz3k1Mh5BzvQ
Q06jd1TF7ujpQA85PcyWc//2DiLC9ZXTaY/a7ats6EAPOW2WHl74l8mBHnKa
LWMR13Cgh5xerVdxpV6FHT3kdIn3Xu3rj3b0kFNvprs10Y4eMur+hQX80o4e
Mhq+e0rrsn/t6CGjWy6Vbrl0y44eMjoiYlfmzHN29JBRcybbwIF29JDROGUY
E7ajh4wGNZysDNhgRw8Znd67eHpvPzt6yGhLPo05dtJLTFBGc5c2b3B+oh09
ZPTK7/fX+Ayzo4eM+v01IcHax44eMur1rMD7WUc7ekipLJsD29FDSh/WaFre
w2ZHDynd3gTG5de2o4eUDv963M0/3Tb0kFLzFF6wbOghpXErtiwxpdrQQ0qD
DjR6+eS1DT2kdMb1fzqsf2RDDylt+eL7nd3+saGHlOZ9Ys9FG3pI6bXav357
8pgNPaR0OQ93rw09JJT0u1NLv9mGHhIq5Qt6mQ09JDR8dfbD1T/Z0ENCd7Bo
O0+xoYeEjhJ/sKGHhFrZ9j3W14YeEpqQxyLuakMPCT3Oy1VLG3pI6MxWG6rD
nDb0kNBWrDyv0NjQQ0JzecAyG3pI6NV1wxwZhVb0kNCVge+XBb63Yv6rodff
a2NHx1kx39WgiGUbONKK+a0Gtpp/vw9WzGc1bNUNZRXaivmrhlFt00a2PWnF
fFWDdQg7kPZbMT9uiJ9t0R7aYsV8uOGo/+UFI1ZZMX43zDk2KFLta8V43dD2
XnKrez5W3P9u+MSBv7diPG64VmJkK9pKxPQ+VMFS/gcvK66fKiAdBpza38ZK
xHL5owp4tRpW34r1swoez102XWGw4nqogh2b9SF3lFb0r4KRwefqLyq1oHcl
OO73XdPsgwV9KyH+HX8s6FkJweV+3nufW9CvEuawcAeHWtCrEtp2OlMmuWFB
n0rIEwvagh6VcGv+2xvzD1nQowKWsuXceLsFPSqg72mPJXFrLehRAQq+fRdb
0KMCwhN7dxgwy4IeFbCLlauqcRb0qIDR9p8/XR1iQY9ysLPyPLeXBT3KIXEU
C7iDBT3K4SSfRiMLepTD3G2v52wzW9CjHFrz47emBT3KoeAB28AVZvQog2us
3bj8yYweZcC7jVlJZvQog69dr/q4XpnRowzUXuxAemBGjzKIHKOqDrhtRo8y
2LX46GRy3owepTCa7d7iQDN6lILzQpT9wi4zepRC0iMG7G9Gj1I4ni6Ptf3P
jB6lMEN+hJ1IZvQohbb1u/y+aZIZPUoh35sVrO/M6FECN8bPGVnQx4weJbDa
T3rlTCczepQAO4w0U5uZ0aME1JfZAWw3o0cJPOXTrGNGjxLYnsl3sAk9ioGH
2z3fhB7FULfRgYycVBN6FEMS4z0VY0KPYgie9PjkpMcm9CiGeXw53zWhRzG0
31fp8+iSCT2KoJht3zXHTehRBLee8YhN6FEEK1m5yt5swvpZBP1rTnt3fLkJ
PYqAl+fx803oUQRPRMAm9CiEnfw4GmlCj0IYs/LfsSv7mdCjEFzs+P2qmwk9
CiH5Ot/AJvQoBL6aj7pM6FEI83NavPhea0KPQuDtVR25CT0K4PP3GtGjAG7z
djLDiB4FsNZn+9B2b43oUQBs955LizSiRwHUPswbLCN6FEDELQZ81Yge+bA3
Ov9BjVNG9MiHCfm/NYEDRvTIB6emCesojeiRD4mtWMFabUSPfDg3cGyfZF8j
euTD3Jm5Rw9MN6JHHnRcH+AeNsaIHnlQGsgO4EFG9MiDv/nTw4geebAhlu3g
tkb0yIOBLNzmDYzokQfsMIpJMBjRIxeiOK/KiB65sGfI7b1DygzokQsT2HKW
ZhvQIxca8nESDOiRC3z7LogyoEcunLnn0jQJM6BHLviycvX2hoGcF/nPgXal
30XsOmPAfOeAKM+HDaSGyG8OsNM3wL3dgPn8BOvZcXRtnYHMEfn7BIPmXes/
b4kB8/UJ+PHbYLaBhIn8fITIYLaBxxswHx9hL2s3tg81kPoi/o8wKcF6v29v
AxHhRmRDXd5edTCQlWLAbEi3sAOpsYGI9DTPhrOsnZxtMZBYsZ4+gO+IVT3q
1jIQ/89AwNvnV5V60kmslw9QxhusHD1JFOsjC/h1oU+ynuwUgFmwPizpeskr
PfEW/lkwiKfloR77nUyo7WYXhjt6ckD4ZsIrOy9YevTMBN5NRh3Vk0IxwQyY
OPq/7Zt369ErA+ovWvqx50Y9GS4SmAHp2/gBrEePDDh/lj1z9ejxHuaz6jxt
sh493kMXHu5wPXq8hzKJH2so9eiRDpzXv7OezBAe6bDe688NXs316JEOg1m0
uXY9eqRBHXFB0qNHGvDtO1miR480OHChjttQoEOPVJjIy1WaDj1SocF73nHo
0CMV0lh57vpEhx4pcJ4HfFeHHimwgH/PZR16pEDnCSfYjw49kqGEHb/afTr0
SAa6h23gX3XokQwbebuxQoceSTAkkldoHXokgYa1V1lTdeiRBC9U7EAapUOP
RNjP2skx/XXokQiTyE8tPbrr0CMRGrH2ObSVDj0SgXdXy+rqyDiR///gHAfW
6TDfCeB79Tlb0TqiFflNgE7senSkWIv5fAeV/MKQqSXhIn/xwKtVzXgt5ise
NjXtXI8+1ZJfRX7ewhB2/fW7r8V8xIFmKrsAX9OSzwUuDqL5AXxKi/G+gf3i
Xy0pFQPGwtQbX5V+t1WL8cRCYxauao2WfL7nx0B2DmsoF2lx/cQA5108Q4v7
9zUsarH/5xZjtYSK9RENXmw5/zdIi+shGqp82AXJW0tEn7b8FYTw7dtOi94v
YdPhimxZQy1pL3xfwlBWrm4btej5AjSv2YVfrSUZwi8KzqbxDaBBryjowLJx
642GBIkEPof743jB1qDHcxi8u/Gg3cEaclnk/yk8e8JPXA3mOxImML55CzWk
vshvBGSKhliD+XwMvmz79fPSkJ0ib4+g5Aq/wGkwX+Eg1qlSQ7QiPw/Bkx8P
WZ6Yj3/hADv+Sp95krUi/jCox473Gdc9Md5QOMeqQdRBT5Ir4rsP3Xl7ttYT
46EQwg+wmWw8Mf970J+/7xniifP9B8T7nfbs82J+t0Fcj0yeRCLmcxPE+5sK
D/z+a8Cvt48TPUii+L4r4ObvZx544PgXQbyPOcc+L8Y7A1r+/mXXl/8fDPz1
0io/9rv4fCA05OFO/PL3vXBZFEgPIhG/+0NX/v6kqceX+4ckVBzoHuT/mVbd
TQ==
"]]},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.004583333333333334], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJw113dcU2cXB/CEhARRdhaBrJuoYKvWjXU9YsUtqKC+tqKlakWoheKooOJA
caHIW5UhiHsBLygo4DiPKK1goSoiKkMEWSKywl4v3h6fT/7J55KTc37fc+8n
aDx+XbyWx+FwhnM5nP4Xx4Dz5RjR9/KdDasP6cjHRanKfbVC6r8pkNEH6kjB
eZ8pxgVCSof9/kvwZh152GL3w7EMIXW+FvVM7qUjCbPe+YsShDTqo8I5YbWO
REZ8PkKauW1M5fSlOrKv9nNBIQ3eYHEqf56O+PZXO+8jpHYb6n70nK4j/cX6
KwqpZ2qPU894HZn9udwsIQ34apvT8a91ZAx7hHTE6FOrBzM6omILCumd/GMn
0qQ6Ysw2KKSiu1EVC0x0pPVzey0C2mSvdykz0BG23DsBbebnFWxp15Kcvz8f
AX2S/5v/wE9a8nnaRakCejLbdGJsuZZc+DzueQHtSi2zGvdaS9j2jgnoPvVX
A7NztSTgczl/AeUMH6xa9UhL1rFHQJ+nmrro07RkMVtQQD2ch8Qc/J+WsONO
EdCwkdcHqC5qiT07sICOXlgclhypJWw5kYD+d3nPxLmhWvKvh4BKb8/ve7tP
ix6GNOuYSfnmAC16GFLTrD0VA321hG0vw5C6DWoQnFunRQ9DWvg4YpbDD1r0
MKTrx2dezl2kRQ9DOm556tC1s7ToYUj/6Uv7q2uyFj0MqcFTiwNho7XoYUiz
pxl52ttp0cOQ/h5duYEqtOhhSBMt2kKWWWnRw5CePBf0/JORFj34tGd8ocP+
XgY9+PR6xKwHCj2DHnwau13qnVLDoAefbtseMXHBWwY9+PSZVjGs4gWDHnx6
51PTlB3ZDHrwqftC781iyqAHn+6IK3wan8KgB58O+PUPF6frDHrwqaT7g74k
lkEPPl15b+z9rScZ9OBTZ93jOPMjDHrwaVF8N726m0EPHj1SOazLcSuDHjzq
tTHu+yJvBj141LGnsGyzB4MePPp8nfi42XIGPXi0KSZl3dUFDHrwqPK+fM2M
GQxhx/Xh0TTDCweLHRj04NGo90kFW0cw6MGjN7ouLrTUMejBo2eY8k9x1gx6
8Ki/d07qLDMGPXg04evsuDI+gx4G9EXXtCc7OjXoYUCz754UWTdo0MOApp2d
cDC5QoMeBnTFqBB7l0INehjQIfN5rbVPNejRX2+UsD74Tw16GFC6XyjW3dWg
hwEN/M+m9TRJgx4GNNoOan64rCFT2QYNqHP1ioiO0xr0MKAbje5uPRmmQQ8D
us5/+b4xBzToYUDdbl/OeLpDgx5cOu9P5puNfhr04NIYx+9yB3pq0KP/useB
6KvuGvTg0svd3jGzXDXowaW9ob7PKuZo0INL1yyQTgiapkEPLr0tfvcPM06D
HlwafWjJ6QfDNOjBpY/MW06vVmvQg0vnvlrwvE+sQQ8ulbyvmnxmoAY9uPS4
hXPxVK4GPTh0g9oiuaRVjR4c6pd+78HOj2r04NB7AZUCVZkaPTg0u1MZBAVq
9ODQ+qfdE1fnqNGDQ/PPSe25D9XowaGT7QcsPpeqRg8OzZj4S8qMBDV6cPrv
93dLKs6r0YND0yTCEcERavTgUJ1v4Hf2x9TowaHXgupPPQlSoweHBjj22m30
V2P+fXCs0bXd3EeNeffBK4czguS1asy3D7zsD7su+16NefbBsDlZZZ0uasyv
DwKjB92IcVJjXn0w/JbxQ8fJX/LphZjUAEnVqC959IKtlzz+8NAv8/dCCLkQ
/I3iy7y9YL/m9aV8SzXe/71wInP7wACjL/P0wpy5V7ynd6sI215tDxQTF5eQ
KhXuTw8Y7zzw8PVzFWHXJaIHBvTV/TXkvgqfnz2QlKVdtemqCvehB2KFeYcy
/lChfw9kaa7Pt9ilQu9uuFr046XVXir07QazzTcjEpeq0LMbFtzzsOM6qtCv
G6ZNmui6eLgKvbohzkmouiBToU83+NhdONTKU6FHN8i//RQ+p16JHl3wk+DJ
vOg3SvToAu6GoRcbM5Xo0QVeKW2XnJKU6NEFsn8mLDl9WokeXXByae31pmAl
enTBgMeKm3P8lOjRCdmxZRvOuivRoxPWB7nld8xRokcnnPSI1C8ep0SPTrgR
XZwdp1aiRydsGO26QjhIiR6dEPp20kWPNgV6dMBPzoXx98sU6NEBc6bv2WKT
q0CPDlicfJC7LU2BHh1QZOm6qOCCAj06oNx9wfrxoQr06IDhq2pnnwxQoEc7
HMqJb2ldp0CPdkjfp/RdvliBHu2wO+XZvfQpCvRohwiTdSUKewV69F9vDsrf
LVKgRztsSS67WNlnix7tMDNt6uL5tbbo0Qbkzk/FN17aokcbWHUOnSvPsEWP
Nqj67ZeoPfG26NEGy2XMi9pwW/Rog/iBpM0tyBY92oBbkCN88KsterRC6ZUS
o+Hf26JHK+wODeuJcLJFj1bIuCOpEY62RY9WKEq5mLtFYYserRB4OTip0sgW
PVphTLjliWV6G/RogfTEa9uz3tqgRwsU78zwmvzEBj1aIOTbwrWJt2zw+dkC
gwbt2zj4nA16tMDtJasORoXYoEd/vSZZuuU2G/TQw6YTPvzDa2zQQw/tvWO9
+S426KEH26UzW3ZOskEPPez1O36+c4gNeujhyCh5wFZLG/TQw3f3GgNbeuTo
oYcH1ZNubaqRo0czTAscwbS8kKNHMwyKtHi8hcrRoxm2tU2L67guR49myF48
NG/HKTl6NEPhvdnTeXvl6NEMVV0OXQc3ytGjCYxKYg0tV8jRowmKY6esjZop
R48mKJn3TjlklBw9miDewm/CDVs5ejTBohv1N6cZydGjCfxKPCNym63RoxEq
o4zr3N9ao0cjfLhukdyQbY0ejfB9U37z3lvW6NEIriWZSbJz1ujRCKYvfm5O
CLFGj0aoPrXivtM2a/RogNPpbrLSNdbo0QBXBMOEAS7W6NEAUZ8ehEonW6NH
A4R3a+6kDLVGjwY44eh5xM3KGj0a4OKTZ8ZtvTL0aIAik6TJkR9kJI7Nvx5E
K3+3m/ZShnnXg9Y95UXFAxkxYvOthzv+lrOPxsswz0/ws9uygw4RMrKeze8T
aKd6nnkfJMO8PkHqpXnHw3xk5BGbTx2sOKVe5/iDDPOogwbGfrB+loyo2fnr
oPlNZv7lMTLCjvv3R6hz3Bq4UiUj29mCH2HMjBJ78UAZYeOx+wiekXeLclul
5BW7T7UwbWHLmUNlUhL0LxD4yEMCZudKyVh2X2phUsm1rUbpUlLK7scHSBCG
n86+KCWhLOAH6OimTUePS8lk1v8DlO5J2eO2Q4q/d2pgidreTekpJeGsbw08
3Nn8W42rFD1rIPlP84pbREr0bIPVYN1+Nnn/11L0qob5U+s+LJdJiQsbYDXU
TnU/PpwvRY9qaPPYn8RvkKBHFTjIFW4lhRL0qIKHUs7+9L8k6FEFJHjMwoib
EvSohMBvy277n5GQNaxHJczPXZnjfliCHpUw9k9lxMytEvSoABLzaPDInyTo
UQGvnol32jhL0KMCxhb0xRlPkqDHe5CYnrrXPUSCHu8h5KzkTqOlBD3eQ+uK
0sSaXjF6lIN+7fZr7z+I0aMcMngRN8teitGjHFYON35VniFGjzKIYrK01Qli
9CiD1xXN5+ojxehRBqPO/f1j534xeryDA12p3kZ+YvR4Bxecpj+1XiVGj3fg
dMUsYsQ8MXqUgo91fZ7TBDF6lEKMc3aIh1aMHqWwLPha3m4zMXqUgnzkrRsX
ukRkOZv/W4j3HenwpEqEeZeAd/Rvvi15ImLO5lsC7j/rvbRUhHkWAxWScW5x
IvKYza8Izo1oeXMoXIR5FUFWbuaGR0EicoDNpxBs7vo1cX1FmMcbMFDkBs5Y
KSL/PuDewJnrCeqDc0Q472s4mtla9nyciLSzBV+BxewjL9SMCOd5BdfHL+X5
mYpIIrtPBeA5bOKOrE4r3J8CeBhs5aKrssL79yW4bks7uDfPilB2P/IhMr5h
QhVY4T7kA+el13rnOCvyO+v/AkIrMu3uhluhdx5cNtmxf/g+K/IN65sHQ7fW
HT3va4Wez2HS7XnOSncrUs36PYOKnpgX0XOt0OsZZPWkf8VMsCKxbIBPwXFF
8UrDS5bo8RSumvq/G+NsSRLZ/HOhp9X02JCBlph3DjzymTq64x8Lombz/Rui
zPN2Loy0wDyzgSmsL9673oKEsvllQUD1iLrLEy0wr8dgEOA4R21iQczZfP4C
v6+DBXvLzDGPTCjytv7f3jRzsoud/xGMTZn6vvq4Oc77EHKzc2bu9zInDex8
DyDqIu+Sg5M5zkNBe2/ksXJNfz22//uQqI/66m23GfZ7F1yNTy4Lu21GYtn+
0sB9xrNQ8DMjHLaf2/CL39mwuaPM8PuT4UxYfKu8wZSUst+XBCbDnu60STTF
+gmwa0Ve8ERfU7KLrXcVhk1wi1wzxhQ/fwEmb5hnebTVhOxi/z4Gdly5X3Al
3QSv/wHhLjm6q4EmhMO+D4LBBcZLg2aafPn/g/Pwm0H9LxPyf29a8L4=
"]]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.004583333333333334], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJw11nlczPkfB/CZaZppy1VzNjXXdwbFYt03H7HllghriW2xW3Lk2JbEsimx
uX6uUJScJVeRVO8PypGtjSQrUqNS0j0dOn/ju+8+j/75Pvp+3/N+v57v+T5G
67nObaUZh8MZwOVwTH8cHqfrWNBixfaa5Xv15PPcRNXuCiHdtmkHY9yhJ3nn
1o+3zBNS2u/3NcGb9eRhg8OSAw+E1O3KqeeK1XoS51K0VRwnpBGflXPiluvJ
ybCvR0gfbRlaOmmBnuyu+FpQSPd5Wx/PnaEnvqZq59YLaX/vyp+8JumJqZip
opB6J7Y7t4/Qk6lfy7kI6c7+W5wPfasnQ9kjpIOGHF/em9ETNVtQSFNzDxy9
K9MTS7ZBIZUknyqZ1V1PGr+21yCgRkejq4GnJ2y5IgGt5+fk/dasI5l/fz0C
mpW7YatVlY58nXZuooCeyOgx+uwHHYn+Ou45AW1LNIiG/6sjbHsHBDRI098q
I0tH/L+W2yqgvAG91cvSdGQVewT0VWIPV+NdHXFjCwroyjl9IkKu6Qg77nhT
/UEx36jP64gjO7CADpn97nD8SR1hy4kF9Oii9tHTD+rIfx4Can9nZuf73Tr0
MKcZB7p/2OyvQw9zavN0V4mVr46w7T0wp+7dagRRq3ToYU7fPQlzGbVEhx7m
1HtE+sWsuTr0MKcjFyX2XemiQw9zmtN593HrOB16mFNetvWew0N06GFOMyda
eDk66NDDnAaEl3pTpQ49zOkN66bQhSIdepjTsKjAF1UWOvTg0/YR+aOCOhj0
4NPYMJf7SiODHnwauU3mk1DOoAefbtkWNnrWewY9+PSFTtmv5CWDHnyaWlU3
PiCDQQ8+9Zzts1lCGfTg04DY/OyrCQx68Gm3dUdcnWMY9OBTadsnY8FZBj34
dFnKsFS/Ywx68Kmr/klsr78Y9ODT91fb6OWdDHqY0dDSfq1Ofgx6mFGftbE/
vvVh0MOMTmnPN2z2ZNDDjL5YJTnUcxGDHmbUGJGw6vIsBj3MqDZVsWLyZIaw
4643o3fNo0PejWLQw4yGF9/I8xvIoIcZvdV6fraNnkEPM3qW+VAVa8ughxn1
98lMdOnJoIcZvfZtRqyBz6AHj+a1TnwW0KJFDx59lnxMbFujRQ8evRc5MiS+
RIsePLp0cKija74WPXjUYaZZY0W2Fj14NHewsDr4kRY9ePR+kFCiT9aiB4/u
/GHTr/SGFj14NMIBypdc1JIJbIM8OrdscdiX01r04NF1Fsl+xw5r0YNHf9m6
aPfQPVr04NEf7lx8kB2gRQ8unf2I+W7tRi16cOlZpylZVl5a9ODSGZ57wi97
aNGDSy+1+US4zNeiB5dyDvk+L5mmRQ8uXTlLNjJwohY9uDRJUvQPM1yLHlwa
uXfe6fv9tOjBpY97NZxertGiB5dOfz3rRadEix5cKi/+OO6MlRY9uPSw9Zx3
E7ha9OBQb411fEGjBj04dGNSyv3tnzXowaGp/qUCtUGDHhya2aIKhDwNenBo
dXbb6OWZGvTg0FdRMkfuQw16cOh4x2/cohI16MGhaaPXJEyO06AHhwqyi+aV
nNOgB4cmSYUDg8M06MGhfX13THE8oEEPDo0JrD7+LFCDHhwa4NThsHarBvPv
hP/Vzm/utV6DeXfC61FnBPErNZhvJ6x23Dd/4Y8azLMTBk57amhx1WB+nbAr
vNvNCGcN5tUJ3922fOg0riufDjiT6C/9OLgrjw5QrlZc3de3a/4OOECig79T
ds3bAf1W/Hsh10aD3/8OOJa+zcrfomueDpg+/ZLPpDY1YduraAcDcXUN/ajG
/WmH7tv3PPz3hZqw6xLWDpadlY/7pKrx/dkOd57qlm26rMZ9aIcLwpy9D46o
0b8dsrQxM63/UKN3G1x7+9OF5avV6NsG1ptvhV1foEbPNpiX4unAdVKjXxs4
jR09322AGr3aINZZqI6Wq9GnDdY7RO9tNFOjRxuoxlSdmFatQo9WWCF4NiP8
jQo9WoHn3fd8bboKPVrBJ6HpgvMNFXq0gt0/I+edPq1Cj1Y4tqAipi5YhR6t
YPVEeWvaRhV6tEDmWYN3pIcKPVrAK9A998s0FXq0wDHPk0a34Sr0aIGk8HcZ
sRoVerSAz5D5i4XdVOjRAkfejz3v2aREjy/gNSf/aqpBiR5fYPqkXb/ZZSnR
4wvMiw/hbrmrRI8vUGwzf25etBI9TNces34dcVCJHl9g2LKKqcf8lejRDH9l
Xm1oXKVEj2ZI2a3yXeSmRI9m2JnwPCVpvBI9miGs+6oCpaMSPZphV31g7k6x
Ej2a4fd4w/nSTnv0aIbpdye4zaywR48mmHLv53c3X9mjRxNIW/pOVzywR48m
qNiw5tSuq/bo0QQ/ypmXFSfs0aMJ4qxIk3ugPXo0gSAvU3h/nT16NELhpQKL
AT/ao0cj7D54uD3M2R49GuHRPWm5cIg9ejRCQcL5rN+U9ujRCIEXg2+UWtij
RyOMPmFzdKHRDj0aIPn6lW1P39uhRwMUbH+wetwzO/RogNAx+Suv37bD92cD
iLvtXts7yg49TM/PWxZyKtQOPRoA6uRJNlvs0MMIfkfX8/etsEMPI3A6h/nw
Xe3Qwwj2C75v2D7WDj2M8OfGQ+da+tihhxH2D1b4+9nYoYcRXFJqdzS0K9DD
CE/Kxt7eVK5Aj3qYsmMg0/BSgR71YH3S+slvVIEe9bC1aWLslxgFetRDhlvf
nIDjCvSoh/yUqZPM/lSgRz2UtY5qDVmrQI86sCw4a26zWIEedWA4O37lqe8V
6FEH72cUqfoMVqBHHcRZbxx5016BHnXww83qWxMtFOhRB5sLvMKy6m3RoxbK
T1lWery3RY9a+BxjHV+TYYsetbCkLrf+z9u26FEL8wvSb8ijbNGjFnq9/KU+
LtQWPUz1ji9Odd5iix41EJ7kLi9cYYseNXBZ0E/o72qLHjVwuur+Qdk4W/So
gbA27b2EvrboYbp28vrLXWSLHqbnnz23bOqQo0cNFHa/Me7kJzmJZfOvBunS
3x0mvpJj3tXg6JHwsuS+nFiw+VZDylabqfuvyjHPKvB2XxgyKkxOfmXzq4I+
E7zOFAfKMa8qSLow49Dh9XKSxuZTCcuOa1Y5LZFjHpVQyzj2NrrIiYadvxKM
b9JzLw6VE3bcvz9DtZPfjqVqOdnGFvwMQycXOEqs5ISNx+EzrD6Z/DarUUZe
s/tUAc6zG87sNchI4H9AsFER6j81S0aGsftSAeMKrvhZJMlIIbsfnyBOeOJ0
xnkZOcgCfoL2Nlq3/5CMjGP9P4FhV8Iu9wAZ/t4ph4UaR3eVl4ycYH3L4cn2
+g3l82XoWQ6Jj3qV3CYyYmQbLANFc2R80Lcy9CqDuRMqPy2Sy4grG2AZfJ7g
cWgAX4YeZfDFM+gGv0aKHh9hjELpXpAvRY+PkCbjBCU9lqLHRyDBQ2eH3ZKi
RynsGmO4s/WMlKxgPUphVtbSTI99UvQohTGPVGHf+0nRowSmRKT1HvSzFD1K
oOi5ZLvdHCl6lMCIvM5Yy7FS9CgGRY/jKW19pOhRDPsjpfdqbaToUQzNiwuv
l3dI0OMDNK3cdqX4kwQ9PsBDs7BbhlcS9PgASwdYvv7wQIIeBghnnurK4iTo
YYC3JfVR1Scl6GGA4VF//9QSJEGPIghpTfSx2ChBjyKIdp6UbbtMgh5F4Hyp
Z9jAGRL0KARf2+oc55ES9CiE6DkZoZ46CXoUwg/BV3J29pSgRyHYDbp9M7pV
TBax+b+H676DRj37KMa8C2BN+Abfhhwx6cXmWwDLfjGu1lEx5vkO0oVkuHus
mDxh83sLlwY2vNl7Qox5vYWnWeneaYFisofNJx+UyRvruL5izOMNCJRZOyYv
FZP/XnBvIDImThMyTYzz/gsH0xsNL4aLSTNb8DWIpv71UsOIcZ7XEDtigdnG
HmJynd2nPFjbb3TA0xYR7k8epAeLXPUfRfj9fQULttwN+TNHRCi7H7lw+mrN
yI8gwn3IBe6r1b/OiRWR31n/l/C/knSH5BMi9M6Bi90DggbsFpHvWN8c6OdX
uf+crwg9X8C4OzPmqDxEpIz1ew517REvw6eL0Os5/NOe1J8ZKSJn2QCzgZd6
dMXcSBF6ZIPAsEY78bmIXGfzzwKYUB65oUqEeWfCgfSKwdk8MdGw+f4NR58E
Dkuw7sozA872v7YgzV5MDrL5PYXjJ5le1fquvJ5ATxr5+p9+Jk82n8dw882C
a9kDxZhHOtCtsfYTBovJH+z8aRD6zYuDc4eIcd6HMOkh2TbSdF3DzncflMdz
7ESm+/+bh8L1wcJ6ziBTPbb/VBjf8myL/NuufpPhs/uAaWscTPez/d0FGrSo
vqepPw7bzx3ofWRTVA911+fHw83Dzw5stjXNx37eDWivSfOYI+qqHweVOb4/
n+9mup+tdxlmDjN/s8O86/loGO7WZlPaLiJ/sPdHQNOMmGMFDSL8/xEIH9vH
aV2lKX/2OhDu2bV5hBd3eXA4d9bk316TLyL/B4Mo8dA=
"]]}}, {
{RGBColor[1., 0., 0.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0., 0., 1.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.004583333333333334], AbsoluteThickness[1.6]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.004583333333333334], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {
{RGBColor[1., 0., 0.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0., 0., 1.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.004583333333333334], AbsoluteThickness[1.6]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.004583333333333334], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, \
{}}}, {{}, {{{}, {},
{RGBColor[1., 0., 0.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw11wlUE9caB/BJSABpK4qIiAgVi4ACVYu4PPS7PhY3lir6pEhFURCpIio+
NyxUhaLWikWt4ArF5dmCiNqyKAE3QMEFkE1ECGFNICsJ2R8wH/fknJzJTO69
3//3ZU5mWtiuNeFMiqJcGBQ1/D46LJM2D72Y5LB5zrK2Q8chfxJDvtl79Pgc
TLF6GezoxCT5Non81flXoWerPqrx89HzWWAV7vXtPhGDpKcNj/9Bb8aThZoa
Bl6fA8kNfiHR/zCIYPXwJ/dA+XOS5FU6A7//AOaXqzwm/sggJvV/xCw2+QcU
y7yPrtw8Ol8B+ATMNN3hxSBOIWeeDDg+gpc38twPOYzOXwzCJV5r9pkwSNbQ
t+v/KAF+Sn7p930UrlcKD+Ni+N+8pcg3I+MpxN0P9xjMo3D9Z5CQtNDxz/MU
eTrgOLTCc7hlvtTJ7wCF+ymD6a9+LWkJpsiakQXLwXKect+mxRTurwLcLW0b
qm0p0nZoeMKX8Hl7ZJw7k8L9VoINf6xuUoUedg9vL6YKwjJb2bdP64He/2tI
SsrZYrNGD7TGWwhauupAnIUe6Hregmtoy72nTTpYPrLAO1jLqTg1cFUHdH3v
YFzfyV8nbNHB8GohZ6qh9eHFAFsHHdD11sCPQYt3W/G1MFJOfQ3E3t+ZaXhX
C3T9tWDYcuVqxx4t2A5vx+Y9nLye6lLgrgU6j/fQ6T1/+jGVBrZFDI86GPTZ
EupdrAE6n3pIXne/inFUA8OzmefUQ8LqwPBCbw3QeTWA5J/XjrvHaEA+PN1A
A4imttk7VqmBzq8R6vyX72tLUcOSkQmbIC/r4qJra9VA59kEIQvNs7ZYqmFk
e4kfwOZUYu/sZhXQ+TbDL+42q8dcV0FV5fBohhkRwfbCLSrM+yOo0nuKeQ4q
mDiywRaIi70SL+ArMf8WuDg1tMY4Vwkj04V8gndjnGd7xCrRoxWe51hZnFig
xHpawbF3m6lEM4g+rVBacTr3YOkg1tcK66K3XrRLGkSvNvB55RcjXDmI9bZB
tMlOAdd0EP3aoCii95W+VoH1c4Ef7NW4PF2Bnlz4dezd3pJQBebBhZOao9wo
ewX6tsPvn4ruruDLMZ92eGZ0wn/TPTl6t8OYdaLye/vlmBcPbL5OnL90iRz9
eVAmd3syni3H/HjATZmZMaNyAPuhA441vZx6LHUA8+wAf+PK1JkbBrA/OiDZ
NWrPl9MHMN9OcI0tWhzJl2G/dMLB0hkp7AcyzLsTfrOgrDVxMuyfLqie6p8d
4CPD/LvAy/jxLNY4GfZTF+T4Pb08tUmKHt2w67TW/nqWFD264d6JMtOUXVL0
6IbQCZPLxYuk6NENTiU5HRWGUvTogeKYn2dNrZGgRw8ozEp/EV2ToEcP2N5t
nb1ipwQ9euFVaeoB539JIGXEoxfa3dTM62Mk6NELpmNT7/+vQYwefOAvqsoP
uC1GDz6cbT+YevGAGD34cCbR2vbUCjF6CGAZFXjJdYoYPQSQLT/098k+EXoI
IOnty7RbJSL06INJ2TaK0+dE6NEHz78rs1y2XYQefXD+j0Jp8xIRevSDfk66
R/BEEXr0w6cWT+p8oxA9+sHxUnh87EkhegihY06hffRiIXoI4XmG+dVrkn70
EMJ3d3budLrTjx4iOB/tuvXrrf1Yjwh+Vzo7NH7Zjz4iiN/8rG5Nax/WJ4Kw
2CvNVZl96CWCdRur+D9F9mG9Iti8dr1nzpw+9BNB5bTfVlzSCbB+MfSnpl2/
/EaAnmKIS3/EnXBDgHmIYfu5yX6x8QL0FcPCKSufLQsVYD5i8M9a0DLPW4De
YmimLpmMnSvAvCQwddnhx3UzBOgvgSrBG3bHVwLMTwLL1v9oZ+AqwN+nBL6Z
WPH0vpcA85RAzD7TQ/d2CLA/JFD5kRen/VOA+Uphyu3je0980Yf9IoUvXSyr
7e/0Yd5Dx0GLHlrw+rF/pKA0HprbXIT5S6HwkVXQgQIh9pMUJoqNl8SuEKKH
DHhNbAhtHPWQga99lKfb9lEPGRi8f2jaPzjqIYP0yPE+PyePegz9bt/YRaom
jXrIIGjuosaltwToIYMTtY2t691HPQbAIfpStvtzPnoMwOqQ2KCGQD56DMDX
5UHd7txe9BiA8FSP//jG9KLHAEgCd5010/WgxwBssAg4fuxUD3rIgd2+anKa
ZQ96yMEvwI343ehGDzl0XyyVps3pRg85OFgFwcHHXeghh3Ai9OpY3oUectD9
bebZUNOJHgrY5NKX7ruxEz0UsNLSt86juwM9FFA84VT2H7s70EMB72es+yJO
xUMPBUjtZ1qXHuWhhwIy310Yusfz0GMQXliYTos/244eg5CmC84TTmpHj0H4
a3vynEdXuOgxCL6n1jm32XHRYxD03ibHNtxqQ49B+NCZH+U4qw09BuFPz7Zo
75xW9FBCZvPePbmzW9FDCU3/jdr0Zusn9FCC6KbxvpqIFvRQQo2l2UDUto/o
oYTcK1nfn4toRg8l5BQ1Vvtv/YAeKkh+r7ZK39SEHioIWPHh4n83NKKHCriM
jd4daxvwfqkCZ+/w212+9eihgrivZ7yL96xDj6Hza8f75y54jx5D/wsOhH8V
51yLHmpYG5hc1mlTgx5qOFO9ZJzMtBo91OByrfmb2/q36KGGOGvGftPmN+ih
hiNqrtz17yr00ID++HcTC06/Qg8NWCu278sPq0APDbgkbLBdMK8MPTQwvuDy
bk/2c/TQgGHgNrPO6ifooYEOnQt31tUS9NBAZmHBx6WvH6GHFu7VcN9kbshH
Dy04p9bPSOXdRw8tpARuGbu+Ogc9tNBwpMx9TM0N9NCC+6wfTJovpKGHFigT
nwkPPh5BDx08WOcclbcrkUN76IBcyjO5IL/MoT10UMhrlLhl3uLQHjpYXxV+
YXFkLof20MGx+rNnFcyHHNpDB40eJ4/MySjg0B56cDRWVdX+u5hDe+ihvvNk
TsfeUg7toYeE0on5+rKnHNpDD1dacz5mT33BoT304LrLP68jtpxDe+ihslDB
vFL1koOPH+TGmdP1FQ5VHLoeiqQc37g37NgbDu1DkUf++XdcRW+xPoqcO7/i
cpBtNYf2okj87asnZgbUcEbKjaCI6W/XPrseX8uh/YaeA3bcaHiQ+55D3x8o
0vCLy7Ot3DoO7UmR2qNHiv80b8A8KBJjvag2cVkjh/alSLuP1EV4qAnzoYgm
9aYpL+cDh/Yeeq6QLWzY1N6MeTFIrpmICrNs4dD+DGJxvt6a5/cJ82MQX7cp
AvHSVg7dDwySZKpUu35sxTwZJGHa4b9uHWjj0P3BIK0FlfuDzbmYL4OUaxPa
vXO5HLpfGMR6qXdCpG875s0gHvdTe0q62zl0/zAIuRzx3C+Rh/kzyKONgqdf
2HVw6H5iEOYOj2v64g70YJLab7+YYhfSiR5MolH9wIpVdqIHkzisjZ0ju9CF
HkyyyueznzLcutGDSSIWpzcdqu7G/mMSf7dKl/iYHvRgEtcg3z3ZY3vRg0lC
lyfdYmX3osfQefW22mOr+OjBJF8ttzea2ctHDybhTdaulScL0INJTHyopi6H
PvRgEjBpyte+6EMPA/LaMd1qfkQ/ehiQvIwE11S2ED0MyCzmK6fxN4ToYUA2
ZpROD7IToYcBOT7JkTd/jwg9DEjWzekHHZ6I0MOA7LbdlDzDTIweBiSs3LzQ
LUyMHgZk5kFh/uo8MXoYkMfh1NwjTAl6GBCv1Ju1f6+RoIcBsZDGrdFlStCD
RZJtlocGSiXowSJdd3m5Dz2l6MEiYXPd9V+dk6IHi6y8acHK4EnRg0WyfvM5
7DRPhh4skp75vV1xogw9WGRzWVH+xjoZerDIxeZDehOHAfRgkSUVmwqe7B9A
Dxbxsaq+k1g+gB4sQpk9TwucLEcPFilyfOjnHCVHDxa5oLpwxrRIjh5swrhW
6aT9TIEebCIIt+qWhSjQg032Ky79Ls9WoAebpFUXGDL1CvRgkwkOtuxJ3w6i
B5tYGudumZcxiB5sQmTxshDJIHqwCftu+cnTnkr0YJPMqDbVi3NK9GCTHYvd
rcZ0KtFjaP024ATOV6EHm0QUHS69maxCD0My236rktGkQg9DUq6OJOGz1Ohh
SEx3dMe8jVOjhyHx0TpEeL5Wo8fQ9XV+mse2GvQwJJolwePIbg16GBLr1dMS
Kp5o0MOQ+HZ7zQw216KHITEqdu0Xh2vRw5DsKjD5K+UfLXoYkgvRpV7uY3To
YUhOvJKkcYN16GFIGsSi0+f/0qGHEfFbVGQQoNOhhxGJDFO2jP1Wjx5G5PM2
ucH7DD16GJFnm6+uz5Dq0cOIJOYVfiqwo0poDyPymlE57uYqqoT2MCKpUcFz
z8dSJbSHEck4zFrw8xWqhPYwIsFWORPjXlAltIcREd74kbNXSJXQHkZkudMn
p2hLRgntMbTepQMrfljKKKE9jImZ69wJP0QxSv4PGq9G7Q==
"]]},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.004583333333333334], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJw11wlUU9cWBuCbOYCCUpyoQ6UKKOITRESL7mNRqhZEhSoCKkUmsU9waKuC
SqsoTlUL0joXK2gdkIeiUNQwiGAFZBRERBIChBlCBjI/4O6elbWybpJ7ztn/
t+9NMj0ocn0Ik6IoewZFDT//OwrmjRp6jCbRFmlfCQ8chWvT911NqRqFx4nw
j9qnpv7yKJI1Na5zXdY1mLYjifEq+N/3b8JPohke2+eOIpcuDo+/oPhSXmDm
oAl+Pg1SHVZvuVVgQrrWDb/yP1jgp3y16KwJnv8IsjavOBrmb0KMa/+MWmL8
BJjOywV2tiY4XzYkaycqfpIbk1kBZ/Pltk9hX++RlpACY5z/OYztXRFXdd6Y
3Bw6u/bPXEg67s4sCjTG9fLg6O+B2a7zjMn8kVEAb4oEjg6UMa7/AoSrnk5J
LjciBXLboRUKwWjNTM8TyUa4nyLYfLfrYetuI7J+ZMFiuO9tG/R4uRHu7xW0
3t36s3y8EREeGJ7wH8iByRuT2/m43xLQhz12efKUT3YNby+qFNiRGxOczvFx
/2Vw/rRdy/hgPqE1yuFBwfOn/i58rKccopfFPqFG88nKkQUq4GpAeCxLxMP6
KsC64FnZt094ZHi1gLOVMDFfETzpDA/rrYKl4odmttt4ZKSc2iqI3VFx89Qi
HtZfDZtCzjC/HMMj04a3M7UGSr1yTVe1cTGPGvhrt/Xja8+5JCx0eLwFiUtW
J0niYj61ME1tdtt+J5cMz2aRVgsu+e8lQe5czKsOLPM3pTdO5RLF8HTyOvCy
a2RfV3Iwv3dgWPNtX3I5hywdmbAernRaxLb8xcE860F901AQdoRDRrYX9x6o
h1fLrDdzMN8G2PYx7tFnCzmktGR4NMAp5djT3mM5mPcH2Cky+u+zTjYZN7LB
RpiQsDYq4CUb828Ep0m/PpibzCYj0wV8hKQJ0uWOMWz0aALj3uzVIRvZWE8T
fN7HeV/oyEafJsjoiDJbb8rG+ppg1t5nFL+DhV5CuAQxL1sKWVivENaK0n5o
T2ahnxAMW0Jnjj3EwvpFEP4mQOznx0JPEWyIPZH/wpmFeYjgcVnaa49PWOjb
DOLRQl5/LxPzaYbOTE70gxImejeDl+nqGcf+YmJeYjgbc063+xgT/cWw5Jcq
9Z5tTMxPDFNeHDQ6TpjYDy0QZJppdmcKE/NsgSUVv3fWqxnYHy3gYrdr94Q6
BubbCifGl0VuzmRgv7RCfk3izTu/MjDvVrjcpyrURjKwf9rgWXlIzDpPBubf
BrqKZUGpsxnYT21wzPsuU8VjoIcEDBzjOvcWCj0k8IXPsdVn8in0kMDmbwLS
Xl2n0EMCm5x5X6piKPRoh8xdZM4kPwo92uH9/tL91gsp9GiH47fHfTrVgkKP
Dvj7ojRfJTTAuRGPDvA0Lxg8dNkAtEcH7PlD3/nCxwC0Rye4rg/Y+mK0AWiP
TgjKr8/5/qUeaI9OWFMu4FUc0gPt0QW+JLah1FkPtEcXRFwP8t/WowPaowsu
N9/6LD5FB7RHNzQSlZNjgA5oj24o7i7RbjDXAe3RDe0bg2Z2FmmB9uiB8h+b
fhHFaIH26IHXszjz5zlogfbogeb/pfNeijVAe/TC7S8iGhJ/0wDt0Qtee545
nF6lAdqjF/xHM4wuqdVAe/TB3TvDQ4319MGDKQWBtzepgfbpA8ZNd6tonhrr
64P5s23s+I9UQHv1wcHEqdEOW1VYbx+s9v96fg1fBbRfH9iP8S0qSR/E+vsh
SmMp7dwwCLRnP5x+7bzBoFZiHv3g6pRy658rSqB9+yHsnqst11WJ+fSD/YLU
6f51CqC9+6GeyS/fskuBeUmhtyXj9UmuAmh/KbymalwdfpNjflJwCeWd224l
B/r6lMLRxOzqnlQZ5ikFbYUJp8lKhv0hhYVhF5NdEgYw3wFoLn1UEi2VYr8M
QH3e1k+XOEkx7wH4eGKNzQabfuyfAdDzuyDLog/zH4DCp5a++7J7sZ8GYEo/
f+neVb3oIYP2eg5sfdeDHjL4fmaEm9P2HvSQgVlNplnPYDd6yOB++Fj34/Hd
6CGDPW+swtUTutFDBhGOi98tu9WFHjI4W/2uaaNzF3rIwXXn5fvOhZ3oIYf1
AXt967w70UMOi4p9Jc6iDvSQQ2iC6waPqA70kMNEn8jz5vp29JBD5Hivo0dO
taOHAkybv550cWI7eihgrZcT8UyRoIcCdL/nDVx0kKCHAuZZ+sL+Z23ooYBI
0ru8ZWUbeijA4om5W11VK3ooIdy++5LHllb0UILXRI+3rpIW9FBC2Sen7v+5
qwU9lNBu/c3oGLUYPZSgnzl7ct7PYvRQwt2KJNhpLEaPQagYbzb98Plm9BiE
63q/jN4JzegxCE+2xzs8vSpCj0HwOPXNHKGVCD0GgedufMT/lhA9BkHYmhVh
aydEj0HIcBPuXJHWhB4qSGnYszt9XhN6qOD9DxGBb4I/osfQdZXK/74qtBE9
VFA30VweEfYBPVSQf/Xm5sTQBvRQwaOcd5Vrgt+jhxpu1GgsLwXWo8fQdb7q
/e8/+L9DDzV0MLasaPGpw/ulGjxXhNxu86hFDzUc/o91xWG3t+ihBkefsWvS
XWrQY+g+sy9kRsycavTQwHfe8UWtU6vQQwN/VC4dIzOrRA8NLL7eMP+2oRw9
NPDLZMaPZg1v0EMDCRqRYu7jUvTQAjtu07jsM6/RQwublNu/zwp6hR5a+CLW
f5rLgiL00IJl9pVdbpxC9NDCBu8w89bKfPTQAtNgL7K7loseWuDmZH9YVvYU
PXQgrhK9ueGfhR46KE+otU4QP0QPHRR6bzPdWJmGHjoYPFjkbFSVgh46+MNu
h3FD0kX00MFME/dPHn04iB56yPWeE5ERGSegPfSw6HKGcZLiioD20EOg+J3U
6cYtAe2hB35pSNKS8HQB7aGHz2rPn1cyMwW0hx7SXU8edEjOFtAeBhjHV5dW
f/lcQHsY4F7rybSWPXkC2sMAbnnjsgxFBQLawwA+TWkf7k95KaA9DEBFrslo
2VssoD0M8OffSubV0n8E+PeDxJ89U/vKplRA10ORQ0e37Ak68kZA+1AkfU3W
nbl95VgfRaIurLriO61SQHtRZN/taydme1UJRsoNHfoeP3/d5I/D1QLajyId
36XUPUqvEdD3B4qUnbZ/ESx6K6A9KVL+88Hndy3qMA+KhE9eXB331TsB7UuR
JvcB+94D9ZgPRTQJqWbitPcC2psik2WL6gKbGzAvBnlg3kcFTWwU0P4MMupC
7WSx50fMj0G+cvq0q39Zk4DuBwY5ZKbSzP3QhHkOHU+Pvndrn1BA9weDNGaX
/OhnIcJ8h3536WKbV6SLBHS/MIjpshWx4R7NmDeD2DxMaM+VNAvo/mGQxVdC
Cz3jxJg/g6Rv6SoYbdUioPuJQdQ7XK8bnregB5MUrR39qVVAK3owiVy9g71X
1YoeTDLDZ6+DLKkNPZjE1d3kp2QnCXowyboll+oPVEqw/5hktVOJ/eGodvRg
ktm+Hrvvm3agB5P4rDx2i32/Az2YxFYTVn3k6070YBKrlTN5szs60YNJPkzS
+Sjiu9CDSRjuVH2bTTd6MMli4/os3ctu9GCRYttLlgtDe9CDRdKSY+cmcHrR
g0VmMF/PGpvSix4sEpCc97mvVR96sEjsBFvxwt196MEiyamf77fJ70MPFoma
Fhhvbd6PHiziV2zxt1NQP3qwiPX+3qx1Gf3owSJPQyjHg0wperDI8oTU6sfr
pejBIqMGYtbrb0jRg01ipq7c6j0gRQ82ET0Qp2e6DaAHmwQ6OhtmJA6gB5tA
6nh2sngAPdjk2q/u0bMWyNCDTRJvbLZ6HidDj6Hzi3KytryVoQebnG44YDC2
kaMHm7i8CszO/1GOHmyy1LLyTlyxHD3YRDe28KL3JAV6sMlj20zPOREK9Bha
T5101ixHgR4cQl0vmaUzUaIHh0hCLCWyACV6cMhO5eXfFPeV6MEhJyuzuUyD
Ej04ZIzNNM6EtYPowSEW/PRtC5IH0YNDXGWHZQHSQfTgEPaD4pNn3FTowSGJ
EUL1y0QVenDId0ucLY1aVejBIbuFIPBeqEYPDgnOic5LjVejB5fYzAxWMerV
6MElxZpwEmKnQQ8uGfWdJKo8RoMeXOKuswl1K9Ogx9Dn33pqn03TogeXqJb6
jSG7tOjBJWPWTY99la9FDy7xkCyf7WehQw8uYT+f29MfokMPLgnONr537okO
Pbjkws685c5GevTgkvjX0osiPz16cMnb/r4zF+7p0YNHVi7OYXnp9ejBI9uC
VI2maw3owSNcoYJVk2xADx7J+fbaxuQBA3rwyJGMvz9mW1G5tAePlDJKxqR+
TeXSHjySEOHneGEvlUt78Mi1aLbL8atULu3BI5ss08bFvKRyaQ8e6Ug5JNjT
S+XSHjziPuvjrJ0TGbm0x9B6l/et2rGMkUt78In5XMdPdkQwcv8PMzEYvg==
"]]},
{RGBColor[0., 0., 1.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw12Al0VFUSBuDXr9csjLINiogoKiAigozKIlWDBhA5IODgEkBPVKKiyH4Y
QBEniMQBHBYBDatBRVBAtiCYBhIIErYQICHEkH0jJJ1eku5OunvevffnnZyT
k+29W/XVrbovDyZ8PP5dXdO0PiZNE5/vXBlPxhofbXhhh19HlCxIolEfDP1s
U2Msvl5Lud/PeC46L5bTui69NS5tM035a3tw3rE7P0+lur9fPVy2LZa/3Siu
nTT3Zfvcl5fd+f1fSUse2P+PD2O5bpz4zj76MmNaQ6/xd/7+AHUMbdr9zTOx
HJ0nHnSYtjx96X3z/Xfud4R6zdB7zNBjudekVSd9PY/Rvp0DygurYnD/dBpc
NnXbi+djOFUs8/vjdKrLximHfovB807QmInZ93XfEMNPySuDClaF8ld9EoPn
Z1LCn32/aU2I4QxfT+MJp6heT5jw/sgYrCeL5g9Ze/e1PjE8Xj7wDOnzTp8f
1j4G6/uTVuzxJ+/xR3PJAnHDs9S+5rGRXYqisd5ztPWhydblGdE8Uyxvxnnq
I77/UzTWf4H2rzuxOGFlNCuNSzTkomfIxdnRiOcSnXY8Ghz8ejSPlA/IofHD
Xjv809BoxJdDNxYmz+n4cDSLp01adZnePnis3+dR0Yg3lxrqxRXFMpy8XFrQ
88Hd8VeiEP8VEuGeORLFD4jldL1KK79b+ug/tkQhH1epg+BNiuLEqeK6Rtv/
Vrv1bx9EIT951GdklykLx0axuFuHX/PowJIx91UPiEK+8mnI0c/yX+kcxU3i
dr58yvb+tu5ExIH8XacJT1SMf6LCwUPlDQuoKLHT3d+ddSCfBZRo6Nr3Olgu
b+kNchcYAa9zIL+FNF/G4eDz58RVSOYxxZYxbzmQ779o1bJ2J3+Pc3BHucAi
6nTihcU9ejuQ/yLaGpxnCDtY3m7STeo9YGdAa7LDo5jSPrpx6KMbdsRTTPxj
mzkFx+3wKabTxdRvxA92xFdMEzvPqt//lR1eJVQ0IXVXt5l2xFtC76249t6K
iXb4lZBLAtsRfykt1IyKftAOz1KyDvpoa67NjnyU0urZWyZznQ2+ZXTPLzmd
f8mxIT9ltKPSnH/vYRu8y6hvt6fXfZFiQ77KKe3198Z7ltjgX07Pr/n2rrcS
bchfOWWLT6NtqIcKGmeLLB/Y34Z8VlC5CLeTDfVRQe//+21L+5AV+a0kwbu4
1Ip6qaTP6rI+rcuyIt+VFC3K+Rcr6qeKVr/5eODUaivyX0Wdje3bf74V9VRF
P17+2ojYCo9q6ifa1fNWeFTT0Tjf7fk9rfCoprjFPXZVtLHCo5ouyoAt8Kih
ePdXjzjzLfCooZLe6aW90y3wqKFp77q2bPjeAo9aatosNrCFv5YetSSqedZ0
CzxqKabdsryiCRZ43KI1Lx1Z+9JACzxukQy7qwUet+in9PvvesRigUcd9feP
Pfe/GjM86sjYvcvDF8zwqKO4aQeGTztghsdtuphqAG80w+M2TSq6x6hoMzxu
U3mnlz7d944ZHvU0fdwng7uOMsOjngJGt0rua4ZHPX2eWXKwuYMZHg3UJtx+
9jtBHR4NtPGZ4U/m3NTh0UAPzJx/+7lTOjxctPtncemIx0X9ygsTO32tw8dF
fxjhJs3VEZ+LRr76z1LXGzq8XJQjeFlHvC6KP7tj0tlHdPi5SJTzMzE64m+k
j+WfmeDZSC1i+14zIR+NlLTXiPioCb6N1MZoV7VbTchPI23onps98QsTvBup
m2jP00zIl5v2fmMEPM4EfzeJcbTpaRPy56aTUSnHo7qYsD/dNOr5C5/MM5mQ
TzddWWRs4EoN9eGmSYeEsIb8eqi64Z2Dx/ZpqBcPze61flav9Rry7aGwGEiL
NNSPh5altNTpCRry7yFjGP388QgN9eShFGP3Fj6uwcNL3V9c/fCL7TR4eCle
hNcQIeXhpdkGX9zvEVIeXkqSz4mQ8vBSyhSx4AgpDy/tFu2lc4SUh5cyXxAb
LEzKw0eXxXjYGybl4aOqx8RACJPy8JEc78PDpDx8dFdbcYVJefjooaS5X9Xe
CJHy8NHg5uvWzB9CpDyaaLQ4j8wMkfJoonhx/hgSIuXRRLPEecMeIuXRRMni
fHG5lZRHE22WgK2kPJporzg/JLaS8mimLHFe6N9KyqOZrorzQaiFlEezOg+c
aSHl0UyamP9rWkh5NFMHMe+ntJDyaCYZVc8WUh5+ek7Mc0+QlIefxor5nR6E
h5+minm9PAgPPy0S8/mVIDz8tELM4weC8PCr+VsbgIefjoh5eyAAjwCdlg04
AI8AFYh5OioAjwBVifnZMQCPgJqXxX54BKizmI+7/PAIqHk4zw+PIA0V84/9
8AjSq2LexfjhEVTz7VozqX4ZJLEdpm5rhkeQ5Hb/sBkeRpxygzfDo0XNJ1Mz
PFpIhn2uCR4tVCTmz/omeLSoeZPQBI8Wsov50qcJHi3UVfD6ffBoVfMjwweP
VhouynmFDx6t9IaYD6/54NFK08U86O6DRyt9Lvp/vRcerbRW9PsjXni00o+i
vyd54RGi30U/H+OFR4iyZcBeeISoTPTrcg88QiROk8l7PPAIUbToxws88AhR
N9F/4zzwCJOo5k53e+ARphGivxa44RGmyaKf7nDD486+dMMjTP8R/XKwGx5h
2ij6o80NjwiJ3ftkTiM8InRc9L+URnhEKFcCN8IjQpWiv/VrhEeEWuQB2wWP
CLUV/SvLBQ+NHxb9arUL8Wg84JiYuC74aDyqb/y9rT1ciE/jNNl/GuClsdx+
CxtIhjtV41jZXxrgp/EQ2U/q0R80niz7Rz08NVb94jbyobF8v0i8DV+Nr8t+
UIf8aByeK/Z/Hbw17ok5rvJlYnk+T78FfxPPkfv5FvJn4lS5f2tRDyZW+7UW
+TSxPN92rIWTiTvI/ViD/Jp4mNx/NagXE0+V+60a+Tbmktxf1agfE++T+6ka
+TexPL+tr0I9mViX+6UKHjoPkPujEh46T5D7oRIeOi+S9V8BD523y3qvgIfO
F2R9V6D+dPbKei6Hh85dZP2Ww0Pn0bJey+Chs5zvM8rgofNmWY9l8NDZKeuv
FB4618l6K4WHzrGyvkrgYUY9lcDDzG9ud6656i6Gh5mXfimuYniYWW6HrsXw
MPPPsh5uwsPMIelfBA8zj5Hef8HDzJulbyE8zFwtPQvhYWbVP2/Aw8wrpFcB
PMys+tt1eFhYvp5n5MPDwtNl/vPgYWHVT/LgYeG2Mr/X4GHhWXLdV+Fh4TSZ
vyvwsCBfufCw8BSZn8vwsCAfl+Fh4cgg8cKdAw8LjxXjd+4leFj4WRnfRXgY
52oZz3l4WHmpXH82PKzskOs9Cw8rp8v1nYGHlePkek7Dw3gPkC/8p+Bh5S9z
bcYbUgY8rDz6w8faDGw+AQ8r51jEgDsODyuH5fr/gIeV28nfPwIPK2/YNHP/
pdRD8DC+viAm0n54GO9JEXHtgYeNOWHl6L7xO+Fh47RMcaDYDg8b/0v9AwIe
Nnb0qDzj/W0pPGycOmhJ+2eXvO1UHjYuzfzBeONZ5VQeNn49RR5gnMrDxqPq
/mucCHY4lYeNhxnTZWL2LqfysPE2427tn93nVB427m3sroXJB5zKw8aDZIM7
7FQedr65WARw1Kk8jPdacZxYku5UHnY+Kuv5uFN52LmtPP+cdCoPO8+R/TTT
qTzsnCX78ymn8rDzE0b3u7kyy6k87LxEru9Pp/Kwc4P6v4lTediZ5XrPOZWH
nQ+K1/+nLjiVh/FeLtd/0ak8HDxQ7o9Lzv8DXQ3PJQ==
"]]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.004583333333333334], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJw11nk8VOsfB/DZR9ZZWkgbpbTQlSxp+T5KpVJX3VK5WrQpLZablBZSbr9Q
qZT2TdttcRNSkSIpXXuhQbKP3QyzMMz4Yb6ef+Z15pzzPM/38/6eM2O0xWvV
dhqFQjGjUij9n4MjcW/pq72lfHJ4aMziyoCTcIxIo2vyB48j4U1d6hjWFz55
PSakaeXrWzB99MPMwneD5++Dr7RU4RLHJ9eu9o9/oF63NT388eD1MTA9ma46
dJNPmlf2fxMLNtt+W2R0YfD+eNhc1Kod8jefaBZHe8/VTIT1KQ2XHgUMzvcG
du6epgzdxyeT3c6lSU2TId21wM5iy+D8KbDF2HHijTV8cr/v7uLoDzDF3uxQ
tuPgeqmQU1SdnzGbTywHxkcotBEknDYfXD8dHO9GXBxhxCcfpaZ9K3yCSc3+
6T78wf18hiWy8LNXmXyyamDBLzDtuMAkQs7D/WVCmP/X5y4NPFIZ0D/hV/it
bIddawkP95sFAp5n/tosHvHp3553NgQlOOyOfMfD/edAcipLcj+GR9QaeRAU
ZuUUepuH9eSB6dVzSxZG8IjjwAL5cGnxh8SiIB7Wlw/1ZYz14MMj/au5nSsA
u8D0ukB3Htb7DcLWj+JdXckjA+UUf4MZfPeTYfY8rP87PLl9+ddaCx4Z27+d
MYWQt/xXimocD/MoBL6w6lUQh0c8dvSPIngdZe5S3svFfIrh8OKzJvptXNI/
29CYYvDu3PTYvJyLef2A1peVbsbZXCLrn076AwQHA5I7kriYnwByY1Szo59w
ybyBCUtAY5NomcVVLuZZAtaxSetuneKSge2FlEJ6Q9vXRj8u5lsGaXP82CO2
cUl2Vv8og/9ev/cav4qLef8Es9Bedw7hkmEDGyyHwNwVs8rNuJh/OVhY/1x+
xpBLBqZz+wWScwbS0UO46FEBrHOC4xEyDtZTAXe+BTrUVnPQpwICfceFjcrn
YH0VcE///l3rFA56VUJMW0O+5VMO1lsJ57fUbx16hYN+lTC5Muvmj5McrL8K
pO9Hpgf5cNCzCiJXZBrobORgHlVQD+4VR5dy0Lcabh42WPfNmoP5VMMFn473
OuM56F0Nw1nFa8z0OJhXDQjXuT3fJtND/xrYG0ZRzsrRw/xq4OSLkdzSB3rY
D7Wwb1fBRsejephnLfywMXMNXq2H/VELb9sdDpyeqof51sGd8GMmG2l62C91
kLkiVUAR6GLedeAbG8Pw/VcX+0cICdKSES9DdDF/Ibg8YoWk/qmL/SSEsVPX
p9yx0EWPeigIumHtzNZFj3o44Rbgnlemgx71EJXyNs7opQ561MPC6SejHU7p
oEcDRH28+XiWmw56NMA+XtwcqoUOejRA/NxrpdeZOujRCIa2N+iaJdokYsCj
EZZ6vrdyitFGj0Z4Wj5UtiVYGz2aYMsIjawVLtro0QRacbHzOVO00aMJxtDN
Gh4ptdCjGb4kiFYNz9dCj2bQiZui73ZfCz2awdBpbNEhfy30aAFSHDbde6kW
erTAiQLtbBithR4tcObOqQ0NbZro0Qpe4qjLe9M00aMVvlRSrLIjNdGjFeKL
jJQaHpro0QbThnolGc3SRI822MZoddDX0kSPNrAbneDfUjYEPUTwbKHX7Hsx
Q7AeEew4X3XcJmgI+ojAbVTA4piVQ7A+EQQnF1xkjx+CXiKQzVwa4CDRwHpF
YHAkYuSOTxroJwLXy3Z3917WwPrFMGOPi6ObhwZ6iiGiUbXW0lYD8xDDl9tt
EyUaGugrhuGNww3vCNiYjxh8n5o8sX3CRm8xHFtj6Po+gI15tcNBRVaq1TI2
+rfD9abtp28asjG/dnBcVOHZ2cTC57Md0h79NcMxmYV5tgPLoDPlbDgL+6Md
NoyaTctxY2G+HeBzy4GqYcbCfumAObtPf5+nZGLeHRB6X+Px/mwm9k8HhN9a
mfT0JhPz74D5Pl7udXuZ2E8dMDEwkTJpHhM9JLBgxkGety4TPSTAsgoxTi9n
oIcE7ENu5Zj8y0APCRyp/vdTVCADPSRgsK4uY5QzAz0kEJtz9U7iOAZ6SOCx
yZDpu8V09JBCY5DQ1S6Njh5SKLd4O8L0Ih09pNA+nr3FZhsdPaSwb8fqubut
6OghBXNzRWwGi44eUtDwy/zq9IOGHjJ4Zx16gfKEhh4yuGu6hlt7mIYeMhA8
zV6iXE5DDxnYX7S3dhpHQ4++Y9OET9/bqeghg+7Iqh9XP1HRQw65x2fCrStU
9JCD+8z0uJrdVPSQw5vyrSVeQEUPOdgq382Zz6eihxxePriweKOQgh5yqPA3
dMxIoqBHJ2w+emvXkQgKenRCcKxNXPB2Cnp0Am1CBbPUjoIenTA/6fXIUxwK
enRCodZsOje7F9QenWCQpElSD/WC2qMT1sRs3mw0qRfUHl3gt93puGWhCtQe
XZDrMmRn1wkVqD26oPisbfB+SxWoPbpAbPKy7kG1EtQeXXDZUuhyNlIJao8u
SJN8JeaLlKD2UECzjW1qSGcPqD0UwM/JeBj5tAfUHn3nU+l+rpt6QP2+VMA6
b5VHEb8H1B4KWLRs1EF2ZjeoPRSg0jDZ2HysG9Qe3VCy6FDUCatuUHt0w9nJ
Ozz/a1aA2qMbdO1ON6beV4DaoxsE0bbKbRsUoPbohj09NRteDleA2qMb3n73
vPcorwvUHj3gH7wM5od1gdqjB7oSPoUFLuoCtUcPVEZ//uRG6wK1Rw8kPEgY
VpzSCWqPvrp/p15oOtyJHj3gKTkzP2pWJ3r0QFV4xfhiuRw9lFD0xmDK41dy
9FCC1OfNAvYBOXoowSZwmpvYSo4eSogLn7Bxq0yGHkpY2p1k5ZooQw8lvND3
KCg4KEMPFZg/jDf9aidDDxW8E/yynKuUoocKFlpay00/SNFDBcm3/ggMPSFF
DxWM9Lap3tj33Ko9VCDImrkwWkuKHr3gPjz12+o8CXr0guEv46/elyTo0Qsl
tXQfiasEPXoh5Wj9mJ/jJOjRCwdiz9qaCjvQoxcOr7ax+Pa8Az0o5LNBaWjp
/g6sh0K4j5YXzZvTgT4UsvOoc5yC3oH1UcgP76g87ax29KIQ/6Ufmnwj22Gg
3B0UslYP8qdsaEe/vuudiNuMie2gfj9QSPOz4AOn2sToSSEdclN90zdizINC
aiNDFvNOiNGXQuwCKvQdlosxHwrJ9raNSRohRm8KoftQbPyrRJgXlazPE7Tt
fy5Cfyq5XLnMOO6gCPOjkqDrhyb85iDCfqCSnIzCdY16IsyTSmJXPvvzQ2Ib
9geVXDN2mj3OuQ3zpZLrS2P/FNe3Yr9QibOPdflvwa2YN5W8l+Z2lRq2Yv9Q
CXWnr6ItoQXzpxL7MwHE07kF+4lKhItHEMemZvSgkejYhKBTfzejB42Meeh1
w8S4GT1o5EXnERiX0oQeNDL66KNJfq5N6EEjm7XSxhvLG7H/aMT/qjHfJLIR
PWjk0PGxtYctGtGDRjRpEVcm5DagB40UsJ1nj97bgB400m3/uWGrVgN60Eho
yF85sn/q0YNG9I8dMPruWI8eNPLs4URThVCIHnQiPhE90+OUED36fmeG7X1g
MEmIHnTC8lfV6H2uQw86WXJl9y5Hjzr0oJPRXFp8KrsOPegkoaXZOeBxLXrQ
yWSf0iLvJbXoQScl8U/qohtr0INOnPR5U3nhNehBJ/meq9a9NatBDzqZliqc
ej23Gj3oxK9i7p44n2r0YBA/c4966tBq9GAQ6tAi/5BXVejBICtT9BVz1leh
B4PUmkW5TOqpRI++3/XAP44suF2JHgxyc9Mz94j5lejBIIoLRgydugr0YBD5
qZE7X5+uQA8GiS+JuXLerAI9GETvWOWK6dG/0INBJh7xXXexqRw9GGS7b/Pp
5TPL0YNBTttLprgd/YkeTLLvwbWz7zLK0INJ9EfT+N6cMvRgEnED28jXtRQ9
mEROE01Nu1+CHkzyu5Afu7FNgB5M8nJ6pM0iOwF6MMmsfG1n/5Af6MEkH4TL
IkV5xejBJDKG1qMXo4rRg0mSSp9YvtpZhB5MEjpH3NIbX4geTDLRKfN8OLUQ
PVgktYRZ7briO3r0/c/LNXm+6/o39GCRyxdGfkysL0APFnnoxuldYF2AHiwy
bZftfJ2T+ejBIp2Nkft5BXnowSITkzNOrhqXhx4sUrbnTe6VnznowSJdjktm
qAKy0YNFpgR1W37Tz0IPFmlZtb56WOJX9GARr2h31/Q1mejBIkf+Z51SJvmM
HmxSGZE9b0NkBnqwSfuFe8MdZn5CDzZRKfeEnvv+ET3YZEFocf1cvzT0YBPF
PLvQ5cNT0YNN0lY+v3PI6z16sMmUkGlOQ+OS0YNNdmdeUnnI36AHm7w7WPXC
Z04ierBJ0abGPebB8ejR9z/dRuR0/UsserBJ8vmtMs+xMeihQZgC2RZJzGP4
PwE1tpM=
"]]}}, {
{RGBColor[1., 0., 0.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxF13dcFNcWB/DZZReQJKKIiIgQMQgoEDWI5aHn+ig2ShR9EiSiKIhEERWf
DQNPhaDGiEGNYIVgeSYgoiYUZcEGKFgAaSJSlr6wvbcHzOHz7mf+2Z3Ze+/5
fc/MZ2da2K414QYURbkwKGrooJjU/4dl0uahg0kOm+csazt0HPInMWSbvUc/
n4MpVi+DHZ2YJN8msX91/lXo3aqPavx89HwWWIV7fbtPwCDpacPjv9CX8WSh
poaB1+dAcoNfSPTfDMJbPfzNPVD+lCR6lc7A3z+A+eUqj4k/MohJ/e8xi03+
Bvky76MrN4/OVwA+ATNNd3gxiFPImSdSx0fw8kae+yGH0fmLgb/Ea80+EwbJ
Gvp1/e8l0J+SX/r9AIXrlcLDuJj+b95S5JuR8RTi7od7KPIoXP8ZJCQtdPzj
PEWeSh2HVngOt8yXOvkdoHA/ZTD91S8lLcEUWTOyYDlYzlPu27SYwv1VgLul
bUO1LUXaDg1P+BI+74iMc2dSuN9KsOkfq5tUoYfdw9uLqYKwzFb27dN6oPf/
GpKScrbYrNEDrfEWgpauOhBnoQe6nrfgGtpy72mTDpaPLPAO1nIqTkmv6oCu
7x2MGzj5y4QtOhheLeRMNbQ+vBhg66ADut4a+DFo8W6rfi2MlFNfA7H3d2Ya
3tUCXX8tGLZcudq5Rwu2w9uxeQ8nr6e6FLhrgc7jPXR5z59+TKWBbRHDow4U
PltCvYs1QOdTD8nr7lcxjmpgeDbznHpIWB0YXuitATqvBhD9/dpx9xgNyIan
kzaAYGqbvWOVGuj8GqHOf/m+thQ1LBmZsAnysi4uurZWDXSeTRCy0Dxri6Ua
RraX+AFsTiX2zW5WAZ1vM/zsbrN6zHUVVFUOj2aYERFsz9+iwrw/giq9t5jr
oIKJIxtsgbjYK/G8fiXm3wIXp4bWGOcqYWS6kE/wbozzbI9YJXq0wvMcK4sT
C5RYTys49m0zFWkU6NMKpRWncw+WKrC+VlgXvfWiXZICvdrA55VfDH+lAutt
g2iTnbx2UwX6tUFRRN8rfa0c62+H/mCvxuXpcvRsh1/G3u0rCZVjHu1wUnO0
Pcpejr4d8Nunorsr+mWYTwc8Mzrhv+meDL07YMw6Qfm9/TLMiws2XyfOX7pE
hv5cKJO5PRnPlmF+XGhPmZkxo1KK/dAJx5peTj2WKsU8O8HfuDJ15gYp9kcn
JLtG7flyuhTz7QLX2KLFkf0S7JcuOFg6I4X9QIJ5d8GvFpS1Jk6C/dMN1VP9
swN8JJh/N3gZP57FGifBfuqGHL+nl6c2idGjB3ad1tpfzxKjRw/cO1FmmrJL
jB49EDphcrlwkRg9esCpJKezwlCMHr1QHPPTrKk1IvToBblZ6c+CayL06AXb
u62zV+wUoUcfvCpNPeD8DxGkjHj0QYebmnl9jAg9+sB0bOr9/zYI0aMf+hdV
5QfcFqJHP5ztOJh68YAQPfrhTKK17akVQvTgwTIq8JLrFCF68CBbduivkwMC
9OBB0tuXabdKBOgxAJOybeSnzwnQYwCef1dmuWy7AD0G4PzvheLmJQL0GAT9
nHSP4IkC9BiETy2e1PlGPnoMguOl8PjYk3z04EPnnEL76MV89ODD8wzzq9dE
g+jBh+/u7NzpdGcQPQRwPtp169dbB7EeAfymdHZo/HIQfQQQv/lZ3ZrWAaxP
AGGxV5qrMgfQSwDrNlb1/ydyAOsVwOa16z1z5gygnwAqp/264pKOh/ULYTA1
7frlNzz0FEJc+qP2CTd4mIcQtp+b7Bcbz0NfISycsvLZslAe5iME/6wFLfO8
eegthGbqksnYuTzMSwRTlx1+XDeDh/4iqOK9YXd+xcP8RLBs/Y92Bq48vD9F
8M3Eiqf3vXiYpwhi9pkeureDh/0hgsqP3DjtHzzMVwxTbh/fe+KLAewXMXzp
Ylltf2cA8x76HLTooQV3EPtHDErjobnNBZi/GAofWQUdKOBjP4lhotB4SewK
PnpIgNvEhtDGUQ8J+NpHebptH/WQgMH7h6aDilEPCaRHjvf5KXnUY+i+fWMX
qZo06iGBoLmLGpfe4qGHBE7UNraudx/1kIJD9KVs9+f96CGF1SGxQQ2B/egh
ha/Lg3rc2/vQQwrhqR7/8o3pQw8piAJ3nTXT9aKHFDZYBBw/dqoXPWTA7lg1
Oc2yFz1k4BfgRvxu9KCHDHoulorT5vSghwwcrILg4ONu9JBBOOF7dS7vRg8Z
6P4y82yo6UIPOWxyGUj33diFHnJYaelb59HTiR5yKJ5wKvv33Z3oIYf3M9Z9
EafiooccxPYzrUuPctFDDpnvLgw947nooYAXFqbT4s92oIcC0nTBefxJHeih
gD+3J895dKUdPRTge2qdc5tdO3ooQO9tcmzDrTb0UMCHrvwox1lt6KGAPzzb
or1zWtFDCZnNe/fkzm5FDyU0/Ttq05utn9BDCYKbxvtqIlrQQwk1lmbSqG0f
0UMJuVeyvj8X0YweSsgpaqz23/oBPVSQ/F5tlb6pCT1UELDiw8V/b2hEDxW0
MzZ6d65twOelCpy9w293+9ajhwrivp7xLt6zDj2Gzq8d75+74D16DP0vOBD+
VZxzLXqoYW1gclmXTQ16qOFM9ZJxEtNq9FCDy7Xmb27r36KHGuKsGftNm9+g
hxqOqNtlrn9VoYcG9Me/m1hw+hV6aMBavn1fflgFemjAJWGD7YJ5ZeihgfEF
l3d7sp+jhwYMA7eZdVU/QQ8NdOpc2mddLUEPDWQWFnxc+voRemjhXk37m8wN
+eihBefU+hmp3PvooYWUwC1j11fnoIcWGo6UuY+puYEeWnCf9YNJ84U09NAC
ZeIz4cHHI+ihgwfrnKPydiVyaA8dkEt5Jhdklzm0hw4KuY0it8xbHNpDB+ur
wi8sjszl0B46OFZ/9qyc+ZBDe+ig0ePkkTkZBRzaQw+Oxqqq2n8Wc2gPPdR3
nczp3FvKoT30kFA6MV9f9pRDe+jhSmvOx+ypLzi0hx5cd/nndcaWc2gPPVQW
yplXql5y8PWD3Dhzur7CoYpD10ORlOMb94Yde8OhfSjyyD//jqvgLdZHkXPn
V1wOsq3m0F4Uib999cTMgBrOSLkRFDH99dpn1+NrObTf0HvAjhsND3Lfc+jn
A0UafnZ5trW9jkN7UqT26JHiP8wbMA+KxFgvqk1c1sihfSnS4SN24R9qwnwo
okm9acrN+cChvYfeKyQLGzZ1NGNeDJJrJqDCLFs4tD+DWJyvt+b6fcL8GMTX
bQpPuLSVQ/cDgySZKtWuH1sxTwZJmHb4z1sH2jh0fzBIa0Hl/mDzdsyXQcq1
CR3eue0cul8YxHqpd0KkbwfmzSAe91N7S3o6OHT/MAi5HPHcL5GL+TPIo428
p1/YdXLofmIQ5g6Pa/riTvRgktpvv5hiF9KFHkyiUf3AilV2oQeTOKyNnSO5
0I0eTLLK57P/ZLj1oAeTRCxObzpU3YP9xyT+bpUu8TG96MEkrkG+e7LH9qEH
k4QuT7rFyu5Dj6Hz6m21x1b1oweTfLXc3mhmXz96MAl3snatLJmHHkxi4kM1
dTsMoAeTgElTvvbFAHoYkNeO6VbzIwbRw4DkZSS4prL56GFAZjFfOY2/wUcP
A7Ixo3R6kJ0APQzI8UmO3Pl7BOhhQLJuTj/o8ESAHgZkt+2m5BlmQvQwIGHl
5oVuYUL0MCAzD/LzV+cJ0cOAPA6n5h5hitDDgHil3qz9a40IPQyIhThujS5T
hB4skmyzPDRQLEIPFum+y8196ClGDxYJm+uu/+qcGD1YZOVNC1YGV4weLJL1
q89hp3kS9GCR9Mzv7YoTJejBIpvLivI31knQg0UuNh/SmzhI0YNFllRsKniy
X4oeLOJjVX0nsVyKHixCmT1PC5wsQw8WKXJ86OccJUMPFrmgunDGtEiGHmzC
uFbppP1Mjh5swgu36pGEyNGDTfbLL/0my5ajB5ukVRcYMvVy9GCTCQ627Enf
KtCDTSyNc7fMy1CgB5sQSbwkRKRADzZh3y0/edpTiR5skhnVpnpxTokebLJj
sbvVmC4legyt3wacwPkq9GCTiKLDpTeTVehhSGbbb1UymlToYUjK1ZEkfJYa
PQyJ6Y6emLdxavQwJD5ahwjP12r0GLq+zk/z2FaDHoZEsyR4HNmtQQ9DYr16
WkLFEw16GBLfHq+ZweZa9DAkRsWug8JwLXoYkl0FJn+m/K1FD0NyIbrUy32M
Dj0MyYlXorT2YB16GJIGoeD0+T916GFE/BYVGQTodOhhRCLDlC1jv9WjhxH5
vE1m8D5Djx5G5Nnmq+szxHr0MCKJeYWfCuyoEtrDiLxmVI67uYoqoT2MSGpU
8NzzsVQJ7WFEMg6zFvx0hSqhPYxIsFXOxLgXVAntYUT4N37k7OVTJbSHEVnu
9Mkp2pJRQnsMrXfpwIofljJKaA9jYuY6d8IPUYyS/wFHz0bv
"]]},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.004583333333333334], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxF13lcE9cWB/DJzqKgFDfqUqkCivgEEdGi51qUqgVRoYqASpFN7BNc2qqg
0iqKW9WCtO7FCloX5KEoFDUsIlgBWQURkYSwLwkhC9kfMOd93v3MP0lm7r3n
9z0zSaYHR60PZVEU5cCgqKGDYlL/H4XzRg0do0mMZfpXggNH4dr0fVdTq0fh
6yT4R+1b23B5FMmeGt+9LvsaTNuRzHgV8r/Pb8JPwhme2+eOIpcuDo+/oORS
flDWoCmenw5pjqu33Co0JT3rht/5DyzwV75adNYUr38E2ZtXHA0PMCUmdX9G
LzF5AkyX5Xx7O1OcLwdStBMVP8lNyKzAswVyu6ewT3ykNbTQBOd/DmPFK+Kr
z5uQm0NX1/2ZB8nHPZjFQSa4Xj4c/T0ox22eCZk/MgrhTTHfyZEywfVfgGDV
0ykpFcakUG43tEIRGK+Z6XUixRj3Uwyb7/Y8bNttTNaPLFgC933sgh8vN8b9
vYK2u1t/lo83JoIDwxP+A7kweWNKpxHutxT04Y9dnzw1IruGtxddBuyojYnO
54xw/+Vw/rR96/gQI0JrVMCDwudPA1yNsJ4KiFkW94QabURWjixQCVcDI+JY
Qh7WVwk2hc/Kv33CI8OrBZ6tgokFipBJZ3hYbzUsFT00t9vGIyPl1FVD3I7K
m6cW8bD+GtgUeob55RgemTa8nam1UOadZ7aqnYt51MJfu20eX3vOJeFhw+Mt
dLhmd5NkLuZTB9PU5rcddnLJ8GyW6XXgWvC+I9iDi3nVg1XBpoymqVyiGJ5O
Xg/e9k3s60oO5vcODGu+laRUcMjSkQkb4Eq3ZVzrXxzMswHUNw2F4Uc4ZGR7
8e+Beni13GYzB/NthG0f4x99tpBDykqHRyOcUo497TOWg3l/gJ1C438/62aT
cSMbbIIJiWujA1+yMf8mcJ7064O5KWwyMl3gR0ieIF3uFMtGj2YwEeesDt3I
xnqa4XMJ532RExt9miGzK9p8vRkb62uGWXufUUZdLPQSwCWIfdlaxMJ6BbBW
mP5DZwoL/QRg2BI2c+whFtYvhIg3gSJ/fxZ6CmFD3ImCFy4szEMIj8vTX3t+
wkLfFhCNFvD6xUzMpwW6szgxD0qZ6N0C3marZxz7i4l5ieBs7Dnd7mNM9BfB
kl+q1Xu2MTE/EUx5cdD4OGFiP7RCsFmW+Z0pTMyzFZZU/t7doGZgf7SCq/2u
3RPqGZhvG5wYXx61OYuB/dIGBbVJN+/8ysC82+CyRFWkjWJg/7TDs4rQ2HVe
DMy/HXSVy4LTZjOwn9rhmM9dporHQI8OMHBM6j1aKfTogC98j60+U0ChRwds
/iYw/dV1Cj06YJML70tVLIUenZC1i8yZ5E+hRye831+232YhhR6dcPz2uE+n
WlLo0QV/X5QWqAQGODfi0QVeFoWDhy4bgPbogj1/6Ltf+BqA9ugGt/WBW1+M
NgDt0Q3BBQ2537/UA+3RDWsq+LzKQ3qgPXrAj8Q1lrnogfbogcjrwQHb+nRA
e/TA5ZZbnyWk6oD26IUmonJ2CtQB7dELJb2l2g0WOqA9eqFzY/DM7mIt0B59
UPFj8y/CWC3QHn3wehZn/jxHLdAefdDynwzeS5EGaA8x3P4isjHpNw3QHmLw
3vPM8fQqDdAeYggYzTC+pFYD7SGBu3eGhxrrkcCDKYVBtzepgfaRAOOmh3UM
T431SWD+bFt7o0cqoL0kcDBpaozjVhXWK4HVAV/PrzVSAe0nAYcxfsWlGYNY
fz9Ea6yk3RsGgfbsh9OvXTYY1ErMox/cnFNv/XNFCbRvP4Tfc7Pjuikxn35w
WJA2PaBeAbR3PzQwjSq27FJgXlIQt2a+PslVAO0vhddUrZvjb3LMTwquYbxz
263lQN+fUjialFPTlybDPKWgrTTlNFvLsD+ksDD8Yopr4gDmOwAtZY9KY6RS
7JcBaMjf+ukSZynmPQAfT6yx3WDbj/0zAHqjHsi2lGD+A1D01MpvX44Y+2kA
pvQbLd27SoweMuhs4MDWd33oIYPvZ0a6O2/vQw8ZmNdmmfcN9qKHDO5HjPU4
ntCLHjLY88Y6Qj2hFz1kEOm0+N2yWz3oIYOzNe+aN7r0oIcc3HZevu9S1I0e
clgfuNev3qcbPeSwqMSvw0XYhR5yCEt02+AZ3YUecpjoG3XeQt+JHnKIGu99
9MipTvRQgFnL15MuTuxEDwWs9XYmXqkd6KEA3e/5AxcdO9BDAfOs/GD/s3b0
UEAUES9vXdmOHgqwfGLhXl/dhh5KiHDoveS5pQ09lOA90fOtW0creiih/JNT
9//c1YoeSui0+WZ0rFqEHkrQz5w9Of9nEXoo4W5lMuw0EaHHIFSON59++HwL
egzCdb1/pnhCC3oMwpPtCY5PrwrRYxA8T30zR2AtRI9B4HmYHAm4JUCPQRC0
ZUfa2QvQYxAy3QU7V6Q3o4cKUhv37M6Y14weKnj/Q2TQm5CP6DF0X6UZfV8d
1oQeKqifaCGPDP+AHioouHpzc1JYI3qo4FHuu6o1Ie/RQw03ajVWl4Ia0GPo
Pl/1/vcfAt6hhxq6GFtWtPrW4/NSDV4rQm+3e9ahhxoO/8um8rD7W/RQg5Pv
2DUZrrXoMfSc2Rc6I3ZODXpo4DufhOK2qdXooYE/qpaOkZlXoYcGFl9vnH/b
UIEeGvhlMuNH88Y36KGBRI1QMfdxGXpogR2/aVzOmdfooYVNyu3fZwe/Qg8t
fBEXMM11QTF6aMEq58oud04Remhhg0+4RVtVAXpogWlwENpfy0MPLXBzcz4s
K3+KHjoQVQvf3AjIRg8dVCTW2SSKHqKHDop8tpltrEpHDx0MHix2Ma5ORQ8d
/GG/w6Qx+SJ66GCmqccnjz4cRA895PnMicyMiufTHnpYdDnTJFlxhU976CFI
9E7qfOMWn/bQg1FZaPKSiAw+7aGHz+rOn1cys/i0hx4y3E4edEzJ4dMeBhhn
pC6r+fI5n/YwwL22k+mte/L5tIcB3PPHZRuKC/m0hwF8m9M/3J/ykk97GICK
WpPZureET3sY4M+/lcyrZf/w8e8HSTh7pu6VbRmfrocih45u2RN85A2f9qFI
xprsO3MlFVgfRaIvrLriN62KT3tRZN/taydme1fzR8oNG/oeP3/d9I/DNXza
jyJd36XWP8qo5dPPB4qUn3Z4ESJ8y6c9KVLx88Hndy3rMQ+KRExeXBP/1Ts+
7UuRZo8BB/GBBsyHIprENHNR+ns+7U2RybJF9UEtjZgXgzywkFDBE5v4tD+D
jLpQN1nk9RHzY5CvnD/t6V/WzKf7gUEOmas0cz80Y55Dr6fH3Lu1T8Cn+4NB
mnJKf/S3FGK+Q7+7dHEtKzKEfLpfGMRs2Yq4CM8WzJtBbB8mduZ1tPDp/mGQ
xVfCirziRZg/g2Rs6Skcbd3Kp/uJQdQ73K4bnreiB5MUrx39qXVgG3owiVy9
g71X1YYeTDLDd6+jLLkdPZjEzcP0pxTnDvRgknVLLjUcqOrA/mOS1c6lDoej
O9GDSWb7ee6+b9aFHkziu/LYLfb9LvRgEjtNeM2Rr7vRg0msV87kze7qRg8m
+TBJ56tI6EEPJmF4UA3ttr3owSSLTRqydS970YNFSuwuWS0M60MPFklPiZub
yBGjB4vMYL6eNTZVjB4sEpiS/7mftQQ9WCRugp1o4W4JerBIStrn+20LJOjB
ItHTghJsLPrRg0X8Syz/dg7uRw8Wsdkvzl6X2Y8eLPI0lHI6yJSiB4ssT0yr
ebxeih4sMmogdr3+hhQ92CR26sqtPgNS9GAT4QNRRpb7AHqwSZCTi2FG0gB6
sAmkjWeniAbQg02u/eoRM2uBDD3YJOnGZuvn8TL0GLq+ODd7y1sZerDJ6cYD
BhNbOXqwieuroJyCH+XowSZLraruxJfI0YNNdGOLLvpMUqAHmzy2y/KaE6lA
j6H11MlnzXMV6MEh1PXSWTpTJXpwSEeoVYcsUIkeHLJTefk3xX0lenDIyaoc
LtOgRA8OGWM7jTNh7SB6cIilUca2BSmD6MEhbrLDskDpIHpwCPtByckz7ir0
4JCkSIH6ZZIKPTjkuyUuVsZtKvTgkN0C4PssVKMHh4TkxuSnJajRg0tsZ4ao
GA1q9OCSEk0ECbXXoAeXjPquI7oiVoMeXOKhsw1zL9egx9D5b720z6Zp0YNL
VEv9x5BdWvTgkjHrpse9KtCiB5d4diyf7W+pQw8uYT+f29cfqkMPLgnJMbl3
7okOPbjkws785S7GevTgkoTX0otCfz16cMnbfsmZC/f06MEjKxfnsrz1evTg
kW3BqiaztQb04BGuQMGqTTGgB4/kfnttY8qAAT145Ejm3x9zrKk82oNHyhil
Y9K+pvJoDx5JjPR3urCXyqM9eORaDNv1+FUqj/bgkU1W6eNiX1J5tAePdKUe
4u8RU3m0B494zPo4a+dERh7tMbTe5X2rdixj5NEeRsRirtMnOyIZef8FYFEY
wA==
"]]},
{RGBColor[0., 0., 1.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxF2AlwVFUWBuDXr7dsqGyDIiKKCoiIIKOyyDmDBhApEHBwCaAVlagoshcD
KMIEkTiAwyKgYTWoCArIFgTTQAJBwhYCJIQYsm9k6fSS7nTS3fPuvT81r1KV
yvbePec795z78lD8J+PfM2ua1sekacaHpmv/v9KfijE+2vDCDr+OKF6QSKM+
HPr55sYYfL2Ocr6f8XxUbgyndl12e1zqFpry147AvON3fp5CtX+7dqR0ewx/
u0lcu2juK/a5ryy/8/u/kpY0sP8fH8Vw7Tjxnf30Zfq0hl7j7/z9QeoY3Lzn
m2djOCpXPOgIbX3m8gfmB+7c7yj1mqH3mKHHcK9Jq095ex6n/bsGlBVURuP+
aTS4dOr2ly5Ec4pY5vcn6HSXTVMO/xaN552kMROz7u++MZqfllc65a8O5q3+
NBrPz6D4P/t+0xofzenensYTTlO9Hj/hg5HRWE8mzR+y7p7rfaJ5vHzgWdLn
nbkwrH001vcnrdzrT9rrj+LiBeKG56h99eMjuxRGYb3nadvDk60r0qN4plje
jAvUR3z/pyis/yIdWH9ycfyqKFYal2nIJfeQS7OjEM9lOhPxWGDwG1E8Uj4g
m8YPe/3IT0OjEF823VyYNKfjI1EsnjZp9RV659DxfksjoxBvDjXUiyuSZTi5
ObSg50N74q5GIv6rJMI9ezSSHxTL6XqNVn237LG/b41EPq5RB8GbGMkJU8V1
nXbcVbPtrg8jkZ9c6jOyy5SFYyNZ3K3Dr7l0cMmY+6sGRCJfeTTk2Od5r3aO
5CZxO28eZXl+W38yHIH83aAJT5aPf7I8gofKG+ZTYUKne747F4F85lOCoWvf
F8FyectukivfCHh9BPJbQPNlHBF84by4Csg8psgy5u0I5PsvWr283anfYyO4
o1xgIXU6+eLiHr0jkP9C2haYZwhHsLzdpFvUe8CuZq3JDo8iSv345uGPb9oR
TxHxj23m5J+ww6eIzhRRvxE/2BFfEU3sPKv+wFd2eBVT4YSU3d1m2hFvMb2/
8vr7Kyfa4VdMTglsR/wltFAzKvohOzxLyDro4205NjvyUUJrZm+dzLU2+JbS
vb9kd/4l24b8lNLOCnPefUds8C6lvt2eWf9Fsg35KqPUN94f715ig38ZvbD2
27vfTrAhf2WUJT6NtqEeymmcLbxiYH8b8llOZSLcTjbURzl98K93LO2DVuS3
ggTv4hIr6qWCPq/N/Kw204p8V1CUKOdfrKifSlrz1hPNp9dYkf9K6mxs3/7z
rainSvrxytdGxFZ4VFE/0a5esMKjio7Feuvm97TCo4piF/fYXd7GCo8quiQD
tsCjmuJcXz3qyLPAo5qKe6eV9E6zwKOapr3n3Lrxews8aqhpi9jAFv5aetSQ
qOZZ0y3wqKHodstzCydY4HGb1r58dN3LAy3wuE0y7K4WeNymn9IeuPtRiwUe
tdTfP/b8f6vN8KglY/euCF00w6OWYqcdHD7toBkedXQpxQDeZIZHHU0qvNeo
aDM86qis08uf7X/XDI96mj7u08FdR5nhUU/NRrdK6muGRz0tzSg+5OtghkcD
tQm1n/1uQIdHA216dvhT2bd0eDTQgzPn1z1/WoeHk/b8LC4d8TipX1lBQqev
dfg46Q8j3MS5OuJz0sjX/lHifFOHl5OyBS/riNdJced2Tjr3qA4/J4lyfjZa
R/yN9In8MxM8G6lFbN/rJuSjkRL3GREfM8G3kdoY7apmmwn5aaSN3XOyJn5h
gncjdRPteZoJ+XLRvm+MgMeZ4O8iMY42P2NC/lx0KjL5RGQXE/ani0a9cPHT
eSYT8umiq4uMDVyhoT5cNOmwENaQXzdVNbx76Ph+DfXiptm9NszqtUFDvt0U
EgNpkYb6cdPy5JZaPV5D/t1kDKOfPxmhoZ7clGzs3oInNHh4qPtLax55qZ0G
Dw/FifAawqQ8PDTb4Iv9PUzKw0OJ8jlhUh4eSp4iFhwm5eGhPaK9dA6T8vBQ
xotig4VIeXjpihgP+0KkPLxU+bgYCCFSHl6S4314iJSHl+5uK64QKQ8vPZw4
96uam0FSHl4a7LthzfghSMqjiUaL88jMICmPJooT548hQVIeTTRLnDfsQVIe
TZQkzhdXWkl5NNEWCdhKyqOJ9onzQ0IrKQ8fZYrzQv9WUh4+uibOB8EWUh4+
dR4420LKw0eamP9rW0h5+KiDmPdTWkh5+EhG1bOFlIefnhfz3B0g5eGnsWJ+
pwXg4aepYl6vCMDDT4vEfH41AA8/rRTz+MEAPPxq/tY0w8NPR8W8PdgMj2Y6
IxtwMzyaKV/M01HN8GimSjE/OzbDo1nNyyI/PJqps5iPu/3waFbzcJ4fHgEa
KuYf++ERoNfEvIv2wyOg5tt1H6l+GSCxHaZu98EjQHK7f+SDhxGn3OA+eLSo
+WTywaOFZNjnm+DRQoVi/mxogkeLmjfxTfBoIbuYL32a4NFCXQWv3wuPVjU/
0r3waKXhopxXeuHRSm+K+fC6Fx6tNF3Mg+5eeLTSUtH/6z3waKV1ot8f9cCj
lX4U/T3RA48g/S76+RgPPIKUJQP2wCNIpaJfl7nhESRxmkza64ZHkKJEP17g
hkeQuon+G+uGR4hENXe6xw2PEI0Q/TXfBY8QTRb9dKcLHnf2pQseIfq36JeD
XfAI0SbRH20ueIRJ7N6nshvhEaYTov8lN8IjTDkSuBEeYaoQ/a1fIzzC1CIP
2E54hKmt6F+ZTnho/IjoV2uciEfjAcfFxHXCR+NRfePua+3hRHwap8r+0wAv
jeX2W9hAMtypGsfI/tIAP42HyH5Sj/6g8WTZP+rhqbHqF3XIh8by/SKhDr4a
35D9oBb50Tg0V+z/Wnhr3BNzXOXLxPJ8nnYb/iaeI/fzbeTPxCly/9agHkys
9msN8mlieb7tWAMnE3eQ+7Ea+TXxMLn/qlEvJp4q91sV8m3MJbm/qlA/Jt4v
91MV8m9ieX7bUIl6MrEu90slPHQeIPdHBTx0niD3QwU8dF4k678cHjrvkPVe
Dg+dL8r6Lkf96eyR9VwGD527yPotg4fOo2W9lsJDZznfZ5TCQ+ctsh5L4aGz
Q9ZfCTx0rpX1VgIPnWNkfRXDw4x6KoaHmd/a4Vh7zVUEDzMv+1JcRfAws9wO
XYvgYeafZT3cgoeZg9K/EB5mHiO9/4KHmbdI3wJ4mLlKehbAw8yqf96Eh5lX
Sq98eJhZ9bcb8LCwfD1Pz4OHhafL/OfCw8Kqn+TCw8JtZX6vw8PCs+S6r8HD
wqkyf1fhYUG+cuBh4SkyP1fgYUE+rsDDwuFB4oU7Gx4WHivG79zL8LDwczK+
S/AwztUyngvwsPIyuf4seFg5Qq73HDysnCbXdxYeVo6V6zkDD+M9QL7wn4aH
lb/MsRlvSOnwsPLojx5vM9B3Eh5WzraIAXcCHlYOyfX/AQ8rt5O/fxQeVt64
eeaByymH4WF8fVFMpAPwMN6TwuLaCw8bc/yq0X3jdsHDxqkZ4kCxAx42/qf6
BwQ8bBzRo+Ks57dl8LBxyqAl7Z9b8o5Dedi4JOMH441ntUN52PiNZHmAcSgP
G4+q/Y9xItjpUB42HmZMl4lZux3Kw8bbjbu1f26/Q3nYuLexuxYmHXQoDxsP
kg3uiEN52PnWYhHAMYfyMN5rxXFiSZpDedj5mKznEw7lYee28vxzyqE87DxH
9tMMh/Kwc6bsz6cdysPOTxrd79aqTIfysPMSub4/HcrDzg3q/yYO5WFnlus9
71Aedj4kXv+fvuhQHsZ7uVz/JYfyiOCBcn9cdvwPii3PJw==
"]]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.004583333333333334], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxF1nk8VOsfB/DZR9ZZWkgbpbTQlSxp+T5KpVJX3VK5WrQpLZZfUlpIuf1C
pVLaN223xU1IRYqkdO2FBsk+djPMwjDjh/l6/Z7X/HPmnPM8z/fz/p4zY7TF
a9V2OoVCMaNSKH0fCo3y/5G4t/TV3lI+OTw0ZnFlwEk4RqTRNfmDx5Hwpi51
DOsLn7weE9K08vUtmD76YWbhu8Hz98FXWqpwieOTa1f7x99Qr9uaHv548PoY
mJ5MVx26ySfNK/u/iQWbbb8tMroweH88bC5q1Q75i080i6O952omwvqUhkuP
AgbnewM7d09Thu7jk8lu59KkpsmQ7lpgZ7FlcP4U2GLsOPHGGj6533d3cfQH
mGJvdijbcXC9VMgpqs7PmM0nlgPjIxTaCBJOmw+unw6OdyMujjDik49S074V
PsGkZv90H/7gfj7DEln42atMPlk1sOAXmHZcYBIh5+H+MiHM/+tzlwYeqQzo
n/Ar/Fa2w661hIf7zQIBzzN/bRaP+PRvzzsbghIcdke+4+H+cyA5lSW5H8Mj
ao08CAqzcgq9zcN68sD06rklCyN4xHFggXy4tPhDYlEQD+vLh/oyxnrw4ZH+
1dzOFYBdYHpdoDsP6/0GYetH8a6u5JGBcoq/wQy++8kwex7W/x2e3L78a60F
j4zt386YQshb/itFNY6HeRQCX1j1KojDIx47+kcRvI4ydynv5WI+xXB48VkT
/TYu6Z9taEwxeHduemxezsW8fkDry0o342wukfVPJ/0BgoMByR1JXMxPALkx
qtnRT7hk3sCEJaCxSbTM4ioX8ywB69ikdbdOccnA9kJKIb2h7WujHxfzLYO0
OX7sEdu4JDurf5TBv6/fe41fxcW8f4JZaK87h3DJsIENlkNg7opZ5WZczL8c
LKx/Lj9jyCUD07n9Ask5A+noIVz0qADWOcHxCBkH66mAO98CHWqrOehTAYG+
48JG5XOwvgq4p3//rnUKB70qIaatId/yKQfrrYTzW+q3Dr3CQb9KmFyZdfPH
SQ7WXwXS9yPTg3w46FkFkSsyDXQ2cjCPKqgH94qjSznoWw03Dxus+2bNwXyq
4YJPx3ud8Rz0robhrOI1ZnoczKsGhOvcnm+T6aF/DewNoyhn5ehhfjVw8sVI
bukDPeyHWti3q2Cj41E9zLMWftiYuQav1sP+qIW37Q4HTk/Vw3zr4E74MZON
ND3slzrIXJEqoAh0Me868I2NYfj+o4v9I4QEacmIlyG6mL8QXB6xQlL/1MV+
EsLYqetT7ljookc9FATdsHZm66JHPZxwC3DPK9NBj3qISnkbZ/RSBz3qYeH0
k9EOp3TQowGiPt58PMtNBz0aYB8vbg7VQgc9GiB+7rXS60wd9GgEQ9sbdM0S
bRIx4NEISz3fWznFaKNHIzwtHyrbEqyNHk2wZYRG1goXbfRoAq242PmcKdro
0QRj6GYNj5Ra6NEMXxJEq4bna6FHM+jETdF3u6+FHs1g6DS26JC/Fnq0ACkO
m+69VAs9WuBEgXY2jNZCjxY4c+fUhoY2TfRoBS9x1OW9aZro0QpfKilW2ZGa
6NEK8UVGSg0PTfRog2lDvZKMZmmiRxtsY7Q66Gtpokcb2I1O8G8pG4IeIni2
0Gv2vZghWI8IdpyvOm4TNAR9ROA2KmBxzMohWJ8IgpMLLrLHD0EvEchmLg1w
kGhgvSIwOBIxcscnDfQTgetlu7t7L2tg/WKYscfF0c1DAz3FENGoWmtpq4F5
iOHL7baJEg0N9BXD8MbhhncEbMxHDL5PTZ7YPmGjtxiOrTF0fR/Axrza4aAi
K9VqGRv92+F60/bTNw3ZmF87OC6q8OxsYuHz2Q5pj/4zwzGZhXm2A8ugM+Vs
OAv7ox02jJpNy3FjYb4d4HPLgaphxsJ+6YA5u09/n6dkYt4dEHpf4/H+bCb2
TweE31qZ9PQmE/PvgPk+Xu51e5nYTx0wMTCRMmkeEz0ksGDGQZ63LhM9JMCy
CjFOL2eghwTsQ27lmPzDQA8JHKn+51NUIAM9JGCwri5jlDMDPSQQm3P1TuI4
BnpI4LHJkOm7xXT0kEJjkNDVLo2OHlIot3g7wvQiHT2k0D6evcVmGx09pLBv
x+q5u63o6CEFc3NFbAaLjh5S0PDL/Or0g4YeMnhnHXqB8oSGHjK4a7qGW3uY
hh4yEDzNXqJcTkMPGdhftLd2GkdDj75j04RP39up6CGD7siqH1c/UdFDDrnH
Z8KtK1T0kIP7zPS4mt1U9JDDm/KtJV5ARQ852CrfzZnPp6KHHF4+uLB4o5CC
HnKo8Dd0zEiioEcnbD56a9eRCAp6dEJwrE1c8HYKenQCbUIFs9SOgh6dMD/p
9chTHAp6dEKh1mw6N7sX1B6dYJCkSVIP9YLaoxPWxGzebDSpF9QeXeC33em4
ZaEK1B5dkOsyZGfXCRWoPbqg+Kxt8H5LFag9ukBs8rLuQbUS1B5dcNlS6HI2
Uglqjy5Ik3wl5ouUoPZQQLONbWpIZw+oPRTAz8l4GPm0B9QefedT6X6um3pA
/b5UwDpvlUcRvwfUHgpYtGzUQXZmN6g9FKDSMNnYfKwb1B7dULLoUNQJq25Q
e3TD2ck7PP9tVoDaoxt07U43pt5XgNqjGwTRtsptGxSg9uiGPT01G14OV4Da
oxvefve89yivC9QePeAfvAzmh3WB2qMHuhI+hQUu6gK1Rw9URn/+5EbrArVH
DyQ8SBhWnNIJao++un+nXmg63IkePeApOTM/alYnevRAVXjF+GK5HD2UUPTG
YMrjV3L0UILU580C9gE5eijBJnCam9hKjh5KiAufsHGrTIYeSljanWTlmihD
DyW80PcoKDgoQw8VmD+MN/1qJ0MPFbwT/LKcq5SihwoWWlrLTT9I0UMFybf+
CAw9IUUPFYz0tqne2Pfcqj1UIMiauTBaS4oeveA+PPXb6jwJevSC4S/jr96X
JOjRCyW1dB+JqwQ9eiHlaP2Yn+Mk6NELB2LP2poKO9CjFw6vtrH49rwDPSjk
s0FpaOn+DqyHQriPlhfNm9OBPhSy86hznILegfVRyA/vqDztrHb0ohD/pR+a
fCPbYaDcHRSyVg/yp2xoR7++652I24yJ7aB+P1BI87PgA6faxOhJIR1yU33T
N2LMg0JqI0MW806I0ZdC7AIq9B2WizEfCsn2to1JGiFGbwqh+1Bs/KtEmBeV
rM8TtO1/LkJ/Krlcucw47qAI86OSoOuHJvzmIMJ+oJKcjMJ1jXoizJNKYlc+
+/NDYhv2B5VcM3aaPc65DfOlkutLY/8U17div1CJs491+W/BrZg3lbyX5naV
GrZi/1AJdaevoi2hBfOnEvszAcTTuQX7iUqEi0cQx6Zm9KCR6NiEoFN/NaMH
jYx56HXDxLgZPWjkRecRGJfShB40Mvroo0l+rk3oQSObtdLGG8sbsf9oxP+q
Md8kshE9aOTQ8bG1hy0a0YNGNGkRVybkNqAHjRSwnWeP3tuAHjTSbf+5YatW
A3rQSGjIf3Jkf9ejB43oHztg9N2xHj1o5NnDiaYKoRA96ER8InqmxykhevT9
zgzb+8BgkhA96ITlr6rR+1yHHnSy5MruXY4edehBJ6O5tPhUdh160ElCS7Nz
wONa9KCTyT6lRd5LatGDTkrin9RFN9agB5046fOm8sJr0INO8j1XrXtrVoMe
dDItVTj1em41etCJX8XcPXE+1ejBIH7mHvXUodXowSDUoUX+Ia+q0INBVqbo
K+asr0IPBqk1i3KZ1FOJHn2/64F/HFlwuxI9GOTmpmfuEfMr0YNBFBeMGDp1
FejBIPJTI3e+Pl2BHgwSXxJz5bxZBXowiN6xyhXTo3+hB4NMPOK77mJTOXow
yHbf5tPLZ5ajB4OctpdMcTv6Ez2YZN+Da2ffZZShB5Poj6bxvTll6MEk4ga2
ka9rKXowiZwmmpp2vwQ9mOR3IT92Y5sAPZjk5fRIm0V2AvRgkln52s7+IT/Q
g0k+CJdFivKK0YNJZAytRy9GFaMHkySVPrF8tbMIPZgkdI64pTe+ED2YZKJT
5vlwaiF6sEhqCbPadcV39Oj7n5dr8nzX9W/owSKXL4z8mFhfgB4s8tCN07vA
ugA9WGTaLtv5Oifz0YNFOhsj9/MK8tCDRSYmZ5xcNS4PPVikbM+b3Cs/c9CD
Rbocl8xQBWSjB4tMCeq2/KafhR4s0rJqffWwxK/owSJe0e6u6Wsy0YNFjvzX
OqVM8hk92KQyInvehsgM9GCT9gv3hjvM/IQebKJS7gk99/0jerDJgtDi+rl+
aejBJop5dqHLh6eiB5ukrXx+55DXe/Rgkykh05yGxiWjB5vszryk8pC/QQ82
eXew6oXPnET0YJOiTY17zIPj0aPvf7qNyOn6l1j0YJPk81tlnmNj0EODMAWy
LZKYx/A/LlW2lQ==
"]]}}, {
{RGBColor[1., 0., 0.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.004583333333333334], AbsoluteThickness[1.6]},
{RGBColor[0., 0., 1.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.004583333333333334], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {
{RGBColor[1., 0., 0.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.004583333333333334], AbsoluteThickness[1.6]},
{RGBColor[0., 0., 1.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.004583333333333334], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, \
{}}}}, InsetBox[
TemplateBox[{
GraphicsBox[{
Thickness[0.08305647840531562],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGINIGYC4pkg8FPCQWpenObpCyoOMP4Oh6ZHxyNUHNzX
HF3OsEPeIQ0MMPndNp670poU4PwPi9YrnNVQxMn3uzgx5t9iFbj5NZ82BGTP
UnGYAbJ3J4I/Z5Hyzj/P0fjqqnA+2JxkBD/glnRN4iRVuPkpsXfcmH+oOqz4
9rLizAQlh0cR4tsvPlB1OAMCexQdNunlLWa8A+WfkXFICAlSX3BS1WGtkA5f
+jpFBwOtlcIXXDQd1oD4ecoO/0FAXhvinx/KDicOO63NlNOB87eD/FOhC+dP
mcBfZdatD7cfHK6ZBg6poGBwU4DzWxXYVc98kYXzeyO6/RkNZBwcgcbNsDZw
qLn/45ZxtpTD0V07etkm6DvI71qwL/WcpMMGkPtldB2mg/TdlILzH7jGO84K
lHaQAMXnB12HdJB9z6QdtoDk/+g5mBiDgKzDcZB5BfoOMaoRMufmyMP51SD7
ohXhfLC7IpUcdBTlv+SU6cH5LJxd8snvdOB88R6vVyxTtB34YwPuG00H6geF
j52Ww5u23G4jaXkHUZC8iIYDenoDAMDOG9o=
"]]}, {{
Thickness[0.08305647840531562]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {18.06422914072229, 26.03675716064757},
ImageSize -> {12.042819427148194`, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {13., 18.}, PlotRange -> {{0., 12.04}, {0., 17.36}},
AspectRatio -> Automatic}],
GraphicsBox[{
Thickness[0.02853881278538813],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQ/R8E7ks4/Hz7+oClsoqDSOWkkrNLpOD8MyDQIwPn
x6hGyJzbI+PgsebocoYfynD+3vyatzNTleB8+xLH2tNzONH4zA7uIH0zZBz6
I7r9GT8wOcyZCQQ/pRzA7tjP5LAj2Cri/3EJh+u8t8VSyxB8E2MQ+G8PcY+s
Q4t4LWvmMUz+GiEdvvR9cnC+7K4F+1LfyePkg6yfGakENx/Gh9m/8tvLijMO
inD3PXCNd5xVqAB3fzinWLtxvALcf6h8TjgfrO+iqEN6GhCIKTp82fdxa/o3
EQewfTcVHRhAYIGIg/K1R8EMb5Tg/NLD21xnzlWG8zfo5S1mtFFx0Pik8nLW
SxGHF1na36bPhcZbiqiD1wl229mh6g7V93/cMn4t4ZAQEqS+wFMDEo7qUg71
v60KzmVoOtwHuUdQHs4Hu5NfEc4Hm7dF2aGB5Wi/obm6w5xFyjv/HFeFhFOx
Cpy/AhQ+E5ThfHA62KrkMGMCf5VZt6rDHU3ZNf+DlRyeJC68ZqKvCg8PSHpR
hvNP7NrRy7ZBFZI+NBTg5oW8vfxxxkNZCN9dFeKPdGmHwFvSNYmfVBxg6XeD
6pPmeWcRfFh6BQDMMEWn
"], {{8.18594, 8.94844}, {8.18594,
9.11406}, {8.245310000000002, 9.245310000000002}, {
8.399999999999999, 9.44844}, {8.746879999999999, 9.88906}, {
9.23438, 10.1156}, {9.831249999999999, 10.1156}, {10.9516,
10.1156}, {11.667199999999998`, 9.32969}, {11.667199999999998`,
8.089060000000002}, {11.667199999999998`, 6.75469}, {10.8688,
5.76563}, {9.79531, 5.76563}, {9.139059999999999, 5.76563}, {
8.651560000000002, 5.9796900000000015`}, {8.18594,
6.468749999999999}, {8.18594, 8.94844}}}],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4kaWo/2G6YYOrQrsqmemiDrA+BqfVF7OWinm
4H2C3Xb2UQMHtzVHlzPMEHMoWNN9O6PBwEFh14J9qX1iDrz+66ekaiD4CbF3
3JhvaMP1P0lceM3kvLaDiTEQXBZx2GL+41DKKW0HkcpJJWdTRBxYOLvkk9dp
O6SnAcEzQYetDk2PjlvowPkS8+I0TxfoOLxpy+02ihZx+PH29QHLZh2HGNUI
mXMyog66ivJfcq7pOFTd/3HL2FvU4U3xVtHf2npw/n8QiDeA8/uDS1Sm6xs4
zAQBSREHfpD7OQwg9rkJO4j2eL1imaLvUA1Szy0Et+8MGLBA5EV0HK7z3hZL
3cYE9Ze2QzTIPTWMDn9A6h9rOeRMTSi0KP5lL7/8hYfefy2HgCeel0wnf7eX
BfHv60Dc9f+7/fmrYW/0fyP4pjZ7g6Yd1IXzI8S3X2SIM4Trh/FlNorNZ3rw
y1586hXOjCRDhwu/j12fF/nP/nDb8vBTRYYOB7v3NZksZoLGl6FDi3gtayYb
m8P0CfxVZtYI/t9vpQ/mCBo6+IPMD2aAhoehA4v+L65LPP/sP28IyJ613MCB
Fcz/aw8LHxhfV2ul8AUVXTgfPT0BAGL4DTg=
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYC4jQQmGbqYGqzN2haoq5DhPj2iwz3EPxPGwKy
Z7GbOfhenBjzL1nPQWZenOZpBTOHB2CF+g4SU69wZmwyc3iepf1t+lx9hy3m
Pw6laJnD+QVrum9nHEDwVZ80zztrZeEQHxKkvmClHpyfCnJHmy6c/6Z4q+hv
bR2o+eYOCSD1nNoOJUDh03wIfoyC48fkP2Zw/qG25eGnHpk5rAcZxKvtYKC1
UvjCETOHgFvSNYlC2hDzFpk5NLAc7TcU13YA+7/NzEEcJK6k5XBD6JPj+Wlm
DukgcTYth5OHndZmvjNz8DnBbjs7VAviPylzhxcg92VrOfD6r5+SGoHgJ8fe
cWOWsIDzr4PMa7OAiFdowvlGxkBwWR3On9LeGnX5j6oDl5tqKdMvcweP/bWy
FsdVHJbc38c3RxnB13jLu89gpxmcDw6vKDOHMyDAowpxp6iZwwaQRK8qPD5N
QPZ9VnVgAIEDpg4vQPERq+bgB4rXyaYOjaDwCFd3+LrzVtffUFOHht9WBec0
1KHhY+rwNHHhNRN+NYc6kPgMqHyGKiS8lplCwrVJBZ4+noDU66vAwxccblwq
Dhv18hYz3kHwDwC9kT7FHM4Hm59h4TATBG6qQMLthQXcfrB5ZpYQ/55Rg6Sr
WEuI+6erw/nSIHcUaMD5zJxd8sl+mg79wSUq0/UtHY7v2tHLJqDlEA1KP3cs
HH68fX3AslkLkn4WWTjoK8p/ybmmBdGfa+Fw/mrYG/3fWvD40QelKxVoetsE
1e+sA3HvDwto+tKF8+csUt75R10PzgerP6zvYFsZscLUF+rfTAMo3xzOB8fX
BjM4PwWk3wOa32wNIOnhpik8f6HnZwDIbKDV
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl
k2omMe5HZgMAEs4CVw==
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJ7IGYCYg431VKmW9YOLJxd8sl5Wg5LX3jo/W+0cTC3
2Rs0LVHLYcoE/iqz0zYOG/TyFjPGaDmcAYE3Ng7TQeLaCP6U9taoy3s04fw5
i5R3/knXdMhf030744GNw2bzH4dSVmk49Hi9YjG5CDRP9UnzvLfqDs8TF14z
eW/toP5J5eUsTWkH+6ZHx2fstnZ44BrvOOuimAOP//opqTusHRR2LdiXuk7M
4fhhp7WZdtYOGiD1nWIQ8w5aOYhUTio5myLmcEO6JtFoqxVEPZ8ohG9q7fCm
LbfbSFrUQXzqFc6MTdYOaSCgJuogMy9O87SAjYOJMQiIOqTE3nFj9kDwwe6p
RvD31spapF+xges/AXKPny3c/P8g8N4Wbr/6W959Bj9t4e470LY8/JSRLdz9
S+7v45vz2MahVYFd9cwUMQd9rZXCF47YOHzZ93Fr+jd0vjicLww2TwLi3hM2
EPt3S8DD90D3viaTxZIQ95+2dVgPCu9cDThfFKSwRMPhw4aA7FnXofJvNRyu
Cn1yPP/M1sEMHP+aDjyg9PHKFuKvek1IOHy2hcd3jILjx+Q/tpB459GCqM+y
g4SrgZYDyNizs+wcnmdpf5tuqwVx/xUEP0J8+0UGNgc4v/63VcG5AAcHabB+
TTh/hwPQ4T/U4Hxw+KepOHzZeavr71F7iP0+Sg4zZgLBTjs4PxWkrAzBB8eH
pZ1D9f0ft4yzlSDp64Stw8pvLyvOHFCCxOc5W4fbmrJr/jMrOfQGl6hMt7dz
2Jtf83bmVEWIf2vsHPhjA+4blSvC/QPjPwGlZ30HVP51B0h4OqrA+XLLgRmt
Xh3OB+eX55oOq4HZhaHcAZq/tB2OgNJLk73DdpD/JbQh4XTX1iEd5C82bYj9
LdD0KawNoR9bw9Wj528Atna2+g==
"]]}, {{
Thickness[0.02853881278538813]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {52.56065753424658, 26.03675716064757},
ImageSize -> {35.04043835616439, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {36., 18.}, PlotRange -> {{0., 35.04}, {0., 17.36}},
AspectRatio -> Automatic}],
GraphicsBox[{
Thickness[0.02853881278538813],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQ/R8E7ks4/Hz7+oClsoqDSOWkkrNLpOD8MyDQIwPn
x6hGyJzbI+PgsebocoYfynD+3vyatzNTleB8+xLH2tNzONH4zA7uIH0zZBz6
I7r9GT8wOcyZCQQ/pRzA7tjP5LAj2Cri/3EJh+u8t8VSyxB8E2MQ+G8PcY+s
Q4t4LWvmMUz+GiEdvvR9cnC+7K4F+1LfyePkg6yfGakENx/Gh9m/8tvLijMO
inD3PXCNd5xVqAB3fzinWLtxvALcf6h8TjgfrO+iqEN6GhCIKTp82fdxa/o3
EQewfTcVHRhAYIGIg/K1R8EMb5Tg/NLD21xnzlWG8zfo5S1mtFFx0Pik8nLW
SxGHF1na36bPhcZbiqiD1wl229mh6g7V93/cMn4t4ZAQEqS+wFMDEo7qUg71
v60KzmVoOtwHuUdQHs4Hu5NfEc4Hm7dF2aGB5Wi/obm6w5xFyjv/HFeFhFOx
Cpy/AhQ+E5ThfHA62KrkMGMCf5VZt6rDHU3ZNf+DlRyeJC68ZqKvCg8PSHpR
hvNP7NrRy7ZBFZI+NBTg5oW8vfxxxkNZCN9dFeKPdGmHwFvSNYmfVBxg6XeD
6pPmeWcRfFh6BQDMMEWn
"], {{8.18594, 8.94844}, {8.18594,
9.11406}, {8.245310000000002, 9.245310000000002}, {
8.399999999999999, 9.44844}, {8.746879999999999, 9.88906}, {
9.23438, 10.1156}, {9.831249999999999, 10.1156}, {10.9516,
10.1156}, {11.667199999999998`, 9.32969}, {11.667199999999998`,
8.089060000000002}, {11.667199999999998`, 6.75469}, {10.8688,
5.76563}, {9.79531, 5.76563}, {9.139059999999999, 5.76563}, {
8.651560000000002, 5.9796900000000015`}, {8.18594,
6.468749999999999}, {8.18594, 8.94844}}}],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4kaWo/2G6YYOrQrsqmemiDrA+BqfVF7OWinm
4H2C3Xb2UQMHtzVHlzPMEHMoWNN9O6PBwEFh14J9qX1iDrz+66ekaiD4CbF3
3JhvaMP1P0lceM3kvLaDiTEQXBZx2GL+41DKKW0HkcpJJWdTRBxYOLvkk9dp
O6SnAcEzQYetDk2PjlvowPkS8+I0TxfoOLxpy+02ihZx+PH29QHLZh2HGNUI
mXMyog66ivJfcq7pOFTd/3HL2FvU4U3xVtHf2npw/n8QiDeA8/uDS1Sm6xs4
zAQBSREHfpD7OQwg9rkJO4j2eL1imaLvUA1Szy0Et+8MGLBA5EV0HK7z3hZL
3cYE9Ze2QzTIPTWMDn9A6h9rOeRMTSi0KP5lL7/8hYfefy2HgCeel0wnf7eX
BfHv60Dc9f+7/fmrYW/0fyP4pjZ7g6Yd1IXzI8S3X2SIM4Trh/FlNorNZ3rw
y1586hXOjCRDhwu/j12fF/nP/nDb8vBTRYYOB7v3NZksZoLGl6FDi3gtayYb
m8P0CfxVZtYI/t9vpQ/mCBo6+IPMD2aAhoehA4v+L65LPP/sP28IyJ613MCB
Fcz/aw8LHxhfV2ul8AUVXTgfPT0BAGL4DTg=
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYC4gjx7RcZzpk61P62KjiXoedgoLVS+MITBL9k
q+jv03zmDiI9Xq9YSvQdQJSJoLnDdoemR8cr9B1MjIFAGMH3OcFuO1sUwV9y
fx/fHGUEPyX2jhuzhrnDk8SF10z8kfgghzzQg/NNbfYGTVNUg/P/fit9MMdQ
Fe6eU4ed1mb+U3FY9sJD7/9EMweZeXGapz+oQGgBM4dfb18fsHyM4O8A2R+h
4nCgVtYivcTcIQ0MMPkvsrS/Te9F8EHaZqxG8MH23kPwz4CAjoWDGci9iSoO
daBw87BwmNLeGnU5RsVhJhgg+Mkg//ywgLsHxoe59z8I1FvA/dMNCm9GC7h/
udxUS5leIcIDxoeFF4wPtjbTAEKfNHe4LV2TaFRqAIkPY3OH60KfHM+rGTj0
BZeoTO83c/gBsv+wPsT/e00dnoLiR1/fAT19AAAKfvOh
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl
k2omMe5HZgMAEs4CVw==
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJ7IGYCYg431VKmW9YOLJxd8sl5Wg5LX3jo/W+0cTC3
2Rs0LVHLYcoE/iqz0zYOG/TyFjPGaDmcAYE3Ng7TQeLaCP6U9taoy3s04fw5
i5R3/knXdMhf030744GNw2bzH4dSVmk49Hi9YjG5CDRP9UnzvLfqDs8TF14z
eW/toP5J5eUsTWkH+6ZHx2fstnZ44BrvOOuimAOP//opqTusHRR2LdiXuk7M
4fhhp7WZdtYOGiD1nWIQ8w5aOYhUTio5myLmcEO6JtFoqxVEPZ8ohG9q7fCm
LbfbSFrUQXzqFc6MTdYOaSCgJuogMy9O87SAjYOJMQiIOqTE3nFj9kDwwe6p
RvD31spapF+xges/AXKPny3c/P8g8N4Wbr/6W959Bj9t4e470LY8/JSRLdz9
S+7v45vz2MahVYFd9cwUMQd9rZXCF47YOHzZ93Fr+jd0vjicLww2TwLi3hM2
EPt3S8DD90D3viaTxZIQ95+2dVgPCu9cDThfFKSwRMPhw4aA7FnXofJvNRyu
Cn1yPP/M1sEMHP+aDjyg9PHKFuKvek1IOHy2hcd3jILjx+Q/tpB459GCqM+y
g4SrgZYDyNizs+wcnmdpf5tuqwVx/xUEP0J8+0UGNgc4v/63VcG5AAcHabB+
TTh/hwPQ4T/U4Hxw+KepOHzZeavr71F7iP0+Sg4zZgLBTjs4PxWkrAzBB8eH
pZ1D9f0ft4yzlSDp64Stw8pvLyvOHFCCxOc5W4fbmrJr/jMrOfQGl6hMt7dz
2Jtf83bmVEWIf2vsHPhjA+4blSvC/QPjPwGlZ30HVP51B0h4OqrA+XLLgRmt
Xh3OB+eX55oOq4HZhaHcAZq/tB2OgNJLk73DdpD/JbQh4XTX1iEd5C82bYj9
LdD0KawNoR9bw9Wj528Atna2+g==
"]]}, {{
Thickness[0.02853881278538813]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {52.56065753424658, 26.23854545454546},
ImageSize -> {35.04043835616439, 17.49236363636364},
BaselinePosition -> Scaled[0.3029987538415624],
ImageSize -> {36., 18.}, PlotRange -> {{0., 35.04}, {0., 17.49}},
AspectRatio -> Automatic}],
GraphicsBox[{
Thickness[0.07062146892655367],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQnZ4GBM8+2v98+/qApbKKwzavDRZzfv6A88+AgA+D
A4z/svZx9vk1DA4ea44uZ/ihDOfvza95OzNVCc63L3GsPT2HE43P7HCge1+T
STKDQ39Etz/jByao+b/s/4PAfiYH763+x5PbPtpf570tllqG4JsYg8B/e4h6
JocW8VrWzGOY/D6QuRtY4PzC5SUb/vGz4+RD9As4oJov4ACz/waINuNxgLkP
Ej4ccPdD7OOA+w+VzwnnP3CNd5x1URTi3x5uhy/7Pm5N/ybiMGMmCPA5MIDA
AhGIukJBOL9dgV31zBUhVHlBEQeNTyovZ70UcWgDy4s4iFROKjmbIgqhXaQc
qu//uGX8WsLhLMg+HRmHHcFWEf/VpRxqQOLZcg73webIw/nhnGLtxvyKcD7Y
nC3KDttB+tilHOYsUt7557gqxB0NInD+m7bcbqPdQnC+MEgfi6DDjAn8VWbd
qg7Bby9/nOEo4PAkceE1E31VeHhA0osynH9i145etg2qDgFPPC+ZXmaHmweO
h29MEL67qoMHKD2w/bEPvCVdk/hJxQGWfjeoPmmedxbBh6VXAFUATEo=
"], {{
3.08594, 8.94844}, {3.08594, 9.11406}, {3.14531,
9.245310000000002}, {3.3000000000000003`, 9.44844}, {
3.6468799999999995`, 9.88906}, {4.134379999999999, 10.1156}, {
4.731249999999999, 10.1156}, {5.851559999999999, 10.1156}, {
6.56719, 9.32969}, {6.56719, 8.089060000000002}, {6.56719,
6.75469}, {5.768750000000001, 5.76563}, {4.695309999999999,
5.76563}, {4.039059999999999, 5.76563}, {3.5515600000000003`,
5.9796900000000015`}, {3.08594, 6.468749999999999}, {3.08594,
8.94844}}}],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGINIGZigIINCg5S8+I0T19QcYDxdzg0PToeoeLwNHHh
NRN+FYc0MMDk+5xgt529FcHfpJe3mDFGFSe/keVov+F1Dbj561WfNM87q+Ew
YyYQ7ETw5yxS3vnnORpfXRXO97s4MeZfMoIfcEu6JnGSKtz8lNg7bsw/VB18
QeoOqzk8ihDffvGBqsOxXTt62T6oQtx1R9VhJhgoOSSEBKkvOKnqYGazN2ja
Q1UHA62VwhdcNB1MQfyF6g7/QUBe2+FV8VbR39oaDicOO63NlNOB87eD/FOh
C+dPmcBfZdatD7cfbE2mAcSflSpwfvnhba4zdZXh/Or7P24Zeys5OAKNm2Ft
4PBh0XqFsxmKDkdB7p6g7+A8oVkoTUrRYQPI/TK6EHfNR/CVrz0KZrij6CAB
is8Pug7poGBXU3LYApL/o+dwBgyUHI6DzCvQh/iXUQXOZ+Hskk/uU4Xzwcp7
1Bx0FOW/5JTpwflgde904HzxHq9XLFO0HbaY/ziUcgqoHxQ+dloOK7+9rDhz
QNlBFCQvouGAnt4AakwW/w==
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4vNXw97oz9ZwaFVgVz0zRdQBxtf4pPJy1kox
h5TYO27MEeoObmuOLmeYIeawQfVJ87yzag4KuxbsS+0Tc3iRpf1tuiyCL1w5
qeTsEkW4fuVrj4IZ5ig6mBgDwWURB/7YgPtG0xUdREDqUkQcqu//uGVcreiQ
ngYEzwQd9uTXvJ3JqgTnlx/e5jrTVsnhTVtut1G0iMN/EPBXcohRjZA5JyPq
ADLWeLGSQxXIHG9Rhw+L1iuc/aEM558BgR41OP9V8VbR39pqDjNBQFIE4v67
qhD73IQdHkWIb7+YoApxF7cQ3D6wOWdYHFZ+e1lx5oGiw3Xe22Kp25gg8vMV
HaJB7qlhdGAAgQ0KDjlTEwotin/Zg/1/RsEh4InnJdPJ3yH8NUoQff+/27uD
wvUEgr9WSIcvvU8Zzq/9bVVwrkMDrh/Gl9koNp/pwS/7v99KH8yZqOFw4fex
6/Mi/9kH3pKuSdyk4XCwe1+TyWImh/Xg+NJwaBGvZc1kY3P49fb1AUtnBP/Y
rh29bB/UHfxB5gczQMND3YFF/xfXJZ5/9pv08hYzyqg7sIL5f+1h4QPjP3CN
d5z1UQnOR09PAFTGHcA=
"]]}, {{
Thickness[0.07062146892655367]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {21.23816189290162, 26.03675716064757},
ImageSize -> {14.158774595267746`, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {15., 18.}, PlotRange -> {{0., 14.16}, {0., 17.36}},
AspectRatio -> Automatic}]},
"PointLegend",
DisplayFunction->(FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]], {
InsetBox[
GraphicsBox[{
DiskBox[{0, 0},
Scaled[0.001]]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 10},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451,
0.196078431372549]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451,
0.196078431372549]], {
InsetBox[
GraphicsBox[{
DiskBox[{0, 0},
Scaled[0.001]]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451,
0.196078431372549]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 10},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]], {
InsetBox[
GraphicsBox[{
DiskBox[{0, 0},
Scaled[0.001]]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 10},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]], {
InsetBox[
GraphicsBox[{
DiskBox[{0, 0},
Scaled[0.001]]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
RGBColor[
0.33333333333333337`, 0, 0.33333333333333337`]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 10},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
Editable->True,
InterpretationFunction:>(RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.004583333333333334`", "]"}],
",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[1., 0., 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6666666666666667, 0., 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"1.`", ",", "0.`", ",", "0.`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[1., 0., 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[1., 0., 0.], Editable -> False, Selectable ->
False]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.004583333333333334`", "]"}],
",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.130718954248366, 0.5359477124183007, 0.130718954248366],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{
"0.196078431372549`", ",", "0.803921568627451`", ",",
"0.196078431372549`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549],
Editable -> False, Selectable -> False]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.004583333333333334`", "]"}],
",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0., 0., 1.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0., 0., 0.6666666666666667],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.`", ",", "0.`", ",", "1.`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0., 0., 1.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0., 0., 1.], Editable -> False, Selectable ->
False]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.004583333333333334`", "]"}],
",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.22222222222222227`, 0., 0.22222222222222227`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{
"0.33333333333333337`", ",", "0", ",",
"0.33333333333333337`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`],
Editable -> False, Selectable -> False]}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
DiskBox[{0, 0},
Scaled[0.001]]}], ",", "Automatic"}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
DiskBox[{0, 0},
Scaled[0.001]]}], ",", "Automatic"}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
DiskBox[{0, 0},
Scaled[0.001]]}], ",", "Automatic"}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
DiskBox[{0, 0},
Scaled[0.001]]}], ",", "Automatic"}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True", ",", "True"}],
"}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )],
Scaled[{0.99, 0.99}], ImageScaled[{1, 1}],
BaseStyle->{FontSize -> Larger},
FormatType->StandardForm]},
AspectRatio->1,
Axes->{True, True},
AxesLabel->{
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm],
FormBox[
GraphicsBox[{
Thickness[0.02963841138114997],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIlIIaxWZDYzATYDFA+A4VqSNVLqpmkupNUe4nRS4ld
AKjmAn0=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJfIGYC4hkzQYDHYc4i5Z1/nms6fN33cWv6NX6H7Q5N
j45LaDmApSMFHWTmxWmeNoDyfwrB+Qq7FuxLfScO5z9wjXectVHK4XXxVtHf
3Jpwfguv//oprOpwvmiP1yuWKyoOHmuOLmewEIeIFyo79Ed0+zNuEITzYfbD
+NX3f9wyfi0A558BAR8BiDkVyg7ClZNKzrIIOKwV0uFL11N2UP+k8nJWp4BD
OKdYu/F9JQd5kHvXCTjwxwbcNzqu5BD89vLHGY6CDu5g/UoQ894IOqSnAYGY
EsQeQSGH8sPbXGf+VYSYWyfkcEdTds3/zYoOIiD7XKQdQkDmLBSHmN8n7cAA
Ag7iEHNvSEP03RNz+A8C8jIOGmB3iTl8AYV3mYzDm7bcbiNpMYc1IHX7ZCDu
WCPqAI4fS1lIOPOJQtXLO5gYg4Cow32Q+z4i+MrXHgUz2CjA+d02nrvSinDz
wdRnRbj5MH6MaoTMuRoxiD8MFKH+E4P445yCQw04HqD8OgVIPO0Ud6gCiWuL
QdzxRgni3msSDiu/vaw446AMsVdYChJ+zcoOKaBwXibtIAVKPwIqDgEgexTl
HAJvSdckflKB+/fn29cHLJXV4HxwempVh/OfJC68ZnJeEx6+kPSrDZE3E4Pz
wfYXi8L5YP818EHimw2Tv/zW8seGztxwvl2JY+1pGQ6cfK+t/seT277aw8yH
8c1t9gZNS9RyuPL72PV5kX/tj+/a0csWoOVQuLxkwz9+ZofnWdrfpttqQdMF
M9Q8BH+z+Y9DKVoacD4k/KXg/B3BVhH/1cXh5oG0px0Tg9sHiz9IvH+xh8Uv
jA+L/5ypCYUWxf/twfrVROHmwdJLs3gtayYbB5y/1WuDxZyfPHB+qwK76hkT
AQeYfkh+FIanLxgfZj843e8WgKcv3yeel0yFeeHuh5VPMP/B+DD/o5dfANnI
+aI=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, {CompressedData["
1:eJxTTMoPSmViYGDQAGIQPXUCf5VZto6D+ieVl7M6JRw26OUtZpTRcTjYva/J
hFnSISP/Q+vJKVoOJsYgIO5Q/9uq4ByHlkMaCBwTc5CYeoUzg0kTzvc5wW47
u1Qdzn9VvFX0t7aaw45gq4j/6hIOjyLEt19sUHVYL6TDl14n5bBB9UnzPF5V
h/uu8Y6zBGUg5j1ScUgFGyDroKMo/yXnmorD3vyatzNFFRz+fit9MCdQA84H
y3/ThPOntLdGXf6j5eC+5uhyBg0FB3GQeYt0HJwnNAulZSk4zFmkvPPPch2H
/yCwX8GBhbNLPnmdjgN/bMB9o+8I/spvLyvOOCjC+WtB7v2n7LDF/MehlFda
EHOOqzrILX/hoWevAee/yNL+Nj1WHc4Huy8M6H+HpkfHK1Qh7otRhYTPMxUH
D5A7M5QdBED2H1eG2DNPyeEMCPgowfkilZNKzi6Rh/MPgOJnsQzEX7+UHHoi
uv0ZBaQcwjnF2o3nKzswgICDhIMRKNomqzjMBIGdovD4AJtjJwKJr6/qcH5y
7B035hsacP4MsD5NiHkLRBxEerxesWzRcohRjZA5VyPqsB3krwhtaHoRg/Bv
aDuEvL38ccZCYPqYF6d5+oO2Q839H7eMX4s5oKc3AEkxAO8=
"], CompressedData["
1:eJxTTMoPSmViYGAQBmIQ/SRx4TWTfi0H/tiA+0bfFRz+fit9MCdQ06H6/o9b
xq8VHOSWv/DQ26/hIFw5qeTsEwWHX29fH7B8rA7nbzH/cSjllBqc/6p4q+hv
bTW4fompVzgzHqk4zAQBTkU4333N0eUMGkoOF66GvdH/reKwVkiHL32dEsQ8
L1WH8sPbXGf6KkPNV4Xoj1RxkJoXp3n6gprDqcNOazP/qTj4nGC3nf1VHc6H
uRfGf56l/W16rKYD2J/rVRzegNx3WhNiLpeKg/8t6ZrEIC2Hld9eVpxxUHaY
0t4adblGy+E/CPQrOaCHDwDXJJMI
"]}],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJ5IGYC4ieJC6+Z/DdyONi9r8lkMZMDjP+y9nH2+TcI
vvRGsflMCswOM0HgpJFD4fKSDf/OszjYV0asMLU1dBCunFRydomAQ3LsHTfm
GwYO/8FAEs53ntAslHZKAc7f4dD06LiEqkPBmu7bGQGGDnMWKe/8k67p8HXn
ra6/V40g+ut14Pa/Kd4q+vs0gr8VpP8Ggv8CJP8awU8B2SOh63C4bXn4qU9G
DlMn8FeZaes69AeXqEy/j+CD7dmP4IPVLzJ02KKXt5ixRtvh84aA7FnPDRwa
WY72G4ZrOHwBuc/VwOHUYae1mfNUIfrlDRzWCunwpd9TgvNh/oXx3dccXc6w
Q9bhIMh8JwNIOO4Ud+jxesVi8tHAIfjt5Y8zFIUg7ltv6OD/xPOSqTAH3H2Q
+GGEux/Gh/kPxof5vz+i25/xA4IPi18AYpP1dg==
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdlAlIU3Ecx2dKdlpoczNX2pbp28IOt3fR8S06pCxDO1Ytw3KugyzIqIYG
JRlpqZWllVhmoEFRQZdRKzqwQzuwIsSSIui0MkQCS3v/91//R/3g8fjs7f/9
3f8RK9anuAN1Ol2A8ixUnl7Kk3QveOLR5zx6iBWbEfMur7JRFhlP3OqsdezV
ePKOt/Xln0UcJrbbjMWGy0912yRsvn1p+uFcM96vsXWWNUqYefpujW6LGd/P
zVt7JFjGtJK80MwCC8pKBnn5LglDtu7Pbrxgwdyn+1zdgRIaiFVY6DtJRG3n
xy0NJRZkX9R3PUwTGDuJv6/8v5wl4MCunUuaJnDYHnS3eNxmAfduTz2zupLD
BxJProB36VUv7I85f9wCzaeHQ1zbQN/YCJH6HWCl+XtFzGuOzEkPtWJp9JT2
lS0iLkNJ3GhFUWr2yLIoibF6rkXjPjNiNvVaIkOYcD3l0BuOfnfJcGcqls/h
pSI7fpOMxBu5w0RPLOpJnD6N1XrVyzhLAmmLw2RS/1cyTDUfEuOjrLQe3TI8
RK+3jZ23JygWZsOd/JpFD1bI/nhsOBefVR0wWmP1u1njPbM+BdkDNM5Y1jIj
8IrE9PqTfGb9rY8N94m/eJH5vyD8vJXhFRifJ/5cGqv1/MQzHph8ttRdrrGq
+8vB/J1s9YVUbHSweFT9NQ4E9S2IWpllpX0cxNP6plupnpOnebqs6Efi9fJ0
zmwal5L5uMYxrjhhqfvl4fzzw2Os9VTYk5NxeEDyS1P01PrHooX0a4E/viYD
tnXJGx4lOtDha7/o6QzHTdK2kQ7Mb2tqL68Kp3qVdnhbfzYnzA6n/SqyI/rq
cZ87RE/rM8CBL/nrCsdH6ll+pByZo/T4Qfofy1N/CXoaV4bGYwh3iExP/TlM
Yqzu4ySNVf0Cifl7T+r3TWL+1HqnykxfXYvlMnJI/J/D0VHXXPDbLeNM6OgQ
z2sDm1+6pxEwVaZxD0tk3Cz07bBXR9Lzx2T6bjXR+2COxuo5k0z3P2gond9u
//4nGel8vpXontYZUEz27ZgEV4zT9CjHgFvqfP/9v4HeH3kiipyFyQGDDXQ+
WgXGtcra9KRrrPZjuOCvhwEust9JPI0nQ+Od0cExDaUa64jBSPWTeaSq/TbC
ePBZ31UpvF8/Av/fp38AMKhU+w==
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJ5IGYCYol5cZqnE+wdnCc0C6WdUnCA8d8vWq9wdoeS
w9Ms7W/Tbe0dGliO9htuV3XoDy5Rmd5v5/Dr7esDls0aDj1er1hMLto6PElc
eM2kXxui/4CNw9QJ/FVm2roQ+YUIfoT49osMfQj+n2+lD+Y02kBoQQT/RfFW
0d+vdeD8rQ5Nj47fQPDfgORP60Dct9fGYcZMIIjUcdhfK2uR/sXWIT0NCJ5p
OtT+tio4t8LOQVdR/kvON1U4H+ZfGD9aNULmnIykw5L7+/jmGNtB9KcJOKg+
aZ53dpWNQ+Hykg3//Fng9ktvFJvPpMAM57+sfZx9/g0TnH+we1+TyWIEX/2T
ystZnExw/0PkGeHhA+PDwg/GB6u/ZwuxL4ED4t4Zdg4g786sFHJQAbnPyt7h
DAi8EYfHX839H7eMs2Ud0OMXAI2x5G0=
"]]}, {
Thickness[0.02963841138114997]}, StripOnInput -> False]}, {
ImageSize -> {50.61767372353674, 24.508064757160646`},
ImageSize -> {33.74511581569116, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {34., 17.}, PlotRange -> {{0., 33.74}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->Directive[
Thickness[Large], 16],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->Large,
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->All,
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}],
InterpretTemplate[Legended[
Graphics[{{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]],
Line[CompressedData["
1:eJw11ws41XcYB/BzP8c5zv0cs9pIlxWzEa2tbdavWuuGkK3kUlYpTKlWE9ZF
WDO3onKrrJJIlJYo9f7SjRaVyKU2t3IJJbkT47+33+N5PP/n/L3nfb+f9/yf
w+jHTQ7rOCwW6xM2izX2+/8joor1cefHz9Ajbfa5BiGtQloQm23x0liPVJzw
tRJXCOm5pa+WUkM9cqN7mktUgZD+8ny36IBWj2QuqPPXZArpEt/DzmskeiQh
fuwI6an7qxfOYOuRkNaxgkKakiwq4fVqyebRaid8hXTSzNzWsjYtGS02WlFI
LfYfSj5ZryULx8otENLCFYWtWyu1xJI5QjqxdNO9uSVaYsgUFNLBiow5ypta
ImYaFNLg0qTFNXla0jPWXreAfpi1sjEjS0uYcnUCOrViWO2foiXF98aOgN6Y
eqz0u0QtGZvWPldAk5ttjdT7teTk2LgnBHT8DYORf0O1hGkvSkDZeR94pwdq
ScBYOX8BFY13XLtti5Z4MEdAS3YVt8zeoCUOTEEBDcmLHNBx0xJmXCsBfXIv
4eCjZVpizAwsoK6Nr/OSFmkJU04joM/s9nusm60l/3sI6EOvrQmffKZFDz5V
JUU5dpto0YNPWUuqY/InaAnTXgGfNjz8dvlePS168GnF1qtHFulq0YNPs+zN
POQcLXrwqZ9bUFZZrwY9+FTumOgX365BDz51SnWmrg0a9ODTmYF/hhhVadCD
T8PiF9x5VqJBDz7NdJkSnHpTgx58Ov6s7IrnZQ168OjeV4+8Pj6nQQ8efdQ3
50BbigY9eLSXNdH8bKIGPXg06eCseT77NejBo9bhi++a/qZBj9HXu1Q3WwM1
6MGjYrGNWfoWDXrwaMaULPGGDRr04NEtWa2OU9w06MGjy+XndeuXadCDR2cd
TTM/ukiDHjwacCgAnGZr0INHCa/okuYzDXpwaeRFM/37Jhr04FIDk0U1+yZo
0INL84PSJXP1NOjBpft9nyUOSDTowaXcyXsjs9ka9ODS5V/J6j171YQZ15dL
WedFBye0q9GDS/cWdaQ8rlejB5d+xCbq8Eo1enCpX7/XE1KiRg8uFXvUDXXd
UKMHl87rl24/nadGDw5NtfthvnOWGj04tLp2nKc0RY0eHDquLqfmWoIaPTj0
zMzdqZui1ejBodtW3blmGKpGDw6961Ix6X6AGj041OBId9mvm9XowaEmje4P
Pl6vRg8Ozbf6QVPloibfMA1yaE+p4FiIgxo9OHR3458bpy9UoweHns5euuep
lRo9OLTFwaI81FKNHmwqO7Nug7mxGj3Y9InNyBdVBmr0YNMpa2Tz92jU6MGm
NCIxbJpYjR5s6v3gtPD+iAo92LRky/TLP3er0INNw58bJ7/fqkIPNn2bsuvS
1VoVerCps9H7w6sfq9CDTR0Ol2/m3lOhB5tOHwpXpFxXoQebflctr5x/SYUe
LFprMfX28wwVerBogVtsZfBxFXqwaEy7QjopToUeLOoRYutOI1TowaJNowm6
7FWhB4vaSM+s6vNToQeL3vqNx4/ZqEIPFk2tiqGma1XowaJnNHVRt5xU6MGi
/0Z4+7ouVaEHixrnpq3q+laFHiw6aVjkHPalCj1YtDmhfZWhuQrzH4HILdne
F6aoMO8R+KXldMB349/lOwIzr+hHVCre5TkCpg9mH/EUvMtvBJpUDmn9g0rM
awQsv92Rue+1EvMZhp0lZWl6TUrMYxiC4nbEnXiqxPmH4ebjzb+YlSpx3mFY
/TR/3uU7Svz8D0P+C9uBeVeVOM8w7GYp4+5lKwnTXutbcE+tfd/xtBL35y3o
XI8KrD6iJMy6xL8F1bJn+atilPj8fAv59nEVDfuUuA9vodHTqchjpxL930JC
UWFk81Yleg9BeZP/ZE9PJfoOgdGS3tBmNyV6DsFJ29xsD0cl+g3B3UaTkw2L
lOg1BF1rMpevmq1EnyHYOiO2qGqGEj2GYGKKYY+DiRI9BiEpOaTqrqESPQbB
3adt0xytEj0GIdbL+2KOWIkeg/D53+JTJiwlegzCUrsbVke6FegxCBvYO/1k
rQr0GICWBrXDzloFegxA9jmb223lCvQYgHX7Gh44/a1AjwGYeCrQ5xZVoMcA
gCLrsFmOAj0GYMfikcVxZxTo0Q+lwzVBI8kK9OgHedb5L9cdUqBHP/BcC3yK
/lCgRz8MWNq8Z7pHgR790G7mbxGxXYEe/bD8huvlNm8FevRBin9f2mJ3BXr0
gePRmUOnflCgRx/cLX11hm2tQI8+SMtpvLByjgI9+qBiZ6Ese6YCPfqgPdr0
ktBUgR59sHR8bKqzkQI9esHzjGf1WT0FevTCreusxcMSBXr0gsHagx3WbAV6
9ELwysPRlu1y9OgF64tuh4oq5OjRC21ZHo3OBXL06IHo6B9/fpEhR48e0BtX
arntsBw9ekD/IEt/aI8cPXrgZhlXs+snOXr0wEczr4wb/kGOHj3glVhisGOO
HD26Ya37WVXHx3L06IZGu4jmH/Xk6NENpmGeBx6y5Pj87IZpP7E5X7fK0KMb
ordVTDteLkOPbkgyMu/jUhl6dEHBNYW7e7oMPbogg3zjeDlWhh5dYKv7dYFs
lww9uiD92uJEN08ZenRB5EuP+2nLZOjRBaVNC2w7rGTo0QW57m5Ci2ky9HgD
T80etWxUydDjDeS2hTw7NSRFjzegOiZprGqUoscbKHM6+1T4UIoebyC93CPH
/IoUPd5AGP/5ascUKXp0gjYluGhLlBQ9OiH1ut0/f+yQokcnlFqxfz+2Rooe
nRBu25971kaKHp3Q82a+U87nUvTohGPeSd/nGUnR4zUUH1kRnyORosdrKA0J
kGd266LHaxgXm3b8WI0ueryGL3SNrf4o0kWP1+DiWlvoe0EXPV6DbLujmd0R
XfTogEXqVCfj33TRowMmSg6aD/nqokcHuMT8nFS4Uhc9OsBtr2VI5Le66NEB
XjHfl9p8qoseHTD7cKeXQF8XPTrAL+evz3LZuiSDyf8VHP3zsf6aVgnm/Qo2
3jIaEJRLiIjJ9xVMDmi7duKaBPN8CT5f6FvPOi0hG5j8XkLiVXnonf0SzOsl
2M67ZWcbICE3mXza4fbpc1HFayWYRzvsPV48Zb6thExg5m+HsBfx3X99LiHM
uPfa4OgWdd0HRhISyBRsg1PxOUWBYglh4pnWBo/XBkaXvRGTSmafWmHn1Urt
5H/EJPh/ICj4K3eW920xmcHsSyucL979JC1LTGqZ/XgBHUsl1TVxYhLNAL6A
28dPqaVBYvI14/8CrC6oPaZ7i/H7Tgv4rQvOtHYUkzjGtwVy1AlFblZi9GwB
3gdrY9Z/JCZdTIPNsG+nW5OHXIxezZAe4Zvs0qdD7JgAm8HuQmvcwjod9GgG
4yVh6SZ3ddCjCT49tDGTc0EHPZpAVWj064NEHfRoArVFzMuYYB30aASriPeq
rX10yFrGoxHGeWzQG/xeBz0awTfzxI6j3+igx3NYsH1J1cypOujxHBrvzxff
lOugx3M4Wf+0dn6fCD2ewYdmYJ5fK0KPZ7BAh1X8UZEIPZ5B+hL9fSHnRejR
AKULmiwr40Xo0QARfRf+NAgSoUcDWPl/enyFlwg96mFu8WZ+qIMIPerBpZmf
eOpLEXrUw7BB/fTLE0XoUQf5dZviqFiEHnVg/09EUl6nED3qoGZnjCSlWoge
tTC33jE7qECIHrXgN32qq0O6ED1qIcv/eYX6gBA9Rq+5Pe23dwjJCib/Gthu
ZOfl7S7EvP8F34Sg99iLhETB5PsvXEm4DL+ZCzHPf8B6zt+mI+8JSSGT31PI
Lv5s2voRAeb1FOZsswiARgHZx+TzBPqb8l4KSwSYRzX4hkctIRcF5P8HXDVw
/K1XbkgS4LxVsOxL74ZdewWkjylYCW4rHLNCvQQ4TyUM3fIODbQXkHPMPlWM
5mc43f0LAe5PBZx82PXLDEMBfn4fg59l0qQevoBQZj/KwSdseCiljY/7UA7l
CvvieY/4xI/xL4Pogalu9/P46P0IHIPCdixM5hNzxvcROPFELzJD+ehZCu+b
lvhzfPikmfF7CFtm0d65y/jo9RA63KM+8Z3FJ8lMgA8gxa6s5XdDPno8gNI7
xoNRfD45x+RfAjnrFk4PauVh3sVwLHyS6+qHPDKByfcetG0U2ptc4mGed6H6
q9zamiQeiWbyK4KvvA/U7Q7iYV6F4Dwpw0S6gUcUTD53wPJCb2ywDQ/zuAUO
49YPNlrwyG5m/pugjFV8NUOfh/PegLgPHS1/esslHcx812FuM/t2ZD0X56Eg
z9hTkXiHSyjT/zU4UjhgG5PBxX7zIWHSr3rb9o/ez/SXB8PnTMbP2c4lLKaf
S2AW6W7Tu5KL7/8XvIpvTD48m0tqmfc7D30+CunEye/qZ8K5Y53hh0Sj9zP1
0mCJye+G3W0c/PuT4NfQcMfq4eg1c/9RuFhlH+F78d3rseDqHx4QEc8hLOY6
GJKd64/H/sp59/8HSz/UffSHQ/4DZE/cFg==
"]]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]],
Line[CompressedData["
1:eJw12Ad4zVcUAPC3n5W8vd+z91Y7gqu1gqpVWxGzFFGa2jNolJhFjQiC2lJB
aDk3pMSIHYmINFsSIXuv3nud/j/fly9fnvvuOb97zz3338h70ahZMolE0k4q
kfCfn59a1G+6dfN0a32SPTKs/qYPajp8TUiqpW59EnPCp3edGDWtd2jIV0+q
XORuUcvJO+6o6cvrKcf8cl3k4qCkFcaLanrw1SpJrxQXOfg7f9TUO880NS/a
RTZ94AOqaTP3S7dOR7rIYjbaCR81zWg92PndXy7CBmMjqullMY6LDOY/Bqmp
z8wVbx4GuUhn8ahp9/WGHuv3uEgDMaCaVh45v6/7ZhepIyaopvTmgKKPy1yk
mE+vSEX9YhJGB893ETFckooOKfz5z4nfuUjUY/6oqEHHnpEuwqMdGaai0e3O
Lrr/lYsE83BPqGgQC3d1NxcR09uhot5z4tt2aeUiK/lwK1S0qd9Pv2Y5XGS2
eFQ0I8g9K8jdRUaJAVX0wq3Tg8dJXUSE21tFl8aR026FTtJKBKyiHiVvlBHp
TiKGM6popWEJi9hJPnuoaETHenc7Pnaih5L6f32y0fvbTvRQ0mHz+qw7EuIk
Ynp3lFSzhQfsRA8lfc0/t9+JHkoaSGsfpv5O9FBS73fHy31XOdFDSduW95rQ
bpETPZQ03Rx9PWW6Ez2U9GLnheaDY5zooaRLR6h/GjHIiR5K6rkg6KXKw4ke
Slrl3/OLW22d6KGgd0692LmkgRM9FHTz3fk5rfRO9FDQ4YkK9s+JHgpqrGLA
JQ70UNBoW/e6X2c50ENBA7s9+17+zoEeCuo9+vvIG08d6KGgzX1kLXzuONBD
QbO2HdrU/KoDPRT00pkuqfGnHeihoEvvRX2556ADPRS0R8rsY17bHeihoNU1
7FnrQA85jXD+/t21Hx3oIad+LNwfZjnQQ06HjX3kaDLegR5yauS8QxzoIafR
O6pid/R2oIecHmbLeWBHBxHh+sjp9Acd9lU2dqCHnLZIjyz80+RADznNlrGI
aznQQ06vNKgIaVBhRw85Xeq5V/v6ox095NST6W5LtKOHjFb/xAJ+aUcPGY3c
PbVt2T929JDRrZdKt14Ks6OHjI58vCtz1jk7esioOZNt4EA7eshonDKCCdvR
Q0aDGk9R+m+0o4eMzuhbPKOvrx09ZLQ1n8ZcO+kjJiijuctaNjo/yY4eMhry
W/ha7+F29JBR3z8nJlj72dFDRj2eFng+7WxHDymVZXNgO3pI6f1azct72ezo
IaUBzWB8fl07ekjpiC/HX/+j2oYeUmqeyguWDT2kNG7l1qWmVBt6SGnQgSYv
H722oYeUzrz6d6cND2zoIaWtX3y7s8ffNvSQ0rxP7LloQw8pDa37y9cnj9nQ
Q0pX8HD32tBDQsmAm3X0W2zoIaFSvqCX29BDQiPXZN9f84MNPSR0B4u261Qb
ekjoaPEHG3pIqJVt32P9beghoQl5LOLuNvSQ0OO8XLW2oYeEzmqzsSbCaUMP
CW3DyvNKjQ09JDSXByyzoYeEXlk/3JFRaEUPCV0V+H554Hsr5r8G+vy1LnZM
nBXzXQOKWLaBo6yY3xpgq/m3cLBiPmtgm24Yq9BWzF8NjG6fNqr9SSvmqwas
Q9mBtN+K+amG+DkW7aGtVsxHNRz1u7xw5Gorxl8Nc495Ral9rBhvNbS/ndzm
trcV9381fOLA31oxnmoILTGyFW0lYnofqmAZ/4OHFddPFZBOg07tb2clYrn8
XgW8Wg1vaMX6WQUP5y2foTBYcT1UwY4t+js3lVb0r4JRwecaLi61oHclOML7
r23xwYK+lRD/jj8W9KyE4HJfz73PLOhXCXNZuEPuWtCrEtp3OVMmuWZBn0rI
Ewvagh6VELbg7bUFhyzoUQHL2HJuGmBBjwrof9ptadw6C3pUgIJv3yUW9KiA
yMS+nQbNtqBHBexi5apqvAU9KmCM/cdPV4Za0KMc7Kw8z+tjQY9ySBzNAu5k
QY9yOMmn0cSCHuUwb/vrudvNFvQoh7b8+K1tQY9yKLjHNnCFGT3KIJS1G5c/
mdGjDHi3MTvJjB5l8KXrVT/XKzN6lIHagx1I98zoUQZRY1U1/jfM6FEGu5Yc
nULOm9GjFMaw3VscaEaPUnBeeG6/sMuMHqWQ9IAB+5nRoxSOp8tjbT+b0aMU
ZsqPsBPJjB6l0L5ht982TzajRynke7KC9Y0ZPUrg2oS5owr6mdGjBNb4SkPO
dDGjRwmww0gzrYUZPUpAfZkdwHYzepTAEz7Nemb0KIGATL6DTehRDDzcnvkm
9CiG+k0OZOSkmtCjGJIY76kYE3oUQ/DkhycnPzShRzHM58v5lgk9iqHjvkrv
B5dM6FEExWz7rj1uQo8iCHvKIzahRxGsYuUqe4sJ62cRDKw9/d3xFSb0KAJe
nicsMKFHETwSAZvQoxB28uNolAk9CmHsqn/GrRpgQo9CcLHj94seJvQohOSr
fAOb0KMQ+Go+6jKhRyEsyGn14lutCT0KgbdX9eQm9CiAz99rRI8CuMHbyQwj
ehTAOu+AYR3eGtGjANjuPZcWZUSPAqh7mDdYRvQogMdhDPiKET3yYW90/r1a
p4zokQ8T839tBgeM6JEPTk0z1lEa0SMfEtuwgrXGiB75cG7wuH7JPkb0yId5
s3KPHphhRI886LzBv3r4WCN65EFpIDuAvYzokQd/8aeXET3yYGMs28HtjeiR
B4NZuC0bGdEjD9hhFJNgMKJHLjznvCojeuTCnqE39g4tM6BHLkxky1mabUCP
XGjMx0kwoEcu8O278LkBPXLhzG2XplmEAT1ywYeVq7fXDOS8yH8OdCj95vGu
MwbMdw6I8nzYQGqJ/OYAO339qwMMmM9PsIEdR6HrDWSuyN8n8JofOnD+UgPm
6xPw47fRHAOJEPn5CFHBbANPMGA+PsJe1m4EDDOQhiL+jzA5wRrev6+BiHAf
Z0N93l51MpBVYsBsSLewA6mpgYj0tMyGs6ydnGMxkFixnj6Az8jVverXMRC/
z0DA2+dXlXrSRayXD1DGG6wcPUkU6yML+HWhX7Ke7BSAWbAhIulqySs98RT+
WeDF03Jfj/1OJtStZheGm3pyQPhmwis7L1h69MwE3k0+P6onhWKCGTBpzL8B
W3br0SsDGi5e9rH3Jj0ZIRKYAenb+QGsR48MOH+WPfP06PEeFrDqPH2KHj3e
Qzce7gg9eryHMokvayj16JEOnNevq57MFB7psMHjj40eLfXokQ5DWLS5dj16
pEE9cUHSo0ca8O07RaJHjzQ4cKFetaFAhx6pMImXqzQdeqRCo/e849ChRyqk
sfLc/ZEOPVLgPA/4lg49UmAh/57LOvRIga4TT7B/OvRIhhJ2/Gr36dAjGege
toF/0aFHMmzi7cZKHXokwdAoXqF16JEEGtZeZU3ToUcSvFCxA2m0Dj0SYT9r
J8cO1KFHIkwmP7R266lDj0Rowtrnu2106JEIvLtaXl9Hxov8/wvnOLBOh/lO
AJ8rz9iK1hGtyG8CdGHXoyPFWsznO6jkF4ZMLYkU+YsHXq1qx2sxX/GwuXnX
BvSJlvwi8vMWhrLrr2+4FvMRB5pp7AIcqiWfC1wcRPMD+JQW430D+8VPLSkV
A8bCtGtflH6zTYvxxEJTFq5qrZZ8vufHQHYOaygXa3H9xADnXTJTi/v3NSxu
tf/HVuO0hIr1EQ0ebDn/66XF9RANVd7sguSpJaJPW/EK7vDt20GL3i9h8+GK
bFljLekofF/CMFaubhi16PkCNK/ZhV+tJRnC7zmcTeMbQINez6ETy0bYGw0J
Egl8BuHjecHWoMczGLK7qdfuYA25LPL/BJ4+4ieuBvMdBRMZ3/xFGtJQ5Pcx
ZIqGWIP5fAg+bPsN8NCQnSJvD6AkhF/gNJivSBDrVKkhWpGf++DOj4csd8zH
P3CAHX+lT93JOhF/BDRgx/vMq+4Y7104x6rB84PuJFfEFw49eXu2zh3joXCH
H2Cz2Hhi/rdhIH/fM9Qd5/s3iPc7HdnnxfxugLgemdyJRMznOoj3NxVu+P2h
wK+3DxPdSKL4vhCo5u9n7rnh+BdBvI85xz4vxjsDWv7+Zdf//z8Y+Oul1b7s
d/H5QGjMw530/9/3wmVRIN2IRPzuB935+5Pmbv/fPyR3xYHuRv4DbDbdSw==
"]]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549]],
Line[CompressedData["
1:eJw11wtYjPkXB/CZmmYSpcvcmprbO4NqN5Zcat1+siK3QuFvV6zFSq2tDa1C
LpGsSP8VFbnfq38oKnJ+ol1ltUhCFyldSPfpfvvndfyeeZ6ennc6c873c973
mdSrfl24Ro/D4dhzOZxPPz8fQ/pOtr1x5X4t+bggTbGnVkCDNoYwuhAtKTzr
N9moUECp3e+/hG3SkvutNj8cyhJQtytxT2U+WpI0822QMElA4z7K3ZJWakls
zKcjoNlbHKqmLdaSPbWfCgpo2HqzowVztMR/oNpZPwG1WV/3o/c0LRkoNlBR
QL3Tel16x2vJrE/lZgpo8FdbXA5/rSUO7BHQkWOOrhzGaImSLSigtwsOHUmX
aIkR26CACu/EVc4z1pK2T+218mmzrc69XE9L2HJv+bSFl1+4uUNDHv/z6fDp
o4LfggbXa8inaRek8Wl0ronTqQoNOfdp3LN82p1WbjHulYaw7R3i0z2qrwbn
5mlI8KdyQXzKsR+mXPFAQ9ayh0+fpZm469I1ZCFbkE9XuQ2PD/+fhrDjTubT
qFFXBynPa4gtOzCfjplfEpUSqyFsOSGf/ndpr9PsSA357MGnkltz+9/s0aCH
Ac05ZFyxKViDHgbUJGdX5WB/DWHbyzKgnkMa+WfWatDDgBY9jJnp+IMGPQzo
uvHZF/MWaNDDgI5bmjZizUwNehjQf/vT/+6epEEPA6r3xGxf1BgNehjQ3KmG
3rY2GvQwoL+fqFpP5Rr0MKDJZu0RSyw06GFAo8+EPqs31KAHj/aOL3Lc28eg
B49ejZl5T65j0INHT22V+Ka+Z9CDR7dsjXGa94ZBDx59qpHbVT5n0INHb9c3
T96Wy6AHj3rN990kogx68Oi2hKIniakMevDooF//dHe5yqAHj4p7PuhKTzHo
waPLM8feDYxm0INH3bQPE0wPMOjBo8WJPfTyTgY99OmBKrtu50AGPfSpz4aE
74t9GfTQp869ReWbVjHooU+frRUdHrqUQQ992hyfuvbyPAY99Knirmz19OkM
Ycf106fpBufCSxwZ9NCnce+uFQaOZNBDn17vPj/fXMughz49yVTUJ1gy6KFP
g3wfp80cyqCHPk36OjehnMeghx593j310bYuNXro0dw70ULLRjV66NH00xPC
UyrV6KFHl42OsHUvUqOHHh0+V7+t9okaPQbqjRY0hP2lRg89SvcKRNo7avTQ
oyH/2biOXlOjhx49YQPvf7ioJlPYBvWoW82ymM7javTQoxsM7wRGR6nRQ4+u
DVq6x2GfGj30qOeti1lPtqnRg0vn/MV8syFAjR5cGu/8Xd5gbzV6DFxfte/E
ZS81enDpxR7f+JkeavTg0r5I/6eVrmr04NLV8yQTQqeq0YNLb4ne/suMU6MH
l57Yv+j4PTs1enDpA9PW4ytVavTg0tkv5z3rF6nRg0vF76onnRysRg8uPWzm
VjKFq0YPDl2vMkspbVOhB4cGZGTe2/5RhR4cmhlcxVeWq9CDQ3O7FKFQqEIP
Dm140uO08rEKPTi04IzElntfhR4cOsl20MIzaSr04NAsp19Spyep0IMzcL+/
XVR5VoUeHJouFowMi1GhB4dq/UO+sz2kQg8OvRLacPRRqAo9ODTYuc9mQ5AK
8++HQ00eHaZ+Ksy7H146nuSnrFFhvv3gY/uHx5LvVZhnP9i55pR3uaswv34I
OTHkeryLCvPqB/ubRvedJ33Jpw/i04LF1aO/5NEH1j6yxD9GfJm/DyLIubBv
5F/m7QPb1a8uFJir8P7vgyPZWwcHG36Zpw9cZ1/yndajJGx7tb1QQtzdI6qV
uD+9YLR93/1Xz5SEXZeYXhjUX/f38LtKfH72wrUczYqNl5W4D71wSpC/P+tP
Jfr3Qo766lyzHUr07oHLxT9eWOmjRN8eGLrpRkzyYiV69sC8zFU2XGcl+vXA
1IlOHgvtlejVAwkuAuU5qRJ9esDP5tz+Nn0levSA7Nv6Y64NCvTohp/4j+ac
eK1Aj27grh9xvilbgR7d4JPafsHlmgI9ukH674RFx48r0KMbohfXXm0OU6BH
Nwx6KL/hGqBAjy7IPVW+/rSXAj26YF2oZ0GnqwI9uiB6Vaxu4TgFenTB9RMl
uQkqBXp0wfoxHssEQxTo0QWRbyaeX9UuR49O+MmtKPFuuRw9OsF12q7NVnly
9OiEhSnh3C3pcvTohGJzjwWF5+To0QkVXvPWjY+Uo0cn2K+onRUdLEePDtj/
OLG1ba0cPTogY4/Cf+lCOXp0wM7Up5kZk+Xo0QExxmtL5bZy9Bi43hJasFMo
R48O2JxSfr6q3xo9OmBG+pSFc2ut0aMdyO2fSq6/sEaPdrDoGjFblmWNHu1Q
/dsvcbsSrdGjHZZKmee1x6zRox0SB5N2z1Br9GgHbuFjwb1frdGjDcoulRra
f2+NHm2wMzKqN8bFGj3aIOu2+L1gjDV6tEFx6vm8zXJr9GiDkIth16oMrdGj
DRyOmR9ZorNCj1bISL6yNeeNFXq0Qsn2LJ9Jj6zQoxUivi1ak3zTCp+frTBk
yJ4Nw85YoUcr3Fq0Ijwuwgo9Buo1SzPMt1ihhw42HvHj/bHaCj100NE31pfn
boUeOrBePKN1+0Qr9NDB7oDDZ7uGW6GHDg6MlgUHmluhhw6+y2wKae2VoYcO
7tVMvLnxvQw9WmBqyEim9bkMPVpgSKzZw81Uhh4tsKV9akLnVRl6tEDuwhH5
247K0KMFijJnTdPfLUOPFqjuduwO3yBDj2YwLD1lYL5Mhh7NUHJq8pq4GTL0
aIbSOW8Vw0fL0KMZEs0CJly3lqFHMyy43nBjqqEMPZohoNQ7Jq/FEj2aoCrO
qM7rjSV6NMGHq2YpjbmW6NEE3zcXtOy+aYkeTeBRmn1NesYSPZrA5PnPLUkR
lujRBDVHl9112WKJHo1wPMNTWrbaEj0a4RLfThDsbokejRBXfy9SMskSPRrh
WI/6duoIS/RohCPO3gc8LSzRoxHOP3pq1N4nRY9GKDa+Nin2g5QksPk3gHD5
7zZTX0gx7wbQeKU+r7wnJYZsvg1wO8h81sFEKeZZDz97Lgl3jJGSdWx+9aCZ
4n3yXagU86qHtAtzDkf5SckDNp86WHZUtdb5BynmUQeNjO0w3UwpUbHz10HL
6+yCiw5Swo77z0eocw4MWa6Ukq1swY/gML3UVjRYSth4bD6Cd+yd4rw2CXnJ
7lMtTJ3fenJ/uYSEfgYCP1lE8Kw8CRnL7kstTCy9EmiYISFl7H58gCTBseO5
5yUkkgX8AJ09tPngYQmZxPp/gLJdqbs8t0nw+857WKSy9VR4S8gx1vc93N/e
8tt7Dwl6voeUv0wrbxIJ0bEN1oBlx+mUvV9L0KsG5k6p+7BUKiHubIA1UDvF
67A9T4IeNdC+au81XqMYParBUSb3LC0So0c13Jdw9mb8LUaPaiBhDvNjbojR
owpCvi2/FXRSTFazHlUwN2/5Y68/xOhRBWP/UsTMCBSjRyWQ+AfDRv0kRo9K
ePlUtN3KTYwelTC2sD/BaKIYPd6B2ORoZs9wMXq8g4jT4ttN5mL0eAdty8qS
3/eJ0KMCdGu2Xnn3QYQeFZClH3Oj/IUIPSpgub3Ry4osEXqUQxyTo6lJEqFH
ObyqbDnTECtCj3IYfeafH7v2itDjLezrTvM1DBChx1s45zLtieUKEXq8BZdL
Q2NGzhGhRxn4WTbku0wQoUcZxLvlRqzSiNCjDJaEXcnfOVSEHmUgG3Xz+rlu
IVnK5v8GEv1HOT6qFmLepeB74jf/1nwhMWXzLQWvn3U+GirEPEuACsg4zwQh
ecjmVwxnRra+3n9MiHkVQ05e9voHoUKyj82nCKzuBDRz/YWYx2vQk+eFTF8u
JJ8fcK/h5NUkVbirEOd9BQez28qfjROSDrbgSzCbdeC5ihHiPC/h6vjF+gEm
QpLM7lMheNs5bcvpssD9KYT7YRbu2moLvH9fgMeW9PDd+RaEsvtRALGJjROq
wQL3oQA4L3zWuSVYkN9Z/+cQWZltc+eYBXrnw0XjbXvt91iQb1jffBgRWHfw
rL8Fej6DibfmuCm8LEgN6/cUKnvjn5+YbYFeTyGnN+MrZoIFOcUG+AScl5Us
N7hgjh5P4LJJ0FsHN3OSzOafB71tJoeGDzbHvB/DA78pYzr/NSMqNt9/IM40
f/v8WDPMMxeYooaS3evMSCSbXw4E14ysu+hkhnk9BL1gZ1eVsRkxZfP5GwK+
DuPvLjfFPLKh2Nfyf7vTTckOdv4HMDZ1yruaw6Y4733Iy308Y6+PKWlk57sH
cef1Lzi6mOI8FDSZow5VqAfqsf3fhWRd3FdveoZiv3fAwyh6SdStoeQU2186
eE1/GgkBQwmH7ecW/BJwOmr26KH4+SlwMiqxTdZoQsrYz7sGxnZPtlslm2D9
JNixLD/Myd+E7GDrXQa7CZ6xqx1M8O/PwaT1c8wPthmTHez742HbpbuFlzKM
8fqfcMz9sfZyiDHhsL+HwrBCo8WhM4y//P/Buf/NkIGXMfk/QjrwvA==
"]]}, {
Hue[0.37820393249936934`, 0.6, 0.6],
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]],
Line[CompressedData["
1:eJw11nlczPkfB/CZaZppy1VzNjXXdwbFYp05wkdsbhJhLbEtdkuOHNsqscgR
m+uHhKLkLLmKpHp/UI5sbSRZEUandE/39cvXu88/Pb6Pvt/3vN+v53u+j9F6
rHVdweNwOAO4HM7Xv9+OGS1QbK1atk9PvsxJUO0qE9ItG7cxxm16kntu3Vjz
XCGl/f5cvWeTnjyss1t88IGQul459VyxSk9iJ3/0E8cKafgX5ezYZXpyMvTr
EdJHm4cWTZivJ7vKvhYU0v1eliE50/XEp7PauXVC2t+r/BfPCXrSWayzopB6
JbQ5t43Qkylfy00W0u39Nzsf/l5PhrJHSAcNCVnWm9ETNVtQSFNyDh67K9MT
c7ZBIZUknSqc2V1P6r+2VyegRnuji4GnJ2y5jwJay8/O/aNRRzL++XoENDNn
vZ9FhY58nXZOgoCeSO8x6uwnHYn6Ou45AW1NMIiG/6cjbHsHBXS3pr9FeqaO
+H8t5yegvAG91UtTdWQlewT0VUIPF+NdHXFlCwroitl9woOu6Qg77tjO+oOi
v1Of1xF7dmABHTLr3ZG4kzrClhML6LGFbaOmHdKRbx4CantnRsf7XTr0MKXp
B7t/2uSvQw9TavV0R6GFj46w7T0wpW7dqgSRK3XoYUrfPQmdPHKxDj1MqdeI
tIuZc3ToYUodFib0XTFZhx6mNLvj7uMWRx16mFJeluXeI0N06GFKM8abedrb
6dDDlAaEFXlRpQ49TOkNy4bgBSIdepjS0MjAFxVmOvTg07YReSN3tzPowacx
oZPvK40MevBpxBaZd3wpgx58unlL6KiZ7xn04NMXOmW/wpcMevBpSkXN2IB0
Bj341GOW9yYJZdCDTwNi8rKuxjPowafd1h51cY5m0INPpa2fjflnGfTg06XJ
w1J8jzPowacu+icxvf5m0INP319tpZe3M+hhQoOL+rU4+TLoYUK918T8/Nab
QQ8TOqktz7DJg0EPE/pipeRwz4UMephQY3j8ysszGfQwodoUxfKJExnCjrvO
hN41jQp6N5JBDxMaVnAj13cggx4m9FbL+VlWegY9TOhZ5lNFjDWDHibU3zsj
YXJPBj1M6LXv02MMfAY9eDS3ZfyzgGYtevDos6TjYusqLXrw6L0Ih6C4Qi16
8OiSwcH2Lnla9OBRuxkm9WVZWvTg0ZzBwso9j7TowaP3dwsl+iQtevDo9p82
/k5vaNGDR8PtoHTxRS0ZxzbIo3NKFoU2ndaiB4+uNUvyPX5Eix48+pvfwl1D
92rRg0d/unPxQVaAFj24dNYj5oc1G7TowaVnnSZlWnhq0YNLp3vsDbvsrkUP
Lr3U6h0+eZ4WPbiUc9jneeFULXpw6YqZMofA8Vr04NJEycd/meFa9ODSiH1z
T9/vp0UPLn3cq+70Mo0WPbh02uuZLzokWvTgUnlBseMZCy16cOkRy9nvxnG1
6MGhXhrLuPx6DXpw6IbE5Ptbv2jQg0NT/IsEaoMGPTg0o1kVCLka9ODQyqzW
UcsyNOjBoa8iZfbchxr04NCx9t+5RiZo0INDU0etjp8Yq0EPDhVkfZxbeE6D
HhyaKBUO3BOqQQ8O7euzbZL9QQ16cGh0YGXIs0ANenBogFO73Ro/DebfAf+r
ntfYa50G8+6A1yPPCOJWaDDfDlhlv3/egp81mGcHDJz61NDsosH8OmBHWLeb
4c4azKsDfrht/tDJsSufdjiT4C8tHtyVRzsoVymu7u/bNX87HCRRe35Qds3b
Dv2W/3chx0qD3/92OJ62xcLfrGuedpg27ZL3hFY1YdsrawMDcXEJLlbj/rRB
9617H/73Qk3YdQltA/OO8sd9UtT4/myDO091SzdeVuM+tMEFYfa+B0fV6N8G
mdroGZZ/qdG7Fa69/eXCslVq9G0Fy023Qq/PV6NnK8xN9rDjOqnRrxWcxoya
5zpAjV6tEOMsVEfJ1ejTCuvsovbVm6jRoxVUoytOTK1UoUcLLBc8mx72RoUe
LcDz6nu+Ok2FHi3gHd9wwfmGCj1awOZfh7mnT6vQowWOzy+LrtmjQo8WsHii
vDV1gwo9miHjrMErwl2FHs3gGeiW0zRVhR7NcNzjpNF1uAo9miEx7F16jEaF
Hs3gPWTeImE3FXo0w9H3Y857NCjRowk8Z+ddTTEo0aMJpk3Y8YdNphI9mmBu
XBB3810lejRBgdW8OblRSvTovHaf+fuIQ0r0aIJhS8umHPdXokcj/J1xta5+
pRI9GiF5l8pnoasSPRphe/zz5MSxSvRohNDuK/OV9kr0aIQdtYE528VK9GiE
P+MM54s6bNGjEabdHec6o8wWPRpg0r1f3918ZYseDSBt7jtN8cAWPRqgbP3q
Uzuu2qJHA/wsZ16WnbBFjwaItSANboG26NEAgtwM4f21tuhRDx8u5ZsN+NkW
Peph16EjbaHOtuhRD4/uSUuFQ2zRox7y489n/qG0RY96CLy450aRmS161MOo
E1bHFhht0KMOkq5f2fL0vQ161EH+1gerHJ/ZoEcdBI/OW3H9tg2+P+tA3G3X
mt6RNujR+fzcpUGngm3Qow6gRp5otdkGPYzge2wdf/9yG/QwAqdjmDffxQY9
jGA7/8e6rWNs0MMIOzccPtfcxwY9jHBgsMLf18oGPYwwObl6W12bAj2M8KRk
zO2NpQr0qIVJ2wYydS8V6FELlictn/xBFehRC34N42OaohXoUQvprn2zA0IU
6FELeclTJpjsVKBHLZS0jGwJWqNAjxowzz9rarVIgR41YDg7dsWpHxXoUQPv
p39U9RmsQI8aiLXc4HDTVoEeNfDTzcpb480U6FEDm/I9QzNrrdGjGkpPmZe7
v7dGj2r4Em0ZV5VujR7VsLgmp3bnbWv0qIZ5+Wk35JHW6FENvV7+VhsbbI0e
nfVCFqU4b7ZGjyoIS3STf1hujR5VcFnQT+jvYo0eVXC64v4hmaM1elRBaKv2
Xnxfa/TovHby/NtNZI0enc8/e27e0C5Hjyr40P2G48nPchLD5l8J0iV/2o1/
Jce8K8HePf5l4X05MWPzrYRkP6spB67KMc8K8HJbEDQyVE5+Z/OrgD7jPM8U
BMoxrwpIvDD98JF1cpLK5lMOS0M0K50WyzGPcqhm7HsbJ8uJhp2/HIxv0nIu
DpUTdtx/vkClk++2JWo52cIW/AJDJ+bbSyzkhI3H7gusOpn0NrNeRl6z+1QG
zrPqzuwzyEjgNyDYoAj2n5IpI8PYfSkDx/wrvmaJMvKB3Y/PECs8cTr9vIwc
YgE/Q1srrTlwWEYcWf/PYNgRv8MtQIa/d0phgcbeTeUpIydY31J4srV2fek8
GXqWQsKjXoW3iYwY2QZLQNEYEbf7exl6lcCcceWfF8plxIUNsAS+jHM/PIAv
Q48SaPLYfYNfJUWPYhitULrl50nRoxhSZZzdiY+l6FEMZM/QWaG3pOhRBDtG
G+74nZGS5axHEczMXJLhvl+KHkUw+pEq9EdfKXoUwqTw1N6DfpWiRyF8fC7Z
ajNbih6FMCK3I8Z8jBQ9CkDRIyS5tY8UPQrgQIT0XrWVFD0KoHHRh+ul7RL0
+AQNK7ZcKfgsQY9P8NAk9JbhlQQ9PsGSAeavPz2QoIcBwpinupJYCXoY4G1h
bWTlSQl6GGB45D+/NO+WoMdHCGpJ8DbbIEGPjxDlPCHLeqkEPT6C86WeoQOn
S9DjA/hYV2Y7O0jQ4wNEzU4P9tBJ0OMD/LTnSvb2nhL0+AA2g27fjGoRk4Vs
/u/hus+gkc+KxZh3PqwOW+9Tly0mvdh882Hpb8ZVOirGPN9BmpAMd4sRkyds
fm/h0sC6N/tOiDGvt/A0M80rNVBM9rL55IEyaUMN10eMebwBgTJz28QlYvLt
BfcGIqJjNUFTxTjvf3Aord7wYriYNLIFX4Noyt8vNYwY53kNMSPmm2zoISbX
2X3KhTX9RgU8bRbh/uRC2h6Ri75YhN/fVzB/892gndkiQtn9yIHTV6scikGE
+5AD3Ferfp8dIyJ/sv4v4X+FaXZJJ0TonQ0XuwfsHrBLRH5gfbOhn2/5gXM+
IvR8AY53ps9WuYtICev3HGrawl+GTROh13P4ty2xP+MgImfZALOAl3Js+ZwI
EXpkgcCwWjv+uYhcZ/PPBBhXGrG+QoR5Z8DBtLLBWTwx0bD5/gPHngQOi7fs
yjMdzva/Nj/VVkwOsfk9hZCTTK9KfVdeT6AnjXj9b79OTzafx3DzzfxrWQPF
mEcaUL8Y23GDxeQvdv5UCP7uxaE5Q8Q470OY8JBscei8rmLnuw/KkGwbUef9
3+ahcH2wsJYzqLMe238KjG1+tln+fVe/SfDFbcDU1Xad97P93QW6e2Ftz87+
OGw/d6D30Y2RPdRdnx8HN488O7jJunM+9vNuQFtVqvtsUVf9WCjP9vn1fLfO
+9l6l2HGMNM320y7no+C4a6tVkVtIvIXe384NEyPPp5fJ8L/H4WwMX2c1pZ3
5s9eB8I9m1b3sIIuDw7nzuq826vzROT/Vgjxzg==
"]]}}, {{
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]],
GeometricTransformation[
Inset[
Style[
Graphics[{
Disk[{0, 0},
Scaled[0.001]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}], {0., 0.}], CompressedData["
1:eJw113tczXcYB/BzP6dzOvdzWmOTXEatrZTZbGu+mLlVKm2kCw3psghjqeaS
ata6UeiGhqSkyKSI5yu3MkUpXdi60UVF0r3U8tvj+zr//F7n13Oe5/N+zu91
Mvxxk/16LovF+oTNYo29WBzWuyOiig1x58fP1CPtdrkTQtqEtCA22/yFkR6p
POFrKa4U0nPLXi6jBnrkRs9056gCIf3l2W7RAa0eyVxY76/JFNKlvoed1kr0
SEL82yOkp+6vWTSTrUdC2t4WFNKUZFEJr09LNo9VO+ErpJNn5baVt2vJWLGx
ikJqvv9Q8skGLVn0ttxCIS1cWdi2tUpLLJgjpJPKNt2bV6IlBkxBIR2qzJir
vKklYqZBIQ0uS1pSm6clvW/b6xHQD7NWNWVkaQlTrl5Ap1WOqP1TtKT43tsj
oDemHSv7LlFL3k5rlyugyS02hur9WnLy7bgnBHT8jQmj/4ZqCdNelICy8z7w
Tg/UkoC35fwFVDTeYd22LVrizhwBLdlV3DrHQ0vsmYICGpIXOajjqiXMuJYC
+vhewsGHy7XEiBlYQF2aXuUlLdYSppxGQJ/a7ndfP0dL/vcQ0FKvrQmffKZF
Dz5VJUU59Bhr0YNPWUtrYvInagnTXgGfNpZ+u2KvnhY9+LRy69Uji3W16MGn
WXam7nKOFj341M81KKu8T4MefCp3SPSL79CgB586pjpRl0YNevDprMA/Qwyr
NejBp2HxC+88LdGgB59mOk8NTr2pQQ8+HX9WdsXzsgY9eHTvy4deH5/ToAeP
Puyfe6A9RYMePNrHmmR2NlGDHjyadHD2fJ/9GvTgUavwJXdNftOgx9j73aqb
bYEa9OBRsdjaNH2LBj14NGNqltjDQ4MePLolq81hqqsGPXh0hfy8bsNyDXrw
6OyjaWZHF2vQg0cDDgWA4xwNevAo4RVd0nymQQ8ujbxoqn/fWIMeXDrBeHHt
voka9ODS/KB0yTw9DXpw6X7fp4mDEg16cCl3yt7IbLYGPbh0xVeyBs8+NWHG
9eVS1nnRwYkdavTg0r1FnSmPGtTowaUfsYk6vEqNHlzqN+D1mJSo0YNLxe71
w9031OjBpfMHpNtP56nRg0NTbX9Y4JSlRg8Orakb5ylNUaMHh46rz6m9lqBG
Dw49M2t36qZoNXpw6LbVd64ZhKrRg0PvOldOvh+gRg8OnXCkp/zXzWr04FDj
JrcHH29QoweH5lv+oKl2VpNvmAY5tLdMcCzEXo0eHLq76c+NMxap0YNDT2cv
2/PEUo0eHNpqb14RaqFGDzaVnVnvYWakRg82fWw9+kX1BDV6sOnUtbIFezRq
9GBTGpEYNl2sRg829X5wWnh/VIUebFqyZcbln3tU6MGm4c+Mkt9vU6EHm75J
2XXpap0KPdjUyfD9kTWPVOjBpvaHKzZz76nQg01nDIcrUq6r0INNv6uRVy24
pEIPFq0zn3b7WYYKPVi0wDW2Kvi4Cj1YNKZDIZ0cp0IPFnUPsXGjESr0YNHm
sQSd96rQg0WtpWdW9/up0INFb/3G48dsVKEHi6ZWx1CTdSr0YNEzmvqoW44q
9GDRfyO8fV2WqdCDRY1y01Z3f6tCDxadPCJyCvtShR4s2pLQsdrATIX5j0Lk
lmzvC1NVmPco/NJ6OuC78e/yHYVZV/QjqhTv8hwFkwdzjngK3uU3Cs0q+7SB
ISXmNQoW3+7I3PdKifmMwM6S8jS9ZiXmMQJBcTviTjxR4vwjcPPR5l9My5Q4
7wiseZI///IdJX7/RyD/uc3g/KtKnGcEdrOUcfeylYRpr+0NuKXWve9wWon7
8wZ0rkcF1hxREmZd4t+AavnT/NUxSnx+voF8u7jKxn1K3Ic30OTpWOS+U4n+
byChqDCyZasSvYehotl/iqenEn2HwXBpX2iLqxI9h+GkTW62u4MS/YbhbpPx
ycbFSvQahu61mStWz1GizzBsnRlbVD1TiR7DMCnFoNfeWIkeQ5CUHFJ910CJ
HkPg5tO+aa5WiR5DEOvlfTFHrESPIfj8b/EpY5YSPYZgme0NyyM9CvQYAg/2
Tj9ZmwI9BqG1UW2/s06BHoOQfc76dnuFAj0GYf2+xgeOfyvQYxAmnQr0uUUV
6DEIoMg6bJqjQI9B2LFkdEncGQV6DEDZSG3QaLICPQZAnnX+y/WHFOgxADyX
Ap+iPxToMQCDFtbvmexRoMcAdJj6m0dsV6DHAKy44XK53VuBHv2Q4t+ftsRN
gR794HB01vCpHxTo0Q93y16eYVsp0KMf0nKaLqyaq0CPfqjcWSjLnqVAj37o
iDa5JDRRoEc/LBsfm+pkqECPPvA841lzVk+BHn1w6zpryYhEgR59MGHdwU4r
tgI9+iB41eFoiw45evSB1UXXQ0WVcvTog/Ys9yanAjl69EJ09I8/P8+Qo0cv
6I0rs9h2WI4evaB/kKU/vEeOHr1ws5yr2fWTHD164aNZV8aN/CBHj17wSiyZ
sGOuHD16YJ3bWVXnx3L06IEm24iWH/Xk6NEDJmGeB0pZcnx+9sD0n9icr9tk
6NED0dsqpx+vkKFHDyQZmvVzqQw9uqHgmsLNLV2GHt2QQb5xuBwrQ49usNH9
ukC2S4Ye3ZB+bUmiq6cMPboh8oX7/bTlMvTohrLmhTadljL06IZcN1eh+XQZ
eryGJ6YPWzeqZOjxGnLbQ56eGpaix2tQHZM0VTdJ0eM1lDuefSIslaLHa0iv
cM8xuyJFj9cQxn+2xiFFih5doE0JLtoSJUWPLki9bvvPHzuk6NEFZZbs34+t
laJHF4TbDOSetZaiRxf0vl7gmPO5FD264Jh30vd5hlL0eAXFR1bG50ik6PEK
ykIC5Jk9uujxCsbFph0/VquLHq/gC10jyz+KdNHjFTi71BX6XtBFj1cg2+5g
antEFz06YbE61dHoN1306IRJkoNmw7666NEJzjE/JxWu0kWPTnDdaxES+a0u
enSCV8z3Zdaf6qJHJ8w53OUl0NdFj07wy/nrs1y2Lslg8n8JR/98pL+2TYJ5
v4SNtwwHBRUSImLyfQlTAtqvnbgmwTxfgM8X+lazT0uIB5PfC0i8Kg+9s1+C
eb0Am/m3bG0CJOQmk08H3D59Lqp4nQTz6IC9x4unLrCRkInM/B0Q9jy+56/P
JYQZ9147HN2irv/AUEICmYLtcCo+pyhQLCFMPNPb4dG6wOjy12JSxexTG+y8
WqWd8o+YBP8PBAV/5c72vi0mM5l9aYPzxbsfp2WJSR2zH8+hc5mkpjZOTKIZ
wOdw+/gptTRITL5m/J+D5QW1+wxvMf7eaQW/9cGZVg5iEsf4tkKOOqHI1VKM
nq3A+2BdzIaPxKSbabAF9u10bXaXi9GrBdIjfJOd+3WILRNgC9heaItbVK+D
Hi1gtDQs3fiuDno0w6eHNmZyLuigRzOoCg1/fZCogx7NoDaPeRETrIMeTWAZ
8V6NlY8OWcd4NME4dw+9oe910KMJfDNP7Dj6jQ56PIOF25dWz5qmgx7PoOn+
AvFNuQ56PIOTDU/qFvSL0OMpfGgKZvl1IvR4Cgt1WMUfFYnQ4ymkL9XfF3Je
hB6NULaw2aIqXoQejRDRf+HPCUEi9GgES/9Pj6/0EqFHA8wr3swPtRehRwM4
t/ATT30pQo8GGJnQMOPyJBF61EN+/aY4KhahRz3Y/RORlNclRI96qN0ZI0mp
EaJHHcxrcMgOKhCiRx34zZjmYp8uRI86yPJ/Vqk+IESPsWtub8ftHUKyksm/
FrYb2np5uwkx73/BNyHoPfZiIVEw+f4LVxIuw29mQszzH7Ca+7fJ6HtCUsjk
9wSyiz+bvmFUgHk9gbnbzAOgSUD2Mfk8hoHmvBfCEgHmUQO+4VFLyUUB+f8B
VwMcf6tVHkkCnLcaln/p3bhrr4D0MwWrwHWlQ1aolwDnqYLhW96hgXYCco7Z
p8qx/AxmuH0hwP2phJOl3b/MNBDg9/cR+FkkTe7lCwhl9qMCfMJGhlPa+bgP
FVChsCue/5BP/Bj/cogenOZ6P4+P3g/BIShsx6JkPjFjfB+CI0/0PDOUj55l
8L5JiT/Hh09aGL9S2DKb9s1bzkevUuh0i/rEdzafJDMBPoAU2/LW3w346PEA
yu4YDUXx+eQck38J5KxfNCOojYd5F8Ox8Mkua0p5ZCKT7z1o3yi0M77Ewzzv
Qs1XuXW1STwSzeRXBF95H6jfHcTDvArBaXKGsdSDRxRMPnfA4kJfbLA1D/O4
BfbjNgw1mfPIbmb+m6CMVXw1U5+H896AuA8dLH56wyWdzHzXYV4L+3ZkAxfn
oSDP2FOZeIdLKNP/NThSOGgTk8HFfvMhYfKvetv2j93P9JcHI+eMx8/dziUs
pp9LYBrpZt23iouf/xe8jG9KPjyHS+qYzzsP/T4K6aQp7+pnwrljXeGHRGP3
M/XSYKnx7wY97Rz8+5Pg19h4x7J07Jq5/yhcrLaL8L347v1YcPEPD4iI5xAW
cx0MyU4Nx2N/5bz7/4OlH+o29uKQ/wCRb9wY
"]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]],
GeometricTransformation[
Inset[
Style[
Graphics[{
Disk[{0, 0},
Scaled[0.001]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}], {0., 0.}], CompressedData["
1:eJw12Al0zUcXAPC3P1vy9v09+76rPYLR2qnaalfEWooozWdfg0btFLVEENRO
7VruSFKCBEEkItLskgjZ9+TlmxnX/+QcJyfPvLn3N3Pnzr+Bz8KRM+USiaSN
VCJhPxKZ5MtTg/pPs26aZq1Lskfcqrvxg5oOW30l1VK7Lok54duzVoya1jk0
+JunVS4SWtR80o4QNX15M+WYf66LXByQtNx4UU0Pvlop6ZHiIgf/4I+a+uSZ
puRFu8jGD3xANW3ieenu6XAXWcRGO+GrphktBzp/+NtF2GBsRDW9LMZxkYH8
nwFq6jtj+ZvHQS7SUTxq2nWdodu6PS5STwyoppVHzu/ruslFaokJqim906/o
41IXKebTK1JR/5iEUcHzXEQMl6Sigwv/99eEH1wkMoI/KmrQsWeEi/BoR9xS
0eg2Zxc+/MZFgnm4J1Q0iIW7qouLiOntUFGf2fGtO7VwkRV8uOUq2tj/l9+y
HC4ySzwqmhHkmRXk6SIjxYAqeuHu6YFjpS4iwu2pokviyGmPQidpIQJWUa+S
N8qwdCcRwxlVtNKwmEXsJJ89VDSsfZ3Q9hFO9FDSgG9PNnh/z4keSjp0bq+1
R644iZheiJJqNvOAneihpK/55/Y70UNJA2nNwzTAiR5K6vPueLnfSid6KGnr
8h7j2yx0ooeSppujb6ZMc6KHkl7suMB8cLQTPZR0yXD1L8MHONFDSb3nB71U
eTnRQ0mrArp/dbe1Ez0UNOTUi52L6znRQ0E3hc7LaaF3ooeCDktUsB8neiio
sYoBlzjQQ0GjbV1rf5vlQA8FDezy/Ef5Owd6KKjPqB/Dbz9zoIeCNvWVNfMN
caCHgmZtPbSx6XUHeijopTOdUuNPO9BDQZc8iPx6z0EHeihot5RZxwZtc6CH
grqr2bPGgR5yGub844cbPzvQQ079Wbg/zXSgh5wOHfPE0WicAz3k1Mh5BzvQ
Q06jd1TF7ujpQA85PcyWc//2DiLC9ZXTaY/a7ats6EAPOW2WHl74l8mBHnKa
LWMR13Cgh5xerVdxpV6FHT3kdIn3Xu3rj3b0kFNvprs10Y4eMur+hQX80o4e
Mhq+e0rrsn/t6CGjWy6Vbrl0y44eMjoiYlfmzHN29JBRcybbwIF29JDROGUY
E7ajh4wGNZysDNhgRw8Znd67eHpvPzt6yGhLPo05dtJLTFBGc5c2b3B+oh09
ZPTK7/fX+Ayzo4eM+v01IcHax44eMur1rMD7WUc7ekipLJsD29FDSh/WaFre
w2ZHDynd3gTG5de2o4eUDv963M0/3Tb0kFLzFF6wbOghpXErtiwxpdrQQ0qD
DjR6+eS1DT2kdMb1fzqsf2RDDylt+eL7nd3+saGHlOZ9Ys9FG3pI6bXav357
8pgNPaR0OQ93rw09JJT0u1NLv9mGHhIq5Qt6mQ09JDR8dfbD1T/Z0ENCd7Bo
O0+xoYeEjhJ/sKGHhFrZ9j3W14YeEpqQxyLuakMPCT3Oy1VLG3pI6MxWG6rD
nDb0kNBWrDyv0NjQQ0JzecAyG3pI6NV1wxwZhVb0kNCVge+XBb63Yv6rodff
a2NHx1kx39WgiGUbONKK+a0Gtpp/vw9WzGc1bNUNZRXaivmrhlFt00a2PWnF
fFWDdQg7kPZbMT9uiJ9t0R7aYsV8uOGo/+UFI1ZZMX43zDk2KFLta8V43dD2
XnKrez5W3P9u+MSBv7diPG64VmJkK9pKxPQ+VMFS/gcvK66fKiAdBpza38ZK
xHL5owp4tRpW34r1swoez102XWGw4nqogh2b9SF3lFb0r4KRwefqLyq1oHcl
OO73XdPsgwV9KyH+HX8s6FkJweV+3nufW9CvEuawcAeHWtCrEtp2OlMmuWFB
n0rIEwvagh6VcGv+2xvzD1nQowKWsuXceLsFPSqg72mPJXFrLehRAQq+fRdb
0KMCwhN7dxgwy4IeFbCLlauqcRb0qIDR9p8/XR1iQY9ysLPyPLeXBT3KIXEU
C7iDBT3K4SSfRiMLepTD3G2v52wzW9CjHFrz47emBT3KoeAB28AVZvQog2us
3bj8yYweZcC7jVlJZvQog69dr/q4XpnRowzUXuxAemBGjzKIHKOqDrhtRo8y
2LX46GRy3owepTCa7d7iQDN6lILzQpT9wi4zepRC0iMG7G9Gj1I4ni6Ptf3P
jB6lMEN+hJ1IZvQohbb1u/y+aZIZPUoh35sVrO/M6FECN8bPGVnQx4weJbDa
T3rlTCczepQAO4w0U5uZ0aME1JfZAWw3o0cJPOXTrGNGjxLYnsl3sAk9ioGH
2z3fhB7FULfRgYycVBN6FEMS4z0VY0KPYgie9PjkpMcm9CiGeXw53zWhRzG0
31fp8+iSCT2KoJht3zXHTehRBLee8YhN6FEEK1m5yt5swvpZBP1rTnt3fLkJ
PYqAl+fx803oUQRPRMAm9CiEnfw4GmlCj0IYs/LfsSv7mdCjEFzs+P2qmwk9
CiH5Ot/AJvQoBL6aj7pM6FEI83NavPhea0KPQuDtVR25CT0K4PP3GtGjAG7z
djLDiB4FsNZn+9B2b43oUQBs955LizSiRwHUPswbLCN6FEDELQZ81Yge+bA3
Ov9BjVNG9MiHCfm/NYEDRvTIB6emCesojeiRD4mtWMFabUSPfDg3cGyfZF8j
euTD3Jm5Rw9MN6JHHnRcH+AeNsaIHnlQGsgO4EFG9MiDv/nTw4geebAhlu3g
tkb0yIOBLNzmDYzokQfsMIpJMBjRIxeiOK/KiB65sGfI7b1DygzokQsT2HKW
ZhvQIxca8nESDOiRC3z7LogyoEcunLnn0jQJM6BHLviycvX2hoGcF/nPgXal
30XsOmPAfOeAKM+HDaSGyG8OsNM3wL3dgPn8BOvZcXRtnYHMEfn7BIPmXes/
b4kB8/UJ+PHbYLaBhIn8fITIYLaBxxswHx9hL2s3tg81kPoi/o8wKcF6v29v
AxHhRmRDXd5edTCQlWLAbEi3sAOpsYGI9DTPhrOsnZxtMZBYsZ4+gO+IVT3q
1jIQ/89AwNvnV5V60kmslw9QxhusHD1JFOsjC/h1oU+ynuwUgFmwPizpeskr
PfEW/lkwiKfloR77nUyo7WYXhjt6ckD4ZsIrOy9YevTMBN5NRh3Vk0IxwQyY
OPq/7Zt369ErA+ovWvqx50Y9GS4SmAHp2/gBrEePDDh/lj1z9ejxHuaz6jxt
sh493kMXHu5wPXq8hzKJH2so9eiRDpzXv7OezBAe6bDe688NXs316JEOg1m0
uXY9eqRBHXFB0qNHGvDtO1miR480OHChjttQoEOPVJjIy1WaDj1SocF73nHo
0CMV0lh57vpEhx4pcJ4HfFeHHimwgH/PZR16pEDnCSfYjw49kqGEHb/afTr0
SAa6h23gX3XokQwbebuxQoceSTAkkldoHXokgYa1V1lTdeiRBC9U7EAapUOP
RNjP2skx/XXokQiTyE8tPbrr0CMRGrH2ObSVDj0SgXdXy+rqyDiR///gHAfW
6TDfCeB79Tlb0TqiFflNgE7senSkWIv5fAeV/MKQqSXhIn/xwKtVzXgt5ise
NjXtXI8+1ZJfRX7ewhB2/fW7r8V8xIFmKrsAX9OSzwUuDqL5AXxKi/G+gf3i
Xy0pFQPGwtQbX5V+t1WL8cRCYxauao2WfL7nx0B2DmsoF2lx/cQA5108Q4v7
9zUsarH/5xZjtYSK9RENXmw5/zdIi+shGqp82AXJW0tEn7b8FYTw7dtOi94v
YdPhimxZQy1pL3xfwlBWrm4btej5AjSv2YVfrSUZwi8KzqbxDaBBryjowLJx
642GBIkEPof743jB1qDHcxi8u/Gg3cEaclnk/yk8e8JPXA3mOxImML55CzWk
vshvBGSKhliD+XwMvmz79fPSkJ0ib4+g5Aq/wGkwX+Eg1qlSQ7QiPw/Bkx8P
WZ6Yj3/hADv+Sp95krUi/jCox473Gdc9Md5QOMeqQdRBT5Ir4rsP3Xl7ttYT
46EQwg+wmWw8Mf970J+/7xniifP9B8T7nfbs82J+t0Fcj0yeRCLmcxPE+5sK
D/z+a8Cvt48TPUii+L4r4ObvZx544PgXQbyPOcc+L8Y7A1r+/mXXl/8fDPz1
0io/9rv4fCA05OFO/PL3vXBZFEgPIhG/+0NX/v6kqceX+4ckVBzoHuT/mVbd
TQ==
"]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549]],
GeometricTransformation[
Inset[
Style[
Graphics[{
Disk[{0, 0},
Scaled[0.001]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451,
0.196078431372549]]}], {0., 0.}], CompressedData["
1:eJw113dcU2cXB/CEhARRdhaBrJuoYKvWjXU9YsUtqKC+tqKlakWoheKooOJA
caHIW5UhiHsBLygo4DiPKK1goSoiKkMEWSKywl4v3h6fT/7J55KTc37fc+8n
aDx+XbyWx+FwhnM5nP4Xx4Dz5RjR9/KdDasP6cjHRanKfbVC6r8pkNEH6kjB
eZ8pxgVCSof9/kvwZh152GL3w7EMIXW+FvVM7qUjCbPe+YsShDTqo8I5YbWO
REZ8PkKauW1M5fSlOrKv9nNBIQ3eYHEqf56O+PZXO+8jpHYb6n70nK4j/cX6
KwqpZ2qPU894HZn9udwsIQ34apvT8a91ZAx7hHTE6FOrBzM6omILCumd/GMn
0qQ6Ysw2KKSiu1EVC0x0pPVzey0C2mSvdykz0BG23DsBbebnFWxp15Kcvz8f
AX2S/5v/wE9a8nnaRakCejLbdGJsuZZc+DzueQHtSi2zGvdaS9j2jgnoPvVX
A7NztSTgczl/AeUMH6xa9UhL1rFHQJ+nmrro07RkMVtQQD2ch8Qc/J+WsONO
EdCwkdcHqC5qiT07sICOXlgclhypJWw5kYD+d3nPxLmhWvKvh4BKb8/ve7tP
ix6GNOuYSfnmAC16GFLTrD0VA321hG0vw5C6DWoQnFunRQ9DWvg4YpbDD1r0
MKTrx2dezl2kRQ9DOm556tC1s7ToYUj/6Uv7q2uyFj0MqcFTiwNho7XoYUiz
pxl52ttp0cOQ/h5duYEqtOhhSBMt2kKWWWnRw5CePBf0/JORFj34tGd8ocP+
XgY9+PR6xKwHCj2DHnwau13qnVLDoAefbtseMXHBWwY9+PSZVjGs4gWDHnx6
51PTlB3ZDHrwqftC781iyqAHn+6IK3wan8KgB58O+PUPF6frDHrwqaT7g74k
lkEPPl15b+z9rScZ9OBTZ93jOPMjDHrwaVF8N726m0EPHj1SOazLcSuDHjzq
tTHu+yJvBj141LGnsGyzB4MePPp8nfi42XIGPXi0KSZl3dUFDHrwqPK+fM2M
GQxhx/Xh0TTDCweLHRj04NGo90kFW0cw6MGjN7ouLrTUMejBo2eY8k9x1gx6
8Ki/d07qLDMGPXg04evsuDI+gx4G9EXXtCc7OjXoYUCz754UWTdo0MOApp2d
cDC5QoMeBnTFqBB7l0INehjQIfN5rbVPNejRX2+UsD74Tw16GFC6XyjW3dWg
hwEN/M+m9TRJgx4GNNoOan64rCFT2QYNqHP1ioiO0xr0MKAbje5uPRmmQQ8D
us5/+b4xBzToYUDdbl/OeLpDgx5cOu9P5puNfhr04NIYx+9yB3pq0KP/useB
6KvuGvTg0svd3jGzXDXowaW9ob7PKuZo0INL1yyQTgiapkEPLr0tfvcPM06D
HlwafWjJ6QfDNOjBpY/MW06vVmvQg0vnvlrwvE+sQQ8ulbyvmnxmoAY9uPS4
hXPxVK4GPTh0g9oiuaRVjR4c6pd+78HOj2r04NB7AZUCVZkaPTg0u1MZBAVq
9ODQ+qfdE1fnqNGDQ/PPSe25D9XowaGT7QcsPpeqRg8OzZj4S8qMBDV6cPrv
93dLKs6r0YND0yTCEcERavTgUJ1v4Hf2x9TowaHXgupPPQlSoweHBjj22m30
V2P+fXCs0bXd3EeNeffBK4czguS1asy3D7zsD7su+16NefbBsDlZZZ0uasyv
DwKjB92IcVJjXn0w/JbxQ8fJX/LphZjUAEnVqC959IKtlzz+8NAv8/dCCLkQ
/I3iy7y9YL/m9aV8SzXe/71wInP7wACjL/P0wpy5V7ynd6sI215tDxQTF5eQ
KhXuTw8Y7zzw8PVzFWHXJaIHBvTV/TXkvgqfnz2QlKVdtemqCvehB2KFeYcy
/lChfw9kaa7Pt9ilQu9uuFr046XVXir07QazzTcjEpeq0LMbFtzzsOM6qtCv
G6ZNmui6eLgKvbohzkmouiBToU83+NhdONTKU6FHN8i//RQ+p16JHl3wk+DJ
vOg3SvToAu6GoRcbM5Xo0QVeKW2XnJKU6NEFsn8mLDl9WokeXXByae31pmAl
enTBgMeKm3P8lOjRCdmxZRvOuivRoxPWB7nld8xRokcnnPSI1C8ep0SPTrgR
XZwdp1aiRydsGO26QjhIiR6dEPp20kWPNgV6dMBPzoXx98sU6NEBc6bv2WKT
q0CPDlicfJC7LU2BHh1QZOm6qOCCAj06oNx9wfrxoQr06IDhq2pnnwxQoEc7
HMqJb2ldp0CPdkjfp/RdvliBHu2wO+XZvfQpCvRohwiTdSUKewV69F9vDsrf
LVKgRztsSS67WNlnix7tMDNt6uL5tbbo0Qbkzk/FN17aokcbWHUOnSvPsEWP
Nqj67ZeoPfG26NEGy2XMi9pwW/Rog/iBpM0tyBY92oBbkCN88KsterRC6ZUS
o+Hf26JHK+wODeuJcLJFj1bIuCOpEY62RY9WKEq5mLtFYYserRB4OTip0sgW
PVphTLjliWV6G/RogfTEa9uz3tqgRwsU78zwmvzEBj1aIOTbwrWJt2zw+dkC
gwbt2zj4nA16tMDtJasORoXYoEd/vSZZuuU2G/TQw6YTPvzDa2zQQw/tvWO9
+S426KEH26UzW3ZOskEPPez1O36+c4gNeujhyCh5wFZLG/TQw3f3GgNbeuTo
oYcH1ZNubaqRo0czTAscwbS8kKNHMwyKtHi8hcrRoxm2tU2L67guR49myF48
NG/HKTl6NEPhvdnTeXvl6NEMVV0OXQc3ytGjCYxKYg0tV8jRowmKY6esjZop
R48mKJn3TjlklBw9miDewm/CDVs5ejTBohv1N6cZydGjCfxKPCNym63RoxEq
o4zr3N9ao0cjfLhukdyQbY0ejfB9U37z3lvW6NEIriWZSbJz1ujRCKYvfm5O
CLFGj0aoPrXivtM2a/RogNPpbrLSNdbo0QBXBMOEAS7W6NEAUZ8ehEonW6NH
A4R3a+6kDLVGjwY44eh5xM3KGj0a4OKTZ8ZtvTL0aIAik6TJkR9kJI7Nvx5E
K3+3m/ZShnnXg9Y95UXFAxkxYvOthzv+lrOPxsswz0/ws9uygw4RMrKeze8T
aKd6nnkfJMO8PkHqpXnHw3xk5BGbTx2sOKVe5/iDDPOogwbGfrB+loyo2fnr
oPlNZv7lMTLCjvv3R6hz3Bq4UiUj29mCH2HMjBJ78UAZYeOx+wiekXeLclul
5BW7T7UwbWHLmUNlUhL0LxD4yEMCZudKyVh2X2phUsm1rUbpUlLK7scHSBCG
n86+KCWhLOAH6OimTUePS8lk1v8DlO5J2eO2Q4q/d2pgidreTekpJeGsbw08
3Nn8W42rFD1rIPlP84pbREr0bIPVYN1+Nnn/11L0qob5U+s+LJdJiQsbYDXU
TnU/PpwvRY9qaPPYn8RvkKBHFTjIFW4lhRL0qIKHUs7+9L8k6FEFJHjMwoib
EvSohMBvy277n5GQNaxHJczPXZnjfliCHpUw9k9lxMytEvSoABLzaPDInyTo
UQGvnol32jhL0KMCxhb0xRlPkqDHe5CYnrrXPUSCHu8h5KzkTqOlBD3eQ+uK
0sSaXjF6lIN+7fZr7z+I0aMcMngRN8teitGjHFYON35VniFGjzKIYrK01Qli
9CiD1xXN5+ojxehRBqPO/f1j534xeryDA12p3kZ+YvR4Bxecpj+1XiVGj3fg
dMUsYsQ8MXqUgo91fZ7TBDF6lEKMc3aIh1aMHqWwLPha3m4zMXqUgnzkrRsX
ukRkOZv/W4j3HenwpEqEeZeAd/Rvvi15ImLO5lsC7j/rvbRUhHkWAxWScW5x
IvKYza8Izo1oeXMoXIR5FUFWbuaGR0EicoDNpxBs7vo1cX1FmMcbMFDkBs5Y
KSL/PuDewJnrCeqDc0Q472s4mtla9nyciLSzBV+BxewjL9SMCOd5BdfHL+X5
mYpIIrtPBeA5bOKOrE4r3J8CeBhs5aKrssL79yW4bks7uDfPilB2P/IhMr5h
QhVY4T7kA+el13rnOCvyO+v/AkIrMu3uhluhdx5cNtmxf/g+K/IN65sHQ7fW
HT3va4Wez2HS7XnOSncrUs36PYOKnpgX0XOt0OsZZPWkf8VMsCKxbIBPwXFF
8UrDS5bo8RSumvq/G+NsSRLZ/HOhp9X02JCBlph3DjzymTq64x8Lombz/Rui
zPN2Loy0wDyzgSmsL9673oKEsvllQUD1iLrLEy0wr8dgEOA4R21iQczZfP4C
v6+DBXvLzDGPTCjytv7f3jRzsoud/xGMTZn6vvq4Oc77EHKzc2bu9zInDex8
DyDqIu+Sg5M5zkNBe2/ksXJNfz22//uQqI/66m23GfZ7F1yNTy4Lu21GYtn+
0sB9xrNQ8DMjHLaf2/CL39mwuaPM8PuT4UxYfKu8wZSUst+XBCbDnu60STTF
+gmwa0Ve8ERfU7KLrXcVhk1wi1wzxhQ/fwEmb5hnebTVhOxi/z4Gdly5X3Al
3QSv/wHhLjm6q4EmhMO+D4LBBcZLg2aafPn/g/Pwm0H9LxPyf29a8L4=
"]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]],
GeometricTransformation[
Inset[
Style[
Graphics[{
Disk[{0, 0},
Scaled[0.001]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]]}], {
0., 0.}], CompressedData["
1:eJw11nlczPkfB/CZaZppy1VzNjXXdwbFYt03H7HllghriW2xW3Lk2JbEsimx
uX6uUJScJVeRVO8PypGtjSQrUqNS0j0dOn/ju+8+j/75Pvp+3/N+v57v+T5G
67nObaUZh8MZwOVwTH8cHqfrWNBixfaa5Xv15PPcRNXuCiHdtmkHY9yhJ3nn
1o+3zBNS2u/3NcGb9eRhg8OSAw+E1O3KqeeK1XoS51K0VRwnpBGflXPiluvJ
ybCvR0gfbRlaOmmBnuyu+FpQSPd5Wx/PnaEnvqZq59YLaX/vyp+8JumJqZip
opB6J7Y7t4/Qk6lfy7kI6c7+W5wPfasnQ9kjpIOGHF/em9ETNVtQSFNzDxy9
K9MTS7ZBIZUknyqZ1V1PGr+21yCgRkejq4GnJ2y5IgGt5+fk/dasI5l/fz0C
mpW7YatVlY58nXZuooCeyOgx+uwHHYn+Ou45AW1LNIiG/6sjbHsHBDRI098q
I0tH/L+W2yqgvAG91cvSdGQVewT0VWIPV+NdHXFjCwroyjl9IkKu6Qg77nhT
/UEx36jP64gjO7CADpn97nD8SR1hy4kF9Oii9tHTD+rIfx4Can9nZuf73Tr0
MKcZB7p/2OyvQw9zavN0V4mVr46w7T0wp+7dagRRq3ToYU7fPQlzGbVEhx7m
1HtE+sWsuTr0MKcjFyX2XemiQw9zmtN593HrOB16mFNetvWew0N06GFOMyda
eDk66NDDnAaEl3pTpQ49zOkN66bQhSIdepjTsKjAF1UWOvTg0/YR+aOCOhj0
4NPYMJf7SiODHnwauU3mk1DOoAefbtkWNnrWewY9+PSFTtmv5CWDHnyaWlU3
PiCDQQ8+9Zzts1lCGfTg04DY/OyrCQx68Gm3dUdcnWMY9OBTadsnY8FZBj34
dFnKsFS/Ywx68Kmr/klsr78Y9ODT91fb6OWdDHqY0dDSfq1Ofgx6mFGftbE/
vvVh0MOMTmnPN2z2ZNDDjL5YJTnUcxGDHmbUGJGw6vIsBj3MqDZVsWLyZIaw
4643o3fNo0PejWLQw4yGF9/I8xvIoIcZvdV6fraNnkEPM3qW+VAVa8ughxn1
98lMdOnJoIcZvfZtRqyBz6AHj+a1TnwW0KJFDx59lnxMbFujRQ8evRc5MiS+
RIsePLp0cKija74WPXjUYaZZY0W2Fj14NHewsDr4kRY9ePR+kFCiT9aiB4/u
/GHTr/SGFj14NMIBypdc1JIJbIM8OrdscdiX01r04NF1Fsl+xw5r0YNHf9m6
aPfQPVr04NEf7lx8kB2gRQ8unf2I+W7tRi16cOlZpylZVl5a9ODSGZ57wi97
aNGDSy+1+US4zNeiB5dyDvk+L5mmRQ8uXTlLNjJwohY9uDRJUvQPM1yLHlwa
uXfe6fv9tOjBpY97NZxertGiB5dOfz3rRadEix5cKi/+OO6MlRY9uPSw9Zx3
E7ha9OBQb411fEGjBj04dGNSyv3tnzXowaGp/qUCtUGDHhya2aIKhDwNenBo
dXbb6OWZGvTg0FdRMkfuQw16cOh4x2/cohI16MGhaaPXJEyO06AHhwqyi+aV
nNOgB4cmSYUDg8M06MGhfX13THE8oEEPDo0JrD7+LFCDHhwa4NThsHarBvPv
hP/Vzm/utV6DeXfC61FnBPErNZhvJ6x23Dd/4Y8azLMTBk57amhx1WB+nbAr
vNvNCGcN5tUJ3922fOg0riufDjiT6C/9OLgrjw5QrlZc3de3a/4OOECig79T
ds3bAf1W/Hsh10aD3/8OOJa+zcrfomueDpg+/ZLPpDY1YduraAcDcXUN/ajG
/WmH7tv3PPz3hZqw6xLWDpadlY/7pKrx/dkOd57qlm26rMZ9aIcLwpy9D46o
0b8dsrQxM63/UKN3G1x7+9OF5avV6NsG1ptvhV1foEbPNpiX4unAdVKjXxs4
jR09322AGr3aINZZqI6Wq9GnDdY7RO9tNFOjRxuoxlSdmFatQo9WWCF4NiP8
jQo9WoHn3fd8bboKPVrBJ6HpgvMNFXq0gt0/I+edPq1Cj1Y4tqAipi5YhR6t
YPVEeWvaRhV6tEDmWYN3pIcKPVrAK9A998s0FXq0wDHPk0a34Sr0aIGk8HcZ
sRoVerSAz5D5i4XdVOjRAkfejz3v2aREjy/gNSf/aqpBiR5fYPqkXb/ZZSnR
4wvMiw/hbrmrRI8vUGwzf25etBI9TNces34dcVCJHl9g2LKKqcf8lejRDH9l
Xm1oXKVEj2ZI2a3yXeSmRI9m2JnwPCVpvBI9miGs+6oCpaMSPZphV31g7k6x
Ej2a4fd4w/nSTnv0aIbpdye4zaywR48mmHLv53c3X9mjRxNIW/pOVzywR48m
qNiw5tSuq/bo0QQ/ypmXFSfs0aMJ4qxIk3ugPXo0gSAvU3h/nT16NELhpQKL
AT/ao0cj7D54uD3M2R49GuHRPWm5cIg9ejRCQcL5rN+U9ujRCIEXg2+UWtij
RyOMPmFzdKHRDj0aIPn6lW1P39uhRwMUbH+wetwzO/RogNAx+Suv37bD92cD
iLvtXts7yg49TM/PWxZyKtQOPRoA6uRJNlvs0MMIfkfX8/etsEMPI3A6h/nw
Xe3Qwwj2C75v2D7WDj2M8OfGQ+da+tihhxH2D1b4+9nYoYcRXFJqdzS0K9DD
CE/Kxt7eVK5Aj3qYsmMg0/BSgR71YH3S+slvVIEe9bC1aWLslxgFetRDhlvf
nIDjCvSoh/yUqZPM/lSgRz2UtY5qDVmrQI86sCw4a26zWIEedWA4O37lqe8V
6FEH72cUqfoMVqBHHcRZbxx5016BHnXww83qWxMtFOhRB5sLvMKy6m3RoxbK
T1lWery3RY9a+BxjHV+TYYsetbCkLrf+z9u26FEL8wvSb8ijbNGjFnq9/KU+
LtQWPUz1ji9Odd5iix41EJ7kLi9cYYseNXBZ0E/o72qLHjVwuur+Qdk4W/So
gbA27b2EvrboYbp28vrLXWSLHqbnnz23bOqQo0cNFHa/Me7kJzmJZfOvBunS
3x0mvpJj3tXg6JHwsuS+nFiw+VZDylabqfuvyjHPKvB2XxgyKkxOfmXzq4I+
E7zOFAfKMa8qSLow49Dh9XKSxuZTCcuOa1Y5LZFjHpVQyzj2NrrIiYadvxKM
b9JzLw6VE3bcvz9DtZPfjqVqOdnGFvwMQycXOEqs5ISNx+EzrD6Z/DarUUZe
s/tUAc6zG87sNchI4H9AsFER6j81S0aGsftSAeMKrvhZJMlIIbsfnyBOeOJ0
xnkZOcgCfoL2Nlq3/5CMjGP9P4FhV8Iu9wAZ/t4ph4UaR3eVl4ycYH3L4cn2
+g3l82XoWQ6Jj3qV3CYyYmQbLANFc2R80Lcy9CqDuRMqPy2Sy4grG2AZfJ7g
cWgAX4YeZfDFM+gGv0aKHh9hjELpXpAvRY+PkCbjBCU9lqLHRyDBQ2eH3ZKi
RynsGmO4s/WMlKxgPUphVtbSTI99UvQohTGPVGHf+0nRowSmRKT1HvSzFD1K
oOi5ZLvdHCl6lMCIvM5Yy7FS9CgGRY/jKW19pOhRDPsjpfdqbaToUQzNiwuv
l3dI0OMDNK3cdqX4kwQ9PsBDs7BbhlcS9PgASwdYvv7wQIIeBghnnurK4iTo
YYC3JfVR1Scl6GGA4VF//9QSJEGPIghpTfSx2ChBjyKIdp6UbbtMgh5F4Hyp
Z9jAGRL0KARf2+oc55ES9CiE6DkZoZ46CXoUwg/BV3J29pSgRyHYDbp9M7pV
TBax+b+H676DRj37KMa8C2BN+Abfhhwx6cXmWwDLfjGu1lEx5vkO0oVkuHus
mDxh83sLlwY2vNl7Qox5vYWnWeneaYFisofNJx+UyRvruL5izOMNCJRZOyYv
FZP/XnBvIDImThMyTYzz/gsH0xsNL4aLSTNb8DWIpv71UsOIcZ7XEDtigdnG
HmJynd2nPFjbb3TA0xYR7k8epAeLXPUfRfj9fQULttwN+TNHRCi7H7lw+mrN
yI8gwn3IBe6r1b/OiRWR31n/l/C/knSH5BMi9M6Bi90DggbsFpHvWN8c6OdX
uf+crwg9X8C4OzPmqDxEpIz1ew517REvw6eL0Os5/NOe1J8ZKSJn2QCzgZd6
dMXcSBF6ZIPAsEY78bmIXGfzzwKYUB65oUqEeWfCgfSKwdk8MdGw+f4NR58E
Dkuw7sozA872v7YgzV5MDrL5PYXjJ5le1fquvJ5ATxr5+p9+Jk82n8dw882C
a9kDxZhHOtCtsfYTBovJH+z8aRD6zYuDc4eIcd6HMOkh2TbSdF3DzncflMdz
7ESm+/+bh8L1wcJ6ziBTPbb/VBjf8myL/NuufpPhs/uAaWscTPez/d0FGrSo
vqepPw7bzx3ofWRTVA911+fHw83Dzw5stjXNx37eDWivSfOYI+qqHweVOb4/
n+9mup+tdxlmDjN/s8O86/loGO7WZlPaLiJ/sPdHQNOMmGMFDSL8/xEIH9vH
aV2lKX/2OhDu2bV5hBd3eXA4d9bk316TLyL/B4Mo8dA=
"]]}}, {{
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.33333333333333337`, 0,
0.33333333333333337`]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}}, {{
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.33333333333333337`, 0,
0.33333333333333337`]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}}}, {{}, {}}}, {{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]],
Line[CompressedData["
1:eJw11wlUE9caB/BJSABpK4qIiAgVi4ACVYu4PPS7PhY3lir6pEhFURCpIio+
NyxUhaLWikWt4ArF5dmCiNqyKAE3QMEFkE1ECGFNICsJ2R8wH/fknJzJTO69
3//3ZU5mWtiuNeFMiqJcGBQ1/D46LJM2D72Y5LB5zrK2Q8chfxJDvtl79Pgc
TLF6GezoxCT5Non81flXoWerPqrx89HzWWAV7vXtPhGDpKcNj/9Bb8aThZoa
Bl6fA8kNfiHR/zCIYPXwJ/dA+XOS5FU6A7//AOaXqzwm/sggJvV/xCw2+QcU
y7yPrtw8Ol8B+ATMNN3hxSBOIWeeDDg+gpc38twPOYzOXwzCJV5r9pkwSNbQ
t+v/KAF+Sn7p930UrlcKD+Ni+N+8pcg3I+MpxN0P9xjMo3D9Z5CQtNDxz/MU
eTrgOLTCc7hlvtTJ7wCF+ymD6a9+LWkJpsiakQXLwXKect+mxRTurwLcLW0b
qm0p0nZoeMKX8Hl7ZJw7k8L9VoINf6xuUoUedg9vL6YKwjJb2bdP64He/2tI
SsrZYrNGD7TGWwhauupAnIUe6Hregmtoy72nTTpYPrLAO1jLqTg1cFUHdH3v
YFzfyV8nbNHB8GohZ6qh9eHFAFsHHdD11sCPQYt3W/G1MFJOfQ3E3t+ZaXhX
C3T9tWDYcuVqxx4t2A5vx+Y9nLye6lLgrgU6j/fQ6T1/+jGVBrZFDI86GPTZ
EupdrAE6n3pIXne/inFUA8OzmefUQ8LqwPBCbw3QeTWA5J/XjrvHaEA+PN1A
A4imttk7VqmBzq8R6vyX72tLUcOSkQmbIC/r4qJra9VA59kEIQvNs7ZYqmFk
e4kfwOZUYu/sZhXQ+TbDL+42q8dcV0FV5fBohhkRwfbCLSrM+yOo0nuKeQ4q
mDiywRaIi70SL+ArMf8WuDg1tMY4Vwkj04V8gndjnGd7xCrRoxWe51hZnFig
xHpawbF3m6lEM4g+rVBacTr3YOkg1tcK66K3XrRLGkSvNvB55RcjXDmI9bZB
tMlOAdd0EP3aoCii95W+VoH1c4Ef7NW4PF2Bnlz4dezd3pJQBebBhZOao9wo
ewX6tsPvn4ruruDLMZ92eGZ0wn/TPTl6t8OYdaLye/vlmBcPbL5OnL90iRz9
eVAmd3syni3H/HjATZmZMaNyAPuhA441vZx6LHUA8+wAf+PK1JkbBrA/OiDZ
NWrPl9MHMN9OcI0tWhzJl2G/dMLB0hkp7AcyzLsTfrOgrDVxMuyfLqie6p8d
4CPD/LvAy/jxLNY4GfZTF+T4Pb08tUmKHt2w67TW/nqWFD264d6JMtOUXVL0
6IbQCZPLxYuk6NENTiU5HRWGUvTogeKYn2dNrZGgRw8ozEp/EV2ToEcP2N5t
nb1ipwQ9euFVaeoB539JIGXEoxfa3dTM62Mk6NELpmNT7/+vQYwefOAvqsoP
uC1GDz6cbT+YevGAGD34cCbR2vbUCjF6CGAZFXjJdYoYPQSQLT/098k+EXoI
IOnty7RbJSL06INJ2TaK0+dE6NEHz78rs1y2XYQefXD+j0Jp8xIRevSDfk66
R/BEEXr0w6cWT+p8oxA9+sHxUnh87EkhegihY06hffRiIXoI4XmG+dVrkn70
EMJ3d3budLrTjx4iOB/tuvXrrf1Yjwh+Vzo7NH7Zjz4iiN/8rG5Nax/WJ4Kw
2CvNVZl96CWCdRur+D9F9mG9Iti8dr1nzpw+9BNB5bTfVlzSCbB+MfSnpl2/
/EaAnmKIS3/EnXBDgHmIYfu5yX6x8QL0FcPCKSufLQsVYD5i8M9a0DLPW4De
YmimLpmMnSvAvCQwddnhx3UzBOgvgSrBG3bHVwLMTwLL1v9oZ+AqwN+nBL6Z
WPH0vpcA85RAzD7TQ/d2CLA/JFD5kRen/VOA+Uphyu3je0980Yf9IoUvXSyr
7e/0Yd5Dx0GLHlrw+rF/pKA0HprbXIT5S6HwkVXQgQIh9pMUJoqNl8SuEKKH
DHhNbAhtHPWQga99lKfb9lEPGRi8f2jaPzjqIYP0yPE+PyePegz9bt/YRaom
jXrIIGjuosaltwToIYMTtY2t691HPQbAIfpStvtzPnoMwOqQ2KCGQD56DMDX
5UHd7txe9BiA8FSP//jG9KLHAEgCd5010/WgxwBssAg4fuxUD3rIgd2+anKa
ZQ96yMEvwI343ehGDzl0XyyVps3pRg85OFgFwcHHXeghh3Ai9OpY3oUectD9
bebZUNOJHgrY5NKX7ruxEz0UsNLSt86juwM9FFA84VT2H7s70EMB72es+yJO
xUMPBUjtZ1qXHuWhhwIy310Yusfz0GMQXliYTos/244eg5CmC84TTmpHj0H4
a3vynEdXuOgxCL6n1jm32XHRYxD03ibHNtxqQ49B+NCZH+U4qw09BuFPz7Zo
75xW9FBCZvPePbmzW9FDCU3/jdr0Zusn9FCC6KbxvpqIFvRQQo2l2UDUto/o
oYTcK1nfn4toRg8l5BQ1Vvtv/YAeKkh+r7ZK39SEHioIWPHh4n83NKKHCriM
jd4daxvwfqkCZ+/w212+9eihgrivZ7yL96xDj6Hza8f75y54jx5D/wsOhH8V
51yLHmpYG5hc1mlTgx5qOFO9ZJzMtBo91OByrfmb2/q36KGGOGvGftPmN+ih
hiNqrtz17yr00ID++HcTC06/Qg8NWCu278sPq0APDbgkbLBdMK8MPTQwvuDy
bk/2c/TQgGHgNrPO6ifooYEOnQt31tUS9NBAZmHBx6WvH6GHFu7VcN9kbshH
Dy04p9bPSOXdRw8tpARuGbu+Ogc9tNBwpMx9TM0N9NCC+6wfTJovpKGHFigT
nwkPPh5BDx08WOcclbcrkUN76IBcyjO5IL/MoT10UMhrlLhl3uLQHjpYXxV+
YXFkLof20MGx+rNnFcyHHNpDB40eJ4/MySjg0B56cDRWVdX+u5hDe+ihvvNk
TsfeUg7toYeE0on5+rKnHNpDD1dacz5mT33BoT304LrLP68jtpxDe+ihslDB
vFL1koOPH+TGmdP1FQ5VHLoeiqQc37g37NgbDu1DkUf++XdcRW+xPoqcO7/i
cpBtNYf2okj87asnZgbUcEbKjaCI6W/XPrseX8uh/YaeA3bcaHiQ+55D3x8o
0vCLy7Ot3DoO7UmR2qNHiv80b8A8KBJjvag2cVkjh/alSLuP1EV4qAnzoYgm
9aYpL+cDh/Yeeq6QLWzY1N6MeTFIrpmICrNs4dD+DGJxvt6a5/cJ82MQX7cp
AvHSVg7dDwySZKpUu35sxTwZJGHa4b9uHWjj0P3BIK0FlfuDzbmYL4OUaxPa
vXO5HLpfGMR6qXdCpG875s0gHvdTe0q62zl0/zAIuRzx3C+Rh/kzyKONgqdf
2HVw6H5iEOYOj2v64g70YJLab7+YYhfSiR5MolH9wIpVdqIHkzisjZ0ju9CF
HkyyyueznzLcutGDSSIWpzcdqu7G/mMSf7dKl/iYHvRgEtcg3z3ZY3vRg0lC
lyfdYmX3osfQefW22mOr+OjBJF8ttzea2ctHDybhTdaulScL0INJTHyopi6H
PvRgEjBpyte+6EMPA/LaMd1qfkQ/ehiQvIwE11S2ED0MyCzmK6fxN4ToYUA2
ZpROD7IToYcBOT7JkTd/jwg9DEjWzekHHZ6I0MOA7LbdlDzDTIweBiSs3LzQ
LUyMHgZk5kFh/uo8MXoYkMfh1NwjTAl6GBCv1Ju1f6+RoIcBsZDGrdFlStCD
RZJtlocGSiXowSJdd3m5Dz2l6MEiYXPd9V+dk6IHi6y8acHK4EnRg0WyfvM5
7DRPhh4skp75vV1xogw9WGRzWVH+xjoZerDIxeZDehOHAfRgkSUVmwqe7B9A
Dxbxsaq+k1g+gB4sQpk9TwucLEcPFilyfOjnHCVHDxa5oLpwxrRIjh5swrhW
6aT9TIEebCIIt+qWhSjQg032Ky79Ls9WoAebpFUXGDL1CvRgkwkOtuxJ3w6i
B5tYGudumZcxiB5sQmTxshDJIHqwCftu+cnTnkr0YJPMqDbVi3NK9GCTHYvd
rcZ0KtFjaP024ATOV6EHm0QUHS69maxCD0My236rktGkQg9DUq6OJOGz1Ohh
SEx3dMe8jVOjhyHx0TpEeL5Wo8fQ9XV+mse2GvQwJJolwePIbg16GBLr1dMS
Kp5o0MOQ+HZ7zQw216KHITEqdu0Xh2vRw5DsKjD5K+UfLXoYkgvRpV7uY3To
YUhOvJKkcYN16GFIGsSi0+f/0qGHEfFbVGQQoNOhhxGJDFO2jP1Wjx5G5PM2
ucH7DD16GJFnm6+uz5Dq0cOIJOYVfiqwo0poDyPymlE57uYqqoT2MCKpUcFz
z8dSJbSHEck4zFrw8xWqhPYwIsFWORPjXlAltIcREd74kbNXSJXQHkZkudMn
p2hLRgntMbTepQMrfljKKKE9jImZ69wJP0QxSv4PGq9G7Q==
"]]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549]],
Line[CompressedData["
1:eJw11wlUU9cWBuCbOYCCUpyoQ6UKKOITRESL7mNRqhZEhSoCKkUmsU9waKuC
SqsoTlUL0joXK2gdkIeiUNQwiGAFZBRERBIChBlCBjI/4O6elbWybpJ7ztn/
t+9NMj0ocn0Ik6IoewZFDT//OwrmjRp6jCbRFmlfCQ8chWvT911NqRqFx4nw
j9qnpv7yKJI1Na5zXdY1mLYjifEq+N/3b8JPohke2+eOIpcuDo+/oPhSXmDm
oAl+Pg1SHVZvuVVgQrrWDb/yP1jgp3y16KwJnv8IsjavOBrmb0KMa/+MWmL8
BJjOywV2tiY4XzYkaycqfpIbk1kBZ/Pltk9hX++RlpACY5z/OYztXRFXdd6Y
3Bw6u/bPXEg67s4sCjTG9fLg6O+B2a7zjMn8kVEAb4oEjg6UMa7/AoSrnk5J
LjciBXLboRUKwWjNTM8TyUa4nyLYfLfrYetuI7J+ZMFiuO9tG/R4uRHu7xW0
3t36s3y8EREeGJ7wH8iByRuT2/m43xLQhz12efKUT3YNby+qFNiRGxOczvFx
/2Vw/rRdy/hgPqE1yuFBwfOn/i58rKccopfFPqFG88nKkQUq4GpAeCxLxMP6
KsC64FnZt094ZHi1gLOVMDFfETzpDA/rrYKl4odmttt4ZKSc2iqI3VFx89Qi
HtZfDZtCzjC/HMMj04a3M7UGSr1yTVe1cTGPGvhrt/Xja8+5JCx0eLwFiUtW
J0niYj61ME1tdtt+J5cMz2aRVgsu+e8lQe5czKsOLPM3pTdO5RLF8HTyOvCy
a2RfV3Iwv3dgWPNtX3I5hywdmbAernRaxLb8xcE860F901AQdoRDRrYX9x6o
h1fLrDdzMN8G2PYx7tFnCzmktGR4NMAp5djT3mM5mPcH2Cky+u+zTjYZN7LB
RpiQsDYq4CUb828Ep0m/PpibzCYj0wV8hKQJ0uWOMWz0aALj3uzVIRvZWE8T
fN7HeV/oyEafJsjoiDJbb8rG+ppg1t5nFL+DhV5CuAQxL1sKWVivENaK0n5o
T2ahnxAMW0Jnjj3EwvpFEP4mQOznx0JPEWyIPZH/wpmFeYjgcVnaa49PWOjb
DOLRQl5/LxPzaYbOTE70gxImejeDl+nqGcf+YmJeYjgbc063+xgT/cWw5Jcq
9Z5tTMxPDFNeHDQ6TpjYDy0QZJppdmcKE/NsgSUVv3fWqxnYHy3gYrdr94Q6
BubbCifGl0VuzmRgv7RCfk3izTu/MjDvVrjcpyrURjKwf9rgWXlIzDpPBubf
BrqKZUGpsxnYT21wzPsuU8VjoIcEDBzjOvcWCj0k8IXPsdVn8in0kMDmbwLS
Xl2n0EMCm5x5X6piKPRoh8xdZM4kPwo92uH9/tL91gsp9GiH47fHfTrVgkKP
Dvj7ojRfJTTAuRGPDvA0Lxg8dNkAtEcH7PlD3/nCxwC0Rye4rg/Y+mK0AWiP
TgjKr8/5/qUeaI9OWFMu4FUc0gPt0QW+JLah1FkPtEcXRFwP8t/WowPaowsu
N9/6LD5FB7RHNzQSlZNjgA5oj24o7i7RbjDXAe3RDe0bg2Z2FmmB9uiB8h+b
fhHFaIH26IHXszjz5zlogfbogeb/pfNeijVAe/TC7S8iGhJ/0wDt0Qtee545
nF6lAdqjF/xHM4wuqdVAe/TB3TvDQ4319MGDKQWBtzepgfbpA8ZNd6tonhrr
64P5s23s+I9UQHv1wcHEqdEOW1VYbx+s9v96fg1fBbRfH9iP8S0qSR/E+vsh
SmMp7dwwCLRnP5x+7bzBoFZiHv3g6pRy658rSqB9+yHsnqst11WJ+fSD/YLU
6f51CqC9+6GeyS/fskuBeUmhtyXj9UmuAmh/KbymalwdfpNjflJwCeWd224l
B/r6lMLRxOzqnlQZ5ikFbYUJp8lKhv0hhYVhF5NdEgYw3wFoLn1UEi2VYr8M
QH3e1k+XOEkx7wH4eGKNzQabfuyfAdDzuyDLog/zH4DCp5a++7J7sZ8GYEo/
f+neVb3oIYP2eg5sfdeDHjL4fmaEm9P2HvSQgVlNplnPYDd6yOB++Fj34/Hd
6CGDPW+swtUTutFDBhGOi98tu9WFHjI4W/2uaaNzF3rIwXXn5fvOhZ3oIYf1
AXt967w70UMOi4p9Jc6iDvSQQ2iC6waPqA70kMNEn8jz5vp29JBD5Hivo0dO
taOHAkybv550cWI7eihgrZcT8UyRoIcCdL/nDVx0kKCHAuZZ+sL+Z23ooYBI
0ru8ZWUbeijA4om5W11VK3ooIdy++5LHllb0UILXRI+3rpIW9FBC2Sen7v+5
qwU9lNBu/c3oGLUYPZSgnzl7ct7PYvRQwt2KJNhpLEaPQagYbzb98Plm9BiE
63q/jN4JzegxCE+2xzs8vSpCj0HwOPXNHKGVCD0GgedufMT/lhA9BkHYmhVh
aydEj0HIcBPuXJHWhB4qSGnYszt9XhN6qOD9DxGBb4I/osfQdZXK/74qtBE9
VFA30VweEfYBPVSQf/Xm5sTQBvRQwaOcd5Vrgt+jhxpu1GgsLwXWo8fQdb7q
/e8/+L9DDzV0MLasaPGpw/ulGjxXhNxu86hFDzUc/o91xWG3t+ihBkefsWvS
XWrQY+g+sy9kRsycavTQwHfe8UWtU6vQQwN/VC4dIzOrRA8NLL7eMP+2oRw9
NPDLZMaPZg1v0EMDCRqRYu7jUvTQAjtu07jsM6/RQwublNu/zwp6hR5a+CLW
f5rLgiL00IJl9pVdbpxC9NDCBu8w89bKfPTQAtNgL7K7loseWuDmZH9YVvYU
PXQgrhK9ueGfhR46KE+otU4QP0QPHRR6bzPdWJmGHjoYPFjkbFSVgh46+MNu
h3FD0kX00MFME/dPHn04iB56yPWeE5ERGSegPfSw6HKGcZLiioD20EOg+J3U
6cYtAe2hB35pSNKS8HQB7aGHz2rPn1cyMwW0hx7SXU8edEjOFtAeBhjHV5dW
f/lcQHsY4F7rybSWPXkC2sMAbnnjsgxFBQLawwA+TWkf7k95KaA9DEBFrslo
2VssoD0M8OffSubV0n8E+PeDxJ89U/vKplRA10ORQ0e37Ak68kZA+1AkfU3W
nbl95VgfRaIurLriO61SQHtRZN/taydme1UJRsoNHfoeP3/d5I/D1QLajyId
36XUPUqvEdD3B4qUnbZ/ESx6K6A9KVL+88Hndy3qMA+KhE9eXB331TsB7UuR
JvcB+94D9ZgPRTQJqWbitPcC2psik2WL6gKbGzAvBnlg3kcFTWwU0P4MMupC
7WSx50fMj0G+cvq0q39Zk4DuBwY5ZKbSzP3QhHkOHU+Pvndrn1BA9weDNGaX
/OhnIcJ8h3536WKbV6SLBHS/MIjpshWx4R7NmDeD2DxMaM+VNAvo/mGQxVdC
Cz3jxJg/g6Rv6SoYbdUioPuJQdQ7XK8bnregB5MUrR39qVVAK3owiVy9g71X
1YoeTDLDZ6+DLKkNPZjE1d3kp2QnCXowyboll+oPVEqw/5hktVOJ/eGodvRg
ktm+Hrvvm3agB5P4rDx2i32/Az2YxFYTVn3k6070YBKrlTN5szs60YNJPkzS
+Sjiu9CDSRjuVH2bTTd6MMli4/os3ctu9GCRYttLlgtDe9CDRdKSY+cmcHrR
g0VmMF/PGpvSix4sEpCc97mvVR96sEjsBFvxwt196MEiyamf77fJ70MPFoma
Fhhvbd6PHiziV2zxt1NQP3qwiPX+3qx1Gf3owSJPQyjHg0wperDI8oTU6sfr
pejBIqMGYtbrb0jRg01ipq7c6j0gRQ82ET0Qp2e6DaAHmwQ6OhtmJA6gB5tA
6nh2sngAPdjk2q/u0bMWyNCDTRJvbLZ6HidDj6Hzi3KytryVoQebnG44YDC2
kaMHm7i8CszO/1GOHmyy1LLyTlyxHD3YRDe28KL3JAV6sMlj20zPOREK9Bha
T5101ixHgR4cQl0vmaUzUaIHh0hCLCWyACV6cMhO5eXfFPeV6MEhJyuzuUyD
Ej04ZIzNNM6EtYPowSEW/PRtC5IH0YNDXGWHZQHSQfTgEPaD4pNn3FTowSGJ
EUL1y0QVenDId0ucLY1aVejBIbuFIPBeqEYPDgnOic5LjVejB5fYzAxWMerV
6MElxZpwEmKnQQ8uGfWdJKo8RoMeXOKuswl1K9Ogx9Dn33pqn03TogeXqJb6
jSG7tOjBJWPWTY99la9FDy7xkCyf7WehQw8uYT+f29MfokMPLgnONr537okO
Pbjkws685c5GevTgkvjX0osiPz16cMnb/r4zF+7p0YNHVi7OYXnp9ejBI9uC
VI2maw3owSNcoYJVk2xADx7J+fbaxuQBA3rwyJGMvz9mW1G5tAePlDJKxqR+
TeXSHjySEOHneGEvlUt78Mi1aLbL8atULu3BI5ss08bFvKRyaQ8e6Ug5JNjT
S+XSHjziPuvjrJ0TGbm0x9B6l/et2rGMkUt78In5XMdPdkQwcv8PMzEYvg==
"]]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]],
Line[CompressedData["
1:eJw12Al0VFUSBuDXr9csjLINiogoKiAigozKIlWDBhA5IODgEkBPVKKiyH4Y
QBEniMQBHBYBDatBRVBAtiCYBhIIErYQICHEkH0jJJ1eku5OunvevffnnZyT
k+29W/XVrbovDyZ8PP5dXdO0PiZNE5/vXBlPxhofbXhhh19HlCxIolEfDP1s
U2Msvl5Lud/PeC46L5bTui69NS5tM035a3tw3rE7P0+lur9fPVy2LZa/3Siu
nTT3Zfvcl5fd+f1fSUse2P+PD2O5bpz4zj76MmNaQ6/xd/7+AHUMbdr9zTOx
HJ0nHnSYtjx96X3z/Xfud4R6zdB7zNBjudekVSd9PY/Rvp0DygurYnD/dBpc
NnXbi+djOFUs8/vjdKrLximHfovB807QmInZ93XfEMNPySuDClaF8ld9EoPn
Z1LCn32/aU2I4QxfT+MJp6heT5jw/sgYrCeL5g9Ze/e1PjE8Xj7wDOnzTp8f
1j4G6/uTVuzxJ+/xR3PJAnHDs9S+5rGRXYqisd5ztPWhydblGdE8Uyxvxnnq
I77/UzTWf4H2rzuxOGFlNCuNSzTkomfIxdnRiOcSnXY8Ghz8ejSPlA/IofHD
Xjv809BoxJdDNxYmz+n4cDSLp01adZnePnis3+dR0Yg3lxrqxRXFMpy8XFrQ
88Hd8VeiEP8VEuGeORLFD4jldL1KK79b+ug/tkQhH1epg+BNiuLEqeK6Rtv/
Vrv1bx9EIT951GdklykLx0axuFuHX/PowJIx91UPiEK+8mnI0c/yX+kcxU3i
dr58yvb+tu5ExIH8XacJT1SMf6LCwUPlDQuoKLHT3d+ddSCfBZRo6Nr3Olgu
b+kNchcYAa9zIL+FNF/G4eDz58RVSOYxxZYxbzmQ779o1bJ2J3+Pc3BHucAi
6nTihcU9ejuQ/yLaGpxnCDtY3m7STeo9YGdAa7LDo5jSPrpx6KMbdsRTTPxj
mzkFx+3wKabTxdRvxA92xFdMEzvPqt//lR1eJVQ0IXVXt5l2xFtC76249t6K
iXb4lZBLAtsRfykt1IyKftAOz1KyDvpoa67NjnyU0urZWyZznQ2+ZXTPLzmd
f8mxIT9ltKPSnH/vYRu8y6hvt6fXfZFiQ77KKe3198Z7ltjgX07Pr/n2rrcS
bchfOWWLT6NtqIcKGmeLLB/Y34Z8VlC5CLeTDfVRQe//+21L+5AV+a0kwbu4
1Ip6qaTP6rI+rcuyIt+VFC3K+Rcr6qeKVr/5eODUaivyX0Wdje3bf74V9VRF
P17+2ojYCo9q6ifa1fNWeFTT0Tjf7fk9rfCoprjFPXZVtLHCo5ouyoAt8Kih
ePdXjzjzLfCooZLe6aW90y3wqKFp77q2bPjeAo9aatosNrCFv5YetSSqedZ0
CzxqKabdsryiCRZ43KI1Lx1Z+9JACzxukQy7qwUet+in9PvvesRigUcd9feP
Pfe/GjM86sjYvcvDF8zwqKO4aQeGTztghsdtuphqAG80w+M2TSq6x6hoMzxu
U3mnlz7d944ZHvU0fdwng7uOMsOjngJGt0rua4ZHPX2eWXKwuYMZHg3UJtx+
9jtBHR4NtPGZ4U/m3NTh0UAPzJx/+7lTOjxctPtncemIx0X9ygsTO32tw8dF
fxjhJs3VEZ+LRr76z1LXGzq8XJQjeFlHvC6KP7tj0tlHdPi5SJTzMzE64m+k
j+WfmeDZSC1i+14zIR+NlLTXiPioCb6N1MZoV7VbTchPI23onps98QsTvBup
m2jP00zIl5v2fmMEPM4EfzeJcbTpaRPy56aTUSnHo7qYsD/dNOr5C5/MM5mQ
TzddWWRs4EoN9eGmSYeEsIb8eqi64Z2Dx/ZpqBcPze61flav9Rry7aGwGEiL
NNSPh5altNTpCRry7yFjGP388QgN9eShFGP3Fj6uwcNL3V9c/fCL7TR4eCle
hNcQIeXhpdkGX9zvEVIeXkqSz4mQ8vBSyhSx4AgpDy/tFu2lc4SUh5cyXxAb
LEzKw0eXxXjYGybl4aOqx8RACJPy8JEc78PDpDx8dFdbcYVJefjooaS5X9Xe
CJHy8NHg5uvWzB9CpDyaaLQ4j8wMkfJoonhx/hgSIuXRRLPEecMeIuXRRMni
fHG5lZRHE22WgK2kPJporzg/JLaS8mimLHFe6N9KyqOZrorzQaiFlEezOg+c
aSHl0UyamP9rWkh5NFMHMe+ntJDyaCYZVc8WUh5+ek7Mc0+QlIefxor5nR6E
h5+minm9PAgPPy0S8/mVIDz8tELM4weC8PCr+VsbgIefjoh5eyAAjwCdlg04
AI8AFYh5OioAjwBVifnZMQCPgJqXxX54BKizmI+7/PAIqHk4zw+PIA0V84/9
8AjSq2LexfjhEVTz7VozqX4ZJLEdpm5rhkeQ5Hb/sBkeRpxygzfDo0XNJ1Mz
PFpIhn2uCR4tVCTmz/omeLSoeZPQBI8Wsov50qcJHi3UVfD6ffBoVfMjwweP
VhouynmFDx6t9IaYD6/54NFK08U86O6DRyt9Lvp/vRcerbRW9PsjXni00o+i
vyd54RGi30U/H+OFR4iyZcBeeISoTPTrcg88QiROk8l7PPAIUbToxws88AhR
N9F/4zzwCJOo5k53e+ARphGivxa44RGmyaKf7nDD486+dMMjTP8R/XKwGx5h
2ij6o80NjwiJ3ftkTiM8InRc9L+URnhEKFcCN8IjQpWiv/VrhEeEWuQB2wWP
CLUV/SvLBQ+NHxb9arUL8Wg84JiYuC74aDyqb/y9rT1ciE/jNNl/GuClsdx+
CxtIhjtV41jZXxrgp/EQ2U/q0R80niz7Rz08NVb94jbyobF8v0i8DV+Nr8t+
UIf8aByeK/Z/Hbw17ok5rvJlYnk+T78FfxPPkfv5FvJn4lS5f2tRDyZW+7UW
+TSxPN92rIWTiTvI/ViD/Jp4mNx/NagXE0+V+60a+Tbmktxf1agfE++T+6ka
+TexPL+tr0I9mViX+6UKHjoPkPujEh46T5D7oRIeOi+S9V8BD523y3qvgIfO
F2R9V6D+dPbKei6Hh85dZP2Ww0Pn0bJey+Chs5zvM8rgofNmWY9l8NDZKeuv
FB4618l6K4WHzrGyvkrgYUY9lcDDzG9ud6656i6Gh5mXfimuYniYWW6HrsXw
MPPPsh5uwsPMIelfBA8zj5Hef8HDzJulbyE8zFwtPQvhYWbVP2/Aw8wrpFcB
PMys+tt1eFhYvp5n5MPDwtNl/vPgYWHVT/LgYeG2Mr/X4GHhWXLdV+Fh4TSZ
vyvwsCBfufCw8BSZn8vwsCAfl+Fh4cgg8cKdAw8LjxXjd+4leFj4WRnfRXgY
52oZz3l4WHmpXH82PKzskOs9Cw8rp8v1nYGHlePkek7Dw3gPkC/8p+Bh5S9z
bcYbUgY8rDz6w8faDGw+AQ8r51jEgDsODyuH5fr/gIeV28nfPwIPK2/YNHP/
pdRD8DC+viAm0n54GO9JEXHtgYeNOWHl6L7xO+Fh47RMcaDYDg8b/0v9AwIe
Nnb0qDzj/W0pPGycOmhJ+2eXvO1UHjYuzfzBeONZ5VQeNn49RR5gnMrDxqPq
/mucCHY4lYeNhxnTZWL2LqfysPE2427tn93nVB427m3sroXJB5zKw8aDZIM7
7FQedr65WARw1Kk8jPdacZxYku5UHnY+Kuv5uFN52LmtPP+cdCoPO8+R/TTT
qTzsnCX78ymn8rDzE0b3u7kyy6k87LxEru9Pp/Kwc4P6v4lTediZ5XrPOZWH
nQ+K1/+nLjiVh/FeLtd/0ak8HDxQ7o9Lzv8DXQ3PJQ==
"]]}, {
Hue[0.37820393249936934`, 0.6, 0.6],
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]],
Line[CompressedData["
1:eJw11nk8VOsfB/DZR9ZZWkgbpbTQlSxp+T5KpVJX3VK5WrQpLZablBZSbr9Q
qZT2TdttcRNSkSIpXXuhQbKP3QyzMMz4Yb6ef+Z15pzzPM/38/6eM2O0xWvV
dhqFQjGjUij9n4MjcW/pq72lfHJ4aMziyoCTcIxIo2vyB48j4U1d6hjWFz55
PSakaeXrWzB99MPMwneD5++Dr7RU4RLHJ9eu9o9/oF63NT388eD1MTA9ma46
dJNPmlf2fxMLNtt+W2R0YfD+eNhc1Kod8jefaBZHe8/VTIT1KQ2XHgUMzvcG
du6epgzdxyeT3c6lSU2TId21wM5iy+D8KbDF2HHijTV8cr/v7uLoDzDF3uxQ
tuPgeqmQU1SdnzGbTywHxkcotBEknDYfXD8dHO9GXBxhxCcfpaZ9K3yCSc3+
6T78wf18hiWy8LNXmXyyamDBLzDtuMAkQs7D/WVCmP/X5y4NPFIZ0D/hV/it
bIddawkP95sFAp5n/tosHvHp3553NgQlOOyOfMfD/edAcipLcj+GR9QaeRAU
ZuUUepuH9eSB6dVzSxZG8IjjwAL5cGnxh8SiIB7Wlw/1ZYz14MMj/au5nSsA
u8D0ukB3Htb7DcLWj+JdXckjA+UUf4MZfPeTYfY8rP87PLl9+ddaCx4Z27+d
MYWQt/xXimocD/MoBL6w6lUQh0c8dvSPIngdZe5S3svFfIrh8OKzJvptXNI/
29CYYvDu3PTYvJyLef2A1peVbsbZXCLrn076AwQHA5I7kriYnwByY1Szo59w
ybyBCUtAY5NomcVVLuZZAtaxSetuneKSge2FlEJ6Q9vXRj8u5lsGaXP82CO2
cUl2Vv8og/9ev/cav4qLef8Es9Bedw7hkmEDGyyHwNwVs8rNuJh/OVhY/1x+
xpBLBqZz+wWScwbS0UO46FEBrHOC4xEyDtZTAXe+BTrUVnPQpwICfceFjcrn
YH0VcE///l3rFA56VUJMW0O+5VMO1lsJ57fUbx16hYN+lTC5Muvmj5McrL8K
pO9Hpgf5cNCzCiJXZBrobORgHlVQD+4VR5dy0Lcabh42WPfNmoP5VMMFn473
OuM56F0Nw1nFa8z0OJhXDQjXuT3fJtND/xrYG0ZRzsrRw/xq4OSLkdzSB3rY
D7Wwb1fBRsejephnLfywMXMNXq2H/VELb9sdDpyeqof51sGd8GMmG2l62C91
kLkiVUAR6GLedeAbG8Pw/VcX+0cICdKSES9DdDF/Ibg8YoWk/qmL/SSEsVPX
p9yx0EWPeigIumHtzNZFj3o44Rbgnlemgx71EJXyNs7opQ561MPC6SejHU7p
oEcDRH28+XiWmw56NMA+XtwcqoUOejRA/NxrpdeZOujRCIa2N+iaJdokYsCj
EZZ6vrdyitFGj0Z4Wj5UtiVYGz2aYMsIjawVLtro0QRacbHzOVO00aMJxtDN
Gh4ptdCjGb4kiFYNz9dCj2bQiZui73ZfCz2awdBpbNEhfy30aAFSHDbde6kW
erTAiQLtbBithR4tcObOqQ0NbZro0Qpe4qjLe9M00aMVvlRSrLIjNdGjFeKL
jJQaHpro0QbThnolGc3SRI822MZoddDX0kSPNrAbneDfUjYEPUTwbKHX7Hsx
Q7AeEew4X3XcJmgI+ojAbVTA4piVQ7A+EQQnF1xkjx+CXiKQzVwa4CDRwHpF
YHAkYuSOTxroJwLXy3Z3917WwPrFMGOPi6ObhwZ6iiGiUbXW0lYD8xDDl9tt
EyUaGugrhuGNww3vCNiYjxh8n5o8sX3CRm8xHFtj6Po+gI15tcNBRVaq1TI2
+rfD9abtp28asjG/dnBcVOHZ2cTC57Md0h79NcMxmYV5tgPLoDPlbDgL+6Md
NoyaTctxY2G+HeBzy4GqYcbCfumAObtPf5+nZGLeHRB6X+Px/mwm9k8HhN9a
mfT0JhPz74D5Pl7udXuZ2E8dMDEwkTJpHhM9JLBgxkGety4TPSTAsgoxTi9n
oIcE7ENu5Zj8y0APCRyp/vdTVCADPSRgsK4uY5QzAz0kEJtz9U7iOAZ6SOCx
yZDpu8V09JBCY5DQ1S6Njh5SKLd4O8L0Ih09pNA+nr3FZhsdPaSwb8fqubut
6OghBXNzRWwGi44eUtDwy/zq9IOGHjJ4Zx16gfKEhh4yuGu6hlt7mIYeMhA8
zV6iXE5DDxnYX7S3dhpHQ4++Y9OET9/bqeghg+7Iqh9XP1HRQw65x2fCrStU
9JCD+8z0uJrdVPSQw5vyrSVeQEUPOdgq382Zz6eihxxePriweKOQgh5yqPA3
dMxIoqBHJ2w+emvXkQgKenRCcKxNXPB2Cnp0Am1CBbPUjoIenTA/6fXIUxwK
enRCodZsOje7F9QenWCQpElSD/WC2qMT1sRs3mw0qRfUHl3gt93puGWhCtQe
XZDrMmRn1wkVqD26oPisbfB+SxWoPbpAbPKy7kG1EtQeXXDZUuhyNlIJao8u
SJN8JeaLlKD2UECzjW1qSGcPqD0UwM/JeBj5tAfUHn3nU+l+rpt6QP2+VMA6
b5VHEb8H1B4KWLRs1EF2ZjeoPRSg0jDZ2HysG9Qe3VCy6FDUCatuUHt0w9nJ
Ozz/a1aA2qMbdO1ON6beV4DaoxsE0bbKbRsUoPbohj09NRteDleA2qMb3n73
vPcorwvUHj3gH7wM5od1gdqjB7oSPoUFLuoCtUcPVEZ//uRG6wK1Rw8kPEgY
VpzSCWqPvrp/p15oOtyJHj3gKTkzP2pWJ3r0QFV4xfhiuRw9lFD0xmDK41dy
9FCC1OfNAvYBOXoowSZwmpvYSo4eSogLn7Bxq0yGHkpY2p1k5ZooQw8lvND3
KCg4KEMPFZg/jDf9aidDDxW8E/yynKuUoocKFlpay00/SNFDBcm3/ggMPSFF
DxWM9Lap3tj33Ko9VCDImrkwWkuKHr3gPjz12+o8CXr0guEv46/elyTo0Qsl
tXQfiasEPXoh5Wj9mJ/jJOjRCwdiz9qaCjvQoxcOr7ax+Pa8Az0o5LNBaWjp
/g6sh0K4j5YXzZvTgT4UsvOoc5yC3oH1UcgP76g87ax29KIQ/6Ufmnwj22Gg
3B0UslYP8qdsaEe/vuudiNuMie2gfj9QSPOz4AOn2sToSSEdclN90zdizINC
aiNDFvNOiNGXQuwCKvQdlosxHwrJ9raNSRohRm8KoftQbPyrRJgXlazPE7Tt
fy5Cfyq5XLnMOO6gCPOjkqDrhyb85iDCfqCSnIzCdY16IsyTSmJXPvvzQ2Ib
9geVXDN2mj3OuQ3zpZLrS2P/FNe3Yr9QibOPdflvwa2YN5W8l+Z2lRq2Yv9Q
CXWnr6ItoQXzpxL7MwHE07kF+4lKhItHEMemZvSgkejYhKBTfzejB42Meeh1
w8S4GT1o5EXnERiX0oQeNDL66KNJfq5N6EEjm7XSxhvLG7H/aMT/qjHfJLIR
PWjk0PGxtYctGtGDRjRpEVcm5DagB40UsJ1nj97bgB400m3/uWGrVgN60Eho
yF85sn/q0YNG9I8dMPruWI8eNPLs4URThVCIHnQiPhE90+OUED36fmeG7X1g
MEmIHnTC8lfV6H2uQw86WXJl9y5Hjzr0oJPRXFp8KrsOPegkoaXZOeBxLXrQ
yWSf0iLvJbXoQScl8U/qohtr0INOnPR5U3nhNehBJ/meq9a9NatBDzqZliqc
ej23Gj3oxK9i7p44n2r0YBA/c4966tBq9GAQ6tAi/5BXVejBICtT9BVz1leh
B4PUmkW5TOqpRI++3/XAP44suF2JHgxyc9Mz94j5lejBIIoLRgydugr0YBD5
qZE7X5+uQA8GiS+JuXLerAI9GETvWOWK6dG/0INBJh7xXXexqRw9GGS7b/Pp
5TPL0YNBTttLprgd/YkeTLLvwbWz7zLK0INJ9EfT+N6cMvRgEnED28jXtRQ9
mEROE01Nu1+CHkzyu5Afu7FNgB5M8nJ6pM0iOwF6MMmsfG1n/5Af6MEkH4TL
IkV5xejBJDKG1qMXo4rRg0mSSp9YvtpZhB5MEjpH3NIbX4geTDLRKfN8OLUQ
PVgktYRZ7briO3r0/c/LNXm+6/o39GCRyxdGfkysL0APFnnoxuldYF2AHiwy
bZftfJ2T+ejBIp2Nkft5BXnowSITkzNOrhqXhx4sUrbnTe6VnznowSJdjktm
qAKy0YNFpgR1W37Tz0IPFmlZtb56WOJX9GARr2h31/Q1mejBIkf+Z51SJvmM
HmxSGZE9b0NkBnqwSfuFe8MdZn5CDzZRKfeEnvv+ET3YZEFocf1cvzT0YBPF
PLvQ5cNT0YNN0lY+v3PI6z16sMmUkGlOQ+OS0YNNdmdeUnnI36AHm7w7WPXC
Z04ierBJ0abGPebB8ejR9z/dRuR0/UsserBJ8vmtMs+xMeihQZgC2RZJzGP4
PwE1tpM=
"]]}}, {{
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]],
GeometricTransformation[
Inset[
Style[
Graphics[{
Disk[{0, 0},
Scaled[0.001]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}], {0., 0.}], CompressedData["
1:eJxF13dcFNcWB/DZZReQJKKIiIgQMQgoEDWI5aHn+ig2ShR9EiSiKIhEERWf
DQNPhaDGiEGNYIVgeSYgoiYUZcEGKFgAaSJSlr6wvbcHzOHz7mf+2Z3Ze+/5
fc/MZ2da2K414QYURbkwKGrooJjU/4dl0uahg0kOm+csazt0HPInMWSbvUc/
n4MpVi+DHZ2YJN8msX91/lXo3aqPavx89HwWWIV7fbtPwCDpacPjv9CX8WSh
poaB1+dAcoNfSPTfDMJbPfzNPVD+lCR6lc7A3z+A+eUqj4k/MohJ/e8xi03+
Bvky76MrN4/OVwA+ATNNd3gxiFPImSdSx0fw8kae+yGH0fmLgb/Ea80+EwbJ
Gvp1/e8l0J+SX/r9AIXrlcLDuJj+b95S5JuR8RTi7od7KPIoXP8ZJCQtdPzj
PEWeSh2HVngOt8yXOvkdoHA/ZTD91S8lLcEUWTOyYDlYzlPu27SYwv1VgLul
bUO1LUXaDg1P+BI+74iMc2dSuN9KsOkfq5tUoYfdw9uLqYKwzFb27dN6oPf/
GpKScrbYrNEDrfEWgpauOhBnoQe6nrfgGtpy72mTDpaPLPAO1nIqTkmv6oCu
7x2MGzj5y4QtOhheLeRMNbQ+vBhg66ADut4a+DFo8W6rfi2MlFNfA7H3d2Ya
3tUCXX8tGLZcudq5Rwu2w9uxeQ8nr6e6FLhrgc7jPXR5z59+TKWBbRHDow4U
PltCvYs1QOdTD8nr7lcxjmpgeDbznHpIWB0YXuitATqvBhD9/dpx9xgNyIan
kzaAYGqbvWOVGuj8GqHOf/m+thQ1LBmZsAnysi4uurZWDXSeTRCy0Dxri6Ua
RraX+AFsTiX2zW5WAZ1vM/zsbrN6zHUVVFUOj2aYERFsz9+iwrw/giq9t5jr
oIKJIxtsgbjYK/G8fiXm3wIXp4bWGOcqYWS6kE/wbozzbI9YJXq0wvMcK4sT
C5RYTys49m0zFWkU6NMKpRWncw+WKrC+VlgXvfWiXZICvdrA55VfDH+lAutt
g2iTnbx2UwX6tUFRRN8rfa0c62+H/mCvxuXpcvRsh1/G3u0rCZVjHu1wUnO0
Pcpejr4d8Nunorsr+mWYTwc8Mzrhv+meDL07YMw6Qfm9/TLMiws2XyfOX7pE
hv5cKJO5PRnPlmF+XGhPmZkxo1KK/dAJx5peTj2WKsU8O8HfuDJ15gYp9kcn
JLtG7flyuhTz7QLX2KLFkf0S7JcuOFg6I4X9QIJ5d8GvFpS1Jk6C/dMN1VP9
swN8JJh/N3gZP57FGifBfuqGHL+nl6c2idGjB3ad1tpfzxKjRw/cO1FmmrJL
jB49EDphcrlwkRg9esCpJKezwlCMHr1QHPPTrKk1IvToBblZ6c+CayL06AXb
u62zV+wUoUcfvCpNPeD8DxGkjHj0QYebmnl9jAg9+sB0bOr9/zYI0aMf+hdV
5QfcFqJHP5ztOJh68YAQPfrhTKK17akVQvTgwTIq8JLrFCF68CBbduivkwMC
9OBB0tuXabdKBOgxAJOybeSnzwnQYwCef1dmuWy7AD0G4PzvheLmJQL0GAT9
nHSP4IkC9BiETy2e1PlGPnoMguOl8PjYk3z04EPnnEL76MV89ODD8wzzq9dE
g+jBh+/u7NzpdGcQPQRwPtp169dbB7EeAfymdHZo/HIQfQQQv/lZ3ZrWAaxP
AGGxV5qrMgfQSwDrNlb1/ydyAOsVwOa16z1z5gygnwAqp/264pKOh/ULYTA1
7frlNzz0FEJc+qP2CTd4mIcQtp+b7Bcbz0NfISycsvLZslAe5iME/6wFLfO8
eegthGbqksnYuTzMSwRTlx1+XDeDh/4iqOK9YXd+xcP8RLBs/Y92Bq48vD9F
8M3Eiqf3vXiYpwhi9pkeureDh/0hgsqP3DjtHzzMVwxTbh/fe+KLAewXMXzp
Ylltf2cA8x76HLTooQV3EPtHDErjobnNBZi/GAofWQUdKOBjP4lhotB4SewK
PnpIgNvEhtDGUQ8J+NpHebptH/WQgMH7h6aDilEPCaRHjvf5KXnUY+i+fWMX
qZo06iGBoLmLGpfe4qGHBE7UNraudx/1kIJD9KVs9+f96CGF1SGxQQ2B/egh
ha/Lg3rc2/vQQwrhqR7/8o3pQw8piAJ3nTXT9aKHFDZYBBw/dqoXPWTA7lg1
Oc2yFz1k4BfgRvxu9KCHDHoulorT5vSghwwcrILg4ONu9JBBOOF7dS7vRg8Z
6P4y82yo6UIPOWxyGUj33diFHnJYaelb59HTiR5yKJ5wKvv33Z3oIYf3M9Z9
EafiooccxPYzrUuPctFDDpnvLgw947nooYAXFqbT4s92oIcC0nTBefxJHeih
gD+3J895dKUdPRTge2qdc5tdO3ooQO9tcmzDrTb0UMCHrvwox1lt6KGAPzzb
or1zWtFDCZnNe/fkzm5FDyU0/Ttq05utn9BDCYKbxvtqIlrQQwk1lmbSqG0f
0UMJuVeyvj8X0YweSsgpaqz23/oBPVSQ/F5tlb6pCT1UELDiw8V/b2hEDxW0
MzZ6d65twOelCpy9w293+9ajhwrivp7xLt6zDj2Gzq8d75+74D16DP0vOBD+
VZxzLXqoYW1gclmXTQ16qOFM9ZJxEtNq9FCDy7Xmb27r36KHGuKsGftNm9+g
hxqOqNtlrn9VoYcG9Me/m1hw+hV6aMBavn1fflgFemjAJWGD7YJ5ZeihgfEF
l3d7sp+jhwYMA7eZdVU/QQ8NdOpc2mddLUEPDWQWFnxc+voRemjhXk37m8wN
+eihBefU+hmp3PvooYWUwC1j11fnoIcWGo6UuY+puYEeWnCf9YNJ84U09NAC
ZeIz4cHHI+ihgwfrnKPydiVyaA8dkEt5Jhdklzm0hw4KuY0it8xbHNpDB+ur
wi8sjszl0B46OFZ/9qyc+ZBDe+ig0ePkkTkZBRzaQw+Oxqqq2n8Wc2gPPdR3
nczp3FvKoT30kFA6MV9f9pRDe+jhSmvOx+ypLzi0hx5cd/nndcaWc2gPPVQW
yplXql5y8PWD3Dhzur7CoYpD10ORlOMb94Yde8OhfSjyyD//jqvgLdZHkXPn
V1wOsq3m0F4Uib999cTMgBrOSLkRFDH99dpn1+NrObTf0HvAjhsND3Lfc+jn
A0UafnZ5trW9jkN7UqT26JHiP8wbMA+KxFgvqk1c1sihfSnS4SN24R9qwnwo
okm9acrN+cChvYfeKyQLGzZ1NGNeDJJrJqDCLFs4tD+DWJyvt+b6fcL8GMTX
bQpPuLSVQ/cDgySZKtWuH1sxTwZJmHb4z1sH2jh0fzBIa0Hl/mDzdsyXQcq1
CR3eue0cul8YxHqpd0KkbwfmzSAe91N7S3o6OHT/MAi5HPHcL5GL+TPIo428
p1/YdXLofmIQ5g6Pa/riTvRgktpvv5hiF9KFHkyiUf3AilV2oQeTOKyNnSO5
0I0eTLLK57P/ZLj1oAeTRCxObzpU3YP9xyT+bpUu8TG96MEkrkG+e7LH9qEH
k4QuT7rFyu5Dj6Hz6m21x1b1oweTfLXc3mhmXz96MAl3snatLJmHHkxi4kM1
dTsMoAeTgElTvvbFAHoYkNeO6VbzIwbRw4DkZSS4prL56GFAZjFfOY2/wUcP
A7Ixo3R6kJ0APQzI8UmO3Pl7BOhhQLJuTj/o8ESAHgZkt+2m5BlmQvQwIGHl
5oVuYUL0MCAzD/LzV+cJ0cOAPA6n5h5hitDDgHil3qz9a40IPQyIhThujS5T
hB4skmyzPDRQLEIPFum+y8196ClGDxYJm+uu/+qcGD1YZOVNC1YGV4weLJL1
q89hp3kS9GCR9Mzv7YoTJejBIpvLivI31knQg0UuNh/SmzhI0YNFllRsKniy
X4oeLOJjVX0nsVyKHixCmT1PC5wsQw8WKXJ86OccJUMPFrmgunDGtEiGHmzC
uFbppP1Mjh5swgu36pGEyNGDTfbLL/0my5ajB5ukVRcYMvVy9GCTCQ627Enf
KtCDTSyNc7fMy1CgB5sQSbwkRKRADzZh3y0/edpTiR5skhnVpnpxTokebLJj
sbvVmC4legyt3wacwPkq9GCTiKLDpTeTVehhSGbbb1UymlToYUjK1ZEkfJYa
PQyJ6Y6emLdxavQwJD5ahwjP12r0GLq+zk/z2FaDHoZEsyR4HNmtQQ9DYr16
WkLFEw16GBLfHq+ZweZa9DAkRsWug8JwLXoYkl0FJn+m/K1FD0NyIbrUy32M
Dj0MyYlXorT2YB16GJIGoeD0+T916GFE/BYVGQTodOhhRCLDlC1jv9WjhxH5
vE1m8D5Djx5G5Nnmq+szxHr0MCKJeYWfCuyoEtrDiLxmVI67uYoqoT2MSGpU
8NzzsVQJ7WFEMg6zFvx0hSqhPYxIsFXOxLgXVAntYUT4N37k7OVTJbSHEVnu
9Mkp2pJRQnsMrXfpwIofljJKaA9jYuY6d8IPUYyS/wFHz0bv
"]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549]],
GeometricTransformation[
Inset[
Style[
Graphics[{
Disk[{0, 0},
Scaled[0.001]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451,
0.196078431372549]]}], {0., 0.}], CompressedData["
1:eJxF13lcE9cWB/DJzqKgFDfqUqkCivgEEdGi51qUqgVRoYqASpFN7BNc2qqg
0iqKW9WCtO7FCloX5KEoFDUsIlgBWQURkYSwLwkhC9kfMOd93v3MP0lm7r3n
9z0zSaYHR60PZVEU5cCgqKGDYlL/H4XzRg0do0mMZfpXggNH4dr0fVdTq0fh
6yT4R+1b23B5FMmeGt+9LvsaTNuRzHgV8r/Pb8JPwhme2+eOIpcuDo+/oORS
flDWoCmenw5pjqu33Co0JT3rht/5DyzwV75adNYUr38E2ZtXHA0PMCUmdX9G
LzF5AkyX5Xx7O1OcLwdStBMVP8lNyKzAswVyu6ewT3ykNbTQBOd/DmPFK+Kr
z5uQm0NX1/2ZB8nHPZjFQSa4Xj4c/T0ox22eCZk/MgrhTTHfyZEywfVfgGDV
0ykpFcakUG43tEIRGK+Z6XUixRj3Uwyb7/Y8bNttTNaPLFgC933sgh8vN8b9
vYK2u1t/lo83JoIDwxP+A7kweWNKpxHutxT04Y9dnzw1IruGtxddBuyojYnO
54xw/+Vw/rR96/gQI0JrVMCDwudPA1yNsJ4KiFkW94QabURWjixQCVcDI+JY
Qh7WVwk2hc/Kv33CI8OrBZ6tgokFipBJZ3hYbzUsFT00t9vGIyPl1FVD3I7K
m6cW8bD+GtgUeob55RgemTa8nam1UOadZ7aqnYt51MJfu20eX3vOJeFhw+Mt
dLhmd5NkLuZTB9PU5rcddnLJ8GyW6XXgWvC+I9iDi3nVg1XBpoymqVyiGJ5O
Xg/e9k3s60oO5vcODGu+laRUcMjSkQkb4Eq3ZVzrXxzMswHUNw2F4Uc4ZGR7
8e+Beni13GYzB/NthG0f4x99tpBDykqHRyOcUo497TOWg3l/gJ1C438/62aT
cSMbbIIJiWujA1+yMf8mcJ7064O5KWwyMl3gR0ieIF3uFMtGj2YwEeesDt3I
xnqa4XMJ532RExt9miGzK9p8vRkb62uGWXufUUZdLPQSwCWIfdlaxMJ6BbBW
mP5DZwoL/QRg2BI2c+whFtYvhIg3gSJ/fxZ6CmFD3ImCFy4szEMIj8vTX3t+
wkLfFhCNFvD6xUzMpwW6szgxD0qZ6N0C3marZxz7i4l5ieBs7Dnd7mNM9BfB
kl+q1Xu2MTE/EUx5cdD4OGFiP7RCsFmW+Z0pTMyzFZZU/t7doGZgf7SCq/2u
3RPqGZhvG5wYXx61OYuB/dIGBbVJN+/8ysC82+CyRFWkjWJg/7TDs4rQ2HVe
DMy/HXSVy4LTZjOwn9rhmM9dporHQI8OMHBM6j1aKfTogC98j60+U0ChRwds
/iYw/dV1Cj06YJML70tVLIUenZC1i8yZ5E+hRye831+232YhhR6dcPz2uE+n
WlLo0QV/X5QWqAQGODfi0QVeFoWDhy4bgPbogj1/6Ltf+BqA9ugGt/WBW1+M
NgDt0Q3BBQ2537/UA+3RDWsq+LzKQ3qgPXrAj8Q1lrnogfbogcjrwQHb+nRA
e/TA5ZZbnyWk6oD26IUmonJ2CtQB7dELJb2l2g0WOqA9eqFzY/DM7mIt0B59
UPFj8y/CWC3QHn3wehZn/jxHLdAefdDynwzeS5EGaA8x3P4isjHpNw3QHmLw
3vPM8fQqDdAeYggYzTC+pFYD7SGBu3eGhxrrkcCDKYVBtzepgfaRAOOmh3UM
T431SWD+bFt7o0cqoL0kcDBpaozjVhXWK4HVAV/PrzVSAe0nAYcxfsWlGYNY
fz9Ea6yk3RsGgfbsh9OvXTYY1ErMox/cnFNv/XNFCbRvP4Tfc7Pjuikxn35w
WJA2PaBeAbR3PzQwjSq27FJgXlIQt2a+PslVAO0vhddUrZvjb3LMTwquYbxz
263lQN+fUjialFPTlybDPKWgrTTlNFvLsD+ksDD8Yopr4gDmOwAtZY9KY6RS
7JcBaMjf+ukSZynmPQAfT6yx3WDbj/0zAHqjHsi2lGD+A1D01MpvX44Y+2kA
pvQbLd27SoweMuhs4MDWd33oIYPvZ0a6O2/vQw8ZmNdmmfcN9qKHDO5HjPU4
ntCLHjLY88Y6Qj2hFz1kEOm0+N2yWz3oIYOzNe+aN7r0oIcc3HZevu9S1I0e
clgfuNev3qcbPeSwqMSvw0XYhR5yCEt02+AZ3YUecpjoG3XeQt+JHnKIGu99
9MipTvRQgFnL15MuTuxEDwWs9XYmXqkd6KEA3e/5AxcdO9BDAfOs/GD/s3b0
UEAUES9vXdmOHgqwfGLhXl/dhh5KiHDoveS5pQ09lOA90fOtW0creiih/JNT
9//c1YoeSui0+WZ0rFqEHkrQz5w9Of9nEXoo4W5lMuw0EaHHIFSON59++HwL
egzCdb1/pnhCC3oMwpPtCY5PrwrRYxA8T30zR2AtRI9B4HmYHAm4JUCPQRC0
ZUfa2QvQYxAy3QU7V6Q3o4cKUhv37M6Y14weKnj/Q2TQm5CP6DF0X6UZfV8d
1oQeKqifaCGPDP+AHioouHpzc1JYI3qo4FHuu6o1Ie/RQw03ajVWl4Ia0GPo
Pl/1/vcfAt6hhxq6GFtWtPrW4/NSDV4rQm+3e9ahhxoO/8um8rD7W/RQg5Pv
2DUZrrXoMfSc2Rc6I3ZODXpo4DufhOK2qdXooYE/qpaOkZlXoYcGFl9vnH/b
UIEeGvhlMuNH88Y36KGBRI1QMfdxGXpogR2/aVzOmdfooYVNyu3fZwe/Qg8t
fBEXMM11QTF6aMEq58oud04Remhhg0+4RVtVAXpogWlwENpfy0MPLXBzcz4s
K3+KHjoQVQvf3AjIRg8dVCTW2SSKHqKHDop8tpltrEpHDx0MHix2Ma5ORQ8d
/GG/w6Qx+SJ66GCmqccnjz4cRA895PnMicyMiufTHnpYdDnTJFlxhU976CFI
9E7qfOMWn/bQg1FZaPKSiAw+7aGHz+rOn1cys/i0hx4y3E4edEzJ4dMeBhhn
pC6r+fI5n/YwwL22k+mte/L5tIcB3PPHZRuKC/m0hwF8m9M/3J/ykk97GICK
WpPZureET3sY4M+/lcyrZf/w8e8HSTh7pu6VbRmfrocih45u2RN85A2f9qFI
xprsO3MlFVgfRaIvrLriN62KT3tRZN/taydme1fzR8oNG/oeP3/d9I/DNXza
jyJd36XWP8qo5dPPB4qUn3Z4ESJ8y6c9KVLx88Hndy3rMQ+KRExeXBP/1Ts+
7UuRZo8BB/GBBsyHIprENHNR+ns+7U2RybJF9UEtjZgXgzywkFDBE5v4tD+D
jLpQN1nk9RHzY5CvnD/t6V/WzKf7gUEOmas0cz80Y55Dr6fH3Lu1T8Cn+4NB
mnJKf/S3FGK+Q7+7dHEtKzKEfLpfGMRs2Yq4CM8WzJtBbB8mduZ1tPDp/mGQ
xVfCirziRZg/g2Rs6Skcbd3Kp/uJQdQ73K4bnreiB5MUrx39qXVgG3owiVy9
g71X1YYeTDLDd6+jLLkdPZjEzcP0pxTnDvRgknVLLjUcqOrA/mOS1c6lDoej
O9GDSWb7ee6+b9aFHkziu/LYLfb9LvRgEjtNeM2Rr7vRg0msV87kze7qRg8m
+TBJ56tI6EEPJmF4UA3ttr3owSSLTRqydS970YNFSuwuWS0M60MPFklPiZub
yBGjB4vMYL6eNTZVjB4sEpiS/7mftQQ9WCRugp1o4W4JerBIStrn+20LJOjB
ItHTghJsLPrRg0X8Syz/dg7uRw8Wsdkvzl6X2Y8eLPI0lHI6yJSiB4ssT0yr
ebxeih4sMmogdr3+hhQ92CR26sqtPgNS9GAT4QNRRpb7AHqwSZCTi2FG0gB6
sAmkjWeniAbQg02u/eoRM2uBDD3YJOnGZuvn8TL0GLq+ODd7y1sZerDJ6cYD
BhNbOXqwieuroJyCH+XowSZLraruxJfI0YNNdGOLLvpMUqAHmzy2y/KaE6lA
j6H11MlnzXMV6MEh1PXSWTpTJXpwSEeoVYcsUIkeHLJTefk3xX0lenDIyaoc
LtOgRA8OGWM7jTNh7SB6cIilUca2BSmD6MEhbrLDskDpIHpwCPtByckz7ir0
4JCkSIH6ZZIKPTjkuyUuVsZtKvTgkN0C4PssVKMHh4TkxuSnJajRg0tsZ4ao
GA1q9OCSEk0ECbXXoAeXjPquI7oiVoMeXOKhsw1zL9egx9D5b720z6Zp0YNL
VEv9x5BdWvTgkjHrpse9KtCiB5d4diyf7W+pQw8uYT+f29cfqkMPLgnJMbl3
7okOPbjkws785S7GevTgkoTX0otCfz16cMnbfsmZC/f06MEjKxfnsrz1evTg
kW3BqiaztQb04BGuQMGqTTGgB4/kfnttY8qAAT145Ejm3x9zrKk82oNHyhil
Y9K+pvJoDx5JjPR3urCXyqM9eORaDNv1+FUqj/bgkU1W6eNiX1J5tAePdKUe
4u8RU3m0B494zPo4a+dERh7tMbTe5X2rdixj5NEeRsRirtMnOyIZef8FYFEY
wA==
"]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]],
GeometricTransformation[
Inset[
Style[
Graphics[{
Disk[{0, 0},
Scaled[0.001]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}], {0., 0.}], CompressedData["
1:eJxF2AlwVFUWBuDXr7dsqGyDIiKKCoiIIKOyyDmDBhApEHBwCaAVlagoshcD
KMIEkTiAwyKgYTWoCArIFgTTQAJBwhYCJIQYsm9k6fSS7nTS3fPuvT81r1KV
yvbePec795z78lD8J+PfM2ua1sekacaHpmv/v9KfijE+2vDCDr+OKF6QSKM+
HPr55sYYfL2Ocr6f8XxUbgyndl12e1zqFpry147AvON3fp5CtX+7dqR0ewx/
u0lcu2juK/a5ryy/8/u/kpY0sP8fH8Vw7Tjxnf30Zfq0hl7j7/z9QeoY3Lzn
m2djOCpXPOgIbX3m8gfmB+7c7yj1mqH3mKHHcK9Jq095ex6n/bsGlBVURuP+
aTS4dOr2ly5Ec4pY5vcn6HSXTVMO/xaN552kMROz7u++MZqfllc65a8O5q3+
NBrPz6D4P/t+0xofzenensYTTlO9Hj/hg5HRWE8mzR+y7p7rfaJ5vHzgWdLn
nbkwrH001vcnrdzrT9rrj+LiBeKG56h99eMjuxRGYb3nadvDk60r0qN4plje
jAvUR3z/pyis/yIdWH9ycfyqKFYal2nIJfeQS7OjEM9lOhPxWGDwG1E8Uj4g
m8YPe/3IT0OjEF823VyYNKfjI1EsnjZp9RV659DxfksjoxBvDjXUiyuSZTi5
ObSg50N74q5GIv6rJMI9ezSSHxTL6XqNVn237LG/b41EPq5RB8GbGMkJU8V1
nXbcVbPtrg8jkZ9c6jOyy5SFYyNZ3K3Dr7l0cMmY+6sGRCJfeTTk2Od5r3aO
5CZxO28eZXl+W38yHIH83aAJT5aPf7I8gofKG+ZTYUKne747F4F85lOCoWvf
F8FyectukivfCHh9BPJbQPNlHBF84by4Csg8psgy5u0I5PsvWr283anfYyO4
o1xgIXU6+eLiHr0jkP9C2haYZwhHsLzdpFvUe8CuZq3JDo8iSv345uGPb9oR
TxHxj23m5J+ww6eIzhRRvxE/2BFfEU3sPKv+wFd2eBVT4YSU3d1m2hFvMb2/
8vr7Kyfa4VdMTglsR/wltFAzKvohOzxLyDro4205NjvyUUJrZm+dzLU2+JbS
vb9kd/4l24b8lNLOCnPefUds8C6lvt2eWf9Fsg35KqPUN94f715ig38ZvbD2
27vfTrAhf2WUJT6NtqEeymmcLbxiYH8b8llOZSLcTjbURzl98K93LO2DVuS3
ggTv4hIr6qWCPq/N/Kw204p8V1CUKOdfrKifSlrz1hPNp9dYkf9K6mxs3/7z
rainSvrxytdGxFZ4VFE/0a5esMKjio7Feuvm97TCo4piF/fYXd7GCo8quiQD
tsCjmuJcXz3qyLPAo5qKe6eV9E6zwKOapr3n3Lrxews8aqhpi9jAFv5aetSQ
qOZZ0y3wqKHodstzCydY4HGb1r58dN3LAy3wuE0y7K4WeNymn9IeuPtRiwUe
tdTfP/b8f6vN8KglY/euCF00w6OWYqcdHD7toBkedXQpxQDeZIZHHU0qvNeo
aDM86qis08uf7X/XDI96mj7u08FdR5nhUU/NRrdK6muGRz0tzSg+5OtghkcD
tQm1n/1uQIdHA216dvhT2bd0eDTQgzPn1z1/WoeHk/b8LC4d8TipX1lBQqev
dfg46Q8j3MS5OuJz0sjX/lHifFOHl5OyBS/riNdJced2Tjr3qA4/J4lyfjZa
R/yN9In8MxM8G6lFbN/rJuSjkRL3GREfM8G3kdoY7apmmwn5aaSN3XOyJn5h
gncjdRPteZoJ+XLRvm+MgMeZ4O8iMY42P2NC/lx0KjL5RGQXE/ani0a9cPHT
eSYT8umiq4uMDVyhoT5cNOmwENaQXzdVNbx76Ph+DfXiptm9NszqtUFDvt0U
EgNpkYb6cdPy5JZaPV5D/t1kDKOfPxmhoZ7clGzs3oInNHh4qPtLax55qZ0G
Dw/FifAawqQ8PDTb4Iv9PUzKw0OJ8jlhUh4eSp4iFhwm5eGhPaK9dA6T8vBQ
xotig4VIeXjpihgP+0KkPLxU+bgYCCFSHl6S4314iJSHl+5uK64QKQ8vPZw4
96uam0FSHl4a7LthzfghSMqjiUaL88jMICmPJooT548hQVIeTTRLnDfsQVIe
TZQkzhdXWkl5NNEWCdhKyqOJ9onzQ0IrKQ8fZYrzQv9WUh4+uibOB8EWUh4+
dR4420LKw0eamP9rW0h5+KiDmPdTWkh5+EhG1bOFlIefnhfz3B0g5eGnsWJ+
pwXg4aepYl6vCMDDT4vEfH41AA8/rRTz+MEAPPxq/tY0w8NPR8W8PdgMj2Y6
IxtwMzyaKV/M01HN8GimSjE/OzbDo1nNyyI/PJqps5iPu/3waFbzcJ4fHgEa
KuYf++ERoNfEvIv2wyOg5tt1H6l+GSCxHaZu98EjQHK7f+SDhxGn3OA+eLSo
+WTywaOFZNjnm+DRQoVi/mxogkeLmjfxTfBoIbuYL32a4NFCXQWv3wuPVjU/
0r3waKXhopxXeuHRSm+K+fC6Fx6tNF3Mg+5eeLTSUtH/6z3waKV1ot8f9cCj
lX4U/T3RA48g/S76+RgPPIKUJQP2wCNIpaJfl7nhESRxmkza64ZHkKJEP17g
hkeQuon+G+uGR4hENXe6xw2PEI0Q/TXfBY8QTRb9dKcLHnf2pQseIfq36JeD
XfAI0SbRH20ueIRJ7N6nshvhEaYTov8lN8IjTDkSuBEeYaoQ/a1fIzzC1CIP
2E54hKmt6F+ZTnho/IjoV2uciEfjAcfFxHXCR+NRfePua+3hRHwap8r+0wAv
jeX2W9hAMtypGsfI/tIAP42HyH5Sj/6g8WTZP+rhqbHqF3XIh8by/SKhDr4a
35D9oBb50Tg0V+z/Wnhr3BNzXOXLxPJ8nnYb/iaeI/fzbeTPxCly/9agHkys
9msN8mlieb7tWAMnE3eQ+7Ea+TXxMLn/qlEvJp4q91sV8m3MJbm/qlA/Jt4v
91MV8m9ieX7bUIl6MrEu90slPHQeIPdHBTx0niD3QwU8dF4k678cHjrvkPVe
Dg+dL8r6Lkf96eyR9VwGD527yPotg4fOo2W9lsJDZznfZ5TCQ+ctsh5L4aGz
Q9ZfCTx0rpX1VgIPnWNkfRXDw4x6KoaHmd/a4Vh7zVUEDzMv+1JcRfAws9wO
XYvgYeafZT3cgoeZg9K/EB5mHiO9/4KHmbdI3wJ4mLlKehbAw8yqf96Eh5lX
Sq98eJhZ9bcb8LCwfD1Pz4OHhafL/OfCw8Kqn+TCw8JtZX6vw8PCs+S6r8HD
wqkyf1fhYUG+cuBh4SkyP1fgYUE+rsDDwuFB4oU7Gx4WHivG79zL8LDwczK+
S/AwztUyngvwsPIyuf4seFg5Qq73HDysnCbXdxYeVo6V6zkDD+M9QL7wn4aH
lb/MsRlvSOnwsPLojx5vM9B3Eh5WzraIAXcCHlYOyfX/AQ8rt5O/fxQeVt64
eeaByymH4WF8fVFMpAPwMN6TwuLaCw8bc/yq0X3jdsHDxqkZ4kCxAx42/qf6
BwQ8bBzRo+Ks57dl8LBxyqAl7Z9b8o5Dedi4JOMH441ntUN52PiNZHmAcSgP
G4+q/Y9xItjpUB42HmZMl4lZux3Kw8bbjbu1f26/Q3nYuLexuxYmHXQoDxsP
kg3uiEN52PnWYhHAMYfyMN5rxXFiSZpDedj5mKznEw7lYee28vxzyqE87DxH
9tMMh/Kwc6bsz6cdysPOTxrd79aqTIfysPMSub4/HcrDzg3q/yYO5WFnlus9
71Aedj4kXv+fvuhQHsZ7uVz/JYfyiOCBcn9cdvwPii3PJw==
"]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]],
GeometricTransformation[
Inset[
Style[
Graphics[{
Disk[{0, 0},
Scaled[0.001]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]]}], {
0., 0.}], CompressedData["
1:eJxF1nk8VOsfB/DZR9ZZWkgbpbTQlSxp+T5KpVJX3VK5WrQpLZZfUlpIuf1C
pVLaN223xU1IRYqkdO2FBsk+djPMwjDjh/l6/Z7X/HPmnPM8z/fz/p4zY7TF
a9V2OoVCMaNSKH0fCo3y/5G4t/TV3lI+OTw0ZnFlwEk4RqTRNfmDx5Hwpi51
DOsLn7weE9K08vUtmD76YWbhu8Hz98FXWqpwieOTa1f7x99Qr9uaHv548PoY
mJ5MVx26ySfNK/u/iQWbbb8tMroweH88bC5q1Q75i080i6O952omwvqUhkuP
AgbnewM7d09Thu7jk8lu59KkpsmQ7lpgZ7FlcP4U2GLsOPHGGj6533d3cfQH
mGJvdijbcXC9VMgpqs7PmM0nlgPjIxTaCBJOmw+unw6OdyMujjDik49S074V
PsGkZv90H/7gfj7DEln42atMPlk1sOAXmHZcYBIh5+H+MiHM/+tzlwYeqQzo
n/Ar/Fa2w661hIf7zQIBzzN/bRaP+PRvzzsbghIcdke+4+H+cyA5lSW5H8Mj
ao08CAqzcgq9zcN68sD06rklCyN4xHFggXy4tPhDYlEQD+vLh/oyxnrw4ZH+
1dzOFYBdYHpdoDsP6/0GYetH8a6u5JGBcoq/wQy++8kwex7W/x2e3L78a60F
j4zt386YQshb/itFNY6HeRQCX1j1KojDIx47+kcRvI4ydynv5WI+xXB48VkT
/TYu6Z9taEwxeHduemxezsW8fkDry0o342wukfVPJ/0BgoMByR1JXMxPALkx
qtnRT7hk3sCEJaCxSbTM4ioX8ywB69ikdbdOccnA9kJKIb2h7WujHxfzLYO0
OX7sEdu4JDurf5TBv6/fe41fxcW8f4JZaK87h3DJsIENlkNg7opZ5WZczL8c
LKx/Lj9jyCUD07n9Ask5A+noIVz0qADWOcHxCBkH66mAO98CHWqrOehTAYG+
48JG5XOwvgq4p3//rnUKB70qIaatId/yKQfrrYTzW+q3Dr3CQb9KmFyZdfPH
SQ7WXwXS9yPTg3w46FkFkSsyDXQ2cjCPKqgH94qjSznoWw03Dxus+2bNwXyq
4YJPx3ud8Rz0robhrOI1ZnoczKsGhOvcnm+T6aF/DewNoyhn5ehhfjVw8sVI
bukDPeyHWti3q2Cj41E9zLMWftiYuQav1sP+qIW37Q4HTk/Vw3zr4E74MZON
ND3slzrIXJEqoAh0Me868I2NYfj+o4v9I4QEacmIlyG6mL8QXB6xQlL/1MV+
EsLYqetT7ljookc9FATdsHZm66JHPZxwC3DPK9NBj3qISnkbZ/RSBz3qYeH0
k9EOp3TQowGiPt58PMtNBz0aYB8vbg7VQgc9GiB+7rXS60wd9GgEQ9sbdM0S
bRIx4NEISz3fWznFaKNHIzwtHyrbEqyNHk2wZYRG1goXbfRoAq242PmcKdro
0QRj6GYNj5Ra6NEMXxJEq4bna6FHM+jETdF3u6+FHs1g6DS26JC/Fnq0ACkO
m+69VAs9WuBEgXY2jNZCjxY4c+fUhoY2TfRoBS9x1OW9aZro0QpfKilW2ZGa
6NEK8UVGSg0PTfRog2lDvZKMZmmiRxtsY7Q66Gtpokcb2I1O8G8pG4IeIni2
0Gv2vZghWI8IdpyvOm4TNAR9ROA2KmBxzMohWJ8IgpMLLrLHD0EvEchmLg1w
kGhgvSIwOBIxcscnDfQTgetlu7t7L2tg/WKYscfF0c1DAz3FENGoWmtpq4F5
iOHL7baJEg0N9BXD8MbhhncEbMxHDL5PTZ7YPmGjtxiOrTF0fR/Axrza4aAi
K9VqGRv92+F60/bTNw3ZmF87OC6q8OxsYuHz2Q5pj/4zwzGZhXm2A8ugM+Vs
OAv7ox02jJpNy3FjYb4d4HPLgaphxsJ+6YA5u09/n6dkYt4dEHpf4/H+bCb2
TweE31qZ9PQmE/PvgPk+Xu51e5nYTx0wMTCRMmkeEz0ksGDGQZ63LhM9JMCy
CjFOL2eghwTsQ27lmPzDQA8JHKn+51NUIAM9JGCwri5jlDMDPSQQm3P1TuI4
BnpI4LHJkOm7xXT0kEJjkNDVLo2OHlIot3g7wvQiHT2k0D6evcVmGx09pLBv
x+q5u63o6CEFc3NFbAaLjh5S0PDL/Or0g4YeMnhnHXqB8oSGHjK4a7qGW3uY
hh4yEDzNXqJcTkMPGdhftLd2GkdDj75j04RP39up6CGD7siqH1c/UdFDDrnH
Z8KtK1T0kIP7zPS4mt1U9JDDm/KtJV5ARQ852CrfzZnPp6KHHF4+uLB4o5CC
HnKo8Dd0zEiioEcnbD56a9eRCAp6dEJwrE1c8HYKenQCbUIFs9SOgh6dMD/p
9chTHAp6dEKh1mw6N7sX1B6dYJCkSVIP9YLaoxPWxGzebDSpF9QeXeC33em4
ZaEK1B5dkOsyZGfXCRWoPbqg+Kxt8H5LFag9ukBs8rLuQbUS1B5dcNlS6HI2
Uglqjy5Ik3wl5ouUoPZQQLONbWpIZw+oPRTAz8l4GPm0B9QefedT6X6um3pA
/b5UwDpvlUcRvwfUHgpYtGzUQXZmN6g9FKDSMNnYfKwb1B7dULLoUNQJq25Q
e3TD2ck7PP9tVoDaoxt07U43pt5XgNqjGwTRtsptGxSg9uiGPT01G14OV4Da
oxvefve89yivC9QePeAfvAzmh3WB2qMHuhI+hQUu6gK1Rw9URn/+5EbrArVH
DyQ8SBhWnNIJao++un+nXmg63IkePeApOTM/alYnevRAVXjF+GK5HD2UUPTG
YMrjV3L0UILU580C9gE5eijBJnCam9hKjh5KiAufsHGrTIYeSljanWTlmihD
DyW80PcoKDgoQw8VmD+MN/1qJ0MPFbwT/LKcq5SihwoWWlrLTT9I0UMFybf+
CAw9IUUPFYz0tqne2Pfcqj1UIMiauTBaS4oeveA+PPXb6jwJevSC4S/jr96X
JOjRCyW1dB+JqwQ9eiHlaP2Yn+Mk6NELB2LP2poKO9CjFw6vtrH49rwDPSjk
s0FpaOn+DqyHQriPlhfNm9OBPhSy86hznILegfVRyA/vqDztrHb0ohD/pR+a
fCPbYaDcHRSyVg/yp2xoR7++652I24yJ7aB+P1BI87PgA6faxOhJIR1yU33T
N2LMg0JqI0MW806I0ZdC7AIq9B2WizEfCsn2to1JGiFGbwqh+1Bs/KtEmBeV
rM8TtO1/LkJ/Krlcucw47qAI86OSoOuHJvzmIMJ+oJKcjMJ1jXoizJNKYlc+
+/NDYhv2B5VcM3aaPc65DfOlkutLY/8U17div1CJs491+W/BrZg3lbyX5naV
GrZi/1AJdaevoi2hBfOnEvszAcTTuQX7iUqEi0cQx6Zm9KCR6NiEoFN/NaMH
jYx56HXDxLgZPWjkRecRGJfShB40Mvroo0l+rk3oQSObtdLGG8sbsf9oxP+q
Md8kshE9aOTQ8bG1hy0a0YNGNGkRVybkNqAHjRSwnWeP3tuAHjTSbf+5YatW
A3rQSGjIf3Jkf9ejB43oHztg9N2xHj1o5NnDiaYKoRA96ER8InqmxykhevT9
zgzb+8BgkhA96ITlr6rR+1yHHnSy5MruXY4edehBJ6O5tPhUdh160ElCS7Nz
wONa9KCTyT6lRd5LatGDTkrin9RFN9agB5046fOm8sJr0INO8j1XrXtrVoMe
dDItVTj1em41etCJX8XcPXE+1ejBIH7mHvXUodXowSDUoUX+Ia+q0INBVqbo
K+asr0IPBqk1i3KZ1FOJHn2/64F/HFlwuxI9GOTmpmfuEfMr0YNBFBeMGDp1
FejBIPJTI3e+Pl2BHgwSXxJz5bxZBXowiN6xyhXTo3+hB4NMPOK77mJTOXow
yHbf5tPLZ5ajB4OctpdMcTv6Ez2YZN+Da2ffZZShB5Poj6bxvTll6MEk4ga2
ka9rKXowiZwmmpp2vwQ9mOR3IT92Y5sAPZjk5fRIm0V2AvRgkln52s7+IT/Q
g0k+CJdFivKK0YNJZAytRy9GFaMHkySVPrF8tbMIPZgkdI64pTe+ED2YZKJT
5vlwaiF6sEhqCbPadcV39Oj7n5dr8nzX9W/owSKXL4z8mFhfgB4s8tCN07vA
ugA9WGTaLtv5Oifz0YNFOhsj9/MK8tCDRSYmZ5xcNS4PPVikbM+b3Cs/c9CD
Rbocl8xQBWSjB4tMCeq2/KafhR4s0rJqffWwxK/owSJe0e6u6Wsy0YNFjvzX
OqVM8hk92KQyInvehsgM9GCT9gv3hjvM/IQebKJS7gk99/0jerDJgtDi+rl+
aejBJop5dqHLh6eiB5ukrXx+55DXe/Rgkykh05yGxiWjB5vszryk8pC/QQ82
eXew6oXPnET0YJOiTY17zIPj0aPvf7qNyOn6l1j0YJPk81tlnmNj0EODMAWy
LZKYx/A/LlW2lQ==
"]]}}, {{
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.33333333333333337`, 0,
0.33333333333333337`]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}}, {{
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}, {
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.33333333333333337`, 0,
0.33333333333333337`]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}}}, {{}, {}}}}, {PlotRange -> All, AxesLabel -> {
Graphics[{
Thickness[0.10504201680672269`],
Style[{
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]},
Thickness[0.10504201680672269`]]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}],
Graphics[{
Thickness[0.02963841138114997],
Style[{
FilledCurve[CompressedData["
1:eJxTTMoPymNmYGBgBGIlIIaxWZDYzATYDFA+A4VqSNVLqpmkupNUe4nRS4ld
AKjmAn0=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJfIGYC4hkzQYDHYc4i5Z1/nms6fN33cWv6NX6H7Q5N
j45LaDmApSMFHWTmxWmeNoDyfwrB+Qq7FuxLfScO5z9wjXectVHK4XXxVtHf
3Jpwfguv//oprOpwvmiP1yuWKyoOHmuOLmewEIeIFyo79Ed0+zNuEITzYfbD
+NX3f9wyfi0A558BAR8BiDkVyg7ClZNKzrIIOKwV0uFL11N2UP+k8nJWp4BD
OKdYu/F9JQd5kHvXCTjwxwbcNzqu5BD89vLHGY6CDu5g/UoQ894IOqSnAYGY
EsQeQSGH8sPbXGf+VYSYWyfkcEdTds3/zYoOIiD7XKQdQkDmLBSHmN8n7cAA
Ag7iEHNvSEP03RNz+A8C8jIOGmB3iTl8AYV3mYzDm7bcbiNpMYc1IHX7ZCDu
WCPqAI4fS1lIOPOJQtXLO5gYg4Cow32Q+z4i+MrXHgUz2CjA+d02nrvSinDz
wdRnRbj5MH6MaoTMuRoxiD8MFKH+E4P445yCQw04HqD8OgVIPO0Ud6gCiWuL
QdzxRgni3msSDiu/vaw446AMsVdYChJ+zcoOKaBwXibtIAVKPwIqDgEgexTl
HAJvSdckflKB+/fn29cHLJXV4HxwempVh/OfJC68ZnJeEx6+kPSrDZE3E4Pz
wfYXi8L5YP818EHimw2Tv/zW8seGztxwvl2JY+1pGQ6cfK+t/seT277aw8yH
8c1t9gZNS9RyuPL72PV5kX/tj+/a0csWoOVQuLxkwz9+ZofnWdrfpttqQdMF
M9Q8BH+z+Y9DKVoacD4k/KXg/B3BVhH/1cXh5oG0px0Tg9sHiz9IvH+xh8Uv
jA+L/5ypCYUWxf/twfrVROHmwdJLs3gtayYbB5y/1WuDxZyfPHB+qwK76hkT
AQeYfkh+FIanLxgfZj843e8WgKcv3yeel0yFeeHuh5VPMP/B+DD/o5dfANnI
+aI=
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, {CompressedData["
1:eJxTTMoPSmViYGDQAGIQPXUCf5VZto6D+ieVl7M6JRw26OUtZpTRcTjYva/J
hFnSISP/Q+vJKVoOJsYgIO5Q/9uq4ByHlkMaCBwTc5CYeoUzg0kTzvc5wW47
u1Qdzn9VvFX0t7aaw45gq4j/6hIOjyLEt19sUHVYL6TDl14n5bBB9UnzPF5V
h/uu8Y6zBGUg5j1ScUgFGyDroKMo/yXnmorD3vyatzNFFRz+fit9MCdQA84H
y3/ThPOntLdGXf6j5eC+5uhyBg0FB3GQeYt0HJwnNAulZSk4zFmkvPPPch2H
/yCwX8GBhbNLPnmdjgN/bMB9o+8I/spvLyvOOCjC+WtB7v2n7LDF/MehlFda
EHOOqzrILX/hoWevAee/yNL+Nj1WHc4Huy8M6H+HpkfHK1Qh7otRhYTPMxUH
D5A7M5QdBED2H1eG2DNPyeEMCPgowfkilZNKzi6Rh/MPgOJnsQzEX7+UHHoi
uv0ZBaQcwjnF2o3nKzswgICDhIMRKNomqzjMBIGdovD4AJtjJwKJr6/qcH5y
7B035hsacP4MsD5NiHkLRBxEerxesWzRcohRjZA5VyPqsB3krwhtaHoRg/Bv
aDuEvL38ccZCYPqYF6d5+oO2Q839H7eMX4s5oKc3AEkxAO8=
"], CompressedData["
1:eJxTTMoPSmViYGAQBmIQ/SRx4TWTfi0H/tiA+0bfFRz+fit9MCdQ06H6/o9b
xq8VHOSWv/DQ26/hIFw5qeTsEwWHX29fH7B8rA7nbzH/cSjllBqc/6p4q+hv
bTW4fompVzgzHqk4zAQBTkU4333N0eUMGkoOF66GvdH/reKwVkiHL32dEsQ8
L1WH8sPbXGf6KkPNV4Xoj1RxkJoXp3n6gprDqcNOazP/qTj4nGC3nf1VHc6H
uRfGf56l/W16rKYD2J/rVRzegNx3WhNiLpeKg/8t6ZrEIC2Hld9eVpxxUHaY
0t4adblGy+E/CPQrOaCHDwDXJJMI
"]}],
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJ5IGYC4ieJC6+Z/DdyONi9r8lkMZMDjP+y9nH2+TcI
vvRGsflMCswOM0HgpJFD4fKSDf/OszjYV0asMLU1dBCunFRydomAQ3LsHTfm
GwYO/8FAEs53ntAslHZKAc7f4dD06LiEqkPBmu7bGQGGDnMWKe/8k67p8HXn
ra6/V40g+ut14Pa/Kd4q+vs0gr8VpP8Ggv8CJP8awU8B2SOh63C4bXn4qU9G
DlMn8FeZaes69AeXqEy/j+CD7dmP4IPVLzJ02KKXt5ixRtvh84aA7FnPDRwa
WY72G4ZrOHwBuc/VwOHUYae1mfNUIfrlDRzWCunwpd9TgvNh/oXx3dccXc6w
Q9bhIMh8JwNIOO4Ud+jxesVi8tHAIfjt5Y8zFIUg7ltv6OD/xPOSqTAH3H2Q
+GGEux/Gh/kPxof5vz+i25/xA4IPi18AYpP1dg==
"]],
FilledCurve[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdlAlIU3Ecx2dKdlpoczNX2pbp28IOt3fR8S06pCxDO1Ytw3KugyzIqIYG
JRlpqZWllVhmoEFRQZdRKzqwQzuwIsSSIui0MkQCS3v/91//R/3g8fjs7f/9
3f8RK9anuAN1Ol2A8ixUnl7Kk3QveOLR5zx6iBWbEfMur7JRFhlP3OqsdezV
ePKOt/Xln0UcJrbbjMWGy0912yRsvn1p+uFcM96vsXWWNUqYefpujW6LGd/P
zVt7JFjGtJK80MwCC8pKBnn5LglDtu7Pbrxgwdyn+1zdgRIaiFVY6DtJRG3n
xy0NJRZkX9R3PUwTGDuJv6/8v5wl4MCunUuaJnDYHnS3eNxmAfduTz2zupLD
BxJProB36VUv7I85f9wCzaeHQ1zbQN/YCJH6HWCl+XtFzGuOzEkPtWJp9JT2
lS0iLkNJ3GhFUWr2yLIoibF6rkXjPjNiNvVaIkOYcD3l0BuOfnfJcGcqls/h
pSI7fpOMxBu5w0RPLOpJnD6N1XrVyzhLAmmLw2RS/1cyTDUfEuOjrLQe3TI8
RK+3jZ23JygWZsOd/JpFD1bI/nhsOBefVR0wWmP1u1njPbM+BdkDNM5Y1jIj
8IrE9PqTfGb9rY8N94m/eJH5vyD8vJXhFRifJ/5cGqv1/MQzHph8ttRdrrGq
+8vB/J1s9YVUbHSweFT9NQ4E9S2IWpllpX0cxNP6plupnpOnebqs6Efi9fJ0
zmwal5L5uMYxrjhhqfvl4fzzw2Os9VTYk5NxeEDyS1P01PrHooX0a4E/viYD
tnXJGx4lOtDha7/o6QzHTdK2kQ7Mb2tqL68Kp3qVdnhbfzYnzA6n/SqyI/rq
cZ87RE/rM8CBL/nrCsdH6ll+pByZo/T4Qfofy1N/CXoaV4bGYwh3iExP/TlM
Yqzu4ySNVf0Cifl7T+r3TWL+1HqnykxfXYvlMnJI/J/D0VHXXPDbLeNM6OgQ
z2sDm1+6pxEwVaZxD0tk3Cz07bBXR9Lzx2T6bjXR+2COxuo5k0z3P2gond9u
//4nGel8vpXontYZUEz27ZgEV4zT9CjHgFvqfP/9v4HeH3kiipyFyQGDDXQ+
WgXGtcra9KRrrPZjuOCvhwEust9JPI0nQ+Od0cExDaUa64jBSPWTeaSq/TbC
ePBZ31UpvF8/Av/fp38AMKhU+w==
"]],
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJ5IGYCYol5cZqnE+wdnCc0C6WdUnCA8d8vWq9wdoeS
w9Ms7W/Tbe0dGliO9htuV3XoDy5Rmd5v5/Dr7esDls0aDj1er1hMLto6PElc
eM2kXxui/4CNw9QJ/FVm2roQ+YUIfoT49osMfQj+n2+lD+Y02kBoQQT/RfFW
0d+vdeD8rQ5Nj47fQPDfgORP60Dct9fGYcZMIIjUcdhfK2uR/sXWIT0NCJ5p
OtT+tio4t8LOQVdR/kvON1U4H+ZfGD9aNULmnIykw5L7+/jmGNtB9KcJOKg+
aZ53dpWNQ+Hykg3//Fng9ktvFJvPpMAM57+sfZx9/g0TnH+we1+TyWIEX/2T
ystZnExw/0PkGeHhA+PDwg/GB6u/ZwuxL4ED4t4Zdg4g786sFHJQAbnPyt7h
DAi8EYfHX839H7eMs2Ud0OMXAI2x5G0=
"]]},
Thickness[0.02963841138114997]]}, {
ImageSize -> {50.61767372353674, 24.508064757160646`},
ImageSize -> {33.74511581569116, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {34., 17.}, PlotRange -> {{0., 33.74}, {0., 16.34}},
AspectRatio -> Automatic}]}, ImageSize -> Large, AspectRatio -> 1,
AxesStyle -> Directive[
Thickness[Large], 16], DisplayFunction -> Identity, DisplayFunction ->
Identity, AspectRatio -> GoldenRatio^(-1), Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{-3., 0}, {0, 10.270270839112932`}}, PlotRangeClipping ->
True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}], {
Placed[
PointLegend[{
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]],
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549]],
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]],
Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]]}, {
Graphics[{
Thickness[0.08305647840531562],
Style[{
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGINIGYC4pkg8FPCQWpenObpCyoOMP4Oh6ZHxyNUHNzX
HF3OsEPeIQ0MMPndNp670poU4PwPi9YrnNVQxMn3uzgx5t9iFbj5NZ82BGTP
UnGYAbJ3J4I/Z5Hyzj/P0fjqqnA+2JxkBD/glnRN4iRVuPkpsXfcmH+oOqz4
9rLizAQlh0cR4tsvPlB1OAMCexQdNunlLWa8A+WfkXFICAlSX3BS1WGtkA5f
+jpFBwOtlcIXXDQd1oD4ecoO/0FAXhvinx/KDicOO63NlNOB87eD/FOhC+dP
mcBfZdatD7cfHK6ZBg6poGBwU4DzWxXYVc98kYXzeyO6/RkNZBwcgcbNsDZw
qLn/45ZxtpTD0V07etkm6DvI71qwL/WcpMMGkPtldB2mg/TdlILzH7jGO84K
lHaQAMXnB12HdJB9z6QdtoDk/+g5mBiDgKzDcZB5BfoOMaoRMufmyMP51SD7
ohXhfLC7IpUcdBTlv+SU6cH5LJxd8snvdOB88R6vVyxTtB34YwPuG00H6geF
j52Ww5u23G4jaXkHUZC8iIYDenoDAMDOG9o=
"]]}, {
Thickness[0.08305647840531562]}, StripOnInput -> False]}, {
ImageSize -> {18.06422914072229, 26.03675716064757},
ImageSize -> {12.042819427148194`, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {13., 18.}, PlotRange -> {{0., 12.04}, {0., 17.36}},
AspectRatio -> Automatic}],
Graphics[{
Thickness[0.02853881278538813],
Style[{
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQ/R8E7ks4/Hz7+oClsoqDSOWkkrNLpOD8MyDQIwPn
x6hGyJzbI+PgsebocoYfynD+3vyatzNTleB8+xLH2tNzONH4zA7uIH0zZBz6
I7r9GT8wOcyZCQQ/pRzA7tjP5LAj2Cri/3EJh+u8t8VSyxB8E2MQ+G8PcY+s
Q4t4LWvmMUz+GiEdvvR9cnC+7K4F+1LfyePkg6yfGakENx/Gh9m/8tvLijMO
inD3PXCNd5xVqAB3fzinWLtxvALcf6h8TjgfrO+iqEN6GhCIKTp82fdxa/o3
EQewfTcVHRhAYIGIg/K1R8EMb5Tg/NLD21xnzlWG8zfo5S1mtFFx0Pik8nLW
SxGHF1na36bPhcZbiqiD1wl229mh6g7V93/cMn4t4ZAQEqS+wFMDEo7qUg71
v60KzmVoOtwHuUdQHs4Hu5NfEc4Hm7dF2aGB5Wi/obm6w5xFyjv/HFeFhFOx
Cpy/AhQ+E5ThfHA62KrkMGMCf5VZt6rDHU3ZNf+DlRyeJC68ZqKvCg8PSHpR
hvNP7NrRy7ZBFZI+NBTg5oW8vfxxxkNZCN9dFeKPdGmHwFvSNYmfVBxg6XeD
6pPmeWcRfFh6BQDMMEWn
"], {{8.18594, 8.94844}, {8.18594,
9.11406}, {8.245310000000002, 9.245310000000002}, {
8.399999999999999, 9.44844}, {8.746879999999999, 9.88906}, {
9.23438, 10.1156}, {9.831249999999999, 10.1156}, {10.9516,
10.1156}, {11.667199999999998`, 9.32969}, {11.667199999999998`,
8.089060000000002}, {11.667199999999998`, 6.75469}, {10.8688,
5.76563}, {9.79531, 5.76563}, {9.139059999999999, 5.76563}, {
8.651560000000002, 5.9796900000000015`}, {8.18594,
6.468749999999999}, {8.18594, 8.94844}}}],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4kaWo/2G6YYOrQrsqmemiDrA+BqfVF7OWinm
4H2C3Xb2UQMHtzVHlzPMEHMoWNN9O6PBwEFh14J9qX1iDrz+66ekaiD4CbF3
3JhvaMP1P0lceM3kvLaDiTEQXBZx2GL+41DKKW0HkcpJJWdTRBxYOLvkk9dp
O6SnAcEzQYetDk2PjlvowPkS8+I0TxfoOLxpy+02ihZx+PH29QHLZh2HGNUI
mXMyog66ivJfcq7pOFTd/3HL2FvU4U3xVtHf2npw/n8QiDeA8/uDS1Sm6xs4
zAQBSREHfpD7OQwg9rkJO4j2eL1imaLvUA1Szy0Et+8MGLBA5EV0HK7z3hZL
3cYE9Ze2QzTIPTWMDn9A6h9rOeRMTSi0KP5lL7/8hYfefy2HgCeel0wnf7eX
BfHv60Dc9f+7/fmrYW/0fyP4pjZ7g6Yd1IXzI8S3X2SIM4Trh/FlNorNZ3rw
y1586hXOjCRDhwu/j12fF/nP/nDb8vBTRYYOB7v3NZksZoLGl6FDi3gtayYb
m8P0CfxVZtYI/t9vpQ/mCBo6+IPMD2aAhoehA4v+L65LPP/sP28IyJ613MCB
Fcz/aw8LHxhfV2ul8AUVXTgfPT0BAGL4DTg=
"]],
FilledCurve[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYC4jQQmGbqYGqzN2haoq5DhPj2iwz3EPxPGwKy
Z7GbOfhenBjzL1nPQWZenOZpBTOHB2CF+g4SU69wZmwyc3iepf1t+lx9hy3m
Pw6laJnD+QVrum9nHEDwVZ80zztrZeEQHxKkvmClHpyfCnJHmy6c/6Z4q+hv
bR2o+eYOCSD1nNoOJUDh03wIfoyC48fkP2Zw/qG25eGnHpk5rAcZxKvtYKC1
UvjCETOHgFvSNYlC2hDzFpk5NLAc7TcU13YA+7/NzEEcJK6k5XBD6JPj+Wlm
DukgcTYth5OHndZmvjNz8DnBbjs7VAviPylzhxcg92VrOfD6r5+SGoHgJ8fe
cWOWsIDzr4PMa7OAiFdowvlGxkBwWR3On9LeGnX5j6oDl5tqKdMvcweP/bWy
FsdVHJbc38c3RxnB13jLu89gpxmcDw6vKDOHMyDAowpxp6iZwwaQRK8qPD5N
QPZ9VnVgAIEDpg4vQPERq+bgB4rXyaYOjaDwCFd3+LrzVtffUFOHht9WBec0
1KHhY+rwNHHhNRN+NYc6kPgMqHyGKiS8lplCwrVJBZ4+noDU66vAwxccblwq
Dhv18hYz3kHwDwC9kT7FHM4Hm59h4TATBG6qQMLthQXcfrB5ZpYQ/55Rg6Sr
WEuI+6erw/nSIHcUaMD5zJxd8sl+mg79wSUq0/UtHY7v2tHLJqDlEA1KP3cs
HH68fX3AslkLkn4WWTjoK8p/ybmmBdGfa+Fw/mrYG/3fWvD40QelKxVoetsE
1e+sA3HvDwto+tKF8+csUt75R10PzgerP6zvYFsZscLUF+rfTAMo3xzOB8fX
BjM4PwWk3wOa32wNIOnhpik8f6HnZwDIbKDV
"]],
FilledCurve[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl
k2omMe5HZgMAEs4CVw==
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJ7IGYCYg431VKmW9YOLJxd8sl5Wg5LX3jo/W+0cTC3
2Rs0LVHLYcoE/iqz0zYOG/TyFjPGaDmcAYE3Ng7TQeLaCP6U9taoy3s04fw5
i5R3/knXdMhf030744GNw2bzH4dSVmk49Hi9YjG5CDRP9UnzvLfqDs8TF14z
eW/toP5J5eUsTWkH+6ZHx2fstnZ44BrvOOuimAOP//opqTusHRR2LdiXuk7M
4fhhp7WZdtYOGiD1nWIQ8w5aOYhUTio5myLmcEO6JtFoqxVEPZ8ohG9q7fCm
LbfbSFrUQXzqFc6MTdYOaSCgJuogMy9O87SAjYOJMQiIOqTE3nFj9kDwwe6p
RvD31spapF+xges/AXKPny3c/P8g8N4Wbr/6W959Bj9t4e470LY8/JSRLdz9
S+7v45vz2MahVYFd9cwUMQd9rZXCF47YOHzZ93Fr+jd0vjicLww2TwLi3hM2
EPt3S8DD90D3viaTxZIQ95+2dVgPCu9cDThfFKSwRMPhw4aA7FnXofJvNRyu
Cn1yPP/M1sEMHP+aDjyg9PHKFuKvek1IOHy2hcd3jILjx+Q/tpB459GCqM+y
g4SrgZYDyNizs+wcnmdpf5tuqwVx/xUEP0J8+0UGNgc4v/63VcG5AAcHabB+
TTh/hwPQ4T/U4Hxw+KepOHzZeavr71F7iP0+Sg4zZgLBTjs4PxWkrAzBB8eH
pZ1D9f0ft4yzlSDp64Stw8pvLyvOHFCCxOc5W4fbmrJr/jMrOfQGl6hMt7dz
2Jtf83bmVEWIf2vsHPhjA+4blSvC/QPjPwGlZ30HVP51B0h4OqrA+XLLgRmt
Xh3OB+eX55oOq4HZhaHcAZq/tB2OgNJLk73DdpD/JbQh4XTX1iEd5C82bYj9
LdD0KawNoR9bw9Wj528Atna2+g==
"]]}, {
Thickness[0.02853881278538813]}, StripOnInput -> False]}, {
ImageSize -> {52.56065753424658, 26.03675716064757},
ImageSize -> {35.04043835616439, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {36., 18.}, PlotRange -> {{0., 35.04}, {0., 17.36}},
AspectRatio -> Automatic}],
Graphics[{
Thickness[0.02853881278538813],
Style[{
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQ/R8E7ks4/Hz7+oClsoqDSOWkkrNLpOD8MyDQIwPn
x6hGyJzbI+PgsebocoYfynD+3vyatzNTleB8+xLH2tNzONH4zA7uIH0zZBz6
I7r9GT8wOcyZCQQ/pRzA7tjP5LAj2Cri/3EJh+u8t8VSyxB8E2MQ+G8PcY+s
Q4t4LWvmMUz+GiEdvvR9cnC+7K4F+1LfyePkg6yfGakENx/Gh9m/8tvLijMO
inD3PXCNd5xVqAB3fzinWLtxvALcf6h8TjgfrO+iqEN6GhCIKTp82fdxa/o3
EQewfTcVHRhAYIGIg/K1R8EMb5Tg/NLD21xnzlWG8zfo5S1mtFFx0Pik8nLW
SxGHF1na36bPhcZbiqiD1wl229mh6g7V93/cMn4t4ZAQEqS+wFMDEo7qUg71
v60KzmVoOtwHuUdQHs4Hu5NfEc4Hm7dF2aGB5Wi/obm6w5xFyjv/HFeFhFOx
Cpy/AhQ+E5ThfHA62KrkMGMCf5VZt6rDHU3ZNf+DlRyeJC68ZqKvCg8PSHpR
hvNP7NrRy7ZBFZI+NBTg5oW8vfxxxkNZCN9dFeKPdGmHwFvSNYmfVBxg6XeD
6pPmeWcRfFh6BQDMMEWn
"], {{8.18594, 8.94844}, {8.18594,
9.11406}, {8.245310000000002, 9.245310000000002}, {
8.399999999999999, 9.44844}, {8.746879999999999, 9.88906}, {
9.23438, 10.1156}, {9.831249999999999, 10.1156}, {10.9516,
10.1156}, {11.667199999999998`, 9.32969}, {11.667199999999998`,
8.089060000000002}, {11.667199999999998`, 6.75469}, {10.8688,
5.76563}, {9.79531, 5.76563}, {9.139059999999999, 5.76563}, {
8.651560000000002, 5.9796900000000015`}, {8.18594,
6.468749999999999}, {8.18594, 8.94844}}}],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4kaWo/2G6YYOrQrsqmemiDrA+BqfVF7OWinm
4H2C3Xb2UQMHtzVHlzPMEHMoWNN9O6PBwEFh14J9qX1iDrz+66ekaiD4CbF3
3JhvaMP1P0lceM3kvLaDiTEQXBZx2GL+41DKKW0HkcpJJWdTRBxYOLvkk9dp
O6SnAcEzQYetDk2PjlvowPkS8+I0TxfoOLxpy+02ihZx+PH29QHLZh2HGNUI
mXMyog66ivJfcq7pOFTd/3HL2FvU4U3xVtHf2npw/n8QiDeA8/uDS1Sm6xs4
zAQBSREHfpD7OQwg9rkJO4j2eL1imaLvUA1Szy0Et+8MGLBA5EV0HK7z3hZL
3cYE9Ze2QzTIPTWMDn9A6h9rOeRMTSi0KP5lL7/8hYfefy2HgCeel0wnf7eX
BfHv60Dc9f+7/fmrYW/0fyP4pjZ7g6Yd1IXzI8S3X2SIM4Trh/FlNorNZ3rw
y1586hXOjCRDhwu/j12fF/nP/nDb8vBTRYYOB7v3NZksZoLGl6FDi3gtayYb
m8P0CfxVZtYI/t9vpQ/mCBo6+IPMD2aAhoehA4v+L65LPP/sP28IyJ613MCB
Fcz/aw8LHxhfV2ul8AUVXTgfPT0BAGL4DTg=
"]],
FilledCurve[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYC4gjx7RcZzpk61P62KjiXoedgoLVS+MITBL9k
q+jv03zmDiI9Xq9YSvQdQJSJoLnDdoemR8cr9B1MjIFAGMH3OcFuO1sUwV9y
fx/fHGUEPyX2jhuzhrnDk8SF10z8kfgghzzQg/NNbfYGTVNUg/P/fit9MMdQ
Fe6eU4ed1mb+U3FY9sJD7/9EMweZeXGapz+oQGgBM4dfb18fsHyM4O8A2R+h
4nCgVtYivcTcIQ0MMPkvsrS/Te9F8EHaZqxG8MH23kPwz4CAjoWDGci9iSoO
daBw87BwmNLeGnU5RsVhJhgg+Mkg//ywgLsHxoe59z8I1FvA/dMNCm9GC7h/
udxUS5leIcIDxoeFF4wPtjbTAEKfNHe4LV2TaFRqAIkPY3OH60KfHM+rGTj0
BZeoTO83c/gBsv+wPsT/e00dnoLiR1/fAT19AAAKfvOh
"]],
FilledCurve[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl
k2omMe5HZgMAEs4CVw==
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJ7IGYCYg431VKmW9YOLJxd8sl5Wg5LX3jo/W+0cTC3
2Rs0LVHLYcoE/iqz0zYOG/TyFjPGaDmcAYE3Ng7TQeLaCP6U9taoy3s04fw5
i5R3/knXdMhf030744GNw2bzH4dSVmk49Hi9YjG5CDRP9UnzvLfqDs8TF14z
eW/toP5J5eUsTWkH+6ZHx2fstnZ44BrvOOuimAOP//opqTusHRR2LdiXuk7M
4fhhp7WZdtYOGiD1nWIQ8w5aOYhUTio5myLmcEO6JtFoqxVEPZ8ohG9q7fCm
LbfbSFrUQXzqFc6MTdYOaSCgJuogMy9O87SAjYOJMQiIOqTE3nFj9kDwwe6p
RvD31spapF+xges/AXKPny3c/P8g8N4Wbr/6W959Bj9t4e470LY8/JSRLdz9
S+7v45vz2MahVYFd9cwUMQd9rZXCF47YOHzZ93Fr+jd0vjicLww2TwLi3hM2
EPt3S8DD90D3viaTxZIQ95+2dVgPCu9cDThfFKSwRMPhw4aA7FnXofJvNRyu
Cn1yPP/M1sEMHP+aDjyg9PHKFuKvek1IOHy2hcd3jILjx+Q/tpB459GCqM+y
g4SrgZYDyNizs+wcnmdpf5tuqwVx/xUEP0J8+0UGNgc4v/63VcG5AAcHabB+
TTh/hwPQ4T/U4Hxw+KepOHzZeavr71F7iP0+Sg4zZgLBTjs4PxWkrAzBB8eH
pZ1D9f0ft4yzlSDp64Stw8pvLyvOHFCCxOc5W4fbmrJr/jMrOfQGl6hMt7dz
2Jtf83bmVEWIf2vsHPhjA+4blSvC/QPjPwGlZ30HVP51B0h4OqrA+XLLgRmt
Xh3OB+eX55oOq4HZhaHcAZq/tB2OgNJLk73DdpD/JbQh4XTX1iEd5C82bYj9
LdD0KawNoR9bw9Wj528Atna2+g==
"]]}, {
Thickness[0.02853881278538813]}, StripOnInput -> False]}, {
ImageSize -> {52.56065753424658, 26.23854545454546},
ImageSize -> {35.04043835616439, 17.49236363636364},
BaselinePosition -> Scaled[0.3029987538415624],
ImageSize -> {36., 18.}, PlotRange -> {{0., 35.04}, {0., 17.49}},
AspectRatio -> Automatic}],
Graphics[{
Thickness[0.07062146892655367],
Style[{
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQnZ4GBM8+2v98+/qApbKKwzavDRZzfv6A88+AgA+D
A4z/svZx9vk1DA4ea44uZ/ihDOfvza95OzNVCc63L3GsPT2HE43P7HCge1+T
STKDQ39Etz/jByao+b/s/4PAfiYH763+x5PbPtpf570tllqG4JsYg8B/e4h6
JocW8VrWzGOY/D6QuRtY4PzC5SUb/vGz4+RD9As4oJov4ACz/waINuNxgLkP
Ej4ccPdD7OOA+w+VzwnnP3CNd5x1URTi3x5uhy/7Pm5N/ybiMGMmCPA5MIDA
AhGIukJBOL9dgV31zBUhVHlBEQeNTyovZ70UcWgDy4s4iFROKjmbIgqhXaQc
qu//uGX8WsLhLMg+HRmHHcFWEf/VpRxqQOLZcg73webIw/nhnGLtxvyKcD7Y
nC3KDttB+tilHOYsUt7557gqxB0NInD+m7bcbqPdQnC+MEgfi6DDjAn8VWbd
qg7Bby9/nOEo4PAkceE1E31VeHhA0osynH9i145etg2qDgFPPC+ZXmaHmweO
h29MEL67qoMHKD2w/bEPvCVdk/hJxQGWfjeoPmmedxbBh6VXAFUATEo=
"], {{
3.08594, 8.94844}, {3.08594, 9.11406}, {3.14531,
9.245310000000002}, {3.3000000000000003`, 9.44844}, {
3.6468799999999995`, 9.88906}, {4.134379999999999, 10.1156}, {
4.731249999999999, 10.1156}, {5.851559999999999, 10.1156}, {
6.56719, 9.32969}, {6.56719, 8.089060000000002}, {6.56719,
6.75469}, {5.768750000000001, 5.76563}, {4.695309999999999,
5.76563}, {4.039059999999999, 5.76563}, {3.5515600000000003`,
5.9796900000000015`}, {3.08594, 6.468749999999999}, {3.08594,
8.94844}}}],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGINIGZigIINCg5S8+I0T19QcYDxdzg0PToeoeLwNHHh
NRN+FYc0MMDk+5xgt529FcHfpJe3mDFGFSe/keVov+F1Dbj561WfNM87q+Ew
YyYQ7ETw5yxS3vnnORpfXRXO97s4MeZfMoIfcEu6JnGSKtz8lNg7bsw/VB18
QeoOqzk8ihDffvGBqsOxXTt62T6oQtx1R9VhJhgoOSSEBKkvOKnqYGazN2ja
Q1UHA62VwhdcNB1MQfyF6g7/QUBe2+FV8VbR39oaDicOO63NlNOB87eD/FOh
C+dPmcBfZdatD7cfbE2mAcSflSpwfvnhba4zdZXh/Or7P24Zeys5OAKNm2Ft
4PBh0XqFsxmKDkdB7p6g7+A8oVkoTUrRYQPI/TK6EHfNR/CVrz0KZrij6CAB
is8Pug7poGBXU3LYApL/o+dwBgyUHI6DzCvQh/iXUQXOZ+Hskk/uU4Xzwcp7
1Bx0FOW/5JTpwflgde904HzxHq9XLFO0HbaY/ziUcgqoHxQ+dloOK7+9rDhz
QNlBFCQvouGAnt4AakwW/w==
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4vNXw97oz9ZwaFVgVz0zRdQBxtf4pPJy1kox
h5TYO27MEeoObmuOLmeYIeawQfVJ87yzag4KuxbsS+0Tc3iRpf1tuiyCL1w5
qeTsEkW4fuVrj4IZ5ig6mBgDwWURB/7YgPtG0xUdREDqUkQcqu//uGVcreiQ
ngYEzwQd9uTXvJ3JqgTnlx/e5jrTVsnhTVtut1G0iMN/EPBXcohRjZA5JyPq
ADLWeLGSQxXIHG9Rhw+L1iuc/aEM558BgR41OP9V8VbR39pqDjNBQFIE4v67
qhD73IQdHkWIb7+YoApxF7cQ3D6wOWdYHFZ+e1lx5oGiw3Xe22Kp25gg8vMV
HaJB7qlhdGAAgQ0KDjlTEwotin/Zg/1/RsEh4InnJdPJ3yH8NUoQff+/27uD
wvUEgr9WSIcvvU8Zzq/9bVVwrkMDrh/Gl9koNp/pwS/7v99KH8yZqOFw4fex
6/Mi/9kH3pKuSdyk4XCwe1+TyWImh/Xg+NJwaBGvZc1kY3P49fb1AUtnBP/Y
rh29bB/UHfxB5gczQMND3YFF/xfXJZ5/9pv08hYzyqg7sIL5f+1h4QPjP3CN
d5z1UQnOR09PAFTGHcA=
"]]}, {
Thickness[0.07062146892655367]}, StripOnInput -> False]}, {
ImageSize -> {21.23816189290162, 26.03675716064757},
ImageSize -> {14.158774595267746`, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {15., 18.}, PlotRange -> {{0., 14.16}, {0., 17.36}},
AspectRatio -> Automatic}]}, LegendMarkers -> {{
Graphics[{
Disk[{0, 0},
Scaled[0.001]]}], Automatic}, {
Graphics[{
Disk[{0, 0},
Scaled[0.001]]}], Automatic}, {
Graphics[{
Disk[{0, 0},
Scaled[0.001]]}], Automatic}, {
Graphics[{
Disk[{0, 0},
Scaled[0.001]]}], Automatic}},
Joined -> {True, True, True, True}, LabelStyle -> {}, LegendLayout ->
"Column"], {Right, Top}, Identity]}]& ],
AutoDelete->True,
Editable->True,
SelectWithContents->False,
Selectable->True]], "Output",
CellChangeTimes->{3.80458343079906*^9},
CellLabel->"Out[38]=",ExpressionUUID->"ce0b1897-2fee-4372-b7c0-1b8c3414355b"]
}, Open ]],
Cell[BoxData["\[IndentingNewLine]"], "Input",
CellChangeTimes->{{3.804583067160775*^9,
3.804583067921281*^9}},ExpressionUUID->"b10f85e1-de1a-45b5-b961-\
43ea9978a88b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1"}], "}"}], ",",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Im", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], "]"}],
"\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "0.6", ",", "0.01"}], "}"}]}], "]"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"RGBColor", "[", "\"\<LimeGreen\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Red\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Blue\>\"", "]"}], ",",
RowBox[{"Darker", "[", "Purple", "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"Graphics", "@",
RowBox[{"{",
RowBox[{"Disk", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"Scaled", "@", "0.001"}]}], "]"}], "}"}]}]}], ",",
RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}], ",",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Im", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], "]"}],
"\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.8", ",", "3", ",", "0.01"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"RGBColor", "[", "\"\<Red\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Blue\>\"", "]"}], ",",
RowBox[{"Darker", "[", "Purple", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<LimeGreen\>\"", "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"Graphics", "@",
RowBox[{"{",
RowBox[{"Disk", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"Scaled", "@", "0.001"}]}], "]"}], "}"}]}]}], ",",
RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}], ",",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Im", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "1"}], "]"}], "]"}], "]"}],
"\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.6", ",", "0.8", ",", "0.01"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"RGBColor", "[", "\"\<LimeGreen\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Red\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Blue\>\"", "]"}], ",",
RowBox[{"Darker", "[", "Purple", "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"Graphics", "@",
RowBox[{"{",
RowBox[{"Disk", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"Scaled", "@", "0.001"}]}], "]"}], "}"}]}]}], ",",
RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{Im}(E)\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"ImageSize", "\[Rule]", "Large"}], ",",
RowBox[{"AxesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "16"}], "]"}]}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.804582217002452*^9, 3.8045822783463793`*^9}, {
3.804582310186738*^9, 3.804582362763131*^9}, {3.8045826574706163`*^9,
3.804582662150242*^9}, {3.804582767332251*^9, 3.804582823514772*^9}, {
3.8045828677128983`*^9, 3.804582882829104*^9}, {3.804583559229579*^9,
3.804583666312928*^9}, {3.804583755991941*^9, 3.804583756851987*^9}},
CellLabel->"In[55]:=",ExpressionUUID->"38f39947-d817-4c98-9bbd-6cf292924898"],
Cell[BoxData[
GraphicsBox[{{{}, {{{}, {},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.004583333333333334], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJxd1nk8VPv/B/Az+xiGKeqmhfZIi7rRpk5ppw1p1W3TotJOKlehfdN2W9x2
XLRI5Wo7en+ULpVKllQoS9ZRpjEGw4yfznn7/fE9/3jMY2Y+Pu/X8/15f6bH
8o3uK/kURfnwKOrXX+6REuPNVT4FAQpS7fbQap9SQiLOXJtkt15BciM2jZHl
SsiDbuNOByxRkOd1Nl5hzyTk5c3jbi/cFSRuStFOizgJmUu77243WUHCL/x6
JERtN73L4pEKsk/5a0EJmSwb1TtmgIJsbl0tYpOEfIrNOa+2VpDWxVpXlJD9
/JztTuYKMvXXclMk5ESfKtgnVpDf2UdCvBbv/3qx1oxYswtKSLCPhcnAz2ZE
xm5QQmDrKz5DzIj21/bqxOTi8GoyLdqMsMsViUmx+N8JH46ZkTfpvx4xqYiZ
d3DZNjPyq1q3h2Jya4ThiHKhGYn8VW6EmBznv3LdNt6MsNsLE5NJy7JSmvqZ
kV2/ltspJh7htppgUzOyin1aP/8o84O4zpS4swuKSef1r30O55kSttwxYvLk
s/iGyTNTYssWLCaOoRvOHIsxJexyFmLSo11xH3mYKeE8xKTaYfiiI36m6CEi
oj0jh0i9TNFDRNYOuREZ6mxK2O09E5EfFuPu6W1M0UNERnlEz/U3M0UPEbky
Ofj49zo5eohIx5nec1fky9FDREZfybuR+0yOHiLy4LfVB11i5eghIuPlu5RP
wuToISLybnsy7Pzl6CEieY2Zv4d7ydFDRNaPTGknmSBHDyE52/38qi22cvQQ
km0b9g/KN5Ojh5Bs6Pt45UStCXoIyYgFbtKb+SboISSbqr3aK56boIeQjFtW
uHtrrAl6CEnNhffTc8JM0ENI0i918nPwN0EPIWn9kua0lwl6CInWl5eqcjZB
DyFpyrGrcLU1QQ8huQSMR5SZCXoIyUonD5G+zhg9BGQYtbvBPd8YPQRkfRdi
E/3MGD0EZELC/pONMcboISD9nw4d5BJmjB4CEnfHXHfezxg9BOSM4xpV6SJj
wpa7SUD8qxabDHE2Rg8BidYrpu20MUYPAelWfeRasqkxegjIfZtUhaROhh4C
sict5qRLngw9BKTPAKH10WQZevDJrugL919Hy9CDTy717ehidFyGHnyy7337
gonbZOjBJ8LbFquDFsrQg09ejTxa/O84GXrwiVm7nGnKvjL04BNDkMM5K7kM
PfhkR+cvKbNqjdCDT+4vrEwP+mRExrIb5JPR/RfF3gQj9OATjX/3OR+ijNCD
T7yIaarhiBF68Mlf10qaem8xQg8ecV04sXrqfCP04BGhR9LJtWON0INH3l5J
Lj3U2wg9eKQ+6EbRPzIj9OCRjOzEoGSVFD14ZGKkLPHTByl68EhVaNyeGkaK
Hjyy3ywslx8hRQ8eGTM38L75ISl68Mjdibbynhul6MEjfsZ2BQM9pejR+n5w
Q5fho6XoQZGw0MrkMT2k6EGRpdMdU8dLpOhBkax0ba8J3yXoQZH6ph4Z47Mk
6EGRkN7Hno95JEEPimQOUNY5XpGgB0W6fn79x8DWOcx5UGS96d913ddJ0IMi
at7Vu+3cJOhBEVv/5kMtjhL0oIjs202/qq4S9KBIp8iQdZl8CXpQ5K1i4PIH
FWLMvwVCrw+afeGtGPNugXmiIruABDHm2wK/22xVeoSLMc8WmDOpYu+APWLM
rwXulXT8wWudq1xeLfAhI7prtqsY8zFAonkHccQQMeZhAOfcmCsbfhNj/QbY
PSPwi6NehPUaYNMh/wdNxSI8/waY4eZqnZQmwnoMYFK+Q7ardW6y21PqoU+a
q6/DGRH2jx5CV2SNrt4hImy7XNDD3hdVPleWiHB+6iF85FDlzEki7IfW10Wm
93X9ReivB/fxsQnXFSL0boY/QFk8WStE32ZYZxlsX54nRM9m2JaeGRaaLES/
Zui5SVLbJVqIXs1wQMibHn9UiD7N4Dd00dFxW4To0QyyP32i0ucJ0aMJjng7
HJzTOvc4jybYtSOwz8eeQvRogtglcb7zpEL0aIJtpGp25ncBejTBPbuWp1Oz
BOjRBF9LvaMfPxSghw7MI8c29rssQA8dfP99bsSJUAF66OCFaeczmjUC9NBB
WW74I4+ZAvTQwcaUg7y41jnGeejglNJ+gcBSgB6NMGX3ztseBj56NMJiZUnV
5RI+ejTCtM+79d/S+OjRCMes1Bl94vjo0QgBu9fPXnaajx6NULf65qpzAXz0
aAAbf7U+dTEfPRrAoUpK1Trz0aMButc6zO3UOpc4j4bW/TtVDpfz0aMBBjTN
v+am5qFHA1g9HLlqZesc4jwaYF5Hg9VWhoce9ZDvbn9v5zUeetTDIadkUeB+
HnrUg98yQYv/Oh561IOV8T8h62bz0KMeBJL4bQsceOhRDxNG7nw4rjMPPbRA
a2Pte7RQ6KGFD93tQFdCoYcWBLL+k96kUeihBTCVR5y/TaGHFs6pfB96naLQ
QwuKsvbeltsp9KiDLn+Uh75dRKFHHWzbqtHsGkehRx1MNl5wukcfCudnHewM
Hz8KjCj0qIO/OsOB2PwW4DzqIOMsaZ8S1QKchwa+Rqe+eLOhBTgPDRTllM78
b3gLcB4aMERWLrhNtQDnoYEZ7aadCHlpAM5DA4MkxhcmnTIA56GBHml3OmkX
GoDz0EDfgZ3unu5lAM6jFnQJ63hW1XrgPGrhlKs+6kyCHjiPWjB/NGhEfaAe
OI9acLzmPnPSJD1wHrUgMRzdFSTXA+dRC2aGu7Ou5zQD56EGP7te8+IvNQPn
oQb35BudY1Y2A+ehhm8KT+tDA5uB81CD+sOUMve6JuA81ABLzlULk5qA81DD
eA/Lm5f3NgHn8RMcBQ5nrac3AefxE3qa3e12wLwJOI+fEGsfdCv7sw44j59w
VB8UI7muA87jJ7zwmb7F2keHHj/h4lutdxd7HXqo4Nnw5zk6bSN6qODi3W/m
SUmN6KGCszOGrFm2txE9VCA9mmlR7tKIHipQZKnmzGjXiB4qsDq9wOt0bgN6
qOBVnPW8h5ca4Babfw38k+jg82RFA+ZdA8E7eHF/2zaAlM23BixXVAyfX1OP
ef6AS+2zzVQJ9bCGze8HeO+PG7Z8Zz3m9QNybXLCb9P1kMLm8x0MjcF274X1
mMd3kDTbprx+qYXubP3foUbzzuHicS2w5aZXQ1Sgy8TxHloIZBesBhgWGPXo
Ny2w8dhUQ3h5ICXMr4OPbD8pYb3tvWqrq3WwlwOC+TU5Kql3HQxj+0UJScsr
g0m/Oihk+6MKHojb8ycqNXCCBayC9iZL4GScBpxY/yqI2LBNHb1ZA9zvnUqo
HGyZtHeYBs6zvpXw5VaUTd/6WvSsBHXczN6HH9WCht1gBfRcOy00blctelWA
rmuK7sSYWpjNBlgBs/3irAe3qNGjAmaNmO69n6jRoxzcKo50OBOsRo9y2Dyx
83xPZzV6lENaQP8+qXw1epTBqcjKyWWtfejNepRBgPbUnDshP9GjDGqaf4uz
cv6JHqVQnDNzuz3vJ3qUwqzrf50qBBV6lIJn64XRP0iFHt9AP/ZrvpGTCj2+
wcLS2CtqdQ16fAPt4huW5etr0KMEPjl+OVxa+gM9SmC3OH1z0eIf6FECIbmG
WW+yv6NHMVj0pY+Hu3xHj2J4apHpNRKq0aMY7m2Uhp0fWo0eReDpQW+OilSi
RxHIejufd+2gRI8i6K5Kitm2two9CuG0qncHqboSPQphRHX9u6rFlehRCMPi
i2sMqRXoUQih7iude9lXwHw2/6+w+llO2tCz5Zj3FwDXSZ2FujJQsPl+gcz+
vSLWLCrDPAtALLN+ZPe4FNLY/PKBfnXYv13HUswrHzqmfXLN2fANDrL55IHI
ZeBgm5QSzOMz3L1gNDWuQwmMY+v/DLtvHi5rWl6M9X6Cbn8lBp28WQQN7IIf
4Wx0pNOHH4VYz0d4dSzhiGJAIcSz/ZQLktSvigcpX7B/ckE32WjW4B4FeH4/
wNqPhlHRa/OAsP2RAx0G2kyffekT9kMOZKYn+TXcz4UA1j8bTKauOD88Oge9
s+DJn555eeuywJ71zYKXyryw0JoM9MyECDNPaap1OlSwfu9hn1WoxqYxBb3e
Q2SOTVTFivtwlQ0wA0o9/Zx9r75gOI8MOOj2oOydagsTz+b/FkSRX3qHu5Qx
XN5vQHTLLXrzfwOY7my+6bCvZ5cHG497M1yer8A68EKjb+pm5gSb30u4vqNf
0riReQyXVxp06D9kabzoGaNg80kFr/Ptjd+5n2S4PF7AlIS5W/a5+TJ72PpT
oNeQArroZCbD1fscspdmj4qMGs+o2PqSQXgziZf53YXh6iHQ8Wh6hjhkO0PY
/T/FPiO4XwaiGgWrYv8gzFV2f4+g/SJ3ZXWvlQzF7ufB/3+e+/8JQCnOfTO5
p3lSyP6/u/h+PK4fB3lWoWN9D3Zl9rDrxUJop4LEf5m++P1IyHRueVT4/iKz
h/385f9Z/wwoB08NsiXJDMW+3guOw4atS29RP6H+9+nAvk9nhVIP7TZFPMHv
09ybDEOxF9xlWn5bb6J21+H7kfQhV0NNRcIFhvsBE0tvXPd+l/g/edv+aeks
91PJkk4MxV5od2n/wX28JyebttVP77ANHySJi2nLhx5tMma+nrZry4/ut3LJ
pTWWqieYLz1Ves6uc619W/60Y8Bez+HJjm0+tLxkexScG9vmR2f1Wn/iut34
Nl/a97BTVsQJhzZ/+tu90TU73ia29Qfdv1PMUsvhpK1/6OYDB/UBcq+2/qLP
0aoXiYedcH8vabtNSckuMtO2/qT3xU//sWEzYey5/qUD76TvHOM0v62/aesX
c3w7HTDH/b+la6PUG7JsPNvOBx0eONNJEeDGxHDnhz6vD/H5dCiZwfNFT+Ar
exwaMx/re08TKmCey70lDJ5P2jpzcP9es1cyI7jzS3c5mLigR+JSBs833fNd
geXVVBesP5tuN7AssKziDYPzgXZwfXNo7eI+mEcOvbT26tMOc48wOF/ozmP/
7X72hYjB+UObNhxeWrl6F4Pzifa0kM5I2DsK8/pIj9xHlRdHLmRwvtGBFuTj
Yd8QBucf/VyWH79udjyD85G+uPq/ZN7zfZjnZ+y/PQzOV3x9gsH5S3f/NHvu
YMsdTAY3n+lXd41qcgIDMe8Cuu08deLmO60bs/BYQa/tDM5/2mJVwHbVsAvM
Uu5+oFNfHl0+3TwBPQrpP0Pmq1X2Ccwc7n6h72xe2+Dv9pjB+4cutPts/feg
y1hfIT1H/eZZ8JX76FVEV2QXHLn0yp+5yN1vdMOW7J6GlBAG7z9aNmu0m09p
AtZfTF8Ncxx32i8EPYvp68mDNxHzIMyjmC4fvCjxH8lrBu9fOvlI8+OPz/2Y
/wPSio5o
"]]},
{RGBColor[1., 0., 0.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxdmH1s1dUZx0/R+kJGQIUMk2XyKvg2q2xupFdPcURB/tAqviXGEGWkGs26
xG1dgeyGoSPGFeM6I84YDMyoaFMCInJP+F21zaq2cNUK19rive2lvchb31+A
wnrP93nJzu+f8ulzznPOeT7npWH2E7+//3eTjDFPFRlT+InvsiT/60T53p8/
f/xS4cPbKm+ffJg55T4bWvjY5k+ZO13d3dnq6XXa/vUthU/5+eOFhMz17g8T
2bZVanwi2URG5qRbVkh3N3O7W+Q/Hf8an1Djk/0EmXNuuDC9oUuIM86nyzKn
Yi3NhY/ZmMJqy/cqby8sd5uyn95m5pxbW0hXzdzv1vhP29/vEzInY365t8v4
7jq/YOYTzqebLu0dfmo++CgWhg9lP71Pi6U/fGgcPpThgzlDPphTDj60PXwo
w4e2hw+Nw4cyfFws84MP5pyDD+ZUDD6Y2x18MP/g4EPakw/mNPlgZh/K8KEM
H8wZ8qFxfDoefFxE3OTg4yJpDx/MreSDOePgQ+Pwof39ciuZk+SDORWDD+ZO
Oh/aHz6U4UMZPiYR95MPZj4fk6Q9fEicfGh7+ND28MG8l3xof/hgTro7/AQ1
Dh8ahw+N4yfzIPkokvHhQxk+lOGDOUU+lOFD28OHMnww5+m+0v7woQwfzEm6
rzQffBjiNPkwEocP5oyDD2b2wZyk86Fx+NB88KHt4UPj8KH94UPj8KH96dfM
MdT/QsSMejNnqL4aRz2Z+X5h7qV6aX/U53zE80M9mLfSfjwv+bBebY/zz8z7
Szjmp3d8XBj7h7k+5rfLlnHJj/tTGftBGf6Z8/Q+nZN88CtMPs9Jf/g7J/OF
L2X40fb4zsl64eMscZruo7MShw9l+Dgb+NA4fGg++DgT+FCGjzOBD2X4OCP1
gQ+Nw8eYMHwow8dY4GMs8DEW+GAeJB+jxPweMWfIx2jgQxk+RmW98DEa+BiV
esHHiMThY0R8wofG4WMk8DEi9YKPERkfPoalPXwMS374UIaP4cAHcxP5GA58
DAU+hgIfyrg/hwIfQzJf+GCuJx+D0h4+BqU9fDC30/02GPhQho/BwIcyfAzI
+PAxIOuHj4HAx4DUDz40Dh/K8NEv+eGjX+LwoQwf/YEPZfjoD3z0BT76Ah99
gY++wIcyfPRJveGjN/ChDB/M9TH46A189AY+mNP0fvRKPd/39T8d1Fv5Ml9f
ZdTzlPiq8PVj3kr795S0b/D1OSntUY+TMv4sv35lv9zmE8LrfMIT0t+XZ6HG
034/HZfxNkKQ1POXfr9oPOP3x4/CL3uByjHvXxl/7xwTfs37PRb4VB70E8wH
70te5nufL2Be1oOfeekPHz2Bjx5pDx89kh8+uqX9au+jW3zDR7eMDx9Hg/15
NPBxVMaDj5yMBx856Q8fucBHV+BDGT66Ah+dgY/OwEdn9OTosw+sb9nzMXxk
eb/F4CMr84WPrMwHPjLC8JGR/PChTLMSfsTX/4dg/x+R/T7N11c4hnp2yHhN
vn7tQb2UN/n6fB/Uo036l/n1t0n9sd7v5PyP+oTpYD1p6V/v99NhmR/2D/Ne
Or+HZD1Jvz++lXzYD8wvuyrvv1Xi8P2NcIn3+03g82vhvPf3leSDL+a42+oL
mIpMWVW658L5BH4/wRcXrdnU35qo9/U/EJmqn9wz+ReW7pOWyKSWL37hqtrE
LF/f5qCeX+h8fP0+j0zFjacXb76VzmOTxKf5+vw3MrMeX37DHd8lUI9Gicf9
+hsi05yJlXfMdljvZxLv9ev7JDJLD33QsnhHAutJRmbZ2lumNjUkkn7++6MV
uy5p+WdVmcN8nfTf6uf3cWQqDx4cmLkrgQfzo8gVHzbXN9ziMP5uXZ8fb2dU
M/O214Z2vOeQv07n6/O9G8x/+8T6du1+4suGRNy3fzNqPFbxr2srxxKI10Ym
fvnI6lO1CTyAGyf6v/LTt4q69pnwm+Hj9v/z19onGxY8vKH8RYcH7s0gvt2a
sj9evTDXmEhifhPcs2NRdjnVp07a40HbGfTfbU3m1zuvfnSY6yNxqp8w1VeY
6q/t4ceaIx3P7Z/xbin5s6arZl7PpvoE+Q3Gb7Cm5MF7Tq+5ls5Lo121Yc/j
c9qGSmn/SHvaX8H8Prfm5tjlg+drSml/SrwE+1eY9reNLxj/y7Ql/6b6HND6
+C9l48vnvP3g9I7EOzg/1izd+Vy+9S4+X9ZM/cd+s7sngfV9ZeMrx/sf2tOb
oPNp4we/vCZdOtP9BudX8tP5tmWt8a/fW52l/dFq490/O7ml8QF6L77V+uL+
sKb8V1e8M3ca3y82uSL345HGt0rp/rGmbcb6lXOv4/vJxl99NndrRTpB95fk
o/vNxq+srm77awnffxKn+9GajTX3fvThIkf3p615+vvm4UXrHN2vdkr3SzdP
eWoV/f3QbpPpO6dXLFviUrifrZldvWH4P3fSfdJh16/duO+LY39zM3G/27JT
qfxNS2fRe3vExvana1f0/cmtwvsQ+MgIr8T7YvOvFF2Y89s/8/tjW8cfOrSv
ap3D+rQ9vV/20OvxBbe9Mde9gffNvnDlFcXFfy+h/3/JBuvvFKb3025oWz9W
N/9GqkenPTBvysF5b6+lv4e67DPzl3ySnTrf/Q+MeY7x
"]]},
{RGBColor[0., 0., 1.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxdl3lsVUUUh4eWyhLRxtSFgFK3BBMTUSFB7rTToIABRbY/iBA1KIIYY1kC
BhBKhKASpSgkgASaFAKEppQEBeSF91iUghQfUGxZxNeVQgt0pS0t1b75nTnH
zP3n5cs5c+7M+Wbmtk/P+HzSzASl1Cc9lIr/4ukdwW9M1008+NSq2l7EBbok
NzOtb4njUn28ZfD0tcccK5U/pmxxSr7jcr15U/xxXKhX1cYLSv7c7mq5mY7r
dHex7ooSfzNebozwq/YRHmQLCve1E3S8Xd+NT6/lAY7bcmWOo7roTPyReHy1
Ew8Kb48vN9dxjbbTWyvjl8TLLRb+2D6Or+pJtqDE7XLTpP4LdsHCtlyKMB7H
leQjiThCPoTt9I4l8Xj4EIYPxzXkw3FUw4fkw4fjAg0f8j74kHz4cFyp4UPq
w0dPzocPYfhwXKPhQ+Lw0TOSXp7Rb2eeOQQfLh4hH5IPH46ryYfjGPmQfPgQ
hg/HpRq/EoePRGb4cBwlHxKHD2H4EIYPxxFtl5spcfiQ+vAh+fDhOKbhQ8bD
h+NS8pHAcfhwXEznw3GEfEg+fDhupPMh+fCREPn58aaf+szNOQQfMh4+hNPt
BB1HQ/AhcfiQOH4lDh89+P3w4biOfDiOavjowePhQ+LwIfXgQxg+ZDx8cDwE
HxKHD6kPH8LwoTgfPhTH4UPi8OE4EoIPZvIh+fAh9eBDGD6E4UPGw4fjGg0f
EqeHx6P//4bBldRvx26/O3b9dByl/Sz56Jcw+tPFjH508Xisv4vrY72Sj/Mv
jPXIeDu92vvM2D+OY9pul033eTzuT8eldD4lDv/C8N3J+fDbyfOFT4nDn8Th
q5PrwU8nzw+/kg8fHZwPHx2eD2H46PB8dHg+Ojwf9zwfwvBxj9cDH8Lwcc/z
IXH4aOc4fLTz/OCjndcLH5IPHxKHj3bPRxszfAjDRxuPh482nh98tHk+HFeS
D4nDRytxHZ2PVs9HK9eHj1Z+P3y0ej5aPR93PR93eTx8SBw+HBeSD84PwYfk
w0cLzw8+Wng8fLSwH9yfEocP5hB8tHg+mjkfPpo9H808P/hw7P7+kvHwIYxf
x+7v2ybvfDg+GIKPJl4PfDguJh9N3F/4aOL68NHo+Wj0fDRyPnw0ej4a+f3w
Ifnw0cD14KOB8+GjgfPhQxg+Gnh+8NHg+ajnevBRz+uHj3ruP3zU8/zhQ/Lh
o57r43FcEMqz/b/jfR/u8Pt72/7e8fp5m3m27d9tXh/6JXzC9ucWvw/9uMXj
U+36he1yz9Tx+KW2YB3HbXsGC5fa/VTLvBKCmIfa/VLL64vZ/XGT62dbgTe5
f9hQwvh75wbX22j93uB68CnxZjvBGq4PX8yhCbaBNZ6PGq4HH9d5PHw4zgnB
x3XPRzX7+sj6qOb3wUc158NHFb8PPoTho8rzUckMH5U8P/hwnKPho4LrwUeF
56PC81HO9xt8lHN9+Cjn8fBRxuPhgzkEH2Wej5h3nwnDR8zzEWP/U23///H6
fY3fn2z7e83r59/MhbZ/V5nRr6tc72vbnyvu/qN+XGbfGXb9lzkf673E+W22
YCn3C+thDhXY/VRCnEfnuYTr4fz+xRyx++Mi18N+uMjxL6z/YuJs8n2BeJce
Yv1e4Dh8nuf9UWP9neN68CWcYxsY9XwIF9j+n2VGv4vkPrH9PRNWmd9/k3Ow
KEA/T4dVSuyNc82Xgmzbv1Oe/8KwSo30G3u9Lki2/Tnp9eO3sDo/9Vhn5HyQ
Zdd/guNY7/Gwir6zc+vq3KDeru+ot56I1LPzPxJWGRvDees3B5hvKKySz6xa
UhEOcuz8Dsn67XwOhFV91aYDzSvo/fvDw75cOPmVpfk6Zt+3L6yytn0656eb
h1E/P6wmpA668sj0IMvW290d/6H1j9vv0/jtXD/L5m/tns9rz1QmD6D4enm/
5ZWej/89j9q4UWrL8BGPrR9B443K2vFg8bYNh/GB22pUJGHUoLOD3PsN9wPz
E8b8u8dnp49b916Af2D3GZVc0qe67zS3fsrfpak/Rm3ZWv7LjJWuf0Zl/7ly
ybPjXX+NGj7t9Zfn/hhQ/43KTOpKyNwWkB/z0oK034euSdfkj+dDfo0aO7/r
ZO9dzj/FszXtD7NoxLrTY4ZN07R/jCoefe/5gSUB7S+jjuxZ8NbMX2l+p0zi
0P1F42r70Xk/bdTgqfMabvbSQ7B/jZq3oWDOtmsB7W+vP2dNVuh42kPJsYDO
B8d34fwQ59D36RzHsT5hOp/Mw3F+TUbi3pQ7TzYHdL45jvUXM9P9YLIGjv9w
woBwQPcHx+l+MVV5fXYsW5bk7h+O0/3ETPeXyTi08Lnls9sDut84TvefyTif
tP+zgkDT/chxuj9NZO+MYV/1T9V0v5qMKaGHZ5Ulhuj+5fwo7mdmur9NZGnK
yBeLRoaewP3Ocbr/mT/A98Ho+XtWTF49iv7ejZmB8xZNmRwZo6fg+8L59P1h
P1hfzHx7tHnw7rcnkq8yc+JS/7TlsxbpLfi+8Xj6/pnRa0b37dowhdZfbt4N
q+/WLh7ivp9ePxwXaPr+cvw/A84srQ==
"]]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.004583333333333334], AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxd1ndck9f3B/DshB1U6qiKVlSGWhxotQ+9wS1YK+DAVRdaEcVRt4hacA9Q
sAKtG8uwIAhVbNVzQSyoaJEhCqgMmQEJIQkz4YvPc/j98Xv+8ZXXY27O+bzP
vZeha7Z4rBPweDwfPo/3+V/ukVH5tjqfd3vkinr31MFHlFL6R9i1GQ6b5IrC
G1udjQul9N4gReielXLFY63t8uB0Kc24ddb9iYdckTCrbF+fBCldTDwOWs6U
KyIjPj9S2uQw98sVk+WKI8rPC0rpVOMpNjGj5Ipt3avd2CqlxbEF4WpruaJ7
se4VpTRIULCb6S1XzP683CwpPTu8Do5I5Irx7COlPiuOfvi92UJhzS4opft9
+piOLrJQGLMFdtfz8zPBA2qh0H0uTyuh1ybV0znRFgp2uTIJVUr+mvb6jIXi
RfbnR0I/xSw+vnqHheJzt+6pEhr3jeGUcqmFIupzuzckNETwzG2Hi4WCLS9Y
QhWr8zI6Rloo9n9ebp+EukfaaQ6bWyjWs4+Enruf+1qiNVd4sAtK6Febnvuc
LDZXsO06S+ijIkmcabq5wo5tWEIdA/3CzsSYK9jl+khof8vy4WbB5grOo7s+
p0nLTu00Rw8xNT80eaxsuTl6iKnf2LiowKnmCra8dDFV9lHc0duao4eYTvaM
XrTLwhw9xPTazMNnG7Rm6CGmveZ5L1pbYoYeYjrlSnFcYboZeojp3b4/HXeN
NUMPMXU126/8J9gMPbrrGXQox2GXGXqIaW5b7vjI5WboIaZbJmdYSqeZoYeI
hg8JX7/dzgw9RHS339ExJRZm6CGie0f8vW66zhQ9RPS7Je6yWyWm6CGiW+qX
95I/NkUPEXVZXXrw51hT9BDR+ohXcwuCTdFDRJ9d6rfTaZcpeojo8OXBmtDl
pughovrN/EzVVFP0ENHmAocaNztT9OiuFx543rQwRQ8R9WM8xXqtCXoI6Xje
wVaPEhP0ENLNX1Lb6HQT9BDSqSlHz7XFmKCHkDo+GjfGNdgEPYQ06Xbv9vCd
JughpGcnblBVLjNRsO1uFdIddStMx041QQ8hjdHL5+yzNUEPIR1Uf+pamrkJ
eghpom2mXKo1Rg8hDciKOedabIweQuowSmR9Os0YPQR0d3RE8vNoY/QQ0Esj
vnA1OmuMHgJ65FWvd9N3GKOHgBrF9/kpYKkxegho1uTT5X8pjNFDQK0sC+Yo
Rxijh4CKDjpdHGxmjB4CunfA+4wfmo3QQ0DvLq3NDnhrpPiOLVBAJ9gvi70F
RughoILdQxa8vmmEHgL6IzXPNJwyQg8BjbpW0WGz3Qg9+HTu0un1s72M0INP
RZ4Pz238zgg9+PTFlbTKEzZG6MGn6oC4sj+MjdCDT7Pz7wakqWTowacuUcZ3
376WoQefKgMTDjU+kKEHn4ZYBBcKbsjQg0+nLfJP7n1Chh58mjrdzuyrLTL0
4NMdJg7vRi+UoQefphxu/XLStzL04NETgbVpzkNl6MGjG+dOzHSRytCDR59m
64ZNa5CiB4+qO4bmuORJ0YNHj9qceex8X4oePFo0SqmdeEWKHjw6qOj5j6OP
SNGDR7eb/6Yd4itFj+71+FeTLN2l6MGjX+/qPNE1UYoePCr5eGtn3UApevCo
ddQvvrkCKXrwaIF89Jp7NRLMvwtOXR8zP+KlBPPugoXiMoc9KRLMtwvG2P6s
9IyUYJ5d4DmjJmjUIQnm1wUpFV984q+XYF5dkJcTPTDfTYL5GOCv3laSG2Ml
mIcB3Apjrvj1lWD/Bgj83v/9RL0Y+zXAzhO77nWUi3H/G8DV3c36YZYY+zGA
pHqv8f4EsYItT6mHYVlum53CxDg/eji2Nu/b+r1iBTsuEXoIelLnc2WlGM9P
Pfw2eZxy3gwxzoMeQsvMk9vtxeivh0UusSnX5WL07oRFoCyfqROhbyds6n/Y
sbpYhJ6dcCA7NzgwTYR+nTB4q7T5y2gRenXCSRF/buJpEfp0wp5xy04rtovQ
oxNMDvjczF4sQo8OOOntdHyBswg9OmD3Xv/hb74SoUcHRK1M2LxYJkKPDthH
6+bnNgjRowNSHLoezc4TokcHlFR6R/+dKkSPdugf9V3byMtC9GiH2vGLboQE
CtGjHdLNB4RpNgjRox0aCyPve84Tokc7bMk4zk8YL0SPdjindFwi7C9EjzZw
Pbgv3tMgQI82WKOsqLtcIUCPNphedFD/MUuAHm1wYrA6Z3iCAD3aYMfBTfNX
hwrQow3UP91af3GPAD1awW6XWp+5QoAerTCpTsZrnipAj1YY0Oy0qJ+tAD1a
oayQqZ1kJkCPVhje4XXNXc1Hj1awTp28fl0hHz1aYeEXhsE/P+CjRwsUezje
2XeNjx4tcJxJE/sf5aNHC/ivFnbt8uWjRwsMMvnjF9/5fPRoAYk0cccSJz56
tMC0yftSFQP46KEDF12s49AuHnroIH+IA7RX8NBDBwJj+xkvsnjooYNH5mY3
wuN56KGDENXm1OXneeihA7OqXt79d/PQQwv9fqwOfLmMhx5a2PGzRrNfwUMP
Lcw0WRI6dDgPz08tHIh0mQJGPPTQQtgAOBZb0kU4Dy3k/0p7ZdzsIpyHBiqi
M5+88OsinEf354LKef9O6iKchwYMUbVL4nldhPPQgKflnJBfnhoI56GBCVKT
iBnnDYTz0IBl1u1+uqUGwnloYNzofkmhwwyE82gGVYovf3C9nnAezRDppr8Z
lqInnEcz9Ls/5psWfz3hPJphwjWPeTNm6Ann0Qwyw+n9AWZ6wnk0g5kh6Yfr
BZ2E81DDMYdhixMvdRLOQw1eaXEDYtZ1Es5DDWXyhdYnRncSzkMN7a9nVXlo
OwjnoYaUlRfrRQ87COehBuLZ/9bloA7CeTTBFKHTr9ZzOwjn0QTDLZIGHevd
QTiPJoh1DPgzv6idcB5NEKwPiJFebyecRxM89pm73dqnHT2a4OJLnfeXju3o
oYJ/Jz0uaNe1oYcKLid97P3wYRt6qCD8+7EbVge1oYcKZKdz+1S7tqGHCobk
qRZ8b9mGHiqwCV2yPLSwFT1UkJtgvTj1Uiv5k82/EaLuOvn8s7YV826EX/by
E36zayUyNt9GsFpbM8mrsQXz/ASXeuVbqFJayAY2v0+w6WjChDX7WjCvT1Bq
WxAZT1pIBptPA7S3HXZ4JWrBPBqA12mX8fypjgxh+2+ANs1/Tr+f1RG23ex6
uOrvOt3FU0f82QXrIX2C/837fXWEjce2HsKq/XmiEi15w86TEjba3akffFVL
gjggcG8sUMm8tWQCOy9KuLOm9jAdqSWl7HzUwT+SXoLpSg0JYQHrwMJ0JZxL
0BCG9a+Dy3471NHbNIT7e6cWar/u/zBogoaEs761kPPnTdsRLc3oWQsNCfNs
Tt5vJhq2wBqw3zgnMGF/M3rVQMvAjPYQ52Yynw2wBr7fmWD9dZcaPbo/fzPX
+yhVo0c1LKo5ZRV2WI0e1RAwfYDXwqlq9KiGF3vsh2cK1OhRBcejamdWpTcR
b9ajCvbpzi+4/UsTelRBQ2ffhMFTm9CjEt4XzNvtyG9Cj0pYdP3C+VJQoUcl
eFUVRtoHqNDjI3R996HEiFGhx0fwqoy9olY3osdH0K6I61+9qRE9KkA38f3J
yspP6FEBxyXZ28pWfEKPCjhWaPjhRX4DepTD8BHkbKRrA3qUQ1Kf3OWToR49
yiFtiyw4fFw9epSBmyfZdjNKiR5lYGwzNdzNSokeZfCN6mHMjqA69CjtPl9t
rGTqWvQohVX1Lf/VrahFj1IYlVjeaMisQY9SOOOxbuowxxrixeb/AZakF2SN
+7Ua834P2W4zBojaq4iczfc9PLYfdmPDsirM8x1Ija3vO/xdSbLY/Erg+2cn
d1l+UYl5lYA8661bgd9HcpzNpxha54z+2jajAvMogvgIo9kJVhWEu3CK4Mit
k1Uda8qx37dgfeFuwLlbZaSVXfANRERHMa8/lWI/b+D1mZRT8lGlJJGdp0KY
kPlBfi/jPc5PIdTPNPrh66HvcP++hm1vDFOiNxYTys5HAQwcbTt3/qW3OA8F
8Dz74c7W5EKyh/XPh/Gz14ZPii5A7zyIO7CwuNg3jziyvnmQqSwODmzMQc9c
mG2xUJZpnU1qWL9X8N/gQI1tWwZ6vYKcAtubNWuTyVU2wBzQmxZdvZOTy3Ae
ORD/Kue4qW47k8jm/xLWVo6sOjivnOHyfgECd7+N+3NGMUPYfLPh3qPWs/xj
3gyX5zMYM332ExXdxoSw+T2Fy9NvnPronMdweWXBqfBZ/arsQhg5m08mpFWm
rjhtn85weTyBwmPaZpvZm5lDbP8ZEBpplD/Z9gnD9fsYck/be6ZfdWFUbH9p
cGeI3c6rGleG64dC0YULBpsHlKFs/Y9gDvWb5LJTgfU+AMPtM5Yr/viJucrW
dx88xo5URCygDI+t5x40Z1X4KNPG4u+nwAvj3i1jHycypezvJUFYbsm8K/Fx
uH4CvBz1Sv7n0YHMIXa9WNAtO6C4+88I/H4ULK/pY3Us93fmEPv/L0PFqjfu
f29p+5Z7Hwaa+rlpaYLTDI/9HARDV902XORRhvf/Hyv2PTn0U8WfQ7fe6Pk+
SX7336/x7icZHnvBXSbiiEP52z3a8X0UGd+XWIb/FcFQrj5SamcaHJVp1lM/
Ua27fOCNuB/DYy+0JBKvWSutfGje0z/xnZ/jnpsY05MPCfcOivs4xaEnP+L4
/NPoKCvVt5gvOTJ25gfnT449+ZN/dRkLlt2f2OOD+z6xx484+xqE1eNdenzJ
3fnOW64EOfX4k53vStfHv73bMx/4/fCe+SF2LmcLl+uW9cwXeRe6f6/7Vgbr
e/p/v4fzSUofrnlh0enLOHLzS+QDBsovD/LqmW/inP7ywJLrvbH+l2Tr4N0e
ybKFPfuDqC9rztlccGdiuP1D3ia0uCdcTWNwfxHvgRuGNW3ywv5eEZluWvIw
7UoG9ycJ2rbEIiQxkfmG27/E0v7M/sozqxjc32RX7sgn48zcsP988mE9Tdwm
/5fB84Hwbktqx1sPxzwKCPi+ufbcL5nB8wX7vcrg+UO2TJmlkD9OYvB8IsnP
IvotrJqCeb0h7nF+dQqylMHzjUT6n3ca++MdBs8/UrpXEHZthSuD5yM5sOx4
o1X2HcyziPRd6Jhsn7yfwfOVLC58/vx86ioGz18yK/TMk2EpSUwOdz6TVcFa
t/4NSZj3O7IjNf923vU7TD/ufCfbn1ztNNzczeD5TzJzL/javn/OrOLuB8Jc
dCtpcAlGj1ISMu/RmDRxCLOAu1+I74zRYfnlLxi8f8g+ffyUiNhs7K+U2LTP
b/LKPYleZZgXZX7n7jcS3tHpOnFOIIP3H/kxb7b3jLnnsf9ycv3Ey8ePmg6j
ZznxS+yobtAEYB7d77N9PvmqXzF4/xJNmOTp4k27mP8B2Pn46Q==
"]]}}, {
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.004583333333333334], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxd1nk8VPv/B/Az+xiGKeqmhfZIi7rRpk5ppw1p1W3TotJOKlehfdN2W9x2
XLRI5Wo7en+ULpVKllQoS9ZRpjEGw4yfznn7/fE9D//MY2Y+Pu/X8/15f6bH
8o3uKwUURfnwKKr1j+JTbY+UGG+u8ikIUJBqt4dW+5QSEnHm2iS79QqSG7Fp
jCxXQh50G3c6YImCPK+z8Qp7JiEvbx53e+GuIHFTinZaxEnIXNp9d7vJChJ+
4dcjIWq76V0Wj1SQfcpfC0rIZNmo3jEDFGRz62oRmyTkU2zOebW1grQu1rqi
hOzn52x3MleQqb+WmyIhJ/pUwT6xgvzOPhLitXj/14u1ZsSaXVBCgn0sTAZ+
NiMydoMSAltf8RliRrS/tlcnJheHV5Np0WaEXa5ITIrF/074cMyMvEn/9YhJ
Rcy8g8u2mZFf1bo9FJNbIwxHlAvNSOSvciPE5Dj/leu28WaE3V6YmExalpXS
1M+M7Pq13E4x8Qi31QSbmpFV7NP6+UeZH8R1psSdXVBMOq9/7XM4z5Sw5Y4R
kyefxTdMnpkSW7ZgMXEM3XDmWIwpYZezEJMe7Yr7yMNMCechJtUOwxcd8TNF
DxER7Rk5ROplih4isnbIjchQZ1PCbu+ZiPywGHdPb2OKHiIyyiN6rr+ZKXqI
yJXJwce/18nRQ0Q6zvSeuyJfjh4iMvpK3o3cZ3L0EJEHv60+6BIrRw8RGS/f
pXwSJkcPEZF325Nh5y9HDxHJa8z8PdxLjh4isn5kSjvJBDl6CMnZ7udXbbGV
o4eQbNuwf1C+mRw9hGRD38crJ2pN0ENIRixwk97MN0EPIdlU7dVe8dwEPYRk
3LLC3VtjTdBDSGouvJ+eE2aCHkKSfqmTn4O/CXoISeuXNKe9TNBDSLS+vFSV
swl6CElTjl2Fq60JegjJJWA8osxM0ENIVjp5iPR1xughIMOo3Q3u+cboISDr
uxCb6GfG6CEgExL2n2yMMUYPAen/dOgglzBj9BCQuDvmuvN+xughIGcc16hK
FxkTttxNAuJftdhkiLMxeghItF4xbaeNMXoISLfqI9eSTY3RQ0Du26QqJHUy
9BCQPWkxJ13yZOghIH0GCK2PJsvQg092RV+4/zpahh58cqlvRxej4zL04JN9
79sXTNwmQw8+Ed62WB20UIYefPJq5NHif8fJ0INPzNrlTFP2laEHnxiCHM5Z
yWXowSc7On9JmVVrhB58cn9hZXrQJyMylt0gn4zuvyj2JhihB59o/LvP+RBl
hB584kVMUw1HjNCDT/66VtLUe4sRevCI68KJ1VPnG6EHjwg9kk6uHWuEHjzy
9kpy6aHeRujBI/VBN4r+kRmhB49kZCcGJauk6MEjEyNliZ8+SNGDR6pC4/bU
MFL04JH9ZmG5/AgpevDImLmB980PSdGDR+5OtJX33ChFDx7xM7YrGOgpRY/W
94MbugwfLUUPioSFViaP6SFFD4osne6YOl4iRQ+KZKVre034LkEPitQ39cgY
nyVBD4qE9D72fMwjCXpQJHOAss7xigQ9KNL18+s/BrbOYc6DIutN/67rvk6C
HhRR867ebecmQQ+K2Po3H2pxlKAHRWTfbvpVdZWgB0U6RYasy+RL0IMibxUD
lz+oEGP+LRB6fdDsC2/FmHcLzBMV2QUkiDHfFvjdZqvSI1yMebbAnEkVewfs
EWN+LXCvpOMPXutc5fJqgQ8Z0V2zXcWYjwESzTuII4aIMQ8DOOfGXNnwmxjr
N8DuGYFfHPUirNcAmw75P2gqFuH5N8AMN1frpDQR1mMAk/Idsl2tc5PdnlIP
fdJcfR3OiLB/9BC6Imt09Q4RYdvlgh72vqjyubJEhPNTD+EjhypnThJhP7S+
LjK9r+svQn89uI+PTbiuEKF3M/wByuLJWiH6NsM6y2D78jwhejbDtvTMsNBk
Ifo1Q89Nktou0UL0aoYDQt70+KNC9GkGv6GLjo7bIkSPZpD96ROVPk+IHk1w
xNvh4JzWucd5NMGuHYF9PvYUokcTxC6J850nFaJHE2wjVbMzvwvQownu2bU8
nZolQI8m+FrqHf34oQA9dGAeObax32UBeujg++9zI06ECtBDBy9MO5/RrBGg
hw7KcsMfecwUoIcONqYc5MW1zjHOQwenlPYLBJYC9GiEKbt33vYw8NGjERYr
S6oul/DRoxGmfd6t/5bGR49GOGalzugTx0ePRgjYvX72stN89GiEutU3V50L
4KNHA9j4q/Wpi/no0QAOVVKq1pmPHg3QvdZhbqfWucR5NLTu36lyuJyPHg0w
oGn+NTc1Dz0awOrhyFUrW+cQ59EA8zoarLYyPPSoh3x3+3s7r/HQox4OOSWL
Avfz0KMe/JYJWvzX8dCjHqyM/wlZN5uHHvUgkMRvW+DAQ496mDBy58NxnXno
oQVaG2vfo4VCDy186G4HuhIKPbQgkPWf9CaNQg8tgKk84vxtCj20cE7l+9Dr
FIUeWlCUtfe23E6hRx10+aM89O0iCj3qYNtWjWbXOAo96mCy8YLTPfpQOD/r
YGf4+FFgRKFHHfzVGQ7E5rcA51EHGWdJ+5SoFuA8NPA1OvXFmw0twHlooCin
dOZ/w1uA89CAIbJywW2qBTgPDcxoN+1EyEsDcB4aGCQxvjDplAE4Dw30SLvT
SbvQAJyHBvoO7HT3dC8DcB61oEtYx7Oq1gPnUQunXPVRZxL0wHnUgvmjQSPq
A/XAedSC4zX3mZMm6YHzqAWJ4eiuILkeOI9aMDPcnXU9pxk4DzX42fWaF3+p
GTgPNbgn3+gcs7IZOA81fFN4Wh8a2AychxrUH6aUudc1AeehBlhyrlqY1ASc
hxrGe1jevLy3CTiPn+AocDhrPb0JOI+f0NPsbrcD5k3AefyEWPugW9mfdcB5
/ISj+qAYyXUdcB4/4YXP9C3WPjr0+AkX32q9u9jr0EMFz4Y/z9FpG9FDBRfv
fjNPSmpEDxWcnTFkzbK9jeihAunRTItyl0b0UIEiSzVnRrtG9FCB1ekFXqdz
G9BDBa/irOc9vNQAt9j8a+CfRAefJysaMO8aCN7Bi/vbtgGkbL41YLmiYvj8
mnrM8wdcap9tpkqohzVsfj/Ae3/csOU76zGvH5BrkxN+m66HFDaf72BoDLZ7
L6zHPL6DpNk25fVLLXRn6/8ONZp3DhePa4EtN70aogJdJo730EIgu2A1wLDA
qEe/aYGNx6YawssDKWF+HXxk+0kJ623vVVtdrYO9HBDMr8lRSb3rYBjbL0pI
Wl4ZTPrVQSHbH1XwQNyeP1GpgRMsYBW0N1kCJ+M04MT6V0HEhm3q6M0a4H7v
VELlYMukvcM0cJ71rYQvt6Js+tbXomclqONm9j78qBY07AYroOfaaaFxu2rR
qwJ0XVN0J8bUwmw2wAqY7RdnPbhFjR4VMGvEdO/9RI0e5eBWcaTDmWA1epTD
5omd53s6q9GjHNIC+vdJ5avRowxORVZOLmvtQ2/WowwCtKfm3An5iR5lUNP8
W5yV80/0KIXinJnb7Xk/0aMUZl3/61QhqNCjFDxbL4z+QSr0+Ab6sV/zjZxU
6PENFpbGXlGra9DjG2gX37AsX1+DHiXwyfHL4dLSH+hRArvF6ZuLFv9AjxII
yTXMepP9HT2KwaIvfTzc5Tt6FMNTi0yvkVCNHsVwb6M07PzQavQoAk8PenNU
pBI9ikDW2/m8awclehRBd1VSzLa9VehRCKdVvTtI1ZXoUQgjquvfVS2uRI9C
GBZfXGNIrUCPQgh1X+ncy74C5rP5f4XVz3LShp4tx7y/ALhO6izUlYGCzfcL
ZPbvFbFmURnmWQBimfUju8elkMbmlw/0q8P+7TqWYl750DHtk2vOhm9wkM0n
D0QuAwfbpJRgHp/h7gWjqXEdSmAcW/9n2H3zcFnT8mKs9xN0+ysx6OTNImhg
F/wIZ6MjnT78KMR6PsKrYwlHFAMKIZ7tp1yQpH5VPEj5gv2TC7rJRrMG9yjA
8/sB1n40jIpemweE7Y8c6DDQZvrsS5+wH3IgMz3Jr+F+LgSw/tlgMnXF+eHR
OeidBU/+9MzLW5cF9qxvFrxU5oWF1mSgZyZEmHlKU63ToYL1ew/7rEI1No0p
6PUeInNsoipW3IerbIAZUOrp5+x79QXDeWTAQbcHZe9UW5h4Nv+3IIr80jvc
pYzh8n4Doltu0Zv/G8B0Z/NNh309uzzYeNyb4fJ8BdaBFxp9UzczJ9j8XsL1
Hf2Sxo3MY7i80qBD/yFL40XPGAWbTyp4nW9v/M79JMPl8QKmJMzdss/Nl9nD
1p8CvYYU0EUnMxmu3ueQvTR7VGTUeEbF1pcMwptJvMzvLgxXD4GOR9MzxCHb
GcLu/yn2GcH9MhDVKFgV+wdhrrL7ewTtF7krq3utZCh2Pw/+//Pc/08ASnHu
m8k9zZNC9v/dxffjcf04yLMKHet7sCuzh10vFkI7FST+y/TF70dCpnPLo8L3
F5k97Ocv/8/6Z0A5eGqQLUlmKPb1XnAcNmxdeov6CfW/Twf2fTorlHpotyni
CX6f5t5kGIq94C7T8tt6E7W7Dt+PpA+5GmoqEi4w3A+YWHrjuve7xP/J2/ZP
S2e5n0qWdGIo9kK7S/sP7uM9Odm0rX56h234IElcTFs+9GiTMfP1tF1bfnS/
lUsurbFUPcF86anSc3ada+3b8qcdA/Z6Dk92bPOh5SXbo+Dc2DY/OqvX+hPX
7ca3+dK+h52yIk44tPnT3+6NrtnxNrGtP+j+nWKWWg4nbf1DNx84qA+Qe7X1
F32OVr1IPOyE+3tJ221KSnaRmbb1J70vfvqPDZsJY8/1Lx14J33nGKf5bf1N
W7+Y49vpgDnu/y1dG6XekGXj2XY+6PDAmU6KADcmhjs/9Hl9iM+nQ8kMni96
Al/Z49CY+Vjfe5pQAfNc7i1h8HzS1pmD+/eavZIZwZ1fusvBxAU9EpcyeL7p
nu8KLK+mumD92XS7gWWBZRVvGJwPtIPrm0NrF/fBPHLopbVXn3aYe4TB+UJ3
Hvtv97MvRAzOH9q04fDSytW7GJxPtKeFdEbC3lGY10d65D6qvDhyIYPzjQ60
IB8P+4YwOP/o57L8+HWz4xmcj/TF1f8l857vwzw/Y//tYXC+4usTDM5fuvun
2XMHW+5gMrj5TL+6a1STExiIeRfQbeepEzffad2YhccKem1ncP7TFqsCtquG
XWCWcvcDnfry6PLp5gnoUUj/GTJfrbJPYOZw9wt9Z/PaBn+3xwzeP3Sh3Wfr
vwddxvoK6TnqN8+Cr9xHryK6IrvgyKVX/sxF7n6jG7Zk9zSkhDB4/9GyWaPd
fEoTsP5i+mqY47jTfiHoWUxfTx68iZgHYR7FdPngRYn/SF4zeP/SyUeaH398
7sf8Hwgpjmo=
"]]},
{RGBColor[1., 0., 0.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxdmH1s1dUZx0/B+kIkoELExExeBZ3TKk5HevUURybIH1sV3ZYshiiSajTW
RGctEG8YKllmMdot4ozBwIyKNiUgIveE31XbWLWFq1a41hbvbS/tRd76/gIU
1p7v8xLPLyTlw3POc855PuelYdZDT977yERjzKMFxoz9MRMMfxcn+W/HS/f8
6oVjFwkf2lp+x6RDzCn3+cCCv236jLnd1dydrZxWo+3f2Dz+Kb9wbDwhc617
aizb1nKNjyUby8icdEvH093N3OoW+k/Hv8Yn1PgkP0HmnBscn97AhcQZ59Nl
mVOxpsbxj9mY8dWW7lHeNr7crcp+epuYc27NeLpK5l632n/a/l6fkDkZ88u9
Q8Z31/kFMx93Pt00ae/wU/PBR6EwfCj76X1WKP3hQ+PwoQwfzBnywZxy8KHt
4UMZPrQ9fGgcPpTh4wKZH3ww5xx8MKdi8MHc6uCD+ScHH9KefDCnyQcz+1CG
D2X4YM6QD43j0/HgYyJxg4OPidIePpibyQdzxsGHxuFD+/vlljMnyQdzKgYf
zO10PrQ/fCjDhzJ8TCDuJR/MfD4mSHv4kDj50Pbwoe3hg3kP+dD+8MGcdHf6
CWocPjQOHxrHT+Z+8lEg48OHMnwowwdzinwow4e2hw9l+GDO032l/eFDGT6Y
k3RfaT74MMRp8mEkDh/MGQcfzOyDOUnnQ+PwofngQ9vDh8bhQ/vDh8bhQ/vT
PzPHUP/zETPqzZyh+moc9WTm+4W5m+ql/VGfcxHPD/Vg3kL78Zzkw3q1Pc4/
M+8v4Zif3rFRYewf5tqY3y6bRyU/7k9l7Adl+GfO0/t0VvLBrzD5PCv94e+s
zBe+lOFH2+M7K+uFjzPEabqPzkgcPpTh40zgQ+Pwofng43TgQxk+Tgc+lOHj
tNQHPjQOHyPC8KEMHyOBj5HAx0jgg7mffAwT83vEnCEfw4EPZfgYlvXCx3Dg
Y1jqBR9DEoePIfEJHxqHj6HAx5DUCz6GZHz4GJT28DEo+eFDGT4GAx/MDeRj
MPAxEPgYCHwo4/4cCHwMyHzhg7mWfPRLe/jol/bwwdxK91t/4EMZPvoDH8rw
0Sfjw0efrB8++gIffVI/+NA4fCjDR6/kh49eicOHMnz0Bj6U4aM38NET+OgJ
fPQEPnoCH8rw0SP1ho/uwIcyfDDXxuCjO/DRHfhgTtP70S31/MDX/1RQb+WL
fX2VUc+T4qvM1495C+3fk9K+ztfnhLRHPU7I+DP9+pX9chuPC6/1CY9Lf1+e
BRpP+/10TMbbAEFSz1v9ftF4xu+Pn4Vf8QKVY96/Mn7fOSr8uvd7NPCp3O8n
mA/el7zM90++gHlZD37mpT98dAU+uqQ9fHRJfvjolParvI9O8Q0fnTI+fBwJ
9ueRwMcRGQ8+cjIefOSkP3zkAh8dgQ9l+OgIfLQHPtoDH+3Rw8NP3Leuafcn
8JHl/RaDj6zMFz6yMh/4yAjDR0byw4cyzUr4L77+PwX7/7Ds96m+vsIx1LNN
xmvw9WsN6qW80dfnx6AeLdK/xK+/ReqP9f4g53/YJ0wH60lL/1q/nw7J/LB/
mPfQ+T0o60n6/fG95MN+YH7FVXj/zRKH7++Ei7zf7wKf3wrnvb9vJB98Mcfd
Fl/AVGRKKtJd588l8O9jfEHB6o29zYlaX//9kam49J5JN1q6T5oik1q26MUr
qhMzfX0bg3p+pfPx9fsyMmU3nFq06RY6jw0Sn+rr80VkZj647Nd3/pBAPeol
Hvfrr4tMYyZW2jbLYb2fS7zbr+/TyCw5+GHTou0JrCcZmaVrbp7SUJdI+vnv
i5bvvLDptYoSh/k66b/Fz++TyJQfONA3Y2cCD+bHkSs8ZK6vu9lh/F26Pj/e
jqhqxm2vD2x/3yF/jc7X53svmP+2sfXt3PXQ13WJuG//VlR/tOzf15aPJBCv
jkz8kqFVJ6sTeAA3jPV/9cq3Czr2mvCb7uP2l/mr7cN18/+8vvSfDg/cW0F8
mzUlz1y1IFefSGJ+Y9y1fWF2GdWnRtrjQdsR9N9lTeb2HVf9dZDrI3GqnzDV
V5jqr+3hx5rDbU/vm/5eMfmzpqNqbtfG2gT5Dcavs6bo/ntOrb6Wzku9Xbl+
94OzWwaKaf9Ie9pfwfy+tOam2CX956qKaX9KvAj7V5j2t43PH31u6uL/Un32
a338l7LxZbPfuX9aW+JdnB9rlux4Ot/8Bz5f1kx5eZ/Z1ZXA+r6x8RWjvQ/s
7k7Q+bTxA19fky6e4X6H8yv56Xzbkub4t++vytL+aLbxzqtPbK6/j96L77W+
uD+sKf3tZe/Omcr3i00uz/18uP7tYrp/rGmZvm7FnOv4frLx/zyRu6UsnaD7
S/LR/Wbjl1dWtjxfxPefxOl+tGZD1R8//miho/vTVj32Y+PgwrWO7lc7ufNf
N01+dCX9/tBqk+m7ppUtXexSuJ+tmVW5fvB/d9F90mbXrdmw96uj/3AzcL/b
kpOp/G+WzKT39rCN7UtXL+/5u1uJ9yHwkRFegffF5l8tOD/798/y+2ObRx84
uLdircP6tD29X/bgG/H5t705x72J982+ePllhYUvFdH/v2SD9bcL0/tp17es
G6mZdwPVo93unzv5wNx31tDvQx328XmLP81Omef+D8IJjvM=
"]]},
{RGBColor[0., 0., 1.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxdl3lsVUUUh4eWyhLRxtSFgIJbUhMTUSFB7pRpUKgBRZb+QYSoQRHEGMsS
MIBQIgSVKEUhASSlCRAgNPBIUIq88B6LskjxUYoti/haSim00J22tFTb+Z05
x8wNycuXc+bcmfPNzC1PT/980oxEpdQnPZTq+qcSlHt6R/Eb1zUTC55aWd2L
OKRLtmal9S1xXKqPNadOW3PUsVJ7MsoWpexxXK43bex+HJ/UK6u7C0r+nK5q
W7Mc1+iuYl0VJf5md7kM4VftIzzIFhTuayfoeJu+2z295gc4bsuVOY7pwjPd
j8S7VzuxQHhb93K3Oq7SdnprZPzi7nKLhD+2j+MrepItKHG73DSp/4JdsLAt
lyKMx3EF+UgijpIPYTu9o0k8Hj6E4cNxFflwHNPwIfnw4Tik4UPeBx+SDx+O
KzR8SH346Mn58CEMH46rNHxIHD56RkeWp/fbkW8OwoeLR8mH5MOH40ry4ThO
PiQfPoThw3Gpxq/E4SORGT4cx8iHxOFDGD6E4cNxVNvlZkkcPqQ+fEg+fDiO
a/iQ8fDhuJR8JHAcPhwX0/lwHCUfkg8fjhvofEg+fCREf3688ac+c/IOwoeM
hw/hkXaCjmNh+JA4fEgcvxKHjx78fvhwXEM+HMc0fPTg8fAhcfiQevAhDB8y
Hj44HoYPicOH1IcPYfhQnA8fiuPwIXH4cBwNwwcz+ZB8+JB68CEMH8LwIePh
w3GVhg+J08Pj0f9/I+AK6rdjt98du346jtF+lnz0Sxj96WRGPzp5PNbfyfWx
XsnH+RfGemS8nV71fWbsH8dxbbfLxvs8Hven41I6nxKHf2H47uB8+O3g+cKn
xOFP4vDVwfXgp4Pnh1/Jh492zoePds+HMHy0ez7aPR/tno97ng9h+LjH64EP
Yfi45/mQOHy0cRw+2nh+8NHG64UPyYcPicNHm+ejlRk+hOGjlcfDRyvPDz5a
PR+OK8iHxOGjhbiGzkeL56OF68NHC78fPlo8Hy2ej7uej7s8Hj4kDh+OT5IP
zg/Dh+TDRzPPDz6aeTx8NLMf3J8Shw/mMHw0ez6aOB8+mjwfTTw/+HDs/v6S
8fAhjF/H7u/bRu98OC4Iw0cjrwc+HBeTj0buL3w0cn34aPB8NHg+GjgfPho8
Hw38fviQfPio53rwUc/58FHP+fAhDB/1PD/4qPd81HE9+Kjj9cNHHfcfPup4
/vAh+fBRx/XxOA6F823/a73vQy2/v7ftb63XzzvMs2z/7vD60C/h47Y/t/l9
6MdtHj/Yrl/YLvdMDY9fYgvWcNy2J1W41O6nauYVEMQ81O6Xal5f3O6PW1w/
xwq8xf3DhhLG3zs3ud4G6/cm14NPiTfZCVZxffhiDk+wDazyfFRxPfi4wePh
w3FeGD5ueD4q2ddH1kclvw8+KjkfPq7z++BDGD6uez4qmOGjgucHH47zNHxc
43rwcc3zcc3zUc73G3yUc334KOfx8FHG4+GDOQwfZZ6PuHefCcNH3PMRZ/9T
bP//8fp9ld+fbPt71evn38wnbf+uMKNfV7je17Y/l939R/24xL7T7fovcT7W
e5HzW23BUu4X1sMcDtn9VEKcT+e5hOvh/P7FHLX74wLXw364wPEvrP9i4hzy
fZ54px5i/Z7nOHwW8f6osv7OcT34Es6zDYx5PoRDtv9nmdHvQrlPbH/PRFTW
99/kFRQG6OfpiEqJv3Gu6WKQY/t3yvN/MqIGR/uNvVETJNv+nPD68VtEFU05
2hEtCrLt+o9zHOs9FlGxd3bkrtoa1Nn1HfHWE5V6dv6HIyp9QyR/3aYA8w1H
VPKZlYuvRYI8O7+Dsn47nwMRVXd944Gm5fT+/ZFhXy6Y/MqSPTpu37cvorK3
fDr7p1uHUH9PRE0YPOjyI9OCbFtvV1f8h5Y/7rxP47dx/Wybn9s1n9eeqUge
QPF18n7LKzwf/3setXGj1ObhIx5bN4LGG5W9/cHiLesP4QOXa1Q0YfSgs4Pc
+w33A/MTxvy7xueMHLf2vQD/gd1nVHJJn8q+U936KX+npv4YtTm3/JfpK1z/
jMr5c8XiZ8e7/ho1fOrrL8/5MaD+G5WV1JmQtSUgP+al+Wm/D109UpM/ng/5
NWrsvM4TvXc6/xTP0bQ/zMIRa09nDJuqaf8YVTzm3vMDSwLaX0Yd3j3/rRm/
0vxOmcSh+wvHVfej837aqNQpc+tv9dJDsH+Nmrs+NHvL1YD2t9efsyY7fCzt
oeR4QOeD4ztxfojz6Pt0juNYnzCdT+bhOL8mPXFvSu2TTQGdb45j/cXMdD+Y
7IHjP5wwIBLQ/cFxul/M9fw+25cuTXL3D8fpfmKm+8ukH1zw3LJZbQHdbxyn
+8+kFyXt/ywUaLofOU73p4nunT7sq/6DNd2vJj0z/PDMssQw3b+cH8P9zEz3
t4kuSRn1YuGo8BO43zlO9z/zB/g+GD1v9/LJq0bT37txM3DuwszJ0Qydie8L
59P3h/1gfXHz7ZGm1F1vTyRfZeb4xf5py2Yu1JvxfePx9P0zY1aP6du5PpPW
X27ejajv1iwa4r6fXj8chzR9fzn+HzleLK8=
"]]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.004583333333333334], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.004583333333333334],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxd1ndck9f3B/DshB0cdVRFKyhDLQ602ofe4BaoFXDgqgutiOKoW0QtuAco
WIHWjWVYEIQ6WvVcEAsqWmSIAipDZkBCSMJM+OLzHH5//J6X/+T1mJtzPu9z
72XY6s2ea4U8Hs+Xz+N1/+MJeD2PjMq31vm+2y1X1HvcG3JYKaV/hF+d4bBR
rii8vsXZuFBK7w5WhO1eIVc81touC0mX0oybZzyeeMoVibPK9vZJlNJFxPOA
5Uy5Iiry8yOlTQ7uXy6fLFccVn5eUEqnGk+xjh0lV2ztXu36FiktjiuIUFvJ
Fd2Lda8opcGCgl1Mb7li9uflZknpGZs6OCyRK8azj5T6Lj/y4fdmC4UVu6CU
7vPtYzq6yEJhzBbYXc/PzwQPqIVC97k8rYRenVRP58RYKNjlyiRUKflr2uvT
FooX2Z8fCf0Uu+jYqu0Wis/detyT0PhvDCeVSywU0Z/bvS6hoYJnbttdLBRs
eSESqliVl9Ex0kKx7/NyeyXUI8pOc8jcQrGOfST07P3c1xKtucKTXVBCv9r4
3PdEsbmCbddZQh8VSeJN080VdmzDEuoY5B9+OtZcwS7XR0IHWJbbmIWYKziP
7vqcJi09ucMcPcTU/ODksbJl5ughpv5j46ODppor2PLSxVTZR3Fbb2uOHmI6
2Stm4U4Lc/QQ06szD51p0Jqhh5j2muuzcE2JGXqI6ZTLxfGF6WboIaZ3+v10
zDXODD3E1NVsn/KfEDP06K5n8MEch51m6CGmuW2546OWmaGHmG6enGEpnWaG
HiIaMTRi3TY7M/QQ0V3+R8aUWJihh4juGfH32uk6U/QQ0e8We8hulpiih4hu
rl/WS/7YFD1E1GVV6YGf40zRQ0TrI1+5F4SYooeIPrvYf4fTTlP0EFGbZSGa
sGWm6CGi+k38TNVUU/QQ0eYChxo3O1P06K4XHnjdsDBFDxH1Z7zEeq0Jegjp
eN6BVs8SE/QQ0k1fUtuYdBP0ENKpqUfOtsWaoIeQOj4aN8Y1xAQ9hDT5Vu/2
iB0m6CGkZyauV1UuNVGw7W4R0u11y03HTjVBDyGN1cvn7LU1QQ8hHVx/8mqa
uQl6CGmSbaZcqjVGDyENzIo961psjB5C6jBKZHUqzRg9BHRXTGTK8xhj9BDQ
iyO+cDU6Y4weAnr4Va9307cbo4eAGiX0+SlwiTF6CGjW5FPlfymM0UNA+1oW
zFGOMEYPARUdcLowxMwYPQR0z8D3GT80G6GHgN5ZUpsd+NZI8R1boIBOsF8a
dxOM0ENABbuGzn99wwg9BPRHap5pOGmEHgIafbWiw3qbEXrwqfuS6fWzvY3Q
g09FXg/PbvjOCD349MXltMrj1kbowafqwPiyP4yN0INPs/PvBKapZOjBpy7R
xnfevpahB58qgxIPNj6QoQefhlqEFAquy9CDT6ctDEjpfVyGHnx6b7qd2Veb
ZejBp9tNHN6NXiBDDz5NPdT65aRvZejBo8eDatOch8nQg0c3uE/MdJHK0INH
n2brhk9rkKIHj6o7huW45EnRg0ePWJ9+7Hxfih48WjRKqZ14WYoePDq46PmP
ow9L0YNHt5n/ph3qJ0WP7vX4V5ItPaTowaNf7+w83jVRih48Kvl4c0fdICl6
8KhV9C9+uQIpevBogXz06rs1Esy/C05eGzMv8qUE8+6CBeIyh92pEsy3C8bY
/qz0ipJgnl3gNaMmeNRBCebXBakVX3zir5NgXl2QlxMzKN9NgvkY4K/efSXX
x0owDwO4FcZe9u8nwf4NEPR9wPuJejH2a4Adx3fe7SgX4/43gKuHm9XDLDH2
YwBJ9R7jfYliBVueUg/Ds9w2OYWLcX70cHRN3rf1e8QKdlwi9RD8pM738gox
np96+G3yOOXcGWKcBz2ElZmntNuL0V8PC13iUq/JxejdCQtBWT5TJ0LfTtg4
4JBjdbEIPTthf3ZuSFCaCP06YcgWafOXMSL06oQTIr570ikR+nTC7nFLTym2
idCjE0z2+97IXiRCjw444eN0bL6zCD06YNeeAJs3X4nQowOiVyRuWiQToUcH
7KV183IbhOjRAakOXY9m5wnRowNKKn1i/r4nRI92GBD9XdvIS0L0aIfa8Quv
hwYJ0aMd0s0HhmvWC9GjHRoLo+57zRWiRztszjjGTxwvRI92OKt0XCwcIESP
NnA9sDfByyBAjzZYrayou1QhQI82mF50QP8xS4AebXB8iDrHJlGAHm2w/cDG
eavCBOjRBuqfbq67sFuAHq1gt1Otz1wuQI9WmFQn4zVPFaBHKwxsdlrY31aA
Hq1QVsjUTjIToEcr2HR4X/VQ89GjFazuTV63tpCPHq2w4AvDkJ8f8NGjBYo9
HW/vvcpHjxY4xqSJA47w0aMFAlYJu3b68dGjBQab/PGL3zw+erSARJq0fbET
Hz1aYNrkvfcUA/nooQMXXZzjsC4eeuggf6gDtFfw0EMHAmP7GS+yeOihg0fm
ZtcjEnjooYNQ1aZ7y87x0EMHZlW9fAbs4qGHFvr/WB30cikPPbSw/WeNZp+C
hx5amGmyOGyYDQ/PTy3sj3KZAkY89NBC+EA4GlfSRTgPLeT/Sntl3OginIcG
KmIyn7zw7yKcR/fngsq5/07qIpyHBgzRtYsTeF2E89CAl+Wc0F+eGgjnoYEJ
UpPIGecMhPPQgGXWrf66JQbCeWhg3Oj+yWHDDYTzaAZVqh9/SL2ecB7NEOWm
vxGeqiecRzP0vz/mm5YAPeE8mmHCVc+5M2boCefRDDLDqX2BZnrCeTSDmSH5
h2sFnYTzUMNRh+GLki52Es5DDd5p8QNj13YSzkMNZfIFVsdHdxLOQw3tr2dV
eWo7COehhtQVF+pFDzsI56EG4jXg5qXgDsJ5NMEUodOvVu4dhPNoAhuL5MFH
e3cQzqMJ4hwD/8wvaiecRxOE6ANjpdfaCefRBI993bdZ+bajRxNceKnz+dKx
HT1U8O+kxwXtujb0UMGl5I+9Hz5sQw8VRHw/dv2q4Db0UIHsVG6fatc29FDB
0DzV/O8t29BDBdZhi5eFFbaihwpyE60W3bvYSv5k82+E6DtOvv+sacW8G+GX
PfzE3+xaiYzNtxH6rqmZ5N3Ygnl+gou98i1UqS1kPZvfJ9h4JHHC6r0tmNcn
KLUtiEogLSSDzacB2tsOObwStWAeDcDrtMt4/lRHhrL9N0Cb5j+n38/oCNtu
dj1cCXCd7uKlIwHsgvWQPiHgxv1+OsLGY1sP4dUBPFGJlrxh50kJG+xu1w+5
oiXBHBB4NBaoZD5aMoGdFyXcXl17iI7UklJ2PurgH0kvwXSlhoSygHVgYboC
ziZqCMP618El/+3qmK0awv29Uwu1Xw94GDxBQyJY31rI+fOG7YiWZvSshYbE
udYn7jcTDVtgDdhvmBOUuK8ZvWqgZVBGe6hzM5nHBlgD3+9ItPq6S40e3Z+/
cfc5QtXoUQ0La072DT+kRo9qCJw+0HvBVDV6VMOL3fY2mQI1elTBsejamVXp
TcSH9aiCvbpz82/90oQeVdDQ2S9xyNQm9KiE9wVzdznym9CjEhZeO3+uFFTo
UQneVYVR9oEq9PgIXd99KDFiVOjxEbwr4y6r1Y3o8RG0y+MHVG9sRI8K0E18
f6Ky8hN6VMAxSfbWsuWf0KMCjhYafniR34Ae5WAzgpyJcm1Aj3JI7pO7bDLU
o0c5pG2WhUSMq0ePMnDzIltvRCvRowyMradGuPVVokcZfKN6GLs9uA49SrvP
V+u+MnUtepTCyvqW/+qW16JHKYxKKm80ZNagRymc9lw7dbhjDfFm8/8Ai9ML
ssb9Wo15v4dstxkDRe1VRM7m+x4e2w+/vn5pFeb5DqTGVvcd/q4kWWx+JfD9
sxM7Lb+oxLxKQJ711q3A/yM5xuZTDK1zRn9tm1GBeRRBQqTR7MS+FYS7cIrg
8M0TVR2ry7Hft2B1/k7g2ZtlpJVd8A1ExkQzrz+VYj9v4PXp1JPyUaUkiZ2n
QpiQ+UF+N+M9zk8h1M80+uHrYe9w/76GrW8MU2I2FBPKzkcBDBpt6z7v4luc
hwJ4nv1wR2tKIdnN+ufD+NlrIibFFKB3HsTvX1Bc7JdHHFnfPMhUFocENeag
Zy7Mtlggy7TKJjWs3yv4b0iQxrYtA71eQU6B7Y2aNSnkChtgDuhNi67czsll
OI8cSHiVc8xUt41JYvN/CWsqR1YdmFvOcHm/AIGH/4Z9OaOYoWy+2XD3UesZ
/lEfhsvzGYyZPvuJim5lQtn8nsKl6ddPfnTOY7i8suBkxKz+VXahjJzNJxPS
Ku8tP2WfznB5PIHCo9pm69mbmINs/xkQFmWUP9n2CcP1+xhyT9l7pV9xYVRs
f2lwe6jdjisaV4brh0LR+fMG6weUoWz9j2AO9Z/kskOB9T4Aw63Tlsv/+Im5
wtZ3HzzHjlREzqcMj63nLjRnVfgq08bi76fCC+PeLWMfJzGl7O8lQ3huydzL
CfG4fiK8HPVK/ueRQcxBdr040C3dr7jzzwj8fjQsq+nT92ju78xB9v9fgoqV
bzz+3tz2Lfc+HDT17mlpglMMj/0cDMNW3jJc4FGG9/+fvux7cvCnij+Hbbne
832S8u6/XxM8TjA89oK7RMSRB/O3ebbj+2gyvh+xjPgrkqFcfaTUzjQkOtOs
p36iWntp/xtxf4bHXmjJJEGzRlr50Lynf+I3L8cjNym2Jx8S4RMc/3GKQ09+
xPH5p9HRfVXfYr7k8NiZH5w/OfbkT/7VZcxfen9ijw/u+6QeP+LsZxBWj3fp
8SV35jlvvhzs1ONPdrwrXZfw9k7PfOD3I3rmh9i5nClcplvaM1/kXdi+PR5b
GKzv6f/9Hs4nKX24+oVFpx/jyM0vkQ8cJL802Ltnvolz+sv9i6/1xvpfki1D
dnmmyBb07A+ivqQ5a33eg4nl9g95m9jikXgljcH9RXwGrR/etNEb+3tFZLpp
KcO1KxjcnyR462KL0KQk5htu/xJL+9P7Kk+vZHB/k525I5+MM3PD/vPJh3U0
aav8XwbPB8K7Jakdb2WDeRQQ8Htz9bl/CoPnC/Z7hcHzh2yeMkshf5zM4PlE
Up5F9l9QNQXzekM84v3rFGQJg+cbiQo45zT2x9sMnn+kdI8g/OpyVwbPR7J/
6bHGvtm3Mc8i0m+BY4p9yj4Gz1eyqPD583P3VjJ4/pJZYaefDE9NZnK485ms
DNG6DWhIxrzfke338m/lXbvN9OfOd7LtyZVOw41dDJ7/JDP3vJ/t++fMSu5+
IMwFt5IGlxD0KCWhcx+NSROHMvO5+4X4zRgdnl/+gsH7h+zVJ0yJjMvG/kqJ
dfu8Ju/cE+hVhnlR5nfufiMRHZ2uE+cEMXj/kR/zZvvMcD+H/ZeTa8dfPn7U
dAg9y4l/Ukd1gyYQ8+h+n+37yU/9isH7l2jCJU8XbdzJ/A8OmPjr
"]]}}, {
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.004583333333333334], AbsoluteThickness[1.6]},
{RGBColor[1., 0., 0.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0., 0., 1.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.004583333333333334], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.004583333333333334], AbsoluteThickness[1.6]},
{RGBColor[1., 0., 0.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0., 0., 1.], PointSize[0.004583333333333334],
AbsoluteThickness[1.6]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.004583333333333334], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, \
{}}}, {{}, {{{}, {},
{RGBColor[1., 0., 0.], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwt1QlYU8cWAOCbe7Mg4g61zwWrdadI1fq0rfYMVqS4FqkLPmxFBAQpWEWt
iMpDxIrFqmxVW30oWKEt4o72Pu4F3CpgUVFUwLLIIglLSEIWICnJnPm+fPnm
m5uTOec/M3fshogVgSzDMNV9H+v3yRPW8QZSF8mmqW6m8irvPOcDyjdw32Wo
82fu3/Cf2Fec2zKvBRjbyOWPFuom+/3QAud3xdwvqkvk66IcczxrW+Ai67bG
OPox/8FM61ACd0XtPiApko9X2gKCdNykdQGeS/jnfdHsK5Rgz1bB3qX/5af4
/dAXUQUVe5au+DPnKL/bGi5KBfPfPVb7vXcCX1piHSrY3X5/lmpdJD/mgDVg
K5xbf8PtF7cs/pt51g22QufwikumiDt8kXV7ha3walTwwbQFN3gnazjHNggt
mjRV+Z/DfHCQdbSBfl5UeHXVLf6mszVgG6gmBprt3xP5/tZ07dshMsdnW+2i
JN62Pb92CLnXukthn8vbwuW0w8TCuW3Dy4p5WpcOsFiKmqTuSZhPByxM/7f+
ZM49foU1e+8OKJZcKYiHq5hfh62eMd9n8xnWcpzrgK93qWFBRinmS9drfES+
y5qOjs47nO5g/mrqESPwn1m340nn4pFfsR64/r+nPPW1zUn70vtYHzXkCLEu
Qe9dRG/bujiI3MZ6ddLf51aifydEj6h5f+zXV7B+uD75JfaDbf7jB6eKeFu6
eba5r/J2NfZHJ7Dn99xcsqyEt4Wz18CyIbvc/BseYr9ogDnNLyctZVhvjS3+
+k23eFu6BzSgyv+0Z/niKwKtvwYaLL7Jox/nC7ZwFRq44tE0mssuEqiHFt4z
BG+c5X5PoB5agOOxVbciHwjUQwsZ70yPKQgsFaiHFp4uUc8/OKxMoB5aCHNp
WPbhhkcC9dBCxOVRvO7sY4F6aGHnqughKc+fCNRDB2Exv1TPkD0VqIcO8sOK
h2ye+kygHjrwXhvctM+rQqAeOpAYGzZtDXguUA8dPMxI7xy664VAPXSgzMjJ
cjj8UrBtz7EL/vrpt+zWE5UC9eiCiT7fSV3PVwk2jqAumO0O09xyqwXq0QVn
vxoT6pX3SqAeXVDz8bqA2/l/C9SjL96eoNHt/jUC9dCD+/K6YY31NQL10MN8
U3H9usBagXro4dGsiOGhjbUCPc96+OOMd+DI4Dr00MNpP+nAmKY6gZ5vPbT1
TnLJCK5HDwPcL7nQeaypHj0MML3xQId38Gv0MMALoW2OsvE1ehjA6+dRyQFB
DehhgLgvLRlCQwN6GGCf+sf+XGAjehjg7f5X97//uhE9jLAlbi+zKKAJPYzw
IGjbnc/rmtDDCPHJLdEe/s3o0fd80fElk2ua0cMIZSMHNBu+fIMeRpgdVZF+
vfqNQM+HCdI3ZUet92tBDxO0vg5x071sQQ8TVH5X5LHNV4keJghdfWz4iwol
ephgp/St6vGrVOhhAreHE65/Ua5Cj25wE5deDlrRih7dkOpj/3xNWSt6dAN7
c7TLlGVt6NEND5OdLj8tbkOPbihLHLTbz6sdPbphzrniM3/cbUePHogLS8ww
jO1Ajx5Y5Fr1fM/6DvTogW1rlyarTnegRw/kjg3st6C6Az16YGH2xh37R6rR
owcytCUTsn3V6NED/LvXw2+kqdGjF77dxlzLfqpGj164VBgQsn9YJ3r0wtq5
G/q5e3eiRy9cWzxuTP2RTvTohciLM91DSjrRoxdejft06JN+GvQwwyVBIO94
atDDDHnNkfGfx2kEel+ZwW/eyAsBBRr0MMP8v+oifc0agd7/ZjAdNtyZ/rEW
Pcxw8YjdXtVOrUDfBxbY9zj/u0NXtehhgYEJni/t1Fr0sMDvrmXhoa46gd5X
FkifYr8oJ0SHHhZwVl7cUZ6pw/vKApo3DvLqWh16MGSS66FB90d34XlnyOrf
5+Sm+HahD0MqasLtF6Z0YX4MyTm/yuNFWRd6MWTx9SPfL3fQY/8xpOPCg0FZ
nnr0Y8igjG/Zxlg95s8Q/dnNp+T5evRkyDs+CY79jXrsz774EbHZmpkG9GXI
tNiYn8RwA9aHIV+1KF22ZhnQu+//+k36ye61AftXQlZH+MyIczaiv4SUVvxr
VsMaI9ZPQn7+e7vKJcmI/SAhsbMPpK8pNWI9JcTxg7WnNytM2B8SYnfkkWug
uwn7XUJGTdl8ymO3CftFQn6/OWHmgGsmrLeEDB6zzp1vMwm2dAslZPGyX4f6
TO7G+kuIV2ax5pF/N/aThPjuj5n+4alu9GBJMrf77UPl3ejBkrfzFugKBvSg
B0vGebg4vl7Ygx4sic53LWjf14MeLMnLUno25PWgB0sCD6Vobqt70IMlkRWv
Bv4wtRc9WGJeqa7/NKAXPViScdqfrz/Vix4skVeOrw0v70UPlow6dvBkg4MZ
PVhSFTHh/c88zOjBkrn2dc2pe8zowZHY8Dr7x9fM6MGRjISDlcZWM3pwZNrS
kDMDJ1rQgyMLdqw4OfhLC3pwJLLfvEFMqgU9OPLFyuWkutSCHhwJLAybXc4y
IvXgyKaKrNZcZ0akHhxJdM2pi/uIEakHR57lVc76fBUjUg+OJN2dKB+2lRGp
B0eCnjhtLU1kROohJUcTCtL2ZTEi9ZCSEcry5Cl3GJF6SEntkcT44hpGpB5S
cnUIfyiwhxGph5QYk27f0g+XiNRDSpSrz8yKnSkRqYeUxG1/4SRbLhGph5Q0
nkvZERMqEamHlKx1StyqPSARqYeUHNs4eLx/ukSkHlLy/6N2mXd5iUg9pGS9
wjBwwnOJSD2k5K+b3VHRGolIPWRk5bwSSelAVqQeMhKtzf/jramsSD1kZCK5
J/p6sCL1kJFvb+ycnLqeFamHjOQEcvYlu1mReshImgNEd6eyIvWQEWXo2ZTx
l1n0kBGHeK8wz1IWPWTkmU7ntLGZRQ8Z2Thj8IUojkMPGdlRd2H2YWcOPWRk
qEvUi5QPOfSQk63m5vSTX3DoISe5ofLMExEceshJftPRruMJHHr0rZ/TZcVn
cughJz+Wej+OFDn0kBPvV9ti11VyYrQtoJy0v6oqIV0ceshJ+W8FRc5DpOgh
J1kfOezSu0jRQ07+fOhnfrBQKto4SuRk/Cf9A0/4S9FDTh69Ozl/Q7QUPeTE
y2nviElpUvRQELsnxxMaL0lFWzhnBfHafsE5vUSKHgpSkZzfuKpJih4KErEl
qVPBytBDQeIGZHpfHSUTbdvboiBpK2cM85stQw8FaZ82d6HFW4Yefc8fizf+
HCZDDwW5m3bi4zkHZeihIAMOF454mC4T6ftbQWQqx8yveBl6KEjBjs3Nqmcy
9LAjL8eFdG5Xy8R/AD9Q0Y0=
"]]},
{RGBColor[0., 0., 1.], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxdl3tMXEUUh3dhYSvGWA38Ua0YYlpp0TQpjV3rpfcmmtBoE6Sl1ViMhCD9
xwckkBCEZkWoDT66RGOEFlgCNjXSTY2ElnYsy/Iq8lAesihatw8l5bm8CggW
uff8Zia5kwD5OHPPzplvzlyISX//0NshFovlz40v/WdFuT7uqhaMyeTL0SUT
kvdH+GuzEsbVC5EnjmaEVjKXbzE29fS4+kRB5kcj2x3sVn6kJ/HmuPqXo/f2
1NNFbE+8PibUwGR20d7S99jJCSOh+lzcI+kD1vmrIxvZIvwTakn5sTdtadvY
jtTTGxknVV9h1bVA9W72gZ4uf1J8fm+PPiQ/WaInnBKcnaAvcEr99fGON6qT
zrJWfXk+Hr/IovR0kdNi/vFMfUhuitYTTqtxs0UnKx+rYw/q5UbMqPaaXbWe
F4uZsbzUGTHfSOeZUc+ERDSfHahm9NugiFM9nN3KIb36ZPD5z1Efj7tYnb4d
tUHV0ZHUPpHvZlRvUPUPlsfMJdaze3o5i0FT/bOqOy+s0bLlODugLydx1rQf
xIG9rYz88rgH+0N8bvIbhXzL52m/5kz+OV9UaP8E4zzMqbajXbM/PlTMjHIv
Ix5sw/mYE/thpIuYVy3O1vS2j+sVOi/zFB8pUmi/59WQwrbd1jMNzCi3BHFn
G6P9nxfrM9L5JdNYMPngPMDIB+c++FgQ9ZCPBdP5k0w+Fkw+FgWTj0WRj3xw
vg4fcj754LzAyAfnG8xYXuQ9kw/OI8zQkcn5JnzI+eRDMvmQTD6WwAH075KI
kw+wM4h+5vEh+OA8zKi/l0w+lkV+8sHZhf7g3AIfy2r21rEXTlVdhY9lsZ/k
g3M3+oPzEYV8rJh8gDUvfKyo9cFHy/akfA0fKyYf4NhR+JBx6o9/TT7A3kvw
IePkA/zabfQH+A/eH3w+749V8Tz54FyP+2hVzCcf4MYAfIBj/fABrriL+2qN
ONAIH+BfPOgPsO0afKyJ9ZAPcM8P8CHj5AOc5mXk4z+TD3DMMHyAkwbhA3xh
CPcVf94NH4IV8nGfOKWLkQ/wwSZG99V9kw/wUDOj+x9c3Akfcj69D9aJc4bQ
H+tiPeRjXcyn+0oy+VhXhwMHXj0Rn8fovkLc+T18WDTj++Ye9LtFq7P39Ppz
ffCD+PWfUR94Y5Av8Ev/4PzJOPmTTPWDfV3oL7DtO5xPOZ/8cnYrtD/gvzvR
fzx+hdH5tRrs/fAO/FtFPto/cMCD9xex85lh7KdVO79zfe7I8DmcD6uWkru5
8t3kCtw/PJ8b50Xmp/0G72tkRrk+OZ/2H5+3cb7oPCEebIePEFEv+eDM3yeS
yQd4Sx/6B+x0woecTz4kkw/J5EMy+ZBMPiSTD7CjUiEfPO6Cj1Cqd+cAfISK
58mHZPIhmXyEinzkQzDuH85OhXzI58kHPj+tHz5knHyEag+8/Ozztqc64APx
KC982MR88iGZfIBf/xL9IePkA+z4CT5knHyA13x4f9q0qLJPbtwZq2kiH4hn
NKM/+PMuhXyAb3Xj/gDH8/6wafs/nRhcTaiFjzCKR16BjzCt6uHxxU0FDPcL
4uxb9Aex9sUo+oPYua8LPsJEPeSDcxZ8cHbh/cA5Dz7CtGP6PwOWNIV8IF7a
CR/gqFb4CDfYmzeK+yoc+b5SyAfnNIV8gOP60R/gkGb4AAcKWYGREGxtgQ+e
L0chH5xL4SNcK5iuaHvH380MHT3h2lpOw46G7b/BB59/Cj44O+HDzveLGemi
7drkuj5q4IPHeX/YxfPkg9j5Viszlpdl1z4bLvu9L7Yf9xWfz//esGuHt7Uf
vJTbDR8UD0S1wIddY/G7EsYc/P0tP598cHYp9HOTljEWubX3FS/7Hyk2hH0=
"]]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.0055000000000000005`], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJxdln1MlVUcxy9vXrzMZQtqzYWVbkkvzokbWMeep1XDVVaga7TRVi2QPwip
bDow9tDE2DS4RiQyyBtcs1qhmE5wF+IlM/TKgBgYL4mhTd4vFy6v4u0+z+97
ztmes7F7P/zO8zsvn/M7z33s/T1JqcEWi2Ug8Kd/lh3X27BiW78q+fT9L7Gx
xNro/NFhRfs0b0PSw5nseVtPVda2ESXOvi7GN5TA7M2+DSlFI4oF7d/syOqE
m5ydbEus3kZF/NCokVDw9UA2W4/kmJSiQMYxwTl6uuwxZcuYN3xNcQy75tbb
mJL1eUnlXv9qtjZfTziuHHngyW9a3jzAPtqmT3BcPN+iT695XAn/KWfzueFc
FqWni5xQvohe39b8toXtTtPbhLJy75D31+U8VhetJ5zA8wUsQl+ubRJsZ8b0
UiYV+1sFEcyRz4x01Txey+jToxSrNSOxu59jtB6PEdfSHSxJX32ix7Q+j7K6
Pyord7GMOfXtqPIo9539JPPjlT9spfXy/g42qy/H51FmOncuRHVVYf1TIt92
fToJU8ozawvrZ+PzsB8yTn6nTPsD1qrhe0rxJ79TMVD5C/bLq8cfPRV7Hv69
1F+tw/5RfKSi2kXnwSvyG8ut9ZrOh85aRmHIJWaks00jfgbnRTLt97R43lhu
vmTaf85tzEjXA9YG4WMG8Xb4mBHPk48Zkw/J5EMy+eD8F3xw/gM+fOI8kA+f
WA/58Jl8gDUPIx8yTj58wr8xvchZ8D/wMSv6GzrSJJMPzv2MfMyK/SAfnDvh
Y048Tz7mxHrIh4xTPc+ZfEim+p5TnK8df6FqoB0+5k31Pq9MKxGTk3GXUB/z
Yr3kY97kA9zYjftAxskHWO2EjwXEv4aPBdGffCyYfIDf7YAPHj/jIh/gO72o
j0Xi7bfgY9HkA7y/C/eljJMPyeQDXN4LH0vE7T2ojyV+H7nIB/iDNkY+lsR8
yQdnh4t8LInxqN0FZ6E+7oo4+ZBMPsDZbtxXMk4+wIUtqA8ZJx/LxC/2wsey
ycey8E8+ZJx8gHe14r4CLzbCxz3Rn3xIpvsKvLEFPmSc7v97YnzyAU7txvvA
b6oPsPYn6gPsvMbovgIXNOF94Vfsfr2dwH3lN/mwqPwL1btFHTb6n4YfHnfg
vIG7/0P9iLiLzh940xXUE9jWifXL/uRTjk/nE/zEbdQbcePgbeyP7E++5fzo
/AaB7S7yT6ydvIHzzOMOF52HIJGP9jNIHUwvPfjqrbN1dD6C1MOZxQ73nLOO
zjv6O5w4L+BvG7DfMp+x3GZwSj32X8bpPEmmFkz84EXcv+BNFfABbhqAj2Dx
PPmQTD7AP/bCB/ipZvgAL3SgvsDllbi/wR+2wwc48wJ88PH47wVi7Vg7fIQg
noX7EZzcAh/gcw2oT/ANN843mLnxPgPHl+P+AW9uhA/w0cvwwcfnPsA9nfAR
oj5k/MOO+pb9qYUS5/4GH+AK/n4HB54nH+Cfa1AfoSIf+QBv7IIPHtfgI1RN
7nu67+apJvjgcQd8gEu4Dzk++eCcDB+h6svlXV/WX/5+K/kIE/3JR5hYP/ng
8VL44Kzh/ufshA9wwwX4AO9pgQ/w633wAT50npGPMHXmasXC4aES+BDjwQfn
r1z0uQJcAB/gtCvwAc44CR+8/3744HwQ9xW4cR87YCTk8XT8viTWVnXDB+KB
+5x88P52l6HDLedHPogbM67Cxwo1Jy8yeEd8B+rDquZ/9kpZ/7O9zEgXbVWL
ao4dvfP7d/BhpfH3/Q0fVnXdrlh28b0a1IcV4wUqzPDBWYMPq8qKHmlI3NkK
Hzxeivc1Zzt8SKb3t1U98nhqa6mvHz6salzuG71rdlzH76twcT7+B3rzUxo=
"]]},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.0055000000000000005`], AbsoluteThickness[1.6],
LineBox[CompressedData["
1:eJw11QlU1FUXAPD/rCAipkJmhpoLqXxYbp+mf72XFNFMES0NDxiriBDgghmi
EgqIiLmwhGiGQAEmkilR8aGgtigoIgoKmOzIPhszDMPMx8y7vXPmzHnzZu68
e3/3vf/b3iEb/YQcx9UPv4zv51KN4xV4Nqz8eduEZL7LtXBSdOcrsJ2zpOHs
qu/45RbVGaHLOsBRs+DKypXn+VOlqpnuX3fAsStpJ7QZJ/nGcOs854YO+Cpo
3Z+Lr9bwC+YbRyf85xO/KZIDmXxMpykgeF5e1Lfrn4/4muFoFtWd4BHq6qq/
9BU/y/3r4YhdUKl2frJ64BR/wBguvAsitnwehp1xfHmZcXRBXOpyn54Je/nJ
0caA3TBl/1+KJckx/K5lxg12Q1F3ynp1RA1/27i90m64fufQMc3lXN7GGM66
B+wvuvmfXhvP+283jh6If2jbZ3chn/91kjFgD+ySCd9zS63hRxrTteiFkpth
3u4Febxpe+69UCGXNxi2JPGmcHm9YCUYfXthSy3PmUYfFC+d8MaOx2conz4w
fRz6hN9ozN6V5lw25ffvPIPPNJYjow/8blz65nBDHeVL61jO9xvTUf07r6D8
ZWwefIVfbdyOM825UqqHDGYlZyYsuFDPM18ZuP+34eC4x/+j+vz7/Xzypnnk
T1QvOYxyimkNTrtL/nLjeui5XaVUPznEZkR3SwN/pn6Qs9/veMqb0i2Uw5rA
sGeVCY+oP2jdsoY3hbNQsLn9PeoXBYxfvkUVb1dJ9VbAjm012WU1f/OmdKMV
0Fe8Quey9mdg9VfACYNbom1lMZjCVSsgzanNVpR7m/JSwlyNv+9Cxz+BeSjB
5UxU3W977wHzUEL5lLmRJX7lwDyU0PiR7IPYcRXAPJTga9+y/n3vR8A8lOB1
7a0i1aVKYB5K2L85YkxSzWNgHirwjfyhfp7kCTAPFTwKuj8mcPZTYB4q2LDV
v+3wmmpgHipo07Ts2O1TA8xDBWOy0uVjv3wGzEMFXZl5OZbxz8G0Pet+KD3/
Y253ai0wj36w33RM7PB9HZg4tveDqyPMeTe/HphHP+R9NnnnmsIXwDz64cFS
D587xf8A8+iHJwe32/Z6vQTmoYZ1Lo3jWpteAvNQg5P2fpOHXwMwDzU0LgwZ
v7O1Adh5VsOVi65+E/0byUMNl9zFVpFtjcDOtxqqht6xz/RvIg/NcB2z5afb
mshDA0tao/tc/ZvJQwMVN3sWd7Y2k4cGVl94K9Fnewt5aCB2myHzZksLeWgg
SvbNSJFfK3loQDLy+pH3mlvJYwACjh7iPvRpI48BuLd9z90NjW3kMQAxiR0R
Tl7t5DEAgbfPfDTzZTt5DEDtxFHtmm2vyGMAZodXpxfUvwJ2PrSQsiM33NO9
gzy00NEc8K7qeQd5aKHm2G2nPW6d5KGFmC2nxz8bvveYhxaCxa/XT9/cRR5a
sHswo+Djqi7yGIQ3bq27tn1jN3kMQuomi5pPK7rJYxC0hbb2s9b3kMcgPEy0
ufbkfg95DMLLhNEH3Nf0kscgbMm4f/H3P3rJQwfRQQmZmrf7yEMH6x3qag56
9pGHDj7fui6x69s+8tDB1bf9Rqys7yMPHazK9d13ZKKMPHSQpiybkesmIw8d
FE4rCP4lRUYeQ7B7D3cj94mMPIagpNQn4Mg4OXkMgRfvPcLRVU4eQ/Db2qmT
m07KyWMIgq7Odwwok5PHEDydumLs4xEK8tBDwc2bOMVZQR56KGzfG7PhqALY
faUH92UTs31KFOShhw8eNu510yuA3f960Mdr7s5dqiQPPfxw0vxQ1xdKYM8D
A3xVWXws7rqSPAwgPe783FymJA8DpDtUBO90UAG7rwzw3SyLD/MCVORhgGmd
V/dVZanovjKA6pWltL5BRR4cznGIG/2XbT+ddw49ryzOT3LrJx8O614GW6xK
6qf8OMz5frPTs4p+8uLQpeDkCRdLNfUfh/Lse6NznNXkx6Fl5n5ha5Sa8udQ
cSkwTVqsJk8O7TYdtx45oKb+5PBySFSuYr6GfDmcGhV5/lawhurD4Wcdnfa7
czTkzaFsxDvnzZs11L8C9AjZNO/o8Dlk/gK8Wz1hYcunA1Q/AZ7/J6zL/uwA
9YMAjyyKTv+0fIDqKUDrBVu/DTTTUn8I0PzkIwc/Ry31uwCnzQpMczqgpX4R
YO6vM+aPuqGlegtwzGQPx6IeLZjSLRXg2vWXx26aOUj1F6BL1n3FI69B6icB
eh+JnPt+2iB5CPGc6MAbcVWD5CHENwtXqkpG6chDiDOc7K2bV+nIQ4iHih1K
eg/ryEOIRTmdzi2FOvIQomdckuKOTEceQtxX/cLq69lD5CFEbrOsaYXPEHkI
MfNbr6KmtCHyEKJ57fSG4Koh8hCi7enYcy2WevIQYmPIjPdWO+nJQ4i8RWN7
8kE9eYjwRHCjReUNPXmI8MLx2NqBbj15iHDeuoCLVnYG8hDhin0bz722zUAe
IgwZsWw0l2wgDxFu/cQF68sN5CHCHaVBi6qEHDIPEQZX53TnT+KQeQz/v0Ne
49ElHDIPET4trF24YTOHzEOEKX/YScft5pB5iND/sc3u8gQOmYcYE4+XpBzO
4ZB5iHFsZ1XirLscMg8xNp9MiLn/kkPmIcb8MUVxfjoOmYcYdWfv/KYeL0Dm
IcaOLRcXRg33IfMQY2zYMxuJiwCZx3C8jKR9kTsFyDzE6GGTsFs53HfMQ4xn
fF+b7pUuQOYhxpJT5ll/FAmQeYjR20xjNaNGgMxDjA9/HQyPUAiQeUjQbVmZ
oNxKiMxDgoeVxb+/PluIzEOCM/HPW25OQmQew+u/fDEz2VOIzEOC+X4ii7ID
QmQeEjxlCRGDyUJkHhJs33kpafo1IXlI0CJmTZBzuZA8JPhcpbLxbReShwR9
572WHS4SkYcE9zdmL4of7hPmIcHX7cOfJb0vIg8p7tG3p5/7WEQeUszbKc1K
DRGRhxRvtZ3qP3NcRB5SvJ6hyonJEpGHFL8rd63ce0tEHlLc9GJPlEetCCNM
AaWofFFXhv0i8pDi3z+W3J40RkweUry8xPJLtb2YPKRY/sBdf2+VGE0cZVK0
Wz7SL9VLTB5SrJg2s9g7QkweUlxtc+jNd1LE5GGGVo/PHG/9SYymcJPMcHVY
9qT0YVfmYYZ1icWtm9vE5GGGoaFn5WZCCXmY4bFRWa7X35KgaXuhZpj2ybxx
7osk5GGG6jn8KoOrhDyGv386ZuBCkIQ8zPCvlNSli2Ml5GGGo+NL33yQLkH2
/DZDUZd11mdFEvIww4J9ge1dTyXkYY7VUwPkYTIJ/h+xUGQO
"]]}}, {
{RGBColor[1., 0., 0.], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJwt1XlYE9cWAPDJTBZE3KH2uWC17hSpWp+21Z6LFSmuReqCD1sRAUEKVlEr
ovIQsWKxKlvVVh8KVmiLuKOdxwzgVgGLiqIClkUWSVhCErIASUnuud83f9zv
Tk7uOb9z74zdELEikGMYprrvkfQ9bN9z8oR1vIHURbJpqpupvMo7z/mA8g3c
dxnq/Jn7N/wn9hXntsxrAcY2cvmjhbrJfj+0wPldMfeL6hL5uijHHM/aFrjI
uq0xjn7MfzDTOpTAXVG7D0iK5OOVtoAgHTdpXYDnEv55XzT7CiXYs1Wwd+l/
+Sl+P/RFVEHFnqUr/sw5yu+2hotSwfx3j9V+753Al5ZYhwp2t9+fpVoXyY85
YA3YCufW33D7xS2L/2aedYOt0Dm84pIp4g5fZN1eYSu8GhV8MG3BDd7JGs6x
DUKLJk1V/ucwHxxkHW2gnxcVXl11i7/pbA3YBqqJgWb790S+vzVd+3aIzPHZ
Vrsoibdtz68dQu617lLY5/K2cDntMLFwbtvwsmKe1qUDLJaiJql7EubTAQvT
/60/mXOPX2HN3rsDiiVXCuLhKubXYatnzPfZfIa1HOc64OtdaliQUYr50vUa
H5Hvsqajo/MOpzuYv5p6xAj8Z9bteNK5eORXrAeu/+8pT31tc9K+9D7WRw05
QqxL0HsX0du2Lg4it7FenfT3uZXo3wnRI2reH/v1Fawfrk9+if1gm//4waki
3pZunm3uq7xdjf3RCez5PTeXLCvhbeHsNbBsyC43/4aH2C8aYE7zy0lLGdZb
Y4u/ftMt3pbuAQ2o8j/tWb74ikDrr4EGi2/y6Mf5gi1chQaueDSN5rKLBOqh
hfcMwRtnud8TqIcW4Hhs1a3IBwL10ELGO9NjCgJLBeqhhadL1PMPDisTqIcW
wlwaln244ZFAPbQQcXkUrzv7WKAeWti5KnpIyvMnAvXQQVjML9UzZE8F6qGD
/LDiIZunPhOohw681wY37fOqEKiHDiTGhk1bA54L1EMHDzPSO4fueiFQDx0o
M3KyHA6/FGzbc+yCv376Lbv1RKVAPbpgos93UtfzVYKNI6gLZrvDNLfcaoF6
dMHZr8aEeuW9EqhHF9R8vC7gdv7fAvXoi7cnaHS7f41APfTgvrxuWGN9jUA9
9DDfVFy/LrBWoB56eDQrYnhoY61Az7Me/jjjHTgyuA499HDaTzowpqlOoOdb
D229k1wyguvRwwD3Sy50HmuqRw8DTG880OEd/Bo9DPBCaJujbHyNHgbw+nlU
ckBQA3oYIO5LS4bQ0IAeBtin/rE/F9iIHgZ4u//V/e+/bkQPI2yJ28ssCmhC
DyM8CNp25/O6JvQwQnxyS7SHfzN69L1fdHzJ5Jpm9DBC2cgBzYYv36CHEWZH
VaRfr34j0PNhgvRN2VHr/VrQwwStr0PcdC9b0MMEld8VeWzzVaKHCUJXHxv+
okKJHibYKX2revwqFXqYwO3hhOtflKvQoxvcxKWXg1a0okc3pPrYP19T1ooe
3cDeHO0yZVkbenTDw2Sny0+L29CjG8oSB+3282pHj26Yc674zB9329GjB+LC
EjMMYzvQowcWuVY937O+Az16YNvapcmq0x3o0QO5YwP7LajuQI8eWJi9ccf+
kWr06IEMbcmEbF81evQA/+718BtpavTohW+3Mdeyn6rRoxcuFQaE7B/WiR69
sHbuhn7u3p3o0QvXFo8bU3+kEz16IfLiTPeQkk706IVX4z4d+qSfBj3McEkQ
yDueGvQwQ15zZPzncRqB3ldm8Js38kJAgQY9zDD/r7pIX7NGoPe/GUyHDXem
f6xFDzNcPGK3V7VTK9DvgQX2Pc7/7tBVLXpYYGCC50s7tRY9LPC7a1l4qKtO
oPeVBdKn2C/KCdGhhwWclRd3lGfq8L6ygOaNg7y6VoceDJnkemjQ/dFdeN4Z
svr3Obkpvl3ow5CKmnD7hSldmB9Dcs6v8nhR1oVeDFl8/cj3yx302H8M6bjw
YFCWpx79GDIo41u2MVaP+TNEf3bzKXm+Hj0Z8o5PgmN/ox77sy9+RGy2ZqYB
fRkyLTbmJzHcgPVhyFctSpetWQb07vu/fpN+snttwP6VkNURPjPinI3oLyGl
Ff+a1bDGiPWTkJ//3q5ySTJiP0hI7OwD6WtKjVhPCXH8YO3pzQoT9oeE2B15
5BrobsJ+l5BRUzaf8thtwn6RkN9vTpg54JoJ6y0hg8esc+fbTIIt3UIJWbzs
16E+k7ux/hLilVmseeTfjf0kIb77Y6Z/eKobPViSzO1++1B5N3qw5O28BbqC
AT3owZJxHi6Orxf2oAdLovNdC9r39aAHS/KylJ4NeT3owZLAQyma2+oe9GBJ
ZMWrgT9M7UUPlphXqus/DehFD5ZknPbn60/1ogdL5JXja8PLe9GDJaOOHTzZ
4GBGD5ZURUx4/zMPM3qwZK59XXPqHjN6cCQ2vM7+8TUzenAkI+FgpbHVjB4c
mbY05MzAiRb04MiCHStODv7Sgh4ciew3bxCTakEPjnyxcjmpLrWgB0cCC8Nm
l7OMSD04sqkiqzXXmRGpB0cSXXPq4j5iROrBkWd5lbM+X8WI1IMjSXcnyodt
ZUTqwZGgJ05bSxMZkXpIydGEgrR9WYxIPaRkhLI8ecodRqQeUlJ7JDG+uIYR
qYeUXB3CHwrsYUTqISXGpNu39MMlIvWQEuXqM7NiZ0pE6iElcdtfOMmWS0Tq
ISWN51J2xIRKROohJWudErdqD0hE6iElxzYOHu+fLhGph5T8/6hd5l1eIlIP
KVmvMAyc8FwiUg8p+etmd1S0RiJSDxlZOa9EUjqQFamHjERr8/94ayorUg8Z
mUjuib4erEg9ZOTbGzsnp65nReohIzmBnH3JblakHjKS5gDR3amsSD1kRBl6
NmX8ZRY9ZMQh3ivMs5RFDxl5ptM5bWxm0UNGNs4YfCGK49BDRnbUXZh92JlD
DxkZ6hL1IuVDDj3kZKu5Of3kFxx6yEluqDzzRASHHnKS33S063gChx596+d0
WfGZHHrIyY+l3o8jRQ495MT71bbYdZWcGG0LKCftr6pKSBeHHnJS/ltBkfMQ
KXrISdZHDrv0LlL0kJM/H/qZHyyUijaOEjkZ/0n/wBP+UvSQk0fvTs7fEC1F
Dznxcto7YlKaFD0UxO7J8YTGS1LRFs5ZQby2X3BOL5Gih4JUJOc3rmqSooeC
RGxJ6lSwMvRQkLgBmd5XR8lE2/a2KEjayhnD/GbL0ENB2qfNXWjxlqFH3/vH
4o0/h8nQQ0Hupp34eM5BGXooyIDDhSMepstE+v1WEJnKMfMrXoYeClKwY3Oz
6pkMPezIy3EhndvVMvEfZSzRjw==
"]]},
{RGBColor[0., 0., 1.], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxdl3tMXEUUh3fZha0YYzXwR7ViiGmlRdOkNHatl96baEKjTZCWVmMxEoL0
Hx+QQEIQmhWhNvjoEo0RWl4BmxopqZHQ0o5lWV5FHspDFkXr9qGkPJdXAcHi
3nt+M5PcSRbyceaenTPfnLltdNr7h962WSyWP4Mfa/ATEvyUl+njrmrBmEq6
HFU8KXl/uK82M35CvRBx4mi6rYK5vUsxKacn1CfyMz4a3e5kt/IiGhJuTqh/
OftuTz9dyPbE6WNS9U9lFe4teY+dnDQSqs/FPpI2aF24OhrMFu6bVIvLjr1p
T93GdqScDmacUr0Fldf8VbvZB3q6vCnx/X29+pD8ZLGecFpwVry+wGn118c7
36hKPMva9OV5efwii9TTRcyI+ccz9CG5OUpPOKPGzhWerHisjj2olxs+qzpq
dtU2vFjEjOWlzIr5RrqGWfVMSHjL2cEqRn8NiDjVw7laOaRXnwQ+/znq43E3
q9O3ozagOjsTOybzqhnVG1B9Q2XR8wn17J5ezlLAVP+cWp0b2mTZcpwd0JeT
MGfaD2L/3jZGfnm8AftDfG7qG4V8y+dpv+ZN/jlfVGj/BOM8zKv2o91zPz5U
xIxyLyMeaMf5mBf7YaQLX1Atrra09o/rFTovCxQfLVRovxfUkIL23dYzjcwo
txhxVzuj/V8Q6zPS+STTWDT54DzIyAfnfvhYFPWQj0XT+ZNMPhZNPpYEk48l
kY98cL4OH3I++eC8yMgH5xvMWF7EPZMPzqPM0JHB+SZ8yPnkQzL5kEw+lsF+
9O+yiJMPsCuAfubxYfjgPMKov5dNPlZEfvLB2Y3+4NwKHytq1tbxF05VXoWP
FbGf5INzD/qD8xGFfKyafIA1D3ysqvWBR0v3JH8NH6smH+CYMfiQceqPf00+
wJ5L8CHj5AP82m30B/gP3h98Pu+PNfE8+eBcj/toTcwnH+AmP3yAY3zwAS6/
i/tqndjfBB/gXxrQH2D7NfhYF+shH+DeH+BDxskHONXDyMd/Jh/g6BH4ACcO
wQf4wjDuK/58NXwIVsjHfeLkbkY+wAebGd1X900+wMMtjO5/cFEXfMj59D7Y
IM4eRn9siPWQjw0xn+4ryeRjQx3xH3j1RFwuo/sKcdf38GHRjJ+be9HvFq3O
0dvny/HCD+LXf0Z94OAgX+CX/sH5k3HyJ5nqB3u70V9g+3c4n3I++eVcrdD+
gP/uQv/x+BVG59dqsOfDO/BvFflo/8D+Bry/iF3PjGA/rdr5nRvzR0bO4XxY
teSczRXvJpXj/uH5qnFeZH7ab/C+JmaU65Xzaf/xfcHzRecJ8UAHfISIeskH
Z/4+kUw+wFv60T9glws+5HzyIZl8SCYfksmHZPIhmXyAnRUK+eBxN3zYqN6d
g/BhE8+TD8nkQzL5sIl85EMw7h/OLoV8yOfJB74/dQA+ZJx82LQHXn72eftT
nfCBeKQHPuxiPvmQTD7Ar3+J/pBx8gF2/gQfMk4+wOtevD/tWmTpJzfujNc0
kw/E01vQH/x5t0I+wLd6cH+A43h/2LX9n04OrcXXwkcoxSOuwEeoVvnwxNKm
fIb7BXH2LfqDWPtiDP1B7NrXDR+hoh7ywTkTPji78X7gnAsfodox/T8DllSF
fCBe0gUf4Mg2+Agz2JM7hvsqDPm+UsgH51SFfIBjB9Af4JAW+AD7C1i+kRBs
bYUPni9bIR+cS+AjTMufKW9/x9fDDB29Ydp6duOOxu2/wQeffwo+OLvgw8H3
ixnpohza1IY+auCDx3l/OMTz5IPY9VYbM5aX6dA+Gyn9vT9mAPcVn8//veHQ
Dm/rOHgppwc+KO6PbIUPh8bidsWPO/n7W34/+eDsVuj3Ji19PGJr3yse9j9P
EoR/
"]]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.0055000000000000005`], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxdln1MlVUcxy9vXrzMZQtqzYWVbkkvzokbWMeep1XDVVaga7TRVi2QPwip
bDow9tDE2DS4RiQyyBtcs1qhmE5wFwJuZigyIAbGS2Jok/fLywUuiLf7PL/v
OWd7znZ3+fA7z++8fM7vPPex9/ckpYZYLJaBwCco8AkOfMqO621Ysa1flXz6
/pfYWGJtdP7osKJ9mrch6eFM9rytpypr24gSZ18X4x1KYPZm74aUohHFgvZv
dmR1wk3OTrYlVm+jIn5o1Ego+Hogm61HckxKUSDjmOAcPV32mLJlbDp8TXEM
u9aqtzEl6/OSyr3+1Wxtvp5wXDnywJPfuN88wD7apk9wXDzv1qfXPK6E/5Sz
+dxwLovS00VOKF9Er29rftvCdqfpbUJZuXdo+tflPFYXrSecwPMFLEJfrm0S
bGfG9FImFftbBRHMkc+MdNU8Xsvo26MUqzUjsbufY7QejxHX0h0sSV99ose0
Po+yuj8qK3exjDn17ajyKPed/STz45U/bKX18v4ONqcvx+tRZjt3+qK6qrD+
KZFvuz6dhCnlmbWF9XPxedgPGSe/U6b9AWvV8D2l+JPfqRio/AX7Na3HHz0V
ex7+p6m/Wof9o/hIRbWLzsO0yG8st3badD501jIKQy4xI51tBvEzOC+Sab9n
xPPGcvMl0/5zbmNGuh6wNggfs4i3w8eseJ58zJp8SCYfkskH57/gg/Mf8OEV
54F8eMV6yIfX5AOseRj5kHHy4RX+jelFzoH/gY850d/QkSaZfHDuZ+RjTuwH
+eDcCR/z4nnyMS/WQz5knOp53uRDMtX3vOJ87fgLVQPt8LFgqvcFZUaJmJyM
u4T6WBDrJR8LJh/gxm7cBzJOPsBqJ3z4EP8aPnyiP/nwmXyA3+2ADx4/4yIf
4Du9qI9F4u234GPR5AO8vwv3pYyTD8nkA1zeCx9LxO09qI8lfh+5yAf4gzZG
PpbEfMkHZ4eLfCyJ8ajdBWehPu6KOPmQTD7A2a24r2ScfIAL3agPGScfy8Qv
9sLHssnHsvBPPmScfIB3teC+Ai82wsc90Z98SKb7CrzRDR8yTvf/PTE++QCn
duN94DfVB1j7E/UBdl5jdF+BC5rwvvArdr/eTuC+8pt8WFT+B9W7RR02+p+G
Hx534LyBu/9D/Yi4i84feNMV1BPY1on1y/7kU45P5xP8xG3UG3Hj4G3sj+xP
vuX86PwGge0u8k+snbyB88zjDhedhyCRj/YzSB1MLz346q2zdXQ+gtTDmcWO
1nlnHZ139Hc4cV7A3zZgv2U+Y7nN4JR67L+M03mSTC2Y+MGLuH/BmyrgA9w0
AB/B4nnyIZl8gH/shQ/wU83wAfZ1oL7A5ZW4v8EftsMHOPMCfPDx+O8FYu1Y
O3yEIJ6F+xGc7IYP8LkG1Cf4RivON5i14n0Gji/H/QPe3Agf4KOX4YOPz32A
ezrhI0R9yPiHHfUt+1MLJc79DT7AFfz9Dg48Tz7AP9egPkJFPvIB3tgFHzyu
wUeomtz3dN/NU03wweMO+ACXcB9yfPLBORk+QtWXy7u+rL/8/VbyESb6k48w
sX7yweOl8MFZw/3P2Qkf4IYL8AHe44YP8Ot98AE+dJ6RjzB19mqF7/BQCXyI
8eCD81cu+l4BLoAPcNoV+ABnnIQP3n8/fHA+iPsK3LiPHTAS8ng6fl8Sa6u6
4QPxwH1OPnh/u8vQ0SrnRz6IGzOuwscKNScvMnhHfAfqw6rmf/ZKWf+zvcxI
F21Vi2qOHb3z+3fwYaXx9/0NH1Z13a5YdvG9GtSHFeMFKszwwVmDD6vKih5p
SNzZAh88Xor3NWc7fEim97dVPfJ4akuptx8+rGpc7hu9a3Zcx++rcHE+/geg
z1Mc
"]]},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.0055000000000000005`], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJw11XlYlFUXAPB3dkTEVMjMUHMhlQ/L7dP01XNIEc0U0dLwAWMVEQJcMENU
QgERMReWEM0QKMBEMiUqPhTUFgVFREEBkx3ZZ2MGGIZvZu7pPs/7x507c+ae
8zv3vm97BW/0FXEcV2d4BIZHaHjOpRjHK/CoX/nztglJfKdLwaSojldgM2dJ
/dlV3/HLzavSQ5a1g4N2wZWVK8/zp0rUM92+bodjV1JPDKSf5BvCrHKd6tvh
q8B1fy6+Ws0vmG8cHfCfT3ynSA5k8NEdpoDgcXlR765/PuKrDdHMqzrAPcTF
RX/pK36W29eGiJ1QoXF6srr/FH/AGC6sE8K3fB6KHbF8WalxdEJsynLv7gl7
+clRxoBdMGX/X8olSdH8rmXGDXZBYVfyek14NX/buL2SLrh+59Ax7eUc3toY
zqob7C66+p1eG8f7bTeOboh7aNNreyGP/3WSMWA37JIL33NNqeZHGtM174Hi
m6Febvm5vGl7bj1QrlDUD29J5E3hcnvAUjD69sLmGp4zjV4oWjrhjR2Pz1A+
vWD6OOQJv9GYvQvNuSzK7995Op9hLEd6L/jeuPTN4fpaypfWsYzvM6aj/nde
TvnL2TzoCr/auB0nmnMlVA85zErKiF9woY5nvnJw+2/9wXGP/0f1+ff7eeRN
84ifqF4KGOUY3RKUepf8Fcb1kHO7Sqh+CohJj+qSBvxM/aBgv9/xlDelW6CA
NQGhzyriH1F/0LpFNW8KZ65kc7t71C9KGL98izrOtoLqrYQd26qzSqv/5k3p
Rimht2iFznntz8Dqr4QTw64JNhVFYApXpYRUx1YbUc5tyksFc7V+Pgsd/gTm
oQLnM5G1v+29B8xDBWVT5kYU+5YB81BBw0fyD2LGlQPzUIGPXfP6970eAfNQ
gee1twrVlyqAeahg/+bwMYnVj4F5qMEn4oe6eZInwDzU8Cjw/piA2U+Beahh
w1a/1sNrqoB5qKFV27xjt3c1MA81jMlMU4z98hkwDzV0ZuRmW8Q9B9P2rPqg
5PyPOV0pNcA8+sBu0zGx/fe1YOLY3gcuDjDn3bw6YB59kPvZ5J1rCl4A8+iD
B0vdve8U/QPMow+eHNxu0+P5EpiHBtY5N4xraXwJzEMDjgP3G91964F5aKBh
YfD4nS31wM6zBq5cdPGd6NdAHhq45Ca2jGhtAHa+NVA59I5dhl8jeWgNdcxS
nG5tJA8tLGmJ6nXxayIPLZTf7F7c0dJEHlpYfeGtBO/tzeShhZhtwxk3m5vJ
QwuR8m9GinxbyEMLkpHXj7zX1EIe/eB/9BD3oXcrefTDve177m5oaCWPfohO
aA939Gwjj34IuH3mo5kv28ijH2omjmrTbntFHv0wO6wqLb/uFbDzMQDJO3LC
PNzayWMA2pv831U/byePAag+dttxj2sHeQxA9JbT458Z7j3mMQBB4tfrpm/u
JI8BsH0wI//jyk7yGIQ3bq27tn1jF3kMQsom8+pPy7vIYxAGCmzsZq3vJo9B
eJhgfe3J/W7yGISX8aMPuK3pIY9B2JJ+/+Lvf/SQhw6iAuMztG/3kocO1tvX
Vh/06CUPHXy+dV1C57e95KGDq2/7jlhZ10seOliV47PvyEQ5eeggVVU6I8dV
Th46KJiWH/RLspw8hmD3Hu5GzhM5eQxBcYm3/5FxCvIYAk/ea4SDi4I8huC3
tVMnN55UkMcQBF6d7+BfqiCPIXg6dcXYxyOU5KGH/Js3cYqTkjz0UNC2N3rD
USWw+0oPbssmZnkXK8lDDx88bNjrqlcCu//1oI/T3p27VEUeevjhpNmhzi9U
wN4Hw/BVRdGx2Osq8hgG6XGn52ZyFXkMQ5p9edBOezWw+2oYvptl/mGuv5o8
hmFax9V9lZlquq+GQf3KQlpXryYPDufYx47+y6aPzjuHHlcW5yW69pEPh7Uv
g8xXJfZRfhxmf7/Z8Vl5H3lx6Jx/8oSzhYb6j0NF1r3R2U4a8uPQImO/sCVS
Q/lzqLwUkCot0pAnh7abjluN7NdQf3J4OTgyRzlfS74cTo2MOH8rSEv14fCz
9g673dla8uZQPuKd82ZNWupfAboHb5p31HAOmb8A71ZNWNj8aT/VT4Dn/wnt
tDvbT/0gwCOLotI+LeunegrQasHWbwNkA9QfAjQ7+cje12GA+l2A02YFpDoe
GKB+EWDOrzPmj7oxQPUW4JjJ7g6F3QNgSrdEgGvXXx67aeYg1V+Azpn3lY88
B6mfBOh1JGLu+6mD5CHEc6IDb8RWDpKHEN8sWKkuHqUjDyHOcLSzalqlIw8h
HiqyL+45rCMPIRZmdzg1F+jIQ4gesYnKO3IdeQhxX9ULy69nD5GHELnN8sYV
3kPkIcSMbz0LG1OHyEOIZjXT64Mqh8hDiDanY841W+jJQ4gNwTPeW+2oJw8h
8uYNbUkH9eQhwhNBDeYVN/TkIcILx2Nq+rv05CHCeev8L1raDpOHCFfs23ju
tW3D5CHC4BHLRnNJw+Qhwq2fOGNd2TB5iHBHSeCiSiGHzEOEQVXZXXmTOGQe
hv+3z204uoRD5iHCpwU1Czds5pB5iDD5D1vpuN0cMg8R+j223l0WzyHzEGPC
8eLkw9kcMg8xju2oTJh1l0PmIcamk/HR919yyDzEmDemMNZXxyHzEKPu7J3f
NOMFyDzE2L7l4sJIQx8yDzHGhD6zljgLkHkY4qUn7ovYKUDmIUZ36/jdKkPf
MQ8xnvF5bbpnmgCZhxiLT5ll/lEoQOYhRi+Z1nJGtQCZhxgf/joYFq4UIPOQ
oOuyUkGZpRCZhwQPq4p+f322EJmHBGfin7dcHYXIPAzrv3wxM8lDiMxDgnm+
IvPSA0JkHhI8ZQHhg0lCZB4SbNt5KXH6NSF5SNA8ek2gU5mQPCT4XK229mkT
kocEfea9lhUmEpGHBPc3ZC2KM/QJ85Dg63ZhzxLfF5GHFPfo29LOfSwiDynm
7pRmpgSLyEOKt1pP9Z05LiIPKV5PV2dHZ4rIQ4rflblU7L0lIg8pbnqxJ9K9
RoThpoBSVL2oLcU+EXlI8e8fi29PGiMmDyleXmLxpcZOTB5SLHvgpr+3Sowm
jlIp2i4f6ZviKSYPKZZPm1nkFS4mDymutj705jvJYvKQoeXjM8dbfhKjKdwk
Ga4OzZqUZnBlHjKsTShq2dwqJg8ZhoScVciEEvKQ4bFRmS7X35KgaXshMkz9
ZN44t0US8pChZg6/athFQh6G75+O7r8QKCEPGf6VnLJ0cYyEPGQ4Oq7kzQdp
EmTvbxmKOq0yPyuUkIcM8/cFtHU+lZCHGVZN9VeEyiX4f9csZBA=
"]]}}, {
{RGBColor[1., 0., 0.], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6]},
{RGBColor[0., 0., 1.], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.0055000000000000005`], AbsoluteThickness[1.6]},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.0055000000000000005`], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {
{RGBColor[1., 0., 0.], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6]},
{RGBColor[0., 0., 1.], PointSize[0.0055000000000000005`],
AbsoluteThickness[1.6]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.0055000000000000005`], AbsoluteThickness[1.6]},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.0055000000000000005`], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, \
{}}}, {{}, {{{}, {},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.011000000000000001`], AbsoluteThickness[1.6],
LineBox[{{0.6, -2.0657055697526004`*^-17}, {
0.61, -2.52858646045418*^-17}, {
0.619866901568, -2.5771301558739613`*^-16}}],
LineBox[{{0.6201915256019657, -2.5771301558739613`*^-16}, {
0.63, -9.714700054446106*^-17}, {0.64, -1.0406974001331497`*^-16}, {
0.643460068605471, -2.5771301558739613`*^-16}}],
LineBox[{{0.6560720580074626, -2.5771301558739613`*^-16}, {
0.6599999999999999, -6.985436702831062*^-17}, {
0.6637743105707853, -2.5771301558739613`*^-16}}],
LineBox[{{0.6760711799517256, -2.5771301558739613`*^-16}, {
0.6799999999999999, -5.718731429636685*^-17}, {
0.685182856522428, -2.5771301558739613`*^-16}}],
LineBox[{{0.699292538914211, -2.5771301558739613`*^-16}, {
0.7, -2.435237928167865*^-16}, {0.71, -1.5353993478749245`*^-16}, {
0.72, -1.9940545728809655`*^-17}, {0.73, -2.341903911037749*^-16}, {
0.74, -1.704355779092405*^-17}, {0.75, -1.0596767344322826`*^-16}, {
0.76, -2.783587828642101*^-17}, {0.77, -2.220446049250313*^-16}, {
0.78, -1.3914257786933783`*^-16}, {0.79, -1.2538861780992416`*^-17}, {
0.8, -7.88475537196756*^-17}}]},
{RGBColor[1., 0., 0.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBWIQbQwGj+0ZoKD1deAOuVYE//riAluu64/tWcr6k+pX
JNtoxvQf+qrxxD743P+AoJyEPdUi69wfVj2xX7ag6vzDvMQ9Z8+AwBP7OBZn
I1Oztj1yYAOf2nspc8/Q0knfAzJtccFT+yJh181h+9r3AA0DmvgUbh/YOJFn
9iKnNk+J2T5pTxoYPIPL7wAb+Mx+7grDlz2K2Xu4wA58bn9CmyM46LL6HrDz
Yp7bP+hfopTEG78HbNy653D9EPDCXrf56FXZ+742QWADX9jLHBQ+8/WV/p4l
YAe+sI87FqMce2nBnm8g5319Yb8x8MvWM6/L93iAjHN/aT+hbUtVAIv0nlkz
QeAl3HwA4GmPqQ==
"]]},
{RGBColor[0., 0., 1.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBWIQbQwGj+2/XNppeiJOzab1deAOudbH9lo/V217dFTb
5vriAluu64/tWQQl73mVNNpoxvQf+qrxxJ4BCqpF1rk/rELwz54BAQRfDmzg
UzgfZNriAgQfaBjQxKf2ThxKSlYLHGzAxok8s884r3a02yp3TxoYPLN3qFoU
63sm2mYH2MBncP1cYAc+h/PBzotB8MHGrXtur9y8Qe9cnrINRPQFVH6aTRDY
wBdw9UvADnxh/6cy7r3DS3+bbyDnfUXIe4CMc39pf3o9856jB3NtZs0EgZf2
XCq8EesFXWwAWLJ4UA==
"]]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.011000000000000001`], AbsoluteThickness[1.6],
LineBox[{{0.6, 2.0050709060668603`*^-17}, {0.61,
2.453307618526274*^-17}, {0.62, 8.326672684688674*^-17}, {
0.6265821208167527, 2.4324338057016516`*^-16}}],
LineBox[{{0.6781166618040494, 2.4324338057016516`*^-16}, {
0.6799999999999999, 5.5384732011079694`*^-17}, {0.6876905878320559,
2.4324338057016516`*^-16}}],
LineBox[{{0.6919849185961461, 2.4324338057016516`*^-16}, {0.7,
1.5451445457265022`*^-17}, {0.7061250969366043,
2.4324338057016516`*^-16}}],
LineBox[{{0.7139291537045354, 2.4324338057016516`*^-16}, {0.72,
2.0586336520523105`*^-17}, {0.73, 1.8879175779015923`*^-17}, {0.74,
1.6516829780934654`*^-17}, {0.75, 1.0272899361145975`*^-16}, {0.76,
2.870101234313389*^-17}, {0.77, 1.1326441175255768`*^-16}, {
0.7748378486455871, 2.4324338057016516`*^-16}}],
LineBox[{{0.7846708041256747, 2.4324338057016516`*^-16}, {0.79,
8.500145032286355*^-17}, {0.8, 7.667165951241988*^-17}}]}}, {
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.011000000000000001`], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.011000000000000001`],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGYCYmMweGx/7s61/48ulO9pfR24Q671sb360vKX
guq1e64vLrDlug6Un3s97OzpTXs0Y/oPfdV4Yt9TzvZVj2HOnmqRde4Pq57Y
L2j4ce7vv7l7zp4BgSf2NiZW16r3H94jBzbwqb2Dx/L14UpT9oBMW1zw1J7b
p+U/Z/GRPUDDgCY+tS9bbXV5bfWEPWDjRJ7ZM4DBgT1pYPDMPm3R5RkWPRv3
7AAbCJSPYl4/X2HZHi6wA5/bs0zJ5sz8W7YH7LyY5/aMF5tu8TzYsAds3Lrn
9smcqhfjlhXvgZj7wj7E6+FBju55e4LABr6wP3Lv2P6b3A17loAd+AJq/4Y9
30DO+/rCXuP1n9oS3iV7PEDGub+0X8+tZ7H4Zc6eWTNB4KX9NC9WvTc7p+0B
AIbYqus=
"]]},
{RGBColor[1., 0., 0.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.011000000000000001`],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGYCYmMweGzPAAWtrwN3yLUi+NcXF9hyXX9sz1LW
n1S/ItlGM6b/0FeNJ/bB5/4HBOUk7KkWWef+sOqJ/bIFVecf5iXuOXsGBJ7Y
x7E4G5mate2RAxv41N5LmXuGlk76HpBpiwue2hcJu24O29e+B2gY0MSncPvA
xok8sxc5tXlKzPZJe9LA4BlcfgfYwGf2c1cYvuxRzN7DBXbgc/sT2hzBQZfV
94CdF/Pc/kH/EqUk3vg9YOPWPYfrh4AX9rrNR6/K3ve1CQIb+MJe5qDwma+v
9PcsATvwhX3csRjl2EsL9nwDOe/rC/uNgV+2nnldvscDZJz7S/sJbVuqAlik
98yaCQIv4eYDAOolj6s=
"]]},
{RGBColor[0., 0., 1.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.011000000000000001`],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGYCYmMweGz/5dJO0xNxajatrwN3yLU+ttf6uWrb
o6PaNtcXF9hyXX9szyIoec+rpNFGM6b/0FeNJ/YMUFAtss79YRWCf/YMCCD4
cmADn8L5INMWFyD4QMOAJj61d+JQUrJa4GADNk7kmX3GebWj3Va5e9LA4Jm9
Q9WiWN8z0TY7wAY+g+vnAjvwOZwPdl4Mgg82bt1ze+XmDXrn8pRtIKIvoPLT
bILABr6Aq18CduAL+z+Vce8dXvrbfAM57ytC3gNknPtL+9PrmfccPZhrM2sm
CLy051LhjVgv6GIDAGJueFI=
"]]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.011000000000000001`], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.011000000000000001`],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGYCYmMweGyvzqe5741suU3r68Adcq2P7Q19D11+
5FFjc31xgS3X9cf2DGAww0Yzpv/QV40n9kFzTvrnNW+3qRZZ5/6w6om9/FfL
JjPuHTZnz4DAE3svo/VT8idespEDG/jUXk97lcP3g1ttQKYtLnhqv8IvZmv5
90s2QMOAJj61TzcLZol4228DNk7kmT27Zljz6ulbbdLA4Jn9wfaLpmUXCm12
gA18Zq9sddou5uVuGy6wA5/b519lnsO8p9wG7LyY5/Ynja8ZqB0ptQEbt+65
vX/r+vgXXMU2EH+8sLeUM77MP2euTRDYwBf2B3S/T2vtbrBZAnbgC/skn/ny
O4IW2HwDOe/rC/t1u2K5ylt323iAjHN/CQmPhhk2s2aCwEv7hIcum+Mkp9kA
AHCNm3I=
"]]}}, {
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.011000000000000001`], AbsoluteThickness[1.6]},
{RGBColor[1., 0., 0.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6]},
{RGBColor[0., 0., 1.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.011000000000000001`], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.011000000000000001`], AbsoluteThickness[1.6]},
{RGBColor[1., 0., 0.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6]},
{RGBColor[0., 0., 1.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.011000000000000001`], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}},
AspectRatio->1,
Axes->{True, True},
AxesLabel->{
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm],
FormBox[
GraphicsBox[{
Thickness[0.02888503755054881],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYC4hkzQYDHYbP5j0MpWhoOMP4ZEODRcvB94nnJ
VJjX4XmW9rfptloOb9pyu412Czgc37Wjly1Ay0G4clLJWRZhB3ObvUHTEhH8
7Q5Nj45LaEP18zukpwEBm7bDVq8NFnN+8sD5zeK1rJlsHHA+Awg4MMP513lv
i6V+Y4C6R9vBxBgEvtjDzIfxYfZf+X3s+rzIv/Yw9xUuL9nwj58Z7n6NTyov
Z3Uyw/0H48P8D+PX3P9xy/i1FJy/I9gq4r+6ONw8kPPSjonB7Qt5e/njjIVi
cPfEqEbInKtB8BV2LdiXyifqkDM1odCi+L89WL+aKNw8iDpReHjA+LDwgvFb
FdhVz5gIOMD0w8IbZj6MD7MfFl8w98HiE+Z+WHzD/Afjw/yPnj4A/GLjpQ==
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJtIAaxQYAJSjNCxZiR+PjEcakhVT2p5gxm9ww2u4ix
FwCf5QKP
"], CompressedData["
1:eJx11GtIU2EYB/B5ofCLirk51zF3dvY6tWWmUhRBT4RpNyobNqJlljfosg8V
3fYhNBOZ2ehCGiKbfVDBUAJ1CkklYtIWhdIHk4wQKkvQkjASbO85e55h4AuH
lx/Ic/nPc8RT9oLSCJVKFRZ4CgNPeOD5ceucM+tDPPyZ+f58q2QEFT9uDbnv
yDbrUo2WnNcx1KryaiGf3wsS+ZndMdNYaiDXWZ0Hw2J15HrZCZDNzz0tNPLT
p4Fq/Wrmm9eAZWZ0rsGjgRfOgcqcwXg4zqzCG0fI+n73QGm0Gn4NzHWXFyZC
jlxIDfL810P+lFu089E7HdnL5zcJ5Pirdy/6S5KgjJ8UNRyN0tRk79BTfTT2
V+51NF9HnDm6/KNA8zfIt0D7oXF/dDnvpzGQZ1s69f5UCZb4mUwGdd3e6UiL
ES4N9uQ22kRyjO3QZFargSz3rZXAx48gLfd+kYz90ThfLK93WaL5sT7u94Tv
Vy/S/mjMp/33tyu+WYny/N8nLQUmd62RrH0wFlVhYCs6M719zdubJqqPxv7T
F7rVf8+k0HxPM84/DmtiNL/Sj9F+aNwfjfmjMf/7NdXHRgUT5fvQFXNtszOV
XGGfrR4ZSyObxeT5sz3plP8yB/JH4z7dWxZelqSbaV+h+UTa68yQe6Hy83BD
yE0tUt/il5VdYpvYHeHNoPpozEupt4HykvcdMVNeNyKH7mzqNVNeaMwLLb9H
cyK5i01VNR8I5mFZr8w1zILfhTRyp/x3qWQ53yYT6PjeLgZTxZ73ORtNwZtB
UuvX/IwiBm38/8glBX9fY7AuU+bwSFTPz3NeFMm7XFVxZbqQ5ffJrqd+zu17
+svC9dRv2fvXJpFf9Xtvr+pi4JhcGM/eJ1A9K891IlFxHlO+R6cT4PD4Wkfx
TyPg91POxx8yfi//AfqtMwE=
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJ5IGYC4o16eYsZzxg7HOze12SymMkBxn9Z+zj7/BsE
X3qj2HwmBWaH9DQgmGbsULi8ZMO/8ywO3G6qpUxcRg7ClZNKzi4RcDDQWil8
YYmhw38wkITznSc0C6WdUoDzdzg0PTouoepgWxmxwlTWyGHOIuWdf9I1HQ63
LQ8/tcgYor9eB27/m+Ktor9PI/hbQfpvIPgvQPKvEfyU2DtuzBK6DhOCS1Sm
7zd2mDqBv8pMW9chRsHxY/IaBP8MCPQg+P0g9flGDltA5tRoO+yvlbVI32Lo
0MhytN8wXMPhIMh9QoYOpw47rc2cpwrR/8bAYa2QDl/6PSU4H+ZfGN99zdHl
DDtkIebzGzrMBIGd4g6R4tsvMuwzdAh+e/njDEUhh2iQ+2qMHPyfeF4yFeaA
uw8SP4xw98P4MP/B+DD/90d0+zN+QPBh8QsAPknafA==
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdlHlIFFEcx9eSpLADbQ9zQ3Nbc3ZDy2Nndqboa4eGRYlGSVlguW23/WF0
YEWXkRtptelWIl1ghqGBZUaZFZHlUWFUWHRRdEoYJYKV7XtvekM9eAyfmXnf
3/3GLM3LcA3U6XQB/j3fvwf4t+nIo8ErTonoJ6s4Ct9q01cfC3JyHpJi3TBg
ocbBc2u8rstOHCVrXxTGvt1V0ZYmY+OtSzOObo1Cndh7M/eYjNTq25W6TVG4
vnW05H4kY3rJrpDlRRbkLn6eMrBZxsjNh/Lb6iwwVywRWh440UpWuYXphjlx
tufjptYSC6bsfHPHZ5c4W4m9K+K/LEs4vHfPwo5JAuY8PJj9e5qE5ltTz6+s
EJg/aRLe5px8nHhfwHKy5kssnn4BPxo6i369k5j9YBuLP9WJ9M7wgpwQG2K6
hjZOqHKiHn5HTDZkRyZ3L/uisY/4WyVzfhLyLfl+tAJx0rWM0tcC+y4ocBG7
hQIqP8yM7U9WMJMmZhy8JcO3ODwa04dXQQ0JrCsGwST/5xSYycEIG8tHiwI3
0Rtk5+cTE/wr1I7izPyxZXGK6o8d2/vk9e29Mmf6/avGWcb6h7p2jeNsVaEP
dstcj8ZjUOsTbEcpsdcncfs7Am8XT0zVeBuxF6MxzWe9yJmkNd6lMa33XQe3
t77a82wFHNwfqi86EDi4KGLZOhsuxK47HfDcwfKbY2N6VhG15H22DU+Jvyki
yoifdo29pD+uCpzLT1kafroFtX9ETCBxn4mBj57z69H8j8NZUq8xqn8dRsxu
Dpp8XO/A98bui+4eA/anfQpM7E7CvK6Obt9JA9NblYQtL3s7E2YZQMLwLUpC
5JUTja5hepafp0n4UrjWEx+u5/HRvozWo4nU/7tqL0GPXz0bXpVPFDn/JHzD
yfVoG7/UmM7jEJnzdqK/QOb26kiersrcXh7Jd6TC9WmdxysoIP5/NqCpsHLB
vXgF50PGD3O/MPL+pf/NDsP7VfaessUKmjyNOxNPh7P3axTVLzObv1Ea03n4
qM5/4CjWvy2yqmdi/Vkjs75oMLJ5WyMj25plbi8wqv39938jwsn9ke7EgSzP
3IARRtYH1RLn/Iv6vpZYjWk9PotqPoxsvsNE5k+uxnsig6ytXo11ZMHE+s8s
IpPW28TulQhR1Q/D//fpH8/CUwk=
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJ5IGYC4uKtor9Pizk4OE9oFko7peAA479ftF7h7A4l
h5vSNYlGrA4ODSxH+w23qzrEKDh+TI6xd/j19vUBy2YNhwjx7RcZ5tk5PElc
eM2kX9vhaZb2t+m9tg5TJ/BXmWnrOoSD5PMQfNUnzfPORiH4Jw47rc30s3X4
8630wRxBBP8FyCGvdeD8rQ5Nj47fQPDfgB2q47DF/MehlC5bhxkzgSBSx6HH
6xWLyUE7h/Q0IHim6eBzgt12dqm9g66i/Jecb6pwPsy/MH60aoTMORlJh/w1
3bczGOwh+tMEHL5sCMieVW7rULi8ZMM/fxa4/dIbxeYzKTDD+S9rH2eff8ME
5x/s3tdkshjBV/+k8nIWJxPc/xB5Rnj4wPiw8IPxwepX2UHsS+CAuDfV3gHk
3ZmVQg4VEStMzzI7OJwBgTfi8Piruf/jlnG2rAN6/AIAT3XZag==
"]]}, {
Thickness[0.02888503755054881]}, StripOnInput -> False]}, {
ImageSize -> {51.92695890410959, 24.508064757160646`},
ImageSize -> {34.61797260273973, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {35., 17.},
PlotRange -> {{0., 34.620000000000005`}, {0., 16.34}}, AspectRatio ->
Automatic}], TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->Directive[
Thickness[Large], 16],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->Large,
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->All,
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.804582219681877*^9, 3.804582232672345*^9}, {
3.804582264883019*^9, 3.804582279725154*^9}, {3.804582319381925*^9,
3.8045823637131233`*^9}, 3.8045826631495857`*^9, {3.804582845456711*^9,
3.804582872785006*^9}, {3.80458356140613*^9, 3.804583667215358*^9},
3.804583758278961*^9},
CellLabel->"Out[55]=",ExpressionUUID->"cb0f567a-0435-412b-8586-3e71be14dc1c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"Im", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "1"}], "]"}], "]"}], "]"}],
"\[LeftDoubleBracket]", "i", "\[RightDoubleBracket]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.6", ",", "0.8", ",", "0.01"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"RGBColor", "[", "\"\<LimeGreen\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Red\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Blue\>\"", "]"}], ",",
RowBox[{"Darker", "[", "Purple", "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"Graphics", "@",
RowBox[{"{",
RowBox[{"Disk", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",",
RowBox[{"Scaled", "@", "0.001"}]}], "]"}], "}"}]}]}], ",",
RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]], "Input",
CellChangeTimes->{{3.804583723115193*^9, 3.804583737272275*^9}},
CellLabel->"In[54]:=",ExpressionUUID->"d4c31428-ffb0-4bd2-981e-56ef0e5ea0ac"],
Cell[BoxData[
GraphicsBox[{{}, {{{}, {},
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.011000000000000001`], AbsoluteThickness[1.6],
LineBox[{{0.6, -2.0657055697526004`*^-17}, {
0.61, -2.52858646045418*^-17}, {
0.619866901568, -2.5771301558739613`*^-16}}],
LineBox[{{0.6201915256019657, -2.5771301558739613`*^-16}, {
0.63, -9.714700054446106*^-17}, {0.64, -1.0406974001331497`*^-16}, {
0.643460068605471, -2.5771301558739613`*^-16}}],
LineBox[{{0.6560720580074626, -2.5771301558739613`*^-16}, {
0.6599999999999999, -6.985436702831062*^-17}, {
0.6637743105707853, -2.5771301558739613`*^-16}}],
LineBox[{{0.6760711799517256, -2.5771301558739613`*^-16}, {
0.6799999999999999, -5.718731429636685*^-17}, {
0.685182856522428, -2.5771301558739613`*^-16}}],
LineBox[{{0.699292538914211, -2.5771301558739613`*^-16}, {
0.7, -2.435237928167865*^-16}, {0.71, -1.5353993478749245`*^-16}, {
0.72, -1.9940545728809655`*^-17}, {0.73, -2.341903911037749*^-16}, {
0.74, -1.704355779092405*^-17}, {0.75, -1.0596767344322826`*^-16}, {
0.76, -2.783587828642101*^-17}, {0.77, -2.220446049250313*^-16}, {
0.78, -1.3914257786933783`*^-16}, {0.79, -1.2538861780992416`*^-17}, {
0.8, -7.88475537196756*^-17}}]},
{RGBColor[1., 0., 0.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBWIQbQwGj+0ZoKD1deAOuVYE//riAluu64/tWcr6k+pX
JNtoxvQf+qrxxD743P+AoJyEPdUi69wfVj2xX7ag6vzDvMQ9Z8+AwBP7OBZn
I1Oztj1yYAOf2nspc8/Q0knfAzJtccFT+yJh181h+9r3AA0DmvgUbh/YOJFn
9iKnNk+J2T5pTxoYPIPL7wAb+Mx+7grDlz2K2Xu4wA58bn9CmyM46LL6HrDz
Yp7bP+hfopTEG78HbNy653D9EPDCXrf56FXZ+742QWADX9jLHBQ+8/WV/p4l
YAe+sI87FqMce2nBnm8g5319Yb8x8MvWM6/L93iAjHN/aT+hbUtVAIv0nlkz
QeAl3HwA4GmPqQ==
"]]},
{RGBColor[0., 0., 1.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBWIQbQwGj+2/XNppeiJOzab1deAOudbH9lo/V217dFTb
5vriAluu64/tWQQl73mVNNpoxvQf+qrxxJ4BCqpF1rk/rELwz54BAQRfDmzg
UzgfZNriAgQfaBjQxKf2ThxKSlYLHGzAxok8s884r3a02yp3TxoYPLN3qFoU
63sm2mYH2MBncP1cYAc+h/PBzotB8MHGrXtur9y8Qe9cnrINRPQFVH6aTRDY
wBdw9UvADnxh/6cy7r3DS3+bbyDnfUXIe4CMc39pf3o9856jB3NtZs0EgZf2
XCq8EesFXWwAWLJ4UA==
"]]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.011000000000000001`], AbsoluteThickness[1.6],
LineBox[{{0.6, 2.0050709060668603`*^-17}, {0.61,
2.453307618526274*^-17}, {0.62, 8.326672684688674*^-17}, {
0.6265821208167527, 2.4324338057016516`*^-16}}],
LineBox[{{0.6781166618040494, 2.4324338057016516`*^-16}, {
0.6799999999999999, 5.5384732011079694`*^-17}, {0.6876905878320559,
2.4324338057016516`*^-16}}],
LineBox[{{0.6919849185961461, 2.4324338057016516`*^-16}, {0.7,
1.5451445457265022`*^-17}, {0.7061250969366043,
2.4324338057016516`*^-16}}],
LineBox[{{0.7139291537045354, 2.4324338057016516`*^-16}, {0.72,
2.0586336520523105`*^-17}, {0.73, 1.8879175779015923`*^-17}, {0.74,
1.6516829780934654`*^-17}, {0.75, 1.0272899361145975`*^-16}, {0.76,
2.870101234313389*^-17}, {0.77, 1.1326441175255768`*^-16}, {
0.7748378486455871, 2.4324338057016516`*^-16}}],
LineBox[{{0.7846708041256747, 2.4324338057016516`*^-16}, {0.79,
8.500145032286355*^-17}, {0.8, 7.667165951241988*^-17}}]}}, {
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.011000000000000001`], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.011000000000000001`],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGYCYmMweGx/7s61/48ulO9pfR24Q671sb360vKX
guq1e64vLrDlug6Un3s97OzpTXs0Y/oPfdV4Yt9TzvZVj2HOnmqRde4Pq57Y
L2j4ce7vv7l7zp4BgSf2NiZW16r3H94jBzbwqb2Dx/L14UpT9oBMW1zw1J7b
p+U/Z/GRPUDDgCY+tS9bbXV5bfWEPWDjRJ7ZM4DBgT1pYPDMPm3R5RkWPRv3
7AAbCJSPYl4/X2HZHi6wA5/bs0zJ5sz8W7YH7LyY5/aMF5tu8TzYsAds3Lrn
9smcqhfjlhXvgZj7wj7E6+FBju55e4LABr6wP3Lv2P6b3A17loAd+AJq/4Y9
30DO+/rCXuP1n9oS3iV7PEDGub+0X8+tZ7H4Zc6eWTNB4KX9NC9WvTc7p+0B
AIbYqus=
"]]},
{RGBColor[1., 0., 0.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.011000000000000001`],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGYCYmMweGzPAAWtrwN3yLUi+NcXF9hyXX9sz1LW
n1S/ItlGM6b/0FeNJ/bB5/4HBOUk7KkWWef+sOqJ/bIFVecf5iXuOXsGBJ7Y
x7E4G5mate2RAxv41N5LmXuGlk76HpBpiwue2hcJu24O29e+B2gY0MSncPvA
xok8sxc5tXlKzPZJe9LA4BlcfgfYwGf2c1cYvuxRzN7DBXbgc/sT2hzBQZfV
94CdF/Pc/kH/EqUk3vg9YOPWPYfrh4AX9rrNR6/K3ve1CQIb+MJe5qDwma+v
9PcsATvwhX3csRjl2EsL9nwDOe/rC/uNgV+2nnldvscDZJz7S/sJbVuqAlik
98yaCQIv4eYDAOolj6s=
"]]},
{RGBColor[0., 0., 1.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.011000000000000001`],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGYCYmMweGz/5dJO0xNxajatrwN3yLU+ttf6uWrb
o6PaNtcXF9hyXX9szyIoec+rpNFGM6b/0FeNJ/YMUFAtss79YRWCf/YMCCD4
cmADn8L5INMWFyD4QMOAJj61d+JQUrJa4GADNk7kmX3GebWj3Va5e9LA4Jm9
Q9WiWN8z0TY7wAY+g+vnAjvwOZwPdl4Mgg82bt1ze+XmDXrn8pRtIKIvoPLT
bILABr6Aq18CduAL+z+Vce8dXvrbfAM57ytC3gNknPtL+9PrmfccPZhrM2sm
CLy051LhjVgv6GIDAGJueFI=
"]]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.011000000000000001`], AbsoluteThickness[1.6],
GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[DiskBox[{0, 0}, Scaled[0.001]]],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.011000000000000001`],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]]}],
TraditionalForm], {0., 0.}], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGYCYmMweGyvzqe5741suU3r68Adcq2P7Q19D11+
5FFjc31xgS3X9cf2DGAww0Yzpv/QV40n9kFzTvrnNW+3qRZZ5/6w6om9/FfL
JjPuHTZnz4DAE3svo/VT8idespEDG/jUXk97lcP3g1ttQKYtLnhqv8IvZmv5
90s2QMOAJj61TzcLZol4228DNk7kmT27Zljz6ulbbdLA4Jn9wfaLpmUXCm12
gA18Zq9sddou5uVuGy6wA5/b519lnsO8p9wG7LyY5/Ynja8ZqB0ptQEbt+65
vX/r+vgXXMU2EH+8sLeUM77MP2euTRDYwBf2B3S/T2vtbrBZAnbgC/skn/ny
O4IW2HwDOe/rC/t1u2K5ylt323iAjHN/CQmPhhk2s2aCwEv7hIcum+Mkp9kA
AHCNm3I=
"]]}}, {
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.011000000000000001`], AbsoluteThickness[1.6]},
{RGBColor[1., 0., 0.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6]},
{RGBColor[0., 0., 1.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.011000000000000001`], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
PointSize[0.011000000000000001`], AbsoluteThickness[1.6]},
{RGBColor[1., 0., 0.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6]},
{RGBColor[0., 0., 1.], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6]},
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`], PointSize[
0.011000000000000001`], AbsoluteThickness[
1.6]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.5958333333333335, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0.5958333333333335, 0.8}, {-2.5771301558739613`*^-16,
2.4324338057016516`*^-16}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.804583732923655*^9, 3.8045837375751047`*^9}},
CellLabel->"Out[54]=",ExpressionUUID->"f8e01c31-b094-4485-baca-56687bdb1b84"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1"}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"Im", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E_\\\\text{UHF}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.801799517130879*^9, 3.801799518547235*^9},
3.8018008092478447`*^9},
CellLabel->
"In[103]:=",ExpressionUUID->"cd81a8fd-8f90-40d4-8f31-2c745a5956fc"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxF1H0sFHAYB/C749yI+6PrbJ3t4m6nHU0v83JzqmOKGROHWJduHGF3u2bi
MJpGXKGboTottbwTSVmqQ0hn0nlbJg2XmPMSc9ed3XGqjef3bN999/nz+8/j
FCcOT8BhMJjQf/nf8W2yjb09Qi9m/46YKM7sHeSBi7W89G1k59muobVN5BXb
hefTauQbKR7RHf3IuYzvvYmFyPIqetkIEbl6rkgcZm0Fth/lhjLJeLDyEtd/
mGEJDmQy0ug0C7B3K69OdRIHNt5NJJ1hYsF/DDUVsccxaA+tzL1bZO45MBt/
q8NVsAMu53h5+eYYwfGPoxdXqrfBqnqqNVauB1NtX57u6dSBbRyXVJqmLbAw
ouBhQ8MmmN8/N0wtWwfTzprDPuVpwI1JHer3nYvgFG07755cDXbLxcdY0WfA
pMzJQ5VVE+BsSay4izIGnhIIXdoWBsEZWS6lQxWt4Kb7LE7NqRfnD1yanPeN
f/sz2E4XzG4JmwDPpw26p+fPgH93hfRlKNXgusJnfIF0EczQN5MkVRrw7Ktj
CnbSOjjywXzRqmwT/KS2WBFcuQUWssbjzMlasOUV0To+Uwf+ym+sD8/Xg9/Y
Ua4ahNtgZ7nTMiHYCDam5+82c3fAq0YHYgPLDH56vXDSgY7hHFjm+6X4KAML
Joqb/frJOHC3/1tFJ8UCvCu65hlFtARjCeOPXHeRPQNT+4IwVmDjj5Zl8hay
v1ApC9Ejl5gWWAVGZEeKg1SHI4ADLkuZEyTk8rGEFJkHstsgdc0mE1kS6V3u
l4P88VekT1YecoRFSbFGipzNMZ1QypGV76ZEBR+QDwdpyYpeZN40sVs3gLxh
uEAUjCDbe7xu9ZtF5g+oorJ+IjdyV83tS8g+qbRQpw3kO9hzhmgt8qgsplpm
QKY43gxQmpD3/xv4L1AeM6o=
"]]},
Annotation[#, "Charting`Private`Tag$194695#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGCQA2IQnbx+wvv//9kPMECByG8pNes/CP4Rt6UxZT8QfLV7
O0+++YDgv+J5vPjmQwS/IMs0YvNhBL9O9daBtHYEf9Zs5Uln+RD8+fc78gM5
2eB8sQvB/pqirHD+iYBgl9OqLHC+h6ZqibISM5xvtS5m2Xl9Jjj/V1easJEm
I5z/9fuSqXHqDAj/KE0y2Zf7bz+Mb81av1k75Q+cP8XB3Nyx9hecnzwn4umr
+T/g/PPL5TgZZ32D8+V4Nhju3/YFzudSeHb+5apPcH5OSOuMFSs+wPkJh++f
lpv0Fs5Xsv0XeLTxJZy/MmPzw93bnsL5WZ83xnTPegjn69WxRrIp34bzhSuv
cE+bfRnO3xIS6SBkdRHOBwAUtX2C
"]],
LineBox[{{-0.2653428599143075, 0.}, {-0.059736536602248806`, 0.}, {
0.05701173099467323, 0.}, {0.183666329134962, 0.}, {
0.30185991087984193`, 0.}, {0.42995982316808856`, 0.}, {
0.5557211680405183, 0.}, {0.6730214965175392, 0.}, {
0.8002281555379268, 0.}, {0.9189737981629056, 0.}, {
1.0353808733720673`, 0.}, {1.1616942791245957`, 0.}, {
1.2114641017328032`, 0.}}],
LineBox[CompressedData["
1:eJxTTMoPSmViYGBQAWIQzftKYPqVws/2DFBwLmHl8qCWb3D+Vl6p2O85P+B8
tVmKL9h9fsH5v8pa/q4O/gPnv/4lzbfC4h+cvyC9/Yq0MoMDjD/B8UyPpCoj
nM+Xv9rpsCgTnL/PZcfebVLMcP7f3HizMD4WOJ+R/dJM7b8IvplH0SEvBjY4
/9edNS9EPyH4LjknJvh+Q/B7fz+2aP2F4CtISXd+YWKH893DOzUvCyP4Uy6m
Zk0wRfD1jsm94apE8CtCraY41SL4B5+E2lQ1IvghzL09LzsR/GqH3zonZiH4
J3Zdz23dg+ALeX0W3XsAwY+5ybfvyxEE//13V76Uswi+mOmWdU73EPyEI+fD
qh4h+CuDX//b+AzBtylS8ld8j+C3Mdp9j/iM4F+YEDl/wncEX0qh1P3EbwQ/
ef2E9///I/gAPnN/Eg==
"]]},
Annotation[#, "Charting`Private`Tag$194695#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVjH041AcAx++pkwqb98lVLNFNCPMoOSGER8O8PWOal8zbY7ipxfWwWaqH
UFPpzNZjmOnUvNWJ9fR95nbcyLifO3eOO/djTu4e8tYVVpv98Xk+f3ye5/N+
ck7E59soFIrnFv/7Q7Z/1/rVNcC+lt8ke4vd1qrhec4KTJJ16Kcj/0FW1GV2
c/MSrs/zkw9cW0cib2pwf9UCNIG6iy9ILQ54vf2YXzwPh51mPJ/ZVdxL7yR/
486iN+Pk34JXS8hcbY+/9j0JjxOu/WvmGtS4L3umlZFYpHn/WrahhqDAmebH
IpHG0KszUqhhS2kd34glwa6XqpYb1VDq34/J3EPi8UvjBq2LGtF2TeHBbCXW
qbWN00HzKO5wK33HYQqlRdLc2+lzUBzrDOzTmwKfw8iZDJ4DAy47ijQKWIh3
hegfnoN20OnSAkeBpYBeuu2CClmz9MJnHyjQ2lcgd85V4ROLfcyyQ3I0LAuG
IpizcCrSid1hM4GHSwkah/gZWPaM3HlOnYC41cP7lecMdLS1YwMqGTYt92p/
pM1g8gvXqOscGS6x1e2FsmmUnUkIs3CVISRt1ZwZM405RneAve846hvpLamn
SBD5JSX6NuOISWc9uGlD4unDMN4idauf7k+rpJCodlD5dAqkoJTFmT/vVsJ/
rwmDES5FXSvFQNdeibrNLNfQBAnWKzp2O76Ro/zoMaazrwQ5XG+ltFWOC3nb
24xtJKi8YaijTpIjVFPjKFGNIdTP/xb9j0m8kfXRE7PH0KCXGVH0zQTieqyt
viwUg5p0KKmFkOKUVnMmKkEMDzOuZUe+FC6uXT+4+4rhThjwGvdJsZPzkeUm
VYzjZ4uSaCkScGtYZiXlIliyauQdpBj14oCo1GwRbI9kP/5261thZHQzKFwE
9uyJ5Z73xEgp/cXQwFSEPOtpT2qgCCYFIr3q2lFI/Ttt+RUEXv+7bvSCNYq1
+nCX/ncJKK5YWQTFjSIlurz3p0ohmm9lHtywGEWw18gdbvEIKmk37CNfE6ga
Uf18UT2MvPpHzvclBG7frYo5K/gLJ9ooXp9VE5Bk6qgjU57h4FE7v67zBHgZ
3KEKq0HsehoSbBhNgGpo1zI++CcW/ZlhGW4EBrc37RekCiAarI7uNdn6ZVzU
d1roQ3fEk09pq0IoWWOcgTg+7o6TSecIIfZ4DDg+uMdDSaJu+lC7EPnzzBlz
4e/ImHPItvtOiPaV84cTrgCh2RHnvs4VQvHVWLzpcA/cXl5gScOECL1qHLJi
+gjbvGN9jI8LkWgquPzkSBv+A66jEUE=
"]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAwA2IQ/Wlj8ryE3xf2M0DBk84XPY/fIvgnBfgm25xF8KfI
Rc5/143gVy2tW+qejeDH6yxZvcALwdeyer89iBPBr1vNtTCX9zyc77kzdK38
mXNwvsjxBTsvdiH4Kx+ZXTLlQPCvSCYz/2M6izC/Y3dq349TcP71lByt9Y+P
wfn77gaYb1uG4C8LM3XZm4ngl3j8iz39/iicL6AzYeLz30cQ7vu8+Ye8yGE4
v5T5e69i5z44v7xKq+/k1HVw/qp+C4clBmvtYfy+zMZrCU3H4XzeLz7WawIv
w/kPSo6ZlLXchvPf7fQ9VH7iIZy/rH1hQkrnUzhf9dtq4YrZL+H8e5vk91pn
vIXzQ6c/6Hg94QPCfvfNvIwzEfwT31sniS1E8K0itOc4bkTw5STL1k+/iOC/
mMV9zVnoI5xfNc9Mec5kBH+zH+eKjbMR/Df/buscX4zgx8U3mn3ajOA7K5zx
9LiC4PMsSiz4IvIJzp+3tGevzzQEv0TDZ9H1uQi+52ru9qSlCP6XDV0BFVsQ
fO89HY8XX0Lwf1xq4fzN9xnOPxfq8q5VDMFffIP5soAcgu93r2mOmi6Cv+Rl
g36QN4JfleMgcjcIwfd///9HehSCf7Jtsp5GEoIPAPva7XE=
"]],
LineBox[CompressedData["
1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAADeoQl9Rx8z9X+/VGHamkv3x9vXAe
gPM/mNXTkVVosb9RAH1VqYfzP2U7gWkoMLS/JoM8OjSP8z+1A1W4v6S2v/wF
/B6/lvM/OjkX0tLeuL+oC3vo1KXzP5yj5HV82Ly/fo46zV+t8z89KXG+/6e+
v1MR+rHqtPM/M4JI8xcwwL/+Fnl7AMTzP3mWOyn+y8G/1Jk4YIvL8z/ho3Qi
Q47Cv6kc+EQW0/M/VZqFUf1Jw79UIncOLOLzP8sSW4OYsMS/qi11oVcA9D9i
NIeiaEjHv4CwNIbiB/Q/C6x4c2Plx79VM/RqbQ/0P3P2q9dVf8i/ADlzNIMe
9D/0byCO/qrJv1dEcceuPPQ/aOcLCD/my78EW23tBXn0P3H0sFH3A9C/G0tW
IDOB9D8VTffyOEjQvzI7P1NgifQ/RDBzFsyL0L9gGxG5upn0P1kzERwJEdG/
vdu0hG+69D8ury6KrhTSv3Zc/BvZ+/Q/uCx8XcoF1L/pXYtKrH71Py0ueBah
qte/zmCpp1KE9j/FgcTGSnHev7UNGl33bPg/tI66DBo75b8mmiHoB0z6PyXm
RxkHCOu/+naE/atT/D/ejoCjl6Hwv+v6Gw6oOP4/rVX3qSx987+gZ4fUGyMA
QPzvH087hPa/kEHMjBklAUBmTb1mD2v5vw5vq0LDFQJApYeItVYR/L/wf2gw
shcDQL8qm8Wm2v6/HCcStg==
"]]},
Annotation[#, "Charting`Private`Tag$194695#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwBwQM+/CFib1JlAgAAADsAAAACAAAAUgTGe3NV9L/nQfKKF5b+Pwog5s/p
qvK/E2IFKExT/D9sVIWYqKjwv4/pxWIii/k/YMPfyx6S7b/rRwfu7+H2PyI9
/lHFgem/LAgVw0Dl8z+paLPhu7blv8JpQuTI9/A/avOxXIua4b85PjLH9Bbr
P5k28TtniuG/7hs/ror66j/IeTAbQ3rhv2c8C6AR3uo/JQCv2fpZ4b+Yotjm
8aTqP+AMrFZqGeG/uPUSo/Yx6j9VJqZQSZjgv/kEm6TiSOk/gbI0iQ4s37+J
fthwlWjnP944s0fGC9+/xao8b9xJ5z88vzEGfuvevxjVCUsMK+c/9ssug+2q
3r/wRcIoJe3mP2zlKH3MKd6/r8Z53TBw5j9YGB1xiifdv6PxyM1SceU/Ln4F
WQYj27+08F/rLFzjPxq60JfoBNu/1a85P/c74z8F9pvWyubav/saHPadG+M/
3G0yVI+q2r+DmOqxfdriP4pdX08YMtq/S2fzFnFW4j/nPLlFKkHZv6KkKKtm
RuE/0niEhAwj2b9WaHqtkyPhP760T8PuBNm/okzHZ44A4T+WLOZAs8jYvwCK
WhboueA/RBwTPDxQ2L+grwANByrgP6D7bDJOX9e/+Y2yCi393T+MNzhxMEHX
v2+2P+DYr90/d3MDsBIj17+OkBAF6mHdP07rmS3X5ta/TkNElCjE3D/92sYo
YG7Wv6MLalJ+gNs/WrogH3J91b8EYSdhq9LYP0b2611UX9W/ORW2GrJ42D8x
MrecNkHVvzbSDcOkHdg/CKpNGvsE1b86Y35hG2TXP7aZehWEjNS/GnqZ3bLh
1T+i1UVUZm7UvyUvbriCfdU/jRERk0hQ1L+Y5T7xuhfVP2SJpxANFNS/cyDi
OwRH1D8TedQLlpvTv9hEsyXFjdI/+P/5Ee9607/0olAxxw/SP96GHxhIWtO/
ZFWMwqGO0T+olGok+hjTv0k90Je2gdA/jhuQKlP40r+S0Oale+rPP3OitTCs
19K/lZ6SVmPIzj8+sAA9XpbSv9dqBepTZMw/JDcmQ7d10r/DabbNjR/LPwm+
S0kQVdK/BBAmq9nLyT/uRHFPaTTSv8sDph7IZsg/1MuWVcIT0r+VaXsMLu3G
P7lSvFsb89G/4HrWqspaxT+e2eFhdNLRvxk5yi2tqcM/hGAHaM2x0b946XHj
FtHBP2nnLG4mkdG/sfJ1K1+Gvz9OblJ0f3DRv9521lwUz7o/NPV3ethP0b9O
hxJL8hS1PwI/WUASOtG/YBTIhbwvsD8R//JT
"]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAwA2IQ/Wlj8ryE3xf2M0DBk84XPY/fIvgnBfgm25xF8KfI
Rc5/143gVy2tW+qejeDH6yxZvcALwdeyer89iBPBr1vNtTCX9zyc77kzdK38
mXNwvsjxBTsvdiH4Kx+ZXTLlQPCvSCYz/2M6izC/Y3dq349TcP71lByt9Y+P
wfn77gaYb1uG4C8LM3XZm4ngl3j8iz39/iicL6AzYeLz30cQ7vu8+Ye8yGE4
v5T5e69i5z44v7xKq+/k1HVw/qp+C4clBmvtYfy+zMZrCU3H4XzeLz7WawIv
w/kPSo6ZlLXchvPf7fQ9VH7iIZy/rH1hQkrnUzhf9dtq4YrZL+H8e5vk91pn
vIXzQ6c/6Hg94QPCfvfNvIwzEfwT31sniS1E8K0itOc4bkTw5STL1k+/iOC/
mMV9zVnoI5xfNc9Mec5kBH+zH+eKjbMR/Df/buscX4zgx8U3mn3ajOA7K5zx
9LiC4PMsSiz4IvIJzp+3tGevzzQEv0TDZ9H1uQi+52ru9qSlCP6XDV0BFVsQ
fO89HY8XX0Lwf1xq4fzN9xnOPxfq8q5VDMFffIP5soAcgu93r2mOmi6Cv+Rl
g36QN4JfleMgcjcIwfd///9HehSCf7Jtsp5GEoIPAPva7XE=
"]],
LineBox[CompressedData["
1:eJwBIQLe/SFib1JlAgAAACEAAAACAAAADeoQl9Rx8z9X+/VGHamkP3x9vXAe
gPM/mNXTkVVosT9RAH1VqYfzP2U7gWkoMLQ/JoM8OjSP8z+1A1W4v6S2P/wF
/B6/lvM/OjkX0tLeuD+oC3vo1KXzP5yj5HV82Lw/fo46zV+t8z89KXG+/6e+
P1MR+rHqtPM/M4JI8xcwwD/+Fnl7AMTzP3mWOyn+y8E/1Jk4YIvL8z/ho3Qi
Q47CP6kc+EQW0/M/VZqFUf1Jwz9UIncOLOLzP8sSW4OYsMQ/qi11oVcA9D9i
NIeiaEjHP4CwNIbiB/Q/C6x4c2Plxz9VM/RqbQ/0P3P2q9dVf8g/ADlzNIMe
9D/0byCO/qrJP1dEcceuPPQ/aOcLCD/myz8EW23tBXn0P3H0sFH3A9A/G0tW
IDOB9D8VTffyOEjQPzI7P1NgifQ/RDBzFsyL0D9gGxG5upn0P1kzERwJEdE/
vdu0hG+69D8ury6KrhTSP3Zc/BvZ+/Q/uCx8XcoF1D/pXYtKrH71Py0ueBah
qtc/zmCpp1KE9j/FgcTGSnHeP7UNGl33bPg/tI66DBo75T8mmiHoB0z6PyXm
RxkHCOs/+naE/atT/D/ejoCjl6HwP+v6Gw6oOP4/rVX3qSx98z+gZ4fUGyMA
QPzvH087hPY/kEHMjBklAUBmTb1mD2v5Pw5vq0LDFQJApYeItVYR/D9lmsKt
5/4CQOdB8ooXlv4/mu0DQA==
"]]},
Annotation[#,
"Charting`Private`Tag$194695#4"]& ], {}}, {{}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.034013605442176874`],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}}}, CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYC4hkzgeCnjgOImrlSwQHGf+Aa7zhLUMlBZl6c
5mkBXYfK+z9uGVsrOehrrRS+8ETX4cOi9QpnPZQcju/a0cu2Qc8hPQ0IwhD8
ld9eVpx5oOQwdQJ/ldlpHQdjELiMyW/h9V8/pRXBb2A52m9ojpvPwtkln5yn
BTcfxofZD3a/pTbcfWtVnzTP49WBu18X5H4VhP9gfJj/YfwdwVYR/4+Loqrf
KOAwHeT+11oOMhvF5jMt4HFYDzLfVwPOf1O8VfT3aVU4H+z+7SoOZ0DARwDO
1/ik8nLWSxE4H2Y/jL83v+btTFGo/86pwN0vMfUKZ8YiVbj/GECgQQ3ufxgf
Fj5PEhdeM9FXhYdfQkiQ+oKTKnA+2N6bynB+t43nrrRPSnD+bU3ZNf+blRzc
1xxdznBDyYE/NuC+kbki3HwYH2a/cOWkkrMiSnD3gc1/qQR3P1gfgzLcfzA+
zP8wvgjInBYROL9dgV31zBZBiLuClR36I7r9GQv4HX69fX3AklkFHt4b9PIW
M+5RcXhR+zj7/BpOqLyaA7cjn9cMTQ4HKVB6vqAO54PjZY0mnA+LX5j+81fD
3ujv1naIUY2QOfeHx0G0x+sVyxQdiP0GAvD8Avb3EyE4HxQcac/EHNDzFwCY
s2h3
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxdlF9IU2EYxo+ukmEOUmQ5L5qHBplh55vHFUbxFVTiRUFR2UWCpaldpNSC
klW0pIsW2UUxpSGRF4fFzAmFdNGgRCrctNBA1h+lIuaFEFLDMLOdbzzvB73w
XfwY532f5/2zspPth5otiqLkZN6RzMvNvHr78DvFVs1XzNiwjoO9hjf6t3st
X39vytqaW82H66LbQ7/zedOJj/ssPTo3ksZXNpLPN80XxLRyncfNuCX5RSDm
109Z+XL6wmxoSOd+++XVbTeslK9XhJU/2bb4sqlTsvh9QXLd67yd9/d66PvU
mYp0MOGh/GDU9z4tXhpr8JA+bXO46O1PqV/om5P+wPAPFuXDTuLn7b753mKV
8l2aWUxW7VCp3o+Hg85ErUp6Wk5n4qjkcHruYnxW5clSX6Pb5eFVZkyq5BeM
foCnCxd2T6yRfPuwd2NwQuf7I6OGMq1Sv5EfjPqYF/Sh/9CPecMfGP7BIt93
R9bPJ51HCrfYWj47sn2P6LzLmeeKTzn4m5E9A20HJBup2soV5ibun4nZQpOM
uLSvoXzsAaN8dlPfOUb1wNADht7jpr4rjPwUHBy825xi5PfaqtFudsxN/QCj
X2J+jxn1d6jybH+OT7LQa5HcEQl8aL2jEV9dqukYr9doHl1CwFbKD0b9P+Y9
lGmkj/u/vOoJaKRf6Atq5A8M/2DsKxj7jHzYd9TDPUAP7gWMe3J9u96XqNHo
3pAP94h+gNEv8Hmzn+OMvke/kR+M+pgX9GGe0I95wx8Y/sGdZv8qSrL7FGV8
wNynXSX817PkzeX3krGPYOwrWPh/JBn3BsY9oN7//5//AFqbSus=
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {
1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4rrfVgXnblg4uK05upxhhoTDTBCQtHSouv/j
lvFqCYfiraK/T8dZOhiDwGYJh+tCnxzPH0Pw/3wrfTCn0ArO/w8C663g5s0A
mXfTykG4clLJWRcJhw16eYsZ31g5rBXS4UuPE3f4siEge9Z3K4cY1QiZczai
DmdAwMYazvc5wW4729Qabh4uPtg8O0k4/4FrvOOsi5h8mPlgOkcWbj+MD3Mf
mN8jDXH/SysIbSntcKRtefipR1YO6WlA8EwK7j+we+dIwf1vAgqPYCmH54kL
r5nkWzm4g9xrIQUJv2uWcP6Xnbe6/pYi+J9A7lG3hJhjL+UAix+YeTC+84Rm
obRfig6nDjutzZSzhPCllCD63S0dwjnF2o3llSDmnEfwS0DxaWeFKr8fGn/M
Sg4fQPrZoeF5TxGq3hoif1gR4l5Xawfla4+CGdYg+ODwdUTw9+bXvJ0pqgDx
7zRMPti9WooOElOvcGYssob4n0PJwb7p0fEZu6H2XVZy2GL+41CKFzS+7ig5
3JCuSTRitXZY+e1lxZkHSg7LX3jo/V9oBedPn8BfZbbaEq6ey021lMnKEm6e
+lvefQYvLeD8/uASlenrEfxoBcePyTm4+Rog/ZLmcPtgfHB6CFNySIm948bc
Ye7wYdF6hbMeSg4rQO77aO5QCcpP1koOL7K0v03/aw4NDwQfnO9WKsD54HiR
F4TzS5aXbPjXzwM3b7vXBos5P7nh9i2/tfyx4WFuuHsg6RfBP9i9r8kkmdOh
x+sVi8lCc4cm8VrWzDZOuHlg+2dyQsIrywLOFwfFzyME/xYo/E0t4fqfg9y3
1xJuPowPsx9cfvhZwt23v1bWIv2JBdz9sPQM8x+MD/M/evkEAD5pGh8=
"]]}, {
Thickness[0.034013605442176874`]}, StripOnInput -> False]}, {
ImageSize -> {44.0931407222914, 24.508064757160646`},
ImageSize -> {29.39542714819427, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {30., 17.}, PlotRange -> {{0., 29.4}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {-1.928381702326689, 1.9116435458746481`}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
TagBox[
FrameBox[
StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["3", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["4", Smaller, StripOnInput -> False]], "Placeholder"]},
"LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.9, 0.36, 0.054],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.9, 0.36, 0.054];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable ->
False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.365248, 0.427802, 0.758297],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.2434986666666667, 0.28520133333333336`,
0.5055313333333333], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.365248, 0.427802, 0.758297];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.365248, 0.427802, 0.758297], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.945109, 0.593901, 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6300726666666667, 0.395934, 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.945109`", ",", "0.593901`", ",", "0.`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.945109, 0.593901, 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.945109, 0.593901, 0.], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.645957, 0.253192, 0.685109],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.430638, 0.16879466666666665`, 0.45673933333333333`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.645957`", ",", "0.253192`", ",", "0.685109`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.645957, 0.253192, 0.685109];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.645957, 0.253192, 0.685109], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.80179951951713*^9, 3.8018008097084846`*^9},
CellLabel->
"Out[103]=",ExpressionUUID->"f0d5c1e3-c323-4923-96ed-5265df42efba"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1.5"}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"Re", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "1.5"}], ",", "3"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"RGBColor", "[", "\"\<Red\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<LimeGreen\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Blue\>\"", "]"}], ",",
RowBox[{"Darker", "[", "Purple", "]"}]}], "}"}]}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AxesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "16"}], "]"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "2"}], "}"}]}], "}"}]}]}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.804484149414551*^9, 3.8044841497630787`*^9}, {
3.804484198383057*^9, 3.804484211188677*^9}, {3.804484248523696*^9,
3.8044842506425123`*^9}, {3.804484538622251*^9, 3.804484554897738*^9}, {
3.8044847550451717`*^9, 3.8044847712550907`*^9}, {3.804498828998341*^9,
3.8044988815194902`*^9}, {3.80449895853535*^9, 3.804498959755949*^9}, {
3.8044991209945602`*^9, 3.8044991384418917`*^9}, 3.804499222150051*^9, {
3.8044992616111717`*^9, 3.804499294663312*^9}, {3.804499390887241*^9,
3.804499391377763*^9}},
CellLabel->"In[66]:=",ExpressionUUID->"2cacca77-bb0e-4b9d-b70e-3dcdf52e7857"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[1., 0., 0.], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwBsQFO/iFib1JlAgAAABoAAAACAAAAUFVVVVVVxT8AAAAAAAAAQPfF5VrM
284/Oe1n1JZp/j/aEvX0LpjVP5oy55F+W/w/VuE7Pbul2z9wmM95+lb6P5VS
kLunpeA/KleDZh51+D8UrQsoT7XjP4DF28iuavY/PwJWjfqQ5j+5jP8v54L0
P7mmArNHXuk/aHSMwbOk8j/HQzgocmjsP7QLvsjsnfA/gds8lqA+7z/G93Wp
m3PtP+k15SnWKPE/Wje5rDZa6T+4Jd3oLKvyP9y3zgT6U+U/3ZI8pIUT9D8k
6npmDZPhP0x8YAdNmvU/UPfgZvMB2z8R4+tmFgf3P+B9+RNsaNM/fnGoprBs
+D+QDG3VaurHPzV8KY658Pk/AGkywIT9rj9CBBJyxFr7P8BD5DuhWa2/mgi/
/T3j/D9AP9kgzrDHv0eK04W5Uf4/QFMv5vl607+cMxnuBbn/PwCFTRI899q/
nqwRf2CfAEAsfOwz5orhvxl+SgU/VQFAEIQbVd5U5b+5jWXfVBoCQLwsAYv9
b+m/LTGZKdPbAkB8lBRs9Hftv1ZVVVVVVQNAAAAAAAAA8L9FIdEM
"]]},
Annotation[#, "Charting`Private`Tag$14417#1"]& ],
TagBox[
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwBUQOu/CFib1JlAgAAADQAAAACAAAA/v//////zz8AAAAAAAAAQNoS9fQu
mNU/Xd8erbzB/j9W4Ts9u6XbP0IjD51kaf0/lVKQu6el4D8STdw6Jyj8PxSt
CyhPteM/9uvB0dzL+j8/AlaN+pDmP8dwhBathvk/uaYCs0de6T/mtTci4Ef4
P8dDOChyaOw/GnADJwbu9j+B2zyWoD7vPzgQrNlGq/U/6TXlKdYo8T9qJW2F
ek30P7gl3egsq/I/6/oe+BD28j/dkjykhRP0P1m2rRjCtfE/THxgB02a9T/a
5lQyZlrwPxHj62YWB/c/jvqx80ks7j9+caimsGz4PwaomxCNsOs/NXwpjrnw
+T+kP7Yftv7oP0IEEnLEWvs/HKOKihR75j+aCL/9PeP8P7jwj+dYweM/R4rT
hblR/j8wCk+g0jXhP5wzGe4Fuf8/iEjfzSNu3T+erBF/YJ8AQPhQgj9uBNg/
GX5KBT9VAUAg8ZhoI/fSP7mNZd9UGgJAIMsi7Ej7yj8tMZkp09sCQHC2mT5h
O8A/TJMAclKQA0DARN//O9GoP5AzSg4JVARAwK2Z162sor9/kseowAoFQIDx
uvmgo72/QYVds+C9BUCAg05MX8XIvym21RE4gAZA4PJ9KavI0b+8pYFukDUH
QEgMYfU70ta/M1GWLLo4B0Aos54guujWv6r8qurjOwdAAFrcSzj/1r+ZU9Rm
N0IHQMCnV6I0LNe/dgEnX95OB0A4Q05PLYbXvzBdzE8saAdAKHo7qR462L+j
FBcxyJoHQAjoFV0Botm/GsAr7/GdB0DgjlOIf7jZv5JrQK0boQdAyDWRs/3O
2b+Awmkpb6cHQICDDAr6+9m/XHC8IRa0B0DwHgO38lXavxbMYRJkzQdA4FXw
EOQJ27+Nd3bQjdAHQMD8LTxiINu/BCOLjrfTB0Cgo2tn4Dbbv/N5tAoL2gdA
YPHmvdxj27/QJwcDsuYHQNiM3WrVvdu/R9MbwdvpB0CwMxuWU9Tbv75+MH8F
7QdAkNpYwdHq27+t1Vn7WPMHQFAo1BfOF9y/JIFuuYL2B0AozxFDTC7cv5ws
g3es+QdAEHZPbspE3L8T2Jc11vwHQOgcjZlIW9y/ioOs8///B0DIw8rExnHc
v7M0nwg=
"]]},
Annotation[#, "Charting`Private`Tag$14417#2"]& ],
TagBox[
{RGBColor[0., 0., 1.], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwBkQJu/SFib1JlAgAAACgAAAACAAAAfF/bZLp78L8AAAAAAAAAQLQKFvNu
j+6/zHW2I5Y8/z/1oDM6lnvrv8bQrdb8Qf4/5+fuwBt26L9qnj8oNEv9Py00
206dpOW/5AQUb0Nk/D/ehz6NQZbiv29tzJnyaPs/x8GlpcN337+mKJ58Z336
PzTVCbDA39m/u/5ZgIiV+T9491sbA87Tvw/ArMXBmPg/yEggKntIzL9WA2yn
pav3P0zAZN96AcC/S2I/pRqp9j+k1P+YnJ+fv9JOmjmOqfU/SteCcY4mrT9C
Y6cxfLn0P41IBQqwesM/7ITT/fOy8z/3xeVazNvOP/Y1Oaygu/I/2hL19C6Y
1T8AYMV6y6zxP1bhOz27pds/rOGcepyf8D+VUpC7p6XgPyJeo1BCQu8/FK0L
KE+14z+Yy3gOBRLtPz8CVo36kOY/kOCbft796j+5pgKzR17pPyRFb7Zk6ug/
x0M4KHJo7D8AbATOPZ3mP4HbPJagPu8/+GeXZORp5D/pNeUp1ijxP8ghc4VV
9uE/uCXd6Cyr8j9AVjE9IPXeP92SPKSFE/Q/6EDrfUIr2j9MfGAHTZr1P4j1
aN8IydQ/EePrZhYH9z9QcTBUoB/PP35xqKawbPg/EDs2V616xD81fCmOufD5
P6AvE0Kt5bA/QgQScsRa+z+AKUQBYvaZv5oIv/094/w/gD3NVgdxwL9HitOF
uVH+P8A3p5YDP82/nDMZ7gW5/z9wnZLMMR7Vv56sEX9gnwBACGZVP5Nk3L8Z
fkoFP1UBQNzBRg/hsOG/uY1l31QaAkAANdxSdJPlvy0xmSnT2wJAGKzajZJ6
6b9MkwByUpADQGAEV8BvMO2/AszHwdQWBEAAAAAAAADwv4MlRVU=
"]]},
Annotation[#, "Charting`Private`Tag$14417#3"]& ],
TagBox[
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`],
AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAHnZNVfoa6T8AAAAAAAAAQLmmArNH
Xuk/ziahGr7R/z/HQzgocmjsPwy6nCkxwf0/gds8lqA+7z9QFdBoutr7P+k1
5SnWKPE/PlFw0vzT+T+4Jd3oLKvyP6wx60SN4Pc/3ZI8pIUT9D+wDoFjrxj2
P0x8YAdNmvU/zjh36YY29D8R4+tmFgf3P+Kx1yQbgfI/fnGoprBs+D/FzoJX
MuHwPzV8KY658Pk/xvHK4Yha7j9CBBJyxFr7P5IJv/4ZS+s/mgi//T3j/D9o
RzIIDhvoP0eK04W5Uf4/6DpgO+w/5T+cMxnuBbn/PxhJNukIj+I/nqwRf2Cf
AEAEdOFddoLfPxl+SgU/VQFAOHWmFJx52j+5jWXfVBoCQHA9ozEzN9U/LTGZ
KdPbAkCQPnBRqzrQP0yTAHJSkANAwJgnPipvxz+QM0oOCVQEQEB/QoPO1Ls/
f5LHqMAKBUCAoiGWV/2kP0GFXbPgvQVAAIYqEO+TmL8pttUROIAGQGCXddKP
2be/vKWBbpA1B0DQph92LAvEvzNRliy6OAdAYLGobCQvxL+q/Krq4zsHQIDF
FgQaU8S/mVPUZjdCB0DAaUcb/prEv3YBJ1/eTgdAIDFMEqoqxb8wXcxPLGgH
QABYaVqSSca/oxQXMciaB0AAumLfrYXIvxrAK+/xnQdAwFhbnVypyL+Sa0Ct
G6EHQPACqCcJzci/gMJpKW+nB0BA6W+mWxTJv1xwvCEWtAdAUNLqcOaiyb8W
zGESZM0HQJCvRViUv8q/jXd20I3QB0CwR6J1IOPKvwQji4630wdA0Kq5c6oG
y7/zebQKC9oHQDAGFRe4Tcu/0CcHA7LmB0CAGjUdutvLv0fTG8Hb6QdAsOsk
YzX/y7++fjB/Be0HQIB2spOuIsy/rdVZ+1jzB0Agmoi5mmnMvySBbrmC9gdA
0BpAsQ2NzL+cLIN3rPkHQFAmc5h+sMy/E9iXNdb8B0BgKldw7dPMv4qDrPP/
/wdAsMYgOlr3zL/EdGLN
"]]},
Annotation[#, "Charting`Private`Tag$14417#4"]& ]}, {}},
AspectRatio->1,
Axes->{True, True},
AxesLabel->{
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm],
FormBox[
GraphicsBox[{
Thickness[0.1023541453428864],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]]}, {
Thickness[0.1023541453428864]}, StripOnInput -> False]}, {
ImageSize -> {14.662804483188044`, 24.508064757160646`},
ImageSize -> {9.77520298879203, 16.338709838107096`}, BaselinePosition ->
Scaled[0.32439307852814453`], ImageSize -> {10., 17.},
PlotRange -> {{0., 9.77}, {0., 16.34}}, AspectRatio -> Automatic}],
TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->Directive[
Thickness[Large], 16],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Directive[
Thickness[Large], 18],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->Large,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 3}, {-1, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.804484161645864*^9, {3.804484200318059*^9, 3.8044842125135403`*^9},
3.804484251893461*^9, 3.804484555888534*^9, 3.8044847810689163`*^9, {
3.804498847245267*^9, 3.804498881897105*^9}, 3.804498960164385*^9, {
3.80449912445015*^9, 3.804499139528474*^9}, 3.804499223581234*^9, {
3.804499266644086*^9, 3.8044992956124907`*^9}, 3.804499391908037*^9},
CellLabel->"Out[66]=",ExpressionUUID->"49f79181-58d5-4c98-b66a-b45b7b27753c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1.51"}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"Re", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "1.5"}], ",", "3"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"RGBColor", "[", "\"\<Blue\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<Red\>\"", "]"}], ",",
RowBox[{"RGBColor", "[", "\"\<LimeGreen\>\"", "]"}], ",",
RowBox[{"Darker", "[", "Purple", "]"}]}], "}"}]}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"Placed", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{s}^2\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{sp}_\\\\text{z} ~ ^{3}P\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{sp}_\\\\text{z} ~ ^{1}P\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\text{p}_\\\\text{z}^2\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"Right", ",", "Top"}], "}"}]}], "]"}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AxesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "16"}], "]"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "2"}], "}"}]}], "}"}]}]}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.8044988929418287`*^9, 3.804498939118314*^9}, {
3.8044989823150263`*^9, 3.8044990964448357`*^9}, {3.804499205162958*^9,
3.804499206246594*^9}, {3.804499309610615*^9, 3.804499375938847*^9}},
CellLabel->"In[65]:=",ExpressionUUID->"4844e83d-444c-4b0f-b5eb-e25af1479e1e"],
Cell[BoxData[
TagBox[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0., 0., 1.], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwBgQJ+/SFib1JlAgAAACcAAAACAAAA1TGZnt7w8L8AAAAAAAAAQO+9Ny41
s/C/2z1tWVXZ/z+0Chbzbo/uv+NHIXPZ9P4/9aAzOpZ7678xii35lPz9P+fn
7sAbdui/maoqeB0I/T8tNNtOnaTlv86XMC1dI/w/3oc+jUGW4r/DueCcdCr7
P8fBpaXDd9+/pswnrDFB+j801QmwwN/Zvx3jD4GYW/k/ePdbGwPO079cjCxO
VGH4P8hIICp7SMy/RwYwU5t29z9MwGTfegHAvyrfrai0dvY/pNT/mJyfn7+j
ZYGPz3n1P0rXgnGOJq0/6H+h5UWM9D+NSAUKsHrDP01JwSmOiPM/98XlWszb
zj9vrBcp7JPyP9oS9fQumNU/O1wOPhSI8T9W4Ts9u6XbP5Cc1LHlffA/lVKQ
u6el4D8AYDf0hQTvPxStCyhPteM/tq+TYX3a7D8/AlaN+pDmP5es5mUMzOo/
uaYCs0de6T9ZlQ9p473oP8dDOChyaOw/EYMMBsV15j+B2zyWoD7vP5yq6IW0
ReQ/6TXlKdYo8T8y9ckAm9LhP7gl3egsq/I/L8MBZvKh3j/dkjykhRP0P4dT
l5FGttk/THxgB02a9T+r02gkhfzTPxHj62YWB/c/jRCTXx01zD9+caimsGz4
P5rFhUw93b4/NXwpjrnw+T8U/mWb8VtpP0IEEnLEWvs/3IsXVC+evL+aCL/9
PeP8PzhGbggbqM6/R4rThblR/j/pSJZCTBPXv5wzGe4Fuf8/W2/jQz++3r+e
rBF/YJ8AQFuPJpmdj+O/GX5KBT9VAUBRTd3isX7nv7mNZd9UGgJAsPhRkdrH
678MPIAwZtsCQAAAAAAAAPC/1eBAew==
"]]},
Annotation[#, "Charting`Private`Tag$13987#1"]& ],
TagBox[
{RGBColor[1., 0., 0.], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwB0QEu/iFib1JlAgAAABwAAAACAAAAmv+gGEjewz8AAAAAAAAAQPfF5VrM
284/W5jyDDMv/j/aEvX0LpjVP8nnMNA3Jfw/VuE7Pbul2z80H6cUOiT6P5VS
kLunpeA/ExeC6TVF+D8UrQsoT7XjPyvez3FpPfY/PwJWjfqQ5j+412PQv1f0
P7mmArNHXuk//+A+kGx78j/HQzgocmjsP9qgcoK0dvA/gds8lqA+7z+BVEsD
4CntP+k15SnWKPE/CNpKdToY6T+4Jd3oLKvyP1NW84OfH+U/3ZI8pIUT9D+r
v6TzxXbhP0x8YAdNmvU/AktyObsw2z8R4+tmFgf3PzHuFZNRT9Q/fnGoprBs
+D+r4wa8r/nLPzV8KY658Pk/w9lA2VPqvT9CBBJyxFr7Pw4iv66nPJg/mgi/
/T3j/D8mbaSuZgG0v0eK04W5Uf4/6qr5J2Rqxr+cMxnuBbn/P0gHVFwmb9G/
nqwRf2CfAEDqI4zHVVrYvxl+SgU/VQFAKdBPGJb13r+5jWXfVBoCQNtB7LZF
IuO/LTGZKdPbAkBt+/4f4cnmv0yTAHJSkANAoCKK8/Y/6r+QM0oOCVQEQGb4
lIQiDe6/tj16Q0q3BEAAAAAAAADwvzJt2jU=
"]]},
Annotation[#, "Charting`Private`Tag$13987#2"]& ],
TagBox[
{RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549],
AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwBYQOe/CFib1JlAgAAADUAAAACAAAAszAUyeewzT8AAAAAAAAAQPfF5VrM
284/XbZad//e/z/aEvX0LpjVP7d1CZl3gv4/VuE7Pbul2z86A5xBSCz9P5VS
kLunpeA/VyQkgg7t+z8UrQsoT7XjPy+pbCfzkvo/PwJWjfqQ5j+KvqpkzU/5
P7mmArNHXuk/DqzMKAAT+D/HQzgocmjsPz78rlFRu/Y/gds8lqA+7z/N3YYS
mHr1P+k15SnWKPE/UiMfOP0e9D+4Jd3oLKvyP9BCm+S6yfI/3ZI8pIUT9D9N
7gwpbovxP0x8YAdNmvU/0AM/0j8y8D8R4+tmFgf3P4hOzSYO4O0/fnGoprBs
+D9bP+S2TWjrPzV8KY658Pk/wf97EMq66D9CBBJyxFr7P/Xd/pkxO+Y/mgi/
/T3j/D8xkALt1YXjP0eK04W5Uf4/jVrxb2X+4D+cMxnuBbn/PxecTwFMB90/
nqwRf2CfAEAvI761RqbXPxl+SgU/VQFAIekCyheh0j+5jWXfVBoCQE54kuLE
YMo/LTGZKdPbAkD8/nvQPGS/P0yTAHJSkANA3mBYtpLspj+QM0oOCVQEQIf5
O5yHS6S/f5LHqMAKBUCtqQ54d1K+v0GFXbPgvQVAAPLgWdEMyb8pttUROIAG
QCjD2+i549G/vKWBbpA1B0DtuvDENOXWvzNRliy6OAdAPbR/1Y771r+q/Krq
4zsHQJGcDuboEde/mVPUZjdCB0DfkiwHnT7Xv3YBJ1/eTgdAJmpoSQWY178w
XcxPLGgHQOIS4M3VSti/oxQXMciaB0C2Zs/WdrDZvxrAK+/xnQdA4l9e59DG
2b+Sa0CtG6EHQCxR7fcq3dm/gMJpKW+nB0CtQQsZ3wnav1xwvCEWtAdAnA1H
W0dj2r8WzGESZM0HQIPKvt8XFtu/jXd20I3QB0D/rk3wcSzbvwQji4630wdA
0rPcAMxC27/zebQKC9oHQBSM+iGAb9u/0CcHA7LmB0AacDZk6Mjbv0fTG8Hb
6QdA/V3FdELf27++fjB/Be0HQBlSVIWc9du/rdVZ+1jzB0C7O3KmUCLcvySB
brmC9gdAzTMBt6o43L+cLIN3rPkHQNgskMcET9y/E9iXNdb8B0BGJR/YXmXc
v4qDrPP//wdAmA+u6Lh73L/YC6PT
"]]},
Annotation[#, "Charting`Private`Tag$13987#3"]& ],
TagBox[
{RGBColor[0.33333333333333337`, 0, 0.33333333333333337`],
AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAzEBXpN2n6D8AAAAAAAAAQLmmArNH
Xuk/MviJOXiD/z/HQzgocmjsP9oLtYLddv0/gds8lqA+7z8ZDQKIW5T7P+k1
5SnWKPE/EYrE2SGS+T+4Jd3oLKvyP/uH1KlFo/c/3ZI8pIUT9D/f+iYStt/1
P0x8YAdNmvU/K7S9xygC9D8R4+tmFgf3P8PB4jfiUPI/fnGoprBs+D9SXASO
0LTwPzV8KY658Pk/whrHcnkJ7j9CBBJyxFr7P5eyqCySAOs/mgi//T3j/D9s
eSa/4dbnP0eK04W5Uf4/sDs8bxAB5T+cMxnuBbn/PyNfZIHkVOI/nqwRf2Cf
AEBQhClGixffPxl+SgU/VQFAivxc/tcW2j+5jWXfVBoCQE115JPY3NQ/LTGZ
KdPbAkA13Yk5pNDPP0yTAHJSkANAehqCGy3Zxj+QM0oOCVQEQCvb52qNyLo/
f5LHqMAKBUAAJHxLGyCjP0GFXbPgvQVA38xtwb3Zm78pttUROIAGQGYjyNwy
i7i/vKWBbpA1B0B4/T0nEFXEvzNRliy6OAdAe/vxRcV4xL+q/Krq4zsHQCEB
/gN4nMS/mVPUZjdCB0B14sVj1uPEv3YBJ1/eTgdAaT182XZyxb8wXcxPLGgH
QKrsstVHj8a/oxQXMciaB0CCAVujM8fIvxrAK+/xnQdAUL5fWZ/qyL+Sa0Ct
G6EHQKJ5RdoIDsm/gMJpKW+nB0AlzelB1VTJv1xwvCEWtAdA1m7gzFPiyb8W
zGESZM0HQCrPC/Ho/Mq/jXd20I3QB0BZJbHvMSDLvwQji4630wdAWtaszXhD
y7/zebQKC9oHQF0SqCwAisu/0CcHA7LmB0C4o36Z9RbMv0fTG8Hb6QdAJuqv
tS06zL++fjB/Be0HQA5TIrtjXcy/rdVZ+1jzB0A4hLCGyaPMvySBbrmC9gdA
rSU9T/nGzL+cLIN3rPkHQMi17AUn6sy/E9iXNdb8B0D7nfWrUg3Nv4qDrPP/
/wdApZCNQnwwzb8Y726w
"]]},
Annotation[#, "Charting`Private`Tag$13987#4"]& ]}, {}}, InsetBox[
TemplateBox[{
GraphicsBox[{
Thickness[0.08305647840531562],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGINIGYC4pkg8FPCQWpenObpCyoOMP4Oh6ZHxyNUHNzX
HF3OsEPeIQ0MMPndNp670poU4PwPi9YrnNVQxMn3uzgx5t9iFbj5NZ82BGTP
UnGYAbJ3J4I/Z5Hyzj/P0fjqqnA+2JxkBD/glnRN4iRVuPkpsXfcmH+oOqz4
9rLizAQlh0cR4tsvPlB1OAMCexQdNunlLWa8A+WfkXFICAlSX3BS1WGtkA5f
+jpFBwOtlcIXXDQd1oD4ecoO/0FAXhvinx/KDicOO63NlNOB87eD/FOhC+dP
mcBfZdatD7cfHK6ZBg6poGBwU4DzWxXYVc98kYXzeyO6/RkNZBwcgcbNsDZw
qLn/45ZxtpTD0V07etkm6DvI71qwL/WcpMMGkPtldB2mg/TdlILzH7jGO84K
lHaQAMXnB12HdJB9z6QdtoDk/+g5mBiDgKzDcZB5BfoOMaoRMufmyMP51SD7
ohXhfLC7IpUcdBTlv+SU6cH5LJxd8snvdOB88R6vVyxTtB34YwPuG00H6geF
j52Ww5u23G4jaXkHUZC8iIYDenoDAMDOG9o=
"]]}, {{
Thickness[0.08305647840531562]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {18.06422914072229, 26.03675716064757},
ImageSize -> {12.042819427148194`, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {13., 18.}, PlotRange -> {{0., 12.04}, {0., 17.36}},
AspectRatio -> Automatic}],
GraphicsBox[{
Thickness[0.02853881278538813],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQ/R8E7ks4/Hz7+oClsoqDSOWkkrNLpOD8MyDQIwPn
x6hGyJzbI+PgsebocoYfynD+3vyatzNTleB8+xLH2tNzONH4zA7uIH0zZBz6
I7r9GT8wOcyZCQQ/pRzA7tjP5LAj2Cri/3EJh+u8t8VSyxB8E2MQ+G8PcY+s
Q4t4LWvmMUz+GiEdvvR9cnC+7K4F+1LfyePkg6yfGakENx/Gh9m/8tvLijMO
inD3PXCNd5xVqAB3fzinWLtxvALcf6h8TjgfrO+iqEN6GhCIKTp82fdxa/o3
EQewfTcVHRhAYIGIg/K1R8EMb5Tg/NLD21xnzlWG8zfo5S1mtFFx0Pik8nLW
SxGHF1na36bPhcZbiqiD1wl229mh6g7V93/cMn4t4ZAQEqS+wFMDEo7qUg71
v60KzmVoOtwHuUdQHs4Hu5NfEc4Hm7dF2aGB5Wi/obm6w5xFyjv/HFeFhFOx
Cpy/AhQ+E5ThfHA62KrkMGMCf5VZt6rDHU3ZNf+DlRyeJC68ZqKvCg8PSHpR
hvNP7NrRy7ZBFZI+NBTg5oW8vfxxxkNZCN9dFeKPdGmHwFvSNYmfVBxg6XeD
6pPmeWcRfFh6BQDMMEWn
"], {{8.18594, 8.94844}, {8.18594,
9.11406}, {8.245310000000002, 9.245310000000002}, {
8.399999999999999, 9.44844}, {8.746879999999999, 9.88906}, {
9.23438, 10.1156}, {9.831249999999999, 10.1156}, {10.9516,
10.1156}, {11.667199999999998`, 9.32969}, {11.667199999999998`,
8.089060000000002}, {11.667199999999998`, 6.75469}, {10.8688,
5.76563}, {9.79531, 5.76563}, {9.139059999999999, 5.76563}, {
8.651560000000002, 5.9796900000000015`}, {8.18594,
6.468749999999999}, {8.18594, 8.94844}}}],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4kaWo/2G6YYOrQrsqmemiDrA+BqfVF7OWinm
4H2C3Xb2UQMHtzVHlzPMEHMoWNN9O6PBwEFh14J9qX1iDrz+66ekaiD4CbF3
3JhvaMP1P0lceM3kvLaDiTEQXBZx2GL+41DKKW0HkcpJJWdTRBxYOLvkk9dp
O6SnAcEzQYetDk2PjlvowPkS8+I0TxfoOLxpy+02ihZx+PH29QHLZh2HGNUI
mXMyog66ivJfcq7pOFTd/3HL2FvU4U3xVtHf2npw/n8QiDeA8/uDS1Sm6xs4
zAQBSREHfpD7OQwg9rkJO4j2eL1imaLvUA1Szy0Et+8MGLBA5EV0HK7z3hZL
3cYE9Ze2QzTIPTWMDn9A6h9rOeRMTSi0KP5lL7/8hYfefy2HgCeel0wnf7eX
BfHv60Dc9f+7/fmrYW/0fyP4pjZ7g6Yd1IXzI8S3X2SIM4Trh/FlNorNZ3rw
y1586hXOjCRDhwu/j12fF/nP/nDb8vBTRYYOB7v3NZksZoLGl6FDi3gtayYb
m8P0CfxVZtYI/t9vpQ/mCBo6+IPMD2aAhoehA4v+L65LPP/sP28IyJ613MCB
Fcz/aw8LHxhfV2ul8AUVXTgfPT0BAGL4DTg=
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYC4jQQmGbqYGqzN2haoq5DhPj2iwz3EPxPGwKy
Z7GbOfhenBjzL1nPQWZenOZpBTOHB2CF+g4SU69wZmwyc3iepf1t+lx9hy3m
Pw6laJnD+QVrum9nHEDwVZ80zztrZeEQHxKkvmClHpyfCnJHmy6c/6Z4q+hv
bR2o+eYOCSD1nNoOJUDh03wIfoyC48fkP2Zw/qG25eGnHpk5rAcZxKvtYKC1
UvjCETOHgFvSNYlC2hDzFpk5NLAc7TcU13YA+7/NzEEcJK6k5XBD6JPj+Wlm
DukgcTYth5OHndZmvjNz8DnBbjs7VAviPylzhxcg92VrOfD6r5+SGoHgJ8fe
cWOWsIDzr4PMa7OAiFdowvlGxkBwWR3On9LeGnX5j6oDl5tqKdMvcweP/bWy
FsdVHJbc38c3RxnB13jLu89gpxmcDw6vKDOHMyDAowpxp6iZwwaQRK8qPD5N
QPZ9VnVgAIEDpg4vQPERq+bgB4rXyaYOjaDwCFd3+LrzVtffUFOHht9WBec0
1KHhY+rwNHHhNRN+NYc6kPgMqHyGKiS8lplCwrVJBZ4+noDU66vAwxccblwq
Dhv18hYz3kHwDwC9kT7FHM4Hm59h4TATBG6qQMLthQXcfrB5ZpYQ/55Rg6Sr
WEuI+6erw/nSIHcUaMD5zJxd8sl+mg79wSUq0/UtHY7v2tHLJqDlEA1KP3cs
HH68fX3AslkLkn4WWTjoK8p/ybmmBdGfa+Fw/mrYG/3fWvD40QelKxVoetsE
1e+sA3HvDwto+tKF8+csUt75R10PzgerP6zvYFsZscLUF+rfTAMo3xzOB8fX
BjM4PwWk3wOa32wNIOnhpik8f6HnZwDIbKDV
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl
k2omMe5HZgMAEs4CVw==
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJ7IGYCYg431VKmW9YOLJxd8sl5Wg5LX3jo/W+0cTC3
2Rs0LVHLYcoE/iqz0zYOG/TyFjPGaDmcAYE3Ng7TQeLaCP6U9taoy3s04fw5
i5R3/knXdMhf030744GNw2bzH4dSVmk49Hi9YjG5CDRP9UnzvLfqDs8TF14z
eW/toP5J5eUsTWkH+6ZHx2fstnZ44BrvOOuimAOP//opqTusHRR2LdiXuk7M
4fhhp7WZdtYOGiD1nWIQ8w5aOYhUTio5myLmcEO6JtFoqxVEPZ8ohG9q7fCm
LbfbSFrUQXzqFc6MTdYOaSCgJuogMy9O87SAjYOJMQiIOqTE3nFj9kDwwe6p
RvD31spapF+xges/AXKPny3c/P8g8N4Wbr/6W959Bj9t4e470LY8/JSRLdz9
S+7v45vz2MahVYFd9cwUMQd9rZXCF47YOHzZ93Fr+jd0vjicLww2TwLi3hM2
EPt3S8DD90D3viaTxZIQ95+2dVgPCu9cDThfFKSwRMPhw4aA7FnXofJvNRyu
Cn1yPP/M1sEMHP+aDjyg9PHKFuKvek1IOHy2hcd3jILjx+Q/tpB459GCqM+y
g4SrgZYDyNizs+wcnmdpf5tuqwVx/xUEP0J8+0UGNgc4v/63VcG5AAcHabB+
TTh/hwPQ4T/U4Hxw+KepOHzZeavr71F7iP0+Sg4zZgLBTjs4PxWkrAzBB8eH
pZ1D9f0ft4yzlSDp64Stw8pvLyvOHFCCxOc5W4fbmrJr/jMrOfQGl6hMt7dz
2Jtf83bmVEWIf2vsHPhjA+4blSvC/QPjPwGlZ30HVP51B0h4OqrA+XLLgRmt
Xh3OB+eX55oOq4HZhaHcAZq/tB2OgNJLk73DdpD/JbQh4XTX1iEd5C82bYj9
LdD0KawNoR9bw9Wj528Atna2+g==
"]]}, {{
Thickness[0.02853881278538813]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {52.56065753424658, 26.03675716064757},
ImageSize -> {35.04043835616439, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {36., 18.}, PlotRange -> {{0., 35.04}, {0., 17.36}},
AspectRatio -> Automatic}],
GraphicsBox[{
Thickness[0.02853881278538813],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQ/R8E7ks4/Hz7+oClsoqDSOWkkrNLpOD8MyDQIwPn
x6hGyJzbI+PgsebocoYfynD+3vyatzNTleB8+xLH2tNzONH4zA7uIH0zZBz6
I7r9GT8wOcyZCQQ/pRzA7tjP5LAj2Cri/3EJh+u8t8VSyxB8E2MQ+G8PcY+s
Q4t4LWvmMUz+GiEdvvR9cnC+7K4F+1LfyePkg6yfGakENx/Gh9m/8tvLijMO
inD3PXCNd5xVqAB3fzinWLtxvALcf6h8TjgfrO+iqEN6GhCIKTp82fdxa/o3
EQewfTcVHRhAYIGIg/K1R8EMb5Tg/NLD21xnzlWG8zfo5S1mtFFx0Pik8nLW
SxGHF1na36bPhcZbiqiD1wl229mh6g7V93/cMn4t4ZAQEqS+wFMDEo7qUg71
v60KzmVoOtwHuUdQHs4Hu5NfEc4Hm7dF2aGB5Wi/obm6w5xFyjv/HFeFhFOx
Cpy/AhQ+E5ThfHA62KrkMGMCf5VZt6rDHU3ZNf+DlRyeJC68ZqKvCg8PSHpR
hvNP7NrRy7ZBFZI+NBTg5oW8vfxxxkNZCN9dFeKPdGmHwFvSNYmfVBxg6XeD
6pPmeWcRfFh6BQDMMEWn
"], {{8.18594, 8.94844}, {8.18594,
9.11406}, {8.245310000000002, 9.245310000000002}, {
8.399999999999999, 9.44844}, {8.746879999999999, 9.88906}, {
9.23438, 10.1156}, {9.831249999999999, 10.1156}, {10.9516,
10.1156}, {11.667199999999998`, 9.32969}, {11.667199999999998`,
8.089060000000002}, {11.667199999999998`, 6.75469}, {10.8688,
5.76563}, {9.79531, 5.76563}, {9.139059999999999, 5.76563}, {
8.651560000000002, 5.9796900000000015`}, {8.18594,
6.468749999999999}, {8.18594, 8.94844}}}],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4kaWo/2G6YYOrQrsqmemiDrA+BqfVF7OWinm
4H2C3Xb2UQMHtzVHlzPMEHMoWNN9O6PBwEFh14J9qX1iDrz+66ekaiD4CbF3
3JhvaMP1P0lceM3kvLaDiTEQXBZx2GL+41DKKW0HkcpJJWdTRBxYOLvkk9dp
O6SnAcEzQYetDk2PjlvowPkS8+I0TxfoOLxpy+02ihZx+PH29QHLZh2HGNUI
mXMyog66ivJfcq7pOFTd/3HL2FvU4U3xVtHf2npw/n8QiDeA8/uDS1Sm6xs4
zAQBSREHfpD7OQwg9rkJO4j2eL1imaLvUA1Szy0Et+8MGLBA5EV0HK7z3hZL
3cYE9Ze2QzTIPTWMDn9A6h9rOeRMTSi0KP5lL7/8hYfefy2HgCeel0wnf7eX
BfHv60Dc9f+7/fmrYW/0fyP4pjZ7g6Yd1IXzI8S3X2SIM4Trh/FlNorNZ3rw
y1586hXOjCRDhwu/j12fF/nP/nDb8vBTRYYOB7v3NZksZoLGl6FDi3gtayYb
m8P0CfxVZtYI/t9vpQ/mCBo6+IPMD2aAhoehA4v+L65LPP/sP28IyJ613MCB
Fcz/aw8LHxhfV2ul8AUVXTgfPT0BAGL4DTg=
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYC4gjx7RcZzpk61P62KjiXoedgoLVS+MITBL9k
q+jv03zmDiI9Xq9YSvQdQJSJoLnDdoemR8cr9B1MjIFAGMH3OcFuO1sUwV9y
fx/fHGUEPyX2jhuzhrnDk8SF10z8kfgghzzQg/NNbfYGTVNUg/P/fit9MMdQ
Fe6eU4ed1mb+U3FY9sJD7/9EMweZeXGapz+oQGgBM4dfb18fsHyM4O8A2R+h
4nCgVtYivcTcIQ0MMPkvsrS/Te9F8EHaZqxG8MH23kPwz4CAjoWDGci9iSoO
daBw87BwmNLeGnU5RsVhJhgg+Mkg//ywgLsHxoe59z8I1FvA/dMNCm9GC7h/
udxUS5leIcIDxoeFF4wPtjbTAEKfNHe4LV2TaFRqAIkPY3OH60KfHM+rGTj0
BZeoTO83c/gBsv+wPsT/e00dnoLiR1/fAT19AAAKfvOh
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl
k2omMe5HZgMAEs4CVw==
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJ7IGYCYg431VKmW9YOLJxd8sl5Wg5LX3jo/W+0cTC3
2Rs0LVHLYcoE/iqz0zYOG/TyFjPGaDmcAYE3Ng7TQeLaCP6U9taoy3s04fw5
i5R3/knXdMhf030744GNw2bzH4dSVmk49Hi9YjG5CDRP9UnzvLfqDs8TF14z
eW/toP5J5eUsTWkH+6ZHx2fstnZ44BrvOOuimAOP//opqTusHRR2LdiXuk7M
4fhhp7WZdtYOGiD1nWIQ8w5aOYhUTio5myLmcEO6JtFoqxVEPZ8ohG9q7fCm
LbfbSFrUQXzqFc6MTdYOaSCgJuogMy9O87SAjYOJMQiIOqTE3nFj9kDwwe6p
RvD31spapF+xges/AXKPny3c/P8g8N4Wbr/6W959Bj9t4e470LY8/JSRLdz9
S+7v45vz2MahVYFd9cwUMQd9rZXCF47YOHzZ93Fr+jd0vjicLww2TwLi3hM2
EPt3S8DD90D3viaTxZIQ95+2dVgPCu9cDThfFKSwRMPhw4aA7FnXofJvNRyu
Cn1yPP/M1sEMHP+aDjyg9PHKFuKvek1IOHy2hcd3jILjx+Q/tpB459GCqM+y
g4SrgZYDyNizs+wcnmdpf5tuqwVx/xUEP0J8+0UGNgc4v/63VcG5AAcHabB+
TTh/hwPQ4T/U4Hxw+KepOHzZeavr71F7iP0+Sg4zZgLBTjs4PxWkrAzBB8eH
pZ1D9f0ft4yzlSDp64Stw8pvLyvOHFCCxOc5W4fbmrJr/jMrOfQGl6hMt7dz
2Jtf83bmVEWIf2vsHPhjA+4blSvC/QPjPwGlZ30HVP51B0h4OqrA+XLLgRmt
Xh3OB+eX55oOq4HZhaHcAZq/tB2OgNJLk73DdpD/JbQh4XTX1iEd5C82bYj9
LdD0KawNoR9bw9Wj528Atna2+g==
"]]}, {{
Thickness[0.02853881278538813]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {52.56065753424658, 26.23854545454546},
ImageSize -> {35.04043835616439, 17.49236363636364},
BaselinePosition -> Scaled[0.3029987538415624],
ImageSize -> {36., 18.}, PlotRange -> {{0., 35.04}, {0., 17.49}},
AspectRatio -> Automatic}],
GraphicsBox[{
Thickness[0.07062146892655367],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQnZ4GBM8+2v98+/qApbKKwzavDRZzfv6A88+AgA+D
A4z/svZx9vk1DA4ea44uZ/ihDOfvza95OzNVCc63L3GsPT2HE43P7HCge1+T
STKDQ39Etz/jByao+b/s/4PAfiYH763+x5PbPtpf570tllqG4JsYg8B/e4h6
JocW8VrWzGOY/D6QuRtY4PzC5SUb/vGz4+RD9As4oJov4ACz/waINuNxgLkP
Ej4ccPdD7OOA+w+VzwnnP3CNd5x1URTi3x5uhy/7Pm5N/ybiMGMmCPA5MIDA
AhGIukJBOL9dgV31zBUhVHlBEQeNTyovZ70UcWgDy4s4iFROKjmbIgqhXaQc
qu//uGX8WsLhLMg+HRmHHcFWEf/VpRxqQOLZcg73webIw/nhnGLtxvyKcD7Y
nC3KDttB+tilHOYsUt7557gqxB0NInD+m7bcbqPdQnC+MEgfi6DDjAn8VWbd
qg7Bby9/nOEo4PAkceE1E31VeHhA0osynH9i145etg2qDgFPPC+ZXmaHmweO
h29MEL67qoMHKD2w/bEPvCVdk/hJxQGWfjeoPmmedxbBh6VXAFUATEo=
"], {{
3.08594, 8.94844}, {3.08594, 9.11406}, {3.14531,
9.245310000000002}, {3.3000000000000003`, 9.44844}, {
3.6468799999999995`, 9.88906}, {4.134379999999999, 10.1156}, {
4.731249999999999, 10.1156}, {5.851559999999999, 10.1156}, {
6.56719, 9.32969}, {6.56719, 8.089060000000002}, {6.56719,
6.75469}, {5.768750000000001, 5.76563}, {4.695309999999999,
5.76563}, {4.039059999999999, 5.76563}, {3.5515600000000003`,
5.9796900000000015`}, {3.08594, 6.468749999999999}, {3.08594,
8.94844}}}],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGINIGZigIINCg5S8+I0T19QcYDxdzg0PToeoeLwNHHh
NRN+FYc0MMDk+5xgt529FcHfpJe3mDFGFSe/keVov+F1Dbj561WfNM87q+Ew
YyYQ7ETw5yxS3vnnORpfXRXO97s4MeZfMoIfcEu6JnGSKtz8lNg7bsw/VB18
QeoOqzk8ihDffvGBqsOxXTt62T6oQtx1R9VhJhgoOSSEBKkvOKnqYGazN2ja
Q1UHA62VwhdcNB1MQfyF6g7/QUBe2+FV8VbR39oaDicOO63NlNOB87eD/FOh
C+dPmcBfZdatD7cfbE2mAcSflSpwfvnhba4zdZXh/Or7P24Zeys5OAKNm2Ft
4PBh0XqFsxmKDkdB7p6g7+A8oVkoTUrRYQPI/TK6EHfNR/CVrz0KZrij6CAB
is8Pug7poGBXU3LYApL/o+dwBgyUHI6DzCvQh/iXUQXOZ+Hskk/uU4Xzwcp7
1Bx0FOW/5JTpwflgde904HzxHq9XLFO0HbaY/ziUcgqoHxQ+dloOK7+9rDhz
QNlBFCQvouGAnt4AakwW/w==
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4vNXw97oz9ZwaFVgVz0zRdQBxtf4pPJy1kox
h5TYO27MEeoObmuOLmeYIeawQfVJ87yzag4KuxbsS+0Tc3iRpf1tuiyCL1w5
qeTsEkW4fuVrj4IZ5ig6mBgDwWURB/7YgPtG0xUdREDqUkQcqu//uGVcreiQ
ngYEzwQd9uTXvJ3JqgTnlx/e5jrTVsnhTVtut1G0iMN/EPBXcohRjZA5JyPq
ADLWeLGSQxXIHG9Rhw+L1iuc/aEM558BgR41OP9V8VbR39pqDjNBQFIE4v67
qhD73IQdHkWIb7+YoApxF7cQ3D6wOWdYHFZ+e1lx5oGiw3Xe22Kp25gg8vMV
HaJB7qlhdGAAgQ0KDjlTEwotin/Zg/1/RsEh4InnJdPJ3yH8NUoQff+/27uD
wvUEgr9WSIcvvU8Zzq/9bVVwrkMDrh/Gl9koNp/pwS/7v99KH8yZqOFw4fex
6/Mi/9kH3pKuSdyk4XCwe1+TyWImh/Xg+NJwaBGvZc1kY3P49fb1AUtnBP/Y
rh29bB/UHfxB5gczQMND3YFF/xfXJZ5/9pv08hYzyqg7sIL5f+1h4QPjP3CN
d5z1UQnOR09PAFTGHcA=
"]]}, {{
Thickness[0.07062146892655367]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {21.23816189290162, 26.03675716064757},
ImageSize -> {14.158774595267746`, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {15., 18.}, PlotRange -> {{0., 14.16}, {0., 17.36}},
AspectRatio -> Automatic}]},
"LineLegend",
DisplayFunction->(FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451,
0.196078431372549]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[
0.196078431372549, 0.803921568627451,
0.196078431372549]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[
0.33333333333333337`, 0, 0.33333333333333337`]], {}}},
AspectRatio -> Full, ImageSize -> {20, 10},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
Editable->True,
InterpretationFunction:>(RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0., 0., 1.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0., 0., 0.6666666666666667],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.`", ",", "0.`", ",", "1.`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0., 0., 1.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0., 0., 1.], Editable -> False, Selectable ->
False]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[1., 0., 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6666666666666667, 0., 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"1.`", ",", "0.`", ",", "0.`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[1., 0., 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[1., 0., 0.], Editable -> False, Selectable ->
False]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.130718954248366, 0.5359477124183007, 0.130718954248366],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{
"0.196078431372549`", ",", "0.803921568627451`", ",",
"0.196078431372549`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.196078431372549, 0.803921568627451, 0.196078431372549],
Editable -> False, Selectable -> False]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.22222222222222227`, 0., 0.22222222222222227`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{
"0.33333333333333337`", ",", "0", ",",
"0.33333333333333337`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`],
Editable -> False, Selectable -> False]}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )],
Scaled[{0.99, 0.99}], ImageScaled[{1, 1}],
BaseStyle->{FontSize -> Larger},
FormatType->StandardForm]},
AspectRatio->1,
Axes->{True, True},
AxesLabel->{
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm],
FormBox[
GraphicsBox[{
Thickness[0.1023541453428864],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]]}, {
Thickness[0.1023541453428864]}, StripOnInput -> False]}, {
ImageSize -> {14.662804483188044`, 24.508064757160646`},
ImageSize -> {9.77520298879203, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.77}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->Directive[
Thickness[Large], 16],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->Directive[
Thickness[Large], 18],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->Large,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 3}, {-1, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}],
InterpretTemplate[Legended[
Graphics[{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]],
Line[CompressedData["
1:eJwBgQJ+/SFib1JlAgAAACcAAAACAAAA1TGZnt7w8L8AAAAAAAAAQO+9Ny41
s/C/2z1tWVXZ/z+0Chbzbo/uv+NHIXPZ9P4/9aAzOpZ7678xii35lPz9P+fn
7sAbdui/maoqeB0I/T8tNNtOnaTlv86XMC1dI/w/3oc+jUGW4r/DueCcdCr7
P8fBpaXDd9+/pswnrDFB+j801QmwwN/Zvx3jD4GYW/k/ePdbGwPO079cjCxO
VGH4P8hIICp7SMy/RwYwU5t29z9MwGTfegHAvyrfrai0dvY/pNT/mJyfn7+j
ZYGPz3n1P0rXgnGOJq0/6H+h5UWM9D+NSAUKsHrDP01JwSmOiPM/98XlWszb
zj9vrBcp7JPyP9oS9fQumNU/O1wOPhSI8T9W4Ts9u6XbP5Cc1LHlffA/lVKQ
u6el4D8AYDf0hQTvPxStCyhPteM/tq+TYX3a7D8/AlaN+pDmP5es5mUMzOo/
uaYCs0de6T9ZlQ9p473oP8dDOChyaOw/EYMMBsV15j+B2zyWoD7vP5yq6IW0
ReQ/6TXlKdYo8T8y9ckAm9LhP7gl3egsq/I/L8MBZvKh3j/dkjykhRP0P4dT
l5FGttk/THxgB02a9T+r02gkhfzTPxHj62YWB/c/jRCTXx01zD9+caimsGz4
P5rFhUw93b4/NXwpjrnw+T8U/mWb8VtpP0IEEnLEWvs/3IsXVC+evL+aCL/9
PeP8PzhGbggbqM6/R4rThblR/j/pSJZCTBPXv5wzGe4Fuf8/W2/jQz++3r+e
rBF/YJ8AQFuPJpmdj+O/GX5KBT9VAUBRTd3isX7nv7mNZd9UGgJAsPhRkdrH
678MPIAwZtsCQAAAAAAAAPC/1eBAew==
"]]},
"Charting`Private`Tag$13987#1"],
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]],
Line[CompressedData["
1:eJwB0QEu/iFib1JlAgAAABwAAAACAAAAmv+gGEjewz8AAAAAAAAAQPfF5VrM
284/W5jyDDMv/j/aEvX0LpjVP8nnMNA3Jfw/VuE7Pbul2z80H6cUOiT6P5VS
kLunpeA/ExeC6TVF+D8UrQsoT7XjPyvez3FpPfY/PwJWjfqQ5j+412PQv1f0
P7mmArNHXuk//+A+kGx78j/HQzgocmjsP9qgcoK0dvA/gds8lqA+7z+BVEsD
4CntP+k15SnWKPE/CNpKdToY6T+4Jd3oLKvyP1NW84OfH+U/3ZI8pIUT9D+r
v6TzxXbhP0x8YAdNmvU/AktyObsw2z8R4+tmFgf3PzHuFZNRT9Q/fnGoprBs
+D+r4wa8r/nLPzV8KY658Pk/w9lA2VPqvT9CBBJyxFr7Pw4iv66nPJg/mgi/
/T3j/D8mbaSuZgG0v0eK04W5Uf4/6qr5J2Rqxr+cMxnuBbn/P0gHVFwmb9G/
nqwRf2CfAEDqI4zHVVrYvxl+SgU/VQFAKdBPGJb13r+5jWXfVBoCQNtB7LZF
IuO/LTGZKdPbAkBt+/4f4cnmv0yTAHJSkANAoCKK8/Y/6r+QM0oOCVQEQGb4
lIQiDe6/tj16Q0q3BEAAAAAAAADwvzJt2jU=
"]]},
"Charting`Private`Tag$13987#2"],
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549]],
Line[CompressedData["
1:eJwBYQOe/CFib1JlAgAAADUAAAACAAAAszAUyeewzT8AAAAAAAAAQPfF5VrM
284/XbZad//e/z/aEvX0LpjVP7d1CZl3gv4/VuE7Pbul2z86A5xBSCz9P5VS
kLunpeA/VyQkgg7t+z8UrQsoT7XjPy+pbCfzkvo/PwJWjfqQ5j+KvqpkzU/5
P7mmArNHXuk/DqzMKAAT+D/HQzgocmjsPz78rlFRu/Y/gds8lqA+7z/N3YYS
mHr1P+k15SnWKPE/UiMfOP0e9D+4Jd3oLKvyP9BCm+S6yfI/3ZI8pIUT9D9N
7gwpbovxP0x8YAdNmvU/0AM/0j8y8D8R4+tmFgf3P4hOzSYO4O0/fnGoprBs
+D9bP+S2TWjrPzV8KY658Pk/wf97EMq66D9CBBJyxFr7P/Xd/pkxO+Y/mgi/
/T3j/D8xkALt1YXjP0eK04W5Uf4/jVrxb2X+4D+cMxnuBbn/PxecTwFMB90/
nqwRf2CfAEAvI761RqbXPxl+SgU/VQFAIekCyheh0j+5jWXfVBoCQE54kuLE
YMo/LTGZKdPbAkD8/nvQPGS/P0yTAHJSkANA3mBYtpLspj+QM0oOCVQEQIf5
O5yHS6S/f5LHqMAKBUCtqQ54d1K+v0GFXbPgvQVAAPLgWdEMyb8pttUROIAG
QCjD2+i549G/vKWBbpA1B0DtuvDENOXWvzNRliy6OAdAPbR/1Y771r+q/Krq
4zsHQJGcDuboEde/mVPUZjdCB0DfkiwHnT7Xv3YBJ1/eTgdAJmpoSQWY178w
XcxPLGgHQOIS4M3VSti/oxQXMciaB0C2Zs/WdrDZvxrAK+/xnQdA4l9e59DG
2b+Sa0CtG6EHQCxR7fcq3dm/gMJpKW+nB0CtQQsZ3wnav1xwvCEWtAdAnA1H
W0dj2r8WzGESZM0HQIPKvt8XFtu/jXd20I3QB0D/rk3wcSzbvwQji4630wdA
0rPcAMxC27/zebQKC9oHQBSM+iGAb9u/0CcHA7LmB0AacDZk6Mjbv0fTG8Hb
6QdA/V3FdELf27++fjB/Be0HQBlSVIWc9du/rdVZ+1jzB0C7O3KmUCLcvySB
brmC9gdAzTMBt6o43L+cLIN3rPkHQNgskMcET9y/E9iXNdb8B0BGJR/YXmXc
v4qDrPP//wdAmA+u6Lh73L/YC6PT
"]]}, "Charting`Private`Tag$13987#3"],
Annotation[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]],
Line[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAzEBXpN2n6D8AAAAAAAAAQLmmArNH
Xuk/MviJOXiD/z/HQzgocmjsP9oLtYLddv0/gds8lqA+7z8ZDQKIW5T7P+k1
5SnWKPE/EYrE2SGS+T+4Jd3oLKvyP/uH1KlFo/c/3ZI8pIUT9D/f+iYStt/1
P0x8YAdNmvU/K7S9xygC9D8R4+tmFgf3P8PB4jfiUPI/fnGoprBs+D9SXASO
0LTwPzV8KY658Pk/whrHcnkJ7j9CBBJyxFr7P5eyqCySAOs/mgi//T3j/D9s
eSa/4dbnP0eK04W5Uf4/sDs8bxAB5T+cMxnuBbn/PyNfZIHkVOI/nqwRf2Cf
AEBQhClGixffPxl+SgU/VQFAivxc/tcW2j+5jWXfVBoCQE115JPY3NQ/LTGZ
KdPbAkA13Yk5pNDPP0yTAHJSkANAehqCGy3Zxj+QM0oOCVQEQCvb52qNyLo/
f5LHqMAKBUAAJHxLGyCjP0GFXbPgvQVA38xtwb3Zm78pttUROIAGQGYjyNwy
i7i/vKWBbpA1B0B4/T0nEFXEvzNRliy6OAdAe/vxRcV4xL+q/Krq4zsHQCEB
/gN4nMS/mVPUZjdCB0B14sVj1uPEv3YBJ1/eTgdAaT182XZyxb8wXcxPLGgH
QKrsstVHj8a/oxQXMciaB0CCAVujM8fIvxrAK+/xnQdAUL5fWZ/qyL+Sa0Ct
G6EHQKJ5RdoIDsm/gMJpKW+nB0AlzelB1VTJv1xwvCEWtAdA1m7gzFPiyb8W
zGESZM0HQCrPC/Ho/Mq/jXd20I3QB0BZJbHvMSDLvwQji4630wdAWtaszXhD
y7/zebQKC9oHQF0SqCwAisu/0CcHA7LmB0C4o36Z9RbMv0fTG8Hb6QdAJuqv
tS06zL++fjB/Be0HQA5TIrtjXcy/rdVZ+1jzB0A4hLCGyaPMvySBbrmC9gdA
rSU9T/nGzL+cLIN3rPkHQMi17AUn6sy/E9iXNdb8B0D7nfWrUg3Nv4qDrPP/
/wdApZCNQnwwzb8Y726w
"]]},
"Charting`Private`Tag$13987#4"]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{0, 0}, {0, 0}}, PlotRangeClipping -> True,
ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> 1,
Axes -> {True, True}, AxesLabel -> {
Graphics[{
Thickness[0.10504201680672269`],
Style[{
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]},
Thickness[0.10504201680672269`]]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}],
Graphics[{
Thickness[0.1023541453428864],
Style[{
FilledCurve[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]]},
Thickness[0.1023541453428864]]}, {
ImageSize -> {14.662804483188044`, 24.508064757160646`},
ImageSize -> {9.77520298879203, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.77}, {0., 16.34}},
AspectRatio -> Automatic}]}, AxesOrigin -> {0, 0}, AxesStyle ->
Directive[
Thickness[Large], 16], DisplayFunction :> Identity,
Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}}, PlotRange -> {{0, 3}, {-1, 2}},
PlotRangeClipping -> True,
PlotRangePadding -> {{Automatic, Automatic}, {Automatic, Automatic}},
Ticks -> {Automatic, Automatic}}], {
Placed[
LineLegend[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0., 0., 1.]],
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1., 0., 0.]],
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0.196078431372549, 0.803921568627451, 0.196078431372549]],
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[0.33333333333333337`, 0, 0.33333333333333337`]]}, {
Graphics[{
Thickness[0.08305647840531562],
Style[{
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGINIGYC4pkg8FPCQWpenObpCyoOMP4Oh6ZHxyNUHNzX
HF3OsEPeIQ0MMPndNp670poU4PwPi9YrnNVQxMn3uzgx5t9iFbj5NZ82BGTP
UnGYAbJ3J4I/Z5Hyzj/P0fjqqnA+2JxkBD/glnRN4iRVuPkpsXfcmH+oOqz4
9rLizAQlh0cR4tsvPlB1OAMCexQdNunlLWa8A+WfkXFICAlSX3BS1WGtkA5f
+jpFBwOtlcIXXDQd1oD4ecoO/0FAXhvinx/KDicOO63NlNOB87eD/FOhC+dP
mcBfZdatD7cfHK6ZBg6poGBwU4DzWxXYVc98kYXzeyO6/RkNZBwcgcbNsDZw
qLn/45ZxtpTD0V07etkm6DvI71qwL/WcpMMGkPtldB2mg/TdlILzH7jGO84K
lHaQAMXnB12HdJB9z6QdtoDk/+g5mBiDgKzDcZB5BfoOMaoRMufmyMP51SD7
ohXhfLC7IpUcdBTlv+SU6cH5LJxd8snvdOB88R6vVyxTtB34YwPuG00H6geF
j52Ww5u23G4jaXkHUZC8iIYDenoDAMDOG9o=
"]]}, {
Thickness[0.08305647840531562]}, StripOnInput -> False]}, {
ImageSize -> {18.06422914072229, 26.03675716064757},
ImageSize -> {12.042819427148194`, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {13., 18.}, PlotRange -> {{0., 12.04}, {0., 17.36}},
AspectRatio -> Automatic}],
Graphics[{
Thickness[0.02853881278538813],
Style[{
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQ/R8E7ks4/Hz7+oClsoqDSOWkkrNLpOD8MyDQIwPn
x6hGyJzbI+PgsebocoYfynD+3vyatzNTleB8+xLH2tNzONH4zA7uIH0zZBz6
I7r9GT8wOcyZCQQ/pRzA7tjP5LAj2Cri/3EJh+u8t8VSyxB8E2MQ+G8PcY+s
Q4t4LWvmMUz+GiEdvvR9cnC+7K4F+1LfyePkg6yfGakENx/Gh9m/8tvLijMO
inD3PXCNd5xVqAB3fzinWLtxvALcf6h8TjgfrO+iqEN6GhCIKTp82fdxa/o3
EQewfTcVHRhAYIGIg/K1R8EMb5Tg/NLD21xnzlWG8zfo5S1mtFFx0Pik8nLW
SxGHF1na36bPhcZbiqiD1wl229mh6g7V93/cMn4t4ZAQEqS+wFMDEo7qUg71
v60KzmVoOtwHuUdQHs4Hu5NfEc4Hm7dF2aGB5Wi/obm6w5xFyjv/HFeFhFOx
Cpy/AhQ+E5ThfHA62KrkMGMCf5VZt6rDHU3ZNf+DlRyeJC68ZqKvCg8PSHpR
hvNP7NrRy7ZBFZI+NBTg5oW8vfxxxkNZCN9dFeKPdGmHwFvSNYmfVBxg6XeD
6pPmeWcRfFh6BQDMMEWn
"], {{8.18594, 8.94844}, {8.18594,
9.11406}, {8.245310000000002, 9.245310000000002}, {
8.399999999999999, 9.44844}, {8.746879999999999, 9.88906}, {
9.23438, 10.1156}, {9.831249999999999, 10.1156}, {10.9516,
10.1156}, {11.667199999999998`, 9.32969}, {11.667199999999998`,
8.089060000000002}, {11.667199999999998`, 6.75469}, {10.8688,
5.76563}, {9.79531, 5.76563}, {9.139059999999999, 5.76563}, {
8.651560000000002, 5.9796900000000015`}, {8.18594,
6.468749999999999}, {8.18594, 8.94844}}}],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4kaWo/2G6YYOrQrsqmemiDrA+BqfVF7OWinm
4H2C3Xb2UQMHtzVHlzPMEHMoWNN9O6PBwEFh14J9qX1iDrz+66ekaiD4CbF3
3JhvaMP1P0lceM3kvLaDiTEQXBZx2GL+41DKKW0HkcpJJWdTRBxYOLvkk9dp
O6SnAcEzQYetDk2PjlvowPkS8+I0TxfoOLxpy+02ihZx+PH29QHLZh2HGNUI
mXMyog66ivJfcq7pOFTd/3HL2FvU4U3xVtHf2npw/n8QiDeA8/uDS1Sm6xs4
zAQBSREHfpD7OQwg9rkJO4j2eL1imaLvUA1Szy0Et+8MGLBA5EV0HK7z3hZL
3cYE9Ze2QzTIPTWMDn9A6h9rOeRMTSi0KP5lL7/8hYfefy2HgCeel0wnf7eX
BfHv60Dc9f+7/fmrYW/0fyP4pjZ7g6Yd1IXzI8S3X2SIM4Trh/FlNorNZ3rw
y1586hXOjCRDhwu/j12fF/nP/nDb8vBTRYYOB7v3NZksZoLGl6FDi3gtayYb
m8P0CfxVZtYI/t9vpQ/mCBo6+IPMD2aAhoehA4v+L65LPP/sP28IyJ613MCB
Fcz/aw8LHxhfV2ul8AUVXTgfPT0BAGL4DTg=
"]],
FilledCurve[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI7IGYC4jQQmGbqYGqzN2haoq5DhPj2iwz3EPxPGwKy
Z7GbOfhenBjzL1nPQWZenOZpBTOHB2CF+g4SU69wZmwyc3iepf1t+lx9hy3m
Pw6laJnD+QVrum9nHEDwVZ80zztrZeEQHxKkvmClHpyfCnJHmy6c/6Z4q+hv
bR2o+eYOCSD1nNoOJUDh03wIfoyC48fkP2Zw/qG25eGnHpk5rAcZxKvtYKC1
UvjCETOHgFvSNYlC2hDzFpk5NLAc7TcU13YA+7/NzEEcJK6k5XBD6JPj+Wlm
DukgcTYth5OHndZmvjNz8DnBbjs7VAviPylzhxcg92VrOfD6r5+SGoHgJ8fe
cWOWsIDzr4PMa7OAiFdowvlGxkBwWR3On9LeGnX5j6oDl5tqKdMvcweP/bWy
FsdVHJbc38c3RxnB13jLu89gpxmcDw6vKDOHMyDAowpxp6iZwwaQRK8qPD5N
QPZ9VnVgAIEDpg4vQPERq+bgB4rXyaYOjaDwCFd3+LrzVtffUFOHht9WBec0
1KHhY+rwNHHhNRN+NYc6kPgMqHyGKiS8lplCwrVJBZ4+noDU66vAwxccblwq
Dhv18hYz3kHwDwC9kT7FHM4Hm59h4TATBG6qQMLthQXcfrB5ZpYQ/55Rg6Sr
WEuI+6erw/nSIHcUaMD5zJxd8sl+mg79wSUq0/UtHY7v2tHLJqDlEA1KP3cs
HH68fX3AslkLkn4WWTjoK8p/ybmmBdGfa+Fw/mrYG/3fWvD40QelKxVoetsE
1e+sA3HvDwto+tKF8+csUt75R10PzgerP6zvYFsZscLUF+rfTAMo3xzOB8fX
BjM4PwWk3wOa32wNIOnhpik8f6HnZwDIbKDV
"]],
FilledCurve[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl
k2omMe5HZgMAEs4CVw==
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJ7IGYCYg431VKmW9YOLJxd8sl5Wg5LX3jo/W+0cTC3
2Rs0LVHLYcoE/iqz0zYOG/TyFjPGaDmcAYE3Ng7TQeLaCP6U9taoy3s04fw5
i5R3/knXdMhf030744GNw2bzH4dSVmk49Hi9YjG5CDRP9UnzvLfqDs8TF14z
eW/toP5J5eUsTWkH+6ZHx2fstnZ44BrvOOuimAOP//opqTusHRR2LdiXuk7M
4fhhp7WZdtYOGiD1nWIQ8w5aOYhUTio5myLmcEO6JtFoqxVEPZ8ohG9q7fCm
LbfbSFrUQXzqFc6MTdYOaSCgJuogMy9O87SAjYOJMQiIOqTE3nFj9kDwwe6p
RvD31spapF+xges/AXKPny3c/P8g8N4Wbr/6W959Bj9t4e470LY8/JSRLdz9
S+7v45vz2MahVYFd9cwUMQd9rZXCF47YOHzZ93Fr+jd0vjicLww2TwLi3hM2
EPt3S8DD90D3viaTxZIQ95+2dVgPCu9cDThfFKSwRMPhw4aA7FnXofJvNRyu
Cn1yPP/M1sEMHP+aDjyg9PHKFuKvek1IOHy2hcd3jILjx+Q/tpB459GCqM+y
g4SrgZYDyNizs+wcnmdpf5tuqwVx/xUEP0J8+0UGNgc4v/63VcG5AAcHabB+
TTh/hwPQ4T/U4Hxw+KepOHzZeavr71F7iP0+Sg4zZgLBTjs4PxWkrAzBB8eH
pZ1D9f0ft4yzlSDp64Stw8pvLyvOHFCCxOc5W4fbmrJr/jMrOfQGl6hMt7dz
2Jtf83bmVEWIf2vsHPhjA+4blSvC/QPjPwGlZ30HVP51B0h4OqrA+XLLgRmt
Xh3OB+eX55oOq4HZhaHcAZq/tB2OgNJLk73DdpD/JbQh4XTX1iEd5C82bYj9
LdD0KawNoR9bw9Wj528Atna2+g==
"]]}, {
Thickness[0.02853881278538813]}, StripOnInput -> False]}, {
ImageSize -> {52.56065753424658, 26.03675716064757},
ImageSize -> {35.04043835616439, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {36., 18.}, PlotRange -> {{0., 35.04}, {0., 17.36}},
AspectRatio -> Automatic}],
Graphics[{
Thickness[0.02853881278538813],
Style[{
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJTIGYCYokmmSkGl7/bi1ROKjnLIuMA479py+022i3h
YJGka8fq8N3+DAj4iDvUvGj6NW3nV4j6FFGHuScmL8le9t++VYFd9cwUEQeN
TyovZ3UyO6wV0uFLtxNxeFH7OPv8G3Y4H6zORAjOB5uzRAwiPkUczg95e/nj
DEcZOD9GNULm3B5Zhy/7Pm5NNxNzaAGpvyLnoLBrwb5UP1EHdZC9J+UdHrjG
O84SFHE4C3JvjQLEnjohh9Q0IDim4DBjJgjwQMT1FB2axGtZM4+xOPwHgX5F
B2MwYHIAK+NUgvM7bTx3pSkpw/miPV6vWEJUoP5ldTh12Glt5j8VB/sSx9rT
MdxwPtjc+wJwPsS9wg4Nv60Kzmkg+M4TmoXSuJTh/PLD21xn1ipB/S8C5/dF
dPszbhBxYACBB8oOUeBwEXEIvCVdk1ikAgm3hyIOTxIXXjPRV4X4I1LI4UWW
9rfpc1UdDnbvazJZLOAwZ5Hyzj/HVaHu5YXzIfHMBOez6v/iusTz3T4l9o4b
c4UKnA8OhmAlOB8WnpD08hvCj1NwWHJr+WNDZiZo/MlD4m8aCyS+NOUdDoDd
wwmJnzQ5h36Q/wQEHHrB/pSFpxdIvMs6RIPMkRGGisvA+elg/VJwvgnIfZfF
HSDpWADib2Yxhx6wuVxw/navDRZzdjLD+Swg//T8tQfHwzpxOB+sT0AKzkfP
LzA+ACrCVkY=
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQ/R8E7ks4/Hz7+oClsoqDSOWkkrNLpOD8MyDQIwPn
x6hGyJzbI+PgsebocoYfynD+3vyatzNTleB8+xLH2tNzONH4zA7uIH0zZBz6
I7r9GT8wOcyZCQQ/pRzA7tjP5LAj2Cri/3EJh+u8t8VSyxB8E2MQ+G8PcY+s
Q4t4LWvmMUz+GiEdvvR9cnC+7K4F+1LfyePkg6yfGakENx/Gh9m/8tvLijMO
inD3PXCNd5xVqAB3fzinWLtxvALcf6h8TjgfrO+iqEN6GhCIKTp82fdxa/o3
EQewfTcVHRhAYIGIg/K1R8EMb5Tg/NLD21xnzlWG8zfo5S1mtFFx0Pik8nLW
SxGHF1na36bPhcZbiqiD1wl229mh6g7V93/cMn4t4ZAQEqS+wFMDEo7qUg71
v60KzmVoOtwHuUdQHs4Hu5NfEc4Hm7dF2aGB5Wi/obm6w5xFyjv/HFeFhFOx
Cpy/AhQ+E5ThfHA62KrkMGMCf5VZt6rDHU3ZNf+DlRyeJC68ZqKvCg8PSHpR
hvNP7NrRy7ZBFZI+NBTg5oW8vfxxxkNZCN9dFeKPdGmHwFvSNYmfVBxg6XeD
6pPmeWcRfFh6BQDMMEWn
"], {{8.18594, 8.94844}, {8.18594,
9.11406}, {8.245310000000002, 9.245310000000002}, {
8.399999999999999, 9.44844}, {8.746879999999999, 9.88906}, {
9.23438, 10.1156}, {9.831249999999999, 10.1156}, {10.9516,
10.1156}, {11.667199999999998`, 9.32969}, {11.667199999999998`,
8.089060000000002}, {11.667199999999998`, 6.75469}, {10.8688,
5.76563}, {9.79531, 5.76563}, {9.139059999999999, 5.76563}, {
8.651560000000002, 5.9796900000000015`}, {8.18594,
6.468749999999999}, {8.18594, 8.94844}}}],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4kaWo/2G6YYOrQrsqmemiDrA+BqfVF7OWinm
4H2C3Xb2UQMHtzVHlzPMEHMoWNN9O6PBwEFh14J9qX1iDrz+66ekaiD4CbF3
3JhvaMP1P0lceM3kvLaDiTEQXBZx2GL+41DKKW0HkcpJJWdTRBxYOLvkk9dp
O6SnAcEzQYetDk2PjlvowPkS8+I0TxfoOLxpy+02ihZx+PH29QHLZh2HGNUI
mXMyog66ivJfcq7pOFTd/3HL2FvU4U3xVtHf2npw/n8QiDeA8/uDS1Sm6xs4
zAQBSREHfpD7OQwg9rkJO4j2eL1imaLvUA1Szy0Et+8MGLBA5EV0HK7z3hZL
3cYE9Ze2QzTIPTWMDn9A6h9rOeRMTSi0KP5lL7/8hYfefy2HgCeel0wnf7eX
BfHv60Dc9f+7/fmrYW/0fyP4pjZ7g6Yd1IXzI8S3X2SIM4Trh/FlNorNZ3rw
y1586hXOjCRDhwu/j12fF/nP/nDb8vBTRYYOB7v3NZksZoLGl6FDi3gtayYb
m8P0CfxVZtYI/t9vpQ/mCBo6+IPMD2aAhoehA4v+L65LPP/sP28IyJ613MCB
Fcz/aw8LHxhfV2ul8AUVXTgfPT0BAGL4DTg=
"]],
FilledCurve[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYC4gjx7RcZzpk61P62KjiXoedgoLVS+MITBL9k
q+jv03zmDiI9Xq9YSvQdQJSJoLnDdoemR8cr9B1MjIFAGMH3OcFuO1sUwV9y
fx/fHGUEPyX2jhuzhrnDk8SF10z8kfgghzzQg/NNbfYGTVNUg/P/fit9MMdQ
Fe6eU4ed1mb+U3FY9sJD7/9EMweZeXGapz+oQGgBM4dfb18fsHyM4O8A2R+h
4nCgVtYivcTcIQ0MMPkvsrS/Te9F8EHaZqxG8MH23kPwz4CAjoWDGci9iSoO
daBw87BwmNLeGnU5RsVhJhgg+Mkg//ywgLsHxoe59z8I1FvA/dMNCm9GC7h/
udxUS5leIcIDxoeFF4wPtjbTAEKfNHe4LV2TaFRqAIkPY3OH60KfHM+rGTj0
BZeoTO83c/gBsv+wPsT/e00dnoLiR1/fAT19AAAKfvOh
"]],
FilledCurve[CompressedData["
1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl
k2omMe5HZgMAEs4CVw==
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJ7IGYCYg431VKmW9YOLJxd8sl5Wg5LX3jo/W+0cTC3
2Rs0LVHLYcoE/iqz0zYOG/TyFjPGaDmcAYE3Ng7TQeLaCP6U9taoy3s04fw5
i5R3/knXdMhf030744GNw2bzH4dSVmk49Hi9YjG5CDRP9UnzvLfqDs8TF14z
eW/toP5J5eUsTWkH+6ZHx2fstnZ44BrvOOuimAOP//opqTusHRR2LdiXuk7M
4fhhp7WZdtYOGiD1nWIQ8w5aOYhUTio5myLmcEO6JtFoqxVEPZ8ohG9q7fCm
LbfbSFrUQXzqFc6MTdYOaSCgJuogMy9O87SAjYOJMQiIOqTE3nFj9kDwwe6p
RvD31spapF+xges/AXKPny3c/P8g8N4Wbr/6W959Bj9t4e470LY8/JSRLdz9
S+7v45vz2MahVYFd9cwUMQd9rZXCF47YOHzZ93Fr+jd0vjicLww2TwLi3hM2
EPt3S8DD90D3viaTxZIQ95+2dVgPCu9cDThfFKSwRMPhw4aA7FnXofJvNRyu
Cn1yPP/M1sEMHP+aDjyg9PHKFuKvek1IOHy2hcd3jILjx+Q/tpB459GCqM+y
g4SrgZYDyNizs+wcnmdpf5tuqwVx/xUEP0J8+0UGNgc4v/63VcG5AAcHabB+
TTh/hwPQ4T/U4Hxw+KepOHzZeavr71F7iP0+Sg4zZgLBTjs4PxWkrAzBB8eH
pZ1D9f0ft4yzlSDp64Stw8pvLyvOHFCCxOc5W4fbmrJr/jMrOfQGl6hMt7dz
2Jtf83bmVEWIf2vsHPhjA+4blSvC/QPjPwGlZ30HVP51B0h4OqrA+XLLgRmt
Xh3OB+eX55oOq4HZhaHcAZq/tB2OgNJLk73DdpD/JbQh4XTX1iEd5C82bYj9
LdD0KawNoR9bw9Wj528Atna2+g==
"]]}, {
Thickness[0.02853881278538813]}, StripOnInput -> False]}, {
ImageSize -> {52.56065753424658, 26.23854545454546},
ImageSize -> {35.04043835616439, 17.49236363636364},
BaselinePosition -> Scaled[0.3029987538415624],
ImageSize -> {36., 18.}, PlotRange -> {{0., 35.04}, {0., 17.49}},
AspectRatio -> Automatic}],
Graphics[{
Thickness[0.07062146892655367],
Style[{
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}}}, {CompressedData["
1:eJxTTMoPSmViYGDQA2IQnZ4GBM8+2v98+/qApbKKwzavDRZzfv6A88+AgA+D
A4z/svZx9vk1DA4ea44uZ/ihDOfvza95OzNVCc63L3GsPT2HE43P7HCge1+T
STKDQ39Etz/jByao+b/s/4PAfiYH763+x5PbPtpf570tllqG4JsYg8B/e4h6
JocW8VrWzGOY/D6QuRtY4PzC5SUb/vGz4+RD9As4oJov4ACz/waINuNxgLkP
Ej4ccPdD7OOA+w+VzwnnP3CNd5x1URTi3x5uhy/7Pm5N/ybiMGMmCPA5MIDA
AhGIukJBOL9dgV31zBUhVHlBEQeNTyovZ70UcWgDy4s4iFROKjmbIgqhXaQc
qu//uGX8WsLhLMg+HRmHHcFWEf/VpRxqQOLZcg73webIw/nhnGLtxvyKcD7Y
nC3KDttB+tilHOYsUt7557gqxB0NInD+m7bcbqPdQnC+MEgfi6DDjAn8VWbd
qg7Bby9/nOEo4PAkceE1E31VeHhA0osynH9i145etg2qDgFPPC+ZXmaHmweO
h29MEL67qoMHKD2w/bEPvCVdk/hJxQGWfjeoPmmedxbBh6VXAFUATEo=
"], {{
3.08594, 8.94844}, {3.08594, 9.11406}, {3.14531,
9.245310000000002}, {3.3000000000000003`, 9.44844}, {
3.6468799999999995`, 9.88906}, {4.134379999999999, 10.1156}, {
4.731249999999999, 10.1156}, {5.851559999999999, 10.1156}, {
6.56719, 9.32969}, {6.56719, 8.089060000000002}, {6.56719,
6.75469}, {5.768750000000001, 5.76563}, {4.695309999999999,
5.76563}, {4.039059999999999, 5.76563}, {3.5515600000000003`,
5.9796900000000015`}, {3.08594, 6.468749999999999}, {3.08594,
8.94844}}}],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGINIGZigIINCg5S8+I0T19QcYDxdzg0PToeoeLwNHHh
NRN+FYc0MMDk+5xgt529FcHfpJe3mDFGFSe/keVov+F1Dbj561WfNM87q+Ew
YyYQ7ETw5yxS3vnnORpfXRXO97s4MeZfMoIfcEu6JnGSKtz8lNg7bsw/VB18
QeoOqzk8ihDffvGBqsOxXTt62T6oQtx1R9VhJhgoOSSEBKkvOKnqYGazN2ja
Q1UHA62VwhdcNB1MQfyF6g7/QUBe2+FV8VbR39oaDicOO63NlNOB87eD/FOh
C+dPmcBfZdatD7cfbE2mAcSflSpwfvnhba4zdZXh/Or7P24Zeys5OAKNm2Ft
4PBh0XqFsxmKDkdB7p6g7+A8oVkoTUrRYQPI/TK6EHfNR/CVrz0KZrij6CAB
is8Pug7poGBXU3LYApL/o+dwBgyUHI6DzCvQh/iXUQXOZ+Hskk/uU4Xzwcp7
1Bx0FOW/5JTpwflgde904HzxHq9XLFO0HbaY/ziUcgqoHxQ+dloOK7+9rDhz
QNlBFCQvouGAnt4AakwW/w==
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGI1IGYC4vNXw97oz9ZwaFVgVz0zRdQBxtf4pPJy1kox
h5TYO27MEeoObmuOLmeYIeawQfVJ87yzag4KuxbsS+0Tc3iRpf1tuiyCL1w5
qeTsEkW4fuVrj4IZ5ig6mBgDwWURB/7YgPtG0xUdREDqUkQcqu//uGVcreiQ
ngYEzwQd9uTXvJ3JqgTnlx/e5jrTVsnhTVtut1G0iMN/EPBXcohRjZA5JyPq
ADLWeLGSQxXIHG9Rhw+L1iuc/aEM558BgR41OP9V8VbR39pqDjNBQFIE4v67
qhD73IQdHkWIb7+YoApxF7cQ3D6wOWdYHFZ+e1lx5oGiw3Xe22Kp25gg8vMV
HaJB7qlhdGAAgQ0KDjlTEwotin/Zg/1/RsEh4InnJdPJ3yH8NUoQff+/27uD
wvUEgr9WSIcvvU8Zzq/9bVVwrkMDrh/Gl9koNp/pwS/7v99KH8yZqOFw4fex
6/Mi/9kH3pKuSdyk4XCwe1+TyWImh/Xg+NJwaBGvZc1kY3P49fb1AUtnBP/Y
rh29bB/UHfxB5gczQMND3YFF/xfXJZ5/9pv08hYzyqg7sIL5f+1h4QPjP3CN
d5z1UQnOR09PAFTGHcA=
"]]}, {
Thickness[0.07062146892655367]}, StripOnInput -> False]}, {
ImageSize -> {21.23816189290162, 26.03675716064757},
ImageSize -> {14.158774595267746`, 17.35783810709838},
BaselinePosition -> Scaled[0.30534703405225183`],
ImageSize -> {15., 18.}, PlotRange -> {{0., 14.16}, {0., 17.36}},
AspectRatio -> Automatic}]}, LegendMarkers -> None,
LabelStyle -> {}, LegendLayout -> "Column"], {Right, Top},
Identity]}]& ],
AutoDelete->True,
Editable->True,
SelectWithContents->False,
Selectable->True]], "Output",
CellChangeTimes->{{3.80449889398521*^9, 3.804498939550695*^9}, {
3.804498983197625*^9, 3.804499097907105*^9}, 3.804499206732985*^9,
3.8044993152643147`*^9, {3.8044993711766768`*^9, 3.804499376405216*^9}},
CellLabel->"Out[65]=",ExpressionUUID->"39a83dfe-a7f6-41d1-a1b3-17af8c0ec4bf"]
}, Open ]],
Cell["\<\
RHF -> one avoided crossing
UHF -> more than one because of the spin contamination
The singularity structure will be really different.\
\>", "Text",
CellChangeTimes->{{3.800006759175404*^9, 3.8000068092117243`*^9}, {
3.800007212139903*^9,
3.800007229315647*^9}},ExpressionUUID->"71c5c746-2cdb-40a2-8429-\
b19419caa149"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "//", "MatrixForm"}]], "Input",
CellChangeTimes->{{3.800951857136671*^9, 3.800951874573229*^9}, {
3.801816363026821*^9, 3.8018163650058403`*^9}},
CellLabel->"In[64]:=",ExpressionUUID->"5aa6764c-4086-4c7f-97d0-832290cfb9d2"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
RowBox[{
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"84", " ",
SuperscriptBox["R", "2"]}]], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"84", " ",
SuperscriptBox["R", "2"]}]]}], "+",
FractionBox[
RowBox[{
RowBox[{"-", "225"}], "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"75", "+",
RowBox[{"59", " ", "R"}]}], ")"}]}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]]}], ")"}], " ", "\[Lambda]"}]}], "0",
"0",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]},
{"0",
RowBox[{
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"168", " ",
SuperscriptBox["R", "2"]}]], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]]}], "-",
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"168", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "45"}], "+",
RowBox[{"60", " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]]}], ")"}], " ", "\[Lambda]"}]}],
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]},
{"0",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
RowBox[{
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"168", " ",
SuperscriptBox["R", "2"]}]], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"56", " ",
SuperscriptBox["R", "2"]}]]}], "-",
FractionBox[
RowBox[{"75", "+",
RowBox[{"118", " ", "R"}]}],
RowBox[{"168", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "45"}], "+",
RowBox[{"60", " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]]}], ")"}], " ", "\[Lambda]"}]}],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]},
{
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]],
RowBox[{
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"25", "+",
RowBox[{"114", " ", "R"}]}],
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]]}], "+",
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]}], ")"}], " ", "\[Lambda]"}]}]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.800951877034357*^9, 3.801816365358841*^9},
CellLabel->
"Out[64]//MatrixForm=",ExpressionUUID->"7095227c-2d87-4ca2-985a-\
dce33d61d518"]
}, Open ]],
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1.49"}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"Re", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E_\\\\text{UHF}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.801802978045505*^9, 3.8018029850873117`*^9}},
CellLabel->"In[84]:=",ExpressionUUID->"121c8817-adb5-45f9-a185-17e726b281d0"],
Cell[BoxData[
RowBox[{
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwBwQQ++yFib1JlAgAAAEsAAAACAAAAY6+Q7///B8A/wHK5NA8KQBT7GiY7
/AfA63cuD9wMCkDERqVcdvgHwKlnHGODCgpAJt65yezwB8CK2IwF0gUKQOoM
46PZ4QfAZWSxNG/8CUBwajVYs8MHwOOIkzup6QlAfiXawGaHB8DZkQToG8QJ
QJqbI5LNDgfAgp8wnft4CUCf34hvUQkGwNOM4ZL81QhAFtBTTykVBcDENdsT
pz0IQMhQU0TLJQTAFGPoaCqoB0BIKSV0IyIDwGXVXlHWBQdAOq5cps8vAsDk
iwTAKm4GQPqKZhMyKQHAq0ADPZfJBUD196SVXicAwGIcDC/JJwVAxCKSNL5t
/r9wIIBfoZAEQDsFf7MrZPy/LyIWEnTsA0CUQDc3QX36v8Fof//nUgNAY5xY
5eqf+L9/U8xYF7wCQM+nHgkBmva/oFiFPxkYAkAeDLAxv7b0v1uKiR+1fgFA
CiDmz+mq8r8NR3Hd+9cAQGxUhZioqPC/TCWVf8szAEBgw9/LHpLtvybNE0ZP
NP8/Ij3+UcWB6b9opIu8wuX9P6los+G7tuW/7KoliSas/D9q87Fci5rhv4sA
j++mVvs/Ln4FWQYj279bTaWybAX6PxN51AuWm9O/f4s5cdLI+D/XZGwqr+PG
v5jfJ5MIb/c/d3oqjsmVrr+j7M3Pbin2P6qPOECkMK0/qGFzLznn9D+OaYHW
YILHP/XvoCu9hfM/DfRMO6xR0z8IQVhdhzfyP+B0xjR2hNs/zvTk0LLH8D/u
uU3Cd8jhP4Wuq5ivr+4/poehYGSJ5T+LSMrbMfPrPyX2qxN4m+k/SR9VCjDp
6D/esh+9O2jtP9t1pxP//uU/VZfgiOuQ8D+0keFGtQ7jP56ljL1MlvI/Xuz/
DjqO3z8EW23tBXn0P2wzEHqwVdk/G0tWIDOB9D/39q3s2DrZPzI7P1NgifQ/
gdeb7wUg2T9gGxG5upn0P6M8Nsdu6tg/vdu0hG+69D8n7GhahH/YP3Zc/BvZ
+/Q//v4VBRGr1z+NTOVOBgT1P7gNQESskNc/pDzOgTMM9T8bygeAUnbXP9Mc
oOeNHPU/H2LwWMJB1z8w3UOzQj31PyuXH4lC2dY/6V2LSqx+9T/lNfGIhAvW
PwBOdH3ZhvU/JXagNDDy1T8YPl2wBo/1P1OlFZX22NU/Rh4vFmGf9T+S4xRb
2qbVP6Le0uEVwPU/T7t0RTdE1T+5zrsUQ8j1P+muODbxK9U/0L6kR3DQ9T/M
44yG2BPVP/+edq3K4PU/XzFrqT3k1D9cXxp5fwH2P3ERSufgh9Q/c08DrKwJ
9j/1uHFlg3HUP4o/7N7ZEfY/V+IWOn9b1D+4H75ENCL2P3QNTDyrMNQ/zw+n
d2Eq9j/TTl889BvUP+b/j6qOMvY/t9D7QckH1D8V4GEQ6UL2P6XzSilr4dM/
LNBKQxZL9j+2qgKYb8/TP0TAM3ZDU/Y/FzImn3O+0z9bsBypcFv2P+m3ChWt
rtM/cqAF3J1j9j/uZW/HZqDTP4mQ7g7La/Y/8UfGBA6U0z+ggNdB+HP2P7uO
a/xNitM/t3DAdCV89j+YFeSMT4TTP85gqadShPY/x60qUnOE0z90jU3G7Ir2
P0YfgSJEjdM/VXJVvA==
"]],
LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAuPDKLpma9j/y9XKMAbLTP1Au1oV/
qvY/FC1y0t9p0z8E8asYIrL2P2QziwI4R9M/a3ZXPmfB9j81XGVu3wHTPx45
LdEJyfY/llqOpy7f0j/S+wJkrND2P8ybJuF6vNI/OoGuifHf9j+rZYJQCnfS
PwiMBdV7/vY/0ks9/ATs0T+8TttnHgb3P035LRU8ydE/bxGx+sAN9z/LsGok
cKbRP9aWXCAGHfc/8gLQIM9g0T+lobNrkDv3P1Hczm5o1dA/QrdhAqV49z/W
FfSgDnzPP7UNGl33bPg/aZoXqE6xxj8mmiHoB0z6P+d048t1oKQ/+naE/atT
/D9Eexh1o6a8v+v6Gw6oOP4/DEUQPJ540L+gZ4fUGyMAQFDcqCPNyNq/kEHM
jBklAUCnKeh+Lo/ivw5vq0LDFQJAlgt5ty1257++RLi9thoDQAw5+Mut2uy/
/W1fNlYOBEBm0rvxkfnwvwEH0pkr/QRAX38fphl/8782SHLCSgAGQEMdkLYq
Qfa/+tys6BXyBkBuNWRPdtj4v0RsyJBN9gZAG/PLoRDk+L+N++M4hfoGQFYs
4Dqr7/i/IBobifQCB0D5gSxA4Qb5v0dXiSnTEwdAKZQ0kVA1+b+U0WVqkDUH
QIGOohw8kvm/LsYe7Ap5B0BNrtpfRUz6v3hVOpRCfQdAYX4mHuhX+r/B5FU8
eoEHQII1bhyLY/q/VAONjOmJB0CIfCfY0Xr6v3tA+yzImgdATyvGRmKp+r/I
utdthbwHQM3Aa9WOBvu/EkrzFb3AB0BtLip8NRL7v1zZDr70xAdA7R7RX9wd
+7/v90UOZM0HQGChGd0qNfu/FjW0rkLeB0C1KmaqymP7v2DEz1Z64gdABIE4
M3Nv+7+pU+v+seYHQBPaefcbe/u/PHIiTyHvB0DW8I8xbpL7v4YBPvdY8wdA
mUUIpxee+7/QkFmfkPcHQIvJNlfBqfu/GiB1R8j7B0ADr+1Ba7X7v2OvkO//
/wdAVlD/ZhXB+7/d/ne6
"]]},
Annotation[#, "Charting`Private`Tag$18476#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVjHs81fcfx8/3e3AIdTgptx1iSnhkuWRlfN7T2X78jK4u7YcOOgrDftup
lFIa5RKiJAc7D6Ujd9JsyPl8F061Vlou7bA4MkIup5xzWMdY++P1eP7xfD5e
GyIS9vJIGo0W/n7/MrL+0tzKCoNqzT/w1+VGFqxVm250X2JQb/p0j/5Zz4LO
z2+GHFtkUKYmYrlLHQs2DrU8nJYzqFGh1URfFQum9EZvSEcY1M7a1/3ry1nw
dYxrcFMHg7p2//Sd4qssSLYZoKIuMKgKdVnCjSQWCIqt8x+vZlD3IqfGbn/G
AuFwesIeHS2KNtfyTPzUENY93bdrs5Em9TgvtScz0hAe7N7HeWSjQb04p+uW
tGgA3ptt+NZWdKrW4TdBcKoB7KgLEXU7ktTj2TxD1XoDeJcZxXLaTFAPovMy
z15ngnKhvCBsE42qcPbjOToyodMq30Uct4wnbLVvfXJhDbhrnmmyP7SEK7jz
aYrS1XAF3Nw+Pf0Op3X1Zjl06kNkSfDYlHARh0m2BNXO6kF3BVuHEKhw5A4t
a22GHrD1GrbiZgXmDfWsG92iC6ssx7snq97iEBVb9xpnFXy1P+3arVtyzK56
2VkQpgPcjuFH7PwZ7JhdImKla4OVx/KerpRJPP+yJz1WyIDKI00jbc1j2OII
cXmnRAti5htDsgQjuI1bU6oc0IQtyZoHtKwH8YqiO04+rwGsE726V4t7sP3d
SV6suQY8P/SVXf2oBJfOnA2jnOggfrHbrVkkwTxbelOQIx1Ega6c9mgJZoam
Mebs6cD3Xg59NNeFrR5kNHxgQwemw6W8V+pOHCDIJ5PW08FnvmnRYm0HXu9T
LnJdIuEofSF7Q4YYR5Xdn63qIoGjxBWOa8Q48bnPTq97JBi+Sv/Zo6AdK5m/
FkrFJNT9Yqo8UHYXe516Cto/kTCe5xmS39KK4/yl+bwqEoItz9vRp5pxztLU
NstcEo6ftMt5WFCHtwasPlMQTIL/rLy/XlSLi6JEKo8AEjZG/Ghx9ccavHTK
M358Dwl9PpzGCGkV/rshPtTNlwRnk7BetXkF/mP5ibvUg4ShBGvXEG8h9n2S
u2huTUJ2UIPENqYUt8xt+rrLgoRPkEewMqsYX9GnXsWZkyBYHZSU012Iabby
frERCYG1mT9TgZfw0aTdP3C1SVhl5ygyfXMRlyROOOhoknDkL++HTS4Z+GHj
2fJGggTra6fWjLelYDWj8TKpJoDsduAtLyfhnD5v3eoFAtrjuNUfnefjlzzZ
uX0KAt4Y2452mcbguRtJ79RyAp7WsIf37w3ER6+v+aZ8hgCNcF/L9J2eaHT+
meXwJAGVW64f12uNQNsNBbN9fxLwQhpdX+afiCZK40o6Bgg4Xu/nO22chQ4v
/P9ToYQAjgAVGSSXoN3yjsag7wmoyv0Yyj+qRQPDhNNjv/f/ncK7DJc69AfH
MDbIm4CDi1rbY93qkYf+t9UjXgRkNkwZmwgb0FYvOy+VGwGeJi0Gspu30SIv
+76FFQGiqQB6fFMzyoC1znwVDRKzc8cznojRhxM7rlgJaZATndLPPXcfmfBW
IuxHVpC+4gv3mj096LzTZLVH4N9Ixpe4HEsdROIPq3PrCt6h2Ra/e8cfjKCK
eNb8yMsFJLpQxj2UMYZycozS4KAS2aiqWYnFk+jMhi9Z+OZbNHTbot39yAya
/rjiPxdN5SigUJb++pIcRX/mv1d/22v0/c2L7V9cfYtu92xdpXlvDGn8L25G
84QCnRQZf8cqkCEz30BL5xQF2rUtysQjWYac3NE+boYC6Qyw+eGHZYhrZtDS
WqRArr8sDxVtl6H2wTupCa3v+6IdzMy2YXQsZMlMqlagteWllnd8htBkaNZ/
a5KVyMzczI0ZPIho/vzT0vNK1LnfwsncdhAZe4Y2aOUqUZTOsDljcQB9znZc
Fy587+8Ifv2mcABdH3o2YkQpUbz14qvDvVIUctD0xBlChezqoyrtOb+jb3fR
a2p0VMiZtORLmb+jTDQ9JDVQobZc9f5NL56jnyzEHBcrFXqdv6Q8yX+OjGTh
zEkvFYpqZ/8WU9KPnnArK/amqlBr7Jx/SmUv4mf7SaYzVSg0MLpw8FAv+gfo
W+xW
"]],
LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAuPDKLpma9j/19XKMAbLTP1Au1oV/
qvY/Gy1y0t9p0z8E8asYIrL2P2YziwI4R9M/a3ZXPmfB9j82XGVu3wHTPx45
LdEJyfY/mVqOpy7f0j/S+wJkrND2P86bJuF6vNI/OoGuifHf9j+sZYJQCnfS
PwiMBdV7/vY/1ks9/ATs0T+8TttnHgb3P075LRU8ydE/bxGx+sAN9z/NsGok
cKbRP9aWXCAGHfc/8gLQIM9g0T+lobNrkDv3P1bczm5o1dA/QrdhAqV49z/d
FfSgDnzPP7UNGl33bPg/bZoXqE6xxj8mmiHoB0z6P+p048t1oKQ/+naE/atT
/D9Dexh1o6a8v+v6Gw6oOP4/DEUQPJ540L+gZ4fUGyMAQFDcqCPNyNq/kEHM
jBklAUCnKeh+Lo/ivw5vq0LDFQJAlgt5ty1257++RLi9thoDQAw5+Mut2uy/
/W1fNlYOBEBm0rvxkfnwvwEH0pkr/QRAX38fphl/8782SHLCSgAGQEMdkLYq
Qfa/+tys6BXyBkBtNWRPdtj4v0RsyJBN9gZAGvPLoRDk+L+N++M4hfoGQFYs
4Dqr7/i/IBobifQCB0D5gSxA4Qb5v0dXiSnTEwdAKZQ0kVA1+b+U0WVqkDUH
QIGOohw8kvm/LsYe7Ap5B0BMrtpfRUz6v3hVOpRCfQdAX34mHuhX+r/B5FU8
eoEHQIE1bhyLY/q/VAONjOmJB0CHfCfY0Xr6v3tA+yzImgdATyvGRmKp+r/I
utdthbwHQM3Aa9WOBvu/EkrzFb3AB0BtLip8NRL7v1zZDr70xAdA7R7RX9wd
+7/v90UOZM0HQF+hGd0qNfu/FjW0rkLeB0CzKmaqymP7v2DEz1Z64gdAA4E4
M3Nv+7+pU+v+seYHQBPaefcbe/u/PHIiTyHvB0DV8I8xbpL7v4YBPvdY8wdA
l0UIpxee+7/QkFmfkPcHQIrJNlfBqfu/GiB1R8j7B0ACr+1Ba7X7v2OvkO//
/wdAVVD/ZhXB+78/9XfV
"]]},
Annotation[#, "Charting`Private`Tag$18476#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwBMQXO+iFib1JlAgAAAFIAAAACAAAAY6+Q7///B8CtmBK6dU0ZQBT7GiY7
/AfAcqlLPeBKGUDERqVcdvgHwEwFecFKSBlAJt65yezwB8B7JrHMH0MZQOoM
46PZ4QfA7vua7sk4GUBwajVYs8MHwFUQdGAeJBlAfiXawGaHB8DcfTb9x/oY
QJqbI5LNDgfAiRnsIh6oGECf34hvUQkGwAtClhTw9BdAFtBTTykVBcBXXPc6
s00XQMhQU0TLJQTAAienPM+pFkBIKSV0IyIDwBzqzwMb+BVAOq5cps8vAsAx
bu0jVlIVQPqKZhMyKQHAk/6QdMaeFED196SVXicAwJLXI3WU7hNAxCKSNL5t
/r/nyJjMT0oTQDsFf7MrZPy/9zzvikiYEkCUQDc3QX36vwR2MxQu8hFAY5xY
5eqf+L9IPIA0cE8RQM+nHgkBmva/OyfnH/meEEAeDLAxv7b0vxLsoajZ9A9A
CiDmz+mq8r947FY6X5AOQGxUhZioqPC/Wjjg160yDUBgw9/LHpLtvyPHcMbN
7AtAIj3+UcWB6b+F/UbIpYsKQKlos+G7tuW/1OCmr05CCUBq87Fci5rhv217
1kPG3QdALn4FWQYj278nY4eLFoAGQBN51AuWm9O/9sPcMDM6BUDXZGwqr+PG
v8mnSqxB2QNAvt1QN7amxr90HWRXHNQDQKZWNUS9aca/i4BrCPfOA0B0SP5d
y+/Fv9uvSHysxANAECyQkef7xL/RvV2rF7ADQEnzs/gfFMO/qE75J++GA0B1
A/eNIYm+vysLJKOiNANARPW/py8Pvr+PKD8Ofi8DQBLniME9lb2/xnFtf1kq
A0Cuyhr1WaG8v+tMCHQQIANA5pE+XJK5ur9hL1emfgsDQFgghioD6ra/gGVZ
MFziAkB3eiqOyZWuv8zR3OEbkAJATu7w1q+mrb8z6F7oEYsCQCZitx+Wt6y/
I2Ta9AeGAkDVSUSxYtmqv0C+wR/0ewJAMxle1Pscp78PPW+9zGcCQN5vIzVc
SJ+/pdwpGX8/AkCNV7DGKGqdv0v9vX91OgJAPD89WPWLm7/Q9lvsazUCQJoO
V3uOz5e/n2W511grAkBWrYrBwFaQv3l/FfcyFwJACiovphrxjL8l/xOOKRIC
QGj5SMmzNIm/TQokKyANAkAjmHwP5ruBv6uyfXcNAwJAAs8sZf7+e78DYskm
BP4BQL1tYKswhnS/84oq3Pr4AUDxGCjjxRpqvzYeopfx8wFA0Kwe31RSVr/B
FjNZ6O4BQARhSyCIQz4/pZOy6UzqAUCpLqJ3DLpiPzdOQmH15gFA3dlpr6FO
eD/1OnJQRuABQHevTUvsGIs/RDHSLujSAUBEmj+ZEX6cP3TzkusruAFAqo84
QKQwrT+aaRRls4IBQATEn7wHNK4/6nWuRBN/AUBf+AY5azevPx1/SCRzewFA
irDqGBmfsD85lHzjMnQBQD4ZuRHgpbI/6MzkYbJlAUCm6lUDbrO2Pz05tV6x
SAFAeI2P5onOvj8iHlZYrw4BQI5pgdZggsc/u9WXS6uaAEAN9Ew7rFHTPzz6
IrRGhP8/4HTGNHaE2z+VJhHS6q79P+65TcJ3yOE/+ZLweiDi+z+mh6FgZInl
P/xbvHNWNPo/JfarE3ib6T+oCoNtQGL4P96yH707aO0/hBk2tyqv9j9Vl+CI
65DwP1Rh2oumBPU/nqWMvUyW8j9Kjnlh1jXzPwRbbe0FefQ/VhoFhwaG8T/O
YKmnUoT2P58cF1vVY+8/UolNxuyK9j9N5uKeBVjvP+LKai0=
"]],
LineBox[CompressedData["
1:eJwBMQLO/SFib1JlAgAAACIAAAACAAAAluzKLpma9j/U86go+zvvPyaaIegH
TPo/Bs3ESoqg6D/6doT9q1P8P32ngk/e/uQ/6/obDqg4/j9BRRn0MpvhP6Bn
h9QbIwBAPoFLNd/d2z+QQcyMGSUBQCMVKa6ep9Q/Dm+rQsMVAkChxnDNvtrL
P75EuL22GgNAP5LMjMCHuj/9bV82Vg4EQI9wQ1Dwvma/AQfSmSv9BECrkb3i
lmq7vzZIcsJKAAZA2UalGfsxzL/63KzoFfIGQERcRCFU29S/RGzIkE32BkCq
adNvgvnUv4374ziF+gZAPIRivrAX1b8gGhuJ9AIHQIekgFsNVNW/R1eJKdMT
B0DEAr2VxszVv5TRZWqQNQdA5ZQ1Cjm+1r8uxh7sCnkHQH7MJvMdodi/eFU6
lEJ9B0Dj6bVBTL/Yv8HkVTx6gQdAV/xEkHrd2L9UA42M6YkHQAYYYy3XGdm/
e0D7LMiaB0CYcJ9nkJLZv8i6122FvAdAnA4Y3AKE2r8SSvMVvcAHQGQepyox
otq/XNkOvvTEB0A6KjZ5X8Dav+/3RQ5kzQdAkUNUFrz82r8WNbSuQt4HQFuj
kFB1ddu/YMTPVnriB0AftR+fo5Pbv6lT6/6x5gdAJsKu7dGx2788ciJPIe8H
QCPqzIou7tu/hgE+91jzB0BlB1zZXAzcv9CQWZ+Q9wdAkhHrJ4sq3L8aIHVH
yPsHQMonena5SNy/Y6+Q7///B0CfPwnF52bcv+idDsc=
"]]},
Annotation[#, "Charting`Private`Tag$18476#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB0QIu/SFib1JlAgAAACwAAAACAAAAY6+Q7///B8AXMAsEyTIeQBT7GiY7
/AfAR8X4aQAwHkDERqVcdvgHwLPz2M83LR5AJt65yezwB8BknXGbpiceQOoM
46PZ4QfAX4gHMoQcHkBwajVYs8MHwDRu4Vw/Bh5AfiXawGaHB8Cdly6qtdkd
QJqbI5LNDgfAxSpzKqKAHUCf34hvUQkGwPleWsZ+vxxAFtBTTykVBcCRILVB
KAscQMhQU0TLJQTA2CWvYFxaG0BIKSV0IyIDwKX4xHeWmhpAOq5cps8vAsAr
RZ3Mn+cZQPqKZhMyKQHAdXAM8bElGUD196SVXicAwKzz/pNTZxhAxCKSNL5t
/r9cp6iax7UXQDsFf7MrZPy/UUKpAEv1FkCUQDc3QX36vx5TIdijQRZAY5xY
5eqf+L9LupZLkpEVQM+nHgkBmva/nFiFtJrSFEAeDLAxv7b0v6pZmjF+IBRA
CiDmz+mq8r8yTJYyh18TQGxUhZioqPC/nL2BJDeiEkBgw9/LHpLtv/T4DwfL
8RFAIj3+UcWB6b9VNWEbnjIRQKlos+G7tuW/4uozgV+AEEBq87Fci5rhv+W1
6OL4fg9ALn4FWQYj278WOIEz1wQOQBN51AuWm9O/pQBU3L6kDEDXZGwqr+PG
v/gQ9IvgJwtAd3oqjsmVrr/Yr7EnRMUJQKqPOECkMK0/aBpMab5qCECOaYHW
YILHP2+e3LtY9AZADfRMO6xR0z+K2E4CtZgFQOB0xjR2hNs/tiX9aEUiBEDu
uU3Cd8jhP1CX1Z2XtQJApoehYGSJ5T9lou/bq2QBQCX2qxN4m+k/em9AX0r3
/z/esh+9O2jtP2HHcFpRX/0/VZfgiOuQ8D+AP1k399/6P56ljL1MlvI/wFtD
8Oo5+D8EW23tBXn0P4tocvX00vU/zmCpp1KE9j+7bMimBE/zP1KJTcbsivY/
dSU+Wg9H8z97NlL7
"]],
LineBox[CompressedData["
1:eJwBMQLO/SFib1JlAgAAACIAAAACAAAAluzKLpma9j9EaGUoLzTzPyaaIegH
TPo/xKR9r/3i7T/6doT9q1P8P5Rq2IlJiek/6/obDqg4/j+sqLH6abHlP6Bn
h9QbIwBAQo+kLhTB4T+QQcyMGSUBQDlKyDk9Mdw/Dm+rQsMVAkAGmynhXLLV
P75EuL22GgNAx6G12UDszT/9bV82Vg4EQClk9ULT1cE/AQfSmSv9BED+0q1V
tXipPzZIcsJKAAZAr1GJuIfepr/63KzoFfIGQJ/6nHFtt8C/RGzIkE32BkD/
vl9TAejAv4374ziF+gZAm69aypAYwb8gGhuJ9AIHQB2IEoaiecG/R1eJKdMT
B0Cyj4uWkTvCv5TRZWqQNQdAqpOgIaG+w78uxh7sCnkHQALDB3Kdwca/eFU6
lEJ9B0C6QImVqvHGv8HkVTx6gQdARmNMubMhx79UA42M6YkHQLQuNQ66gce/
e0D7LMiaB0AveERFl0HIv8i6122FvAdA9LHfnJbAyb8SSvMVvcAHQC5yNzll
8Mm/XNkOvvTEB0BBDAcHMCDKv+/3RQ5kzQdA5iX8Qrp/yr8WNbSuQt4HQBC4
LY+hPsu/YMTPVnriB0BW6UYKUm7Lv6lT6/6x5gdAuvdvzv6dy788ciJPIe8H
QOSuiz1N/cu/hgE+91jzB0A04kTu7izMv9CQWZ+Q9wdAekib84xczL8aIHVH
yPsHQEp+a1AnjMy/Y6+Q7///B0Di8o8HvrvMv3mWD5M=
"]]},
Annotation[#,
"Charting`Private`Tag$18476#4"]& ], {}}, {{}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, \
{}, {}, {}, {}, {}, {}, {}, {}, {}}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.034013605442176874`],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {
1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYC4hkzgeCnjgOImrlSwQHGf+Aa7zhLUMlBZl6c
5mkBXYfK+z9uGVsrOehrrRS+8ETX4cOi9QpnPZQcju/a0cu2Qc8hPQ0IwhD8
ld9eVpx5oOQwdQJ/ldlpHQdjELiMyW/h9V8/pRXBb2A52m9ojpvPwtkln5yn
BTcfxofZD3a/pTbcfWtVnzTP49WBu18X5H4VhP9gfJj/YfwdwVYR/4+Loqrf
KOAwHeT+11oOMhvF5jMt4HFYDzLfVwPOf1O8VfT3aVU4H+z+7SoOZ0DARwDO
1/ik8nLWSxE4H2Y/jL83v+btTFGo/86pwN0vMfUKZ8YiVbj/GECgQQ3ufxgf
Fj5PEhdeM9FXhYdfQkiQ+oKTKnA+2N6bynB+t43nrrRPSnD+bU3ZNf+blRzc
1xxdznBDyYE/NuC+kbki3HwYH2a/cOWkkrMiSnD3gc1/qQR3P1gfgzLcfzA+
zP8wvgjInBYROL9dgV31zBZBiLuClR36I7r9GQv4HX69fX3AklkFHt4b9PIW
M+5RcXhR+zj7/BpOqLyaA7cjn9cMTQ4HKVB6vqAO54PjZY0mnA+LX5j+81fD
3ujv1naIUY2QOfeHx0G0x+sVyxQdiP0GAvD8Avb3EyE4HxQcac/EHNDzFwCY
s2h3
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {
1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxdlF9IU2EYxo+ukmEOUmQ5L5qHBplh55vHFUbxFVTiRUFR2UWCpaldpNSC
klW0pIsW2UUxpSGRF4fFzAmFdNGgRCrctNBA1h+lIuaFEFLDMLOdbzzvB73w
XfwY532f5/2zspPth5otiqLkZN6RzMvNvHr78DvFVs1XzNiwjoO9hjf6t3st
X39vytqaW82H66LbQ7/zedOJj/ssPTo3ksZXNpLPN80XxLRyncfNuCX5RSDm
109Z+XL6wmxoSOd+++XVbTeslK9XhJU/2bb4sqlTsvh9QXLd67yd9/d66PvU
mYp0MOGh/GDU9z4tXhpr8JA+bXO46O1PqV/om5P+wPAPFuXDTuLn7b753mKV
8l2aWUxW7VCp3o+Hg85ErUp6Wk5n4qjkcHruYnxW5clSX6Pb5eFVZkyq5BeM
foCnCxd2T6yRfPuwd2NwQuf7I6OGMq1Sv5EfjPqYF/Sh/9CPecMfGP7BIt93
R9bPJ51HCrfYWj47sn2P6LzLmeeKTzn4m5E9A20HJBup2soV5ibun4nZQpOM
uLSvoXzsAaN8dlPfOUb1wNADht7jpr4rjPwUHBy825xi5PfaqtFudsxN/QCj
X2J+jxn1d6jybH+OT7LQa5HcEQl8aL2jEV9dqukYr9doHl1CwFbKD0b9P+Y9
lGmkj/u/vOoJaKRf6Atq5A8M/2DsKxj7jHzYd9TDPUAP7gWMe3J9u96XqNHo
3pAP94h+gNEv8Hmzn+OMvke/kR+M+pgX9GGe0I95wx8Y/sGdZv8qSrL7FGV8
wNynXSX817PkzeX3krGPYOwrWPh/JBn3BsY9oN7//5//AFqbSus=
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4rrfVgXnblg4uK05upxhhoTDTBCQtHSouv/j
lvFqCYfiraK/T8dZOhiDwGYJh+tCnxzPH0Pw/3wrfTCn0ArO/w8C663g5s0A
mXfTykG4clLJWRcJhw16eYsZ31g5rBXS4UuPE3f4siEge9Z3K4cY1QiZczai
DmdAwMYazvc5wW4729Qabh4uPtg8O0k4/4FrvOOsi5h8mPlgOkcWbj+MD3Mf
mN8jDXH/SysIbSntcKRtefipR1YO6WlA8EwK7j+we+dIwf1vAgqPYCmH54kL
r5nkWzm4g9xrIQUJv2uWcP6Xnbe6/pYi+J9A7lG3hJhjL+UAix+YeTC+84Rm
obRfig6nDjutzZSzhPCllCD63S0dwjnF2o3llSDmnEfwS0DxaWeFKr8fGn/M
Sg4fQPrZoeF5TxGq3hoif1gR4l5Xawfla4+CGdYg+ODwdUTw9+bXvJ0pqgDx
7zRMPti9WooOElOvcGYssob4n0PJwb7p0fEZu6H2XVZy2GL+41CKFzS+7ig5
3JCuSTRitXZY+e1lxZkHSg7LX3jo/V9oBedPn8BfZbbaEq6ey021lMnKEm6e
+lvefQYvLeD8/uASlenrEfxoBcePyTm4+Rog/ZLmcPtgfHB6CFNySIm948bc
Ye7wYdF6hbMeSg4rQO77aO5QCcpP1koOL7K0v03/aw4NDwQfnO9WKsD54HiR
F4TzS5aXbPjXzwM3b7vXBos5P7nh9i2/tfyx4WFuuHsg6RfBP9i9r8kkmdOh
x+sVi8lCc4cm8VrWzDZOuHlg+2dyQsIrywLOFwfFzyME/xYo/E0t4fqfg9y3
1xJuPowPsx9cfvhZwt23v1bWIv2JBdz9sPQM8x+MD/M/evkEAD5pGh8=
"]]}, {
Thickness[0.034013605442176874`]}, StripOnInput -> False]}, {
ImageSize -> {44.0931407222914, 24.508064757160646`},
ImageSize -> {29.39542714819427, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {30., 17.}, PlotRange -> {{0., 29.4}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {-1.73463955148056, 7.549594939406254}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox["", TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )],
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8DPre4tjuMYQBT7GiY7
/AfA8Ir1/ArhGEDERqVcdvgHwBBo/MuH3hhAJt65yezwB8BRIgpqgdkYQOoM
46PZ4QfA1JYlpnTPGEBwajVYs8MHwNh/XB5buxhAfiXawGaHB8DhUcoOKJMY
QJqbI5LNDgfA9PWl78FCGECf34hvUQkGwKJ46S1vlBdAFtBTTykVBcBGbhvD
qfEWQMhQU0TLJQTAEsTFuxVSFkBIKSV0IyIDwGhU/DD7pBVAOq5cps8vAsC0
VyH9bQMVQPqKZhMyKQHAiZXSRVpUFED196SVXicAwIYz/PF3qBNAxCKSNL5t
/r95RBT1IggTQDsFf7MrZPy/9o+4dEdaEkCUQDc3QX36v2pOS0v5txFAY5xY
5eqf+L8EbVaF3BgRQM+nHgkBmva/KMbtOzlsEEAeDLAxv7b0v4Qk55JGlg9A
CiDmz+mq8r/MMQunDTkOQGxUhZioqPC/Y/8fgjfiDEBgw9/LHpLtv+ayEQt8
ogtAIj3+UcWB6b982xuNs0cKQKlos+G7tuW//ukCvQUECUBq87Fci5rhv5Rt
AuZKpQdALn4FWQYj2794sfLV8kwGQBN51AuWm9O/Sdu/c7ULBUDXZGwqr+PG
vy16pQprrwNAd3oqjsmVrr/+/mdPO2oCQKqPOECkMK0/HkQbW24rAUCOaYHW
YILHP6D8zb8oo/8/DfRMO6xR0z/ePB8lqh39P+B0xjR2hNs/QmehfBFi+j/u
uU3Cd8jhP0QSBWI+s/c/poehYGSJ5T8fiSKjoDL1PyX2qxN4m+k/IOpw1uh7
8j/esh+9O2jtP/Qt8srM5u8/VZfgiOuQ8D/kiMUEU+/qP56ljL1MlvI/Irj6
IqWL5T8EW23tBXn0PxJ/o/hhhOA/zmCpp1KE9j+cNFxl1SHWP7UNGl33bPg/
8DSxkHjnxz8mmiHoB0z6P4AssC2Wi58/+naE/atT/D+g2L1zY7XBv+v6Gw6o
OP4/AKyxZ0f10r+gZ4fUGyMAQBjDwExF6N2/kEHMjBklAUDg6yR9FlTkvw5v
q0LDFQJAgN51nJ9X6b++RLi9thoDQNT8ZNdcx+6//W1fNlYOBEC+QXCtV+3x
vwEH0pkr/QRAcoRMYTtq9L82SHLCSgAGQADd9yI5Hfe/+tys6BXyBkC0aemI
AaL5v0RsyJBN9gZAJD2InkCt+b+N++M4hfoGQJIQJ7R/uPm/IBobifQCB0Bw
t2Tf/c75v0dXiSnTEwdALAXgNfr7+b+U0WVqkDUHQKSg1uLyVfq/LsYe7Ap5
B0CU18M85An7v3hVOpRCfQdABKtiUiMV+7/B5FU8eoEHQHJ+AWhiIPu/VAON
jOmJB0BQJT+T4Db7v3tA+yzImgdADHO66dxj+7/IutdthbwHQIQOsZbVvfu/
EkrzFb3AB0D04U+sFMn7v1zZDr70xAdAZLXuwVPU+7/v90UOZM0HQEJcLO3R
6vu/FjW0rkLeB0AAqqdDzhf8v2DEz1Z64gdAcH1GWQ0j/L+pU+v+seYHQNxQ
5W5MLvy/PHIiTyHvB0C69yKaykT8v4YBPvdY8wdAKsvBrwlQ/L/QkFmfkPcH
QJqeYMVIW/y/GiB1R8j7B0AKcv/ah2b8v2OvkO///wdAeEWe8MZx/L9o72Tw
"]]}, Annotation[#, "Charting`Private`Tag$17567#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8DyTUDcOI4TQBT7GiY7
/AfAB4zvEIyME0DERqVcdvgHwBzKnkXfihNAJt65yezwB8BIRv2uhYcTQOoM
46PZ4QfAnz66gdKAE0BwajVYs8MHwEwvNCdscxNAfiXawGaHB8CoEChyn1gT
QJqbI5LNDgfAYNMPCAYjE0Cf34hvUQkGwCjVPNzOrhJAFtBTTykVBcDseLM/
S0ISQMhQU0TLJQTAdAclkOjXEUBIKSV0IyIDwFgS9IiBZBFAOq5cps8vAsA1
vwwRzvgQQPqKZhMyKQHAbuiCQRaEEED196SVXicAwGz8815/ERBAxCKSNL5t
/r/GZF0XOE0PQDsFf7MrZPy/bcmNwWhlDkCUQDc3QX36vwZyUYoAjQ1AY5xY
5eqf+L8q8Aot2rgMQM+nHgkBmva/BGd/IKvSC0AeDLAxv7b0v9IhhzLj+wpA
CiDmz+mq8r9Y1UmVEhMKQGxUhZioqPC/Z14C0oMuCUBgw9/LHpLtv2krTi1c
WQhAIj3+UcWB6b8i8VTZK3IHQKlos+G7tuW/z/ruo2KaBkBq87Fci5rhvzP9
Q7+QsAVALn4FWQYj278g1Y60AMsEQBN51AuWm9O/AfFsyNf0A0DXZGwqr+PG
v5kFBi2mDANAd3oqjsmVrr8kXjKw2zMCQKqPOECkMK0/OYxUDVNfAUCOaYHW
YILHPwazMbvBeABADfRMO6xR0z+KO0QPL0P/P+B0xjR2hNs/eAKbSclw/T/u
uU3Cd8jhP3l03Tfnpvs/poehYGSJ5T9gbkZj0/v5PyX2qxN4m+k/tlklMK4s
+D/esh+9O2jtP/LMKjpXfPY/VZfgiOuQ8D9D6xv4g9T0P56ljL1MlvI/AvuC
V58I8z8EW23tBXn0P6iSEPSIW/E/zmCpp1KE9j94NyhkwhTvP7UNGl33bPg/
bFl8Wg+w6z8mmiHoB0z6P4bRp7hjXOg/+naE/atT/D+ALL9ZlcDkP+v6Gw6o
OP4/RpcjdWNi4T+gZ4fUGyMAQNDJ56YdeNs/kEHMjBklAUBcETczg03UPw5v
q0LDFQJAEPFAaEM8yz++RLi9thoDQMCVhuvqebk//W1fNlYOBEAAhsNw0nx5
vwEH0pkr/QRAQFXk+kkhvL82SHLCSgAGQJCtrlvudcy/+tys6BXyBkCoeFvo
YvLUv0RsyJBN9gZAKFdYd2AQ1b+N++M4hfoGQKg1VQZeLtW/IBobifQCB0Cg
8k4kWWrVv0dXiSnTEwdAmGxCYE/i1b+U0WVqkDUHQIBgKdg70ta/LsYe7Ap5
B0BYSPfHFLLYv3hVOpRCfQdA2Cb0VhLQ2L/B5FU8eoEHQFAF8eUP7ti/VAON
jOmJB0BIwuoDCyrZv3tA+yzImgdAQDzePwGi2b/IutdthbwHQCgwxbftkdq/
EkrzFb3AB0CoDsJG66/av1zZDr70xAdAKO2+1ejN2r/v90UOZM0HQCCquPPj
Cdu/FjW0rkLeB0AgJKwv2oHbv2DEz1Z64gdAoAKpvtef27+pU+v+seYHQBjh
pU3Vvdu/PHIiTyHvB0AQnp9r0Pnbv4YBPvdY8wdAkHyc+s0X3L/QkFmfkPcH
QBBbmYnLNdy/GiB1R8j7B0CQOZYYyVPcv2OvkO///wdACBiTp8Zx3L80Dk2o
"]]}, Annotation[#, "Charting`Private`Tag$17567#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8CZamO3ddMJQBT7GiY7
/AfAMCzmLCLRCUDERqVcdvgHwA57qqDOzglAJt65yezwB8DqvvWCJ8oJQOoM
46PZ4QfAeciIMtnACUBwajVYs8MHwGeMLz08rglAfiXawGaHB8C89Or8AIkJ
QJqbI5LNDgfA3XvLCIU+CUCf34hvUQkGwOm3+zjrnAhAFtBTTykVBcBPcmh7
5AUIQMhQU0TLJQTAHM7DOrFxB0BIKSV0IyIDwPIC8vjD0AZAOq5cps8vAsB7
Ey3VaDoGQPqKZhMyKQHAHtMvw0OXBUD196SVXicAwCCL/obf9gRAxCKSNL5t
/r82NL1AC2EEQDsFf7MrZPy/hzusllC+A0CUQDc3QX36v2VdWhYhJgNAY5xY
5eqf+L8e74jRqJACQM+nHgkBmva/1AEetSPuAUAeDLAxv7b0vyX3mdYiVgFA
CiDmz+mq8r+qD17z7rAAQGxUhZioqPC/vj09ukEOAEBgw9/LHpLtv7C+SrgX
7P4/Ij3+UcWB6b8Civ9SsaD9P6los+G7tuW/pAyqkRJq/D9q87Fci5rhvwCd
U4/gF/s/Ln4FWQYj27+f8+kx98n5PxN51AuWm9O/XasQ4YeQ+D/XZGwqr+PG
v36EF9JEOvc/d3oqjsmVrr+kPXrtDvj1P6qPOECkMK0/BmoaJEa59D+OaYHW
YILHP3uxs/2gW/M/DfRMO6xR0z+vu14xHxHyP+B0xjR2hNs/z8hgnG2l8D/u
uU3Cd8jhPwpS+QFxc+4/poehYGSJ5T8uzvkmq77rPyX2qxN4m+k/VI2Ad5C8
6D/esh+9O2jtP+h9BAZm2OU/VZfgiOuQ8D+cmwDm2OriP56ljL1MlvI/YGj7
6Oo63z8EW23tBXn0P6DIl2Fhytg/zmCpp1KE9j+0yAKTE3XRP7UNGl33bPg/
0Lh/8Yd4xD8mmiHoB0z6PwC8qJKhK6Y/+naE/atT/D+guZr5cRq3v+v6Gw6o
OP4/cP2xMBFbzL+gZ4fUGyMAQNi5nBwQute/kEHMjBklAUB4rwkgycHgvw5v
q0LDFQJAVF7Dlh985b++RLi9thoDQPRgDcKuw+q//W1fNlYOBECEDNhZrNDv
vwEH0pkr/QRACO0ATlxu8r82SHLCSgAGQMhxpg2tNvW/+tys6BXyBkCq2EDR
Q9j3v0RsyJBN9gZA9PrMtxTk97+N++M4hfoGQGawCizm7/e/IBobifQCB0AC
G9e7igf4v0dXiSnTEwdAXmBvbNo2+L+U0WVqkDUHQJILubCTlfi/LsYe7Ap5
B0Bo/CrSalP5v3hVOpRCfQdAoiA7m0xf+b/B5FU8eoEHQECOleQua/m/VAON
jOmJB0BgnZT29IL5v3tA+yzImgdA6HK+DIey+b/IutdthbwHQMjd+arCEfq/
EkrzFb3AB0AyEvpJrB36v1zZDr70xAdAytkZY5Yp+r/v90UOZM0HQJ5LOQJs
Qfq/FjW0rkLeB0CWXpLpHHH6v2DEz1Z64gdA5HonTwp9+r+pU+v+seYHQJoN
5yv4iPq/PHIiTyHvB0BmPHFJ1aD6v4YBPvdY8wdAHnqCicSs+r/QkFmfkPcH
QPZwSz+0uPq/GiB1R8j7B0ASP3BqpMT6v2OvkO///wdALlSVCpXQ+r/UQmug
"]]}, Annotation[#, "Charting`Private`Tag$17567#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8AOyeIaXkAeQBT7GiY7
/AfADlNmWIs9HkDERqVcdvgHwGwWyZa4Oh5AJt65yezwB8AYSi0WEzUeQOoM
46PZ4QfAiHB3H8gpHkBwajVYs8MHwPpkS1wyEx5AfiXawGaHB8CkXbyAB+Yd
QJqbI5LNDgfAvnNpg7SLHUCf34hvUQkGwJJzvKHpxxxAFtBTTykVBcAWxdiG
KREcQMhQU0TLJQTApvTSmRBeG0BIKSV0IyIDwDoilNLemxpAOq5cps8vAsDQ
cjZMuOYZQPqKZhMyKQHAYlYl4oAiGUD196SVXicAwIVsg/n5YRhAxCKSNL5t
/r/6GtFlf64XQDsFf7MrZPy/2wQ3KQLsFkCUQDc3QX36v1HypKeTNhZAY5xY
5eqf+L+Z1qd02oQVQM+nHgkBmva/6uSn0jHEFEAeDLAxv7b0v8wSnGGbEBRA
CiDmz+mq8r+cmRyYKE4TQGxUhZioqPC/ZMTkZYOPEkBgw9/LHpLtv0QGENb2
3RFAIj3+UcWB6b+mkLIVsx0RQKlos+G7tuW/ED4/vJFqEEBq87Fci5rhvyYl
ebC+UQ9ALn4FWQYj27+MyKduV9YNQBN51AuWm9O/Gl1dxlt1DEDXZGwqr+PG
vwi2g0fe9wpAd3oqjsmVrr+sQEvTApUJQKqPOECkMK0/Mm8eqpI6CECOaYHW
YILHPz7l1fmkxAZADfRMO6xR0z+km1M8zmkFQOB0xjR2hNs/paWGraP0A0Du
uU3Cd8jhP5ojl7qciQJApoehYGSJ5T9alIRQlToBQCX2qxN4m+k/1JLiy+6n
/z/esh+9O2jtP6ynWxcMFf0/VZfgiOuQ8D/4YG1rHpv6P56ljL1MlvI/9EYA
fUT79z8EW23tBXn0P5zkSHcsmvU/zmCpp1KE9j9vhB8YbhzzP7UNGl33bPg/
y+J/a+Hg8D8mmiHoB0z6P5jkffYwku0/+naE/atT/D9i2Ke0kEHpP+v6Gw6o
OP4/RJippgBx5T+gZ4fUGyMAQMxhV3ePh+E/kEHMjBklAUCQLJD0RcrbPw5v
q0LDFQJA+FvnwtxV1T++RLi9thoDQMi2y5oOSc0//W1fNlYOBEDwdL1ep0bB
PwEH0pkr/QRAAExGW2GKpz82SHLCSgAGQAA4IFp0d6i/+tys6BXyBkBwgkhn
mAnBv0RsyJBN9gZA4FWlYNI5wb+N++M4hfoGQNCPdewHasG/IBobifQCB0AQ
Bo7JZcrBv0dXiSnTEwdAsHHD++yKwr+U0WVqkDUHQPBEZUcsC8S/LsYe7Ap5
B0AAGLQXhgjHv3hVOpRCfQdA8Nvw/Dg4x7/B5FU8eoEHQIBU29/nZ8e/VAON
jOmJB0Cgpl6rOcfHv3tA+yzImgdAAJEHsa2FyL/IutdthbwHQOBmGy3aAcq/
EkrzFb3AB0AwqddiTjHKv1zZDr70xAdAEFKXx75gyr/v90UOZM0HQLCOFyqU
v8q/FjW0rkLeB0BwjUamEX3Lv2DEz1Z64gdAoJBbp2esy7+pU+v+seYHQHDg
HO+528u/PHIiTyHvB0BQNUdeUzrMv4YBPvdY8wdAMC17i5ppzL/QkFmfkPcH
QBBc8QremMy/GiB1R8j7B0Dw0IjfHcjMv2OvkO///wdAkA0eDFr3zL+WZFHh
"]]}, Annotation[#, "Charting`Private`Tag$17567#4"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.034013605442176874`],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}}}, CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {
1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYC4hkzgeCnjgOImrlSwQHGf+Aa7zhLUMlBZl6c
5mkBXYfK+z9uGVsrOehrrRS+8ETX4cOi9QpnPZQcju/a0cu2Qc8hPQ0IwhD8
ld9eVpx5oOQwdQJ/ldlpHQdjELiMyW/h9V8/pRXBb2A52m9ojpvPwtkln5yn
BTcfxofZD3a/pTbcfWtVnzTP49WBu18X5H4VhP9gfJj/YfwdwVYR/4+Loqrf
KOAwHeT+11oOMhvF5jMt4HFYDzLfVwPOf1O8VfT3aVU4H+z+7SoOZ0DARwDO
1/ik8nLWSxE4H2Y/jL83v+btTFGo/86pwN0vMfUKZ8YiVbj/GECgQQ3ufxgf
Fj5PEhdeM9FXhYdfQkiQ+oKTKnA+2N6bynB+t43nrrRPSnD+bU3ZNf+blRzc
1xxdznBDyYE/NuC+kbki3HwYH2a/cOWkkrMiSnD3gc1/qQR3P1gfgzLcfzA+
zP8wvgjInBYROL9dgV31zBZBiLuClR36I7r9GQv4HX69fX3AklkFHt4b9PIW
M+5RcXhR+zj7/BpOqLyaA7cjn9cMTQ4HKVB6vqAO54PjZY0mnA+LX5j+81fD
3ujv1naIUY2QOfeHx0G0x+sVyxQdiP0GAvD8Avb3EyE4HxQcac/EHNDzFwCY
s2h3
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {
1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxdlF9IU2EYxo+ukmEOUmQ5L5qHBplh55vHFUbxFVTiRUFR2UWCpaldpNSC
klW0pIsW2UUxpSGRF4fFzAmFdNGgRCrctNBA1h+lIuaFEFLDMLOdbzzvB73w
XfwY532f5/2zspPth5otiqLkZN6RzMvNvHr78DvFVs1XzNiwjoO9hjf6t3st
X39vytqaW82H66LbQ7/zedOJj/ssPTo3ksZXNpLPN80XxLRyncfNuCX5RSDm
109Z+XL6wmxoSOd+++XVbTeslK9XhJU/2bb4sqlTsvh9QXLd67yd9/d66PvU
mYp0MOGh/GDU9z4tXhpr8JA+bXO46O1PqV/om5P+wPAPFuXDTuLn7b753mKV
8l2aWUxW7VCp3o+Hg85ErUp6Wk5n4qjkcHruYnxW5clSX6Pb5eFVZkyq5BeM
foCnCxd2T6yRfPuwd2NwQuf7I6OGMq1Sv5EfjPqYF/Sh/9CPecMfGP7BIt93
R9bPJ51HCrfYWj47sn2P6LzLmeeKTzn4m5E9A20HJBup2soV5ibun4nZQpOM
uLSvoXzsAaN8dlPfOUb1wNADht7jpr4rjPwUHBy825xi5PfaqtFudsxN/QCj
X2J+jxn1d6jybH+OT7LQa5HcEQl8aL2jEV9dqukYr9doHl1CwFbKD0b9P+Y9
lGmkj/u/vOoJaKRf6Atq5A8M/2DsKxj7jHzYd9TDPUAP7gWMe3J9u96XqNHo
3pAP94h+gNEv8Hmzn+OMvke/kR+M+pgX9GGe0I95wx8Y/sGdZv8qSrL7FGV8
wNynXSX817PkzeX3krGPYOwrWPh/JBn3BsY9oN7//5//AFqbSus=
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4rrfVgXnblg4uK05upxhhoTDTBCQtHSouv/j
lvFqCYfiraK/T8dZOhiDwGYJh+tCnxzPH0Pw/3wrfTCn0ArO/w8C663g5s0A
mXfTykG4clLJWRcJhw16eYsZ31g5rBXS4UuPE3f4siEge9Z3K4cY1QiZczai
DmdAwMYazvc5wW4729Qabh4uPtg8O0k4/4FrvOOsi5h8mPlgOkcWbj+MD3Mf
mN8jDXH/SysIbSntcKRtefipR1YO6WlA8EwK7j+we+dIwf1vAgqPYCmH54kL
r5nkWzm4g9xrIQUJv2uWcP6Xnbe6/pYi+J9A7lG3hJhjL+UAix+YeTC+84Rm
obRfig6nDjutzZSzhPCllCD63S0dwjnF2o3llSDmnEfwS0DxaWeFKr8fGn/M
Sg4fQPrZoeF5TxGq3hoif1gR4l5Xawfla4+CGdYg+ODwdUTw9+bXvJ0pqgDx
7zRMPti9WooOElOvcGYssob4n0PJwb7p0fEZu6H2XVZy2GL+41CKFzS+7ig5
3JCuSTRitXZY+e1lxZkHSg7LX3jo/V9oBedPn8BfZbbaEq6ey021lMnKEm6e
+lvefQYvLeD8/uASlenrEfxoBcePyTm4+Rog/ZLmcPtgfHB6CFNySIm948bc
Ye7wYdF6hbMeSg4rQO77aO5QCcpP1koOL7K0v03/aw4NDwQfnO9WKsD54HiR
F4TzS5aXbPjXzwM3b7vXBos5P7nh9i2/tfyx4WFuuHsg6RfBP9i9r8kkmdOh
x+sVi8lCc4cm8VrWzDZOuHlg+2dyQsIrywLOFwfFzyME/xYo/E0t4fqfg9y3
1xJuPowPsx9cfvhZwt23v1bWIv2JBdz9sPQM8x+MD/M/evkEAD5pGh8=
"]]}, {
Thickness[0.034013605442176874`]}, StripOnInput -> False]}, {
ImageSize -> {44.0931407222914, 24.508064757160646`},
ImageSize -> {29.39542714819427, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {30., 17.}, PlotRange -> {{0., 29.4}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {-1.7777776145124715`, 7.562858982173806}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox["", TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )],
TemplateBox[{
GraphicsBox[{{{}, {},
TagBox[{
RGBColor[0.9, 0.36, 0.054],
AbsoluteThickness[1.6],
Opacity[1.],
CapForm["Butt"],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8D4zufqq5gJQBT7GiY7
/AfAMo5dbl2WCUDERqVcdvgHwIe1I/AOlAlAJt65yezwB8ChTZ/ucY8JQOoM
46PZ4QfA8g1G1zeGCUBwajVYs8MHwEOV5FbDcwlAfiXawGaHB8DjHfIL2U4J
QJqbI5LNDgfARNsRMf8ECUCf34hvUQkGwB70/LjFZAhAFtBTTykVBcCMCQ4j
Cc8HQMhQU0TLJQTAOJOzvxo8B0BIKSV0IyIDwI5qBFePnAZAOq5cps8vAsBz
bwrsfwcGQPqKZhMyKQHATCUMIcRlBUD196SVXicAwO9kIJLExgRAxCKSNL5t
/r9RfHP2PjIEQDsFf7MrZPy/jDHWkPGQA0CUQDc3QX36v3bw1oYZ+gJAY5xY
5eqf+L9+5MmH9GUCQM+nHgkBmva/yvb+u+LEAUAeDLAxv7b0v73EurA/LgFA
CiDmz+mq8r+Ll34di4oAQGxUhZioqPC/KU0px7XS/z9gw9/LHpLtv/zuMiga
pf4/Ij3+UcWB6b/DcsiCzFz9P6los+G7tuW/Xe3FJR4p/D9q87Fci5rhvya2
nOMq2vo/Ln4FWQYj279bmPcEg4/5PxN51AuWm9O/c6WDeS9Z+D/XZGwqr+PG
v2pG8MRhBvc/d3oqjsmVrr/qeqxnfsf1P6qPOECkMK0/VOowaxCM9D+OaYHW
YILHP7zHhWgtMvM/DfRMO6xR0z8SU2VWS+vxP+B0xjR2hNs/jjrkK6aD8D/u
uU3Cd8jhP9no5HMCOO4/poehYGSJ5T8ijkmuz4rrPyX2qxN4m+k/RW7kbn2Q
6D/esh+9O2jtP7sopqJKsuU/VZfgiOuQ8D8lgj06esfiP56ljL1MlvI/jstJ
Kt7o3j8EW23tBXn0PylonIo5Rdg/zmCpp1KE9j+G1d4UkkjQP7UNGl33bPg/
UVHEXfTXvj8mmiHoB0z6PyE+QqkAIJq/+naE/atT/D/ydD1XCaTIv+v6Gw6o
OP4/SRkq/fWK1r+gZ4fUGyMAQNRbExnR4uC/kEHMjBklAUBgmq1OkHPmvw5v
q0LDFQJAcz3/AVuu67++RLi9thoDQE673BOnsfC//W1fNlYOBEDcekGUoF/z
vwEH0pkr/QRAZdZn2qMD9r82SHLCSgAGQD3JI3PR5Pi/+tys6BXyBkAWZG5q
CZj7v0RsyJBN9gZA6Jrr6R6k+7+N++M4hfoGQFU8XqY0sPu/IBobifQCB0D5
wOvVYMj7v0dXiSnTEwdAFaYfDrz4+7+U0WVqkDUHQAGmqdZ9Wfy/LsYe7Ap5
B0B7hy1mLhv9v3hVOpRCfQdAlrgyaUsn/b/B5FU8eoEHQITEbKdoM/2/VAON
jOmJB0DkO0fVo0v9v3tA+yzImgdA8GsM9Rx8/b/IutdthbwHQGvGizga3f2/
EkrzFb3AB0DteEjoOun9v1zZDr70xAdATB5Z0lv1/b/v90UOZM0HQIX0PVWe
Df6/FjW0rkLeB0B4pIsUJj7+v2DEz1Z64gdAt75dlUhK/r+pU+v+seYHQH0k
E1BrVv6/PHIiTyHvB0CAfu9ysW7+v4YBPvdY8wdAJT762tR6/r/QkFmfkPcH
QGfrr3z4hv6/GiB1R8j7B0BvagJYHJP+v2OvkO///wdAoqXjbECf/r9FeGoE
"]]}, Annotation[#, "Charting`Private`Tag$18022#1"]& ],
TagBox[{
RGBColor[0.365248, 0.427802, 0.758297],
AbsoluteThickness[1.6],
Opacity[1.],
CapForm["Butt"],
LineBox[CompressedData["
1:eJwtlXs4lHkfh+d5MA9iHCYq7cphp4N0fBWl/L6FEtlCJm3ULFKU5Q2RwnY2
DjXbQUUlHUTO642l+E4ZlpA21KolmlAoijGTw/T2Xtf7x+e6/7v/uq/rY+ob
4r6LZrFYYd/2P/oViAa/fmXE94fUj27fy4Wp40azbScYsbJBGVAUyAXJutve
BxSM2ODuiAuzhwuzO8rqBoYYcaBvp0GxPxf6tKQ327oY8e7m0mzNHVwIDVrm
VVzFiG1LAv4q28yFWN5LccApRsw7LDGZvpwLqWnmZxs5jDiR/Su2sLiQ/jo+
xE2DLWadSzL2StYHw6cem+YZqIkTNkHhUVN9qN3s4VDPUxWPK4nkcakeOM3j
hZubqYh381q/fOeoByvzvTObFtFi10N6voYvdWEsIYC7dB4lbnWS9s8I0AWZ
/NaFHXNY4hhdeijinQ5IzM5aVQYr0XkwMZg9VQds1eKK5/tPIB9hYc4CDpwH
a+s1MWOY0m+/5RpfG/yueHX3pSswcKIjtuGYFjTdMdagUkfxxuStAU76FDDW
KlyCJSMo9SnD9DpN0DTpaXp/9zPOy1O0OrzRgH1bTlzKyhrCu2+ahn74qg6C
qtf1xmc/oHqELNRjvjqYrVa6VR95j6HDjlYpjgxk7ynuul/SjZov33rPCWFD
0HCRd2JqF0qy8msbTqrBwli1bWzzV6gp0F2Rd0MVuAdbpqSkNaP+v8WcfxpV
4IX/PosCaQ02R6fNmdVLQ2X7ZuuSzBqMMzof/FBKQyZ/mUNFYA2GVScV+3XS
EO6k9KkfrMbH02JJVhsNupai33rHJehyQ7B1SQMNG4aLFbOmVuHXRt4p+yIa
IlTkyabCSnSyLOzZfYgGBxneWaRTia0NWZaaUTTo98Y/XH2hAhfvz9ifG05D
/mMj2baMBxhWflY5FExDz2923mfLylHbM8IwWkCDl8lJC5W+ErwvXLkuyZGG
yGiL03UX8nGwXXK7UIeGHz8OPS/IzMNTPU0v/LRomO1bOiulNBdd3r3UmKZB
Q+sGhyLftrv4x5eh4Biahn/N2NEy/t0dbGG+X+4so6AjxHyZt1M6JvIiaqQv
KUjeWlgzN+gqVln8qkh5QcEqstpLlpiGKasSLZxbKEjlbD10uukimmzKOF3Y
SAE/L+GhmC9CZ/9GfoyYAk2LRZlGn5LwYtzf8YsrKNjzxamu2EqIIT9Jy6Vl
FJhfOqzTc/8Iqod9MXYupoBustylVB7C5EBVt8kCCiqCBTmLT4ZjRpvOscJc
Cj5NnyutNgpCvZUz7/llU/A01/j1Fnc+Pq2f02uYSYHqzy4m8fZ2xL9a/Zrg
BgXZC29EapX7koSdV4zDrlLQ3hZYkPFjFGnxDOdcOkdBZIGry8D0RHJEpTqr
K44Ch1RyWS/2Clkw8awmzIuCu2ds4NbiPBL7Jff6OY1vfkn6A8YqnziI1rqv
VKVgp4K9Yq91AXnl83aiU8mChMK+6TPSC0mh4frVC0dYYDejTK/z9u9kQOYb
VNvBgsw+T5VfikuIW2ld+HgxC6KSz/QIn1QS9nm3Nd47WHA68MhzwdE/ye6c
1o+6AV+J9shG21y3ZtIaHZr0sXuCdIbXWB04/orImB/0yKIx8rHM9VFkbRdR
CyuP9DkuJ5mnMgT+wm5y/Zjp7Eq2jPBGc7hRae9J3LVHVXXun0nH77MqbPd8
IOzbnf7tlweJ58XO+H7REOk/GXH1VXYfuXY7qWJjymcSf9MjdRO/m6huD/6g
dnCEmBWoXLXZ30meCLLvuB8fJfxbfhWC8ufknraRj3yfgmgMX+DYy+vJ7FTT
d8zGMTL9Qb1hk7SUjB04PpnjMUH0b9od+/T8FvaPzeRk2SjJFMub1vdPV+P1
3adaZpqz4B5O/FLb34yiNQ1JM3gU5Ln2v927tB05ITlrqwy+dRz//IxAS4qV
Dn9UlBipgDC0qY9M9uJk8M7lfI4qXBFqX7UuGkCKeXZ5/qQqbHdi2iMLhnC5
0/5Hziw2NKivaHgDwzj2T+47g89sGGGHt3zIkaHDvlqR6ygb0pwdeZISGSaP
S21OjLGBP7zgz9SHMjQxmikcoRkY1yqbcHohw/VbhfOauQysNpOZZ9OjeP6v
XUGiZQzol1lzoraN4sIa4wHNgww8dVdDV0aOUZ4rz6+NYYAX9/fBBfpyfPjW
c1X0EQYWiAyitb+X4xaV5KT3QgZse0M2PFkqx0MwblmbykDlTgsjjx1yrC1/
EXziAQPdF1grAu/JUd952KBCzEBotJWZq1iO3m2cyhEJAyyb4y5L6uU4KHfk
+DcyEHBxkc9YpxwNl/0nf20HA1Oan4Wd0VKgQNLEj37DQNcslmfENAVme/Qr
i3oYcE9+FLbdTIGr9pttMh1k4GJq3Z65Ngo8SdnJvYYZSIkJtdOxV+BT0bZ0
kZwBT0Xo5lFXBRqZRKyvHWdAOHb4WruXAv//j+BSsW5utZ8C/wvStXpl
"]]},
Annotation[#, "Charting`Private`Tag$18022#2"]& ],
TagBox[{
RGBColor[0.945109, 0.593901, 0.],
AbsoluteThickness[1.6],
Opacity[1.],
CapForm["Butt"],
LineBox[CompressedData["
1:eJwtlXs41Pkex+c3mF87LpGGMZ0lHHKJVYiwvh+XXVbJipClrFVJZHNaxEiW
iEFzOlYtYWsbl8Z1lctG30njMlRsUhiN5LIuJUoMotN5nvPH+3n/8Xrer3/f
2sGR+49QKRRK6Kf8r3+o4r75+JEUKEbxmm8lMWHzKkvf9gMpeP91uZtDIhOE
X/MCoqWkwOXN9mcP2UzQlzSKXs2RgmOO+bMTMUyYVhj9fWCEFMSGGahrnGTC
j2GWfrX3SUHb35P7EvyZcFZvUHA0jRR4lmr7fWXOhLx83UsPlUjBxRq3zt4x
dSgavhDp+RlNoO1kX1Jnow5qPV4ehgw5gWK8VXBfvhp0fOvl3KUnKwji50yT
FDVwNdQ7rasjI3CYPixZ9mGATWVAcfcXVMEDX/7KtsbNsJJxVHWnISFwvEHl
qChthvdLN345tI0iUG45WEE/qgpCnUsWdyPWsRQTdiDaBLZyibXGIR+waK23
3khrE+SAlZVDwgo2u9ht5nlOBX646jc+XSTFumynw6ljytBdovkZkbeI1e12
JobaKoOmQvUOXLeAdz8rdFe03Qj0rRPdUzff4u0ppdM5Y4oQ7n3+SmnpHNa6
9S9smKMAQfeHuzQvvca3hZLkXf7yoPPlumdr0hQuDFw1iZajQ1lo7cidunGs
wLnEMW7fAGHvagI4eSP4Z06SdC2CBNOzcgdpumLsVeHkKWLRQPXME/nc/F6c
oHmcTpfIwrOQcKOq0TbcqN9r6ZwqAzFxRtmiXypxomNSyrwzFfbNzj2tKq7A
DacGBbJABf3geq3c+nLc35q7pG5Lhb5vnGuCB25iLt/c234HFcw1Dj1Z/UcJ
jpsSizI+p4IkUtcywLUIx3zfzdNZJCDLt7rNIKwAD2xrTbOcJ8AOfen3npOP
DRn0ENdXBOQp+cZnd1/GVhK2/MmXBPhUZNwT+HBxZuEYo/ERAXSjL4pZ85lY
22dnZ5eIgNBlV1GtRTqe02qLlQgJ0L3C3jhxJwl7dzYIZe4QQO3efmR9PR6r
cBnBanUENEcE8c1ST+PnNrXLBjUEzDMNRltZYTiXx+XYlhPQU6457L3fB2dn
89X3lRAg+/2erRec7FH9ERONzusElJlej1H4MxjVJdvsSSgi4PnA8apr+2KR
W4tn1egVAmKq3Pe8YnLQZUlCTDWHAOc89KvK2aso6WEf6XaKgJsXreGGWQWi
qKcaJNh98guLmkiLSpTWU8CftCbgsJS2+4RVFSph3zb1tiQgo3qaqVFUjfyH
xiyMTQmw12hUecH7Ay1fd3IY0CKgePqAzMnaOpSiT/hbyhAQm3VxIv3RXdRo
zea8FlEg+3jS06Cf21FmQNRsoC8FFBf22pZ79qLfBg+as2Q+ohen2yyiU8Qo
dPSfytfM19Bso3tLTMcIar+ltVgQvoqK064FhaSPo1TX+mIr4TLSW+SrxuZP
oY0NN54vLy0hyR9azbahr1HvhOmwn9siOnD5xYUZ7hy6J5mcMuEtoEJeZvPe
3LdIr04aZzz0Fsl+F/Fa7swCSnThPW3dMY8eBZWV7E9ZRGXRHqdU2mfRbUVW
4FK4FFX2Z3X2HJtB+nnak+TeFSTuNt7F1phEK9Epa3yvD+jRuZ8qY5PH0MzK
FqVS63U0UyK9U2k0gn47lvZkiy4FPEw8yk9sFiOuw4NMDT0Czu4Ml9v/vhcp
RfId7zOoUK0mVfG91onuOjc017FkwHUu6/LVqAa0FnF4l4+SLBh2OPg5FiRj
gnz8q/GaLNykX8/LfNyEd7lGtbhRaOC9IdLxdP0DvDJUPsl4SwNahtd84IY+
7BzewXVfpMFfXU0Bxvp9OGt11Pr8Cg3+rarfIXXqw1tZW9IXqCSY8aSF/0ns
wy6+6Ya9qiR8c69gr2ixD+f8dSSMa0lCxurfJRbjT7Fpm+Yr+hkS4k+xD8m3
9OPYAzY5jgkktDePi/qH+/G9sQN2cUkknCA8LIvX+rG3TFbmVDoJQ1naCg67
B3A8rG7vyCNhvbKtMbp6AHf8+SzifBMJx0aUGS8LB/Emt3eMZgEJ8tpx56qa
BnHAgNLdBSEJuSGjM+zBQfxm6SulkIcknJ+63aKuJsZqlrcqHSWfOOO7H92z
xDhI2O0T95KEGX+hmMUX4zKvmfWaCRJqfzdxmewQY7soHQ/tN5/21hTNZNkh
nErYL/m9I0GOfTz9W50h3MM9WMRdIkEZP174HIYwa+tPLh2rJGyh2QXNBA7h
//8NlLnzuhrih/B/AcGSG3M=
"]]},
Annotation[#, "Charting`Private`Tag$18022#3"]& ],
TagBox[{
RGBColor[0.645957, 0.253192, 0.685109],
AbsoluteThickness[1.6],
Opacity[1.],
CapForm["Butt"],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8DhJMRyGkceQBT7GiY7
/AfA+ybc+z9EHkDERqVcdvgHwCchUoZlQR5AJt65yezwB8BhcFmfsDseQOoM
46PZ4QfAY8Tf4UYwHkBwajVYs8MHwHq6HalzGR5AfiXawGaHB8AnpPlCzusd
QJqbI5LNDgfAwJp3uYeQHUCf34hvUQkGwMPPPRC0yhxAFtBTTykVBcDE/HAr
FxIcQMhQU0TLJQTAFTy6QjRdG0BIKSV0IyIDwCpdgfIcmRpAOq5cps8vAsCG
VXOOPOIZQPqKZhMyKQHAdC2dZzMcGUD196SVXicAwFc1gnPxWRhAxCKSNL5t
/r9qjfws56QXQDsFf7MrZPy/FWyGX8jgFkCUQDc3QX36v5+QnfrjKRZAY5xY
5eqf+L9RhIc9zHYVQM+nHgkBmva/diyXdrq0FEAeDLAxv7b0v4SjOlvm/xNA
CiDmz+mq8r8rCDTeMTwTQGxUhZioqPC/DNJne2l8EkBgw9/LHpLtv73oGf/k
yRFAIj3+UcWB6b892dESsAgRQKlos+G7tuW/gh04jslUEEBq87Fci5rhv016
+3jEJA9ALn4FWQYj27/QEnr9QKgNQBN51AuWm9O/cwQIH4BGDEDXZGwqr+PG
v8k4ZOV7yApAd3oqjsmVrr/cyd+DcWUJQKqPOECkMK0/90QCaiELCECOaYHW
YILHP61+LRuylQZADfRMO6xR0z9LCw+DqjsFQOB0xjR2hNs/5b4XBsTHA0Du
uU3Cd8jhP5nkb0FgXgJApoehYGSJ5T9B41i4NxEBQCX2qxN4m+k/wPg0MfVZ
/z/esh+9O2jtP8yXLjUWzPw/VZfgiOuQ8D8mwLFkf1f6P56ljL1MlvI/R59u
Fb299z8EW23tBXn0PyMJuCZoYvU/zmCpp1KE9j8CygyTvuryP7UNGl33bPg/
GUfBXYC08D8mmiHoB0z6PyMcGb/WQu0/+naE/atT/D9gboCmJvvoP+v6Gw6o
OP4/y5D8PMwx5T+gZ4fUGyMAQNexHgMpT+E/kEHMjBklAUAxPMGXZGXbPw5v
q0LDFQJA7gThIVH71D++RLi9thoDQCmqNkCAqcw//W1fNlYOBECOp7B24brA
PwEH0pkr/QRAMh0we7uopT82SHLCSgAGQOdNvNqnBKq/+tys6BXyBkACa7ee
DFnBv0RsyJBN9gZAqUvlpO2Iwb+N++M4hfoGQIyirDrKuMG/IBobifQCB0CU
/CojdhjCv0dXiSnTEwdARdExSpnXwr+U0WVqkDUHQFNm2vgPVcS/LsYe7Ap5
B0AfH2mA1kzHv3hVOpRCfQdAINNHGjB8x7/B5FU8eoEHQPmbMK+Fq8e/VAON
jOmJB0DPfs3WJArIv3tA+yzImgdAO9hWdTPHyL/IutdthbwHQOStt6eUQMq/
EkrzFb3AB0CwrdRor2/Kv1zZDr70xAdAQEdzVsaeyr/v90UOZM0HQF8ANcPo
/Mq/FjW0rkLeB0CmKjQ2ALnLv2DEz1Z64gdAuJ/arvzny7+pU+v+seYHQHms
vWv1Fsy/PHIiTyHvB0AluOW923TMv4YBPvdY8wdAHlT6WMmjzL/QkFmfkPcH
QKTF6kOz0sy/GiB1R8j7B0BvZZiBmQHNv2OvkO///wdAAR/iFHwwzb97y09a
"]]}, Annotation[#, "Charting`Private`Tag$18022#4"]& ]}, {}},
AspectRatio -> 1, Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0}, DisplayFunction -> Identity,
Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.034013605442176874`],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}}}, CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYC4hkzgeCnjgOImrlSwQHGf+Aa7zhLUMlBZl6c
5mkBXYfK+z9uGVsrOehrrRS+8ETX4cOi9QpnPZQcju/a0cu2Qc8hPQ0IwhD8
ld9eVpx5oOQwdQJ/ldlpHQdjELiMyW/h9V8/pRXBb2A52m9ojpvPwtkln5yn
BTcfxofZD3a/pTbcfWtVnzTP49WBu18X5H4VhP9gfJj/YfwdwVYR/4+Loqrf
KOAwHeT+11oOMhvF5jMt4HFYDzLfVwPOf1O8VfT3aVU4H+z+7SoOZ0DARwDO
1/ik8nLWSxE4H2Y/jL83v+btTFGo/86pwN0vMfUKZ8YiVbj/GECgQQ3ufxgf
Fj5PEhdeM9FXhYdfQkiQ+oKTKnA+2N6bynB+t43nrrRPSnD+bU3ZNf+blRzc
1xxdznBDyYE/NuC+kbki3HwYH2a/cOWkkrMiSnD3gc1/qQR3P1gfgzLcfzA+
zP8wvgjInBYROL9dgV31zBZBiLuClR36I7r9GQv4HX69fX3AklkFHt4b9PIW
M+5RcXhR+zj7/BpOqLyaA7cjn9cMTQ4HKVB6vqAO54PjZY0mnA+LX5j+81fD
3ujv1naIUY2QOfeHx0G0x+sVyxQdiP0GAvD8Avb3EyE4HxQcac/EHNDzFwCY
s2h3
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxdlF9IU2EYxo+ukmEOUmQ5L5qHBplh55vHFUbxFVTiRUFR2UWCpaldpNSC
klW0pIsW2UUxpSGRF4fFzAmFdNGgRCrctNBA1h+lIuaFEFLDMLOdbzzvB73w
XfwY532f5/2zspPth5otiqLkZN6RzMvNvHr78DvFVs1XzNiwjoO9hjf6t3st
X39vytqaW82H66LbQ7/zedOJj/ssPTo3ksZXNpLPN80XxLRyncfNuCX5RSDm
109Z+XL6wmxoSOd+++XVbTeslK9XhJU/2bb4sqlTsvh9QXLd67yd9/d66PvU
mYp0MOGh/GDU9z4tXhpr8JA+bXO46O1PqV/om5P+wPAPFuXDTuLn7b753mKV
8l2aWUxW7VCp3o+Hg85ErUp6Wk5n4qjkcHruYnxW5clSX6Pb5eFVZkyq5BeM
foCnCxd2T6yRfPuwd2NwQuf7I6OGMq1Sv5EfjPqYF/Sh/9CPecMfGP7BIt93
R9bPJ51HCrfYWj47sn2P6LzLmeeKTzn4m5E9A20HJBup2soV5ibun4nZQpOM
uLSvoXzsAaN8dlPfOUb1wNADht7jpr4rjPwUHBy825xi5PfaqtFudsxN/QCj
X2J+jxn1d6jybH+OT7LQa5HcEQl8aL2jEV9dqukYr9doHl1CwFbKD0b9P+Y9
lGmkj/u/vOoJaKRf6Atq5A8M/2DsKxj7jHzYd9TDPUAP7gWMe3J9u96XqNHo
3pAP94h+gNEv8Hmzn+OMvke/kR+M+pgX9GGe0I95wx8Y/sGdZv8qSrL7FGV8
wNynXSX817PkzeX3krGPYOwrWPh/JBn3BsY9oN7//5//AFqbSus=
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {
1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4rrfVgXnblg4uK05upxhhoTDTBCQtHSouv/j
lvFqCYfiraK/T8dZOhiDwGYJh+tCnxzPH0Pw/3wrfTCn0ArO/w8C663g5s0A
mXfTykG4clLJWRcJhw16eYsZ31g5rBXS4UuPE3f4siEge9Z3K4cY1QiZczai
DmdAwMYazvc5wW4729Qabh4uPtg8O0k4/4FrvOOsi5h8mPlgOkcWbj+MD3Mf
mN8jDXH/SysIbSntcKRtefipR1YO6WlA8EwK7j+we+dIwf1vAgqPYCmH54kL
r5nkWzm4g9xrIQUJv2uWcP6Xnbe6/pYi+J9A7lG3hJhjL+UAix+YeTC+84Rm
obRfig6nDjutzZSzhPCllCD63S0dwjnF2o3llSDmnEfwS0DxaWeFKr8fGn/M
Sg4fQPrZoeF5TxGq3hoif1gR4l5Xawfla4+CGdYg+ODwdUTw9+bXvJ0pqgDx
7zRMPti9WooOElOvcGYssob4n0PJwb7p0fEZu6H2XVZy2GL+41CKFzS+7ig5
3JCuSTRitXZY+e1lxZkHSg7LX3jo/V9oBedPn8BfZbbaEq6ey021lMnKEm6e
+lvefQYvLeD8/uASlenrEfxoBcePyTm4+Rog/ZLmcPtgfHB6CFNySIm948bc
Ye7wYdF6hbMeSg4rQO77aO5QCcpP1koOL7K0v03/aw4NDwQfnO9WKsD54HiR
F4TzS5aXbPjXzwM3b7vXBos5P7nh9i2/tfyx4WFuuHsg6RfBP9i9r8kkmdOh
x+sVi8lCc4cm8VrWzDZOuHlg+2dyQsIrywLOFwfFzyME/xYo/E0t4fqfg9y3
1xJuPowPsx9cfvhZwt23v1bWIv2JBdz9sPQM8x+MD/M/evkEAD5pGh8=
"]]}, {{
Thickness[0.034013605442176874`]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {44.0931407222914, 24.508064757160646`},
ImageSize -> {29.39542714819427, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {30., 17.}, PlotRange -> {{0., 29.4}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {{
Thickness[0.10504201680672269`]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImagePadding -> All,
LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {-1.9138798001753021`, 7.569436829778369}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}],
FormBox["", TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]}]], "Input",
CellChangeTimes->{{3.8018029977334557`*^9, 3.8018030401292133`*^9}, {
3.8018032379661913`*^9, 3.801803239024744*^9}, {3.8018162835480623`*^9,
3.8018162850297813`*^9}},ExpressionUUID->"5ebf123a-9b73-45fd-9416-\
c8c20d2241b5"],
Cell["\<\
R=1.49 \
\
R=1.5 \
R=1.51\
\>", "Text",
CellChangeTimes->{{3.801816290742654*^9,
3.801816334679912*^9}},ExpressionUUID->"81f281b2-7a45-44ac-a7f5-\
5824ef59d144"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Eigensystem", "[",
RowBox[{"uH\[Lambda]", "[",
RowBox[{"1", ",", "151"}], "]"}], "]"}], "//", "N"}], "//",
"Chop"}]], "Input",
CellChangeTimes->{{3.801906997534203*^9, 3.801906998515994*^9}, {
3.801991667052741*^9, 3.80199176236134*^9}},
CellLabel->"In[73]:=",ExpressionUUID->"4205314e-d4a3-4d2b-a2e0-34baba0f0950"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.009477001185167906`", ",", "0.00887387980059354`", ",",
"0.004915350027498206`", ",", "0.004458868763065948`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"0.04839121406197561`", ",", "4.073634087390802`", ",",
"4.0736340873908015`", ",", "1.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "1.`"}], ",", "1.`", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.0301016836428356`", ",",
RowBox[{"-", "0.12885888233412746`"}], ",",
RowBox[{"-", "0.12885888233412784`"}], ",", "1.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.`"}], ",",
RowBox[{"-", "0.11680096512393658`"}], ",",
RowBox[{"-", "0.11680096512393658`"}], ",", "1.`"}], "}"}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{{3.801991683732524*^9, 3.801991762696089*^9}},
CellLabel->"Out[73]=",ExpressionUUID->"ea9352d9-1a5d-49c3-8319-1e5f14ad9553"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Plot of the coefficients", "Section",
CellChangeTimes->{{3.8000074158562183`*^9,
3.800007426008451*^9}},ExpressionUUID->"38ecd62b-d033-488a-9f8c-\
2e379ccb4dce"],
Cell[CellGroupData[{
Cell["RHF", "Subsection",
CellChangeTimes->{{3.8000075107858887`*^9,
3.8000075130713053`*^9}},ExpressionUUID->"0705a04a-bd50-4ebc-b528-\
bbdc589f6dd6"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "20", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"0.1", ",", "0.5", ",", "1"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"0.1", ",", "0.5", ",", "1"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800009113386405*^9, 3.800009176290722*^9}, {
3.8000093373796997`*^9, 3.800009385309951*^9}, {3.8000107767421093`*^9,
3.800010786348114*^9}, {3.8001875852067204`*^9, 3.8001875887949133`*^9},
3.800252962467052*^9},
CellLabel->"In[75]:=",ExpressionUUID->"de2ffbbf-c99a-4d93-b812-2f447550d662"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{3.040422747209737, -0.0027546436916149036`}, {
4., -0.00014483642578125126`}, {5., -6.567281087239679*^-6}, {
6., -2.5201468467712967`*^-7}, {7., -6.76447733243333*^-9}, {8.,
2.5707658197101737`*^-11}, {9., 2.0402187885111274`*^-11}, {10.,
1.8355950065548735`*^-12}, {11., 1.1500652201615652`*^-13}, {12.,
5.560441636492147*^-15}, {13., 1.870692932776771*^-16}, {14.,
8.903768686088493*^-19}, {15., -5.107082651128909*^-19}, {
16., -5.380608536267927*^-20}, {17., -3.7134435855145356`*^-21}, {
18., -1.9501521699013587`*^-22}, {19., -7.244793007549654*^-24}, {
20., -7.384694616664903*^-26}}],
LineBox[{{0.6666115693000955, 0.0016529209971359506`}, {
0.6667584881230538, -0.0027546436916149036`}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{3.8768266167230077`, -0.0027546436916149036`}, {
4., -0.001853906250000001}, {5., -0.00033624479166666666`}, {
6., -0.00005161260742187493}, {7., -5.5414598307291365`*^-6}, {8.,
8.423885438029824*^-8}, {9., 2.674155570477314*^-7}, {10.,
9.62380434796625*^-8}, {11., 2.4118615765921928`*^-8}, {12.,
4.664436519540895*^-9}, {13., 6.277003880573391*^-10}, {14.,
1.1950436036835743`*^-11}, {15., -2.741844120570996*^-11}, {
16., -1.1554768847924302`*^-11}, {17., -3.1898237510650362`*^-12}, {
18., -6.700671833559364*^-13}, {19., -9.957167690787823*^-14}, {
20., -4.059778799297175*^-15}}],
LineBox[{{0.6663911798338107, 0.0016529209971359506`}, {
0.6671257739486025, -0.0027546436916149036`}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[{{4.386700923751948, -0.0027546436916149036`}, {
5., -0.0011018069333333332`}, {6., -0.0002705987072}, {
7., -0.00004648513426773333}, {8., 1.1306347644245333`*^-6}, {9.,
5.742705359808102*^-6}, {10., 3.3067139950094013`*^-6}, {11.,
1.3259349240246346`*^-6}, {12., 4.102881752206591*^-7}, {13.,
8.834097605485534*^-8}, {14., 2.6909989641207808`*^-9}, {
15., -9.87853452776908*^-9}, {16., -6.6608707427665655`*^-9}, {
17., -2.94209311880684*^-9}, {18., -9.888446274846714*^-10}, {
19., -2.351069748364469*^-10}, {20., -1.533741066373377*^-11}}],
LineBox[{{0.6661156930009546, 0.0016529209971359506`}, {
0.6675848812305383, -0.0027546436916149036`}}]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQAcmDhD6gz2EVjkAlXBYuwoM9kO4HA5TykEg
HcoXcDji3J3z/LcSlC/icCPwaNWE7tv7IHwJhzo7Br8pLydA+TIOC87VS87n
tYXyFRy+8tf/53fZYwvhKzmcu106aUveNihfxeHHvIqqFNUGKF/NoWJLwYdu
fQcoX8NhDk/u5gNcP20gfC2HQwvSWhd/XQXl6zjkir6duj7HAMrXc/he/fhC
w3WlPRC+gQP33WzpT4fe74bwDR3ySh/Ku3duhPKNHG5y79P0rMiF8o0dZq7u
dvNvUdwNC7fSd9OZDt3atgsAk/1deA==
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQABGMCngAOF9sIcKH4DSDtGhILB0P4TL4XBq
UrzOz6NNUL6AQ9T81WtvxMdB+SIOQSXmSQ6cZlC+hINHMsOGYH5uKF/GoZ/L
+KGE3fV9EL6Cw+Rao5k355TZQfhKDi/XH+HT+jQRyldxuPv3wITcq5VQvpqD
e9vzzWueRkL5Gg6CnCqaszhMoHwthz8bX8/1n8gK5es4bOH3CKt3X2UL4es5
5Cdcej5Ldd9eCN/A4WNN5/qDGSuhfEMHkRAm4xt8PVC+kYNC3r9duZPToXxj
hzqnNbZP2WygfBOHGf5uprM9Pu0BAGa8VJ4=
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAAOEOqDPZTeDxMXBIOFUD6Hw8tJLeFL2Tug
fAGHmQ+6qsql8qF8EYdXLzboB/AGQfkSDrt42Wc+2W0I5cs4mJpr8yrGc0D5
Cg6OQn8EuX5ssoPwlRx45KOu6IndgPJVHPi+xdrJ7j0N5as5fBG+c/eG3TYo
X8PBuNipalPHbChfy+HNzOuP9m0rh/J1HC41Xt47UVYdytdzmNMeoXzCzHUf
hG/gcO/+6/wts22gfEOH9b7q+rtdNaF8I4eQ2vdCf/4IQPnGDpYcOuu5NT7s
hfBNHBpyXF5K3N2wFwDUrFPq
"]]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 20.}, {-0.0027546436916149036`,
0.0016529209971359506`}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"0.1`", "0.5`", "1"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.8000091259144087`*^9, 3.800009176622004*^9}, {
3.8000093501939363`*^9, 3.800009385693008*^9}, {3.800010779395483*^9,
3.800010787384062*^9}, 3.800182481161254*^9, 3.800252967272444*^9},
CellLabel->"Out[75]=",ExpressionUUID->"4403f607-c3b4-44e5-a15d-7283ecde4f9f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "50", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"0.5", ",", "1", ",", "2", ",", "3"}], "}"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"0.5", ",", "1", ",", "2", ",", "3"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800007617136105*^9, 3.800007629552762*^9}, {
3.800009397618456*^9, 3.800009399018181*^9}, 3.8002529715032997`*^9},
CellLabel->"In[76]:=",ExpressionUUID->"ecff5721-ebe6-4815-971f-c4d672c96905"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwtzWtIk3EUx/ExNFYxJby8y5auJzOLdNOabvZz6jadMTKJDAq1IjN1aM0a
NX1CEkwtbVBepsWgRiJ5SYjWkrTY3ohoa5DFSAxZJdG0wJAZXf7nwOHw4fvi
bC83Fp0RCgSC5L/77946/95WKd2GYKm7+JJ3dFzwfySwWlK752z1Wczx+DL0
OiJppZMshX/9ZUe1z0zmoG0OPBlcLCEnYstG6a4ekZychNDIUp+hM5ycjLFI
3dFG7YCKeS+MpW8CPTvGXzDvw/LVlqGJikfkFEQXC2XvItrIqZDU/HZWW8+S
ZWhQD6oWNyjJcnQZNGm9uhUXcxrMby+n9CYsK5nT0RUf3miKmifvxypvt9yb
mSQfgPjVocIW+32yAhf9HVtb40zkDJQp6zY3XJORM3EjmjMJwdE/JTxGR5xn
PZaswujt08fNO0PPmbPg11d+qp2fIx/E1LS4OaJghAz8Cg+59EsXmHmAq11r
fRA8mcl6NmKOTYhEA4eZ+Wxws98fRjWlU1fjc+IJibg8hroaXvfC9XrftwzW
c+DcNDIRtnuMmc9BsMow3V5wx8l6LsLEHxw2Yxszn4uECsepPbN11PPQvhq4
yZ0rop6HWJkhNPw4iboGa/orZU1VP5+xroGvJvKuXjOjYF2LPof6abLdw8xr
4bYWBksyh6nr8FXd/dFxpIO6DlNeT/6kpYJ6PhZ+9Kt4l1zxB9h7zXA=
"]],
LineBox[{{0.6666665516989473, 6.898063165293428*^-7}, {
0.6666668536865672, -1.1221194028185147`*^-6}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGDQAGIQLfJp6/XNyeoOKl2HFFNUl9sxgIGGg3GxU9WmjtlQ
vpbDm5nXH+3bVg7l6zhcary8d6KsOpSv5zCnPUL5hJnrPgjfwOHe/df5W2bb
QPmGDut91fV3u2pC+UYOIbXvhf78EYDyjR0sOXTWc2t82Avhmzg05Li8lLi7
Aco3dXjOw3jkm9dOWwjfzEGs+4na2l+boHxzh9y1X39rH10I5Vs45NyaURio
3AnlWzocUtimItORCeVbOZhMaLyccdcIyrd28PTofC9kbgi1z8bh0exFhbZl
OlC+rcPJqS8Ovn8oDeXbOUxsN+XObWCB8u0dHv1ta9/46ukeCN/B4dxyryc+
xlsg/AYHh441Jz//lVxpA5F3dFjBsmDtu7fLIPwGR4elkZ0zdiRMh8o7ORRd
e/N55eFGqLyTw7MvFX+/XU6Gyjs7WBiuj3AuMoXKOzs8vX8jZeY3Jaj9Lg5e
e+652kcpQ+13cZjQV8FdWCsClXd1cGI/u3U3JwNU3tUhw5mB32fGo90QeTeH
hMSp6/4c3QbhN7g5/GxQ8n3NMdcaIu/u0F3K1tZzdwGE3+Du0Po0u3dSxySo
vIfDUeE/07dfroXKezhcZalasfBpIlTe00HU6/eZLXYW1gC2+8NB
"]],
LineBox[{{0.6666664367312278, 6.898063165293428*^-7}, {
0.6666670407064677, -1.1221194028185147`*^-6}}],
LineBox[{{7.952688905103651, -1.1221194028185147`*^-6}, {
7.990741965175498, 6.898063165293428*^-7}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.009166666666666668],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGBQA2IQ/U1NgHHaYm0Hla5Diimqy+0YwEDHYbaAkWD34iYo
X89hx0aeeQfzV+yD8A0cYlSV2h90LofyDR32cc2zmr9lLpRv5FD2ZuqslW09
UL6xw/quKctOJhRD+SYOaVenOvA/tYHyTR3OiXuKTPviB7XPzEHX2ri8dHoA
lG/uMCvDONHV0A3Kt3DgOrghcVKOGZRv6WDM/zJkoYsClG/lIFXPL/ZF+6Mt
hG/tIB+vtHh/0re9EL6NwyRvhtUL8n9B+bYOOW8Fni+o/wTl2zlsOsTZHZH3
GMq3dyhYsFhx65qzUL6Dw9TPbr9cOxdD+A0ODs4qdjUi4Quh9jk6TH3PXXpq
wTIIv8HRwf9itfv8qgVQeSeHkuYLlrWPJ0LlnRxWNHs/k2+rgco7O1zq+3yv
mTMMKu/scLfvzBuja95Q+10crq9z+D3fKwRqv4vD5rOnugQ3+kHlXR3WHnJX
O6PhCJV3dSisvxb4NFsHKu/mECS8+tLzOxxQeTcHq1M6LbFLvtlA5N0dFl/V
4nx6kglqv7vDhalT3B/U/YXKezi0ON/7xvrlA4Tf4OGQUdR0J1bgLlTe08Gy
5oP1VPk9NgD3brN9
"]],
LineBox[{{0.666666206795789, 6.898063165293428*^-7}, {
0.6666674147462686, -1.1221194028185147`*^-6}}],
LineBox[{{7.960931139197449, -1.1221194028185147`*^-6}, {
7.969794748373893, 6.898063165293428*^-7}}]}, {
Hue[0.37820393249936934`, 0.6, 0.6],
Directive[
PointSize[0.009166666666666668],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
LineBox[{{13.999765355527025`, 6.898063165293428*^-7}, {14.,
6.867932543309397*^-7}, {
14.370013773762462`, -1.1221194028185147`*^-6}}],
LineBox[CompressedData["
1:eJxTTMoPSmViYGBQBGIQ/TN7R//6zUYOHxKOhZRf3rSPAQyMHRiNFHcXPlkJ
5Zs4PFgQsKq+tQzKN3V4Fr7LWVatxw7CN3PYmBV8SmLWRCjf3MHOp+DJgfJu
KN/CYd5v3QurDRqgfEsHnulTJH+lZ0P5Vg6PF85r/HXfAcq3djjR6pAZtMoT
ap+Ng77ThmDVdYFQvq3DoxaP3xz3fKB8Owe+iZOWaGxwhPLtHVgyvK7cbNaH
8h0clmiterTBhAPCb3BwOPGydNs5AU6ofY4OJQWeWfNEhCH8BkeHM8LTd8ua
CUDlnRz6bWSEf7WzQOWdHBptzb3PSny2hcg7OxR/mqfQanYRwm9wdnDK9uZ7
HHtyL0TexWF7Urzx8klXIfwGFwfZ67Z7t3Fchsq7Opw71Ni87MoJqLyrQwtL
9dGdf7dD5d0cNobrrjCqmQGVd3OIPnlh51rmLqj97g6nV5qmh+jPhNrv7nBx
oo+clsB0qLyHw7fN/JXO7/qg8h4OnrsCa+a8q4PKezr4cdXFbylNtAUAxzSb
JA==
"]],
LineBox[{{0.6666659768603501, 6.898063165293428*^-7}, {
0.6666677887860695, -1.1221194028185147`*^-6}}],
LineBox[{{7.957794663897385, -1.1221194028185147`*^-6}, {
7.963037874705121, 6.898063165293428*^-7}}]}}, {{
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFzX8s1HEcx/Fz0Q47ND/mjzKhS1KL8yPc8XK4O067RbVokVNLDTfCuhW+
ZdmE8mOTn2k23ZJC2VrXJVRua2YkizVLmqmsddSm7LTU57313t6fzx6f5x+f
7Rpt0qlNPB5PvLFWG8vn/R+rf6cTmMxR9DxIN44d/judzxgFeFWX7v/r5WWy
E1Lb796bTk8juyCpIFQD2xCyO5SZvN5kR3vyVly3E39wj3w7wOyJ+uLAppnW
okhmL3zueeHgt1JL9sHs+mBNzpSOLIKifPFh90IK2RdbbH12NQuCyH6w9C21
qWttyP7od1QeKVV0SZn3Qnvi9WLzjoGnzPuwfLGiZyjrDjkALof44mmHKnIg
PHN/G3LqT5PFKJF1Sxc2S8hBaFTLg1uUK0bmYOjenA9o8V6WMIeg0cumtNB5
jhyKVa6juH18mLwfwucHEis6bpHDUDBbs63So5AcjgxJvn3JJTE5AlddRIV8
iOg/CUxavYdp3Y0sxYO6k6m6nZYnzJGYVZ39mDc3Q47C6Jiw3CGhjwz8tLEY
VUvnmDlAlLdW2WlOi2A9Gq5HhwSCroPMXDREE99uO5eFUJfhk+9xT6HGlboM
kyPzV4qmvoazHgODXd+Q9e5+Zi4G5mz1WHVCg4H1WFgL3+lbtVXMXCy8s/SZ
eybyqcehenXxmuhMEvU4uInVlt77ftTlWFNdyCjL/vGYdTmmch1vqOTjYawr
0KaXPfLvMDFzCozUJ5pTInqpK/FF1vRen1xDXYnRSVP8cHEW9XjMf78p5YxB
YX8ATQvexw==
"]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxl0VtI02EYx/G/JW2lK0+JlZJOUcuhzTmd6bafm/MwFEqCTIi0AxgpQ6OU
gfAXym1ZoQPRsQINLIVME1uHqdFBSDpctA4STWu48lQK2qjcIOn/dNUDLy+f
93vxXLwxR3UlJ9YzDCNZO35rZx3z34C7lpR0P/z3Hvx3ush8zJrPHezmGclB
sHy6oK/briOHYW5mIGWfoIQcgQcCnmXaLiZHQpqRJIg5widHIyfEG7zp56CC
sxCBO8veJIdPkOOw2XNYETXynByPldCPzgmFjZwIyWmVftBoJe/GguW9a9RW
RxbhdaNjpDUqgZyMK4bS2GfpmlHOezA5Na8bsmaTxegvTkixa3aRU3GgYTHE
6w0iS5DJF/UHJC6NcE4DW5U7G+EcIEvxNdDvqUd7X845HeHN0/F9vwfJGaju
+7GaNNZFlqHqQ0fN/lgTOROPo21xkcaT5L1Ia2l0VDpTyVkoLDAthmSIaV82
XNZrNfKzIrIc420zjxY/7yAr0GqQBlSz/mQlXL4mw+059zB9L17d0E4XSYY4
s4Dx5viyb1tvNtdz0OPf2ff923XObA66D5k67pW3U1eh9t3Ccu+TRuoqfFmp
93kcx6irIRP3l6prpdTVcE9NHLd4hLQ/F9rhSY2yLJb256Llcn1ATUMYdQ1U
vJd37BsZ6hpUqpktRR0uO9fzUF7Rdss7ZuPM5uEXKyye51/N4no+ms9saLro
7OTM5uO8+9Qls9FMvQBjod72u44G6gV466/v6XJXUC/EVu3qiyGFLOsPFvHl
Zg==
"]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.009166666666666668],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxdzl1IU3EcxvGlCLqCTWYmkWwOE52r1JUv25yP7k0dWYlUF0luUAhZ602F
XLnUTJ0JiSsxc5OFM8zK3ugilUldODVM0LqYMrAlgcOlssIIGpzfTR3Onz8f
vgeek2Awlp4JZ7FYktDZFjphrP+fQN6/t3ecAuKa9aG3mxyJ8Jvtd9JutZC5
sLxP5rUP1ZBjcCBr1O+ZMpDjMHx47c1WRTF5D2pnpuN/fk0hCzC1Lg1zuj0K
xkIYW/gCUTyb/iMRfsPOLwl1EeQk6LOd+pTeX/R9MoypGkPA5SOLcD7W1837
4CaL8YCbEW1xNJD34+3Ijj6XcXCMcRpO7RXe9rY6yekYY/dJba8ekjNQs2rt
edzcTpbgWVvXwGTFFfJBnJ23guOTkw/h466imHubJbSXiX0ySW31/aPkLPRU
SvTqdA05G2zXc31nVSY5BxLO97J+lYAsxe56Tuxm6o9cxjLwTwsd44bgKGM5
OnWsIbtxi5yLKj93xV6/TlbgxUSU5eSFZXIeLtodCa+fzJAB64ZmS93qYGwG
lIkKU8yJftrLh3Vte7XbPsDYnI8jn+q0tmt26gW42jibc335LvUCDDbqvvGb
TdSVmOvYWGqMOk5dicWO6dWMBR3tq/D5KX7bistoX4WXM+626JES6moMT2iT
ppPzqatxqX7hmO+cmLoGpbyhuRVPJHUNpG5xU/mjoJzpWjjmRVG+yTDa12LW
2qX13vhDvRBNyqVgxGaAsbkQlZcbPOXcRepFyDEFZFb+O/lfworknQ==
"]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.009166666666666668],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFzmtI01EcxvGtCa0MG8wXBlu6UFHJptO5SuceNy9brkinKYmNhJrpi4wy
u4jNdIUVxUZgN1eSZM6SSTJTWVpizMzh8hK9KdnMbjKjQEG7Sf9fdOC8+PCF
8xxRyeHcAxwWi5WwctkrdxXr/8n/e94rGH1VMJ7sp4xScbOzfsFC5qIv1Plx
UXGOzIOoqMg//buKHAzH6tBfgTIDOQSn9o6eULN1ZAGeD3XZ5wal5DA0mMc6
ZpPnUhlvwmP907md00L6TziyjJrwxXYBORK+mbsjedF8chSmPhQ6LIMccgx0
QfPFbfv+vbcZX0QNe84GtpK34Ef8Te/Ubc8TxnHor2kqLHGPk+MxH/HgszJ6
lCzBQbNW8Cp/gJwAtkTUd2SmjZyI6Tu7bWdMx8lSzBb0qoSRl2gvCZ1luhch
N8xkGVK1FTMDVRfJW2Fdjh1rjzOSt2Fd49UNS4Zy8nb4mq21S+9ATobLhEO5
Ng3tpUCstOsiOnLIcnjr1cvct1pyKoLMlpYoexpZgYDSHRNv6sRkoCXG5rUn
chkbAdenSoebt4b20nCsQlNmDeYzNqbhJb+xT5jEo67ElRQBf+l8AHUlauWy
7NGQ73Kmq3D0mzXMlORhbFRBWZ4d5CsedjI9Hd0l+oRWyyRjYzqEr+VOB3ec
egbcz2rr7k24qGegPuD0UM/PbuqZ6CyIvS+pvkY9E0XDYz0PORdoPwsjbVJD
nvg67WfBY9ZujOE1Uldj4dH6kyr/ZepqaHpzqm/5a6hrsGttjb6rcr/8D9pR
6gY=
"]]}}, {{
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[
1.6]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[
1.6]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, \
{}}}, {DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 50.}, {-1.1221194028185147`*^-6,
6.898063165293428*^-7}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"0.5`", "1", "2", "3"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.922526, 0.385626, 0.209179],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.6150173333333333, 0.25708400000000003`,
0.13945266666666667`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.922526, 0.385626, 0.209179];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.922526, 0.385626, 0.209179], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True", ",", "True"}],
"}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.800007631129875*^9, 3.8000083191314087`*^9,
3.8000083758014793`*^9, 3.8000093998862886`*^9, 3.800182487781508*^9,
3.8002529726369667`*^9},
CellLabel->"Out[76]=",ExpressionUUID->"2a70e00b-94e9-401e-a18e-53300a7c35ff"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "100", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"5", ",", "25", ",", "100", ",", "200"}], "}"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"5", ",", "25", ",", "100", ",", "200"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800007711118153*^9, 3.800007712566806*^9}, {
3.80000838349804*^9, 3.80000838411401*^9}, 3.800252976993102*^9},
CellLabel->"In[77]:=",ExpressionUUID->"7c651ed0-b6e6-48f6-be9e-cd2e24b5c91f"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{7.898640133176626, -0.00002789813727762447}, {8.,
0.00002199525114142007}, {8.015509651634792,
0.00002498624159649449}}],
LineBox[CompressedData["
1:eJwtjw1QkwUch3dCasqHymokFiIYRcjpkO+vn3woDgb7YhukEghq8rEr6ugc
5NKY2Fx5p+IpTaACYmvHoKNxhDLogES4RJTCAxFhONh1h0ch4EdZ73937+2e
e97/Pb/XK1shyl3BYrHkL57//v1X5W4Jn/eDbp/5wx2By9Gs/3/+OPimTsQP
7iEOgN74Q97QpflrDG9HfI296szRJeIdOGvLMF6v+JuYi86L87dKbHbiQNiO
z/4qLRsh3gmTKkfgpGsgDsKn3Bsf+3zSRb1gPMz2qJ+o6yMOAYfVkKF93ksc
irBCn8tnhRbiMKijczdVjjcSh8PE6Te516qJI8AWHRca7p2jXiQ2jGgD91dU
EUchIqY8k9OpI45GqPl1b8nLF4hjoJT1/3WlqowYsPa6x42/fZBhFVDf7RDc
bD1EvV1ILO7Wqjd9xLBqF65la5UCcxH5WCiCHAsNv+WTj4VboOHdMfsB8nGI
M0ysELNBPg5nSuaaS2UR1I+HpM7xZsFtHvXjkb88pVAIksgnAMduRH33ZTz5
BBzRt65cnA0mvxsu1t7VT55uJL8bbw3er536Yh319yA2ssxYeWwL9fdgqcfq
qlF7k09E1zruxbUhb5BPhK94693WwvXk92Lyg8U295aFKMbvxYMAt5C6B5NX
Gc+DtrlOZF+zzLCKh8S5zf+wzj0ln4TiCx2l1T8ukE9Cd4BRXLnGTj4Zqom0
I55+Q+ST4bHPnOezzcz0WHxs9Btl4/tb1Oej/NR17qnEO+RTcFgY9tiQPkg+
BdM9qvUqXjf5VHj2uRxdCjWRT4XZWV6U7H2a+gJ8q/1s+GdnA8MQ4J2BdD/b
BhPtEaD+UdtzxYSeYYsAqb+7pOgXquleiIzzP2maT2voXogm36+zuAtS6gkx
Yxz48/PekwxbhLDcbSi9rSmnfSL084uazE5lDEOEzNzRx3yeku5FaDTnDxUW
HKZ7EVhWX5216RXqi/HVga62Q+z91BfD7MHRO9iyab8YHVODlf4179F+MWYc
22VKTyndS5DVtjVAtRhH9xI4DDx5v6V1oZ25lyCHA+MzRRD1JShTisccJVG0
Pw31mpLJguJw2p+GE9OmxionLu1PQ/e0v+YbZy+6T0OMPmvVedZMJHMvRbH5
0lzLFVfqS7FztGPsl/FXab8Uk9O8e17b6XstL97v48vvVDrTfhmqR/getX7P
mL2Q4f62kQpb0U3aL4NAN+wtS3jI9CwyKE8Ou71mf0R9OVYO2GrZTsSQ48Rs
jfd4jo1hlRxz6hZXt6U/6F6OzKaX3COVzXSfjs3sq3mhazvb/wW2krAw
"]],
LineBox[{{0.6666250229306725, 0.00002498624159649449}, {
0.6667131635621294, -0.00002789813727762447}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{7.863301377084002, -0.00002789813727762447}, {8.,
0.00001835782941868287}, {8.032886443156153,
0.00002498624159649449}}],
LineBox[{{13.820217925326215`, 0.00002498624159649449}, {14.,
7.519992132150188*^-6}, {
14.487668853903314`, -0.00002789813727762447}}],
LineBox[{{19.49414618177778, -0.00002789813727762447}, {
20., -7.3766769080742125`*^-6}, {20.966904026739503`,
0.00002498624159649449}}],
LineBox[CompressedData["
1:eJw1kGtMk2cAhWuFhWEypF4qq04xBCVipusw27j0QCmFFpC2UAqWyMgMGI0o
/NABzo4JGmHDW0whbKhlExu1oHIRhFZkgbFqUEaBEUy8zSFMEM1kbpNdenyT
L29Onpw85/38s3K1W4QCgSD+3++/e/7q8RrpGx/ia2Nz3nrpywjB/+cjpI0G
bBMoBplD8dBzZGyX91iHO4dBUrp0nWjrDHM4GuVzl78n/Ys5Ap/IWoYs+a+5
DMXi5rKg/ifMwLGnzSt3OPrc2QRYhqefLSkfoi8STRsm6sN3PXZnUyQywtpb
L/ZOkkchv29vwfOiCfIo/GJ/+/op+z1yOfr+sLgejXWTy9GuyNmeNdlDfzSq
7Y+ixMI79Ecj58RnC7ra7pEroNs98LxKdZdcgYOmeB9F7SB5DCw/mxvyRNfI
Y7BuYmreiPUK/Urk/l5RMn38Fv1KZC4+uuF8j4s8Fj/U3ilt/GaAPBbTts62
AvNN8jj4BvppI3e2kMehadgnTCqz0q/CsLHIOH/h9/Sr8E7NmmUrMpzkagiW
7YuZOf0juRqSqfsXut/tIo/H3Tb5g4ayBvJ4rBE5T7o8q+hPQE+rqEDcwPeY
EpBddCnkxsw18kR0784c733BbEqExG/o2SHvNvKNGFyRXzIQfZZ8I6xyfW2T
8CD9SVC/CF77W73NnZGEnOBX8jpxM/ckoWK2XK+8wOxIQvrm4txx3UX2NZCN
VcrMEafZ12BfqLYwpC6PPg1axbqg3kaLOzs0aHyw6ETl7Hnu02L1krd8O8tt
7gwt2iVdfj6LXu/VwuPkx5LwHP4Phxa/ZgtuNv2dQL8OzoxKXfV3Zvp1QN8B
V/8ZC/frcNS6dNVL6bfcr4PVbngyqz7FfjIqtttLIgKPsZ+MI1cu2zQtKvaT
EeD7peHPx1/Rn4zQs6MrPacquT8F/vUZ3gOXq7k/BbHFLo8soZn7UzByH/5e
t8vYT8HnVz/46ZUwjX09vPRPr1Zv+YJ+PXbGrsenIUfo12N/6CalrZz7HHoo
p6Nsxx2HuT8Vb3o413qH72c/FeNBwcY6gZH9VFSVCkVlcXvoT8U5cfD72ZOl
9Bswx2t00tZ5iPsNUI+qH6YXHuB+AxLn9t/OLNzLvgEGD6dheWc6+2lQdVj2
1Mh3dPwDjHh7sA==
"]],
LineBox[{{0.6664584479866958, 0.00002498624159649449}, {
0.6668991511439801, -0.00002789813727762447}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[{{7.689878406259116, -0.00002789813727762447}, {8.,
6.217847980931413*^-6}, {8.262240569828199,
0.00002498624159649449}}],
LineBox[{{13.46774393692514, 0.00002498624159649449}, {14.,
3.3042667034285397`*^-6}, {
14.940379470305743`, -0.00002789813727762447}}],
LineBox[{{18.906655054889733`, -0.00002789813727762447}, {
19., -0.00002616958942181399}, {20., -4.204916809838949*^-6}, {21.,
0.000015533770694073283`}, {21.717394339683974`,
0.00002498624159649449}}],
LineBox[CompressedData["
1:eJw1k3lMW3UAx5+aOasOFYy6CwSzI2hlbGOBDeiXmw0YpTfHWAYyppKwCyTM
o5AZGX8wBnO4g2FhI5M1BDpII9FSOQrbWgtMK1CsMIgCYycBF6PZ1H73kpeX
bz7vm8/3Jb/nm5Uvy3laEISkf+//ntUS/XuS9GDUZhgPBm76K1z4/wpBzGu2
pJUzD5i34uZYwHpx0CDzNliy92U2qSZN7hyKpYMnCoWWeeYwVGHog0rzn8zh
eCTf4rGidIFZgvgic/2CdI4ZMHiJBl71HHBnLdDh/0byVM0wfRE47Zo9Xtd0
y521EZjcs765JPM+eSRazhvqX4+4Rx6JCWNomF39O3kUOtdll4i6beRRMF3L
nFZtpk+Ihn+p/MilXVP0R2P6vNRjXcUseQwWNwZ4Ljs9Qx6D8HMNr+yPvUke
i4thhgRZ5XXyWOzb3Jmhb+ilPw5tLQ+KLy+46I+DoL8Y+uz8FHk8/Cy61fou
Zm08chZvp5U3831hO3qMhelLv7pKvh1pluJBR9t39O+A53ztykyvYfp3QBtX
ealpdpw8AZE+jR3GLRPkCTDlhu5dEjVKnoht1udHjzn6yBNxND1n0+pCA/1J
KH7h7xHnczfoT0KguNNy3O4k34kNnXd01aJfyXdizH/m2wuDDvJkOHMjx69F
W8iT8fn3foe8ljfSL4X/cM5lQ8GP7gwpzqXlve8S/8I9UoTXHZA4hvh9ZilW
mLLP7H35J/ZT8Gnz+NsmZw/7KfgtcFJ8MvYUfSmwFjVuLK/ud2dzCl762jvV
s4zfI8hQEVMWZD30sztDhnyH1qPKzvOulaGg3Ucm+bKbfRmsshNjy7Z+RL8c
01XPZD28202/HJpyUZnvmSfnWY49uz82CW1D3C+HQny2YoPLzr4C73a19wXk
dbGvQFjcP70Fw8XsK/DOjbXf7Ao2069AkLdfjetDK/crcWrCfqE/b4D7lUjb
fzA/u5Vcq4TP9Zqo9Iwf2FdCN2AbsSVWsq/ClZ6iEa/cDvpVMDrzij4p7Kdf
hSPHdPdal9i4X4WWiVVvuh5e5X417KNVa6VZZvbVUOwW/mjW17CvxpW3jorq
DrTTr0aJ7sUGx5on/4cG6tzgz8Z6eL6hQW9qyPLo2j7u10C36qmMw4sm9jUo
nfuizze1lv1UzPnUh3grW02PAXXpiZw=
"]],
LineBox[{{0.6658337919467835, 0.00002498624159649449}, {
0.6675966045759207, -0.00002789813727762447}}]}, {
Hue[0.37820393249936934`, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
LineBox[{{7.458160982021521, -0.00002789813727762447}, {8.,
3.274590640924815*^-6}, {8.571411545646926,
0.00002498624159649449}}],
LineBox[{{12.956318501994476`, 0.00002498624159649449}, {13.,
0.000024069753573837916`}, {14., 1.8193570377914835`*^-6}, {
15., -0.000016572647022626554`}, {16., -0.000027728432426850552`}, {
16.063736137981934`, -0.00002789813727762447}}],
LineBox[CompressedData["
1:eJw1kn1QkwUcxx+VwrgIhaQQKs15xUsUEg3kpe8YbuhgjL2wwSEv4xDQWicE
IoEM7EUh36ZggFq7/jCDO5OLFX8AA9FANgaYOhAwPOU4inmcFDgZve337O65
3ee+z+8+nz+ezeqPpLmrGYaR//v891/tx8nRHgpB4B1h7igcncz/v20IWI4W
Wk7biUMhLtN5vJ7+iPhdqNr9T0SJe4nDUHukMvjEg/sxTn4Pbc+Wiwfq54m5
kL3g+ebPmgXicFQIsqwRNnaPQPn3VQVxX00Tb8dGx/hYvaGXOBIzJX59J4vu
kC8K3/kEpe5xnyGORklho9tfkXPEMdAf5mnSm2eJ34csT/S45fIUMdBjXiWq
iaB+LbA9Q3NOEmwhHw+XXQyZkuYpJ2t5uMANgymV7YuFQVl3UO35kPZY/JQT
ZIgPnqCdj5i03RsKzlylnQ/x8hd5o2XXyB+HTru3XbPtLvnjcO/J0LhjnO3b
gYuW/Vk2FbF2BwwuOY28BSvtAvTztj4u+rOHdgE6ufyWeEcH+YXI99Idnzx3
i/xC9FpduTUH2L545HaPff7WPmJtPEI/mWHqpul9ZicG7h/7+lJeD+070Vgn
D2dMP5J/F5YuLe3O0w2TfxeGb1nq9b+xfSJ4L689aNCO0i7CrO0Vb0HDTdoT
YG4KmH31j27aE+CY5FQVLjaTPxE/VC0caX3eTP5EvC2pvPhONtsnxmeFA8Wb
K27TLsbfWzvWPzQP056EhtXPDPpWddOehE21gXZrpZ78EjzwrA61J/Q5GRJc
d6tfiNWPUI8Ee96Izdf7/OpkowTV1o4tTMYQ3SfDrahVnMihfiTDdMNvInO/
jnzJ4CxNrL1eSd+vMRlnRkxhTQVD1CdFhLstw99/xMmQYkUezSnIHqR7KULS
J1uKbxrpXorScVv4k40fk18GxVn/2/Nq1i/Dh1LkTwWaqV8Gr6xvrpqOUa9R
BndTiGvJXhPdyzGx7Ks5/6WR7uU4+lzbhjpRKd3LIXqZy3Scpu/JKIfOY0W9
3vcG9SsQtGkwYTqXeqFA72v8uK4u2rUKJD1dU+MjZvsV4CwetR+wHqf7FFRf
STfPBbSTPwW+wtZ7qw79Qv4UqObUH6x5kXqNKfjd8m1tqaSf+pUQiVaWDnuz
/UrMR42VF+87S/dKZD7tmV/MaCO/EqlpLzU0RV4jvwqnHmVXXFlHvVAhyOvk
kGBdH/WrIL+7113d30X3KnS7tJ8vS7tA96n41HWwne/R2vkPvYOpjQ==
"]],
LineBox[{{0.6650009172269004, 0.00002498624159649449}, {
0.668526542485175, -0.00002789813727762447}}]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFj3lMk3ccxjthypRL6QYDpiCIjCE6lEuuh0uxUOhFW9mUiaJMrhimLBZG
xYFI7TTxCjIEVGCUNZQurIShVBZgKmwi6oYBkdNCswXixuE5lveb7Jf398cn
n/d5n+d1Ts4SpJiwWKyUxfvW4l3C+v9cKv3v9IcyNB3K8K020rC/Frb4lBCb
gTsc32DWeYzYGvG1BvbI6iPEbIxcuetXoEkltkPfib8OiwUSYkf0Tma47O8N
IXZCfpqnW5z1XAjDa3HEnBU26e5Je1xxaCYx5qrXRmI3nP41RnB2hTuxO95E
lgQYyx2JPaB33Gi8r11G7Im9buUCrm8nfd8LKvX3aX2lz24wvAmRVcaKUwcX
iD/GGUOi+taFf4i9cfPis3u5BiPxZhjyp34RF/YTb4FGvo9nXl5H7IOvvO8c
dv2ynfp88TTZoXa45jaxH2xZdYnK113E/gjIdL10hq8nDkBRSIpj2VAD8VZo
bLs1dtVFxIFgC/L59Y/PUl8QVvUrN++6UEEcjMDQ4iTbm+XEIfDXfeAieuc8
cShkku6/L1cUEgPjXXYRQx/uZVgO1HaY+GrH91NfGKJzOpRFjl8wLA/DjWSl
jKfLJh+OLB/TzPrf0smHw2Zz/SeDxt3kIxBRP7xEyAb5CJzKndbmSQKpPxKi
GtO7Gfc51B+J9OdjWVm8GPJRwNE7wde+iSQfhVRV89L5KV/y22A53mX24qU9
+W1w731SPVZiTf3bER5UqC47upb6t2Ohc9xKUeRCPhrt1t4XV/itJh+N9cJ1
j5ozV5LfgdFD8y12TbPBjN+BES8bv5qR0euM50CprREYlz9nWM5B9LTTG9bZ
l+RjkHO+La/yh1nyMejwUgvLlhvJx0I+nJC6xqOPfCwcPtWluW7QMX0sLuw9
Btj47h71c1F84pb3iegH5ONwgB8wV7+zl3wcJjrlK+WcDvLxWHPb8uCCv4Z8
PHQW0uxYl5PUz8NV5bGHP1nUMwwePurZ6WFYpaE9PNTOtLzOGlYxrOch/nfL
ONVsJeX5SDz3o0J7UkF5PhrXf7vHe1ZMfXxMqnv+/LrrOMN6PvSP6vLuK4pp
nwDd3OxGnXkhwxAgKWVgjsuRUV6ABl16X2bGAcoLwBpfXz7e+C71C3F6d3vL
fvYu6hdC52CrMjEk034h2sZ6yzyrPqP9Qkyatkpka8SUF2FPyzov+XwE5UUw
6XnxeVPzbCuTF2GfLdSvsnyoX4RCmXDQVBRM+xNQq8gdzcjZSvsTUDChaagw
96b9CeiY8FRcsXCmfAJCVXuWnWNNBjF5MXJ0pdNNl62oX4wtA22DPw+9R/vF
GJ3gPHbeRP+rX3z/Nlf6oMyC9ktQ2c91qPZ4xeyFBE829F8wZN+l/RLwyh+6
SKKeMn16CWTHH9q8b5yhfimW9hiq2ebEkKJgqsplaJ+BYbkU00VNVjYLf1Be
iqTGt+2CZFrK74QT+3qa/4qbrf8CnQbl7g==
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFkHkw3GccxteiI5qpUMmSlQY1GkHqDnXsE+u+7bKWMlGNa6JI/JHUkYhi
jaNEjsGYJrK0mMRadcUd1VLRjFCLGulIJKmQuDKNiNDM7DfT38z7x2c+8/ye
5331opJ40YoMBiP63VF4d5iM/780zQb3udRmjpxWOHKu7iUNZtW83/3+eGIV
bLT4fb0aFU28B3VbTedieJHEmrBbiTAuChEQa2Gkw0Btac6TWAcZNUcs1F9b
Eeuiyf9C4jxn3UnO+nA5XLGsMm5CewzgpprAziu1JDbEXVOtE6IsC+JDsGVJ
Y/yVjIkPQ3Qzezs5mU1sgq32kiZR/t/0/yOwe3Jlt6e6OvWbIV8rQve4AZvY
HJvp4qQYNx1iC6x9YzMpi99HbInc/dJI5U93EVtBuccuq2blQY+crfFbrsLu
ovA31GeDkqMNvuY2KrTnKN4ah5y80qlKbIvnTTkiQ58PiO3gGD7W1dW8Sfkv
EDprcJLhOklsj8fKMwunVBeozwHsXB0zjfgNYke0cBUPWlhuETvhBKd9Spzy
3nOQxWorMBp/QQxcWm3TT+wblXMmIJ5eW9cqnKK+Y2i1WWp0PPVMzpnHEOHQ
3dE0vEzeGSmjGakv05fIO+NJ7/5fqnofkudi9LVY9nRhkDwX3a5xCVHLQ9Tv
gsrep84sJr1fpgvirp77eKDzIXlX8M9MvKzwmiPvirxMHzXX6knybhD/VSY9
rXGHvBvMllY+nKm/Tf3uSPq3OGft8n3qd0fkvlKbW0My8h74vfpBbssPE+Q9
sCbp70wtu0feE+qG2rxjye3kPdE6reZgyamnfi9Mh6eH79H8lfq98Mk14wO6
ESPkvcE4cN5t48Zd8t5grzxqGPx8gLwP5jq589ICKXkfGGuMXJcpV1C/L4Y6
NFJZUrpPpi9i03+2/mPjDnk/DJ6JXBx+RZzpB7b21Hq+aid5f0zqpuRMuNSR
90c9V1Ddysyj/gB4vzIxfd4okTMCEGeyza1ltdGeABTvFArcG4j7AhB2PCtp
kd9E+UBwFso5ZU43KB+I8/a8NOva09QXiA4W32i4RSznvkC0zO+9Wr5zi/bx
cEjrI/X+QomcwUM3e0Bbbe/7vTwoXf+K7RhH79HHwz+xjHutb32pn4+RiHJ+
5Y9l1M8HRkWy8Z/EtJ+P0nqdzzYta2g/H/W9whc73lWUD0JxQm+Ok+Elygfh
4u1mSWC7F+WDYKBeJHzz7HvqD4J93ay+8ko57Q+GXmOE6kRzJe0PhkeWTCmK
WUb7gzHzCHoqYwWUD8aFLts/t5mhlBdARbDaVRn9HfULkOxhjm+tL1K/ANn2
X7pLCmlfnwDua86Sy30ltD8Eu5RGTFUdsykfgkUjk/BaRjjlQ1CRy9Qo8DxL
/SG4yTKxil3OpX4hFFRmlyX9+bRfCO9Z78dhaSLaL4Sf4vhYZFoG5YUQKo0I
D/aHUT4UXj3is9e4iT3/AfSX4TU=
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFk3kwnHccxleNyiZoiiSCENqK2UYcYSvieJzrjLW7WGeCIm21pClVkmYZ
JuIPcdXViC6JUTEGYTTaro1bUEeSrStqw9QRaTVKM5NKmpn9mu7M+8dnPu+z
z/Ob+b1G0Ym8WGUGgxH7+lF6/bzB+P+Xrt3IkacVOylo3UnBWZ2kwWTpP7Ja
8ibehe2KOBmLzyHei31PpXdNSl2ItVHjt3yGX2RHrINytpr4My0LYn14GahF
udnoER9G+PwSM0J72lHBxvg7Nduf/aE27XkXtgylhJIn+sQmMDnA26OTv8Om
eDi8kb/as4+YBZXwlawX+1WJj0IvpOXBTPsQ/f8xCC2VC+T8VxIFW+BSWXRs
tfJu2mMJOG7nWfipEVshITxncPJTVeLjYGePXZxMekF5axTXcX58WT1ObIP2
CyplY17r1MfG2tCdM1Ldl8QfwOmrQQeHMCXaZwu5uoDzg/2OPwH3/SN+eivP
iO3weNbc1MxmnPgk+mLORtYHLVCfPVTHC1IYTRvEDijExMf50n+IHfGKz9bQ
zdwkdoJnqrR6k7tGDLRoMce0NccULAI6WDr+i6WT1OeM8rnVq1X1TxQscsZC
lGljRuRf5F3QdL2l+oAznVfkAnm7vcNo8O/kXdF5JCaD2T1C3hWSe5HLQdbU
x3ADK5OfXhexSP1uWL7O1TiSt0reHVtW5prq5Svk3eF4rebtJI/H5D1w06HF
h5c/RN4DZ607wxtqeqmfg9amZ2m3NueonwNGw037NzcWyXvCuE98qKGLWOSJ
2K2nobmN9D7DCz3tKWGqZYPkvRDalzYua/2J+r2huVGpF6k1Sf3eEHHy6+pX
58n7wMWwtqOdLSfvA0m8fZyK6zR5X5wc3j19RdZP3hdZYbHHD6W0UL8f0vb8
OzWz6z71+8HSrLPv6ugM+VOw6PxDXMR8RP4UZlkrd26My8j7YybeZf6eWx95
f2T/bHxe62At9XPBmoy91ZL8i4LBxbXQhI/mzH6lPVw4Vp1zkk3Q+aRc6Epi
KuL2PqB8AL5unH9fMtND+QD8ZrlgVuxRQn0BGE6ttcotGlCwNABvfWcQoplD
52HwkOeeYzN8/qGCwUOiTKRROEr3XcRDcpshz+mbbsrzMMwrmFW3+5L6+Vgu
VI5+/mc39fMhzGXmGFXs3Gc+ok5fkDBaJ2g/HwKzb/Ms5kYpL8CxrrZ+84Qu
ygvgwNnuTZ5Mo7wAR++bfB9hK6V+AWwMjEvnPhmm/YEokY/eGEgYo/2BCE36
PDGmmbwoEIZDpa5h4XcpHwjx2MjUiG8+5YNwuyd1Siu+g/qD0D6TkHoxZYD6
g5B+RbzerDJC+4PQJNc/PPd8kPYHY3S60IQbLaV8MASnGUuNDaWUD8btd7KY
VefaqD8YGWK1Gtl7O9+HEMHxtpdme+h+Q4jekBMH3Sr7ab8QYn2l8C+2JJQX
InPtcr9RSCXlQ7BmWH3CILBZ8h8fD+qz
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFkmkwnAcch9eROiYScTWOtoi0rqijum4/R5Asa7FYxp1xptUJcUSoI2ma
0ES6QYrQ7uhMmjLRmNL4gHUkday7SZYglRGjWtTQuqWZ2f9Od+b98Mzv/e/z
fHgN4j4LjJdjMBjxbx6ZN48s4//fRY373rM5l10l9LerhM930IyHa0oTWTqO
xIowThEfS2hgEqui3Gk43UHWhlgD3fy55RMxZsRHYRkyOb1wX59YD4lNZX8w
0w4S68NXw9rFIHvARcKGsFGpqebUHaAeI8TomZXWLR4ifh+Gck478t1SNoam
bIODoFaB2BQuSosz5s5b9H/mGLF/xtS40k5sgf7v6wWNMavtErbEuMFWJEt9
j9gKGxysKM68JraG6a6z9/CtbWIbsHP4hw0jVog/Aq/VpNSJ3UNsi5Kr+Ral
cy/J9zGa38plD1SsEjMRdEjN+GHqOrEd8rxixPbL0t0euT8WJnt+M0/sAJ29
qcmKlh5iRyxk6vXeTH9GPif8oG0elqCyQOyMzLQq5X8dl4hdILjklhpRv0js
iqBE1lpD4ywx0DUowyq2p/4CwCEq9Q7HYph8bmiUb4nm1M9KuMANtUxbiMKk
fe5oCS2/EKf2inZ3/HLGvMXHYpp2D7iER2oml3XT7gH27peJEzmPyO+J9m2t
7VTr5+T3xIutkam9KWnfSdwdPhezzCMuOIkW+TNVbuti2r3Q53Z8Lf2fLtq9
0M70aPDZayO/N5LU+Tdm7jwhvzd6xArM4ixpnw/iOyevnDhLXOADm4sLjPJ5
ep9xCgMvr397L7GL9lOoKufaMUQ/k/80Nu9tRibyR8l/GqNPhisEv0v7WNDa
VbzQUjBBOwuLy+9oeVWO0+6LwWrTxXf/6qTdF3szRoVpG/Xk98NPhetXmw4O
kt8PH3Ly71rGSvvY+CJtIMMg7yntbLw+3nbk1eAo7f6olD0wpFvYSbs/9EvM
tsX5AvJzMKdWZLPt2ythcPBYuWLdXTBGPRwkfOCeJND+TcJCDorEbccYUSN0
HwDl9Ca2nxH1IwCifr3p6HN88gXAaHNa8XE+fb/CAJSNiWyrk0eoLxD2KstR
JiZjEkYg9rnORsmxQ3QfCKuImYaMcSHdByJ7atluS+c8+YMQfNvk6Wqc1B+E
TwORNGs2SP1BUI/5rlt0nXqFQVARWSlkpojonovpXd3Umq+EdM/FNaVmzXJW
Nt1zwTrKZLTdou9JyAX/8H7cEd1+6g+Guf6Q73w89SIYPe95eHZ00F4QDP8d
uWJttrQ/GEYb17azxDfoPgRFDyIGl0xbyR8CXe+mFzKf/0r+EPCW4j6R06Be
YQj+HK4ryeb0UX8oWKz9zUta0v5QrDpN5macvU33oYje6VrdiGomfyjCwt+u
rHZ8RH4evl6JzXugSr3gwVz95oiXai/188B9nqIS19dB9zx0yrfW5ITX0n0Y
LisMtXocbmr/D7Mi7SE=
"]]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[
1.6]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[
1.6]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, \
{}}}, {DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 100.}, {-0.00002789813727762447,
0.00002498624159649449}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"5", "25", "100", "200"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.922526, 0.385626, 0.209179],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.6150173333333333, 0.25708400000000003`,
0.13945266666666667`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.922526, 0.385626, 0.209179];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.922526, 0.385626, 0.209179], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True", ",", "True"}],
"}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.800007713597684*^9, 3.800008385348489*^9,
3.800009492731853*^9, 3.800252979527582*^9},
CellLabel->"Out[77]=",ExpressionUUID->"cf49b5e5-2504-4041-8500-14815d97eac6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "100", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"100", ",", "300", ",", "500"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"100", ",", "300", ",", "500"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800157267882909*^9, 3.8001572811410637`*^9},
3.800252983221531*^9},
CellLabel->"In[78]:=",ExpressionUUID->"130e809d-7d20-4f5c-9d02-13bea2e20883"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{7.740620395774781, -0.000022316091392252793`}, {8.,
6.217847980931413*^-6}, {8.2052996152538,
0.000020911013080180836`}}],
LineBox[{{13.567783951588067`, 0.000020911013080180836`}, {14.,
3.3042667034285397`*^-6}, {
14.77214751753391, -0.000022316091392252793`}}],
LineBox[{{19.175440722365252`, -0.000022316091392252793`}, {
20., -4.204916809838949*^-6}, {21., 0.000015533770694073283`}, {
21.40810527646419, 0.000020911013080180836`}}],
LineBox[{{24.73370562654217, 0.000020911013080180836`}, {25.,
0.000018034527659047004`}, {26., 4.102640221318611*^-6}, {
27., -9.221333084717924*^-6}, {28., -0.000018775469844149242`}, {
28.91337956492321, -0.000022316091392252793`}}],
LineBox[CompressedData["
1:eJw1k3lQjHEcxl+MY1EohkirjGOWdCjj6Hi6o2jbu9OoqRiNSkqTa0tGMpPk
iHTYonE0Ta2aRsO2umWzJVa1WaWGSghT+oNx7bd35p13nvm8z3ye38z7mofF
8CKmMwzj/ff+99xwfkkFZ70jfp/OZB+K/KFg/l9O+M3fYrg8dZyyM7yTlEXj
3FHKgNyY1b7YqF2fpUANZ5nfYE6Xk5674Lpu5ELhvY/6LHXBwL71ZSmhX4m7
orxAXrTUZYy4K/qrHRzV4vfE3VC7LjyFVd9G3A2K1tAhkR35GHdwUvnH7oQM
kt8dQwVcw3WZI8Q9MGFrZWRwfZi4B5zyihfFer4j7onbjnIfXtYz4p7Yb1cb
XFrcSH4vVJZ/S74/riO/F5jS2w6zvg8S94ZFk2xlaR1lqTciJj4FZpTR+8xO
NFQnBs2+9pT4TgQ2JXdoKh+RfxeMvuevCDXuIv8uSL2y7twb6SPuA1d2SU31
ln7iPlBEOUTOdOsh7osdqrk95zTNxH2RFhSxeWWinPy7kTzvZ7d2Tif5d8PG
srbpglpLfA+saz/LLrHeEN+DXs7ww1sdGuJ+0Ea59rW6NxH3w5nHFvHGJiXk
54LTFXFfnvBcn8FFXmD0AZ3la9rDhVNhnLPmBZ1PycVyRXhu5MKX1PfHybK+
DQptA/X98dZmwPKy51Xy+UOVVGKbcalFn5X+WHDTLMAonc7D8JDpkW6vin+l
z+AhRiM1zFZ3UJ+HhCo2z/lKPfV5UPEu9hpsP0p+PoayZ4RNfqknPx+SDFa6
ee7U98zHvr3HFUzlC9rPh8DyRqa1Tk19ATbVVTVbRddRXwBHr1+NCV3J1Bdg
Y+fauyFbleQXwN7MIkd3UEX7hbjar77VEt1O+4UIjD0cE15BXCoE+1mOW1Dw
E+oLIWtv627zzaK+CA8akrqNo2rIL0K1NjrpRGIL+UU4dk42VjGzjfaLUN5v
uko3+ZT2i6HuyV7LDVNSXwzBXuZDWWkO9cV4sDqNVRhXRX4xUmTzizVrpv4P
CcRRW0/1NtD3DQkaA7aZuOc3034JZKbTgo9MKKgvQero2WbzgHzqB2CUXbTN
TFih+AO2bnJv
"]],
LineBox[{{0.6659696328973274, 0.000020911013080180836`}, {
0.6674105363797418, -0.000022316091392252793`}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{7.369796644258474, -0.000022316091392252793`}, {8.,
2.2213587791328483`*^-6}, {8.723142492903635,
0.000020911013080180836`}}],
LineBox[CompressedData["
1:eJw1kg1QkwUcxgcG4eC8sjtEBgyKWELHjVIg5ePBsQ3Ewb4HicvgpvOAU6Ej
kagZR6MTcJEBGqTHVxekgKkg32pAYBQgZiAC09HgEi9IwY/gsvbfe/fee797
3ud+z/vhlXRAqrFlMBgJz8//rqsvPf6qJHkTCm5lT0fMPwpj/H/4Ynq/88qg
YoH4TTxMz7md9MJFYn8w219x0K+YOy3MRWBya125x0PiAIw9czsfyloifgtq
/eC1wuxF4rfhp24+MTkxQ7wZHXO1622S2om34J/c8DRB1jj5AsF71JQivDhL
HIRit19iWb33iYPhuLfKHCSeI34HDgz1wpanU8RbYd8lyvNP7iDeBllP/lz6
2SHyhSBoOLOl43UjcSgM7h78LpOJOAze44axCtY94nCcf19Q7aQdIwZEgspU
Z88OC+uAZjub0JmjveSLgI3PVmiKxyysi4DfbuP6K4HTlG9H3qGFssWaScq3
Y/IJM9VHcJNyHk5vyDc3fdNOOQ97vp+/3ZLVRf5IqAKMfOOTG+SPxBfptSF7
Y8cp56P+M9+PueW0V8fHgdrsE/hwhHIBRoKOBZg86f3rBOD3vVaXIrpEfiFK
n66kmN2GyC9E3IPRQLPdb5RHofVwmLaOSayLQrPe/1WvDLqfEQ1VsuO+T5vb
KI9GiUsV55Smgfw7cCfdy3dj2QD5d8BptP2DqCnrvhj43WrsY2qszxeDDHuN
mnt3kPKd6K8fjd+maaN8JyKVvDuH0mrIL8K6atEyU0zfQydCmzGQ926mdV8s
sjYulaxJHKY8Ft7qpj73ouuUx+Hb4R8k+jes++Nw80/huYmgr8kvRn+qS7j9
4lUL4znncnhLHrRPJ8bg/qKEqE9+tXC3GOz8M394XuqnvgTpWm7xwGor9SXw
rjQ4D7sXkk8Cn4aC7Pbgbgt3SzAdssckZA7QPikmjuqftdz92cKQokN38Kwh
+CfqS1FRtk+5a6aV+lJcrmOfMbIOkl8GRv5sDucBvT/I4OS6xIrI6aP9Mtx3
2Vz63WX6Pt0ycGpsvRtXe6kvh2rqd4eRMet+Oea64orYVzOoL4e258WqDe4t
5Jej3DFE5qXsof0KHBkXSNfO0l4osFx9L/HUY8p1ChxGJct13LpfgQp9TUFc
5ufUV6LQYKtquHGB/Er0cm3c2DnXyK9EE1vCNiXQ83Qr8V6nY8iUaw/tV2Ge
X5GYZrLuVyHP2dSoPf0l9VV4eZlzbNffTeRX4cKm40fWGK+QPx4n1x4X1zPo
/0I8apL+slu3+0faH49c/qRT9LJ1fzzkjR8lpA6dpH4CSpelZTHXz3X+C1Ov
u/Q=
"]],
LineBox[{{0.6645755653586485, 0.000020911013080180836`}, {
0.6688982758058919, -0.000022316091392252793`}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[{{6.999241676989212, -0.000022316091392252793`}, {
7., -0.00002229351451531446}, {8., 1.3515305287579716`*^-6}, {9.,
0.00001711035953902697}, {9.510373367889397,
0.000020911013080180836`}}],
LineBox[CompressedData["
1:eJw1lHlMkwcYh1sz8SA40wESC0wcTocEhDmZTOFHgQoWsAel7EIBqZtayv5g
TsBRCAOPEqcjgKSLEBRlk3sWEFfKVWpEC1IGrnLILHSgTEbALS7s6tsmX5on
b988z5t8qUeSXJiygsFgfPDv89/3bbZMIORthXI4cyLk2WIQ4//PNryoLYr/
/OECsRfmZg0z/jFmYm+wX8rqRx5XE/tg8oyngFM2qrHyDhQ670jeOWEh9kP7
BQe+XfIssT8Chv3y5fNTxG/DpDIGyv1MxDshXF5g9dQ1EL8D/dZLR64U9JNv
F/JWqVeXzowRByDPxBRVr5kkfhd15w2cob5x4t2Y/7uKGbLJSByIs/k15Smn
G4nfg4rp0lf7Wg/59iCxSjnWrR4i3ovr43+G3sj9mTgICx4rW+x4I8TBELjF
FGh9+omBtYOhsZeLG62sACZLxj86dOc2+ULwfVlGW3MS3aMIQU65pXJ+wNbH
wYRxPCe7eZDmHPjUXZeEye7SPBSmozK7sCzqV4TiQYl8uyHhB/KHofGzpatH
LXfIHwb5rwGbezcM0DwcmlOF0Rk3qFcRjnWGwbfaNuhpzsXYcde5uSRbPxfh
bhzd7K4a8u9Dpb3qQ5c3e8i/D5Kvf0ptWeqjeQR+z0xbq7e/R/MIRKqMYmkL
/Z4RCXNQAntAbOuPhGN9mrrCcIX8+6EcDLZ8V91B/v1IedCtjnSnexg8FDG8
8r8ctd3HAzfV7smRF100j8LQyS4nb4mtPwqHzb5hH7eryB+Ng2tct11b/pH8
0Xi+XWL51ltH8xhMNI6cm5L10jwGSn1bX39FJ80PIOt8c3W21NZ/AAl5qxyi
My6Snw+mg4odpGu1Mvh4ej9wo+9D6lPwwWVtaurKpfdNy8f0stnBt5TuZQjw
SonweV4u9UOA1V+NPrFn5pFPgLnFv944J1ZbWStAHSvxVOhSB/UJcTed6Ti1
1GVlCJH1anq9i05L+0J0ryyVj1RTv1aImMrX06ukUvKLwGO9ZEvTm8gvQvL0
zaCGFC31i3BrPudgTkMn9Yuwp/NxocaN5oxYXD58Ya+fydYfC/diXuKh+8do
PxYy5+71nzAayB+LX+ok98q3aKhfjFZVsC6tgu6BGNGsb2pnvNqpXwzP/rOe
cqcm2hdjgHXtmMEjl/bjEHlT3dHaUkP+OPhz/vht3Vgb+ePg4pXal3mLerVx
cN2cNFwQpaF+CRY7zcFlEtv9EnQcf+RcGKGkfQlOn/Rn65/S/59WAtGWT3d/
Md5K/nhs7I1wTpymXsTD3Wn91RXFtvctHieKhp+Nltv643HJ69EJ4+BF2n8f
3dmOXPecKs0/I7XKhA==
"]],
LineBox[{{0.6631814978199698, 0.000020911013080180836`}, {
0.6703860152320421, -0.000022316091392252793`}}]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFk3kwnHccxleNyiZoiiSCENqK2UYcYSvieJzrjLW7WGeCIm21pClVkmYZ
JuIPcdXViC6JUTEGYTTaro1bUEeSrStqw9QRaTVKM5NKmpn9mu7M+8dnPu+z
z/Ob+b1G0Ym8WGUGgxH7+lF6/bzB+P+Xrt3IkacVOylo3UnBWZ2kwWTpP7Ja
8ibehe2KOBmLzyHei31PpXdNSl2ItVHjt3yGX2RHrINytpr4My0LYn14GahF
udnoER9G+PwSM0J72lHBxvg7Nduf/aE27XkXtgylhJIn+sQmMDnA26OTv8Om
eDi8kb/as4+YBZXwlawX+1WJj0IvpOXBTPsQ/f8xCC2VC+T8VxIFW+BSWXRs
tfJu2mMJOG7nWfipEVshITxncPJTVeLjYGePXZxMekF5axTXcX58WT1ObIP2
CyplY17r1MfG2tCdM1Ldl8QfwOmrQQeHMCXaZwu5uoDzg/2OPwH3/SN+eivP
iO3weNbc1MxmnPgk+mLORtYHLVCfPVTHC1IYTRvEDijExMf50n+IHfGKz9bQ
zdwkdoJnqrR6k7tGDLRoMce0NccULAI6WDr+i6WT1OeM8rnVq1X1TxQscsZC
lGljRuRf5F3QdL2l+oAznVfkAnm7vcNo8O/kXdF5JCaD2T1C3hWSe5HLQdbU
x3ADK5OfXhexSP1uWL7O1TiSt0reHVtW5prq5Svk3eF4rebtJI/H5D1w06HF
h5c/RN4DZ607wxtqeqmfg9amZ2m3NueonwNGw037NzcWyXvCuE98qKGLWOSJ
2K2nobmN9D7DCz3tKWGqZYPkvRDalzYua/2J+r2huVGpF6k1Sf3eEHHy6+pX
58n7wMWwtqOdLSfvA0m8fZyK6zR5X5wc3j19RdZP3hdZYbHHD6W0UL8f0vb8
OzWz6z71+8HSrLPv6ugM+VOw6PxDXMR8RP4UZlkrd26My8j7YybeZf6eWx95
f2T/bHxe62At9XPBmoy91ZL8i4LBxbXQhI/mzH6lPVw4Vp1zkk3Q+aRc6Epi
KuL2PqB8AL5unH9fMtND+QD8ZrlgVuxRQn0BGE6ttcotGlCwNABvfWcQoplD
52HwkOeeYzN8/qGCwUOiTKRROEr3XcRDcpshz+mbbsrzMMwrmFW3+5L6+Vgu
VI5+/mc39fMhzGXmGFXs3Gc+ok5fkDBaJ2g/HwKzb/Ms5kYpL8CxrrZ+84Qu
ygvgwNnuTZ5Mo7wAR++bfB9hK6V+AWwMjEvnPhmm/YEokY/eGEgYo/2BCE36
PDGmmbwoEIZDpa5h4XcpHwjx2MjUiG8+5YNwuyd1Siu+g/qD0D6TkHoxZYD6
g5B+RbzerDJC+4PQJNc/PPd8kPYHY3S60IQbLaV8MASnGUuNDaWUD8btd7KY
VefaqD8YGWK1Gtl7O9+HEMHxtpdme+h+Q4jekBMH3Sr7ab8QYn2l8C+2JJQX
InPtcr9RSCXlQ7BmWH3CILBZ8h8fD+qz
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFknswXHccxVeEyjKmTTKIxaJCQkdXmiDxOrJ2EWFZa5d6NGU2kSISOhpR
7apROglRMSEpTerVCU2QSrwfkXqm6hFpQwSbrKINE5rSRGVqZr87vTP3j8+c
e+Zzfvdes8h4oVSdwWBIN261jXsT4/9LwJqrS/NLcVPSczclx7RTDP2i7/6w
NN5DrAXuBZui3oZ3id/E0oJu+MOs3cTbwXF32d97wpzYAFH5HRZNGXrERhjs
Nvio0U2d2BQ9VYJZUUmnq5LN4TS4uLL5xDqxBXYKJupatmnQPkv0e4SubddU
8S6I4wuuddkyiK0xfVxvfSBoifrv4EVC6qPIzbeIbcFs2aaVuT7bpmQO7KOa
KotMXhDbYWzN6KYLa4V4DyIyB+5mpywTvwebiPr8yYkZ4r1ona/YqhbZQrwP
/6a7xfGTx8lnD+7ftTGet+aIHZBn9Isfq/sZsSO0j5bOOvjPE++HFiNiad+r
KeID0Gz3zbCNaiV2QmBX1nzC9SHyOcNhOKmhdaec2AW5xia8doWC2BUW47lj
xaynxG64+SG/TCd6jBjw5ZfE6pm2KlkG1GuoucykdZPPHWqWByDNG1OyzB02
4fKtd+ynKT+IjFNLhcvlk5QfxORLZqwl/wHlXFzRz5qt/baFci6O/LDwqCG5
nfwekNjJefKX98nvga8TKpyP+o1TzkPVl9afcYpor4yH+IqUfHwyQjkfIw5n
7RSm9P5lfPB63q6M8b1Nfk8UvFqPmTUaIr8nBIuj9rMav1LuhabTrtGVTGKZ
F+ozbc3NEul5hjckUdrHvqhvptwbFw1KrS5Lq8l/CI8TzKx3FPaT/xB0Rls+
9ppS7fOBzW81PUyp6nw+SNSURnCeDFB+GH1Vo8FO0mbKD8NDzH18Kq6c/L7Q
LfNdZfrT95D5olluz30/SbXPD8k7Vi6qhw1T7geLiNoe45x7lAvw/fCPAZm7
VPsFePCn540Jh2/I74++WAM3zeVOJWOD0624Kya0T+aPgeM5IV6fDyq5wx/s
rKu/m97uo34AEqI5ef2vm6gfAIuSXL1h42zyBcCy+lxKi2OHkjsCMO18ROHJ
7Kd9QkykZa41PPlZyRCiVXbyeq5jL/WFKC48Jg6daaK+EI2V7Kty1knyB4KR
NZdqtUjvD4HQMVxhuaf20P5APDPYW3Ctkb5PRyCsyjdZ1Lzupr4IkqmHWiNj
qv0izLcLctididQXIbrrjVJ94wbyi1Ck7RxoJu6i/UE4M84XbpmjvQjCatnT
sMv/UC4LwmmUsAzHVfuDUJxZfk6Q9BX1xcjO3SSpvl9HfjG6OWpG7NS75Bej
lh3AVoTQeTrE+KBN23nKsIv2S7DAKw6LU6j2S5Chp6iJvnKB+hK8tWp1NvSv
WvJLULf7/Bl1+R3yB+PSlvP+VQz6vxCM8sjnGrrhP9H+YKTzJnW8V1X7gyGq
+TQkdugS9UNQsCos9Ll3o+0/nHHojA==
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFlHlMk3cYx1udCBIcYVyxwDgdQwLCnCAifOUShCK0lLJsQw5Bp0IxGXMC
jkMGqBCnI4CkixCgysbNKCCulBsjWk7BIYdMjoFDKhNmMGwmfZq9ye+PT77v
k+/nSX7vaxIh4ERtZTAYUe8O893Zwvj/eVsuH2RHxLkqaMVVwWGtFMPx1Hpp
ZY8FsSoavu6RLbHMiDXheEkt8eCQEbE2Zp0v1Tz21SXWR9kG28vET53YAMuv
XopCw9YlCjaGiMXK6qkQuyjYFHpmfn+ryOXE5hBIqsa2St8Q78acZWX+uXtK
tsR6VW7IN09Wia2wvCRbtPefJbYGayOmZuxZObENZi6bB7oVTlD/XuTo7o3c
N71AbIfW6xoBKpFLxPZwGLXLEMjniD/BuHDYSWA3TrwPnM1Vra7qWuJP0fvR
zZOlmf3Utx/p28WqBYuTxA5IH2dyy9VmiB1RfU3mNtI3RXwA8n9FzMPGw8RO
uJJRWRSVVUd8EEKmfl/VB13U54xwUfZkp3iE+BDuTL1xr0j7ndgFqybbmlR8
x4hdEWjonym16ScGdgy5B93Kq1NwCjCTP/VF2P171HcYvxQmtDRG0D4ph5Fa
tFAiH1D6uWF6eCo1uXGIcjfYVN/he8Q8oNwd46djVDySyD/FHYP5gj2y0F+p
3wN159bKTi/cp34PCP50MO3RG6DcE5KLOeyECvJN8cRO2dDHLXq9lHth8qzB
8nKE0t8LnoZu3Uv7K6n/CErUhZ/r7+6i/iPg//A4tmmtj3JvvEqM29Gr/pBy
b/gIh3nRTfQ+wwezLqGsAZ7S3wfaNXHiYlkp9R9F9pDrws/lbdR/FFGDnWIf
I9qH4YtchlXGdxPK/XzhFavy/OR6B+V+GLnQoWPNV/r74cSsrceXrULqZ+O4
moHl7c3fqJ+NlT38hZ+suyn3x3Td2NW5mB7K/ZHd29LXX9xO+TEkXWssT45W
+h9DaPp2DXbCDeoPAFNDyHLpblYwAvDikdMu2yfklxIALy3j+o40um/SAMxv
zmrYFtC+jEC8l89ZSU8jfwRC9fuJ5+rMdOoLxPLrt2ZXefR9SwNRrRV+0X2t
jfw4eBDP1J5b61AwOEh6P75Gv1tK8xx0bisQjJWTv5QD/5IP40XR0dTPha/W
Bis6vp76uYicb3CpjZKSPxd35anHU2vbyZ8L5/ZnORJDyhlBuHXi+iG7caV/
EIzyfMPDHp2h+SDE6HZqnmLUUn8Q/qjmPyyykJA/D81C1+64YtoHPLC1fqxa
tGolfx7M+6+YC3TqaZ6HAa3bZ2QmaTQfDJ8GcVtzUyX1B8Pe7Z+XOydbqD8Y
+laxfYl3yVcaDAPTiNFMPwn58/G6fda1kK/cn4+2s091c7yzaZ6PrAv2rN4X
9P+T8sG1+OrAt1PN1B+CXT3euuHz5IsQGOlolm3JU963EJzPHf1rokjpH4Kb
Vk/PDw/doPnP0Jms7WWUKpL8Bzr//D4=
"]]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 100.}, {-0.000022316091392252793`,
0.000020911013080180836`}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"100", "300", "500"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.800007820254202*^9, {3.800157272865856*^9, 3.800157282524054*^9},
3.800252984801407*^9},
CellLabel->"Out[78]=",ExpressionUUID->"0d332ed5-967b-4586-bb01-b421b9550e00"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "10", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"100", ",", "300", ",", "500"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"100", ",", "300", ",", "500"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.801300518858911*^9, 3.801300534915441*^9}},
CellLabel->"In[79]:=",ExpressionUUID->"005b1227-a5fb-4b5d-a72b-43e663de0b72"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{1.928355710358927, -0.0014786397029451538`}, {
2., -0.0008210180623973727}, {3., -0.0007118186156745695}, {
4., -0.000567335056536863}, {5., -0.00040550981148720406`}, {
6., -0.0002452988710935716}, {7., -0.00010379056790210077`}, {8.,
6.217847980931413*^-6}, {9., 0.00007778722272664182}, {10.,
0.0001103220520244371}}],
LineBox[{{0.6349497993063238, 0.0009515060208102884}, {
0.7159546567648385, -0.0014786397029451538`}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{1.6067162346061874`, -0.0014786397029451538`}, {
2., -0.0002763957987838585}, {3., -0.00024201821187044324`}, {
4., -0.00019481316715351486`}, {5., -0.00014063066611892097`}, {
6., -0.00008591602926395904}, {7., -0.000036714406871486014`}, {8.,
2.2213587791328483`*^-6}, {9., 0.000028066409352780374`}, {10.,
0.00004020137440199763}}],
LineBox[{{0.5715160645856379, 0.0009515060208102884}, {
0.814530636961182, -0.0014786397029451538`}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[{{1.284301039115265, -0.0014786397029451538`}, {
2., -0.00016616816218012627`}, {3., -0.00014579061088585357`}, {
4., -0.00011758852520805669`}, {5., -0.00008505342350705358}, {
6., -0.000052065625630418826`}, {7., -0.00002229351451531446}, {8.,
1.3515305287579716`*^-6}, {9., 0.00001711035953902697}, {10.,
0.000024557169620186033`}}],
LineBox[{{0.5080823298649519, 0.0009515060208102884}, {
0.9131066171575256, -0.0014786397029451538`}}]}}, {{
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], {{{0., 0.02}}, {{1., -0.01}}, {{
2., -0.0008210180623973727}}, {{3., -0.0007118186156745695}}, {{
4., -0.000567335056536863}}, {{5., -0.00040550981148720406`}}, {{
6., -0.0002452988710935716}}, {{7., -0.00010379056790210077`}}, {{8.,
6.217847980931413*^-6}}, {{9., 0.00007778722272664182}}, {{10.,
0.0001103220520244371}}}]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], {{{0., 0.006666666666666667}}, {{
1., -0.0033333333333333335`}}, {{2., -0.0002763957987838585}}, {{
3., -0.00024201821187044324`}}, {{4., -0.00019481316715351486`}}, {{
5., -0.00014063066611892097`}}, {{6., -0.00008591602926395904}}, {{
7., -0.000036714406871486014`}}, {{8., 2.2213587791328483`*^-6}}, {{
9., 0.000028066409352780374`}}, {{10., 0.00004020137440199763}}}]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], {{{0., 0.004}}, {{1., -0.002}}, {{
2., -0.00016616816218012627`}}, {{3., -0.00014579061088585357`}}, {{
4., -0.00011758852520805669`}}, {{5., -0.00008505342350705358}}, {{
6., -0.000052065625630418826`}}, {{7., -0.00002229351451531446}}, {{
8., 1.3515305287579716`*^-6}}, {{9., 0.00001711035953902697}}, {{10.,
0.000024557169620186033`}}}]}}, {{
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 10.}, {-0.0014786397029451538`,
0.0009515060208102884}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"100", "300", "500"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.8013005203192987`*^9, 3.801300535424065*^9}},
CellLabel->"Out[79]=",ExpressionUUID->"b81d2a18-78dd-44fe-87c6-b7126c75f3d6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "300", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{", "500", "}"}]}], "}"}]}], "]"}], "\[IndentingNewLine]",
",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "500", "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.80010401161628*^9, 3.800104038522951*^9},
3.8002530377488317`*^9},
CellLabel->"In[79]:=",ExpressionUUID->"f34dda2d-ccc2-4e95-8433-501f85dab860"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{7.66750451622899, -6.510340161958214*^-6}, {8.,
1.3515305287579716`*^-6}, {8.32329381113266, 6.44626241847574*^-6}}],
LineBox[{{13.395506962273885`, 6.44626241847574*^-6}, {14.,
7.71350045933184*^-7}, {
14.930073723949649`, -6.510340161958214*^-6}}],
LineBox[{{18.99394203075019, -6.510340161958214*^-6}, {
19., -6.483341093577883*^-6}, {20., -1.0542035616122525`*^-6}, {21.,
3.941023913942321*^-6}, {21.730386819385185`,
6.44626241847574*^-6}}],
LineBox[CompressedData["
1:eJw1l3s81OkXx0fbdUupJN0nRbf9RbWlteGTW3R1l0uMYcwYc2+tojIj3bUp
LZFqkCKVW0SKSRpsCuliSWYr3S+qrdVum1+/n/P1j9d5PR6f9+c855zn+U7l
St15/Vgs1hg9Fut/v1++NuqQChZj8+RBU44Nabdh/f/nB7ztPaG3lH2LYivs
3n5GzdtZRPGPSNczbjg7+mplX7wEwScS7teU3qbYGjmdn+xPx7VRbIP3UweU
DVzRSrEt3Cat3qGZ20Qx8G2Lveex5KK+WAk8SOkM4NRfJL2lyEuLrjjPbeqL
lUuhUj/NetvM8NlBd6tTFXu+hdbtMDc/x8dBfI3W7dEuFA902ET8SnvcTJHO
aQw8R/oOKJJ/zBY+rSd9B0ifWZrUjm2mdUdUbt67Kvo08SodMbyxZVbF2Dpa
d8J90cTXr7kMvxMcJ9lpXyw6Q/rLkDU03d/Y7CrpL4NP4h1J2ccGWnfGuxjZ
t3VDr9O6M1zSb3mFldHfs1zQZRM4odmL4XeBYYGsNKPxOOkvR0KL7dNTuZdJ
fzl4N2tKXSaTH9YKHGTN3r6lg/G3Ak6SgY/4f12h9ZW4vfHKmO98GP6VCO0y
d1hXlU76qxA0ZOLMk18ukf4qdM/xeXrkOy2tr4auqHXPY3Etra9GQl1FQ1NG
Na2vwaZ953Njwxj+NQiMH6S/KvoA6btCTz99go22vC+GK17esBpv/jvxKV3h
NIpdfCWO6k3jiidfuvTND5Fflhv6p7h3x8cRP9wweFvHo6F68aTnhtcfPk/b
41XaF2vckD8qeLP9x8vE545rkXqGjz9e6Yvhjk0jIguMtRra746aAYekrbnE
r3HH6qwpkSfCwkjfAytG/TMhLLKY9D0Q8qTEppCnIX4PXHirClIVVhO/B5ZU
/7G3chKtszxxLHS/9bx2ht8Tk5NXBHNuRNB+T4iNagwErELS98TDfJ/ratNK
4vdCebqtVpZBfuCFVaOSzj6fXUX8XpjetHu6dEwx7fdC86iTEY1T42i/N1xK
Si+Xl50hfW/Mt+t5M/x+Bel7w3i2pCHmAvFqvDHRhHt3x8pK4vfBh+ou2zQf
xr8PLovuGe11TqD9Pti5cf6Eupe5pO8DD9PwHzZ0lpP+WoyvdTYKfkK8WIvJ
Ywyy+yUz9bYWUQfvvupQM/xrkTr7XtStlgO03xc1sYZOk1UnSN8XO9L89owd
X0b6vuhyKH1SmkC8Gl+IYHt7d+9F4vdDtLlVfVw3w++HkQUnfH0sU2i/Hz6f
+WRawckifT/MiJra/U5F9cTyx5qRDXvK/IgX/jBpH+hstJXml9Iftr8UfXnq
eI72+0N4srLrLucw7Q9AretDw00xatIPQPOJiKKr+iWkHwCnPVNdBS7EqwnA
yvxrnQ8mMPzr8GxWO3ermuYZ1uHI2rovSwKP0f512Hk4NX/PLtLTrIOnYN1j
+1LKJysQb/OmNUjdK4g/ENZ18elTtBQrA+E8YqZnSy/DHwhVfrfD/CMZtD8I
w87u5Fjwkkk/CBaHVhemRDLzJAgL7Qx9imUXiD8II09tkOdvofpicfCgx8uD
F0J+2RxIrmhT3m/Jov/HQXav3vjGjfv79DgcHPE4Wt9/GfWDkgMX1tLa/mqq
JzUH5tebOP/aEb+Gg2/Ofvr+xm8lfbGOg6E5HaeafbKJPxg6+5yslJ92kX4w
Yhedack2KyD9YCR5p8W8uEf1xAnG04v5knsGTH8E46clSY05C0v7YnUwfM0q
ixNnnyS/wZi7f6xDgaWS9IPx513tgiiTs6TPRcxL9zkx08v6YjYXmf6WbdLH
F+g8uNju761/MIvqjcOF6mXxEcmnHPLPxcHAAI/UPBHpc3Fkf3vWyMGnSZ+L
GxGJ0xf+dL4v1nFxTltpOa6azoMVgnq7RavmGdI6OwQDa62sbbSnyH8IqrPf
FdcPX0n+Q+Bh5nhO/In6WRmCiiHjBr+tJz51CC4Zb6sXZhK/JgRtDtp+03ac
J/8hqOuxLYw5cJr8h2JjS5DaZV4k+Q/F8uYFb1XvKH8IxZ28uZ9+m0b55YSi
Nerx+4nbiV8ZigWfH+4Y+pn41aH44x/9Bv+gs+Q/FJa8xevs+VvJfyj2Wf+t
rXvDnD8Puammt8YoqT7YPLR+X9o7QMTkn4efGzvHJCjofDg85J1b8vSFUQH5
52GD3hmt/aIE8s+D6E7YuRmvqX41PJw+sIvv2kH9qeMhg38pZbQHk/8wrJcO
vm//nOqLHYauYcMW+/cy9RcGi0/ly99sp/uSE4bcL9c72p9T/ynDEBU9/s+J
VtSf6jA8rKtJdrRi8h+G+a2LfmzkUn/owiDPPenn8oz6h8VH3PHM0qN/J5N/
PiL9dOtva2l+gA+HwO1Cq19pPnL42DSm+24um8n/19ja/S9tO93faj4KMj6e
6r5F/a/h427PrV63jYfJPx9W8XOb5uQx80+AwAGH9WJf0f3KFqBoILdx7QAm
/wI8SLyprvKkmCPAlKcWvOhqml9KAVTDRxg96qcm/wJ4Zp7pydxC81sjwIHk
tb+3LCUenQDKlLwqxRPiZYVDtGfSK+fr5IcdjtZYU0tWETNPwzFt629jF7pl
kv9w6BuX/LzBOon0w/Hm+hv5vP2UT3U4DL6YREzSUr414UgU25m+cqB5pAtH
1udh0r1ZVG8sIVQmxVtO5Rwn/0J4Wl/bwqvbS/pCzP438Fp6G9UDRwh5p/7M
ODXxK4X4OGfyYYsKmkdqIVqvptybkkL9ohEiSfS8zOJb6iedEA86nIVzO+l9
xIpAWlDsMNNJVM/sCJgN93NoiCR+RGBVQIDpfnO6zzgR2Brkvj4ngfpZGYHg
0Xm2v/5M80AdgXsx+Ud3KqJIPwLmodfMr+RTP+oiYMn+kjvDkcm/CFv/mZyx
LYPuM7YI2zqHXxgaT/3w9bYeGC7p2fk6j/yLUDd+udegne6kL0JhauAH3Wh6
b6tFsPsmoqxKn8n/1/1VARs2G9D9rBPBJV5mYLKZeX+I4W9cyMpU0Dxmi1Hj
fLwtL0ZM/sVojg1Y8TyU0RejJYS1vPIG874QI+qEzXe6mEuUfzEu/Xql+XwU
c9+JIdih2XJWReenE6P/mpeOsf4q8i9BYFd0/dwMyh9bggFOwvvLd9C8gQQT
yv98MOwh8XMkeDa+0W/veuZ+lkC1KEBvXxNTfxIo/jY8qsjdQ/4lMDm2cMyA
Wub8JTA64vFo1yLiZ0nBCs/o8XWk9xFbioOls/7yltF5QIrO022JxmZM/0uR
1pPqctgsifxLkRvlllR/i+apWgpDs6GT09upPjRSrD81Mckwk96rOin0FOXl
F8XkhyWD7+hx3rw4ml8GMvix1Ws2Zx+ifMhgO2Mcv6OO5qmFDLs8cicdjaR5
Dxn450WLlT3E7yrDDzwfe78IijkyTMspStvaRe8LmQwbLjx/6e1xlPhl+LS0
qiQ7g+Zpogze6oF3Tn5D/GoZLC684N9ZRu/TAhlWWgyOrhRQrPm6f9mN05Fr
6O+bZGjKa3vSa5xJfmUY+iV1pVEF6XXLIPAV2TTEU3+y5BgxZOYip31VfbGB
HB5sQWrJfHpvs+XoDNmcO09D52Uhx5s3bs0pU7PJvxwPPlpZvP+Q2qfnKseC
1fxB43povnDk2HRX/eL9deKVyTFr6ku+sID5vpHDLjzEIsOS5muiHGlc0UUb
B3pfqOXoKPY30nQf7NMrkKN19e6g5ADKp0aOmscuHpv0iLdJjlfPZz+3+A99
n+nkqLrZ2S+jhOZTtxy9abXCfBX1E0uBar5XW7XrPjp/BQb9blfrVEj1wFbg
WLoBq9CIeC0UsBFfsizJYb53FBiQtj+RZUX15KrA+B85c5LaqJ85ChS2O8/a
tiCezl+B9qMz35t9oHpWKmAs+aXN2Iz4ExXYUHCl97AJfa+pFVgrqlCoaqie
ChRYELUwTjOjkPwr8MrE56bfILnNfwHXW6Zh
"]],
LineBox[{{0.6655922895969206, 6.44626241847574*^-6}, {
0.6677517233603263, -6.510340161958214*^-6}}]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFWHtYzPkXnlhhEy1JhB1RbruEVbalXt0URfe7mqam6TLTXGwbQtPFbbEi
KyVMpZR0VyJqNumyolJoS5rNRptbsahl6+d5Ot/n19M/73Pm9L7v+ZxzPp9p
HlfkyBvLYrG+VWGxPv+yxrD+//Mpe+CeHVdsOor6TUcxp5LCWBP04XxurR7h
CSj5sbbxuc58whpYEzsx8oeWuYQ10bM2tuDBJi3C2sj4aGc1z1aN8Gy8evM6
04fzoWIUs5Gpo3Og9lKpySjWxYz5tv+oDgwQXgBRRV7bWMUQYX08XZSbKLnO
4EX4kHfC/ac/3hJeglfPG/tWbu4h/A10PgoL2v7MJrwM3QcXOJgldxK/AY5o
Gfh/p+wlvAKVx9TtVf2fE14Jo4cr9okGnhJehY6UVmPRig7C38Fx+O3UW/mF
hFejbmES//z+JuIzRNz40gmn+h4TNkJch4pT9sRuwmuQf7TR7H5DF+HvMTCS
qbKe3UrYGD/vy5XzDhQR/gEpKtoNedNuEd9a+GUeflxdep/wOmR1DZlfimkn
bIK388aVqW5qI2wKhzmb9yuWNREGvmwxdz53smgUy4DuxC5vTv114luPnOSd
5Ve45Ee2HtHy3vSBZkafGZStXdFRV1ooboZl+VluFsLbFDdHR4hQ1WIX6ZeZ
416iaGmjz2Xit0CR5H1GSG898VtA9LeRbu2MZopbomL3Ebudl0ivzBKTG1sW
l8+oo7gVHgtmv3rFZfRbwXKOWc1zw1zi34B0tRQvbf1bxL8BbvEPwsreN1Dc
Gm8ixV/Wqd2huDVsUlpdAsvo8ywb9Jj46DS7MPptoFkgLk1tPE/8G3G4xbT3
YvZvxL8RvHvVpTZzyQ9rE06wluzb08n42wSrMNW/+B9uUtwW93fcnP6NG6Pf
FgE9yy22VqYQvx18J85edGH4BvHboX+pW++Zb2oovhnKorZDT4W1FN+Mw3Xl
DU2pVRTfgl1Hr2RHBTL6t8Anbry63c7jxG8PFfUUHZOaq6MY9nhx13jW8j9I
n8weVlPZxTdjqN8U9ng23KO+/BT5ZTngi0TH/rgY0g8HTNjb+ZeaShzxOeDV
u0/zD7nQfCsckD/Vb7f5+99InyNuh6toPn1/cxTDEbumhBdo1ygo3xHV406J
2rJJv8IRm9O/Ds8MDCR+J2ya+lEnMLyY+J3g/6zEpJCnIP1OuDYQ7RtdWEX6
nbC26s8jFXMoznLGuYBj61Z0MPqdMffkJj/O3VDKd4ZQq1ojiFVI/M54ku92
R65XQfpdcDXFtEacSn7gArupCXl9SypJvwsWNP28QDS9mPJd0Dz1QmjjvBjK
d4VNSelvV8tyid8VK80GX09+XE78rtBeEtYQeY30KlwxW5f7cL9tBel3w7uq
HtNkN8a/G34TPNI6Yn2Y8t1wYMdKnboXtP8UbnDSC/5+e9dV4nfHrFprLb9n
pBfumDtdI2PMSabf3BFx4uHLTjmj3x1JSx5FtLYcp3wPVEdpWs2NziR+D+xP
9jw0Y1YZ8Xugx6L0Welh0qvwgACm938euU76PbFzuXF9TD+j3xNfFWR6uBkl
Ur4nPuUO6ZVz0onfEwsj5vW/iWbuCy9s+arhUJkn6YUXdDtUrbViaX/JvGD6
S9Fwr+VlyvdCyIWKnoec05TvjVr7J5q7IuXE743mzNCiW+olxO8Nq0Pz7INs
SK/CG7b5t7u6dRj9W/H34g5urJz2GbbijHvd8Fqfc5S/FQdOJ+UfOkh8iq1w
Dtr61LyU6snywUDO/AaRYznp98G6uriUr2sIy3xgPWWRc8sIo98H0fn9FivP
pFK+LyblHeAY8E4Svy8MTm0uTAxn9okvVptpuhWLr5F+X3x1cbskfw/1F4uD
7kEXJ54/+WVzEHazJvHtnnT6exxkjKjMatxxbJSPw8EZp7P1X2ygeZBxYMNa
X/uFnPpJzsHyO02c/8xIv4KDsXlD3939vWQUKzlQy+q82OyWQfr9oDTPSk/8
8SDx+yHKMLclQ7+A+P2Q4Joc+fwR9RPHD73X88MeaTDz4Ycf1yY0Zq0uHcVy
P3joVxTHL7lAfv2w7NgMiwIjGfH74Z+HNasidPOIn4vIF45LIxeUjWI2F2le
Ru2ip9foPLjY5+WqfiKd+o3DRfSL4jNhQ1nkn4sTPt5OSTkC4ufizLGO9K8m
XCJ+Lu6Gxi9Y/eOVUazk4nJNhdHMKjoPlj/qzQztVmhSnO0P1VrjdSY1F8m/
P6oy3hTXT7Yl//5w0re8LByieZb5o3zizAkD9aRP7o8b2nvrQ9JIv8If7RY1
Y+bvv0L+/VE3aFoYefwS+Q/AjhZfuc2KcPIfgI3Nqwai31D9EIAHOcuGfp9P
9eUEoC3i6dvZ+0i/LACrPj3Zr/aJ9MsD8OdH9QYv3zzyHwAj3pqt5vxY8h+A
o+v+ral7zZw/D9lJeq3TZdQfbB7avisdGSdg6s/DT41d0w9L6Xw4PORcXtv7
XKuA/POwXSW3xtzwMPnnQfAg8PLCV9S/Ch4uHT/It++k+VTykMq/kTjNial/
ILaJJjw276P+YgeiZ9KkNV4jTP8FwmDo6sbX++i+5AQie/hOZ0cfzZ8sEBE7
Z/0z25jmUx6IJ3XVJy2NmfoHYmWb4Q+NXJoPZSAk2Rc8bf6m+WHxEXM+rfTs
vyfJPx/hnspt92tof4APC599Ica/0n7k8LFrev/DbDZT/894neOHmg66v+V8
FKS+v9jfSvOv4OPhYOuIw47T5J8P47hlTUtzmP0XBJ9xp1WiXtL9yg5CkSq3
0X0cU/8gdMffk1c6E+YE4eteA97OKtpfsiBET56i9dcYOfkPgnNa7mDaHtrf
iiAcP+n+R8t60qMMgiwxp1L6jPSygiE4NOel9R3yww5GW5SeEauI2afBmB/7
+4zVDmnkPxjq2iU/bV+XQPzBeH3ntWTFMaqnPBgaw7qhc2qo3opgxAvN9F5a
0D5SBiP90yTRkXTqN1YIonWL91zMOk/+Q+C87vYeXt0R4g/Bkv98bqe0Uz9w
QiDpUl8UIyf9shC8Xzr3tEE57SN5CNpuJT76OpHmRRGCBEFfmcGXNE/KEHR3
Wocs66L3ESsUyb5Rk/TmUD+zQ6E/2dOiIZz0IxR23t56x5bTfcYJRayv47as
wzTPslD4Tcsx/fUn2gfyUDyKzD97QBpB/KFYHnB7+c18mkdlKIzYw9kLLZn6
CxD7cW7q3lS6z9gC7O2afE0tjubh822tGhw2eOBVDvkXoG7WRpfxBxyJX4DC
JJ93ymn03pYLYDY2tKxSnan/5/xK7+27Neh+VgpgEyfW0N3NvD+E8NIuZKVJ
aR+zhai2Pt+eEykk/0I0R3lv6gtg+IVo8WdtrLjLvC+EiMg0+UYZeYPqL8SN
X282X4lg7jshgvYr9uRF0/kphfhiywvLKK9o8h8Gn56d9ctSqX7sMIyzCnm8
cT/tG4RB5+o/3ZOekH5OGP6e1eh5ZBtzP4ch2tBb5WgT039hkP6reVaafYj8
h0H33Orp42qZ8w+D1hmnvw4akn6WCKzg1EEPS3ofsUU4Ubr4g6uYzgMidF1q
j9fWZ+ZfhOTBJJvT+gnkX4TsCIeE+lbap3IRNPXV5qZ0UH8oRNh2cXaCZhq9
V5UiqEivXr0uJD8sMTymzXTlxdD+0hDDky3fsjvjFNVDDNOFM/mddbRPDcQ4
6JQ952w47XuIwb8iWCMbJP32YnzPczP3DCXMEWN+VlFybA+9L8RibL/W98LV
6SzpF2NofWVJRirt03gxXOWqDy6MJf1yMQyuPec/2EDv0wIxbA0m7KwIIqz4
nL/h7qXwLfT5JjGactqfjWinkV8x1IaTbLXKia9fjCAPgUlDHM0nS4IpExcZ
Wh2tHMUaEjixg5JKVtJ7my1Bl//u7BUKOi8DCV6/dmhOnJdB/iXofm9s8PZd
0iifvQSrNvPHzxyk/cKRYNdD+fO3d0ivWILF817wQwqY7zcSmAX7G6Qa0X6N
lyCZK7huYkHvC7kEncVeWor+E6N8BRK0bf7Z96Q31VMhQfVTG6ddKqS3SYKX
fUv6DL6l72dKCSrvdY1JLaH91C/BSHJtSH40zRNLiiq+S3uV/VE6fynG/2FW
a1VI/cCW4lyKBqtQi/QaSGEivGFUksV835FiXPKxeJYx9ZO9FLN+4CxNaKd5
5khR2GG9eO+qODp/KTrOLnqr/476WSaFdtgv7dr6pD9eiu0FN0dO69L3NbkU
7oJyaXQ19VOBFKsiVscoFtL/WxRSvNR1u+c5XmLyP3MqGZA=
"]]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 300.}, {-6.510340161958214*^-6, 6.44626241847574*^-6}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"500"}, "PointLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
"}"}], ",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], "}"}]}], ",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{", "True", "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.800104026969161*^9, 3.8001040396063023`*^9},
3.800253040121683*^9},
CellLabel->"Out[79]=",ExpressionUUID->"4e9683de-cadd-4c17-9a2f-9cf80bb6ed6e"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["UHF", "Subsection",
CellChangeTimes->{{3.800007505695323*^9,
3.800007506100013*^9}},ExpressionUUID->"28c03220-4253-4ac2-af1b-\
7e79584e73c8"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "20", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"0.1", ",", "0.5", ",", "1"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"0.1", ",", "0.5", ",", "1", ",", "1.25"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800010148306141*^9, 3.8000101798107777`*^9}, {
3.800010308469328*^9, 3.800010309483148*^9}, {3.8000906685538473`*^9,
3.800090714057558*^9}, {3.8001739578815823`*^9, 3.800173969462998*^9}, {
3.800253049852869*^9, 3.800253064974268*^9}, {3.8003527785440187`*^9,
3.800352792306602*^9}},
CellLabel->"In[71]:=",ExpressionUUID->"4770d01e-d16d-45c6-bc42-c53413d65f4f"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{0., 116.6666666666566}, {1., -683.3333333312547}, {2.,
138121.1999992457}, {3., -3.383773814612787*^7}, {
3.0180511374982135`, -9.541697276879734*^17}}],
LineBox[{{4.00000000000001, -9.541697276879734*^17}, {
4.00000000000001, 6.043468764510557*^17}}],
LineBox[{{5.000000000000153, 6.043468764510557*^17}, {
5.000000000000153, -9.541697276879734*^17}}],
LineBox[{{6.00000000000004, -9.541697276879734*^17}, {
6.00000000000004, 6.043468764510557*^17}}],
LineBox[{{7.000000000000012, 6.043468764510557*^17}, {
7.000000000000012, -9.541697276879734*^17}}],
LineBox[{{8.000000000000027, -9.541697276879734*^17}, {
8.000000000000027, 6.043468764510557*^17}}],
LineBox[{{9.000000000000043, 6.043468764510557*^17}, {
9.000000000000043, -9.541697276879734*^17}}],
LineBox[{{10.000000000000028`, -9.541697276879734*^17}, {
10.000000000000028`, 6.043468764510557*^17}}],
LineBox[{{11.000000000000092`, 6.043468764510557*^17}, {
11.000000000000092`, -9.541697276879734*^17}}],
LineBox[{{12.00000000000003, -9.541697276879734*^17}, {
12.00000000000003, 6.043468764510557*^17}}],
LineBox[{{13.00000000000004, 6.043468764510557*^17}, {
13.00000000000004, -9.541697276879734*^17}}],
LineBox[{{14.00000000000003, -9.541697276879734*^17}, {
14.00000000000003, 6.043468764510557*^17}}],
LineBox[{{15.000000000000021`, 6.043468764510557*^17}, {
15.000000000000021`, -9.541697276879734*^17}}],
LineBox[{{16.000000000000032`, -9.541697276879734*^17}, {
16.000000000000032`, 6.043468764510557*^17}}],
LineBox[{{17.000000000000036`, 6.043468764510557*^17}, {
17.000000000000036`, -9.541697276879734*^17}}],
LineBox[{{18.00000000000003, -9.541697276879734*^17}, {
18.00000000000003, 6.043468764510557*^17}}],
LineBox[{{19.000000000000043`, 6.043468764510557*^17}, {
19.000000000000043`, -9.541697276879734*^17}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{0., 9.047619047619044}, {1., -13.809523809523887`}, {2.,
87.74204081632664}, {3., -819.0092781341125}, {4.,
10128.969126037517`}, {5., -145746.8936052744}, {6.,
2.2524076265043374`*^6}, {7., -3.644975953698418*^7}, {8.,
6.103552959362319*^8}, {9., -1.048841261152274*^10}, {10.,
1.8389704717225128`*^11}, {11., -3.2767321043834434`*^12}, {12.,
5.916289604358419*^13}, {13., -1.0800733080040032`*^15}, {14.,
1.990314989891986*^16}, {15., -3.697260011358374*^17}, {
15.133692609442285`, 6.043468764510557*^17}}],
LineBox[{{16.04604325598516, 6.043468764510557*^17}, {
16.05741223306091, -9.541697276879734*^17}}],
LineBox[{{17.04982594225325, -9.541697276879734*^17}, {
17.050426915462456`, 6.043468764510557*^17}}],
LineBox[{{18.04995315124304, 6.043468764510557*^17}, {
18.049984765982444`, -9.541697276879734*^17}}],
LineBox[{{19.049760622079745`, -9.541697276879734*^17}, {
19.049762278020665`, 6.043468764510557*^17}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBWIQDQNSbYkSbYlMDhDeB3vL859tzn/+uh8q7fDWObk2
I+YUlM/hsGea8w0fiUX2EL6AQ8OVsCwptSNQvohD0O3jV5zFd0L5Eg4ca/P2
MmxdDNUv4zDnWX9Ww6ptUL6CwzOFwIVz5tdD+UoO/QVLZ+pe3QrVr+JQbaGt
7Fy/HspXc0gOmFkg5bYSql7DIfea17Vd37dD+VoOmx+/jHQ1D4bydRzWzn6z
9cOHXVD9eg5rkhezx4tshPINHNadmf+rrXsLVL2hQ6fKzanWcQegfCOHdw3t
/e3uE6DqjR0CvVM/fP4B86+JA2/kmt4HDVvtAV0pYyg=
"]]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQIBny1etWqUV6wDhfbC3Twbyo1oPQKUdYkxm
zvS8w+AI4XI4iLtqB05VajgI4Qs4XBMULet7w3YEwhdxENDqVZJZ+cENwpdw
8P1hetDl7IyTEL6Mg0oMl/PVXYk+EL6CA9uadQeOfHE+D+ErOaxU+v+fc45I
EISv4qBiwzNF9cWtKxC+mkOExrnpr/xXh0P4Gg61C7X8JH8m3ILwtRyuPpqj
liVvEAvh6zjcPyFTFFH37T6Er+fA8PCFxEqBo0kQvoFDdqpI55Gpc55C+IYO
M+zVA//ezsqA8I0cdANn8+oEmL2G8I0dlG5+fM8mx5oH4Zs4zHiwTNSS58wH
ABehWnM=
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQICWRIm2RAklBwjvg71w1bznlfO0D0ClHR7N
Ojyj9n0oVJ7DYZlIFoPwjE6ovIBDdl4QT82Jw1B5EYeVrVJq008xHoTwJRx8
vA0vWOs7OkL4Mg6x+7z/5CU2QuUVHIqufddfYnAIKq/kMElP5pxzJ/MhCF/F
QUvBSaE/w9UJwldz6Pn9dX7y9XaovIaDhEL75vLnp6DyWg5SX6/5TdzEdxjC
13F4u/vFmeK1gc4Qvp5D81b3aPm2KVB5A4eddofkz/+7DpU3dPj+5m3PJUuZ
IxC+kcMCplmZjzckuED4xg7MIptmH7i6GCpv4nC4Y5e4zZrnLgBbdl1w
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQACptkSJtkQmBwjvg73l+c825z9/3Q+Vdnjr
nFybEXMKyudw2DPN+YaPxCJ7CF/AoeFKWJaU2hEoX8Qh6PbxK87iO6F8CQeO
tXl7GbYuhuqXcZjzrD+rYdU2KF/B4ZlC4MI58+uhfCWH/oKlM3WvboXqV3Go
ttBWdq5fD+WrOSQHzCyQclsJVa/hkHvN69qu79uhfC2HzY9fRrqaB0P5Og5r
Z7/Z+uHDLqh+PYc1yYvZ40U2QvkGDuvOzP/V1r0Fqt7QoVPl5lTruANQvpHD
u4b2/nb3CVD1xg6B3qkfPv+A+dfEgTdyTe+Dhq32AGblYyo=
"]]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 20.}, {-9.541697276879734*^17, 6.043468764510557*^17}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"0.1`", "0.5`", "1", "1.25`"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.800010203896109*^9, 3.800010315087441*^9, 3.8000906901173763`*^9, {
3.8001739651026773`*^9, 3.8001739721292763`*^9}, 3.80018249783724*^9, {
3.800253051675563*^9, 3.800253065998494*^9}, {3.800352780177466*^9,
3.800352794512775*^9}},
CellLabel->"Out[71]=",ExpressionUUID->"1e2e5b00-6444-4d24-8ef1-8d2f252d7f82"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "100", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"2", ",", "3", ",", "4"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"2", ",", "3", ",", "4"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800007752402253*^9, 3.800007756193302*^9}, {
3.800009436777871*^9, 3.800009448210932*^9}, {3.800009769459014*^9,
3.800009772299378*^9}, {3.800009881279499*^9, 3.800009881825911*^9}, {
3.8000101358425198`*^9, 3.8000101362532043`*^9}, {3.800010200123188*^9,
3.800010208840814*^9}, 3.800253101920834*^9},
CellLabel->"In[82]:=",ExpressionUUID->"6684712f-a153-4f02-b620-d9a25829205d"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1kX1Q03Ucx39AdsgpV6AFQnZw4sqeiBRBJry3AYONAXtiw8CrAQooJ6Bb
qSA7azEVVwZLkJp0HJtFnPnQycDkh5LQccCQrqJdcZpNO3lSalqQZO2z3933
fve6173u88c7QrNLVuTLMIzi0fvv/1ZPkKMh7lWcqpvbM9HP72H+/2IQOqsb
L6kA8WtwDbbxjtYmEK/H7dHNQZX9scQbYLJn/xreGEMcizc0438xv7xEvBHy
qlRHyDsc4jg0VB/hnAiIJI7H5Nl5zmp2FfEmdOav+kgwEUScgMfPdNxd3uRP
zAVveuWVPNP8JQ9vxvALwd8zT94kTkTY/VMJXN+RRA8nYY3CJ8QhnCIGnn5e
e3zjGbeH9cC+dRkaV9kCeR5K3VHtwjAmyeN5WGE6bKx8xcfDDB+xd9dK5huJ
9Xzs9J8dE+z1egFYm0p4ccrbC+AsDV3zzBPETDKqQw4JxFP/0P1kOJjnlnYV
z9P9FJSftC1tP/uAfArChTOY+O1P8qkIK19pjQ+ZI5+KogXjF7zXZ8kL8e05
cz9/7x3yQuS2XQ/kHnWRT8NchT1ihc8N8mn4ymDbwl50kk+HJUAy+YPiO/Lp
eGhfPsY2D5IXoVQist4QseRF2F4jPWhp/Zy8GNybnB3xfxs8e+jFCGuZuVdl
PU37ZOCA2u93HaeLfAbWnkh5ELzIkpdAbotfYIavkJdgZCBYG9r6DflM3KsJ
vKxpuUo+E/erd1k+cxEzWRBXrItjzF6fhehl5xT5A94+G1uHrtaqm/s8jGx8
UsyzLUZ572WjpmPPj73VvR5ms3F6uLhpvLSHein4unK/yq5u6qUISNq/qW9J
J/VSXB8x6o8VnKdeioionluxri+pl2EfW7ElKK6dehku5+vHyp5to16Gd7nS
7guRJ6mXYYOz1fDYy2bq5TC4z9sLrxmpl6Ow7GGRRrqbejmG3OVdvdpczx6s
HG821PtnNe2nfRRI2yrtbJG952EoEGN+P+/T23W0pwIp62e0x37+gHoFOHVa
dUfVh9QrsdgysNpZUk+9Eu2WW/z0r4n1Sjg/LtCYTcSsEppJ3Wj+H94+B4GR
maI7fsTIgbsv4dCsg+7pcyA7nBHe/ZOJ+hykXli2zXjtCPUqbJu1Nh5vM1Kv
gnVwOrpgp4F6FdSharst4SD1KuxeCOx8Kv0A9WrUipe8aC15m3o1dNtHJcnT
ldSrobUMX/Id2kH9I64vjG62a6jPhTWmRZ2Zp0z8FwMrl4U=
"]],
LineBox[{{0.680083588049687, 0.0003475887285327859}, {
0.6807603523871677, -0.0005731431100709687}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1zwkwnHccxnFnSAgihMa1jqCWtSRY13p2XXHEsWuXNpIJTVNBIw2NJh2s
JKYdrbTIJA0RqaCOymiqk9Q0rJCSdFChqSZ2GMrkUGej4uq1v/edeeedz3zf
Z+b/t07OEL2tpqKikvzv+9/XOH3ykVRDG3WfLmaNdgvbVf5/DFDa0Bj+aquA
bITy8YLr/VyQTVHJjp5Jig8gm2PRuXpprJhPZsHGZutJzpQ/2Qa3zF30BIGM
7XBpy3cp71X5ke2xIGEfDlBl7IgHofWTDw/6kp3QLErhrbX6kJ0huvq9Zp8x
Yw6+sPioMSvDm8wFR3t1s30Pj+yGksEKXTMWY3ewMisNirK9yLuxmi0abOnz
JO+BTM5du7+LsQc6ex7+rpbjQfbETf7MqQtDe8he4A4O2d90ZszD4yPt94oK
dpO90VdYXxI/6k72gcJUYcX3YeyLuahfIo5ddCP74cI7Et72P7lkfyR1Vgml
YsZ8eBxoeXUnxZUcgFt3W2JqORwyEG6Uk9y07Ky0DJDv75aYdLOpC+DYOVVm
V+ZEXQBDnZGn2068Tl2IpeJEP9NoR+pCHG1rG053c6AeCIsXd8IFr9lTD8RG
pNa7nZt2UQ/Cl9/Ijlms2FIPwtgR78fvL9pQD0aJ+ctrswvW1IPRZQG7hmUW
9RDcHl4VdmiQZSHoqq3uK+NYUg+Fces6u/uQOfVQ2Jq1rDtd20l9L5ZHXCwm
pk2p78WMOl99U6gJ9TB8kvdy9voNY+phKLBMMeq2NaIejlYZ2jJrDamH4yvj
jXN1ntuoR0DYdHz+hzp96hG4ISioNvxbl3okDt42DXM9voV6JKzn3C2nVrWo
70Nq2ui4SpUm9X2QZjTykaxOPQp+bWfYiX6q1KPQnB/VoX1oo03Zo+FapZbT
cWpFaVk0xr7WP2l7b4l6DPSWVCuSBItKIwZZPdn5gU9m6f8Y9PCH+1eKnykt
j8FDfoVYs2aC9rH4dtzGZMhuhPaxOM8bmOQ1D9A+Fs55DhHzle20j0XvzkyH
P86W8pV7EUZPWCkmj3YqDRHGBq6mtpQMKC0TIZe7v4TzaFhpuQjpDyzyWedG
aS+Gp16hftPP47QX43yk4lLi5Unai6GfLfUutXxKezFKPphIu5/8nPZxeHN7
+1unU6ZpH4esXDu5jfsM7eOwqvMiKODuLO3jwHrS3F9TNEd7CbhXEsvHrOZp
L8GHZtYaOpfJMglyNxTdB1bIcgl2tC4q9IIXaC/FxzVdf8WcJkMKs99ytcTl
ZJkUxWO+vQH1ZLkURl55qf41zD4evxaarqV/zuzj0Tud6vM8jdnHoyVuB+sn
HrOPhyRk/aLVMp1HJQF1z66w5xuY8yeA/VnDj0IRc/4EuByeSjeYpfvKE+C8
2UAz+gxz/zew0T9lO607x/8HehHabg==
"]],
LineBox[{{0.6862540582972866, 0.0003475887285327859}, {
0.6873682211944205, -0.0005731431100709687}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1ywlM02ccxvE/h1gKTNCCwMim3HacIniA86FcWrBAKVBCcOWYTsfpkbAR
4W8GKqhTIyqMQ1EycAIOlE3E0WIIA2aIZtM5cdQhaGCgDIZhFGVb+L1v8ubN
J9/3WZ2SJf9Yn+O4tP/u/+/XNg+9q2YWttQfn96v/VGi5hYP7ivft/3zsi1Z
gIZM3fPRtpVkc6gHMn+qybYii5ApSKgTP7QkW+PtCf2nfYXMdmi959GmjmZe
hb2nDHQWHzDbw0N4f8DPmNkR86cFwiWjIrIzPspr2SnuZXbFyiRxp+0VZjFy
81OMq44yu6H89kbril3MHnj85dFss1BmL3R5pamnHJi98SBmQhqhx7wWJU2C
fXaDK8g+aJXlmO+8xbwOvvHm3m7nmH3x7uscXU4Osx8cEi9e2hTBvB7egYOq
YmfmDTiplRxI5pg3ImG0xL77t+XkTTAVf9p0q4XZHz0VNsmSY8wB+LZoolCV
yrwZrgeNd1r7M38I9BvLM5Yzb8ESw9bzKaMWZGBNTeNhnZrMA4/qHbP8z7Ee
iM9/Pl7jlM56IDLSZJk/BLIuwc0LeU5GK1mXQPWsyMpg3Jx6EAp2T5/8XkPm
g/DXTUut81nWg3G9TxOp2M16MF6O6rsFbWY9BFcVv7e/Nmc9BLahuuLhnmXU
Q3Ft5pVobxaZD0X5GsPySkvWw9C7dsepPe3vUA/DkRvKzCEVmdsK04E31UIj
1rfCUVV4ePQbM+rbcHhXP18USea34VjA2NPhaVPqUpyZK500KyPzUsy7ql8Z
BbAejvyYFaKHWhPq4Yiqyz966AsyFwHPqvb0ZS6sR8D55uAvRX1C6ttxVTXS
M5ZB5rcj6FlocLAF6zK0lR/xLbthTF2G/SH9B8fjyVwksmvyJkN1AuqRGPbu
kjdWk7kozMVFJDpJyIiC55Xu5hsjS+l/FAwul75UFZM1UbCv3v2VpzuZi8a4
y6S7830j2kfDuCXHQnqAzEej4xJfedGGrImGUW+tpWfHEtrLUble2DKXQoYc
60rWnhUIyLwcnefr7yU1GtJejrDS71IX5GQuBvtq3/OfmjWgfQxEIw+8/C+Q
+Ri8edFpog0ha2Lwoi63YGhcn/YK6P2t7yYtJUOBSUVNlW0AmVfg1z1nIpTD
erRX4GXXH5VLT5C5WAT5iAfd/MiIRe3pzPC7Wo72sbhm8lw4VkzWxGLs0T33
knVkLg57tZWqZPVCx+I+Dr1J6VN3rMh8HDAzfB1ZbxetiUNk2W27oZ43i+bi
IUqVftbkQEY8hLnhYw0F87SPR3NLQ9rwEx3t43FXnNCc6E/mlJAVmmXYVMzR
XokSfS+B4/w/tFdiQtnYfWgHWaPEKp/H6g13ZmmfgCefJAzKXGY7/gUvpdWE
"]],
LineBox[{{0.6856837961249613, 0.0003475887285327859}, {
0.687236326310591, -0.0005731431100709687}}]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxF0nlM02ccx/ECc0GixHFsYJkbBKhj6oApgiB8yk05e9HiwEk5BIRIUZgc
hUaH4MVQ6ATZCguh6IA5FSMFJ0URMYRL5jbWbAbnQCOnboCDyUj6bfZLfn+8
8sk7zx/PYys5yEsyYjAYSau/wepvyPj/m8xVTuQqp3x0mvUJE65+D7WdNEPI
TpClxOaRjRF63WSCeVhK3gBmKysxZSiNbAFTM/8jeeXJZCsM56dptz5MINvA
TW4pc1HHk9+Hiftd/6z+T8l20LhM5xfKYsn2sJi7GPAqPYbsCCdEhdRXRpM3
4zNp3rlnc3yyE0TxyT15x7jkLWittd7nXx5B3obF7xaaxwo4ZGeIRxwTYu4H
kl3Qoii+1Cz1I7vCejZnNFUK8scY72tgnynxJG/H0+HdZln33Mg7UKaO+sOm
ypXshn2S0VeM37eSd4JfEDhkdYxFdkel7BTrgokd2QOTV5dYmzQbybvQFrfx
S79HZmRPvHmlZW59tTHZC+xpyzuxZUu3dN6NgQ/Nf2K89YTsDebCRU8vw0Fv
nX1gLzCwGgqaIgPvfJB9fueVeZ3lQJ5TmGQ8Y5l2NtLmHZqCmAzd+5CzYVF2
sjTrIwN6L75wm3MMX6oiy32Rbjw74per3/2gaRQF3ZzS937Qplnbv7uBzPCH
zOqEX+jUv3S+P4YYm9e2pyzR+QHIrG1c23R1kfYA2ATN4NGff9MeCGampcrD
6iXtgUhaLm1mfzJLexDuX1Pc8819TnsQYhrGTL3OjNMejJdSta2FwWPag3G9
uHGP5qaW9hAoTcInfxb8SHsIXqvXj2hq+mjnIC2co3rM0dDOwf4i7lFl/be0
h8LrCeuAxz/FuvuQh4JZN/OiQHWZ7icMhWKjZzmsdtrD4HghYNF8RUN7OPiN
HsuMgTu0h2Ow1zzbuv4u7RF4UWR6W1LXQ3sEFmQHlZfGyYxIhEqd3BkK/R4J
53XXBHG9+j4Ke/t7SsQ13TojCl+nsBtXHPTnRaGo5fAvXbIunTVRuDyQUj2a
1kk9F745mUZZ7R3Uc2Hik7+re00b9VyMDZbKzya0Us+FrUPnhNv499TzkKeR
7jFzb6Keh9tx8pGM9xqo5+FzL27HDbta6nnYoa0vfmObgno+iudb1YkPSqnn
IzHjdZKEe4h6PvrnM9u7smN096HhI76ywjiyOp/uR4Dgvdy2Ot5xnSGAq+KL
2G+enqb7FCBg+0z22d/KqReAdTpb3FJwjnohVup6N2lTK6gXokk54RvyA1ku
hParBImijKwRQjKZMxz3l76PhqldBOe5ERnRmO/2PDE7ROfJo8E7GWbT8WsZ
9dEIvLEuufTBKepFSJ5VVZ1vKKVeBFXftHNCejH1IoitxepGz6PUi3Bo2bTt
7ZBC6sUoCV2zRZV6hHoxcvYPh/tPZ1EvRrZy4JZh/wHqV12R6FyjllAfA5Vr
nTgiVuj9H0rn38I=
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFz3lM02ccx/FyCV6ACFLlKqUio1ArKpar/bQgyCFHSwubaISpQ2TqhMl0
AYqTbGHBSTU6D8QhlyCGuS46MqEIDnQBRNzGVAKBQTwY52DI5Uz6/WW/5Pnj
lffvkzyPc9Ih+V4jFou1990xeHcMWf9/p4vd8ord+iR6jUpsQjW8UM2jesow
fTvJnr8RTDaDcfnq8vYWGdkSZyqrwt4sl5Ktcakv91q7EGQ2ivhRw4lxErI9
JjxKpnoLxGQOuNzlRwWDAWQubtt7mksDGfNwfsmPyZ8U+5NdMa7k75EYMHbD
w5DrA493+ZHdUSNPFs3V+pI9IL/yk0mbDWMBvnX4sir9kA9ZCIHZ7GLXFhF5
AzSdhcvsOIy9wEkrsszP2ELeiNkMeae2zZu8CWqdcO7BWsab0djy+C/DzM1k
b9wSDx87+2QTeQuEnU9cb3kwFuHpvvr7+bkbyT5oy7uuievxIvuim93tJPZl
7IfRyN/CD57bQPbH2Y+UopX/CMkBSGwslqkUjMXYvFP75m7yerIEt+9po8sE
AjIQZp2ZVD3tobca0O1oVto286lL4dY4eJF30Z26FFZLn79YceQ96jJMFST4
s6PcqMuwv66uK3XDOuqBcHh9N0y62pV6IBYiTD9uXLSWehC++1590GHGhXoQ
evf5PP10gkt9KzT2k1dHxp2pb0WTA3iV0xzqwbjTNStrMCarg9FUVtJ2UeBI
PQQ2tfP85t321EPgYqedd7+6hvo2TD/3dOgfYlPfhmEjsdGiEFvqofg6e3Lk
2k0b6qHIdUy2bnaxph6GWjXq0sqsqIeh3GbhZIX3CurhkFUfHvu5woJ6OG5K
c0us3i6jHoFdd9ih6w8voR4B51Evx8FZU+rbkXKgp49VbEJ9O1SHqsRIMqIe
Cf+6E/wEfwPqkajJiWww271Qp+9RWF9smNlwbEZvdRR6b1gcdbk/RT0a5lMG
hYnSCb0RjfSWjJzAZyP0fzRaxF3tMwUv9dZF47G4UGFS2k/7GPzQx7V9wntO
+xicEnUMiGo6aB8Dj+x14WNF9bSPQeuatHV/f3FGrN/L0XPEqXtgf6PekKO3
40qKVtOht1qOLOEOjeD3Lr11cqQ+dMjhnOyhvQLe5nkW1Y/6aK/AqYju8wkX
BmivgEWGyueM4wvaK6D5rP/Ag6RXtI/FByvrPzyePET7WKRn8XRcr2Hax2J2
6esgyb0R2seC86ymvTR/lPZKCC8nXOp1GqO9Ep/bORsvvUBWK5G10N28c4as
U2JV7US3+dZx2qvwVWnTv9HHyVDB7s8sU8UlslqFgl6/Vsl1sk4F6y3ZKQGl
zD4Of+Sx51JPM/s4tA6l+L46wOzjoI1dxflVxOzjoAyeP+c0TfdhxaPi5WX+
WCVz/3jwv6n8RSZn7h8Pzz2DqZYj9F5dPDwWW5pEnWDe/z4W2gddhpaNiv8D
Q8PkGw==
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFy3tMk1ccxvGXgtgWmKBFgZnNcRM75Kp4AefDXaEWaAstIboKisNBAZ0J
G1FfM0BAnRpRYSKKkqATcCBsKo4WJQ6cIZhN58BRp0UDA2U4DaOgc+F3spNz
/vjke54PUrMVmy05jtv89lm8fQLu/3PDz/bt7V09rdHV/+lGz496yrijed/l
z7MuZCHqdOYng1fmke2h79P9VJ0zlyyBTphcK73nSHbC6wOCh7cKmOejpcfn
ij6BeQG2HbI0O3zI7Aof8Z2+IBGzOyYPC8UzBiVkT3yc35Qu7WL2wrz10naX
88xS5O1KFZ0sZvZGxbUVTie2MPug96viHLsoZj90+G3Sj7kx++OuciRGZsEc
gNIG4fb5/XPIgWiR59qnX2VegqVqe3/vY8xL8e6rXHNuLnMQ3FJOn1kpY14G
/9B+bYkn83IcNIbt2Mgxr0DyYKnrzd9mk1fCVvppw9Um5mB0nnDeGLaPOQTf
Fo4UaNOYV8FrpyjdKZj5I6BbpMiazbwaM6xajqcOOpCBRdX1RWY9mQfun3PP
Dj7Geii++Hl/tUcm66HI2iTX/RDKehgun8r3sJ7Hehi0jwvnWg7bUw/H7owX
B783kPlw/HXZ0eh5lPUIXLpliFNlsB6BZ4MC7/BVrEfigur31lf2rEfCJcpc
YuqcRT0KF18+l2zLJvNRqFhkVVHpyHo0ugI2HNra+g71aOxt1ugeacncGtj2
TVWJrVlfA3dtQdHgN3bU16JoSzdfGEfm12JfyNBD0wtb6jE4MlE2aldO5mMw
6aV/bh3Ceix2KedI7hltqMcivnZX8Z4vyZwMvidbM2ctZF0Gz8v9vxTeElNf
hwvagc6hLDK/DuGPoyIiHFiX40rF3qXlzSLqcnwW2b1zWE3m4pBTnT8aZRZS
j4PJv0NRX0Xm4jGRJEvxCCMjHr7nbzY2D8yk//GwPFv2TFtCNsTDtSrja9/F
ZC4BwwtHF3vesaZ9AkRNuQ4xO8h8AtrO8JWnncmGBFh31Tj6ts2gvQKVy8RN
E6lkKLCkNOCoUEjmFWg/fq5nfb0V7RWILvsu7Y2CzCmxvea94LFxS9orIRm4
6xd8iswrMfW03cYYSTYo8bQ2b/ejYQHtVbD4W+AdU0aGCqOq6pMuIWRehV+3
HpFpTBa0V+FZxx+VMw+QuUSEB0r7vYPISETNYV3sbSNH+0RctHkiHiohGxIx
dL9ncekSMpeEbcZK7Ub9m7bpfRK61meOXZ9L5pOAl6ZLyH49bUMS4sqvzX/U
OTVtTg1JWsznDW5kqCHOix2q2z1JezUam+o2mR6Yaa/GbWlyY0owmdNAXmCX
5XxigvYalAr8hO6T/9BegxFN/c09G8gGDRYE9uqXXx+nfTIefJLcL1843vYv
nPPUGQ==
"]]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 100.}, {-0.0005731431100709687,
0.0003475887285327859}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"2", "3", "4"}, "PointLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.800007794155422*^9, 3.800009482169447*^9,
3.8000097404965363`*^9, 3.800009803362917*^9, 3.800010132768186*^9,
3.800010169308859*^9, 3.80025311025338*^9},
CellLabel->"Out[82]=",ExpressionUUID->"56618b1d-b8fa-44f5-b244-54ee774307a4"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "100", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"5", ",", "25", ",", "100", ",", "200"}], "}"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"5", ",", "25", ",", "100", ",", "200"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800007469448794*^9, 3.80000749812951*^9},
3.800253118037703*^9},
CellLabel->"In[83]:=",ExpressionUUID->"e4ba48bd-b679-4118-8c22-a27665e21944"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1ywlM02ccxvFyiAiOK8w5ZoFJIaSCQzaQszyltNzYm2KwHtNwbTWYggZG
6GQuGIcHKAuLRjkEp0LBRGe0gohOoaA4GNcs04ps8wK0ONA5tmX/35u8efPJ
834/3LJdus2axWJt/ff+995x5vPPLCzEiK6rCpNOzrWz/j9weq4xaKt+Z2yP
Pf7Nb1gNk4xd8ER4/Z6p+xFjd9x1PGzcmUVeDraNefRyGHkFuMHSa3xvsjce
T6woU7iSV+LR+A85RXZkDiwj3C7J2wnGfug/aDz0s4Xsj88No1cOPyVzoTBl
6NQT5AAMWC0aY98jr0Zf+3pj9wA5CKG+rWVqI3kNtpq+3j52jRwMjtnxZdQl
8scYr9xt2tNG/gRneysCzp8ih6BV+OdMz3FyKAy5mQk3q8lrEeOVlHa6ghwG
fYsXR/sVORyWMc4TTjE5Ap+Wc24Y8smRsG/GYGQ2OQqb58cj6tTkaPwUeOKD
aTmZh3OOmTW+yeQY5Am8hmP5ZGAVjzsXv5axDnhXNO0VEkg7H+zhZTscfGjn
Y6VVgdut5bTHQnLXzVfjRHssdrT73/7LhnYBEpZ5BWvnHzK7AEF5FQWDzxmz
4lBnFXGFPUF7HPZHv79aPEq7EGrn1Gd5t2kXQr+J453fRbsIvTqPpxsv0i7C
zYNDhWHNtMcjY4o7+bqW9njkN7hvaqqmPQElvZccePtoT0CRjWZpRyntibhw
p2kfV0t7IjKWOuh12bQnoU2mPtaZSXsSEnOOlDwT056MjvofC22FtCcjV/lR
q1047SkYjAiWWAJoT8GLUeWXfd60pwKzCdmV7rSn4vup4UCBPe1piAt9Nf/r
GzOzp2H61EVL9hRj1jp0WStF42ba16Ep1u89DNEuRqFb3YH93YwhRmPQlpFu
A/0XI3LY0+OFnvFVMf7w0ZcsrqdeAkOpfYBDNfUSOC7mpb0up16CmenSd0aK
qZfgt1ceVfUa6qXYYNhpv2Ez9VL4hXp8ayunXopB19rs70TUS7GRfaPRM5x6
GdQtquJDq6iXoXxJvMtLNvUyOPZUHRC4UC+DU+J6nzJr6uWYse2bbbM8YHo5
nJaErOmfZKyT47F8ZsE0wviqHDZxhd/80sOYpYB0NsWq20C9AuZzbnsbW6hX
4FbGrjTtCeoVuNDJ/yK4knol3nKE0Q/KqFfidHmuQVdAvRJFnDMc1yzqlRAZ
XWorVdSnI1x2PnNREvXpyP+7c3dOJPXp2PVQw+sIoD4dUUrry3ae1KswJ+73
gTP1KghM4Q15LOpVkJSczdo7c5/pVTh5pLamxsyYlYHPho5tOzpwv/0f/EEW
EA==
"]],
LineBox[{{0.684661218004115, 0.000010853339763120476`}, {
0.6847355040145475, -0.000023503940061956706`}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1yw8w13ccx/FvMhMbXf51whCm9hPmp1LG64efvz/8/Pz8fj9rZUrYX6mf
buHa91bqqPWTP5NN/m2/M11E+XPKOde5ylwyo2Qx/yPmTLdhadZun/fn7n2f
e9zzXnYHU2SHdTiOS3h1//1jgvhNRf+s+QZ2qI6HapfbuP8fBi/XV8a+nGPW
R0lZVcq6PPJGNHrpLjyIJ5tCM2uyL0NC3oymwUOJJv5kK3ieKr1R60O2ReeU
vNTSm2wPnWFF3BMvsgN+eCOpIWAX2QkjT09m6wjJzsgz3Jiw4EreDksjvZer
28kCnOX/+MzWkbwDHb2xrkobshu6f526W2ZOdke34J2bK2+S38WD4e7XDuuS
PWDoMjE3ujLLLESX1e2BI/NkT+T2HA3fNEbeCc3K8PidPvIu+B00D9LcIe+G
Ml7f49Nmshf8WyaPHagi70GDZc9k4jfkvdAMXFWfOU32RoLL61ZtqeT38Pva
8pTRAbIPEv80WzgRQvaFz5ginhOSgdYGXfX31sw8YJJaeSRBj7oI3sYPawPm
n7EuQqujtFDcz8z5oVZ1vTj5FnU/vJ2jxrVy6v6Y7LpntSWLuj+kJid7apKp
B2CoftTwozDqAbifX/Z1hAt1MbjgCvsPjaiLEfjLrLZsfob1QNjJMjnjbmY+
EDc/2bqt7ir1IDgUxzlk5VAPgkHATt3cJOrB0Gs3nO71px6MObv01ci3qIeg
ctkpY8Pf06yHYPFZ0ZV1fcxcKGx89Ib31FAPxViwe1pzFvUwPH/o+uTEfuph
aOFx7rSQugTFLy7pDRpQl6AvUTicOfKU9XBIistrUhqZ+XCUq3/a0phNPQL6
fp2DkfupR+CMdXWVnxv1SJiphaG5OtQjUV7cWrC3b4p1KaIyRg8FaZkhxeNj
qtKmNGZeikbxdeF5MXO7FPtEtnZdprSPwvJ3u5OOj0+yfRSUqy0mF+uZ+Sis
+EV423zJ3P7KeZI1WwkzJ4NpRfqpks20lyEj4v5S/sQE28swU+Ccb1DH3C7D
o06bgvUZzFw0Yn2u4SsxM6LxrUh3KtuY9tHoOOc2YP14nO2j4W8xlyqqZObk
kH8uNV3+mBly/HW0wEnswczLEVh110zwYozt5eBXz8vrbjNzMdDu6H+/P5sZ
MfC8cUlbKmXmY2AkuthkbEH7GDxfWjQRDI2yvQKPXByDlyqZoUDOdPqoOpmZ
V2Blw2zqjy7M7QpUeN67ULg4wvZKnE37ose3mRlKSLWC3isZzLwS09VF7oO+
zO1KRGdqL/y8nvYqhFglmG/T/Mb2KqRb8YXh5sy8Ci3OcRMWl4fZXoUo9UyE
ZiszF4sPpCX2t6qH2v4FAWgYVw==
"]],
LineBox[{{0.6717597200649537, 0.000010853339763120476`}, {
0.6721603546789392, -0.000023503940061956706`}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1ywss3WccxvE/XYu0HUr1VK3FMDO6uR0brT447o7LcS5El4qNKerSuIRG
+18ZOqvO1jGpMTNT63K2aWU1cZxi7FRPGWqMsoXIurJVpi5VsS37vW/y5s0n
3/exSsiQJOpyHPfmv/e/96z5xOT88taxgN6Y3JCmNRX3/8Gnjpu232iHyfpY
6SlceOcLZiOceuGp8MxlZlOoDKvkU+XMApiPeXS4lTJbIMhze+x6EbMlNOd3
ffeEZ7ZG34Ju2rVCZhtkyWIbNfnMdkgo2KEV5jDbw2NMOzyXweyA/tQ7Mu1J
Zkd0/ulas5jAfBhpp42uiOKYX8H1bAfnYQmzM/LibeurgpldMCo4lPjBMWZX
GOd/bt/nxuwGw/o/WlxeZHZH2PYu1bgFsxBxr1tGthsye2BcaRJ7T4f5Vczd
3znv9PdP5NfQkXnZtHeW2RO7W81NakaYvZCs02up7GY+gvejgi8+8y3zUVhb
jN78pI7ZG5VGkyZnypmPobJ182BdHjOws3w6Rf8NMg+0dG9Ud4hZ94Hb3hJ5
uwfrPsgTCJO2WbHui5/HDlVdMWDdF+Hq4t6ipSHqftix0jjdOU7m/eD/uOzX
0C7WRTBvHh99uYl1EcS/1I6mvsu6P9KcntXTzWDdH4KM4w3LEtYD0FOQM+8v
ZD0AsR/ftlsTsB4IgwF7/sDKIPVANNY5eO5pJ3NBSAtoS5koYD0I6YVr+3O9
WA/GjKYtefHJXerB2Fv0/SVRO5kLgdJHMcPnsh6Cq5pRVbML66HwPzt/TbWo
pR4Kq0xzz4FmMhcGfbPAPSPxrIch9NbK0qSAdTGWpoe+fDh4h7oYT810rPVL
yFw4SuJqIzy8WA9Hy/o273N/DVCPQLQqwGD+MzIfAd6Hn86SsR6Jl1KEG/Z6
ZETihnfbV8Y3b9P/SFSanIxwSSarI1Hm6BFeuY/MRaFwdtTKvU9D+yjkJj8X
aZNN5qNw73BSaqIVWR2FSweGjbe0P9JegoayxoXVfDIkeOx88Wu5LZmXYJel
rsB6qJ/2Evg3FS/EF5C5aEy9vbyx34aMaNz3m7KQavtoH42S1U5Hs1yyOhru
R08YvnWQzEnRP2GqFPf9QHspksZ2rw6dIvNSPBLVTa2aktVS2KkuSDUdvbSX
4T2lWBGWQIYMxaWpM6X6ZF6Gggetv59X9tBehg+nyjNEUjInx6CjT+bIejft
5TDbCpkX1pN5OZav1wzkiMhqOYKdfttX/eAW7RV4VD7X1VBBhgIBBd03al3J
vALpAt/ZinE17RVwqbd0PVdI5mJgcfdESbY1GTEYPu2Q9bCii/Yx6BXkHDGZ
UNE+BtVXN/XSnydzsfhoyPm4QXqn6h9DJxEb
"]],
LineBox[{{0.6675391113276434, 0.000010853339763120476`}, {
0.6691626951131391, -0.000023503940061956706`}}]}, {
Hue[0.37820393249936934`, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1yw1M1HUcx/E/MMYFMawREOBKBZJn5LhDhIMPKAcej/fEAYmHxGUEaUCC
6IDLcO0iGGpobT2wgpMHAeVBIBQPUHEZCi40ckPQBJSnohQwHdX4/n7bd7+9
9t5nQ9p+mcaY47j0/+7/3zHmlVTx1GqI+HJinqRmuYdbe/Cw0su25vSTeVBH
SrW2sczr8NKCcY5CxGyNzXG5KS4CZjtkFQ2NlPgwO+IEr/iUjSfzm3DvCbHp
d2XeiBi19JCZC7MT2qPkt/QbmF3gYpE9UuLIvBnJ8rwjX9gwu6Gw96rJkBWz
BwzV30368Zi98I3YQtW32kf2QfbIbPTBp8xbMHDxM1fVLLMv9qBSp55g5kPg
WOd9fITZD4k/iJ4tXGMW4Ir+4VhBN7MQb9hZTPs0MvvDt36Yb/Mt81ZoFj/+
y62cOQBiB37mh4XM25DTUPHnVCZzIJaiziwcT2IOQpvVL+M5YmYRnvRkyHS+
zMEI0XU9uLOeOQTlu2+Gp/KYgatfSQKdFnvXrAUe3vb+0vkumQtF5GRn6Lv9
rIdiz+hGr+l61sPg5nYovfEY62HYbaR53pHP+nY0V82sN09hfTtMl4KN9KGs
74CvpnC+zJn1HZjvOiC6zGM9HIKs95RRMwbq4VA4DJxxHiRzYgTtWrymbGJd
jNt3n4jGylmPwN6xsKbefaxHwNMp4yfjWNYjURN4I77ag/VImEnesawzZ30n
umtaWt4aukR9J2BVK7ipI3MS2EuFutgw1iXgc5UNDSs91KNgYWrUOttM1kah
TGg7aKthPRpvp3sE819nPRr6379PDf/5IvUYLHaJqhVFZG0Mjmiyy/Z6sx6L
3MMtbSX3LlCPRatl35WWcjIXh1KT5aLlINbjkJ9benbX427q8fB9bTRw8iQZ
8Zi4f/rVr8PI2nhYrGYKj879uGZDPEaeftpRe4rMSWGT/3mbZSgZUjSW5iV1
P+qivRSe2tmxzmNkgxTVBQU6ywAyJ8PK+ECt4V4n7WW40/7bydGjZK0MSxPh
HWp3skGGF9WavOShDtrLYbqlMnL4IzLk8KtIr7tuR9bKUTUzaC+9cJ72cqyL
ft8pQ03mFLCeq5E5GJOhwONtfwv2V7fTXoF/TpikZYnJBgXiJ//Isp9uo70S
t0IPz2t1ZCjxIN+/+LQbWavEr+P9HZXXW2mvhHXqc295FplLwKZLXkVTL5OR
gAMH44TJjS20T4CNufejlhiyIQGG6eZNK3PnaK+Czv3FB37lZKiQwuuTZHmR
tSpEBKQJa2+cpb0KhWl8/cI+MpeI+YoOM4kVGYl4NnyuuFDdTPtEnA+IUdRX
NdE+EfpPXHxc7zfSPgmO/hlVPKfGnn8BJTwE2g==
"]],
LineBox[{{0.6663381358927464, 0.000010853339763120476`}, {
0.6695922456882045, -0.000023503940061956706`}}]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFy3lM03ccxvFyiBUcAmHOMQtMCiEVHHYDOcsDpaWc9qYYrMdGuDYMpqCB
ETqZC8bhAcrColGOgWNymegMVhCYUy6Hg3HNMq3INi+KFic6t2n8fbJP8v3j
lff3eXf7Dnm6DYvFSn/5rF4+a9b/J4h5daORr2WO7Gh6dT1dTIbjw1yDrvKP
ztdkY69v83NW/SxjJ9wT/XDD2HeHsSuuOxwZ2JVBXgWOjWnyQjB5NXh8eU+U
J9kTd2dWl6qcyWtwZ/r7rEI7MheWCV6v7MUMYx8MHxo4/IuF7ItPDJMXj9wn
86Aypuq1M2Q/jFgtmeLcIK/DUOemgb4RcgCCvNtKtQPk9fjI+MWOqR4yH1yT
w+PwDvL7mK7YY9zbTv4ApwfL/c6eIgeiTfTXfP8JchAM2WmSK1XkDYj0iE9u
KicHo7XFg6v7nBwCyxT3HreIHIoPy7iXDXnkMLCbMRqWSQ7HtsXp0FotOQI/
+598x6wkC3DGIa3aO4EciRyhx3h0FBlYK+A9jd3AWA+8KTZ7BPpTjwJnfOVO
ey/qUVhjle9ydRX1aMiuu3jnOlKPxs5O32t/21AXQrLSg69bvM10IQJyyvNH
HzJmxaDWKvQiZ4Z6DA5EvL1OOkldBO2KpAc516iL0LqV65nXS12MQb3b/S3n
qYtx5dBYQXAz9VikzvFmn9VQj0VevevWxirqEhQPdtgL9lOXoNAmd3lXCfU4
nPupcT9PRz0OqcvtW/WZ1OPRrtAe706jHo+4rKPFD6TUE9BV92OBrYh6ArLV
77XZhVBPxGgoX2bxo56IR5Pqz4Y8qScBC5LMClfqSfh2btxfyKaejJigJ4u/
PTcxPRnmU+ctmXOMWRvRa60WT5uob0RjtM9bGKMuRYFL7cEDfYwhRUPA9ok+
A/2XImzc3e1RK+NLUvzp1Vq8tI72MhhK2H72VbSXwWGpIPlZGe1lmDeXvDFR
RHsZfn/iVlmXS3s5Nht2sTdvo70cPkFuX9kqaS/HqHNN5tdi2suxhXO5wT2E
9gpoWzRFh9fSXoGyZbFOjzm0V8Chv/Kg0In2CjjGbfIqtaa9EvO2QwvtllvM
XgnHZYHrh2cZ65W4q5z/1zjB+JISNjEFX/7az5ilgnwh0arPQHsVTGdc9jW0
0F6Fq6m7k3Unaa/Cue6oT/kVtFfjBVcUcauU9mo0lWUb9Pm0V6OQ+x3XOYP2
aogHnGoqNLRPQYjibNqSeNqnIO+f7j1ZYbRPwe7buYIuP9qnIFxtfcHOnfYa
PJUOe2EF7TUQGkPqc1i010BWfDpj3/xNZq/BN0drqqtNjFmp+HjsePqxkZud
/wERzhav
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFy39M1HUcx/EvcBFCgYtfDg8CBEIDgThUhODFHcfvHwccd5ApofzKfiB6
tARn36XowB+H/EhJ5FcxwgmC8mMoI+acSkwkAkWSi9+CECNcAYkzNj/v9d7e
fzz23Mtmb3p0sg7Hcclrr7X22tz/52kQvt+Hr/N9rQXfIEHgRa/e0p9ZxtCl
xqr4l3Mdr6mH0vKadK0C8no0ewoWHiSSTaCeNd6VHUbegJahfSnGErIQHsfK
rtf7kK3RNSUvs/Am20Jbo0h44km2w49vpTb5byc7YOTp0VxtEdkRBQbrkxZc
yFtgYaj7cnUL2Qkn+b++sLYnb8XtvngXpRXZFT2/T90tNyO7ocfp/Rsrb5M/
wANNzxvJArI7DJwn5kZXZplF6BbeGjwwT/ZAfu/B8HfGyNugXtGM3+knb4d4
r1mg+g55B5SJeu6ft5I9IWmbPLSnhrwTTRa9kynfkb2gHryiOnGc7I0k5zeF
HRnkD/Hnq+Upwz1kH6T8bbpwOJjsC58xRSInIgPtTQLVD5bMPGCcUXUgSZe6
H7yNHtb7zz9j3Q/t9rJi6QAzJ0Z93LWStJvUxXgvT4WrFdQlmOy+J9yYQ10C
mfHR3ro06v4Ybhw1+DSUuj/uF5afiXCmLgUXVGn7iSF1KQJ+m60un59hPQA2
0Uc4ox5mPgA3Ptu0ueEK9UDYlSTY5eRRD4S+/zZBfir1IOh2Gkz3SagHYc4m
azXyXerBqFp2yF737zTrwVh8dv6yVj8zFwIrH13NzjrqIRgLcstszaEeiucP
XZ4c3k09FG08Th0XUQ9DyYsLukP61MPQnyLSHBl5yno4wkoq6tKbmflwVKh+
2dicSz0CeuKuocjd1CNwwrK2RuxKPRKmKlFIvjb1SFSUtBd59U+xLkNU9ui+
wGpmyPD4UFxZSyYzL0Oz9JrotJS5U4ZdftY23Sa0j8LyxR2pX41Psn0UlKtt
xucamfkorIgjvK2+Ye5cc0HYK+swZi4aJpVZx0o30D4a2RH3lwonJtg+GjNF
joX6Dcyd0XjUZVWkk83MxSDe5yq+lTIjBt/7CaZyjWgfg9unXActH4+zfQwk
5nMZflXMnBzyL2Umy/uZIcc/B4scpO7MvBwBNXdNnV6Msb0c/OppecMtZi4W
1VsHPhrIZUYsPK5fqC6TMfOxMPQ712JkTvtYPF9aNHYaHmV7BR452wctVTFD
gbzprFFVGjOvwMq62YyfnJk7Faj0uHe2eHGE7ZU4mfl1r28rM5SQVTv1Xc5m
5pWYrj3vNuTL3KlEzJHqs7/q0D4OwcIks83qP9g+DllCvjjcjJmPQ5tjwoT5
JQ3bxyFKNROh3sTMxeNjWantzdrhjv8AiSwW8Q==
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFy3ss3Wccx/Ef1iJth1I9VavLMDO6uR0bygfH/X6ccxBdKhamqEvjEjrr
b2XotDpbx6TGzDq1bmcbldXEcYpS1VOGGquyhci6shFKVaVr0u+TPcn3j1fe
z8csIUOcqMFxXOKzU3t26tz/z3NoxX1o5Yzncy153jD5XtR6/b0uyvjSdsvy
R9WI4jm1sNZTuPDhN8y6OPbKE+GJ88wGUOhUyabKmQUwGnfpcCplNkaA67bY
jSJmUwyc2vnzY57ZHH0L6mmXC5ktkCWNbRzIZ7ZCQsF2lTCH2Rou46qRuQxm
G/Sn3pKqjjLbovMfx5rFBOaDSDuue0EUx/wGWrNt7EfEzPbIi7esrwpkdsCY
wCTxE09mR+jlf23d58TsBJ36v5sdXmV2Rsi2LsWEMbMQcW+bRrTrMLtgQq4f
e0eN+U3M3dsxb7fyK/ktdGSeN+idZXbFrhYj/ZpRZjckq/WayruZ3fFxZODZ
F35iPgRz47GrX9Qxe6BS967+iXJmT1S2bB2oy2MGdpRPp2i9Q+aB5u7N6o5Q
1r3gtKdE1u7CuhfyBMIkDTPWvfHbuEnVBW3WvRGmLO4tWh6m7oPta43TnRNk
3ge+D8v+CO5iXQSjpomx1y+yLkLo77VjqR+x7os0uxc11TNY94Ug43DDqph1
P/QU5Mz7Cln3Q+znN60eCVj3h/agNb9/bYi6PxrrbFx3t5O5AKT5taVMFrAe
gPTCR/ty3VgPxMxAW/Li49vUA7Gn6JdzonYyFwS5V/QMn8t6EC4NjCmaHFgP
hu/785cViyrqwTDLNHIdbCJzIdAy9N89Gs96CIKvrS3fFbAeiuXp4W8fDN2i
HoonhmrmWiVkLgwlcbXhLm6sh6F5Q8Pj5L+D1MMRpfDTnv+KzIeD9+Kns6Ss
R+C1FOGmtSYZEbji0fad3tWb9D8ClfpHwx2SycoIlNm6hFXuJXORKJwdM3Pu
G6B9JHKTX4qwyCbzkbhzMCk10YysjMS5/SN6T1U3aC9GQ1njwno+GWI8tD/7
g8ySzIux01RdYD7cT3sxfC8WL8QXkLkoTH2wurnPgowo3POZMpao+mgfhZL1
TlvDXLIyCs6Hjui8e4DMSdA/aSAP7btOewmSxnetDx8j8xIsieqm1g3ISgms
FKclAx29tJfijDw0OiSBDCmKS1NnSrXIvBQF91v+OiXvob0Un06VZ4gkZE6G
IVuvzNGNbtrLYPg0aF5YT+ZlWG2tGcwRkZUyBNr9ubf6/jXaR2OpfK6roYKM
aPgVdF+pdSTz0UgXeM9WTChpHw2HelPHk4VkLgbGt4+UZJuTEYOR4zZZDyq6
aB+DXkGOu/6kgvYxqL60pZn+MpmLxWfD9oe10zsV/wGeUxHB
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFy39M1HUcx/EvMMYFsXONgABXKpD8RuAOEQ5eoPyQ3/eDn4mHxEXEpQEJ
ogGX4dpFMNTQav1gBSc/PNADBELhgBCXoeBEIxuCJqL8MkoR05kb7896b+8/
HnvutS5jj0RhxHGc4sUbvHhD7v+r+JqfnvXHR0GrehCUd7U833VQ2UsZrnyN
ZHPeQM8qeZBHiFVWscxr8NKiYZ5MxGyBjXH5aY4CZmsoS0bGyjyZ7XCUV3rc
0o35Dbj0BFkOODGvR4xcvN/Ekdke7VHSK5p1zI5wNMsdK7Nj3ohUacHBLyyZ
nVHcd95ohM/sCn3t99M+PGZ3fBtmltT/vJ/sidyxueh9j5g3YejcZ05Jc8xe
2IVqtXyK2RsCuwaPI2PMPkj+UfRk8QKzAIOaOxNF3cxCvG5tNuOpZfaFV+Oo
t+V3zJuhWPr4b+dKZj+E2XrnfFDMvAV5TVV/3c1h9sdy1MnFIynMAWjjX53M
C2MW4WFPtkTtxRyIIHXX7etrmYNQufNyaDqPGTj/VaS//VLfqlXAnWseXzrc
IHPBiJjuDH5ngPVg7Bpf7z7TyHoInJ33Z2oPsx6CnQaKpx2FrG9FS83sWtM0
1rfCeDnQQBPM+jZ4KYoXKhxY34aFrr2in3msh0KgfDchalZPPRQy26GTDsNk
LgwBO5YuJDSzHoZrNx6KJipZD0fWREhz327Ww+Fmn/2LYSzrEajzvxRf68p6
BEwi3zZvMGV9O7rrdLo3R3qpbwf49YLLajIXCRuxUB0bwnokvLnqpqaVHupR
MDM2aJ1rIauiUCG0GrZSsB6NtzJdA71fYz0amj9/SA/99Rz1GCx1iWplJWRV
DA4qciuyPFiPRf4BXVvZzbPUY9Fq3j+oqyRzcSg3elzyOID1OBTml5/acb+b
ejy8Xh33nz5GRjymbp145ZsQsioeZs9zhIfmf1q1Ph5jjz7tqD9O5sSwLPy8
zTyYDDG05QUp3fe6aC+Gm2puovMwWS9GbVGR2tyPzEmwMjlUr7/ZSXsJrrf/
fmz8EFklwfJUaIfchayX4FmtoiB1pIP2Uhhvqo4Y/ZAMKXyqMhsuWpNVUtTM
DtuIz56hvRRrot+zz5aTORks5usktoZkyHB/yz+CPbXttJfh36NGGcowsl6G
+OkHSpuZNton4ErwgQWVmowE3C70LT3hTFYl4LfJgY7qi620T4BF+lMPqZLM
JWJDr3vJ3ZfJSMTefXHCVK2O9omwNPW4p4sh6xOhn2nZsDJ/mvZJULs8e9+n
kowkpPH6I5XuZFUSwv0yhPWXTtE+CcUZ3prF3WQuGQtVHSaRfDKS8WT0dGmx
vIX2yTjjFyNrrGmmfTI0nzh6Ot3S0j4Fdr7ZNTx7bc9/G84GPg==
"]]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[
1.6]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[
1.6]]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, \
{}}}, {DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 100.}, {-0.000023503940061956706`,
0.000010853339763120476`}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"5", "25", "100", "200"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.922526, 0.385626, 0.209179],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.6150173333333333, 0.25708400000000003`,
0.13945266666666667`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.922526, 0.385626, 0.209179];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.922526, 0.385626, 0.209179], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[
NCache[{{0, 1}, {-1, 1 - 3^Rational[1, 2]}, {
1, 1 - 3^Rational[1, 2]}}, {{0,
1}, {-1, -0.7320508075688772}, {
1, -0.7320508075688772}}]]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True", ",", "True"}],
"}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.800007481705186*^9, 3.800007541386327*^9,
3.800009538831128*^9, 3.8002531292781982`*^9},
CellLabel->"Out[83]=",ExpressionUUID->"b3095197-d30c-4feb-ae34-4d45eea6cb69"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "20", ",", "300", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{", "5", "}"}]}], "}"}]}], "]"}], "\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "5", "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800096681095546*^9, 3.8000967157777348`*^9},
3.800253142332921*^9, {3.800339223066864*^9, 3.800339238391082*^9}, {
3.800339292112021*^9, 3.800339292648408*^9}},
CellLabel->
"In[167]:=",ExpressionUUID->"a374304b-756b-4003-b1a7-83d5cac5402e"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1z3lczPsex/GfJRyXhA6iNEmIIl1EiXeiUkmb9jTtMzXNpuwxtlAOSUWb
hpJC5DhZk0Gk3JA9KlPinHsSRfY6Xffh8+2fHs/Hu9fv09cgROIe3pvjOJ1e
HPf/3z9/ZuBeY6JJaWFL+U/PxBrfzo7qXOZZMFf4OlSmM1tAOMve5dhvzLOR
Wqk7PnYr8xxkfTRoHb+O2RKP8g1ulMmYreB82/qhlYB5LuJ16i0PL2e2xp2l
OWPaPZnnIXWab4aRE/N8zBXqPllgwwy0h0/8Ym9BVgBPJG36M03ZboPm3try
gYZst0H7VPmwW6PYvgDTemkZiTXZvgCCdqM7XX3YbotAR13z2K8vabeF8FBi
3MO3ZG4h+ltaXNZrYftCGK0eMdW1ju2LYOrs2BZ9h+2LUJ5rwJNdZ7sdDK6N
fBN0nu12EDx8sHJ2MdvtsWTmpNffDrHdHpffDOUfTWe7AyaNPD9wXhLbHZDk
Gj3oyka2L4a5/pGkybFsXwy75f1PKQRsd8SIQv+cqwFsd4SJKiW+zZXtTjDq
vr6y7yK2O8Hvd5OSfnPY7gz3jGlunSZsd4aGleemGh7bl+Cdj50gRZvtS/Bl
2SNT2wFsd8Gc3A9fX3xvpt0Fe7XPdgrekbmlGCHzsGtsZvtSnDhjOBKP2e4K
i4TcPburyHCF+dGgp1Vl7O9dsdtVd/T7U2SVKzSUJ+L757HeDcf+0TAZmM56
N9TusHL5toP1bkiNix/8dB3r3SDaMGpfnpj17rhlFzcgMJj17pBcH7m/ryfr
3THo8EFBph3r3ZFecq1g7BzWe2D3Qq91e6ew3gOXDi/U+qDHeg/YROzdY6vF
eg9Y/eVtuKU36z1hfLT64+nOJuo94XbSfPq912SFJ2y63/Y0PCWrPBH3bsWu
59Vkbhma8hx7VZWxfhmywrR2Fpxk/TIc1VzpEqtk/TJcXjN/vXkK670wXb3A
umkL672gZS8oU8Sx3gu/vi4cPzSS9V7QTdY8lOLDem84jTkToOHIem9crLqy
WWjFem9o/C6ad8WE9d4wmMRd6jeW9T6YNOGOIYaw3gcVpRb50RzrfWDkeyxy
Z4eaeh9ci83NyGgmc75oPp8Vnv2ADF+sT5r6eW8FWeGLYHnHmrWlrPdFdPx2
Ha8C1vvB8HR2L6P9rPdDvOxV4J/bWe+Hojd6fjmrWe+HkoRfxtkLWe+PwoXy
phZf1v/w7EkVKx1Z74+qNu5TlyXr/bHq4ePDq6awPgA6p3Z8ej2G9QH49M8X
XadBrA+AxcvRWx2+vqA+AO7ZAYav6shcIPbdTJKILpIRCJ3WjarGTLIiEG7+
w8Rz17E+EJZD9O5t82f9cjzasmbeJSvWLweX2aPVMIb1y3Fy5dbc1u+N1C9H
cmidzZ/PyVwQgkuql967REYQVqWNNTiaRVYEwWFE6mDROtb/8Osmkb4/6/kQ
O5WmX7Uk8/hI6Xe62X00+x4f5RaiwgdfG36az4eTnWz+wjqygo+kW3N78s+T
lXyMjpk7/9N+soqPVy01XrNXkdV8HKuxzon2InPBaM65KUyeSeYF48bePcOP
apMRjH0Hjnec+lBP94Ohsh3lf/w+WRGMGWfLCjJOk5XBEKUJpqxLJquCcebb
/fmuErI6GLKIDEsdFzIXgsQz8+SPTci8EIgGTbbe8S8yQmDWdKRj6t/P6X4I
TBsbX1XfIitCsKmlWRJwlKwMgUEf5auX28iqEEyUvcwODiOrQ1Cw06f10QIy
F4pzldsn2BiQeaEYeONRXl7PM7ofCq/Zm893N5D5oaj/WHBhaRlZEYrl7bO6
MjLJylC4z+1+WL+arArF52HZB0Z5k9WhGPM0KWvJTDIXhif6o83XDyfzwhB8
VlCS31FH98Pw30JRVOVdMj8M4qVtZ1qKyYowBPpsUXclkZVhMHm031YriqwK
wyKHUDN9B7I6DIV/vPlqPIHMheND8YAPZn3JvHBMi/YRz2h+SvfDkVznUD5D
ReaHY8PpoTPND5IV4dix64/xpuvJynBod39vNPIjq8JxrmBtqe5ssjoctr6J
X4eOIHMR6J7i1KXR+YTuR6Am87Dm11oyIvA933JT6ykyPwLtbxT5Db+RFRF4
X3fk1t1osjIC9RezrK8tJqsisPvvXz1KJ5LVEeA+bfcp0iBzkZhyfXzOwZeP
6X4k9l5skKRdJSMSHe3B+rtzyfxIqDz0vu2IJysiYfDYwiXBn6yMhL4yVZgw
h6z6sc+vzdg5kqyORHFvU5Pkj4/ovgBZPn/GZD4g8wQoOVNyvPA0GQIsf9nf
/NIeMl8Aq0FWS+7HkBUCxNb2XfzWiawUwGWPnmzIZLJKAI3EOq1ZA8hqAX4R
YEXI64d0XwgbyaCXqRVknhBHqoqO1RwmQ4hdN2ZqD95E5gtxe+wGoUcQWSHE
nAVcp9KarBRieMZfXR/HkFVC7L07tMb92wO6L8R0o77F556SuSg0lXa2jD9H
5kXBoKaiLDONjCho/LvXep1YMj8KmZubhIfcyYooJKy1rzGfTlZG4bBX+Zua
IWRVFOwM12queHuf7kcheYz36nE1ZC4abT1PJfXHybxodK2cbHkokYxoZEXq
6sqEZH403gYa+Tk7kBXR4Ffe9TOZSFb++F7vPd+M+pFV0cgoP2Ki/6qW7kfj
+PSPFmYVZE6EA69OFNjmkXkiVAzTMY7ZTIYINnbF9VnBZL4IEbL6xkaQFSLs
kifUG/PIShHE/Glh23vu0X0RtoXonXzXSFaLkOL1z2VBOZmLwb4qR493OWRe
DDTLea1b48mIgfhFVeXkQDI/BoUf7Fsa5pIVMVAemNgrX5esjEGsrMGi9ctd
uh8DWX5Yw4XzZHUMjJs75amryZwY5k0P3p+cTeaJsUW+Je/2lzt0X4yGZnX/
KRfIfDHEFcd+T1pDVojRqf74cLolWSnGL4kR7k+/1dB9MQ7usth+7hJZLcYQ
z+KJpevJnASGTieT6q3JPAkmt3hWG/X8h+5LYHt97IT9KjJfgueBnytMN5MV
EqQ9S3j2ty1ZKYGzsC71ngZZJUGC1Wb955W36b4Ea47WFg1NJHNSjD7gkr/N
mawlhd9fUyM6Nck8KbriHnpdqq3+aTMpRmTkjV2fSoYU8vQZRfu9ya5SGLSZ
jj4xmsyXYmLR5ud6jVU/LZVi6rHeKdsPkRVSFJn16LuFk5OlMJ6y5vRQY7JS
ime6fbJmtN366RIpLsR9TltymqySomxwW8jtOPI9KeI7XrjMsySrpRg8eIhi
VE/lT7dLce7AxobX18mcDJ8W5bwZu5OsJUOwbvcMRxcyT4Zd2gdTm4aTzWTw
iFpsGV13k94vQ/p/6paF5pJdZShuH1LhHE7my5DmWNNTMIUslaEruSizo+MG
vV+GII8sj1Pnyck//p9tmqsDNpKVMiw+zvXdaEcukeFZQ3X/5MFklQymZfal
ox5V0PtlmJb9/vXubLJaBu0+87o3hJHbf7wvY2S+vwmZk0Pdahz6R+d1er8c
2VXzr3wpI/PkSMy6GnRpG9lMjvxN9UUCFzLkGPdqXGD6SLKrHJvqrt0sVl+j
98vx+Obts/bHyFI5dqaNj6peQVbIkWIb2JxiTU6W44xxYp2qP1n543tzFqz7
VHuV3i+HqrLGaV82WSXHgLKoqRaRV8v/B8X8Jt8=
"]]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJw1z3lYzHsfxvGfJRyPJctBRBNCKtKDKHEnKpWkkvamfaam2cgeYwvlkCTa
NEgbUcfJVjKIlBOiEJUp5ZznJIrsdXpcl8+3q39e19379+mrGyBxDu7DcZxW
L4778cv15tjPbDxsiDEszG4u+ek52OjR2VGRzjwXJgoP27JEZlMI59o45v7G
PA8JZdqT1+5ino+Uj7qtkzczm6EmQ/d2sYzZHA73LKrNBcwLEKVVZ3bSl9kC
91ekjWt3ZV6IhJkeSXr2zIuwQKj9dLElM9AePPWLjSlZATyVtOnMMWK7JZp6
j5QPnMR2S7TPkA+/O4btizGzl6aeeAjbF0PQrne/qw/breBjp22y9usr2q0g
PBETWf2WzC1BfzPTa+Ob2b4EehtGzXCqZftSGDnYtYXfZ/tSlKTr8mS32G4N
3Zuj3/hdZrs1BNWP183LY7sNls+Z9vrbCbbb4NqbYfysRLbbYtroywMXxrLd
FrFO4YOub2P7MpjonI6dvpbty2Dt2/+8QsB2O4zK9kq74c12Oxiq4qPanNhu
D73uW+v6LmW7PTx/N8zvN5/tDnBOmrmy05DtDtAwd91eyWP7crxztxbEj2T7
cnxZVWNkNYDtjpif/uHry+9NtDvi0MiLnYJ3ZG4FRslcrBua2L4CZy9MGo0n
bHeCaXT6wQPlZDjBJMvvWXkx+3snHHDSHvv+PFnlBA3l2aj+p1i/Ern/ahgO
TGT9SlTtNXf8tpf1K5EQGTX42WbWr4Ro65jDp8Ssd8Zd68gBPv6sd4bk1uij
fV1Z74xBJ48Lkq1Z74zE/JuZE+az3gUHlrhtPmTAehcUnVyi+WE8611gGXLo
oJUm611g/vfqSTt7s94V+lkVHws6G6l3xcpzJrMeviYrXGHZ/ban/hlZ5YrI
d2v2v6ggc6vQeMquV3kx61chJUhzX+Y51q9C1pB1jmuVrF+FaxsXbTGJZ70b
ZqkXWzTuZL0bNG0ExYpI1rvh19fZk4eFst4N2nFDTsS7s3417Mdd8NawY/1q
XC2/vkNozvrV0PhdtPC6IetXQ3caV9RvAuvdMW3K/UkYynp3lBaaZoRzrHeH
nkdu6L4ONfXuuLk2PSmpicx5oOlySnDqYzI8sCV2xudDpWSFB/zlHRs3FbLe
A+FRe7TcMlnviUkFqb30jrLeE1GyFp+/9rDeEzlvxnumbWC9J/Kjf5loI2S9
F7KXyBubPVj/w/Omla6zY70Xytu4T11mrPfC+uonJ9cbsN4bWuf3fno9jvXe
+PTvF237Qaz3humrsbtsv76k3hvOqd6TWmrJnA8O34mViK6S4QOt1m2qhmSy
wgcrvYaLF2xmvQ/Mho5/uNuL9b6o2blxYZE5633BJfdo1o9jvS/OrduV3vq9
gXpfxAXWWv71gsz5wT+/YsXDIjL8sP7IBN2sFLLCD7ajEgaLNrP+h183inS8
WM+H2L4w8YYZmcdHfL+CJuex7Ht8lJiKsh9/rf9pPh/21rJFS2rJCj5i7y7o
ybhMVvIxNmLBok9HySo+Wpor3eatJ6v5yK20SAt3I3P+aEq7I4ybQ+b54/ah
gyOyRpLhj8PHznSc/1BH9/2hshrjdeYRWeGP2ReLM5MKyEp/iI4IDDbHkVX+
uPDt0SInCVntD1lIkpmWI5kLQMyFhfInhmReAESDplvs/Q8ZATBuPN0x458X
dD8ARg0NLRV3yYoAbG9uknhnkZUB0O2jbHm1m6wKwFTZq1T/ILI6AJn73Ftr
FpO5QFwq2zPFUpfMC8TA2zWnTvU8p/uBcJu343J3PZkfiLqPmVdWFJMVgfBt
n9uVlExWBsJ5QXd13QayKhCfh6ceG7OarA7EuGexKcvnkLkgPNUZa7JlBJkX
BP+LgvyMjlq6H4T/ZYvCyh6Q+UEQr2i70JxHVgTBx32nuiuWrAyCYc1RK80w
sioIS20DjXVsyeogZP/x5qv+FDIXjA95Az4Y9yXzgjEz3F08u+kZ3Q9GXK1t
yWwVmR+MrQXD5pgcJyuCsXf/H5ONtpCVwRjZ/b1Bz5OsCsalzE2F2vPI6mBY
ecR8HTaKzIWg28C+S6PzKd0PQWXyySFfq8gIwfcMs+2t58n8ELS/UWTU/0ZW
hOB97em7D8LJyhDUXU2xuLmMrArBgX9+dSmcSlaHgPu0xz1Hg8yFwuDW5LTj
r57Q/VAculovOXKDjFB0tPvrHEgn80Ohchn/bW8UWREK3SemjtFeZGUodJQJ
wuj5ZNWPfVFV0r7RZHUo8nobGcZ9rKH7AqS4/xWR/JjMEyD/Qv6Z7AIyBPB9
1d+k6CCZL4D5IPPljyLICgHWVvVd9taerBTA8eB42dDpZJUAGjG1mnMHkNUC
/CLAmoDX1XRfCEvJoFcJpWSeEKfLc3IrT5IhxP7bc0YO3k7mC3Fvwlahix9Z
IcT8xVyn0oKsFGJE0t9dH8eRVUIcejCs0vnbY7ovxCy9vnmXnpG5MDQWdjZP
vkTmhUG3srQ4+QgZYdD4b68tWmvJ/DAk72gUnnAmK8IQvcmm0mQWWRmGk24l
byqHklVhsJ60aciat4/ofhjixq3eMLGSzIWjreeZpO4MmReOrnXTzU7EkBGO
lFBtbZmQzA/HWx89TwdbsiIc/LIHnoZTycof3+t98JteP7IqHEklpw11Wqro
fjjOzPpoalxK5kQ41nI20+oUmSdC6XAt/YgdZIhgaZ1Xl+JP5osQIqtraABZ
IcJ+eXSdPo+sFEHMnxm0p+ch3Rdhd8D4c+8ayGoR4t3+vSYoIXMROFxu5/Iu
jcyLwJASXuuuKDIiIH5ZXjbdh8yPQPYHm+b6BWRFBJTHpvbK0CYrI7BWVm/a
+uUB3Y+ALCOo/splsjoC+k2d8oQNZE4Mk8bH78/NI/PE2Cnfeerel/t0X4z6
JnV/gytkvhji0tzfYzeSFWJ0qj9WzzIjK8X4JSbE+dm3SrovxvH9pnsuFZHV
Ygx1zZtauIXMSTDJ/lxsnQWZJ8H0ZtcKvZ4/6b4EVrcmTDmqIvMleOHzudRo
B1khwZHn0c//sSIrJXAQ1iY81CCrJIg236Hzouwe3ZdgY1ZVzrAYMifF2GOO
GbsdyJpSeP49I6RzCJknRVdktVtRVcVPG0sxKunUhC0JZEghT5ydc3Q12UkK
3TajsWfHkvlSTM3Z8WJ8Q/lPS6WYkds7fs8JskKKHOMenZXB5Dgp9A02FgzT
JyuleK7dJ2V2292fzpfiSuTnI8sLyCopige3BdyLJD+UIqrjpeNCM7JaisGD
hyrG9JT9dLsUl45tq399i8zJ8Glp2psJ+8iaMvhrd8+2cyTzZNg/8nhC4wiy
sQwuYcvMwmvv0PtlSPyzdlVgOtlJhrz2oaUOwWS+DEfsKnsyDchSGbricpI7
Om7T+2Xwc0lxOX+ZHPfj/9k9ZIP3NrJShmVnuL7brMn5Mjyvr+gfN5isksGo
2KZwTE0pvV+GmanvXx9IJatlGNlnYffWIHL7j/cljc7wMiRzcqhb9QP/6LxF
75cjtXzR9S/FZJ4cMSk3/Ip2k43lyNhelyNwJEOOiS0TfRJHk53k2F57806e
+ia9X44nd+5dtMklS+XYd2RyWMUaskKOeCufpngLcpwcF/RjalX9ycof35u/
ePOnqhv0fjlUZZX2h1PJKjkGFIfNMA29UfJ/8Ewm4Q==
"]]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 300.}, {-9.85098576343439*^-6, 0}}, PlotRangeClipping ->
True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"5"}, "PointLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
"}"}], ",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], "}"}]}], ",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{", "True", "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.800096696258992*^9, 3.80009671692484*^9},
3.800253143400098*^9, {3.800339231797134*^9, 3.8003392553796177`*^9},
3.80033933081131*^9},
CellLabel->
"Out[167]=",ExpressionUUID->"4648b6d9-1be8-494e-a38c-33cbcbe73981"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "100", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"100", ",", "200", ",", "300"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"100", ",", "200", ",", "300"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800011150223881*^9, 3.800011154116885*^9},
3.8002531543444777`*^9},
CellLabel->"In[85]:=",ExpressionUUID->"1189d55b-e3f1-4fa8-817c-47da353f8e75"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1yw8w33Ucx/Eva8NtC2P2m9mGkMTKv59isxd+P/9//vz8fj9k3Zwiw/zZ
+XN+O+3bGEqz1CI3kbTM1qlsrsn5+Q3Rb/YbYaIZdeRao+Yyf2ZSXe/P5+5z
n3vc8/OySsiQJupyHPf6v/e/95Uel8thf28cTjf/dW/ryqSK+//gE8d126+0
Q2R9LHUXzJ35nNkIx599Ijx5ntkUKsNKxUQZswDmox7tbiXMFgj03By7Wshs
Cc3pbd885pmt0Tunm3algNkGWfLYBk0+sx0SlFu0whxme3iMaodmMpgd0Jd6
S649xuyIjj9cq+cTmA8g7YTRBVEc84u4mu3gPCRldkZevG1dZRCzC0YE+xPf
P8zsCuP8z+x73ZjdYFj3e5PLc8zuCN3cqRqzYBYi7lXLiDZDZg+MNZvE3tFh
fgkz97bOOv31A/lltGeeN+2ZZvbE9hZzk+phZi8k6/RYNncxH8R7kUFnn/qa
+RCsLUauf1zL7I0Ko7smJ8uYD6OiZX1fbR4zsLVsMkX/NTIPNHWtVbVLWPeB
285iRZsH6z7IEwiTNlmx7osfR/dXXjBg3Rdh6qKewoVB6n7YstQw2TFG5v0g
flT6c0gn6yKYN46NvHCRdREkP9WMpL7DuhhpTk/r6WawLoYg40j9opR1f3Qr
c2bFQtb9EfvRTbsVAesBMOi35/csDVAPQEOtg+eONjIXiDT/1pRxJeuBSC9Y
2Z3rxXoQpjStyfOPb1MPws7Cb8+J2shcMJp9oqf4XNaDcUkzomp0YT0E4jdn
r6jmtdRDYJVp7tnfSOZCoW8WsGM4nvVQhNxYWrgrYF2ChcnByw8GblGX4ImZ
jrV+MZkLQ3FcTbiHF+thaFrd5H3qz37q4YhS+RvMfkrmw8H78JNZctYj8HyK
cM1ej4wIXPNu/cL4+k36H4EKk2PhLslkdQRKHT3CKnaRuUgUTI9YufdqaB+J
3OS9ETbZZD4Sdw4kpSZakdWROLdnyHhD+z3tpagvbZhbzidDikfOZ79U2JJ5
KbZZ6gqsB/toL4X4YtFcvJLMRWHircW13TZkROGe34SFTNtL+ygUL3c4muWS
1VFwP3TU8I19ZE6GvnHTZknvd7SXIWl0+/LgcTIvw0NR7cSyKVktg53qbZmm
vYf2crzbLIkOTSBDjqKS1KkSfTIvh/J+y2+nm7tpL8cHE2UZIhmZU2DA0Sdz
eLWL9gqYbQTPCuvIvAKLV6v7c0RktQJBTr/sqrp/g/bReFg201lfTkY0/JVd
12pcyXw00gW+0+VjatpHw6XO0vVUAZmLgcXto8XZ1mTEYOiEQ9aD8k7ax6BH
kHPQZFxF+xhUXVrXS3+GzMXiw0HnIwbpHap/AOMMEJE=
"]],
LineBox[{{0.6679280396874013, 2.6230774215761176`*^-6}, {
0.6684009417303822, -7.384184270548169*^-6}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1yw1M1HUcx/E/MMYFMVyjg3hYqUDyjBwHIk8fUB7k+R7ggMRD4jKCICBB
dMBluHYRDDW0th5YHScPAsqDB6F4QIrLUHChkRsCBqI8FaU8pKMa399v++63
1977bE3PFSv0OY7L+O/+/+Nmp3L56xtBOVbTtp2r473c5oOLmUa8K3+AzIM8
QqS0iGXegpeW9POlAczm2BFXkOogZLZEdunwaLkHsw1O88rO8l2Z34BzbxB/
wJF5G2LkoqNGDsx26IyS3NFsZXaAg0neaLkN8w6kSAqPf85ndkJJ33WDYTNm
F+jU38548Zjd8HWYiax/o5/sgbzR+egjz5h3YvDKp46yeWZPHESNSj7JLIDQ
psH91CizF5K+D1hfusEsxDXN9HhxD7M3Xrc0mfVoZvaBZ+OIgP8N8y4olj/6
y6mK2Rdh1oKsD0qYdyO/qfrPR1nMfliJOr90KpnZHx1mv0zkhzEH4Glvpljl
yRyIIFX3w3u2zEGoOnA7NI3HDFz/MtLPbrlv00pg+q77F/b3yVwwIma6gt8Z
YD0YB8e2uc02sh4CJ6ejGc0nWQ/BAT3Fc20R63vQWjtna5zK+h4YrgTqaYJZ
3wtPRclipT3re7HYfTjgRx7roRBmv5sQNaejHgqp9eB5+yEyFwb//cs3ElpY
D8Pd+08DxqtYD8eh8ZCWvhzWw+Fql/mTfizrEajzuxWvdmE9AkaRb5s2GLO+
Dz11bW1vDl+lvg8wqxfeVpG5SFiJvFWxIaxHQsDVNDWt9VKPgomhXvt8K1kZ
hUpviyELBevReCvDJVDwGuvR0Pz+XVroz1eox2C5O0AtLSUrY3BckVd5yJ31
WBQca+sof3CZeizaTfuvtVWRuThUGKyWrvqzHoeigooL+5/0UI+H56tjfjNn
yIjH5NS5V74KISvjYbKR5X1i4YdN6+Ix+uwTbf1ZMicCv+izDtNgMkRorihM
7nncTXsRXJXz410nyToR1MXFKlNfMifG2sRgve5BF+3FuNf525mxE2SlGCuT
oVq5M1knxgu1ojBlWEt7CQx31kSMfEiGBF7VGQ03LclKCWrnhqxEly/RXoIt
0e/ZZcrJnBTmC3Via30ypHiy+29hrrqT9lL8c9ogPTuMrJMifuaPbKvZDton
4E7wsUWliowEPCzyKTvnRFYm4NeJAW3NzXbaJ8A87bm7JJvMJWL7VbfSRy+T
kYjDR+K8U5rbaJ8IvrH747YYsi4RutnW7WsLF2kvg8r5xfteVWTIkMrrj8x2
IytlCPdN966/dYH2MpSkCzRLOWQuCYvVWqNIMzKSsD5ysaxE3kr7JFzyjZE2
1rbQPgmajx08HKeaaZ8MG5/MWp5dc++/AuMGwQ==
"]],
LineBox[{{0.6671176556172752, 2.6230774215761176`*^-6}, {
0.6680654817683516, -7.384184270548169*^-6}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1y38s3Hccx/GjaayRtqJmdsaOXssoqx/lmB8vVT/uej3ncEcp64Vp9VY/
Mu3QzVn7B7qOopdqabP4NYy11m6uVr5Bre26ozVqFmPpjqBGI4IlnXXZ+/NJ
Pvnkkefn5aDOVKSZ8ni81Ff3v1eqc75jWNkIPsk32t1e+72b9//BJ8O9Lj3e
d8ivIdHKNnR5M7MFSpY/lbkv6clWuK9/ciTPyGwDfVBBYdQk81u4Z5ivbhhn
FqDX6LPFYpTZEfa9sneMQ8xCVFcYl0ceMu9Gc3zt3bt9zM5wsNK3n+9idgF/
x4sgUQfzHrRm9Eq5JmZ3hP04+MSxhnkvCvPNRlPKmD0Q7jBgPF3E7IkLT22n
TuQwe6Fy78RIgJrZGxX3Sl7Oy5n3wbPeri0/iNkHr7faquZcmH3hpnyjJMCa
WQTrxcW5HB6zH7b8nRRUNttJ9sc/JteTKx8zv4e80WAUdTIHgJc/tnT4GnMg
zHzHdI5nmYMQzEmyxz9gDsaZ1Jqn58TMgMt0op/QlawFLAfW7brMWQ+B6eI5
oXT+e+oh2Nqdumn8AZm3H8+PWxSnN7G+H9LBPt3qWdZD0djs4XIhhfVQOIV4
xbj6s34Ag7pc0cgO1g+gxEZo/cXz76iHYfdMeWBCP1kbhqbOcSv/q6yH4+LR
cmvvbNbD4WuheCwJZz0CR8KyZor4rEdAf6l428TCbeqRCIJg+/scWRuJhIaA
/m0VrItR2rrOX1CzLoaJvb3lhifrEkgs2/WRpqxL4Kou8DQM3aJ+EK4Rt9oq
r5G1B1GwK0tTe4J1Kd6u8u9Z9GVdivIbNZvLNrF+CMJH9W2Fhm+pH8JkkcZr
4DKZJ8Ox0FpBupp1Gdw0y+bprqxH4cFsz+WHyx3Uo+BecuyUrovMk6NrdTpl
8DMy5GgqDrfNF7P/r/rPgryr28mcHL/ueDNWNHKT9tHQDivL466QEQ2vXRv8
tWSyNhpVkrZZ4U4yF43kpLn1qekbtFdgza1e7tFChgL5p+vW+R+StQo0K03M
6t4lcwr4Zokcap99Q/sYHM2xSQ9LJyMGcmf3neK5dtrHYI8s4ssODZmLgZvs
sPfnf7XRPhbdjpp9U5lkxGLrcK6pfulr2sdi7Kb4pSCbzMXiypmPSx1ftNI+
DlWFPhb3s8iIg/cUVmyXWmgfB4FH33XnTDIXh+TswI/WFpppr8Sp6oxfLmnI
UKJ2zMnefP4r2iuxWpfUoj5O5pTQ6Z/91DjTRHsVpv1yDX+kkaGC/9rFFbs/
G2mvwiNhVkGamsypMJk1W9Y71UD7ePxgyFAFp5ARj6EF46xxop728Qip6o/m
kshcPApXJkrHfqujfQLMnE4WiRLruv8FoF0JKg==
"]],
LineBox[{{0.6667615329930493, 2.6230774215761176`*^-6}, {
0.6681842811195596, -7.384184270548169*^-6}}]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFy3ss3Wccx/Ef1iJth1I9VavLMDO6uR0bygfH/X6ccxBdKhamqEvjEjrr
b2XotDpbx6TGzDq1bmcbldXEcYpS1VOGGquyhci6shFKVaVr0u+TPcn3j1fe
z8csIUOcqMFxXOKzU3t26tz/z3NoxX1o5Yzncy153jD5XtR6/b0uyvjSdsvy
R9WI4jm1sNZTuPDhN8y6OPbKE+GJ88wGUOhUyabKmQUwGnfpcCplNkaA67bY
jSJmUwyc2vnzY57ZHH0L6mmXC5ktkCWNbRzIZ7ZCQsF2lTCH2Rou46qRuQxm
G/Sn3pKqjjLbovMfx5rFBOaDSDuue0EUx/wGWrNt7EfEzPbIi7esrwpkdsCY
wCTxE09mR+jlf23d58TsBJ36v5sdXmV2Rsi2LsWEMbMQcW+bRrTrMLtgQq4f
e0eN+U3M3dsxb7fyK/ktdGSeN+idZXbFrhYj/ZpRZjckq/WayruZ3fFxZODZ
F35iPgRz47GrX9Qxe6BS967+iXJmT1S2bB2oy2MGdpRPp2i9Q+aB5u7N6o5Q
1r3gtKdE1u7CuhfyBMIkDTPWvfHbuEnVBW3WvRGmLO4tWh6m7oPta43TnRNk
3ge+D8v+CO5iXQSjpomx1y+yLkLo77VjqR+x7os0uxc11TNY94Ug43DDqph1
P/QU5Mz7Cln3Q+znN60eCVj3h/agNb9/bYi6PxrrbFx3t5O5AKT5taVMFrAe
gPTCR/ty3VgPxMxAW/Li49vUA7Gn6JdzonYyFwS5V/QMn8t6EC4NjCmaHFgP
hu/785cViyrqwTDLNHIdbCJzIdAy9N89Gs96CIKvrS3fFbAeiuXp4W8fDN2i
HoonhmrmWiVkLgwlcbXhLm6sh6F5Q8Pj5L+D1MMRpfDTnv+KzIeD9+Kns6Ss
R+C1FOGmtSYZEbji0fad3tWb9D8ClfpHwx2SycoIlNm6hFXuJXORKJwdM3Pu
G6B9JHKTX4qwyCbzkbhzMCk10YysjMS5/SN6T1U3aC9GQ1njwno+GWI8tD/7
g8ySzIux01RdYD7cT3sxfC8WL8QXkLkoTH2wurnPgowo3POZMpao+mgfhZL1
TlvDXLIyCs6Hjui8e4DMSdA/aSAP7btOewmSxnetDx8j8xIsieqm1g3ISgms
FKclAx29tJfijDw0OiSBDCmKS1NnSrXIvBQF91v+OiXvob0Un06VZ4gkZE6G
IVuvzNGNbtrLYPg0aF5YT+ZlWG2tGcwRkZUyBNr9ubf6/jXaR2OpfK6roYKM
aPgVdF+pdSTz0UgXeM9WTChpHw2HelPHk4VkLgbGt4+UZJuTEYOR4zZZDyq6
aB+DXkGOu/6kgvYxqL60pZn+MpmLxWfD9oe10zsV/wGeUxHB
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFy39M1HUcx/EvMMYFsXONgABXKpD8RuAOEQ5eoPyQ3/eDn4mHxEXEpQEJ
ogGX4dpFMNTQav1gBSc/PNADBELhgBCXoeBEIxuCJqL8MkoR05kb7896b+8/
HnvutS5jj0RhxHGc4sUbvHhD7v+r+JqfnvXHR0GrehCUd7U833VQ2UsZrnyN
ZHPeQM8qeZBHiFVWscxr8NKiYZ5MxGyBjXH5aY4CZmsoS0bGyjyZ7XCUV3rc
0o35Dbj0BFkOODGvR4xcvN/Ekdke7VHSK5p1zI5wNMsdK7Nj3ohUacHBLyyZ
nVHcd95ohM/sCn3t99M+PGZ3fBtmltT/vJ/sidyxueh9j5g3YejcZ05Jc8xe
2IVqtXyK2RsCuwaPI2PMPkj+UfRk8QKzAIOaOxNF3cxCvG5tNuOpZfaFV+Oo
t+V3zJuhWPr4b+dKZj+E2XrnfFDMvAV5TVV/3c1h9sdy1MnFIynMAWjjX53M
C2MW4WFPtkTtxRyIIHXX7etrmYNQufNyaDqPGTj/VaS//VLfqlXAnWseXzrc
IHPBiJjuDH5ngPVg7Bpf7z7TyHoInJ33Z2oPsx6CnQaKpx2FrG9FS83sWtM0
1rfCeDnQQBPM+jZ4KYoXKhxY34aFrr2in3msh0KgfDchalZPPRQy26GTDsNk
LgwBO5YuJDSzHoZrNx6KJipZD0fWREhz327Ww+Fmn/2LYSzrEajzvxRf68p6
BEwi3zZvMGV9O7rrdLo3R3qpbwf49YLLajIXCRuxUB0bwnokvLnqpqaVHupR
MDM2aJ1rIauiUCG0GrZSsB6NtzJdA71fYz0amj9/SA/99Rz1GCx1iWplJWRV
DA4qciuyPFiPRf4BXVvZzbPUY9Fq3j+oqyRzcSg3elzyOID1OBTml5/acb+b
ejy8Xh33nz5GRjymbp145ZsQsioeZs9zhIfmf1q1Ph5jjz7tqD9O5sSwLPy8
zTyYDDG05QUp3fe6aC+Gm2puovMwWS9GbVGR2tyPzEmwMjlUr7/ZSXsJrrf/
fmz8EFklwfJUaIfchayX4FmtoiB1pIP2Uhhvqo4Y/ZAMKXyqMhsuWpNVUtTM
DtuIz56hvRRrot+zz5aTORks5usktoZkyHB/yz+CPbXttJfh36NGGcowsl6G
+OkHSpuZNton4ErwgQWVmowE3C70LT3hTFYl4LfJgY7qi620T4BF+lMPqZLM
JWJDr3vJ3ZfJSMTefXHCVK2O9omwNPW4p4sh6xOhn2nZsDJ/mvZJULs8e9+n
kowkpPH6I5XuZFUSwv0yhPWXTtE+CcUZ3prF3WQuGQtVHSaRfDKS8WT0dGmx
vIX2yTjjFyNrrGmmfTI0nzh6Ot3S0j4Fdr7ZNTx7bc9/G84GPg==
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFy38s3Hccx/FDGmusrWBmZ+zotYyy+lGOcV6qfl2Vc7ijlPVW1eptjk07
dHPW/oGuo6hUi2bxaxhrrdvcrHyDWtu1aI2aRdzSHUGNRgRLrJP0/ck+yfuP
R56fl50yQ5ZqxOPxUjfPYPMMef8//sNa7XHRRwEvtRTA0+VtvOr6fg9lfDrS
69Tj+VP3S76CRAvroOUtzKYoWv4s0nVJS7bAXe3jIzl6ZitoxXn5UVPMb+LO
4HxVwwSzAL16r62mY8z2sO2NfFs/zCxEVZl+efQ+8240x9fcvt3H7Ag7C237
hS5mJ/DNn4tFHcx70JreG8E1Mbsi+Jehx/bVzHuRn2s8llLC7IYQuwH9mQJm
d1x8Yq07lcXsgfK9k6N+SmZPlN0p2piXMu+De71NW66Y2QuvtVor5pyYveEi
f73Iz5JZBMvFxbksHrMPtv6TJC6Z7ST74l+D68nlj5jfRc5YAAo6mf3Ayx1f
OlzL7A9j7/FK+3PMYgRwksyJ48wBOHus+sn5cGbAaTrRR+hM1gBmA+s2XSas
B8Jw8bwwYv5H6oHY1n3MaOIembcfz06aFqY1sb4fEUN9lavnWA9CY7Ob08UU
1oPgEOgR4+zL+gEMVWaLRs1ZP4AiK6Hll89+oB6M3TOl/gn9ZE0wmjonLHyv
sR6CS0dLLT0zWQ+Bt6nskSSE9VAcCVbPFPBZD4X2cuH2yYXvqYdBDMGO9ziy
JgwJDX7928tYD0dx6zp/Qcl6OAxsbc1euLMugcSsXRtmyLoEzso898HhW9QP
wjn0Vlt5LVlzEHm71KqaU6xH4K0K355Fb9YjUHqjekuJEeuHIHxQ35Y/+B31
Q5gqUHkMXCHzInEiqEaQpmQ9Ei6qZZM0Z9ajcG+258r95Q7qUXAtOnG6sovM
k6JrdTpl6HMypGgqDLHODWf/N/tDQc61HWROit/N34gVjd6kfTQ0I/LSuKtk
RMNj1wv+WjJZE40KSduscCeZi0Zy0ty6bvoG7WVYc6mXurWQIUPumbp1/gdk
jQzNcgPjunfInAzeapFdzdNvaR+Do1lWacFpZMRA6ui6M3yunfYx2BMZ+lWH
iszFwCXysOcXf7fRPhbd9qp9ugwyYrFtJNtQu/QN7WMxfjN8Q5BJ5mJx9ewn
xfbPW2kfh4p8L9O7ajLi4KnDivVSC+3jIHDru+6YQebikJzp//HaQjPt5Thd
lf7bZRUZctSMO9iazH9NezlW65JalCfJnByV2qe/Ns400V6BaZ/swT9TyVDA
d+3Sis1fjbRX4IFQnZeqJHMKTKlnS3p1DbSPx8+D6YqAFDLiMbygn9VP1tM+
HoEV/dFcEpmLR/7KZPH4H3W0T4Cxw4cFosS67v8A1Q8IBg==
"]]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 100.}, {-7.384184270548169*^-6,
2.6230774215761176`*^-6}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"100", "200", "300"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.800011190007951*^9, 3.800253163408025*^9},
CellLabel->"Out[85]=",ExpressionUUID->"4fc7ede1-6329-49b2-9e92-4f2af7c23afa"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "100", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{", "500", "}"}]}], "}"}]}], "]"}], "\[IndentingNewLine]",
",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "500", "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800162744236759*^9, 3.800162746449147*^9}},
CellLabel->
"In[199]:=",ExpressionUUID->"e96e85fe-afe5-4fe1-b645-8c01f0c18fd7"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1ywlQ1GUcxvE/NqUCERQNEcVNknEUxrXB8sDCAgsiLLBsRsgR4AbDgqtM
QRziwbEUBU0gCSjggoByqRwytoliopEbyEQCjRBHjElTEI4FZuPvfWfeeecz
3/exiJeLEzdxHPfB4/v/a7K78YLLxiMvoSxje7R5/yXuyUFp3vuqX863k7dA
ECCq0clj1sc3IxcPZScyG6K7XTAxKmV+CTojN+0ywphfQfmSqexyELM58px4
wleFzJY4/eGVyX4vZmukCkoL+G7Mr0GU/rd7jiOzLTo9iwISbJi3Y/niyN0F
Y2Y7VJxA4uZnmR2wuXD5jHrjLPlNeMebal5YZn4LFa1WRVrTzE5YVwqWSm4w
74DuU9NBnT3Mb4OXu8Uxs57ZGQdk/h53lMwuWBrT95pRMLsi9wsD6093M7vh
TrPPgykvZndctY9ZHLdi5sFClYusZ5jfwc/7bqUML5whe6BvIHDl+jVmT7iX
JRRkq5j5UDRpJu8eYvbC1Kjr4qM9zMDncZOqn3jkfGA0JspNbsi6N4Zr+BND
99qoe+PffSMzM4NkzgfbdpQNDx1j3QfaH61ZZKaxLoDGWeerFW/WBbjeunbf
z5B1Xxh5tD2XNtdK3RdlLumr6efJnB+cGw70iA+z7odSY9lRIzHrQhh1bbQO
mrIuxJTZJyXvLbVQ94c9h+Oz58j5/rCQCxWxuawHQLPc0jsuZD0AR3q22QXp
sR6I6JTyhstjp6kHIitWou1TTeZEmE67FzsSw7oIhcmhA6mWrAehi7/fz3Ku
mXoQUv7pcFtRkblgaHKc5xaSWQ/GpL2ibZMt6ztR3likJVpoor4TD+Na9g6e
InMhCKwvztyfwHoIdBP7fog3Z30XhH0Gtl9OqqjvQn+cgY9eFZkLxa1fPe+P
i8kIRYtJgfaKLvsfCn6E8mDK0KknVofi45dtRII8MheGkoGKpIOuZISho/b3
2TeWG2kfhqcViokAFVkdhlnZQvJ0NJkTo04+2/vn82SIUVDqsKH8roH2Ysxn
G2R05JDVYjSXtYQlOZG5cPy1gvnu+Xrah6NXXplVV03OD4d5PX+PYwhZHQ73
1flFmRaZi0CSW5c88txJ2kdgSvdIyIMkcn4ELjhJZ6TGZHUEtL4vLs65cYL2
kQjocmhIzSEjEmvTCZ/ZOZLzI2HFR3jht3W0f+ytuo3p1mROAmVe6lWLwlra
S/DHlO/ept9qaC/B1lW1i14wWS2Bic36j/Fnj9M+CqVD7bc79cmIQtXrYzc3
K76mfRT6JFG8jNvVtI/Ci31D5Q9dyZwUvEnOo6P6GO2l6E9cVNauV9FeCoXC
+JomlqyWIunoSTPJlUravwszy/5uV9vKS/8BTRoIZg==
"]],
LineBox[{{0.6669129651702559, 1.4805153980959068`*^-7}, {
0.6673172710737478, -1.5572551690575146`*^-6}}]}}, {{
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFy3lQ1GUcx/EfmqFABEVDZHGTVByFcQrLBxaW5RDZBXa3IuQYQIJhwVWm
oAXElLMoaAJJQAEXBJRL45DRTRQTjSSQiQQaIY4YE6cgHAuKGb7P9Mx8/3jN
+/mYxcjFcVs5jovbOI2N28L9/ybTCzWU2gmem3rkuce8I2LbU9IrlFGc/b7q
l4utlze5HXxhQJV2NrMergxdOpoZx2yAzlb++IiM+UVoD922SRMxv4zSRePE
q4HMpsh2cBO8ImA2x9kPrk30ejJbIplfnMtzYX4VAal/uSrtma3R7pEvjLVi
fh1Ll4buzxsx26DsFOI0n2G2g2be0jn1+nnym/CKMR5+fon5LZQ1W+RrTDE7
YK2Iv1h4i3k3dLZOBbZ3Mb8Nt6zt9um1zI44nOjnfq+I2QmLo3qe0wpmZ2R9
oW/56bvMLrjX6P140pPZFddtIxfGLJjdYKbKQsbTzHvw88E7SYPz58ju6Onz
X755g9kDriWxuZkqZh4UDcMT948ye2JyxHnh3/3MwOfRE6qf3Mg5wEik1EVu
wLoXBqt44wMPWqh74Z+DQ9PT/WTOG7t2lwwOnGDdG1ofrpqlp7DOx7Cj9lfL
XqzzcbN59aGvAes+MHRveTZltpm6D0qcUldSL5I5XzjWHe4Sf8K6L4qNEo8b
ilkXwLBjvbnfmHUBJk0+LnxvsYm6H2w5nJy5QM7xg5lcoIjKYl2I4aWm7jEB
60Ic69plE6jLuj8ikkrrro6epe6PjCiJlnclmQvAVMqDqKFI1gOQlxDSl2zO
eiA6eId8zWcbqQci6e82l2UVmQvCsNJxdj6B9SBM2Cpatlizvhel9fkaAfMN
1PfiSXTTgf4zZC4Y/rUF6YdiWQ+GTlzPDzGmrO+DoEff+ssJFfV96I3W99at
IHMhuPOrx8MxMRkhaNqZq7Wsw/6HgBdWdCRp4Mym1SH46CWrAH42mROhsK8s
/ogzGSK0Vf8+88ZSPe1F2KZQjAtVZLUIM4nzCVMRZE6MGvlM9x/PkSFGbrHd
etF3dbQXYy5TP61NSVaL0VjSJIp3IHOh+HMZc51ztbQPRbe8PKOmkpwTCtNa
3n77YLI6FK4rcwuJGmQuDPEuHfLwC6dpH4ZJnWPBj+PJOWH4xkE2LTMiq8Og
8X1BgfLWKdqHQ9hhV5esJCMcq1Oxn9nYk3PCYcFDaN63NbTf8A6d+lRLMidB
UXbydbO8atpL8GjS50DDb1W0l2DHitpJN4islmCn1dqPMedP0l6K4oHWu+16
ZEhR8drobU3F17SXokcidUu7W0l7KV7oGSh94kzmZHCb4NzbKk/QXobeuIWi
6rUK2sugUBjdGI4iq2WIP37aRHKtnPbvwMS8t9PZuvzyfyJFB68=
"]]}}, {{
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {}}, {{
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 100.}, {-1.5572551690575146`*^-6,
1.4805153980959068`*^-7}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"500"}, "PointLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
"}"}], ",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], "}"}]}], ",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{", "True", "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.800162762299748*^9},
CellLabel->
"Out[199]=",ExpressionUUID->"880d6549-cd45-454c-9d4f-d1e60f311942"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "250", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{", "500", "}"}]}], "}"}]}], "]"}], "\[IndentingNewLine]",
",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "500", "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800157519007949*^9, 3.8001575414699793`*^9}, {
3.8001621701076937`*^9, 3.800162174372952*^9}},
CellLabel->
"In[180]:=",ExpressionUUID->"8f2b59b3-2fa6-40e1-8907-0b0f99d32b21"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw11QdUk2cfBfBXrAuR4air1aBIcVAtDoaKF1BktMjeIyQkZIMGUEEkgogI
agvuKqIoKlpEqGW2Rpw4QCpuQBwI4ioUtUKtn9/h/3AOh/M7Nzf3nOR5H4wF
UZ4iHY7jej7//v+vjnqqq9+/nxb9/MI8ZcOK6j+4vh9kJoXkPzx9kjwYDk4u
+4YmMRviTG1lSoKIeSRKTjrcu+nPPAZDa6/NWO7B/BWyOiZIq12ZeUiysHH8
2pF5Eo7JzjdWLGI2gcIhM9nWitkULtHvrBNnMpvh1MKNTsIpzNPwprL2UdtY
5hnIzoVo0DDmbzEo7c0v2v8KybNgJ5hQP+IN83fIPj55Y79mZgt8zHDo2HSV
eTb0+je7niplngObtYNnxh1knotY6dIFDzKY56GjwXDRYzWzJdb+ZGSyOZDZ
Cg+O2v/TtIjZGhfMQ9tvT2a2gXH+WsQPZJ6P+ytuyK+0/UJegPIq5+6aS8wL
Yb1VmJyQz2wL9ZH6xkcpzIvQdNOy/VMYM/BjeGP+XRuyBrgZ6mcVNZLldriy
z/bexZcnKLfDvytqHz8+R+bs8c3srVcu7ma5PXRXvTeOU7HcAfVzh+7otmO5
A2qOv3+9ZCTLF2P0ghMGqtbjlC/G1nnRb6NPk7klmJsXW+q5nuVLkDlWumG0
J8sdMbr4v+PnJrDcEU0T12wK6iigfCnMOex98itZsxTGUY5q/lqWO6H+TUHZ
bUeWOyG19JsZrvosd0awPCuvuuEY5c6I5/vq2u8hcy5oVr3k14ay3AVpke5V
ikksd0WxbcySSa1HKXeFvLfIqjufzH2P+sS5rW2RLP8ejebqEzpmLP8BWYc2
9nNpO0L5D+gJL5CcO0zm3OB8MD0uRshyN+iJyusEPJYvg2O5kdm2xnzKl6Ei
3MhefxeZc8eNpwtf3/Ykwx0F45N1u/XY691h652xTn7xcJ+17lg9boqLQxKZ
88CmqmzxOksyPFCU8+rJ9DeHqO+BAWr1Pad8stYDT6Rtkc3BZM4T+6OelHUN
J8MTyZnf/pdxOY/6nniWYLS8KJGs9cTRrQUeYgsy54W/u/Gs5NlB6nuhLGpn
/P49ZI0XeAdtw2a6kbVesH77rF3aj8x5Q2xVHOXz6wHqe6NJL9XtHzFZ443f
LPwf+48la73R73p6euLVXOr7wKn42zxFIhk+eN8s3DJjJlnjg8m28Eo7u5/6
nz1E71C0CZnzRUaS4oJxWg71ffFX02LJkef7qO+LIW+18/S/J2t9MX7Kxz8F
hXup74fMiydvnTIkww+7pjZcG6T+mfp+KPf1s1l+aw/1/TCq/GJWjyWZ84dN
I7egaM9u6vujQtSekfNxF/X9oVaPvVTPJ2v9Id5wYKLv+Z3UD8DESRUllmZk
fLbThszkzB3UD8B37/7ca9+5nfoBWFN7/0yKL5kLRIDBsDKPqm3UD0QTd9e8
bBJZEwjjj3GF1enZ1A+Es9X5gjWdWdQPwgqFflxnABlBsNnctXjGuZ+oH4Rv
8q1nWJmTtUFIHVg5kbfrR+oHo6rRvvN1fzKCMexCT07ooy3UD8bz2Ovpd6o2
Uz8Y6xcnKUP2ZFI/BHMn6F/+Ij6D+iGwv9x5+VHQJuqH4Mz+ycsGI536ITDr
nNWWYbqR+qGwNfavSTJIo34opj4suvOuJ5X6oQjeEba3//P11A+Fh0/D0rJ7
KdQPw6bgUSdNrydTPwzVaaNc+OfWUT8MuWe/tIir0lA/DMbh36ErOon6fJzO
PnK7S5XYZx4fO1+uM9BXJ9D78SF6GjREmLi6z3w+phj//qXhlpX0/nxcMYir
tDgc2+dcPk7d+7KgrVpNe3wU9mrOurQt73MLH5nabN2Vw6NpPxy7Ktrkw9IV
tB+OkzcbZ5v2Smg/HBvvv+ZLE0S0H4474RunDdQV0H44/M0GGnq7hdB+OFLH
7A7sl+9L++GISE0zkIx3p/3Pjlz4qijEgfYFmL/jRs+HL6bTvgALagN4DStN
bfv2BXBTT74Yesauz3wBTpn2Tkk4+EOfNQKY1Mq6xHnefc4VgDuh1Ov0Ceyz
VgDrbtvxh9vD+twiwLahNgOO/iLoMyeE5U/hCx75ivrME8LG8Vhw+5tI2hei
Is5FdmyVjPaF2CHyXzy8U0H7Quj6VhwaHhBF+0KEvnpr4HY3mvaFeFdjN7y+
dzntC1HqiI96o9W0H4HtNjPDP06Nof0IvI35pzxnTiztR+DJyBTV63lxtB+B
1aXtdR2zVtJ+BOKObhmTPWkV7UfgiMNkedvQ1bQfAb/ypPr2l+SWCByVq+bv
vhBP+yIYT/BN7N2eQPsi2M+54jYidA3ti7BhEefc+nUi7YuQwJveGneLrBFh
jE5VfO36tbQvwo3V6Qv/np5E+yIYjmua/+oKuUWEaU9nFz6epaF9MZTb9Qvt
V5F5Yly17239uZIMMVyK3AZ195D5YtRN+zTNY9462hfjgoXgRrmSnCuG697m
B3MOkLViWPlnb6+5QW4RQzbu7yNJ/5K5SESN8JkQZpJM+5F40B0vjHYiIxKP
V+mhSkLmR2LBkcH3XFPJmkgohpsXmuWQcyPxwtlrV3AJWRuJ0j/OX+o8T26J
xNiA1OquP8mcBLGftglkTWxfgq+WmTUIn7J9CQxr7mZ3tLF9Ca6dvqbQbWf7
EnT0vxNXx16fK8Fv4q0jHZvZvgSWPYLO+Aa2L0FWyb5P8ZfYvhTDWhVxXqVs
X4oPXz+oMzrE9qWIO3nh4rnNbF+KsonXvFfGsH0pjG5bF9n4s30pDrt0OH9l
zfalcB9gdnXaaLYvxcnSDSNiu9jnL8OlP8rm6V4l82SwDeDHf8glQwbZw0Yv
zxgyXwbOdaTYZAn7/mWYE2ydlDSCff8yVBZs2aF+SOdFK4Nhp+kVw2PkFhny
Ww4GR0az8yfH2+svi9PmsvMnh8/A1rwvOum8Qo6hRpVldSvIfDnKBdt4WX/R
edfIsWJ1b7pSxs6/HA1FlvUpLfR8aOUoLijtfedJbpEjtDRh9vOz9HxxCkju
a6rXmJN5CtgONtdvYM8jFJhl9XuWUS89r3wFTJ+dbvYLIWsUsMvx3VJTRc93
rgJd042Wpo9lz78CvAEDSsrVdD+0KGCUnrQm8SrdH5wSa46tc37PI/OUEGa7
ljrH0H0DJYpfvPbZeYHuI74SByza83RGkTVKLH14ZkihgO6vXCViz5Xcqiyk
+02rBByllm4fVtC+ErN1js1PsydzKjh5mlzeuInuR54K4/yW7Iypp/sTKnzo
HTJHMZrMV6FD59YL43IV7augnLTrwyB7Je2rkFH+KeBajZz2VcjbnONb5E73
d4sKdWbTi7tvS2g/Chvs63LvBdN9z4uCCW+bNucx/T9AFLzvvzRKkUTY/g8T
Hu3c
"]],
LineBox[{{0.666590101903677, 1.509844404540368*^-6}, {
0.6674694434374214, -2.199097275332749*^-6}}]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxF1XdU02cfBfCfWxERHHW1GhApVakWB0PFKygyWmTvERKyB2ggKojEgYig
VnBXEUVR0QJCLSC0xi0OkIobEAeC1FEoapVaX8/J9zkv5+SPz7m5ueckz+/B
XBDrK+rFcVz351ePz6+e3P//GrUbeiQPlMw16K+5syxKwvv0DjpNMTJTIvIf
niz63cD+cHHz2DswhdkUp2sq1ySJmIehtMjl3s1g5pEYWHNt8mIf5i+R1T5W
dtaTmYcUW0fXr1yZLXBUfr7h1FxmSyhdMlc72TNbwSPurUPyFGZrnJiz3k04
gXkiXlfWPGodxTwZ2bkQ9RvE/C36pb3+Wf9fIXkq5gnG1g19zfwdso+NX9+j
idkWHzNc2jdcZZ4G415NnifKmKfDcWX/KdoDzDOQIFs4+0EG80y015vOfaxh
tsPKLWaWG0OZ7fHgiPM/jXOZHXDBJrLt9nhmR5jnr0RiX+ZZuL/khuJK68/k
2aiocu+qvsQ8Bw6bhauT8pmdoDlc1/BoDfNcNN60a/sUxQz8GN2Qf9eRrANu
RgbZxw5j+Txc2et07+KL45TPw79Lah4/PkfmnPH1tM1XLu5iuTOMlr0z16pZ
7oK6GQO3d81juQuqj717tWAYy+djxOzjg9Utxyifj80z497EnSRzCzAjL6HM
dy3LFyBzlGzdCF+Wu2JEyX/Hzo1luSsax63YENZeQPlC2HDY8+QXsm4hzGNd
NfyVLHdD3euC8tuuLHdDatnXkz1NWO6OcEVW3tn6o5S7I5EfaOS8m8x5oEn9
gl8TyXIPpEm8q5QWLPdEiVP8AouWI5R7QtFdbN+VT+a+R13yjJZWCcu/R4ON
5nhPa5b/gKyD63t4tB6m/Ad8iC6QnjtE5rzgfiBdGy9kuReMRRW1Ah7LF8G1
wsx6a0M+5YtwKtrM2WQnmfPGjadzXt32JcMbBWNWG3UZs/d7w8k/Y5Xi4iGD
9d5YPnqCh0sKmfPBhqps8So7MnxQnPPyyaTXB6nvgz4azT23fLLeB09krZKm
cDLni32xT8o7h5Dhi9WZ3/6XcTmP+r54lmS2uDiZrPfFkc0FPmJbMueHv7vw
rPTZAer7oTx2R+K+3WSdH3gHnKKmeJH1fnB486xN1oPM+UNsXxIb8Mt+6vuj
0TjV6x8xWeePX22DHwePIuv90eN6enry1VzqB8Ct5Ns8ZTIZAXjXJNw0eQpZ
F4DxTvBLO7OP+p89wPhgnCWZC0RGivKCeVoO9QPxV+N86eHne6kfiAFv9DNN
vifrAzFmwsc/BIV7qB+EzItFt06YkhGEnd/UX+un+Yn6QagIDHJcfGs39YMw
vOJi1gc7MhcMxwZudvHuXdQPxilRW0bOx53UD4ZGM+pSHZ+sD4Z43f5xged3
UD8E4yxOldpZk/HZbusyV2dup34Ivnv7xx7njm3UD8GKmvun1wSSuVCEDB5U
7lO1lfqhaOTu2pRbkHWhMP+oLTybnk39ULjbny9Y0ZFF/TAsUZpoO0LICIPj
xs75k89toX4Yvs53mGxvQ9aHIbVv5Tjezh+pH46qBueOV73ICMegCx9yIh9t
on44nidcT79TtZH64Vg7P0UVsTuT+hGYMdbkcu/EDOpHwPlyx+VHYRuoH4HT
+8Yv6o906kfAumNqa4bVeupHwsk8uDplcBr1I/HNw+I7bz+kUj8S4duj9vR6
vpb6kfAJqF9Yfm8N9aOwIXx4kdX11dSPwtm04R78c6uoH4XcM1/Yaqt01I+C
efR36IxLoT4fJ7MP3+5UJxvM42PHi1WDTTRJ9Hl8iJ6GDRAmLzeYz8cE89++
MN20lD6fjyuDtZW2hxIMzuXjxL0vClrPamiPj8Ju3RmP1sUGN/ORqc82Wjok
jvajsfNUq2JQupL2o1F0s2GaVbeU9qOx/v4rvixJRPvRuBO9fmJfIwHtRyPY
uq+pv1cE7UcjdeSu0B75gbQfjZjUtMHSMd60/9mSOS+LI1xoX4BZ2298eN97
Eu0LMLsmhFe/1MrJsC+Al2b8xcjT8wzmC3DCqntC0oEfDNYJYFkj7xTn+Ruc
KwB3XGXcERBqsF4Ahy6nMYfaogxuFmDrQMc+R34WGMwJYbclevajQJHBPCEc
XY+Gt72W0L4Qp7Qe8qPL5LQvxHZR8PwhHUraF8Io8NTBISGxtC9E5Ms3g73u
xtG+EG+r5w2p615M+0KUueKj8QgN7cdgm+OU6I/fxNN+DN7E/1ORMz2B9mPw
ZNga9auZWtqPwfKyttr2qUtpPwbaI5tGZlsso/0YHHYZr2gduJz2YxBUkVLX
9oLcHIMjCvWsXRcSaV8E87GByd3bkmhfBOfpV7yGRq6gfRHWzeXcW75Kpn0R
kniTWrS3yDoRRvasSqxZu5L2RbixPH3O35NSaF8E09GNs15eITeLMPHptMLH
U3W0L4Zqm0mh8zIyT4yrzt0tP1WSIYZHsVe/rg9kvhi1Ez9N9Jm5ivbFuGAr
uFGhIueK4bmn6cH0/WS9GPbB2duqb5CbxZCP/vtwyr9kToLYoQFjoyxX074E
D7oShXFuZEjweJkxqqRkvgSzD/e/55lK1kmgHGJTaJ1DzpXgT3e/neGlZL0E
Zb+fv9RxntwswaiQ1LOdf5A5KRI+bRXIG9m+FF8usq4XPmX7UphW381ub2X7
Ulw7eU1p1Mb2pWjvdUdby96fK8Wv4s3DXJvYvhR2HwQdifVsX4qs0r2fEi+x
fRkGtSi1fmVsX4b3Xz2oNTvI9mXQFl24eG4j25ehfNw1/6XxbF8Gs9sOxY7B
bF+GQx7t7l86sH0ZvPtYX504gu3LUFS2bmhCJ/v+5bj0e/lMo6tknhxOIfzE
97lkyCF/2ODnG0/my8F5DhNbLmC/vxzTwx1SUoay31+OyoJN2zUP6bzo5TDt
sLpiepTcLEd+84FwSRw7fwq8uf6iJG0GO38KBPRtyevdQecVCgw0qyyvXULm
K1Ah2MrL+ovOu06BJcu701Vydv4VqC+2q1vTTM+HXoGSgrLut77kZgUiy5Km
PT9DzxenhPS+7uwKGzJPCaf+Nib17HmEElPtf8sy66bnla+E1bOTTUERZJ0S
83ICN1VX0fOdq0TnJLOF6aPY868Er0+f0goN3Q/NSpilp6xIvkr3B6fCiqOr
3N/xyDwVhNmeZe7xdN9AhZI/XwXsuED3EV+F/bZteT2Hk3UqLHx4ekChgO6v
XBUSzpXeqiyk+02vAlxldl7vl9C+CtN6Hp2V5kzm1HDztby8fgPdjzw1Rgct
2BFfR/cn1HjfPWC6cgSZr0Z7z1t/mleoaV8NlcXO9/2cVbSvRkbFp5Br1Qra
VyNvY05gsTfd381q1FpPKum6LaX9WKxzrs29F073PS8Wlryt+pzH9P8AsfC/
/8JsjTTG6X/8Bux8
"]]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 250.}, {-2.199097275332749*^-6,
1.509844404540368*^-6}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"500"}, "PointLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
"}"}], ",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], "}"}]}], ",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{", "True", "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.8001575351661243`*^9, 3.800157844930668*^9,
3.8001626197402563`*^9},
CellLabel->
"Out[180]=",ExpressionUUID->"09b932d0-8ecb-4518-ab9b-eb823d96f63c"]
}, Open ]],
Cell[CellGroupData[{
Cell["Total energy corrections", "Subsubsection",
CellChangeTimes->{{3.800166330467697*^9,
3.800166336764496*^9}},ExpressionUUID->"c6c546bc-5576-410f-9743-\
59804a99096a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}],
"\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "20", ",", "1"}], "}"}]}], "]"}], "/.",
RowBox[{"\[Lambda]", "\[Rule]", "1."}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"0.1", ",", "0.5", ",", "1"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"0.1", ",", "0.5", ",", "1"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{
3.800074392994604*^9, {3.800074482271192*^9, 3.800074484025978*^9}, {
3.800074572848796*^9, 3.8000746110650578`*^9}, {3.800074649794314*^9,
3.8000746508449907`*^9}, 3.800166234636016*^9, {3.80016640330295*^9,
3.80016641324934*^9}},
CellLabel->
"In[267]:=",ExpressionUUID->"69ee8234-1d63-42c1-bf74-c4bfb11a7643"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBWIQjQpMHCD0B3sIrQLlMziEhQLBU2Uon8Ph3l0geAzj
CzgEF357eArOF3GoeTuTFcGXcAhXVv17Es6XcZDgeP0HwVdwWOCAzFdyqM1F
5qs4tBci89UcjqPwNRzOoPC10Pg6DqdR+HpofAM0viEa38jhFArfGI1vAlcP
AKclZr0=
"]]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBWIQjQoEHCD0B3uogAOMDgsFgf9QcQ4Hg2l/kk7qw/gC
Dh7aF3MMNWB8EYcL7KdvXFCD8SUcLixX3jULzpdxaM6f+2oKnK/gIOtpxTgV
zldyiPjI5Ingqzi8iLuRhOCrOYieCsxE8DUcdgRPykLwtRzCy/Yi8XUcJnvs
Q+LrOVim7UHiGzh8mbUbiW/ocC0JmW/kwBOOzDd28AlF5ps4WEL5AG8MVOo=
"]]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBWIQjQYcINQHe1SaweEdBED5HA6L70yIvNAH4ws4HA4U
e7Q1H8YXcfCr/Ge5Pg3Gl3DIjsjeW54C48s47FN+7iAG5ys4/Et9MV8Czldy
0Lnwf5UKnK/icEjefZY2nK/mUGetlKQH52s4BJxPt9OH87UcRH2v5iL4Og6G
au75CL6eg0bJz0wE38Bh9t/UNATf0OHFwospCL6RA8cuTyS+scPHTE0kvomD
j586mA8A22ZW3A==
"]]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQAcmDhD6gz2EVoHyGRzCQoHgqTKUz+Fw7y4Q
PIbxBRyCC789PAXnizjUvJ3JiuBLOIQrq/49CefLOEhwvP6D4Cs4LHBA5is5
1OYi81Uc2guR+WoOx1H4Gg5nUPhaaHwdh9MofD00vgEa3xCNb+RwCoVvjMY3
gasHALDhZr8=
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQAcCDhD6gz1UwAFGh4WCwH+oOIeDwbQ/SSf1
YXwBBw/tizmGGjC+iMMF9tM3LqjB+BIOF5Yr75oF58s4NOfPfTUFzldwkPW0
YpwK5ys5RHxk8kTwVRxexN1IQvDVHERPBWYi+BoOO4InZSH4Wg7hZXuR+DoO
kz32IfH1HCzT9iDxDRy+zNqNxDd0uJaEzDdy4AlH5hs7+IQi800cLKF8AHjI
VOw=
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiwAAOEOqDPSrN4PAOAqB8DofFdyZEXuiD8QUc
DgeKPdqaD+OLOPhV/rNcnwbjSzhkR2TvLU+B8WUc9ik/dxCD8xUc/qW+mC8B
5ys56Fz4v0oFzldxOCTvPksbzldzqLNWStKD8zUcAs6n2+nD+VoOor5XcxF8
HQdDNfd8BF/PQaPkZyaCb+Aw+29qGoJv6PBi4cUUBN/IgWOXJxLf2OFjpiYS
38TBx08dzAcA5SJW3g==
"]]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}}, PlotRange -> {{0, 20.}, {0, 20.}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"0.1`", "0.5`", "1"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.800074607875884*^9, 3.800074622079007*^9},
3.800074654828618*^9, {3.800166407710341*^9, 3.800166418576078*^9}},
CellLabel->
"Out[267]=",ExpressionUUID->"4e82a56b-509f-4b7f-a295-4617e86524a0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}],
"\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "100", ",", "1"}], "}"}]}], "]"}], "/.",
RowBox[{"\[Lambda]", "\[Rule]", "1."}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"25", ",", "100", ",", "200"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"25", ",", "100", ",", "200"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800166276410769*^9, 3.8001663172086153`*^9}},
CellLabel->
"In[265]:=",ExpressionUUID->"8e5e3748-242c-4089-b15b-bf679b76b788"],
Cell[BoxData["$Aborted"], "Output",
CellChangeTimes->{{3.80016628257409*^9, 3.8001663084766893`*^9},
3.800166397304242*^9},
CellLabel->
"Out[265]=",ExpressionUUID->"986928d9-4338-4727-bd90-a11f28de9bf9"]
}, Open ]]
}, Closed]]
}, Closed]]
}, Closed]],
Cell[CellGroupData[{
Cell["Singularity structure", "Section",
CellChangeTimes->{{3.8000116363098173`*^9,
3.8000116429460573`*^9}},ExpressionUUID->"3cf320d3-6c13-4692-b242-\
d4cad7fed598"],
Cell[CellGroupData[{
Cell["\<\
Can we give a physical signification to all the singularities ?\
\>", "Subsection",
CellChangeTimes->{{3.8001634725245132`*^9,
3.800163498432653*^9}},ExpressionUUID->"c40bb50c-519d-4650-b7f0-\
37c61810c51e"],
Cell[CellGroupData[{
Cell["RHF", "Subsubsection",
CellChangeTimes->{{3.800158223312038*^9,
3.800158224232153*^9}},ExpressionUUID->"bc4855cb-d055-4c5b-a5e0-\
792e82ed43f9"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"rH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "1"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{
3.800075353492262*^9, {3.800075384742434*^9, 3.8000753928634853`*^9}, {
3.800075477990193*^9, 3.800075488034968*^9}, {3.80007553412252*^9,
3.80007557313133*^9}, 3.800075630282379*^9, {3.8000785359721327`*^9,
3.800078550363659*^9}, {3.800079878860845*^9, 3.800079879068116*^9}, {
3.800079913573428*^9, 3.800079932229224*^9}, 3.800080497085393*^9, {
3.800080577175806*^9, 3.800080592742565*^9}, {3.8001120586218023`*^9,
3.80011205888498*^9}, {3.80011214840434*^9, 3.800112172686603*^9},
3.800157110714922*^9, 3.800157352192288*^9, {3.800159556196183*^9,
3.800159556698868*^9}, {3.801211548346614*^9, 3.8012115629489822`*^9}},
CellLabel->
"In[133]:=",ExpressionUUID->"8cde43e0-6c22-45c1-be31-fa4bfe9e9cfb"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
"\[Epsilon]", "\[Rule]",
"3.6666666666666666666666666666672735580425025327020576321609`29.\
397940008672037"}], ",",
RowBox[{"\[Lambda]", "\[Rule]", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"\[Epsilon]", "\[Rule]",
"3.6666666666666666666666666666672735580425025327020576321609`29.\
397940008672037"}], ",",
RowBox[{"\[Lambda]", "\[Rule]", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"-", "6.07244314268073333745086282941333863881`29.397940008672037"}]}],
",",
RowBox[{
"\[Lambda]", "\[Rule]",
"4.86955490467370000205876474804000265274`29.397940008672037"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"-", "6.07244314268073333745086282941333863881`29.397940008672037"}]}],
",",
RowBox[{
"\[Lambda]", "\[Rule]",
"4.86955490467370000205876474804000265274`29.397940008672037"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.3333333333333333333333333333586396180369348585318655950544`28.\
724743740256045", "-",
RowBox[{
"1.23091490979332732734240660121611941447`28.78879912190311", " ",
"\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"2.49999999999999999999999999996231262111`28.784762272906125", "+",
RowBox[{
"0.9231861823449954955068049509030809393971028716466513913391`28.\
74260353277322", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.3333333333333333333333333333586396180369348585318655950544`28.\
724743740256045", "-",
RowBox[{
"1.23091490979332732734240660121611941447`28.78879912190311", " ",
"\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"2.49999999999999999999999999996231262111`28.784762272906125", "+",
RowBox[{
"0.9231861823449954955068049509030809393971028716466513913391`28.\
74260353277322", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.3333333333333333333333333333586396180369348585318655950544`28.\
724743740256045", "+",
RowBox[{
"1.23091490979332732734240660121611941447`28.78879912190311", " ",
"\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"2.49999999999999999999999999996231262111`28.784762272906125", "-",
RowBox[{
"0.9231861823449954955068049509030809393971028716466513913391`28.\
74260353277322", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.3333333333333333333333333333586396180369348585318655950544`28.\
724743740256045", "+",
RowBox[{
"1.23091490979332732734240660121611941447`28.78879912190311", " ",
"\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"2.49999999999999999999999999996231262111`28.784762272906125", "-",
RowBox[{
"0.9231861823449954955068049509030809393971028716466513913391`28.\
74260353277322", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.2591435637120916308733567616817308431227456424704728655104`28.\
787731338591815", "-",
RowBox[{
"1.9360926721332812703371079005598996892797699710136339527829`29.\
397940008672037", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"2.147598594299101913315111284654129758427713101810106588795`29.\
397940008672037", "+",
RowBox[{
"1.2202264740335806325654041390084030578956571747704533592833`29.\
218913175720193", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.2591435637120916308733567616817308431227456424704728655104`28.\
787731338591815", "+",
RowBox[{
"1.9360926721332812703371079005598996892797699710136339527829`29.\
397940008672037", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"2.147598594299101913315111284654129758427713101810106588795`29.\
397940008672037", "-",
RowBox[{
"1.2202264740335806325654041390084030578956571747704533592833`29.\
218913175720193", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"-", "0.3442235239859333292158038372542061055119348680239298661616`28.\
795880017344075"}]}], ",",
RowBox[{
"\[Lambda]", "\[Rule]",
"2.00544509532629999794123525196058947771`28.79588001734407"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"-", "0.3442235239859333292158038372542061055119348680239298661616`28.\
795880017344075"}]}], ",",
RowBox[{
"\[Lambda]", "\[Rule]",
"2.00544509532629999794123525196058947771`28.79588001734407"}]}],
"}"}]}], "}"}]], "Output",
CellChangeTimes->{
3.800157111485978*^9, 3.800159557622061*^9, {3.8012115573209352`*^9,
3.801211563576037*^9}},
CellLabel->
"Out[135]=",ExpressionUUID->"a500d884-be05-426a-92ad-6b010dd051f9"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{0., 0.}}, {{0.,
0.}}, {{4.8695549046737, 0.}}, {{4.8695549046737, 0.}}, {{2.5,
0.9231861823449955}}, {{2.5, 0.9231861823449955}}, {{
2.5, -0.9231861823449955}}, {{2.5, -0.9231861823449955}}, {{
2.147598594299102, 1.2202264740335806`}}, {{
2.147598594299102, -1.2202264740335806`}}, {{2.0054450953263, 0.}}, {{
2.0054450953263, 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.8000799242414637`*^9, 3.800079932735375*^9},
3.800080497627037*^9, {3.800080578049032*^9, 3.800080593176303*^9},
3.8001120600105143`*^9, {3.800112149697216*^9, 3.800112173030253*^9},
3.800157112282282*^9, 3.8001595578133802`*^9, {3.801211558982279*^9,
3.801211564228888*^9}},
CellLabel->
"During evaluation of \
In[133]:=",ExpressionUUID->"3f0cc588-78b3-4d5c-8d6c-8105081254f5"]
}, Open ]],
Cell["\<\
There are 12 singularities as expected, but we can\[CloseCurlyQuote]t give \
them a physical signification for the moment. Let\[CloseCurlyQuote]s try to \
do this for this simple case\
\>", "Text",
CellChangeTimes->{{3.8001585199504757`*^9,
3.800158580192855*^9}},ExpressionUUID->"b6c5864e-998f-4f55-a2b5-\
3bcaed605691"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158278610743*^9, 3.800158290872142*^9},
3.800158341741818*^9, {3.800158433517392*^9, 3.8001584377174377`*^9}},
CellLabel->"In[57]:=",ExpressionUUID->"26ff945b-30aa-447b-a7da-681164976c41"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"1.5033190160093715`", "\[VeryThinSpace]", "-",
RowBox[{"0.8541585318235065`", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"1.5033190160093715`", "\[VeryThinSpace]", "+",
RowBox[{"0.8541585318235065`", " ", "\[ImaginaryI]"}]}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{3.8001582338106213`*^9, 3.8001582919267*^9,
3.8001583424528513`*^9, 3.800158439888423*^9},
CellLabel->"Out[57]=",ExpressionUUID->"83e94ffa-c2ad-4d89-b8d2-cc901505493b"]
}, Open ]],
Cell[TextData[{
"There is a pair of complex conjugate branch point between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],ExpressionUUID->
"021368e2-e268-4042-93b7-8bbbcb5001ee"],
"and ",
Cell[BoxData[
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"], TraditionalForm]],ExpressionUUID->
"20c579e6-5452-473e-bb17-374d4565f130"]
}], "Text",
CellChangeTimes->{{3.800158583613742*^9,
3.800158635398328*^9}},ExpressionUUID->"22f026d8-1f14-4085-b8a9-\
1103ac77f479"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.8001584637379913`*^9, 3.800158464134795*^9}},
CellLabel->"In[59]:=",ExpressionUUID->"78c83c8e-3dec-4b9a-9c7c-9e35dd60a379"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]", "3.4086884332715903`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]", "1.40381156672841`"}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{3.8001584644905357`*^9},
CellLabel->"Out[59]=",ExpressionUUID->"58320fa1-bce5-4901-93f8-d49d6c245680"]
}, Open ]],
Cell[TextData[{
"There are 2 CI between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"aea12598-6d20-4092-b9cd-57742c3fbbe8"],
"and the ",
Cell[BoxData[
FormBox[
SubscriptBox["sp", "z"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"bbf48207-b04c-4651-96f6-eca2657a860d"],
" triplet (x2 degen)"
}], "Text",
CellChangeTimes->{{3.800158662872758*^9, 3.800158703136058*^9}, {
3.800158955325688*^9, 3.8001589561925917`*^9}, {3.800159692397304*^9,
3.800159701502852*^9},
3.8001597753064337`*^9},ExpressionUUID->"fdd982d9-401c-4207-8eec-\
b15a5550f82b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158369960648*^9, 3.800158370393867*^9}, {
3.800158408929471*^9, 3.800158409337016*^9}, {3.800158446099082*^9,
3.80015845077838*^9}, {3.8012114754822483`*^9, 3.801211475852717*^9}},
CellLabel->
"In[127]:=",ExpressionUUID->"4dc967ab-5ddd-4a4a-8dbf-19317ee21c74"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800158371081614*^9, 3.800158409644907*^9,
3.8001584513624277`*^9, 3.801211478913052*^9},
CellLabel->
"Out[127]=",ExpressionUUID->"2f717f13-fdf2-4e9f-ace7-b5cabc606e87"]
}, Open ]],
Cell[TextData[{
"The ",
Cell[BoxData[
FormBox[
SubscriptBox["sp", "z"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"9e866fd9-8787-4b45-a911-f5db1c085c10"],
" singlet is never degenerate with the ground state"
}], "Text",
CellChangeTimes->{{3.80015883203883*^9, 3.800158852480497*^9}, {
3.800158963935526*^9, 3.800158964785277*^9}, {3.8001597693529873`*^9,
3.800159771491109*^9}},ExpressionUUID->"625ce02e-78f9-4a40-a1e8-\
3b4ec0b96e06"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.80015887242031*^9, 3.8001588727346163`*^9}},
CellLabel->"In[60]:=",ExpressionUUID->"a14a0eaa-ac66-448a-b70b-0d2b2cc0e34c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"1.75`", "\[VeryThinSpace]", "-",
RowBox[{"0.6462303276414967`", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"1.75`", "\[VeryThinSpace]", "+",
RowBox[{"0.6462303276414967`", " ", "\[ImaginaryI]"}]}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{3.800158873572803*^9},
CellLabel->"Out[60]=",ExpressionUUID->"373adab4-8b54-4869-89cf-c956d96b6e56"]
}, Open ]],
Cell[TextData[{
"There is a pair of complex conjugate branch point between ",
Cell[BoxData[
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"], TraditionalForm]],ExpressionUUID->
"2553c833-57cb-4e03-92a9-b71efbe31cd4"],
" and ",
Cell[BoxData[
FormBox[
SubscriptBox["sp", "z"], TraditionalForm]],ExpressionUUID->
"6c510e88-1226-4893-87bd-cb66a10c080a"],
" singlet (x2 degen)"
}], "Text",
CellChangeTimes->{{3.800158583613742*^9, 3.800158635398328*^9}, {
3.800159734007469*^9, 3.8001597393953323`*^9}, {3.800159781544524*^9,
3.800159796125751*^9}, {3.8012115008133373`*^9,
3.80121151150954*^9}},ExpressionUUID->"84597ffa-eafe-4f3c-9d4e-\
7c888242eaa3"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158879878248*^9, 3.80015888237202*^9}},
CellLabel->"In[61]:=",ExpressionUUID->"ecda13b7-567a-4553-abc4-f7b0df23882e"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800158882705681*^9},
CellLabel->"Out[61]=",ExpressionUUID->"732bc038-a50a-4fde-9440-76810f331904"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158986206258*^9, 3.800158995955509*^9}},
CellLabel->"In[63]:=",ExpressionUUID->"a6d1004b-a7be-4819-87a2-62ffbe643df9"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]", "0.`"}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.800158989306931*^9, 3.8001589970199614`*^9}},
CellLabel->"Out[63]=",ExpressionUUID->"9fb6b259-f8db-4801-86a5-1df5bf0977b1"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["UHF", "Subsubsection",
CellChangeTimes->{{3.800160005317541*^9,
3.800160006948435*^9}},ExpressionUUID->"e8cefca3-48aa-4fe8-a42f-\
a07a6d0d53ff"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"uH\[Lambda]", "/.",
RowBox[{"R", "\[Rule]", "2"}]}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{"Sort", "[", "\[Lambda]EP", "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800157386799263*^9, 3.800157392222747*^9}, {
3.800157471442925*^9, 3.800157480658167*^9}, {3.800159847972131*^9,
3.800159857930311*^9}, {3.800159912370352*^9, 3.80015993354918*^9},
3.800160687275172*^9, {3.800160790277131*^9, 3.800160826481682*^9}, {
3.8001626669660482`*^9, 3.800162679309074*^9}},
CellLabel->
"In[187]:=",ExpressionUUID->"86296c81-aa67-48e3-9459-a607c4dcb5fe"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{
"0.6254114456184364355104366115940271936123253589211850368253`29.\
29626262376412", "-",
RowBox[{
"0.7227612308264697478366572157282773984850119545490837146743`29.\
397940008672037", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"0.6254114456184364355104366115940271936123253589211850368253`29.\
29626262376412", "+",
RowBox[{
"0.7227612308264697478366572157282773984850119545490837146743`29.\
397940008672037", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"1.0655678648783681952455499596090965480045810739079991800999`29.\
397940008672037", "-",
RowBox[{
"0.1414990387982489895023924064789054248077506698461980555895`28.\
793316676554895", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"1.0655678648783681952455499596090965480045810739079991800999`29.\
397940008672037", "+",
RowBox[{
"0.1414990387982489895023924064789054248077506698461980555895`28.\
793316676554895", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.27871148459383753501400560351706757106`28.78994900531733", "-",
RowBox[{
"0.7872730783864882787741267924232730982697470982081209140303`28.\
76790855015536", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.27871148459383753501400560351706757106`28.78994900531733", "-",
RowBox[{
"0.7872730783864882787741267924232730982697470982081209140303`28.\
76790855015536", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.27871148459383753501400560351706757106`28.78994900531733", "+",
RowBox[{
"0.7872730783864882787741267924232730982697470982081209140303`28.\
76790855015536", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.27871148459383753501400560351706757106`28.78994900531733", "+",
RowBox[{
"0.7872730783864882787741267924232730982697470982081209140303`28.\
76790855015536", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.398524068502727535849444223113998711579970804060092814152`29.\
397940008672037", "-",
RowBox[{
"0.7534704100368671715191860514409521719678895624593290832018`29.\
33609079569882", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.398524068502727535849444223113998711579970804060092814152`29.\
397940008672037", "+",
RowBox[{
"0.7534704100368671715191860514409521719678895624593290832018`29.\
33609079569882", " ", "\[ImaginaryI]"}]}]}], "}"}]], "Output",
CellChangeTimes->{{3.8001608065981483`*^9, 3.800160827149747*^9}, {
3.800162670475374*^9, 3.800162679855598*^9}},
CellLabel->
"Out[191]=",ExpressionUUID->"bed7d171-990f-4d4e-800a-ab6c67336ddf"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
0.6254114456184364, 0.7227612308264697}}, {{
0.6254114456184364, -0.7227612308264697}}, {{0., 0.}}, {{0., 0.}}, {{
2.2787114845938374`, 0.7872730783864883}}, {{2.2787114845938374`,
0.7872730783864883}}, {{2.2787114845938374`, -0.7872730783864883}}, {{
2.2787114845938374`, -0.7872730783864883}}, {{
2.3985240685027276`, -0.7534704100368672}}, {{2.3985240685027276`,
0.7534704100368672}}, {{1.0655678648783682`, 0.141499038798249}}, {{
1.0655678648783682`, -0.141499038798249}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-4, 4}, {-4, 4}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{
3.800157393308854*^9, {3.800157472990631*^9, 3.800157481345057*^9},
3.800159861088769*^9, {3.8001599139430513`*^9, 3.800159934501748*^9},
3.800160688193177*^9, {3.800160803367661*^9, 3.800160827460278*^9}, {
3.800162670675768*^9, 3.8001626800603456`*^9}},
CellLabel->
"During evaluation of \
In[187]:=",ExpressionUUID->"0677df06-4be7-4bd3-80e0-e0306a28d5e2"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158278610743*^9, 3.800158290872142*^9},
3.800158341741818*^9, {3.800158433517392*^9, 3.8001584377174377`*^9}, {
3.800160208824222*^9, 3.8001602117761087`*^9}, {3.8001602500627193`*^9,
3.800160250493102*^9}, {3.800160302859713*^9, 3.80016030318882*^9}},
CellLabel->"In[90]:=",ExpressionUUID->"fa626888-9aa9-4ce4-a267-7560eb5953f5"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"2.2787114845938374`", "\[VeryThinSpace]", "-",
RowBox[{"0.7872730783864883`", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"2.2787114845938374`", "\[VeryThinSpace]", "+",
RowBox[{"0.7872730783864883`", " ", "\[ImaginaryI]"}]}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{3.8001582338106213`*^9, 3.8001582919267*^9,
3.8001583424528513`*^9, 3.800158439888423*^9, 3.800160212646006*^9,
3.800160252346768*^9, 3.800160304106626*^9},
CellLabel->"Out[90]=",ExpressionUUID->"c1f4f9e8-4ed4-458a-afd7-21b721d6a2d6"]
}, Open ]],
Cell[TextData[{
"There is a pair of complex conjugate branch point between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"d71c142c-77e3-4867-bd51-aa607d86edf1"],
"and ",
Cell[BoxData[
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"2db03bf9-aefb-40c2-8b27-a290fb01d132"]
}], "Text",
CellChangeTimes->{{3.800158583613742*^9,
3.800158635398328*^9}},ExpressionUUID->"46b6972c-5f54-4408-a21a-\
716067159692"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800160349800825*^9, 3.800160355551343*^9}},
CellLabel->"In[91]:=",ExpressionUUID->"7ac6dc4b-1be2-4222-ba5c-5417e4b23a35"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800160355933103*^9},
CellLabel->"Out[91]=",ExpressionUUID->"8f315252-fbc8-4570-9ccf-adf1bc0395f9"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800160362984331*^9, 3.800160363411745*^9}},
CellLabel->"In[92]:=",ExpressionUUID->"ed30fc9b-d583-4306-b0c4-1c9db9bb097a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]", "0.`"}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.800160363880258*^9},
CellLabel->"Out[92]=",ExpressionUUID->"5d3a5b06-fa07-4994-866d-f2521b346836"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800160405795185*^9, 3.8001604064545193`*^9}},
CellLabel->"In[93]:=",ExpressionUUID->"b6aab6e2-ecab-4643-bd19-e1c96b86c0f0"],
Cell[BoxData[
TemplateBox[{
"NSolve", "infsolns",
"\"Infinite solution set has dimension at least \
\\!\\(\\*RowBox[{\\\"1\\\"}]\\). Returning intersection of solutions with \\!\
\\(\\*RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"142291\\\", \\\" \\\", \\\"\
\[Lambda]\\\"}], \\\"110500\\\"]}]\\) == 1.\"", 2, 93, 3,
22556906998464431640, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8001604074336033`*^9},
CellLabel->
"During evaluation of \
In[93]:=",ExpressionUUID->"89cf3103-e73d-48df-86db-ec7b26a06bb5"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800160407568763*^9},
CellLabel->"Out[93]=",ExpressionUUID->"a0260599-8186-4a58-87ab-1debb7498190"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800160415162305*^9, 3.8001604193690567`*^9}},
CellLabel->"In[94]:=",ExpressionUUID->"c04c95d3-3228-4354-89b7-6c0a9bdc3525"],
Cell[BoxData[
TemplateBox[{
"NSolve", "infsolns",
"\"Infinite solution set has dimension at least \
\\!\\(\\*RowBox[{\\\"1\\\"}]\\). Returning intersection of solutions with \\!\
\\(\\*RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"142291\\\", \\\" \\\", \\\"\
\[Lambda]\\\"}], \\\"110500\\\"]}]\\) == 1.\"", 2, 94, 4,
22556906998464431640, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8001604197705917`*^9},
CellLabel->
"During evaluation of \
In[94]:=",ExpressionUUID->"2843fbbd-4d9f-4276-aa7a-fa585db89e52"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800160419931347*^9},
CellLabel->"Out[94]=",ExpressionUUID->"b38c806d-706b-4d67-a8fc-8f46b49edac0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800160439337159*^9, 3.800160442524119*^9}},
CellLabel->"In[95]:=",ExpressionUUID->"182aad29-97d7-4575-8885-0a013b62cd47"],
Cell[BoxData[
TemplateBox[{
"NSolve", "infsolns",
"\"Infinite solution set has dimension at least \
\\!\\(\\*RowBox[{\\\"1\\\"}]\\). Returning intersection of solutions with \\!\
\\(\\*RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"142291\\\", \\\" \\\", \\\"\
\[Lambda]\\\"}], \\\"110500\\\"]}]\\) == 1.\"", 2, 95, 5,
22556906998464431640, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.800160443083353*^9},
CellLabel->
"During evaluation of \
In[95]:=",ExpressionUUID->"1f6e816a-7efe-44e3-ada9-cce2c848449d"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800160443296672*^9},
CellLabel->"Out[95]=",ExpressionUUID->"5330f810-cf31-475c-a470-af6ad3fbb687"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["R dependance", "Subsection",
CellChangeTimes->{{3.8001613415022917`*^9,
3.800161349374938*^9}},ExpressionUUID->"28754d59-75ad-4a9b-b825-\
ac7c07b5aaf1"],
Cell[CellGroupData[{
Cell["RHF", "Subsubsection",
CellChangeTimes->{{3.800163516163398*^9,
3.80016351658918*^9}},ExpressionUUID->"9e25552a-74a8-4b5d-9071-\
0790e0d767dd"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"rH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "1"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800161815075704*^9, 3.800161815832903*^9}, {
3.800952639638629*^9, 3.800952645236867*^9}},
CellLabel->
"In[226]:=",ExpressionUUID->"8f6f46ef-b8d9-47f5-be7d-ce0b91081075"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{0., 0.}}, {{0.,
0.}}, {{4.8695549046737, 0.}}, {{4.8695549046737, 0.}}, {{2.5,
0.9231861823449955}}, {{2.5, 0.9231861823449955}}, {{
2.5, -0.9231861823449955}}, {{2.5, -0.9231861823449955}}, {{
2.147598594299102, 1.2202264740335806`}}, {{
2.147598594299102, -1.2202264740335806`}}, {{2.0054450953263, 0.}}, {{
2.0054450953263, 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.8001618162432337`*^9, 3.800952645821436*^9},
CellLabel->
"During evaluation of \
In[226]:=",ExpressionUUID->"a1b609a5-51a7-4130-bf01-714db2e18059"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"rH\[Lambda]", "/.",
RowBox[{"R", "\[Rule]", "10"}]}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.8001618044907093`*^9, 3.800161804813216*^9}},
CellLabel->
"In[164]:=",ExpressionUUID->"85d2d939-bb10-4182-addf-ccf25f02abf0"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
2.239995256149902, 0.}}, {{2.239995256149902, 0.}}, {{
1.15, -0.42466564387869793`}}, {{1.15, -0.42466564387869793`}}, {{1.15,
0.42466564387869793`}}, {{1.15, 0.42466564387869793`}}, {{
0.9878953533775868, -0.5613041780554471}}, {{0.9878953533775868,
0.5613041780554471}}, {{0.922504743850098, 0.}}, {{0.922504743850098,
0.}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.800161805770297*^9},
CellLabel->
"During evaluation of \
In[164]:=",ExpressionUUID->"835ee8f3-caeb-46b0-92de-39e21e53b73d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"rH\[Lambda]", "/.",
RowBox[{"R", "\[Rule]", "20"}]}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800161363324047*^9, 3.800161416810665*^9},
3.800161788273787*^9},
CellLabel->
"In[159]:=",ExpressionUUID->"704445d2-c8f7-4e6e-83e5-ccd083bb0be7"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
2.093908609009691, 0.}}, {{2.093908609009691, 0.}}, {{
1.075, -0.39697005840834804`}}, {{1.075, -0.39697005840834804`}}, {{
1.075, 0.39697005840834804`}}, {{1.075, 0.39697005840834804`}}, {{
0.9234673955486138, -0.5246973838344396}}, {{0.9234673955486138,
0.5246973838344396}}, {{0.862341390990309, 0.}}, {{0.862341390990309,
0.}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.800161364196641*^9, 3.80016141741825*^9},
3.800161792020108*^9},
CellLabel->
"During evaluation of \
In[159]:=",ExpressionUUID->"24bb5ac5-97cd-4066-b62a-0868f66da1e8"]
}, Open ]],
Cell[TextData[{
"We see that this is the EP between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"0fbbc381-1126-4bd9-9d38-7531fc7ddfb6"],
"and ",
Cell[BoxData[
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"41f3a10b-0556-4a41-b8c8-4c8f31e1fedb"],
" that control the convergence"
}], "Text",
CellChangeTimes->{{3.8001618328734407`*^9,
3.800161873937265*^9}},ExpressionUUID->"03e9208e-7955-4063-b8cd-\
08c799624961"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]], "Input",
CellChangeTimes->{{3.800161479443656*^9, 3.800161509105171*^9}},
CellLabel->
"In[153]:=",ExpressionUUID->"cb729408-fa91-45df-acdb-30bdd1a725e8"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{"88", "+",
FractionBox["132", "R"], "-",
FractionBox[
RowBox[{"25", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "9"}], "-",
RowBox[{"12", " ", "R"}], "-",
RowBox[{"4", " ",
SuperscriptBox["R", "2"]}]}]]}], "R"]}], ")"}]}], "2561"]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{"88", "+",
FractionBox["132", "R"], "+",
FractionBox[
RowBox[{"25", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "9"}], "-",
RowBox[{"12", " ", "R"}], "-",
RowBox[{"4", " ",
SuperscriptBox["R", "2"]}]}]]}], "R"]}], ")"}]}], "2561"]}],
"}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.80016147340481*^9, 3.8001614904991503`*^9},
3.800161598810849*^9},
CellLabel->
"Out[153]=",ExpressionUUID->"75542468-48ec-4ff8-a22f-6c34054f28fb"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"Abs", "[",
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{"88", "+",
FractionBox["132", "R"], "+",
FractionBox[
RowBox[{"25", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "9"}], "-",
RowBox[{"12", " ", "R"}], "-",
RowBox[{"4", " ",
SuperscriptBox["R", "2"]}]}]]}], "R"]}], ")"}]}], "2561"],
"]"}], ",",
RowBox[{"{",
RowBox[{"R", ",", "1", ",", "2000"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0.96", ",", "1.06"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "16"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<R\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<R_{\\\\text{CV}}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}]}],
"]"}], ",",
RowBox[{"LogLinearPlot", "[",
RowBox[{"1", ",",
RowBox[{"{",
RowBox[{"R", ",", "1", ",", "2000"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Dotted", ",", "Black"}], "}"}]}]}], "]"}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800161877836241*^9, 3.800161888048267*^9},
3.804236159219055*^9, {3.804236291600008*^9, 3.804236406795368*^9}, {
3.804236453309339*^9, 3.804236491459683*^9}, {3.804236543451199*^9,
3.804236550886325*^9}, {3.8042365851649513`*^9, 3.804236592799252*^9}, {
3.804237208124061*^9, 3.8042372173770733`*^9}, {3.80424832160937*^9,
3.804248371625347*^9}, {3.804248420095901*^9, 3.804248491709464*^9}, {
3.804249140066662*^9, 3.804249148168638*^9}, {3.804249302542447*^9,
3.804249315907031*^9}},
CellLabel->
"In[103]:=",ExpressionUUID->"9a5ccd83-eb3c-4c36-b3af-ee05e38ca73c"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.9, 0.36, 0.054], AbsoluteThickness[1.6], Opacity[1.],
CapForm["Butt"], LineBox[CompressedData["
1:eJwVzH9Q03Ucx/HlERsymQwYm/P78cg6oLFRNn914PvNKfiDHxpowyRjHqgB
tTt2yo/sJOKHEsQkx0hRg8UGLZuVoS3uYF3zF2qmXV7oDINjKeLnC85xB9zl
xz9e97zHP6+YXYbswnkCgUDL9rxfvLshv2K1CANxec2/PuXhDnolUX+KcPqr
YnvxPzw4ypLLQDkfJTfGsl47x4Ox+q+U/Rmh6DkudAktPAxHzR7Lt4hxMJYc
S6jgIfXjXJ3u6gIMtOYYtunZn//sUNJsGBLjZIM2k4fGyqzAw5iFOHF0VHfg
TR5so/fOJP+yEG+u7EutV/EgjfhpWZE+HFWTwy91czxYLs+Xfx4kxU9ab16W
SHmQP5zTnG+XovFk16ErIh7Gr2sX9KVEoLP6oFst4MHFhXAX7kSgeKS26csp
Cp3+PNPF0kjM2vxoaGaMgrc5cKVTFoWaKnXTq3cpRJgTVtY4o1CxukxWd4tC
+87uItgmw2Rr4F7VIIWYloHfBbwMB1qqWxUeCv2ZuW0/10ej3FPl/b6fgvPa
8riMBDka71fWOVwUjp9zPhj1yDHUutFr76UwVGgo1ZUoUFhj09AfKCxr/26n
W7IIpbq1IbecFGqTGg683r0IEw1vtL19moKqw6H/KFOJdz972iJ0ULhmeL98
0KdEXkksiT0UDl2wTUkPLsb4tKshHXYK5vvxWu1SDs/kFmzS2Cic3L3RvqOP
wy2+RGFwF4Wcd/bWCPs5PJGev+YFZlFWvf5HN4dzFnf53NcUSpd7lKEXORzf
HTY9xZwWlGJy/cFh+CmzYpj5cceqCoWPw84ltX4XM3hj02+HEwx7ue5JKbP/
Rlrcp5EE1SPXGz9k/ua3whcTowmu54TxRcyR31r76xYTHNesKdIz/1e5RLsi
lqB4g0myhdkkj+bMSQQfN0eOqplTxStmEAi2/VviiGee+X/r7UcpBE9Pm/e9
wlzgazmybj1Boy9byjGv6g0L9r9F0G9Z+4GYeaJHPXJqK8Eu58QmEXPniYyB
dB1Br227KohZXNtQac0jOPm3wT9rpeAu79Ftfo/gWLHMO828v+SSdlZPsPFw
2aUnzKp8X7i9gOA8/ZFeyjycE0yz9xA0xeyyjzM/Ax/bh0E=
"]]},
Annotation[#, "Charting`Private`Tag$216562#1"]& ]}, {}}, {{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{0, Small}],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQPXeL1e+nF1vsGMDgg/1/3leGNyQ228P43utOP7km
cRjOn3N4xqaiZ5fh/PP+k3juTrgL5x/Xczof1/oYzreJyAySXfkCzu+/WJzE
W/oWzt9tFnbtafBHOF9oaUGn0sPPcH7k7j9MFU7f4PxXj+bPNLn+A87P2rTl
G6fDbzjfd9Hxh3vm/IXz9138UZItxuAA4/ssc7vT4sEI59czK1wKnMIE5z8p
+NHHe4sZznfcxLn+KicrnO9csyw2MJgNzreRqsm/2cYO5992uMsveoUDzl9d
bltuL80F5xc3XXMs8+GG8x+I/p6VMJ0HznetjQgPP8OLMO/Llls2v/ng/J4q
v2+vFAXg/GVP7m2w3Y3gCwlvNcpKFITzp5/kkuhjEYLzJV790dsxB8F/fc6E
d4+jMJy/S5ZT9thtBH/Rl5gJx4tE4Py7/d9OLRIThfOFp+qYt6xH8OfErciy
DxWD8xUnHTjP8AHB3+8bMWNnuzicv/6sqYaPjgScP3v7+pdPjiL4t1Lzi8Jz
JOF8oznr4g7yS8H5rTZdNYYrEHzthasTq32l4fyz+ZkVp58j+B3Hln0SqpeB
86c+1DQxUZaF8+eleS6P3oPg299V974uKAfnPwhmex+UjuADAN7M+kA=
"]]},
Annotation[#, "Charting`Private`Tag$216610#1"]& ]}, {}}},
AspectRatio->1,
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0., 0.96},
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox[
GraphicsBox[{
Thickness[0.0419639110365086],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI1IAaxQYAJSjNCxZjR2DA5dDXI4rjYpKrHpZcY95DK
ppabKTGTVHfiEgcA+NYCcw==
"], CompressedData["
1:eJxllG1IU2EUx6dOU9uc3W3XzW3urjm3u4WZikFvHgmzDFLMDysss5qjQCUy
SDMKX5KakZjkC2L5QksqtA+SC7Uiqg9qFIKEfVDSsIVipsggbe25z/UZ1IGH
8Xvuztv/nHt1p0tybEECgSDAdw77TqDvfBZ/oW0pwSAMu6U9U2yGUWR14bBz
z1DOvQIzrAwv9dsnRNAXX9wVkGeGl47hyuQZMTTVS8pTLH5urK05Pj7IEm7r
1LvW7Cx0TzpndlSJIcHcI/3YbQLTr1h3a5gY+gyzVe0LRlA/o+8HTgeDEd2z
KmhBdkwI0+n5aa2faBClRWQ2s0J876L55wIc5yYNKs7fkyoraygdO0vDzBH3
qXWtJ5V58WDYFiGHC87Svj8SAczfKHIkquR8f0JITkImh32laVdH8kIIFyJ7
GEqY+1mOhI14d6yOrIAEinAts8kwmkvBRn6rwar+sCYh9XH1nxND7sL4UnMH
zecXwWukU1AUYU7nVT9LuXgKsHH1iHAd4wq4jfL/FMEr5N+lxHmrKehFehaZ
CDcjncpMOM8bCuR1mT+EKya+HwpSuPmycGXKM5m0WQrZk6qKggYW542Vknly
fRyS4rpEZihH/38sA3X7SXYkwQxPqW0R9nY5zJ23rDbtNYPr6C6rd44mrOV0
UhFe9/osVQPfCjomkrNYwvMX++W/HUbC3P5kGHC8WiXO36bHc7krI8ztQxlF
eGMeeE/0kPHkrVMwwOtYqOHnGg15aE5qFdjR9TsNmedQScVCyyWGzF9yInsq
0elnLq7bz6hc76KfB5F/ug7vUZwcz8GlI/EXO3uZsdCt//EBVKeVxvrLdFCD
+mik+feA4feDhp5V9+VRhsF9eRR4r69Ewf76KqowXM/veTREoroz9LjPChU8
Qn71vH5JGphF+m+P5eNoeTbgegYYiHF+Pxh/LY4w57dsJMz17WX5vY+BanFW
b6PBgvVRKuE5VH59r7Dw+7YF6xxiwfXt9jMXJj+SsADZ9WDi/+/36S/Q2/hm
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYC4oz8D60nRfQd7Esca0/f4XOYOoG/yuy1noP/
E89LppP5HdaqPmmed1bXwcQYCDbzOLBwdskn9+k4MICAA7fD8V07etkMtOH8
V8VbRX+vVofzjUD6glUd+iO6/RkDhOD8qvs/bhlnS8L5/LEB943YFRzMbPYG
TUtUd3Ce0CyUZqXksEUvbzFjjRac/x8E7HXg/IBb0jWJQnoOD1zjHWc1KsL5
5Ye3uc48qwDnH+je12TCLO9gCjJ/IYKfmgYEy/Qc3NccXc6QoeCw1aHp0fEd
eg5rhXT40vkUHWbMBIKfeg7hnGLtxvZKDhLz4jRPF+hC3LEf6h55HQfla4+C
Gf4oOTxJXHjN5LwWnP88S/vbdFtNOP/UYae1mfvUHapB/p+t5FD726rgXIca
xP/PFR1qPm0IyK5Scei28dyVtknBYW9+zduZqcoOb9pyu41my8L5UaoRMuf2
SMD590H+/yjgILf8hYeevZqDHSg+Y9jh4Qfjn78a9kb/tzac73OC3XZ2qK5D
GjgcOBxEe7xesUzRg8cfevoAAEy/3FA=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIpIAaxQYAJSjNCxZjR2DA5BjQ2LjXUEifGXlLdSS31
AJgXAjc=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJjIGYC4uKtor9Pxxk5GIOAspIDjF9+eJvrzLVKDtLz
4jRPJxg6/AeB+Zj8DXp5ixl1EPzrQp8cz38zwMn/8630wZyP+nDzYXyY/RtB
5vkYOOzNr3k7U1TJIVrB8WNyjYGD8rVHwQw8Sg6L7+/jmzPZwKHbxnNX2iNF
h78g/RsNHNzXHF3OEKHosAQkn2zkkJ4GBGxCDtMn8FeZrTZy8H/iecl0Mh/E
PceMHM6eAQIeHgf1t7z7DF4aOYCUp6lxOICEz8QYw/n1v60KznUYO8hsFJvP
tIDH4UCtrEX6EmOIf/7zORSu6b6d8cHY4WD3viaTZCGHFS889P43mjp8WLRe
4ewJBYdGlqP9httNIe49pOggAwq/C6YQ93IoOZSAwvufKdy/fhcnxvxzNoOH
B4wPCy+1J83zznqZwsOzx+sVi4miKWp8vDFxEK6cVHJ2iZKDBsh/K00cZoLA
SiWHF1na36bPRfDB/ixD8MHhGWgCtw/Gh7kHrO6kCdy9MaD4+WPisOLby4oz
AkoOW8x/HEqRMoXHD4xfCjJvLoIfzinWbpyv6GACMlfY1GGtkA5fup6ig9cJ
dtvZrKYQe14qODxJXHjNJB4avocFHHj9109JnWHokApyd5uiw9edt7r+TjWE
hPcMRWj6MITE/zIE/z1IfgeCvxLk3g+KDv3BJSrT1xvC3f8cFD53DeH+Q88f
AP2Ve/k=
"]]}, {
Thickness[0.0419639110365086]}, StripOnInput -> False]}, {
ImageSize -> {35.75016687422167, 24.508064757160646`},
ImageSize -> {23.833444582814447`, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {24., 17.},
PlotRange -> {{0., 23.830000000000002`}, {0., 16.34}}, AspectRatio ->
Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.09523809523809523],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGI1IAaxQYAJSjNCxZjR2DA5dDXI4rjYpKrHpZcY95DK
ppabKTGTVHfiEgcA+NYCcw==
"], CompressedData["
1:eJxllG1IU2EUx6dOU9uc3W3XzW3urjm3u4WZikFvHgmzDFLMDysss5qjQCUy
SDMKX5KakZjkC2L5QksqtA+SC7Uiqg9qFIKEfVDSsIVipsggbe25z/UZ1IGH
8Xvuztv/nHt1p0tybEECgSDAdw77TqDvfBZ/oW0pwSAMu6U9U2yGUWR14bBz
z1DOvQIzrAwv9dsnRNAXX9wVkGeGl47hyuQZMTTVS8pTLH5urK05Pj7IEm7r
1LvW7Cx0TzpndlSJIcHcI/3YbQLTr1h3a5gY+gyzVe0LRlA/o+8HTgeDEd2z
KmhBdkwI0+n5aa2faBClRWQ2s0J876L55wIc5yYNKs7fkyoraygdO0vDzBH3
qXWtJ5V58WDYFiGHC87Svj8SAczfKHIkquR8f0JITkImh32laVdH8kIIFyJ7
GEqY+1mOhI14d6yOrIAEinAts8kwmkvBRn6rwar+sCYh9XH1nxND7sL4UnMH
zecXwWukU1AUYU7nVT9LuXgKsHH1iHAd4wq4jfL/FMEr5N+lxHmrKehFehaZ
CDcjncpMOM8bCuR1mT+EKya+HwpSuPmycGXKM5m0WQrZk6qKggYW542Vknly
fRyS4rpEZihH/38sA3X7SXYkwQxPqW0R9nY5zJ23rDbtNYPr6C6rd44mrOV0
UhFe9/osVQPfCjomkrNYwvMX++W/HUbC3P5kGHC8WiXO36bHc7krI8ztQxlF
eGMeeE/0kPHkrVMwwOtYqOHnGg15aE5qFdjR9TsNmedQScVCyyWGzF9yInsq
0elnLq7bz6hc76KfB5F/ug7vUZwcz8GlI/EXO3uZsdCt//EBVKeVxvrLdFCD
+mik+feA4feDhp5V9+VRhsF9eRR4r69Ewf76KqowXM/veTREoroz9LjPChU8
Qn71vH5JGphF+m+P5eNoeTbgegYYiHF+Pxh/LY4w57dsJMz17WX5vY+BanFW
b6PBgvVRKuE5VH59r7Dw+7YF6xxiwfXt9jMXJj+SsADZ9WDi/+/36S/Q2/hm
"]]}, {
Thickness[0.09523809523809523]}, StripOnInput -> False]}, {
ImageSize -> {15.756732254047321`, 24.508064757160646`},
ImageSize -> {10.504488169364882`, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {11., 17.}, PlotRange -> {{0., 10.5}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}},
FrameStyle->Directive[
Thickness[Large], 16],
FrameTicks->FrontEndValueCache[{{Automatic, Automatic}, {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}}, {{Automatic, Automatic}, {{{0.,
FormBox["1", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
FormBox["10", TraditionalForm], {0.01, 0.}}, {4.605170185988092,
FormBox["100", TraditionalForm], {0.01, 0.}}, {6.907755278982137,
FormBox["1000", TraditionalForm], {0.01, 0.}}, {-2.3025850929940455`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.2039728043259361`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.916290731874155,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.5108256237659907,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.35667494393873245`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.2231435513142097,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.10536051565782628`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.0986122886681098`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.3862943611198906`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.791759469228055,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.9459101490553132`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.0794415416798357`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.1972245773362196`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.4011973816621555`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.6888794541139363`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.0943445622221,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.248495242049359,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.382026634673881,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.499809670330265,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.298317366548036,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.703782474656201,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.991464547107982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.214608098422191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.396929655216146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.551080335043404,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.684611727667927,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.802394763324311,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
7.600902459542082,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.006367567650246,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.294049640102028,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.517193191416238,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.699514748210191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.85366542803745,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.987196820661973,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.104979856318357,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.210340371976184,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.305650551780507,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.392661928770137,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}}, {{
0.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}}, {
2.302585092994046,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}}, {
4.605170185988092,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}}, {
6.907755278982137,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01,
0.}}, {-2.3025850929940455`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.2039728043259361`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.916290731874155,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.5108256237659907,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.35667494393873245`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.2231435513142097,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.10536051565782628`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.0986122886681098`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.3862943611198906`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.791759469228055,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.9459101490553132`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.0794415416798357`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.1972245773362196`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.4011973816621555`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.6888794541139363`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.0943445622221,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.248495242049359,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.382026634673881,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.499809670330265,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.298317366548036,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.703782474656201,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.991464547107982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.214608098422191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.396929655216146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.551080335043404,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.684611727667927,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.802394763324311,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
7.600902459542082,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.006367567650246,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.294049640102028,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.517193191416238,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.699514748210191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.85366542803745,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.987196820661973,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.104979856318357,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.210340371976184,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.305650551780507,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.392661928770137,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}}}}],
GridLines->{{}, {0}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->Large,
LabelStyle->{FontFamily -> "Times"},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0., 7.6009023044216235`}, {0.96, 1.06}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Automatic}]], "Output",
CellChangeTimes->{
3.800161889311637*^9, 3.8042361608144007`*^9, 3.8042362922929296`*^9, {
3.804236368828876*^9, 3.804236407606348*^9}, 3.804236492476513*^9,
3.804236552125689*^9, 3.804236594454376*^9, {3.8042372097944717`*^9,
3.8042372177592363`*^9}, {3.8042483273952837`*^9, 3.804248346915717*^9},
3.8042484444745626`*^9, 3.8042484928957787`*^9, 3.804249148795867*^9,
3.8042493178911448`*^9},
CellLabel->
"Out[103]=",ExpressionUUID->"65bcc5c5-0688-44c1-957f-cbc413daffec"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[",
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{"88", "+",
FractionBox["132", "R"], "+",
FractionBox[
RowBox[{"25", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "9"}], "-",
RowBox[{"12", " ", "R"}], "-",
RowBox[{"4", " ",
SuperscriptBox["R", "2"]}]}]]}], "R"]}], ")"}]}], "2561"],
"]"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",", "0.1", ",", "1000"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0.96", ",", "25"}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.800257856938154*^9, 3.8002578672674007`*^9}, {
3.800258413228198*^9, 3.800258415999654*^9}},
CellLabel->
"In[102]:=",ExpressionUUID->"0fca1f7d-de5c-4612-a519-21ba9c1fc6d4"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13k4VN8bAPCxZiwxjG0mCVGWopQ2dV6iZMmXREqUSiplT0lIIZJsRRSh
QlTWrHWRbElItrLvWzPDjLH73d9f5/k85zz3fd9znrNcOXtn80ucBALhMgeB
8P/2Qbd3Ss41znI4Oq3X+VIdakrrkscucZY7NWz97vpQHfjjpZJlz3GWM0t0
q6Xd1SHC8lPSYwvOcgMvj3+xBurw4ifjxZWDnOWxi4ebjJjboaDCMVZOmLNc
0/g0enh8O4y8sQyLzOUo37A+LIZv/TYwuLHzpusCoZzz7PmdI59UQKAhekB1
llBew63d/TBVBRqVWcdHpgjlWUvh2fsjVODkcOGWM32E8kyOHcnfr6iAvc3B
Tr0aQrmigtu5ZBkVuGtooC31lFBu8O6iouhDZchVsuXENAjli07HxIsvbwWt
L2Iy0k2rmOVOu7OlpkrA/U2g0r5qFfsUOsPRA0rQ8p3rclbRKsbK2PxAYKcS
3OiczUbJq9hk9xuOYLISpDF/6Tm4rWKt+Zu51zoVQUo1ximPvIpVvlU1n3JQ
hIVYcpmJ9QpmkEKIDnq4Gcpcxc8EDCxht06eD5Ydl4eStdEm3vYlrKuuP3X5
rzwUPS458uj7EuZjwXQbaJKH/Ay7nTH5S5iWw7BwbZE8ZPVnEN8GLWHpXCGx
iw/lIcHsUFGdyhK2rqvHn60iD947LouT3Bcx2dy2QiVPOdjDKPqZxLWAOWhG
n5KS2wRavtmyqux5rKVxx4qkxCbYJZDu/GliHmvjWd6+SWATaCjGCv9onscE
3nKhmAlZULH2NF1MmseuOc/M8cbIwsaKHT8ttOcxWS+hFsGJjcAd+a6R6MnG
TLl7+yFFBpo1XvxwH2Fhopw9bklABQli3fivLhbWptk7UKhOBZt+Fs+unyzs
smrYs78bqTAWaXqIWcjCtt059cZwhQKEWc6PHiEsbC5A7UpRCQU0Cq5EeKqx
sD/f0UDLHgqE79tzwsuNiY1akdNq9kuDkW5Lh/fqDPZZahQbOi8JUdKbf/Yz
ZjCpDy1GieaS0EH3/GYwPIOxLrI6LxyWhItJ0rkSDTNY6bXN7aKKkuC7fO5R
7vMZ7O+b18fXxiQg5xPt4MSuGcz8joQEv7sESKoKpVpfY2CVn28kpT0Rh+ot
EV0u2TTMP+i95MZxMcgdGnPMj6VhkxKhbQ1/xSApWYfN9qVh2B1NycAmMbhF
nRXzM6FhBjfiCKJFYqAsbGnyeOIfZtkTl/YiWAzC5qjlGZv/YUpftedvbBWD
E9/S3gzETWFXdjwwb3MRhT57zMXi3jgmu7y/WItKAptPAbE6V8exb6WBXF9I
JGgnHvmy/cQ4Vvw4R9aYjwSN2Q0CRMVxbCRcoMSHJQKlq51vP9eOYRC49d/2
JhF4Fs/8qyQyhuVduE35FSQCJi3KxxYSR7Dm3Oy2GYYwlOjEyCWWDWLNxYEb
/XuFQCs6eTkudRCTslB8YN0oBHlDH9qjQwcxo/duJvBZCLKC6x6HnBrEyDym
/bsThODlj9UFD+YA1v/53CRmJQT+1ldajNQGsBGvycdHfgnCEddD9xcS+jDn
zzW/2n8JQIpOc13GXBf2ev1oLGOeCMWkiuyZmi5scclSsXqSCE392bEHnndh
qWe2Gb/uIcLKvYhLPw50Yc6D4oZ3q4hwqtKUg+HfibHntuklRxBh/eHGvXsF
OrCXapVqmSpEuK33Pa1a9jdWs/rufewlPkgODxWoiWzExgz8ha+yeOG446Fz
6lqNmJua85b0CV5Y1JnJj+36gcn+2EOb7uUFc5a1raPCD2zs8flbEfW8wGmj
nEMs+I5N7tLp0HjFC/bKtZbGHbVY0Kg2ucuYFxSqeFKaN37FSl5ke2Zk8kDU
CNeAy8cP2OhJVCzryw3m29xvT8u9x2qclG6e9eAGkseAyNWYTGxdKPY15So3
RHBUoAu307Hg2WcLh6244fEG35cnD6dghymVan0a3LDRsP/CuE0wNqHGkeY9
zAX3dcQ0lgmpKLVHOUDEggsc4kP/O61WgR4Z+t2K0ucE7xvcdeSQCiS//NJV
9BAnhOv66vwcrkA6toXtsVqc8GnCdadeUiUaa1D+k7uFE9YdsCZvF61CYqRO
M2V+Tkj/s6WDY74aXd3AfElu4oDJDd/sMr42oOsfPQ/V23FA0U+/PT7bWtHo
FKodeUyA8s9bBb7YtaLPrN4HG4MJUJvZ3LMW2YpaMtujzvgToDNYIej+XCvi
6VWIGnYjwCKqaQ3FfqN02UPv9p4iwIHs9W7PzdpRzExQZrsCAb5EvMz65NmF
ojkUB4rvrqGB9O6Ieds+dNe3YMWGdxUFkVY6Ur36UGlhRsi1pRWk6r1BzjSi
D0ka8gUE0FeQh9GZnDcVfUikTzqxrmsF8f7raDbf3I9+6x74WfpxBSlrtoq+
H+9H8aa891XOrCCXz/Ux5z0GUXffjgSeomW02lwYVx8ygoTbt2279HAJkV87
GTS8GkF7o/yOLvotIeWbcvM/CkeQUsik01OvJWRBeWTVPDyCRC1KarodltA7
e1uJDp1RxOPlrfdJfwmdnOWOGV4YRbJF7YkB3Esoi2z+hHB1HO0J84i7FrSI
TltNBWoZTqHgO1U6ifEL6Iaq1T2VC1PI4VVU9UrUArq/VuGz0WcKmZdGHbjw
aAFlpcW6836Ywr/7fhD5LKBVtu75NtI0envkcyayXUApcc+1b3ZOo/yfpvIn
FRbQeOeR2QJHGmIkD8UV5cwj7Q//ZccfZqCB7NbtHj1stNbQ1I9MGeg2pexq
XAcbVU7+JzZ8moF+TGeMlbew0VFls5vqbgx0Rnl/4sYaNjJ/baZd9YqBr5dY
vGA2GznGm9dOrzCQaKa6anYAG8UEWfRB0QxaJn3rJKiy0ZTtKZFRNSY62Bkf
sjV4Dn3wzbscuI+Jqsgw231vDrkkrscUjjARR3Z4cKzPHGJ1V10/Z8dEJn/5
FSTd5tCqzY7vnZFMlL3lcP3Rs3NI5Ax/UMMcE9G/7eRz2jWHdluVLeWUs9DP
3sv73g2zkK/pplEfCzbK2/tF7OQJFhIZe3W97xwbjQn1UEimLJTqL8c8fJ2N
DOb33WgyZKHaHHkOgSA28tPypJ3SZSFRsiL1eSEbKYSRxCN3sNCbDmXTAso8
+qXAW5YgwkIN5zULp/vm0VKriSWxmYmoHkeCba8voqQHTTmVp5nIoSJSZ/rW
IjK6rqRxxwrPe3330p0Hi2jUS0BQy4KJjmS4uzxPWERazOzfuSZM5Nbzyrq1
bhFtMaH71wIT1RssqRoqLaE95h6Y/RYmui2T3bS7dwmlN9Ntjs7NovZqaYqQ
2QoKBPeRW/GzSF4cFmPOrqBdEq5q92JnkdMFh64NV1dQt0tg1aOYWUQg5MWr
3V9BVn3Zg2nhs0hlnzHVuGAFSYq8yFwKmEW+mb4bHkmvIqWvaS3CTrNIKWJw
I3FgFe116TfuQbOoJKstMmAfAWLP21V9mp5B2tt/Um0QAZ4zQwKcJ2fQ5481
b3brE2CZ+GxCeXwGlecWFY/9R4CTmFde6tAMqi6K7z/uSIDXs095M//MoJYq
2x3UWALovqt8u65+Bk38HWnKYxJAy/TAK3raDJIWYgsPf+QA0xPDZbqOM4jT
KGBHcgEHPM/Id3dwmEFTD4VOnC3lAN81L79HF/F43Juf/a7mgAVBgajOczPI
Yfm/DdXdHLDB/8/DQOsZlDv5bmuaACcE0+QnqUYzyLjeVufKZU7wecglrq0+
g3yDq92mN3JBN1/De6klBhrTR1uUFLmgcTy/0XGBgcy4i/7YqnKB/A/2oRI2
A22+l6HXtIcLDGq9ieeZDFTnHSaR9x8X6I2qqnyZZiDyDfOSWwFcsBTtU1LQ
x0AZFj0c3CNcMB9N1omuYaBWubkIyntuaBSwTP0Vx0Dx+y16x3K5IcZv/ffg
WAayO5G7rbCIGwwD9Qa1nzHQxIMb9SequCH9lctARjQDEcZGuB7/4Yaj1A6+
J+EMtO1D+801Ig9wNbDsAh8wUND+YpshBx44dmlTsowrA+074bP1wyZeaLrm
odNpzEC+UzXEBSVeeOJtZfreiIGqAsUmD2/jhf6peoMAQwY6XvTufec+Xlh9
5Le03YCBLsp07uQ5wQuC5uuMo/FzI3x090GbQF54+uT1YtB+Bhq6QzPjx+9R
6lp4nrgyAz15bX/HIW8dXPSL9snkYyDtRWBGF68DXXIO3uD1mMper8DWgbWh
xaVaXgbSW/pju6FhHbz6NrV7jJuBFs1O6rYMrYMSq2ofDQ4Gclg7SjwkwQd6
KkGKgwt0dPD0tljx23zQ0Bmz4cckHU0Kz+dWHSICkSMBe9ZMR0ys9FuwHv4O
qNxU8LeJjlad/ToMDYmgf9xTQwG3aBPvatNJ/N1B5i/MaaSjvRHix7qdiDD+
2mmh9TsdBYlo9rLiiRAcbEDYVU1HcqQbAlvYRHjrU/LYrJSOrESHLoR85Idj
HTF72G/pqE/3KbGugB9i9jSXHMd91f3IR74yfvh9zKPi7Rs68mlNXwyuxfun
LaxOvaajlGfXI4P6+cHMyTa+IpmO/lHYX+6LCcBPjmDFrBd4fAV+iq+XAKw9
LUjqiaKj/F0aTW5IEIzlbsa89qejeKxa2EBfEMzSwtQVcPsbnjWVMRKEIZ7O
rSl+dGR0LrSxxlIQuGU5dif70tHAo6GGDTcEQdiBkpXqQ0fCg3F11S8EofuM
S1fxLTzfSI6vlEW8Xy3mirIrXu+/loLKfCHwKs30XneBjm7sXg7zLhGC419s
ql7a01GZj+LFneVC4Llyz3oX7lMCt0RTvgtB+7jZJfvzdBSxVcb53oAQ3J5W
W6mww+ffHv/pElkPxb1ea+E2dNTVvhT/+dp6SFw0GrS1pKPois3+RfLCwPXj
jf53Qzo6F3JgYmqrMNR2e566hnu7mbmFnLowvL37pEAAd32f39bQA8LAulVs
YnKMjp9vf5rOWAjDqdvptF9H6cjpUKTcWqAwcLber/2nR0d6pSuV+uPCkKgc
Y2SN6OjO6cmAcSsRWB9eyD+3C8/32viDxtMiMPmezzQL92uf0aC8syJgWJxc
a4+7MXEw9O4FEfDPIp1p0qQj+cE/USRnEbBrKJ5/vxPP51pDyj78Xa19SWDO
TYOOpO6+rwzJFwF+AV2WvBq+fknOnCr4u73noiCIbaYjouuQiQmZBASqcHiT
Ah3Z6lo/d5EkgdtxU5Fw3OuGdTUKZUigmzyUTcR9WkXCVk+FBFOyjLNc8ni9
BWXFtodJcCLxqh5hEx0/z4iu0Z4kqLjHqyG7gY6Gmam9y50kOK6raTJOpiNH
d4H5ib8kaMropn7CPcFwE+nsJcE2zUXh+7jp/3R0CoZJkKe+wVEG9/JYb8p1
BgmcG4i/T4jREbmb6tDDJwqbri+H1JDoSPdb9BS2RxRc8Aujbj0dJT69vxDw
VBQMSJFqmkQ6OumWf9Y+ThTEv/edJ+IWNB2u0EkQhbNiygW9fHTkzXc0lJAs
CscvmRSE4ba8w0/1zcLH8zyRHltHR0LnI7VvfxWFJ4Nedq958f2jluTnzBCF
9qQ1053c+Hx8LeGxMRGD6N05HYfWaMjsnH3e7f/EgC89U3J2lYYMVojnY0+I
QeN8ZGQa7t17rMtarMVAku/abhJukUy22zEHMdh72WLv6DIN1UTt6tPyE8Pv
h1SuxEUa2mX/oYSUg4/PPOaze46GhDlSnGvIZHAM9vzK+Q/vN9Ke+ChJhnN/
NkfWTtPQqadtF+MoZOA9RQ4Jx52iLHD6yiYyhKvvY1Nwa5l76AmokcGNrle3
e4qGbFOPSJseJkNsAYeK+wQNfdCfrGxzJUOK3WVhwVEaMg7dJTHSSIaNLzbu
y+6joZwY/S7BFjIY1yq8uYNbIskyUfM3GTx3Bu4/irs375bSvT9k8C3o6uvp
pSG37jKtDWNkGCw7KiWC+7mGvpU5hzgMTWpJeHfT0EjbybgvmuKQuWnM/VoX
Dd1T8KLExomDp12XxudWGqKEmal8TBCH9/TLDVG4c5mq+2sSxUFDPe+hI+6h
b33W7Nfi0Jssc4GM28DR8LlVjjhIy91/cf0XPl/vZaSk6sWha+S3gFILDb3U
qhJ/viQOxgfTdn74SUPFx0ikBFsJeEnf9VjiOw352/VM3z0vAZWOTUxWPQ0d
9cysP3dRAu7pjrn/xv37lf4DpasS8OzmsaIY3Az2bXaOpwSkCy5ZkXErvx3o
rg2TAK62R0OSdXi9nPnv5kokwLL0VLl6DQ3dLrXUM5eUBCnbRsmkr3i8yPir
7hRJ+Hxc+9k93EGXeyJiZCTh079Pqhdxx4g5dLcpSEKpXmiCMu7sa543z2hI
gk50flhBJQ2NUmPSLx6ThIGEpDfNFTR00qdZ0OuOJKT/6txLKaehHQeNfyf0
SoJRsq7BeBkNOZQH1AYPSELEmO+rFtwJh4tL3YcloeSKDrEMN4+hUorRpCRU
TG0VfIK705LgvDQnCY1vdrbtxn3PJZ/vzHopeDXc4hJUSkPNqRu0KQeloK9Y
wlmzhIZc+adT4uKlIIGkJVdSSENdk1P9ni+lgOpj/CoNt96PqU0nXkkBWyxR
7SluiYipRKG3UmC32ODkgrtEfCo+IEcKZOzNQ7fg5pSbjHKqlYKtT9p3xH2i
oag94wEwh8eb4ZoNKKCh/IvD9mNm0lDe4mvhk0dDZ3ltJrlOSoNBvmjYNdy8
6S3usqekQfhsZtNp3KcmsQeWttIgl1bpvw/3smv826qr0vBP3+UOO5eGDvuZ
Try6Lw02FpQWT9wtz4tdrQuk4Z3Tj/I7OTREa3zsXy9Fgd7h7y/efaShahn2
72wqBRrPChe+xJ3odE41diMFfFbTuyJwG/Nrtl3YTIHpgq8HvXCn63eorqhT
wJbR5aaH+1yZfLv6UQoESpdH9X2goaaMwm1PPSnAHdt1RxZ37oP+LrsWCsgU
EJ99ysL3Z11G4IvfFNDPqYx+hztzvZtGZwcFCHHqCYm4X8dxBpn34vn85KkJ
wh2bpbBDf4oCg8y6SCvcPq2XglV4qUCeZ00tZtKQ/uYJTdY+KqQ36Aca4Na9
ktuz4yAV8tK+vjuI+9AH75AbQIUwD97Onbj37hXoHT1ChaXIL6YyuFWM1UK7
TlBhqlfzzcw7GlrvcaMPu04FLjeZiUTc/MVaj5ZdqMCKfB0Xg3vd6urufR5U
UJ+8ZxqKm/DwyaNcbypYn93c5ol7NiFb600wFb4uGR8xwU3vu9XfH0qFUu96
rcO4pxR1wjaGU+HkqKP6PtwjH5v7Y2Oo4Hrs315F3APM52GtsVTYo1Z7jIq7
d5/9HlICFaTb0+1JuP/6qgyYJFJh7EfI/XW4O77OhIUmUyHr+cWslQwa+h+2
9/SS
"]]},
Annotation[#, "Charting`Private`Tag$61733#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQ3XK3atHGbKYDDGDwwf7Z0rCeiZsY4XyPPKOywp8M
cL7ZPmFZyQv/9sP4ewpFo5se/YbzzT/uOD+f+Secf9FgztniZ1/hfG+nSzeq
/n2C84+pT7hVsOE9nP8gaX9BSONLOH+X4xTFeXsew/mLHC+eXPntFpy/sK+L
+/jEc3D+pGfMjwrWr4Pz02Z1BUTpHLSH8Xecrzev0b0C5z9acXfCj7gHcP6/
i9tnnOp8BudHhb9pNfN6A+fbrAvYMMv5I5z/Ji5C4LnOFzi/zl/heU3Idzhf
usStPS73F5x//ZikFG/gXzh/15prE5ssGRxgfEne7/xP1zPC+XXtx4reyjHD
+VcUv02QWssC51sG12isU2CD8/uXJFWnbWaH81/z/9h0xI4Tzg8XepLcuZ4L
zt9iYnChyJ4Hzld8d2nroS28cP7kgyoNO5T44fzqqNdNL8MFEPrn5zNpCQrC
+U+/LL7/5yaCP29q88+mqUJwftThXawxvsJwPj/jovzjIiJwvk+Xidizcwh+
o3K51PQZonD+Tk9BwdlxYnB+5e4wlyBxcTjf0Nbn6uz7CH4h19tFM2ZJINyb
8jTpRaAknP/+XG/DKQkpOH9Ty8Nb8ZcQfFeVV8ZfLaXh/BuHP/V0LUTwASWF
Ct8=
"]]},
Annotation[#, "Charting`Private`Tag$61733#2"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{-2.3025849050279152`, 0.96},
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-2.3025849050279152`, 6.907755091016007}, {0.96, 25}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->FrontEndValueCache[{Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Automatic}, {{{-2.3025850929940455`,
FormBox[
TagBox[
InterpretationBox["\"0.1\"", 0.1, AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, {0.,
FormBox["1", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
FormBox["10", TraditionalForm], {0.01, 0.}}, {4.605170185988092,
FormBox["100", TraditionalForm], {0.01, 0.}}, {6.907755278982137,
FormBox["1000", TraditionalForm], {0.01, 0.}}, {-4.605170185988091,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.506557897319982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.2188758248682006`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.8134107167600364`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.659260036932778,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.5257286443082556`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.4079456086518722`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.2039728043259361`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.916290731874155,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.5108256237659907,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.35667494393873245`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.2231435513142097,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.10536051565782628`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.0986122886681098`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.3862943611198906`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.791759469228055,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.9459101490553132`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.0794415416798357`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.1972245773362196`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.4011973816621555`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.6888794541139363`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.0943445622221,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.248495242049359,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.382026634673881,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.499809670330265,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.298317366548036,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.703782474656201,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.991464547107982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.214608098422191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.396929655216146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.551080335043404,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.684611727667927,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.802394763324311,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
7.600902459542082,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.006367567650246,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.294049640102028,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.517193191416238,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.699514748210191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.85366542803745,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.987196820661973,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.104979856318357,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.210340371976184,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}},
Automatic}]]], "Output",
CellChangeTimes->{{3.800257861428866*^9, 3.800257867566985*^9},
3.800258416357305*^9},
CellLabel->
"Out[102]=",ExpressionUUID->"0d5f8cbc-2c70-4ffb-819e-65593a755c77"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "100", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"100", ",", "200"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"100", ",", "200"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800161958911005*^9, 3.800161960726013*^9}},
CellLabel->
"In[179]:=",ExpressionUUID->"6459bbbb-2219-4d3b-abae-46f30f338dd6"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{7.650577754005099, -0.000032221539775258767`}, {8.,
6.217847980931413*^-6}, {8.338785501752387,
0.00003046451451426151}}],
LineBox[{{13.333261538986713`, 0.00003046451451426151}, {14.,
3.3042667034285397`*^-6}, {15., -0.00002987638532729714}, {
15.118791575770262`, -0.000032221539775258767`}}],
LineBox[{{18.673182913823645`, -0.000032221539775258767`}, {
19., -0.00002616958942181399}, {20., -4.204916809838949*^-6}, {21.,
0.000015533770694073283`}, {22., 0.000028709886505894693`}, {
22.39924862332279, 0.00003046451451426151}}],
LineBox[CompressedData["
1:eJw1k3tQVHUAhW81ZlRQLY3lC4LGx1AbamKgCxyei/Ja9s2COMIgVsygEcRg
5cLYhPyBiCb5AFpQxpBhYIWhmFpWHgvqbgtYG682VpgColIZyD8qe+zxzty5
c+a7Z75zZ37XLzNPnv2oIAhJ/97/PRfSZCJd7RsozV919NrdB2HC/1cwXJ5K
6ReSv5lDELPKlrh27h7zTtyeDNwsDhpm3gVL1sGMJvW0yZ0lWDl8slBoXWQO
RRVG3qo0/8EchgeKHV5rSpeYwxFXZK5fki0wA0Zvj6HnRUPurAe6Al5Mnqke
pS8CZ53zJ+qafnFnfQSm929uKcm4Sx6J1lpj/QsRd8gj4eqUhNo1P5FHoXtT
VolHr408CqYbGbPq7fQJ0QgoVRy5vHeG/mjM1sq8NlXMk8dgeVugyPPsHHkM
wi40PHco9jZ5LC6FGuPllTfJY3Fwe3d6c0M//VK0t94rvrLkpF8KofmS5PHF
GfI4+FsM65t7mPVxyF7+VVfewveF3ejrLExb+el18t3QWYqHHe1f0b8HosWa
tRneo/TvgV5aeblpfoo8HpG+jV2dO1zk8TDlSA6siBonT8Au65Pjxx0D5Ak4
lpb9+vpCI/2JKH7qz7GJJ27Rn4it4m7LCfsEeRK2dP9mOOXxA3kSJgPmvrw4
7CBPxkRO5NSNaAt5Mj762j/fe3Uj/TIEjGZfMRZ8486Q4YIu902n+HvukSGs
7nC4Y4TfZ5ZhjSnr3IFnv2U/BR+2TL1imuhjPwU/bp0Wn449Q18KrEWN28pP
DbqzOQXPfOaTKirj9whyVMSUBVnzv3NnyJHn0HtV2Xne9XIUdPjKwz/pZV8O
q/zkpOfO9+hXYLbqscz7v/fSr4C23KPM79zD86zA/n3vm4T2Ee5XQCk+X7HF
aWdfidd6OgYCc3vYVyJU+ld/wWgx+0q8emvj53uDzfQrEeTjX+1828r9Kpxx
2S8O5g5xvwq6Q+/kZbWR61XwvVkdlZZ+jX0VDEO2MVtCJftqXO0rGvPO6aJf
jc6J3KIPCgfpV+PIccOdthU27lej1bXuJef969yvgX28aqMs08y+Bsp9ws8t
zdXsa3D15WMedYc76NegxPB0g2PDw/9DC01O8NHJPp5vaNGfGrI6umaA+7Uw
rHsk/d1lE/talC58POCXWsN+KhZ860N8VG2mfwA46Y6t
"]],
LineBox[{{0.6656511828495245, 0.00003046451451426151}, {
0.6677407179925086, -0.000032221539775258767`}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{7.383012340241925, -0.000032221539775258767`}, {8.,
3.274590640924815*^-6}, {8.715589821256774,
0.00003046451451426151}}],
LineBox[CompressedData["
1:eJw1kn1QkwUcx6dSIBehoCvESnJegYtEooG89OVFQAfjYS9s43gdh4AWnRCI
BDHQTCHfUDBArV3dmcEdycWKPxgD0XjZGC+pEwHDU46jGLeDAiYvvfDb7p7b
fe77/O7z+eNxU3wsTF/PYrHk/z7//ZsZb/ZsmjvKctkl7ebVINb/Pw8EbZwa
4wYuEnPR7/eAt+WUhtgTPd/VqxpTzJo13oMht8VEvvMysRfmGczYja0S74XH
UmCE4ZKF2BuCwkrHNxNmiN+DrMX9fICgk9gHFadLPM8/fUK+99H8YpGgt9pM
zIPoZae3f8meI/ZFcXiK0c9k3f1Q9ENpVthXE8T7sG15ZLha3Unsj8n87V0X
ch+QLwDfu3DlhxwmiQORn1Nr/7f/NHEQVCeCsxPqp4g/gCiDP9vQOE4MdOjX
8cv9qF8J7EvKvsp4GsgXjEYbdTJTP77GymBc5/lAJ7f2hUAtrTqucHpGewh+
TuOqIz1HaQ9FUHzi1qzLt2kPhWDpi4yHhXfIHwaNhW3J3vuI/GF4vNg/sjxi
7duPG4ajKSYZsXI/1DZptcFzRtrD0R28azb3rw7aw6HhhTZELreSPwKZzpXn
xq7eI38EOo22vPJj1r5IpLcPn3rnCLEyEt6fTrKqJuh91gH0Pjn79c2MDtoP
oLZK7MvS/UT+g1i4uZCYUTlA/oMYuGeoVv1u7eODvWR3XK18SDsfU6bX2OE1
Q7RHQV/nMfX6n+20R2F5jFOaM19P/mj8WDp3uuklPfmj8S5TcmNPqrVPgM9z
evPciu/TLsDqrtbNz/QDtMegZv0Lfa6l7bTHYEfFbouxREV+Bk+dyrwtUV1r
DAZ37avnQlSD1MPg0FshmSqX39ZYy6DM2LqTldRP97Gwz20SRHOoH7HQ9Wwf
TT5aSb5YcBZG7e6W0PerjcXlQZ1PXVY/9Qnh52BKcncfXGMIsSIO5GSl9tG9
EF4JYw15Q1q6F6JgxOS7uO0T8osgueJ+36yw+kX4SIjM8d166hfBOeWb27qz
1KsVwUHnZZt/WEf3YowuuWZf+1JL92Kc2di8tYpfQPdi8F/lsVov0fekFaPS
cUWx2bWH+iXg7uiLmkinXkjQ+UZoWFsb7UoJYp5vKHcRWPsl4MyfsRwznqP7
OJTdStBPe7SQPw6uEU2P1332K/njIJtWfLhhC/Vq4/CH4duKAqab+qXg81cW
TrCt/VKYA4aL8o5coXspkp93mOeTmskvhTz+lZo6/zvkl+HiTGrxrU3UCxm4
zhf6wzd1Ub8M4keHHRTdbXQvQ7tNy7XC+Ot0L8dJ276WUMcmzT+g/sKz
"]],
LineBox[{{0.6646356990323826, 0.00003046451451426151}, {
0.6688147693183506, -0.000032221539775258767`}}]}}, {{
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFk3kwnHccxleNyiZoiiSCENqK2UYcYSvieJzrjLW7WGeCIm21pClVkmYZ
JuIPcdXViC6JUTEGYTTaro1bUEeSrStqw9QRaTVKM5NKmpn9mu7M+8dnPu+z
z/Ob+b1G0Ym8WGUGgxH7+lF6/bzB+P+Xrt3IkacVOylo3UnBWZ2kwWTpP7Ja
8ibehe2KOBmLzyHei31PpXdNSl2ItVHjt3yGX2RHrINytpr4My0LYn14GahF
udnoER9G+PwSM0J72lHBxvg7Nduf/aE27XkXtgylhJIn+sQmMDnA26OTv8Om
eDi8kb/as4+YBZXwlawX+1WJj0IvpOXBTPsQ/f8xCC2VC+T8VxIFW+BSWXRs
tfJu2mMJOG7nWfipEVshITxncPJTVeLjYGePXZxMekF5axTXcX58WT1ObIP2
CyplY17r1MfG2tCdM1Ldl8QfwOmrQQeHMCXaZwu5uoDzg/2OPwH3/SN+eivP
iO3weNbc1MxmnPgk+mLORtYHLVCfPVTHC1IYTRvEDijExMf50n+IHfGKz9bQ
zdwkdoJnqrR6k7tGDLRoMce0NccULAI6WDr+i6WT1OeM8rnVq1X1TxQscsZC
lGljRuRf5F3QdL2l+oAznVfkAnm7vcNo8O/kXdF5JCaD2T1C3hWSe5HLQdbU
x3ADK5OfXhexSP1uWL7O1TiSt0reHVtW5prq5Svk3eF4rebtJI/H5D1w06HF
h5c/RN4DZ607wxtqeqmfg9amZ2m3NueonwNGw037NzcWyXvCuE98qKGLWOSJ
2K2nobmN9D7DCz3tKWGqZYPkvRDalzYua/2J+r2huVGpF6k1Sf3eEHHy6+pX
58n7wMWwtqOdLSfvA0m8fZyK6zR5X5wc3j19RdZP3hdZYbHHD6W0UL8f0vb8
OzWz6z71+8HSrLPv6ugM+VOw6PxDXMR8RP4UZlkrd26My8j7YybeZf6eWx95
f2T/bHxe62At9XPBmoy91ZL8i4LBxbXQhI/mzH6lPVw4Vp1zkk3Q+aRc6Epi
KuL2PqB8AL5unH9fMtND+QD8ZrlgVuxRQn0BGE6ttcotGlCwNABvfWcQoplD
52HwkOeeYzN8/qGCwUOiTKRROEr3XcRDcpshz+mbbsrzMMwrmFW3+5L6+Vgu
VI5+/mc39fMhzGXmGFXs3Gc+ok5fkDBaJ2g/HwKzb/Ms5kYpL8CxrrZ+84Qu
ygvgwNnuTZ5Mo7wAR++bfB9hK6V+AWwMjEvnPhmm/YEokY/eGEgYo/2BCE36
PDGmmbwoEIZDpa5h4XcpHwjx2MjUiG8+5YNwuyd1Siu+g/qD0D6TkHoxZYD6
g5B+RbzerDJC+4PQJNc/PPd8kPYHY3S60IQbLaV8MASnGUuNDaWUD8btd7KY
VefaqD8YGWK1Gtl7O9+HEMHxtpdme+h+Q4jekBMH3Sr7ab8QYn2l8C+2JJQX
InPtcr9RSCXlQ7BmWH3CILBZ8h8fD+qz
"]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFkmkwnAcch9eROiYScTWOtoi0rqijum4/R5Asa7FYxp1xptUJcUSoI2ma
0ES6QYrQ7uhMmjLRmNL4gHUkday7SZYglRGjWtTQuqWZ2f9Od+b98Mzv/e/z
fHgN4j4LjJdjMBjxbx6ZN48s4//fRY373rM5l10l9LerhM930IyHa0oTWTqO
xIowThEfS2hgEqui3Gk43UHWhlgD3fy55RMxZsRHYRkyOb1wX59YD4lNZX8w
0w4S68NXw9rFIHvARcKGsFGpqebUHaAeI8TomZXWLR4ifh+Gck478t1SNoam
bIODoFaB2BQuSosz5s5b9H/mGLF/xtS40k5sgf7v6wWNMavtErbEuMFWJEt9
j9gKGxysKM68JraG6a6z9/CtbWIbsHP4hw0jVog/Aq/VpNSJ3UNsi5Kr+Ral
cy/J9zGa38plD1SsEjMRdEjN+GHqOrEd8rxixPbL0t0euT8WJnt+M0/sAJ29
qcmKlh5iRyxk6vXeTH9GPif8oG0elqCyQOyMzLQq5X8dl4hdILjklhpRv0js
iqBE1lpD4ywx0DUowyq2p/4CwCEq9Q7HYph8bmiUb4nm1M9KuMANtUxbiMKk
fe5oCS2/EKf2inZ3/HLGvMXHYpp2D7iER2oml3XT7gH27peJEzmPyO+J9m2t
7VTr5+T3xIutkam9KWnfSdwdPhezzCMuOIkW+TNVbuti2r3Q53Z8Lf2fLtq9
0M70aPDZayO/N5LU+Tdm7jwhvzd6xArM4ixpnw/iOyevnDhLXOADm4sLjPJ5
ep9xCgMvr397L7GL9lOoKufaMUQ/k/80Nu9tRibyR8l/GqNPhisEv0v7WNDa
VbzQUjBBOwuLy+9oeVWO0+6LwWrTxXf/6qTdF3szRoVpG/Xk98NPhetXmw4O
kt8PH3Ly71rGSvvY+CJtIMMg7yntbLw+3nbk1eAo7f6olD0wpFvYSbs/9EvM
tsX5AvJzMKdWZLPt2ythcPBYuWLdXTBGPRwkfOCeJND+TcJCDorEbccYUSN0
HwDl9Ca2nxH1IwCifr3p6HN88gXAaHNa8XE+fb/CAJSNiWyrk0eoLxD2KstR
JiZjEkYg9rnORsmxQ3QfCKuImYaMcSHdByJ7atluS+c8+YMQfNvk6Wqc1B+E
TwORNGs2SP1BUI/5rlt0nXqFQVARWSlkpojonovpXd3Umq+EdM/FNaVmzXJW
Nt1zwTrKZLTdou9JyAX/8H7cEd1+6g+Guf6Q73w89SIYPe95eHZ00F4QDP8d
uWJttrQ/GEYb17azxDfoPgRFDyIGl0xbyR8CXe+mFzKf/0r+EPCW4j6R06Be
YQj+HK4ryeb0UX8oWKz9zUta0v5QrDpN5macvU33oYje6VrdiGomfyjCwt+u
rHZ8RH4evl6JzXugSr3gwVz95oiXai/188B9nqIS19dB9zx0yrfW5ITX0n0Y
LisMtXocbmr/D7Mi7SE=
"]]}}, {{
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {}, {}, {}}, {{
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 100.}, {-0.000032221539775258767`,
0.00003046451451426151}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"100", "200"}, "PointLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.80016196175101*^9},
CellLabel->
"Out[179]=",ExpressionUUID->"55a47366-3c86-4fbf-89d1-56ca8b6051d8"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "400", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"100", ",", "200"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"100", ",", "200"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8001618939303102`*^9, 3.800161933197253*^9}},
CellLabel->
"In[178]:=",ExpressionUUID->"172ade52-bf8f-452c-a049-b4bf067dea13"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{13.94074715982819, 5.717989499794946*^-6}, {14.,
3.3042667034285397`*^-6}, {
14.272210859595775`, -5.727867107803616*^-6}}],
LineBox[{{19.930663646808267`, -5.727867107803616*^-6}, {
20., -4.204916809838949*^-6}, {20.50271358253517,
5.717989499794946*^-6}}],
LineBox[{{25.88405380924182, 5.717989499794946*^-6}, {26.,
4.102640221318611*^-6}, {
26.73780599100033, -5.727867107803616*^-6}}],
LineBox[{{31.80390976539185, -5.727867107803616*^-6}, {
32., -3.831536787905872*^-6}, {32.984990609025395`,
5.717989499794946*^-6}}],
LineBox[{{37.694613994587954`, 5.717989499794946*^-6}, {38.,
3.5478906382545377`*^-6}, {39., -3.86344220786272*^-6}, {
39.31882758334346, -5.727867107803616*^-6}}],
LineBox[{{43.55014272783505, -5.727867107803616*^-6}, {
44., -3.2858557382287268`*^-6}, {45., 2.5796113955812914`*^-6}, {
45.65359132064743, 5.717989499794946*^-6}}],
LineBox[{{49.374551972573805`, 5.717989499794946*^-6}, {50.,
3.051026137255104*^-6}, {51., -1.711034945655815*^-6}, {
51.99696794858891, -5.727867107803616*^-6}}],
LineBox[{{55.15599382494977, -5.727867107803616*^-6}, {
56., -2.841715925982973*^-6}, {57., 1.1003841798495545`*^-6}, {58.,
4.538203398632136*^-6}, {58.56384211674849, 5.717989499794946*^-6}}],
LineBox[{{60.81280558246324, 5.717989499794946*^-6}, {61.,
5.440454428804887*^-6}, {62., 2.654638366972486*^-6}, {
63., -6.58570320296733*^-7}, {64., -3.631086055107102*^-6}, {
65., -5.526345964643406*^-6}, {
65.51400967193632, -5.727867107803616*^-6}}],
LineBox[CompressedData["
1:eJw1WHlczPkbn3VUbJK0saRDIncsUixvqdyZLh06ZprpmK65pwllIhUqU5QU
XawzmZBbZnWypXJ20I7burLkvn721zP90+t5feeZ9/U8n8+3LIP57iG9GAzG
8p8YjP9+F2xJ6XthExMGnlPModNayfjvR83EsEpOXqjh9Z6a4YaEMs34yo7q
nhpu+HvK/YnbXHLm/L9WuKFBvnfqpq31PbXaDQOLzHyNUq/11Ax3ZDinTm8Q
3+ip4Q7+TYVBVlML9btDWmHuPje7ivrd0eCeeXuAQyzhe+BJVu/gD11VhO8B
n039Ui3zmntqhQfYQWsqGcevEn8PeE7Mz7DtbKJ+T0y6WFE3Oeoi9Xvi9wVf
a6Stq6jfExOujT4QMFNN+J6YbjZye2dkA/H3Qs7dpj31Uc3E3wt+AhGfU07P
FV4w/2v7/JX+f1K/F4qbG9salyqpfwWOVcvbBoedIfwVONkRJY+X1RP+Cqze
WPyqvG8j8V8B1V1Ti84Pl4i/N5ras0Yzg9XU7w3PIMbjstLt1O+NY1ZJ/QqF
FYTvjcRi/d03rWsI3wfeYTPX3q6+RPx9UONr/6vTrjri74Ni05/8Je8qqd8H
656n1Fn67qJ+Xzw3L7E38yonfF9cea+765k3+anwhSRmg1fjx1ri74uk8crv
Juk1xN8Pn5Zazk1edJ76/dCbfWjV1LYi6veDrk2KidFfhwjfD0eXtX9NfXSB
8Fdi8mmn3OiMauK/Essnto7/dobmRbESl9Z+/+3N6bPUvxLlYf09rBQl1O+P
3rwXLcN77yV8fwidbHY9rz9L+P5wHmbHqxOSHrU/PO/k7y00pZoRgBfcb4Gr
nLT5BcC79e3Ined2U38A1nmaVZiZFxN+AHgsVkjXzFOEHwiv5BmmJTk0XwjE
neMvzt04QLUiEHMqWpMDHtHn1YE45lXZnLZ7D/UHIYs9bwPz5Q7CD8Itu3vh
3WYVhB+Eo3oTFpg8JH/VP55z9B0cT1USfxbKznSvXbjrZE9twYJvDj47Of9B
38dCr7x+XJ9bWT14LBZ8hq/Lmx5+lPix0La1xNr105meuoiFV8oBz5P9zxFf
FraePFP3e9iJnlrDwovZDksLy/4g/mxsT3i8pj19I+GzUbpoS1xeXxXhs7Fi
W3x3aNCpnprFhoBXmPnMjvxWsHG30c4qxZH0FrHxetylEa3/EH81G/eHXx+4
yi2B8NnYsn7Q98obNE+MYAxxTtfx6kf8LIKRf6JAhzuf/EYwxLOKfQ9MPE76
g1GVO7lu7HfirwhG9hufz0O6wwk/GGFunEHPh+8n/GBcNBuT9eXlsZ5aE4y4
1ugtxnEnyH8OgjOu+/qNoecWHBhYfeuDt1r/OQjPd2vRP+9C+jkYXfChdmgj
5a/g4Bc/8+WX9SiPIg7Ov7MzMb5OfNUcJLVUzY+bRM81HLgd6+WS0aL1n4vA
fjWmtz/zST8XM2z3l4d0FBM+F9vSp5dxmZQHiwuzk9vrZjOJr4KLT0OFL3Ud
af+LuHAKd3urzNX6z8Xb5S56y5xWk34ubqxOz/GWFRB+CGoSjRd1Kg4Tfgiy
W73ddJ+Wk/8hqAoakG/NVpH/IRjnei30+zKt/yEoP1wwwES6jvSH4NyCyfkW
NbQP6hDI81uuV+w/SPghMEuIHxJTQHoYoehbXzv5F5Mj5H8oyh484b7u3kP6
Q+G8f+jMvKxk0h8KvUP7LFhZ2YQfivjfFEfXG+4n/FAksJbfLb1RRv6H4rqg
xaVfAunT/Pi+vP6zeym1+xuG1X57I1IHbSL9YSh7aiM43ZRJ+GG4WuDxIbOc
/GSF4YPxzG9fdpSS/z+e54uuP/5wiPwPQ/+9w3wCLYm/Ogz23euvRfRNJ/1h
aHM4MqTgbhrhh8PZZfVgo+TdhB+OYJP1v93ZcJD8D4f+BH7fTG3N+lHPWf3x
74P0eUU4xinvjjNcu4X0h+Nmh3l5+w3ySx2OlD+ZD9+l0jxpwsHZlva+PZv2
g8HDuQiPAobVAfKfh+xVxla/TqLzEzwselNcvrZWSfp52A0Hz828RMLnIZqd
MLg0spDwebAsEDu/qN1L/vNg6HQlbHHzPvKfh58DLuxglWrP/wgUdzgee7or
k/RHQP9mb1Xr0DjCj4C1vHn9rkE7CT8Cw2fdaeSaUB6KCCQvPmK9PY3uj6II
HLfNze0YXUL6IyBKUlYtXJJF+iPgblXSxmcJCD8SBqfHHX36JZfwI1H7lPtP
ZyL5i0jsE19mjPSmeWdFwvLnSyc2FNB9oohETUrD8IhrdD4XRYLL73rGs2QT
fiQeR5ydlTQmh/Ajcbjj0Z8OusSPEYXpXpuZMybTvFhEYWO1JNDOWLv/URhU
PyVko8NW0h8F+81uuooZ9oQfBb3A23KdtK2EH4W/BYNdlHuKyP8omMfnHJ9o
THo0UZjHrDE7lErPGdF43DXVlp1E/RbRKC2JP6YpdSf90Wh3HdVRbE37wIpG
rs42KzdVAfkfDWaHShjTl/QURcN6d6Z1n4+FpD8a0wyPt/9+nPhrouF/r3PO
pjgu6Y+B3x8nJhlo0gk/BmXJbQZd2En4MVi8KUo3ohf5zYrBuyvHjLdo6PxS
xMDGJnmLfqNWfwyMhg/y7WbHkP4YzI5R3Cy9QvebJgaMmSPrJ3yg84nBx0P7
rrf5/el9x4L/Y1+UU57U7yL/+dDj8B6FtWj958NyOTPidbaY9POxIfXCg5GG
yYTPR8KDaS4J17YTPh9uDY6+g2YRXw0fhwMdlmiOkj6GAK+cjihLqoi/oQA8
5z8RII8lPwQwr947xaxgXQ+erQCsXp6mmc3ZxE+ANY5ZdnFS2g+mAKZHZ0+Y
UJhPfAUYG+/Pa/6D+AsEsBhpPPnQfe37tQAivZJ5NQ/pflYKcH9D02nnF1o/
BbCbbVqfU5XXU6sE+Hw1cX54BtVqAeZ6fZ50JY4+3yxAwPymwdPuxZNeAerW
Ln8vMKJ9fiWA35jLeQfG0D4yhCgRcecWjKI8DIWYoctTD0+k2kKIFePNLRbO
I/62QgRv7exdOkdB+oXYL7qcdOaUuAePKcTepwOdXsfT+z1LiJbqh+ubtlMe
AiEcb3fYn42lfVcIkfTM9MCFr7S/SiFCTZk3GgPpfCsSwnPHu7nthdE9eCoh
lg6yuvHvbTrP1UL4GI8ZLDWl/W4W4kTbxTcHRfT+rxGisG3YIqWK9L4SwiyR
v5TlRXkyROgf9ezTsCIu5S+C89w+vtFd2vtIhPde/fXul2/rqW1FkMgrrkJE
f99BhG3unY1v/Ig/UwT1tfPMF9brSb8IU/Srlwyt86H8RVjxb1faOttUyl8E
I9Pvv8u8yV+lCJkfn/evldF8FYmgX+vK0PlG+68SYW3vZ6bl19aTfhFK7CUG
R0TzKX8RHoTohSh3baD8RehYwknfqk/8Xomge8k+W64gPQwxZlXPvlWXR+e/
oRhm+zuWlLCTSL8YdgkWy/7RtSX9YvydOd9p1DTChxhXhzwYsa+Z7iemGDcH
3xOlbdHuqxjWV7mOI6cSf4EYg93XPpBfTSL9YpR9Veg8TWSSfjEqjFPS3v6r
oPx/9Je75C5woftVJcbLmKa6CXtIj1qMw40VO59U07w1i6HvNGzjcRutfjFS
MpXrWzpWkn4xjncYRlYdiKf8JVi7eDP66tI8GUowxdKuZU0l8bWQYLpR3NV2
D9JnK4GS0/6kOHQD6Zdg8QU+Tz2IQ/ol6BOZqGqpiKP8JRjuUrk36R7Nk0CC
GS8enc/tJL4KCdg7Pm12vUD6lBI8MaxJD8og/kUSGI3MNiuvCCP9Enyp+DLH
q4+M8pcg9Ex3VeMtmqdmCRpGpEXl9CG+Ggle3k5439qSQfMvgY2V0Yh7xcSf
IUWcYMb4ZfciSb8U6HXFoi5TRPlLYTMpyPP1QzpfbaXo3TxjjD47g+ZfinNm
geOl2vuDKcWbf0+Zfigh/iwpdFzhkFVI79cCKZr9MhMOVsRQ/lJwfns2ZoA+
8VFKMU6n89DD6jSafynqRAMXjn1OtUoKV0db12Vb6fNqKbxSG39avUpI+qV4
PtJl9LlT4ZS/FItUjA3zFtE+vpIifBo/vXbaZpp/GWoHbCy5/5ZqQxmezjYs
jZYQfwsZnrieajzVTX7YyjDqJXdb22jKGzI0m7rmn9mZSPnL8KDfq/PHVHTf
sWQwiWnsWPNtE82/DBdmupvULyD+Chn8q3Tqa+ZJSL8M3m9qmbe6aV6LZNCd
f6vPob60DyoZvt7ubDg4M5XmX4aCAXbq0zo0X80ymF53Oqky0M6/DKf7aeJV
XCnpl+HK/Aqb5f7ulH8sxoKzL1eH9sEwFt9Ojdhd0kDvrxaxmLpE/nbpQNJj
G4u65Y/Gci7T/iIWV84qbqxg0TwyY3FTfmSSdbcj5R+LLrfBK86PXUX5xyJL
7+T4tCjip4gF87VrfOtQ0qOMxaUtNrw+a+j8KYpFxU3BaZ4d3ceqWARpTNqa
FhlT/j++zzCqmimm/4c1x8JxWfsz96HETxOL3md+NeqySqH5j8XDg0UZe0bR
c4Ycczq+hQmeU7+hHKt72bL50+xJvxyJ+5LYz+5KKH85lgUOS7vTRH9vQY6c
UQ3sX6bQfjDlMJi7MBQ12vNfjqVGSuFfiXLSL4do2r66oJTFpF8Ol6/d1bYS
EeUvhySvzNNgK81TkRyXPazHV4HmRSXHySaH2xcDtee/HJ07Psec/Cgn/XK8
lTm5Ld3nQfrluDtlpnWTDb1vv5Lj9fRZBVVsmidGHALWpYHrkTTnf0cLs+I=
"]],
LineBox[{{0.6664760670166735, 5.717989499794946*^-6}, {
0.6668575955702601, -5.727867107803616*^-6}}],
LineBox[{{7.891410898040415, -5.727867107803616*^-6}, {
7.995456179628403, 5.717989499794946*^-6}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{7.843520821189949, -5.727867107803616*^-6}, {8.,
3.274590640924815*^-6}, {8.064305856861647, 5.717989499794946*^-6}}],
LineBox[{{13.82478368618341, 5.717989499794946*^-6}, {14.,
1.8193570377914835`*^-6}, {
14.410353549336024`, -5.727867107803616*^-6}}],
LineBox[{{19.736115539222073`, -5.727867107803616*^-6}, {
20., -2.420617528024027*^-6}, {20.712075788290434`,
5.717989499794946*^-6}}],
LineBox[{{25.60880834175275, 5.717989499794946*^-6}, {26.,
2.4692105488329973`*^-6}, {27., -5.591256128115978*^-6}, {
27.023241876550912`, -5.727867107803616*^-6}}],
LineBox[{{31.449248322535173`, -5.727867107803616*^-6}, {
32., -2.410980037886971*^-6}, {33., 3.7170550259526556`*^-6}, {
33.42498260869197, 5.717989499794946*^-6}}],
LineBox[{{37.26805367345759, 5.717989499794946*^-6}, {38.,
2.3340855176787886`*^-6}, {39., -2.5606012139518954`*^-6}, {
39.80722019590613, -5.727867107803616*^-6}}],
LineBox[{{43.06007926185192, -5.727867107803616*^-6}, {
44., -2.260065138738803*^-6}, {45., 1.7875069469488711`*^-6}, {46.,
5.152886140118207*^-6}, {46.30177749179897, 5.717989499794946*^-6}}],
LineBox[{{48.723026293772215`, 5.717989499794946*^-6}, {49.,
5.221536425041931*^-6}, {50., 2.194038867417034*^-6}, {
51., -1.239590546939012*^-6}, {52., -4.189464987850663*^-6}, {
52.88323306138496, -5.727867107803616*^-6}}],
LineBox[CompressedData["
1:eJw1V3lYzGsbHjtZGlvJ1kQdCueUhGS5yxYl04L2ZqZ9n30GLROyhFYqOihL
iUpFZKmGU1nbbcdS2UJZQp2S7fNdPdM/Xc/1/p657/t91leHF2rn3ZfBYLj0
YTD+///awIXM4SwrjHAw0sbAh6WM//8prND6YZLGigMNvTbDGlVpBq2T312l
c2v8aNSNEnadXtx7vgb5UR07C4dV9dqKNfiLHZllyL1H5zaIFt6W6ITfp3Mb
/NIrGfmqqo7O1+JA3wHVE6Ku0vlasHbP6HkYmUH4bLwctcW4x/pGrw02KtWS
Oywy6okPGz7TLPwytO722ko2tjwsmcpwryV/W6iJCm3W6BJ/2OLOrYlPPQSJ
hGcL3e6ngysjy3ttpS321d8xSfOvJX52MB3+wV1fv77Xhh1+OizS9edWk78d
jFwbcyQNSvK3g/zJh/lfx4sJ3x7rUvTvf+Kp8O0RbAe/ZzOqiL89RnPS/7mz
l/gq7TH8jtEgacAd8nfA0+8TQg7tUZK/A3YNKRq730pO/g6wGjePUZJUQvgO
SFT/yRs54RbxX4eZrGrrFm/ii3Uo1166rKyMzhXrsPZbvxgtGxX/ddDt2tUj
exhL/uuxpcC16r3BRcJfjwkrC5v6RFwn/PVwfM8L6jeG+CrXo63m2G45+ybx
3wArq5/dWzVU/Dfg08JHYZLAFPLfAI9v1z51uRcR/gY4OWseSDOrIHxHJHzk
hhcwiS8cMXN0fO0K5g3i7wiHxwHDeTfLyN8RV/tfPLTJ+TD5O2HboOqLS9UL
Cd8JHx/uYjqZ/0P4TjiT/KByqiq/lE5INSiMfNZZSfyd8aYn+9uq0DLyd0b/
OfyhH+YdJX9n7Lhn9/btijzCd8bpie51lqp8Zrig4uuOUM6lSuLvgrz0X46z
ekifwgWDW5QRGpNU/F3wtS3pxJrW4+TvihU1x60Gj8omfFcsv3R57qZnxEfh
iqKMV5oz7SqIvyuCEwYcPKpJNsMNOelF/7rVlZK/G55tmlHfxyGL/N3QUB4X
YuFJeEo3LHaMDKkdQfnEcIeU/TJizTCqD7hj65Q5Ji9Wka1wR/JS6563MaXk
744DH7eo60Vlk78HHuSfmv+nbjrhe0CGwqzw8EuE74GS/xhWai+uEX8PJLkK
t/L3UnwYHKx5PpBxxpL4szjw3zPM23Dzafo9DsJe6Hkwt6f24nE4GOdTaDdy
ajHx42DQYIf6m3UUj3QOtJ6oj5I2XSO+HLAXep3+Zwjxb+bAZru2WcaqXOLP
hfD4WI8ZngmEz0Vh/rRSVlcR4XMRn2d+ru4u5TeHi4MWM1uOLiI9Ci5E/v1s
XapKeu10Liz/LB4q+JxHerngRqzXdUiIJnwuOo5bd9d9Pkv4PPQoInKn11N+
sHjoasl+MCyT9ICHXbu1fikTKV4cHiql1rFzF+WTfh5ifU9+1o4TEj4PvMgh
bduYVA9KHvy1W/uMG0f328zDlX+iNSZoUr9ieOJqY/w+eyfiz/LEy7ptjy5/
zif9njjFq1LzzrMl/Z5YuMhoUKKVCt8TA5r3/1oku0L374lcDa3HkjhVv/HE
oFkGKVtYxL/59/fLTqe5phWQfi+MH593PZqxifR7gRt+bKwRcgnfC8ahSRfH
vKN84njhQ/+RjV+HUzwUXijW0cm4/foK6feC9s3ict58lX4vNCne7B0yawfp
94Ibb4g0f+wpwvfGjZQ//j0qukj43ki/oGfmNpXigd/nFTEri/NIH8cbe3py
hE9uFZJ+b4SZP+h+7xNP+n/bp24vmTaK6k/pjdbnfTu4Q4sJ3xssRqo83Jji
wfDBnEgv7hMx8Wf5YOIZyylZ9mdJvw++nHv4rap7H+n3wbLxnlafDKmeFT7Y
du/COoOC84Tvg/5WHe0vVqvmhQ/uR0b8fdeU+Df7YEeZVoS8QZV/vii64TLI
3+4A6ffF0W/zjSeG0HyGLzaq3Wqf4kn1wPHFd9HkC2w/4qvwxehcvu3yH5fp
/n2Rd+O446vV50i/L+IsO7cP2XiI9Pti85P4rUl7DhG+H0KaTm05p32O8P0w
fvT6Czkxl+n+/dBW/yLm31KyOX5wsj28xPcSfa/wQ3eSeuS+4nTS7weJbddq
w+BUwvfDGcO7xpGvKB+a/VBxIkfUr4DyieGPLqdncy0iiD/LH7ylTl85U1T1
74/MtcF7LI/QPOD4I/2U8ZpJG5MI3x+fupYZ2J2lfE73x8LWlLfhjyiflP6I
zrm8ycSM+Df7I6RErD9lK81DRgA6p5pbmwkpnqwATC1uyZznuJfwA9BwZ+cJ
3Z1Uj5wAVLvP9HQfSPNaEYCkf1OnhnSSnvQAiMdoW7U+If7KAGw99L7w+uxM
0h8A42jW0GEDthF+IL6fP5zFqqT5xgpEa96R/j+Mqb8iEOd+1fx5OucS3X8g
pD99ddv+onxTBMLLuYo36nkW6Q+EZXTuwpaXEsIPxOXuhKUHtucQfiAOB5l/
KuddoPsPgkPnbJ8zHOLPCoJOUb/q1WHnSX8Qesqem46MovnICcLO+gtT3B+y
CT8Ihxw9s9exqZ7Tg2DQOabNKJH4KYMwUqgx3Hwk8W/+/XvHb3npXaNzRjAe
MguOJDBp32UFo6LqbN0YzQDSH4zQgZfi9aacJPxgGNXYrK++SverCMYI+4g0
/VKKR3owGiqPSWL7kD5lMFgnjtYsSlDpD4ZFZtSrx6/DSX8IhE8m+TC+nSD8
EATuyIw1+kT5jRC4pK6KNvGlfOKE4PMXhlHiggukPwRBunfXZvSj+KWH4IXI
LLZ89g7SH4LZMdPyGI+OEX4IGixGKH5qU30yQrE/P3XonGHEnxWK+L1u/LnB
xB+hUI/wvzTT7wzpD8X3jFMPxi2PI/2heP3q2CROaQbhh4LXMUf2fA31F2Uo
Nvt3anTlUD41h+KDxtjkzQeIP4OPrjl9w/72oHnC5ONEWVBpRjLVF4uPZNbs
uDc2R3rxDPk4pMNn7duk2vf42KffV8t+FfVXNh9DflnYuJURfw4fn5v6943u
X9Br8/n44SMOPyBV7ad8/Ff9I26DflovXjwfm3ICcutPqOqZD/vGkx2TnxHf
fD62Xho1t6GRbCUf5mGuWW+O0ve1fAj2Cd3NltLvNfNxWt0qV3Mo4bXzkeLn
PMG7huqZIcCy5LY2YzHxZQpgFv08uK6LbJYAJdPOtjxYQHoNBdC5nOSk++Mw
6RfA9mMnz/ULvXfYAiypMNE3/nCG8kWAiKcHE4P7El++APM+3tZapabanwTw
FI5/4XKH5lm8ABt0Uvy87VTxFKA02c/8xzXqR/kC3M9urt9lqtpvBPjEtKvI
3k31WitAYU1kw3QN1bwT4KLvdCPZBppn7QKEx2zTNJ9E+cgQYvmX6y5fsmk/
YgpRtOPJ/G2KHIq/EBcnGh2/oU71aiiE88pGdbcJqv4kxJyU5h1/PKF8Ywux
uFEwcEkT9VOOEF+7NR5lmGym+AuRWaL368W1UxR/IcBtjM+JpXqOF2LeDMtN
tVrEP10Ih8S/3LjOVC/5QgyTjAoPSKV+qhQiWXPBHi0HH4q/EKUuy8okDNqP
m4Wo3Br414LB1O/bhVj0B3tl0EjizxDhXPJkwfh6qnemCMNc6qVXLU+SfhGm
H2bUGCy2J/0iXC7wkDFNab+ACD3WFf6OYcSPLcKIjwaKcX2JP0eEx0Xc1VhK
+vgi6Nozi03aqZ8qRHBujuwjuEDv2XgR5hwzHLE/iPpRugiTXnIl7a10v/ki
2D/uZ3mlTZX/ImR/kGaW5JK+WhFeVP9XnhtL/bRZhK/clsSbK7aQfhHOpz1+
8/6gKv5i5Ki3Pnqv2neYYiSvnzFxcbUq/8XYW2rctHEk5ZehGBqawaUDdFX7
oRj6auunX5seQ/rFWDlgRvyIcspfjhgW3zMiF1+g/OaLMWvte/Vt2ar+KYbt
6HUrnUIov+LFeHD93XRmvqqfirHAfWdROiOB9P+2tzIqW2qoHynFWJvhml8/
huqzVowxn6/0F4cT/2YxIjf4RS4qJ/7tYmx/asa20lLVvwRqA3f90fSa9jum
BNpHFp20GP43xV+C0V63Zh0Kov5iKMGZ2yubvqwi/pAgYaVR+YDRZLMlEGqZ
Ls69R/2UI4GJbdjV8pv0fuJLMGt7kKcVaD9SSPDZvNs0qZT4xEvgsr/t4tsR
xD9dAoPw6HlxzmTnSzBRp7lQbS/1U6UEwXaMzNcn/ib9Ehzfvqd1hv8+ir8E
O4seZuaoEZ92CTbW/Ddm4R3V/JXiUY5Qt+gg8WdKcYOd2r5wCcWLJcXQsIKl
LYtovzOUYhnXykR7ZzzFX4rKbO/b1zOoH7GlODp52ID6KLpvjhRblvgssW0g
/nwpZpZ/e631juKlkOJqX7tzIj3a7+Kl6CcXdTQt2EXxlyLxfu6fQVPovZgv
hV7hZ48k1f6j/I1n/uW5WX+q51opCsqaROIkqpdmKfwbxbo2Q6gftUvRFhXb
0m4XRfGXIXZZh+mKFHrvMmWY5zDqjd89qleWDHHVJausZ1E9G8qwz7ouYaIJ
1fvv1/ag6NBn2m9PkH4ZqhoiTu8sFFL8ZcgLM7V3YdB+xJfhXW2NdKGI6lUh
Q1s4o9LRhvjHy7B6+YGUplrqR+ky3DFJrN1dTvtdvgwLPEwHXnq3jOIvQ4eO
Muu8G+1HtTKw73fqfR1M/JtlMPdlds31Jf7tMrhbWPrs9KFzhhzvFz89NyuN
+hFTjndqcknWrEDSL8dQY2+2/5lMiv9ve/Ra+e5k1X4kR8vBuT8uy4g/W46s
swvSmjpJH0eO52PVBAeDqB/x5VDb0KLp/iac9MvRUyeSxnQep/jLod8dF/Vs
At1vuhyOEwxyrkQS/3w51u6SlZ2OoPxSyvHqRuYKznzqR7VyFARvtjc1UL03
5ZgTUyGfZ3iM4i+HvPPk8LZU1ftrI5boBl4ZHlm8+H/ezwdf
"]],
LineBox[{{0.6662854673666803, 5.717989499794946*^-6}, {
0.6670485244738535, -5.727867107803616*^-6}}]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFWHk4lOsbnpOydNQRjjqRREratFESd9ZUGFuW0Axj32Y3KhpFqaShTSpb
ezlCSStzsrUQWmQph/a0nqI6p+3XdXnm+rn8c1/P93z3fT/L+35MCI73CFVi
MBhZvzAYP38ZQxj//1mjXeLUu3qnzSB6ZzOIU6spDDVTvQezny0lrIpvuWFt
pp5OhDXw+2v5X5P22BLWxkGX5yzPHZaEx2CvuXphnJYZYT0466uz7efpEjZA
QM8ztUDtTutBbIh+SZqbOUeb9EzEfMYvMbtf6hGehEmjPX4dI1NgE9xt/CDr
q/2dsCmGBbxI/aKjQngadP3K73RV3qD3z4DvLKWsXs8fVYPYDOtygkOLlIaT
nlmA9bdMMxd1wrMRE5B+rT1WhfAcmKe1JLVzv1D+XOw85nTxe1Er4XmoXDss
p8X5HfGZ49WN8yz52O+ELWCTeG3RopW/kL756B3h5XTOShFfAAedJhfdF+8J
W+Lh/Zkm0+e1El6I+pCIoBMrHhGfFVRas8SM0g+EFyEbt6Jk8k+ErfHD03zk
2PUDhG2wRCIvGmC+IgyUa6m1aGu2DGIpcMF0jNvjPe3Etxh7u/u25594OYil
i/GIbVKSEvQPxW1RmldeNHox+ZXaorfSalGzz1OK26F6ckiKWk0Txe1QdT3o
+Yq5xMewh+l6zzXHAh8Tvz2e5zFHTs7so7gDPs6eqTli7wuKO8B6/8FRXMeH
FHfE4UXlyzxkNyjuiIi51QHFB+uI3wlnSt+vPjnQTfxOYBQftlL+8JjiS2BY
Xziu+Aph6RKEfnztv6WEnmc4o7ZSvFIl5xrFneFfv7q17cwl4l8KzQ8HdIO0
2ol/KaROsmMn+noovgy2449cqDTvpfgyVIVbhQ2z66T4cixsHN65ua2B4suR
ujJ0zjhxOfG7YPWvXzu6VG8TvwtmTa+u397cRXFXmFW/Kdyh9oDirrhv+uL8
odY2iruhK9y257p9PcXdkHbZUKD1xxHiZ8K0PfRkuejmIAYT+/1jIrun3yM9
TFjn82zabpE/ORNjq0JywzTuUL47kkt6plZ11VK+O/6e9Wj6TsfdxOeORsmR
2Vt2XB3Ecnf8VqDvp5lOfhgeyHRIn9couDuI4YH4NunI7Gaad6kHRBXjPWx2
1VC+Bxo9su6PsEwgfk88z1YK/vy2hvg94btFLX1CrmKePcFetbaKceYW6feE
1/R9mWbdzZTvhRlXKhpmxlyhfC8scvpWJ2pfTflemHZ70vHA+XLi98I8fcM9
3dGNpN8bu3ubD12NaSH93vDn8uNDyigu9cb4G3vsVgb8RfneKGxp6mhaLqP8
FThdK+nQCr9A/CtQ2RUjSRJfJf4VWLO58F3ZsCbSvwKlvXoG3Z+vkX4fNHdm
T2IGyynfB16rGM9KivdQvg9OG6Wq5fMqiN8HKYXqB9uMFfvhC5/w+evu19J8
wxd1fgv+sD/QQPp9Uaj3S4DwYxXl+2L9q00NE/wOUL4fXo0vWqDvXUb8frj5
SeXASx+qp9QPwrg076Z/60m/H1Knyn7obKsj/f74b/kEm43OlynfH0rsk6tn
dxRQvj9UTDbpaN44Sfz+KHfp/Jb+tJr4V2Lmefuc2Mxa0r8SbtPbp36/QPMi
XYlr637M+XD+IuWvRFn4cE8jaRHlB0Ap8nWrrhLtAwLAszc58OrqReIPgMNY
i8gGHvmRB8Drwb4j+XqEGYF4zfketNpe0b9A+LQPGO6/dJDyA7HeS79Cf3wh
8QciksUKfTv/HPEHwXujuV7RbpovBOHBmdeX7h4nLA2CdUX7xsCn9Lw8CKe9
q1oyDh6i/FXIZi9OY77ZS/yrcM/iYUS/fgXxr0K56jQnnSdUX/nPeIi6pe25
KtLPQsmF/nVLDlQOYgMW/Hbji73DYXofC0Ny1Ti+97IH+Vgs+Oquz50XQeeT
lIWOHUXGrv9dGMQFLLyTjXi1MeAS6WVhR+WFhkXhZwdxDwuvrSyX55ccJv1s
7El+trZz22biZ6PYeXti7rBS4mdjxc6k/rBV5wYxiw1uZH7WSwuqt5SN3iYL
o0225LeAjfem18a1vyD9cjYe6d75bbV7MvGzsX3DqB9Vd2meGMEY7bBN2VuN
9BkEY9/ZPGWOHdUbwRAsLPQ7Pv0M+Q9GTc7Mhik/SL80GLs++H4Z3R9B/MEI
dw8Z9Ur3GPEH44r+5Oyvb04P4p5gJLbHbtdOPEv1D0Fw5h0//8kUNwjBSKPv
QzGgqH8IIva5t6pfdiT/IZiU97l+TBP1XxqC3/3Hu11XpX4UhODyRwsd7Tuk
Vx6C1NYau8QZFO8JgfvpIY6ZrYr6cxCkVqd3/0s8+efA3OxYWWhXIfFzsHPb
vBIOk/rB4kC/ck+DFZP0Sjn4bwzvjYot7X8BB/YR7gOyHEX9ORhwc1R1sV9D
/jm4u2bbbh9xHvGHoi5F27lb+ifxh2JXu4+7Sl8Z1T8UNatG7DNml1L9Q2Hq
ejvsh4ui/qEo+zNvhI5oPfkPxSWnmfsM6mgf5KGQ7Gu9U3HsBPGHQj85aXRc
HvlhhGHY1fqZv+ucovqHoeTxc877/kPkPwwOx8bMz83eSP7DoHryqAErexfx
hyFpjrR8g8Yx4g9DMsutt/huCdU/DHe4rY5qyeSv5+f7codbDZEp9jcca/yP
RKWP2kL+w1HSZ8I935xF/OG4lef5OauM6skKx2ft+d+/7i2m+v+M7+Pfefb5
JNU/HMOPjPUNmkD65eFY0L/hdtSwbeQ/HB2Wp0bn9WYQfwQcHNdoaW48SPwR
CNbZMOdB2gmqfwTUp8UPy1Jg1k9svebfv0/Q89IImMp6TTXWbSf/EWjrGl/W
eZfqJY/Apr+YTz6m0zz1RCBkZ8anzl20H4xIXIryzGMYHaf6R2LXam2jP2bQ
+YlIOH8oLFtXLyP/kTgIS6+tkSnEH4lYdrJWcXQ+8UdiQp7A4XX9Eap/JDTs
b4YvbTlK9Y/Er4HVe1nFivM/CoVdtqf7DmSR/yiotymVto9JJP4oGEtaNhwY
tZ/4o6C78EETR4f6IY3CxqWnjPdk0P1REIUzZjk5XZOKyH8U+KmymiXLssl/
FDyMijriWVzij8bI86blfV9ziD8a9X2cF90pVF9E46jgOsPQh+adFY0Jv147
m5ZH94k0GnWbGnWjbtP5XBANTvzbl5ET2MQfjWdRFxemTt5N/NH4s+vpX5Yq
pI8Rg3neW5nmM2leDGKwuVYYZKGt2P8YjLo6K3Sz5Q7yH4MFW91VpOYLiD8G
qkH3JcoZO4g/Bn9ztRxlhwqo/jEYn7T7zHRt8tMTg8XMOv2T6RRnxOLZ29lm
7FTKN4hFcVHS6Z5iD/Ifi07XiV2FxrQPrFjkKO80ci/No/rHgtlVyosbRn4K
YmF8MMt46L/55D8WczXOdC46Q/p7YhHwsNt6SyKH/MfB//DZGSN7thF/HEo2
dox8i/3EH4elW2JUooZQvVlx+HjztPb2Hjq/pHEwMdm4Xb1J4T8Omrqj/PrZ
ceQ/DlZx0rbim3S/9cSBMd/w6rTPdD4x4vFkwduBfcPpe8cg/ue+yGY9v3qA
6h8P1ZDIp+GtivrHY4IbM+r9LgH5j0daevVjQ42NxB+P5MdzHZNv7yH+eLg3
2vqNWkh6e+LxZ5Dlsp5y8sfg4p39KVlRDenX4CLS4S8EShKoHlyMrz0ySz9v
/SCfGResIV56WS27SB8Xa22zLRJFtB9MLvTKraZNy99HermYkhQQ2XKY9HO5
MDDUnnnykeL7mgu+atHiuid0P8u4eJTWfN7htaKeXFhY6V3dXZM7iEu5+HIr
xS4ik7CcCxvvLzNuJtLzLVwE2jVrzX2YRH65aFjn9omrSfv8jgv/yddzj0+m
fWTwUMTn2ORNpH5o8GCuEinXTSFswMOKqeMNliwm/WY8BO/oViq2lpJ/Ho7x
r6deOCcY5GPycKTvN/v3SfR9z+KhtfbJhuY91A8uD7b3uxZcTKB9l/KQ+lLv
ePU32l8ZD2F6zLtNQXS+FfDgtfejTWd+7CBfKQ/LRxnd/ec+nedyHny1J2uJ
9Gi/W3g423Hlwwk+ff/38JDfMdZZVkp+3/GgnxK/nOVN/WTwMTzm5X9jCzjU
fz4cbIb6xb5V3Ed8fPIervqobOcgNuNDKKm4BT79fQc+dnp0N33wJ/1MPuS3
LzNfG28g/3zMUq9dNqbBl/rPx4p/3masN0un/vOhqfdjkdiH6ivjI+vfV8Pr
xTRfBXyo17sylL/T/pfysU7ppV7Z7Q3kn4+iBcKRp/h21H8+HoeqhsoOpFH/
+ehaFrJthzrpe8eHyrUFuyRS8sMQYGGt1b2GXDr/NQTQP9a1rIidSv4FsEg2
cHmhYkb+Bfg7y85+4lzihwC3Rj8ed7SF7iemAG1aD/kZ2xX7KoDxLY6t4WzS
zxVAy2PdY8mtVPIvQMk3qXJfCpP8C1ChvSlj4B8p9f9nfpljjpMj3a+lAryJ
a26Ydoj8yAX4s6li//NamrcWAdTtx24+Y6LwL8CmLNmG1q6V5F+AM10a0TXH
k6j/QqxbuhXDVGieNISYNcGidW0V6TUQYp5m4q1OT/JnJoQspPN5YVga+Rdi
aXV8pHxUCPkXYmh0SmlrRSL1Xwhdx6ojqQ9pnrhCmL9+ejmnm/RKhWDv/W+r
azX5kwnxXKNu26pM0l8ghKbhLv2yinDyL8TXiq/W3kPF1H8hwi701zTdo3lq
EaJxXEbM7qGkt0eIN/eTP7W3ZtL8C2FipDnuYSHpZ4iQyDWf6vIwmvyLgCE3
DRqy+NR/EUxmrPJ6/4TOVzMRlFrMJ6uzM2n+RbikHzRVpLg/mCJ8+Oec3uci
0s8SQdkVltn59H3NFaHFPyv5REUc9V+EkDkvJ49QJz0yEUyVu08+qc2g+Reh
gf/bkimvCJeK4Gpr5uqyg56Xi+Cd3vTLmtU88i/CK0PHSZfORVD/RXAuZaQt
dqZ9fCdCxNz4bfVzt9L8i1E/YnPRowHCGmL0WWkUxwpJv4EYz13PNZ3rp3qY
iTHxDWdnxyTqN8Ro0XPdd2F/CvVfjMdq7y6fLqX7jiWGTlxT19rvW2j+xaie
76Fz1Yn0S8UIqFG+WrdYSP7F8PlQz7zXT/NaIIaK3b2hJ4fRPpSK8e1+d+OJ
+ek0/2LkjbCQn1em+WoRQ++OfWXpSMX8i3FerSeplCMi/2LctKswcQvwoP4n
YApCjuYo0z5oJOD7uXEHixrp+9UgAbOXSQaW/0Z+zBLQ4PZ0Ssh12l8k4OZF
6d0VLJpHZgLaJKdmGPfbUv8T8NZda8XlKaup/wnIVq2cmhFD+qQJYL53TWof
Q35kCbi23SRy6Fo6fwoSUNHGPR9pQfdxaQJW9eh0NDtrU/9/vk8jppYpoP+H
tSTA1qXzpccY0teTAKULf2i+NdpE85+AJycKMg9NpDhDAuuu7+HcV5SvIcGa
IWbs+LkLyL8EKUdT2S97hdR/CVyCxmY8aKa/tyDB7omN7N9n0X4wJRhpsyQM
dYrzX4LlmjLejRQJ+ZeAP/dow6pNS8m/BI7f+mvNhHzqvwTC3BKvkTtongok
uO5pPLUGNC+lElQ2W96/EqQ4/yXo3vslrvJfCfmXYEBs7778qCf5l6B31nzj
ZhP63n4nwft5C/Nq2DRPjEQErs8AxzPV+n9eK+j6
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxFV3lYzGsbHmTLUkhkOSZyDllOSdJ+lyhKpgXtTdO+zz6DlrFkyVKK7JQl
0ioiWw2SNW0HIZUtlCXUKdHxua6e3/V19c99vb937vt+n+V9Xm1etHNgPxaL
tbMPi/X7n9WX9f+/NRp5ti9Wb7DsRW2WvVhcSsso/jb4iWycKeFBmBZWNyUo
x4iwOnabVYpM+hoQ1sCNlNefZnFnEB4LvRVPn7/LYxOegODCXe+NhEMJs+Gg
McdCW37PohdPhsGwQwc4x/qTHh1wJ8xIOtYynPCfmNzP7IfKDQZPw+i+OSYZ
hwcS1oXF4JaGmebf6fdmosr4sZHGxhLCs3H3eHZGPvdLSS/WQ632d2/7UT2E
9dHJwedBDb8Iz4HuT3PbytRuwgZwXJ2iNtnrM+G5cLs4PcnMsYywIbZujp+d
9Pol8c1D0YAYx3tpXwgbwWX4yGnFUe2E5yN2EbfO+BOzboyY02tDbfY2EzbB
uJ76p2nnywib4p10wu1k0WPiM8MprZnuQcPeETaHVLhf9V/Tj4QtkLHeKsor
u4WwJVyC7b/l5L8gDFyv6GOfaEz6FYCJT9RBzuxK4rNCvsp5X072i16ssMJh
I0Pcd2f0WeP8yt2reCPf0Lo1LvjPPG83+zmtL4CFh/fo0F03aH0BHH9uCn6y
+ibx26CkW7M7as4z4rdB4/eq+p56Rt9CnKwUcD+5EVYsxHkV//1W7XW0vgh3
rKZ+E3Vcp/VFKDFakGPXc5X4bREyKmVHw8GHxG+LsrqBRokyRp8dAq893Tgr
nLDCDgZr3rF2N9P3rMW493L7kazg67S+GPt3u85n3T9H/EvQldXlHZxSTfxL
UP2wMi2jidFnD82fg1adVzyhdXu0fJqouWhfLa07oOKAbssfH67RugN6GnTW
CjuziX8pCta2by4cWkH8S/E3J/6knh+jzxEJwnsS7dhHtO6IX1OvjnhTUU3r
y7Cvb/8H49deo/VlYG+d0V0Xn0H8HLweuc6g2+F2LwYH5app7dYZNaSHg6C/
rEMytP7pxUoO1tVdncLyqaL9TlAVFTou1SH9cML9uxOe+wpSiM8JOl3PB5XH
U/4qnbCr5r7hgdAq0ucM42GffKZPr+nFcMZ/ruY6oX4PaL8z9L0aciS1Strv
DHn9p/nfx4mJ3wXL90x/9IXH8Lsg0hkhL2ZUkH4XjOKm37i/nfQqXTDsvv5A
adh92u+K5z/HRx3apqT9rtgyuGj0bns57XeF/Vgj1tVUyielK1LU/uONGH+X
9C/HTPYDh+ZA0ovlKJu0wKa0lNYVy7HsR79ELUdG/3LodG7pltXtoP0rsO6M
V8VH3YvEvwLjbQsb+8TdIv4VcPvIi+inQXqVK9BaeWyrnHOH9K+Evf1/Xes1
Gf0r8cXsaYwkfA/tXwnfH9e/dPoUEf9KuHuM2XfA9Cbxu2HnZ7/YM+qkF26Y
OSq5apH6bdLvBtdnYcN4d0ppvxuuqVw8tNrjMO13x4aBDy4uUCskfnd8rtui
7m51g/jdkZ/2uHwKk19Kd+zVLYx/0VFO+j3wrjvrx+LoUtrvAZW5/CGfjI7S
fg9seuj8/v2iPOL3QPYEn2o7Jp9Znrj5fVM091I56fdEXvovt1nd5E/hiUHN
yjjNiYx+T3xvTT2xtOU47ffCosrj9oNGZhG/FxZeujxv9QvSo/BCUcabMTOd
qV8pvRC5s//+o2OY/uWNnPSiJ97VJbTfGy9Wz6jp43qS9nujtiwpytqf+JTe
sHCLj6oazvQnH0g5r+OWDqX6gA/WT55r+GoxYYUP0hY4dL9PpPtL6YN9n9ep
TV2bRft98bjg9PzZOunE7wsZCk/Gxl4ifl9c/Zdlr/qK+qPSF6lewvX87RQf
FhdLXw5g5duRfjYXoduGBuqtyabf4yLm1VRf9Y17e/m4XIwNKnQeMaWY9HEx
cJBrzZ1qikc6F1r1aiOljdQvlVxwzAKybwwm/U1cOG6cZJqxOJf0+0F4fLTv
DP+dxO+HwoK/StidRcTvh+Q8q3PV/1B+c/2w33pm81Fzpt/7QRTaz8mz4mov
TveD3eziIYKveeTXD35xK3RcdyYQvx/ajzt0VX89S/w8dCvicqfVUH6weehs
zno8NJP8gIctW7V+KVMoXlweyqUOO+aZF5B/HnYEn/o6KUlI/Dzw4ge3blCn
elDyEDqppc/YsXS+TTxcuZGgOX4M9SuWP641JO9ycSf9bH+8rt7w9PLXAvLv
j9O8CtXAPCfy7w8zc/2BKfYMvz/6N+3+ZS67Qufvj1xNrWeSJKbf+GPgLN09
69ikv+n39zbZB7wOnCH/ARg3Lu9WAms1+Q+AX+yx0frIJf4AGESnXtT4QPnE
DcAnlREN34dRPBQBKNbWzrj39gr5D8CkO8VlvPmM/wA0Kt5tHzxrE/kPgDdv
sLRg9GniD8TtPX8+OSq6SPyBSL8w1dR7CsUDv9dvJtoW55E/biC2decI6+8W
kv9AxFg97voYlEz+f+PT9yz/Gkn1pwxEy8u+7X5Diok/EGzWXnmsAcWDFYS5
8QF+9WLSzw7ChHy7ySddzpL/IHw7V/ejomsX+Q+CzTh/+y96VM+KIGx4eGG5
7pnzxB8EFfv2tldLmPsiCI/i4w7+Y0z6m4KwqVQrTl7L5F8wim57Dgx13kf+
g3H0x3yDCVF0PyMYq1Tvtk32p3rgBuOn6I8LnBDSqwjGqFy+08Key3T+wci7
fdztzRKaT5TBSLLr2Dh41SHyH4w19cnrU7cdIv4QRDWeXndu0jniD8G4USsu
5CRepvMPQWvNq8QnJYS5IXB3OmwZfIm+V4SgK1UtfldxOvkPgcSpc4le5F7i
D0G+3j8G8W8oH5pCcPNEjqjfGconVig63V/Ms44j/exQ8Ba4f+dOZuo/FJnL
IrfZHaH7gBuK9NMGSyeuSiX+UHzptNF1Pkv5nB4Ks5Y972OfUj4pQ5GQc3m1
oSnpbwpF1FXx9Mnr6T5khaFjipWDqZDiyQ7DlOLmTCO37cQfhtr7m0/obKZ6
5Ibhgc9Mf58BdF8rwpD6ZO+UqA7ykx4GscYk+5Z60q8Mw/pDHwtvzckk/2Ew
SGAPGdp/A/GH4+f5wyfZ5XS/scPRkndEpceA+ivCce5X5ezsnEt0/uGQ/hes
0/o35ZsiHAEeFbyRL0+S/3DYJeSaNb+WEH84LnftXLBvYw7xh+NwhNWXMt4F
Ov8IuHbMCcrnkn52BLSL+j1YEnOe/Eegu/Sl8Yi1dD9yI7C55sJknzoO8Ufg
kJt/1nIO1XN6BHQ7NFr1U0ifMgIjhJrDrEaQ/qbfv3f8bsDU67TOikSd+pkj
O9Vp3mVH4mbF2WqNMWHkPxLRAy4lT518ivgjoV/puOLBNTpfRSSGu8QdmF5C
8UiPRG35McmOPuRPGQn2iaOV5jsZ/5Gwzlz75tnbWPIfBWH9xCDWjxPEH4Xw
TZk79L9QfiMKnnsXJxgGUz5xo/D1G0s/xeQC+Y9ChM4/yzL6UfzSo/BKZLqj
bM4m8h+FOYl/5bGeHiP+KNRaD1f8N4l5P0Rjd8HeIXOHkn52NJK3e/PnRZJ+
REMtLvTSzJB88h+NnxmnH49dmET+o/H2zbGJ3JIM4o8Gr32u7OVS6i/KaKwJ
7dDszKF8aorGJ83RaWv2kX4WH51z+8Yc9KX7RJ2PE6URJRlpVF9sPtLYc5Le
OR7p5dPj45A2n71rNTPv8bFrel8tl8XUXzl8DP5l7ehdSvq5fHxtVOmboHKm
F/P56AkSx+6TMvMpH/8+6ElaOf1AL18yH6tzwnJrTjD1zIdLw6n2P16Q3gI+
1l8aOa+2gbCSD6sYr5PvjtL3VXwIdgl9TBfQ7zXxka1mnztmCPG18bEnxGN8
YCXVM0sAm7TWVgMx6VUXwDThZWR1J2G2AFf/Otv82IT86gmgfTnVXafnMPkX
wOlzB8/rG713OAJY3jScbvApn/JFgLjn+1Mi+5JevgBGn+9pLVZl5icB/IXj
Xnnep/ssWYCV2ntCAp2ZeApQkhZi1XOd+lGBAI+ymmq2GDPzjQBf1J1vZm2l
eq0SoLAyvnaaJnPfCXAxeJq+bCXdZ20CxCZuGGM1kfKRJcTCb7c8v2XRfKQu
RNGm+vkbFDkUfyEuTtA/fluN6lVPCA/bBjXv8Ux/EmLunqZNf9ZTvnGEsGgQ
DLBspH7KFeJ7l+bTDMM1FH8hMq9O/fXq+mmKvxDwa0jO2UH1nCyE0Qy71VVa
pD9dCNeUv739PKheCoQYKhkZG7aX+qlSiLQxJtu0XIMo/kKUeNqUSlg0HzcJ
Ub4+/G+TQdTv24Qw/5NjGzGC9LNEOJf2h2BcDdW7ughDPWuk1+xOkX8Rph1m
VepauJB/ES6f8ZWpG9N8ARG6HW6GusWQPo4Iwz/rKsb2Jf1cEZ4V+S3BAvLH
F0HHRb3YsI36qUIEj6b4PoIL9J5NFmHuMb3huyOoH6WLMPG1n6Sthc63QASX
Z/3srrQy+S9C1idp5tVc8lclwqsH/5bl7qB+2iTCd7/mlDuL1pF/Ec4fePbu
434m/mLkqLU8/cjMO+pipK2YMcHiAZP/YmwvMWhcNYLyS08MzTGRJf11mPlQ
jOmqK6Zdn5ZI/sWw7T8jeXgZ5S9XDOufGfEWFyi/+WLMWvZRbUMW0z/FcBq1
3NY9ivIrWYzHtz5MUy9g+qkYJj6bi9JZO8n/b7yeVd5cSf1IKcayDK+CGg2q
zyoxNL5eURHHkv4mMeJXhsSbl5H+NjE2Pjfl2Gsx9S+B6oAtfza+pflOXYJJ
R8xPWQ87SPGXYFTA3VmHIqi/6EmQf8+28dti0g8Jdtrql/UfRZgjgVDL2CL3
IfVTrgSGTjHXyu7Q+4kvwayNEf72oPlIIcFXqy7j1BLSkyyB5+7Wi++Hk/50
CXRjE4ySPAgXSDBBu6lQdTv1U6UEkc6szLcnDpJ/CY5v3NYyI3QXxV+CzUV1
mTmqpKdNglWV/2qY3WfuXyme5gh1ivaTfnUpbnP2tplZUrzYUgyJObOg2Zzm
Oz0pbPzsDSdtTqb4S1GeFXjvVgb1I44UR/8Y2r9mLZ03V4p1lkGWTrWkny/F
zLIfb7U+ULwUUlzr63xONJXmu2Qp+slF7Y0mWyj+UqQ8yp0dMZneiwVSTC38
6pvKzD/K33xW316aqlA9V0lxprRRJE6lemmSIrRBrOM4mPpRmxSta3c0tzmv
pfjLsMOm3XjRHnrvqstg5DryXchDqle2DEkPri52mEX1rCfDLofqnRMMqd5/
v7YHJkS/mPT+BPmXoaI2LntzoZDiL0NejLGLJ4vmI74MH6oqpWYiqleFDK2x
rHI3R9KfLMOShfv2NFZRP0qX4b5hStXWMprvCmQw8TUecOmDDcVfhnZt5cnz
3jQfVcnAedQx9fsg0t8kg1Wweue8YNLfJoOPtV3Q5iBaZ8nx0eL5uVkHqB+p
y/FBVS45OSuc/MsxxCCQE5qfSfH/jUctk29NY+YjOZr3z+u5LCP9HDlOnjU5
0NhB/rhyvBytKtgfQf2IL4fqyuYxPu9iyb8c3dUiaWLHcYq/HNO7kta+GE/n
my6H23jdnCvxpL9AjmVbZKXZcZRfSjne3M5cxJ1P/ahKjjORa1yMdZn3phxz
E2/KjfSOUfzlkHecGta6l3l/rYKlTviVYfHFFv8Djf8HWQ==
"]]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {}, {}, {}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 400.}, {-5.727867107803616*^-6,
5.717989499794946*^-6}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"100", "200"}, "PointLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.800161904398321*^9, 3.800161937427348*^9}},
CellLabel->
"Out[178]=",ExpressionUUID->"1b28833d-960f-4f1e-bd91-35c66e2df63f"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["UHF", "Subsubsection",
CellChangeTimes->{{3.8001635262839327`*^9,
3.800163526649042*^9}},ExpressionUUID->"795da5c1-b4d6-459c-98d3-\
232c1d1c121e"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "2"}]}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]", "\[Lambda]EP", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "5"}], ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800953143821064*^9, 3.8009531503518248`*^9}, {
3.800953234001981*^9, 3.800953419023226*^9}, {3.801195145159924*^9,
3.801195153170494*^9}, {3.8011966403896637`*^9, 3.8011966475687237`*^9}, {
3.8011968847881403`*^9, 3.80119691773741*^9}, {3.801213356647634*^9,
3.801213359388258*^9}, {3.801213406959877*^9, 3.8012134092508087`*^9}, {
3.801213951171216*^9, 3.801213957059557*^9}, {3.801638411530686*^9,
3.801638439646798*^9}, {3.801742731581962*^9, 3.801742732812155*^9}, {
3.802680699461314*^9, 3.802680749968492*^9}, {3.802680782872319*^9,
3.802680796219284*^9}, {3.8026820855491037`*^9, 3.802682102103631*^9}},
CellLabel->
"In[159]:=",ExpressionUUID->"f7ea65c6-0702-443d-917a-3271c2330626"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"18.02124777863211917827625400380607579701`28.795880017344075", ",",
"18.02124777863211917827625400380607579701`28.795880017344075", ",",
RowBox[{
"2.4749706819633279265679774726575098125069179300034134082877`29.\
397940008672037", "-",
RowBox[{
"0.2498677443735087582690633046387563943249128959610923525891`28.\
7528799184576", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.4749706819633279265679774726575098125069179300034134082877`29.\
397940008672037", "+",
RowBox[{
"0.2498677443735087582690633046387563943249128959610923525891`28.\
7528799184576", " ", "\[ImaginaryI]"}]}], ",",
"2.3120855547012141550570793243087491195083618995901130361919`29.\
397940008672037", ",",
"2.3120855547012141550570793243087491195083618995901130361919`29.\
397940008672037", ",", "0", ",", "0", ",",
RowBox[{
"0.6293234521073200803021008703752068737735482157756315498601`29.\
69897000433602", "-",
RowBox[{
"0.4284051806805184304328050771882186363876990867973406719195`29.\
69897000433602", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"0.6293234521073200803021008703752068737735482157756315498601`29.\
69897000433602", "+",
RowBox[{
"0.4284051806805184304328050771882186363876990867973406719195`29.\
69897000433602", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"1.0143294712593505317676900043244304583231858602756846829856`29.\
397940008672037", "-",
RowBox[{
"0.0581775140082001562602129090422371631297254229019887938953`28.\
7161942760436", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"1.0143294712593505317676900043244304583231858602756846829856`29.\
397940008672037", "+",
RowBox[{
"0.0581775140082001562602129090422371631297254229019887938953`28.\
7161942760436", " ", "\[ImaginaryI]"}]}]}], "}"}]], "Output",
CellChangeTimes->{
3.801213411410056*^9, {3.801213952536911*^9, 3.801213958102577*^9}, {
3.8016384143675547`*^9, 3.80163844069832*^9}, 3.801742733392355*^9, {
3.80268070502809*^9, 3.802680720937169*^9}, {3.802680755926688*^9,
3.802680797048483*^9}, {3.8026820893927717`*^9, 3.8026821025649233`*^9}},
CellLabel->
"Out[163]=",ExpressionUUID->"2c0dc553-4bda-42b8-a192-6443430e9f60"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
18.02124777863212, 0.}}, {{18.02124777863212, 0.}}, {{
2.474970681963328, -0.24986774437350875`}}, {{2.474970681963328,
0.24986774437350875`}}, {{2.312085554701214, 0.}}, {{2.312085554701214,
0.}}, {{0., 0.}}, {{0., 0.}}, {{
0.6293234521073201, -0.4284051806805184}}, {{0.6293234521073201,
0.4284051806805184}}, {{
1.0143294712593505`, -0.058177514008200155`}}, {{1.0143294712593505`,
0.058177514008200155`}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-5, 5}, {-5, 5}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.800953145470113*^9, 3.800953151700378*^9}, {
3.800953236309905*^9, 3.800953419744135*^9}, {3.8011951467141657`*^9,
3.8011951539107428`*^9}, {3.801196642343095*^9, 3.801196648233199*^9}, {
3.801196888050037*^9, 3.801196918194175*^9}, 3.801213411965068*^9, {
3.801213952923017*^9, 3.801213958487378*^9}, {3.801638414914871*^9,
3.801638441081643*^9}, 3.801742733888256*^9, {3.802680705647442*^9,
3.802680721474024*^9}, {3.802680756450595*^9, 3.8026807975283318`*^9}, {
3.802682089897787*^9, 3.802682103090658*^9}},
CellLabel->
"During evaluation of \
In[159]:=",ExpressionUUID->"ba214c55-e592-407c-873f-1d6ac2dcedfa"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "10"}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"Re", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E_\\\\text{UHF}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.802680938846628*^9, 3.802680990985557*^9}, {
3.802682005976615*^9, 3.8026820474382477`*^9}, {3.804568908890685*^9,
3.80456890906907*^9}},
CellLabel->"In[44]:=",ExpressionUUID->"a059c68c-55ee-4f41-843f-0e4beea3d83d"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8AVud2mM27mPxT7GiY7
/AfAFroRqxls5j/ERqVcdvgHwBa7Ra//aeY/Jt65yezwB8AYva23y2XmP+oM
46PZ4QfAG8F9yGNd5j9wajVYs8MHwCHJHeqTTOY/fiXawGaHB8As2V0t9Crm
P5qbI5LNDgfARPnds7Tn5T+f34hvUQkGwLTesZvlVeU/FtBTTykVBcBYu/gd
wM3kP8hQU0TLJQTAih4oUEZI5D9IKSV0IyIDwP0mK118t+M/Oq5cps8vAsCj
JqEEXDDjP/qKZhMyKQHAi8vqhuud4j/196SVXicAwAD3HLkmDuI/xCKSNL5t
/r+pGcKFC4jhPzsFf7MrZPy/leE6LaD24D+UQDc3QX36v7GgJm/ebuA/Y5xY
5eqf+L+5zPXBkNPfP8+nHgkBmva/kqJFW8Sy3j8eDLAxv7b0v9JmeylLpd0/
CiDmz+mq8r+WdVitMYHcP2xUhZioqPC/dZEGkW9i2z9gw9/LHpLtv7ebmqkA
V9o/Ij3+UcWB6b9/8NV38TTZP6los+G7tuW/rDP3ejUm2D9q87Fci5rhv17B
vzPZANc/Ln4FWQYj278qXFlM1ODVPxN51AuWm9O/W+XYmSLU1D/XZGwqr+PG
vxK5/5zQsNM/d3oqjsmVrr8tewzV0aDSP6qPOECkMK0/Y0rqbCqW0T+OaYHW
YILHPx5kb7ridNA/DfRMO6xR0z972LR53M3OP+B0xjR2hNs/xX3Z6bKEzD/u
uU3Cd8jhP0I9oBk4Rso/poehYGSJ5T+K2TKzYy7IPyX2qxN4m+k/2woUuE7p
xT/esh+9O2jtP/gYwSbgysM/VZfgiOuQ8D9KQRBVILfBP56ljL1MlvI/Sv1b
3T/svj8EW23tBXn0P5QxL+SLt7o/zmCpp1KE9j/wj5/BVii2P7UNGl33bPg/
46encm7msT8mmiHoB0z6P33o50XHc6s/+naE/atT/D9d1bpTr2WiP+v6Gw6o
OP4/ymp6EWLkkz+gZ4fUGyMAQDoyPV8NNlk/kEHMjBklAUDl8oFoKmiQvw5v
q0LDFQJATGlMLEGXoL++RLi9thoDQACFHXdvr6m//W1fNlYOBEDIll8Nghax
vwEH0pkr/QRApTbs3+4/tb82SHLCSgAGQG+s29vcw7m/+tys6BXyBkCkaDME
fvq9v0RsyJBN9gZA9UU7UE4Nvr+N++M4hfoGQD8jQ5weIL6/IBobifQCB0De
3VI0v0W+v0dXiSnTEwdAHFNyZACRvr+U0WVqkDUHQJg9scSCJ7+/LsYe7Ap5
B0BGiZfCQyrAv3hVOpRCfQdA7neb6KszwL/B5FU8eoEHQJVmnw4UPcC/VAON
jOmJB0DjQ6da5E/Av3tA+yzImgdAhP628oR1wL/IutdthbwHQMBz1iLGwMC/
EkrzFb3AB0BoYtpILsrAv1zZDr70xAdAEVHebpbTwL/v90UOZM0HQGEu5rpm
5sC/FjW0rkLeB0AA6fVSBwzBv2DEz1Z64gdAqNf5eG8Vwb+pU+v+seYHQE/G
/Z7XHsG/PHIiTyHvB0CdowXrpzHBv4YBPvdY8wdARZIJERA7wb/QkFmfkPcH
QO6ADTd4RMG/GiB1R8j7B0CXbxFd4E3Bv2OvkO///wdAO14Vg0hXwb9GKW+K
"]]}, Annotation[#, "Charting`Private`Tag$4844#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwtlWk41Hsfh+3/UFqYelAKkThptbSc8/0LkaZF4qgUR6EjIqk05URPsoQ0
jaVRiERIw4yRwu+fpIkkZlCEZooGzRIxNYZOz3U9Lz7X/ea+7rcfY/+wvQEq
SkpKF37tfzzyME3y8ydGTESMO+X+1g16UwbmmxUYob+NpHfBshsatxX6nPmO
EaxC24/eFt1g3l/z8osUIyI1o2IXLO+GkdkfC97xMWK270RdnGE3hAfbeDOf
YUTysh7bEK1u+MeshwiMx4imz24WG4VdQM82pbbqYMSbAkKTW9AFuQMJYe6a
GsRYrvPcuLldsPCNx+6VJHXi9stUhVZcJ3D2eDi1mKkR6+nrnFyneeC60izS
1ESVoHneeqEazINN5T732larEPwAjXU3PnBBnhSou26lMrE+yJObt4MLE7K7
6YdXKBFLc/o5ATUd0GhC3VAfOoOmFg0VzKzpgM3qF5lWRxWo5/pfZaTb7UDD
7ewcouXIuUicqaTbDkdueQ+O5H5HvaHcjvyrb6CtyEhTmT6J9HjqB658bQOj
2Yy1iP0Nnb403nxi4DVoLRtqGy4ZQ5VrKQc92K0Qsi8uq7hYitQNhg7fo74C
v2cDLUZUEdq9kKJ151ILmPw+4/48dhgZVk6kZB5shvvHmPwn7EH0Kj6HbuP6
EoLHK3yu0vloRtRp3raEA9b/qO/XMO1FBQV69K7vTaB7jqedkc1FvsJb9nGf
n0P30RDLhx+bkPwux8MaNcJZimXqy/RyNC6yGosueQYl1+zxu2seQK638dxN
2Q2Q+ndsl9+lF+DSv79BFPkU5nwjby5z50IzrVLo5E/Ah8imDWcu94JWMO25
/sl6ENfsbDjL4UNR28DQEYtauBd/x+9o4iConsoPQxqPwWyyVDcqexg6r1Bn
VrOr4T/P3U1KS4bBHzdjxz+oBi2abE1/zTAwyP74wN1qkK513OX0dhhK+Ldf
pNyohtrQnoR5pBGIGTp/ThheDfsGZ80Up46A1lxdOdWqGi7xAoTvYkehcbvd
gbI8Npwu0JbNvj4KpcSTYHkmG45FVKjjeaNQueigzOUaG3bNmza5Vz8KsiDh
CX40G/TJtEMRU6PgtIJkNecgGxjPGjq0Tn+BH4O9Rg4kNvRXLq3bfEwEMfMd
a4iEKmi1j7A0OSsCZ0N9EimmCmrrGzNnXRHBg/71vMCzVZDd/HdEZ4EI4nUM
HisHVoG3gLkibEAEk/q8Kh3HKmif70rN9xLDhnxzK3sFC4hM+s+EADH4vIbb
W8ZZwFgiCgmLFEOBzSdruxEWpK6kumyhiiFyT5OF1lsWuDm8V3S2iiFvp/4D
RSULNr6wDq59L4ZohlVL/H0WWOyM7c4fFQOZ0RPwI5cF2H7zyjBNCWwPH9CO
SWZBY3h4kKazBOYnVl2LPMIC5mQDT+IhgeMkoTzFmwX5F0hbu/wloKzdZrdj
JwtiEx4vLoiRAEtiQvjasCBcZ05S4jUJtEfaZ8ZasMCP5isLy5HAUl7frh4D
FvyRp9axpVYCiVbkPRQFE1aZ/wmmLRLI6CT5e40yYXHZ/TLNHglsTmMtufmW
CbPXKfSlQglcjJoJm9vIhKnqXfFdMgkUqiw9mv6ACRM5eyiHVaWw6rN235J0
Joj4PxjtWlJwmPW6vIrChPdBZKNH+lIIHnJaUYEzgVcysc/K+Jc/zyw7xpgJ
LaKcqzkWUsiwDhSZKzPh8amv3y/bSaHYtXTkSV0lZF3M4Lp7SkF1X87Gd6sr
wTPzQ8JomhSEeihhHlYBqS7MOco3pWB7fCzIrJ8BHFkcdeEdKTQLfA2Nqxiw
ydvqlkOFFE41fDJ9688AI/0zDzPbpYAFuvtNUR6CkK7d5bjgK4gYjvPC+WVA
ybE1vXXjK4gzjG56FxZBTmFyHTljDE5ab2fds6OD2sFQkfq5b+AppAXRy5PQ
a7/7RXsvT0LCx3NnxOvLUNUcg0OykO/QpFxFfbnqETKnGwsxshx0zls6HtJ8
iuRnLk+XeiggpKTkWOyxJjQqN9Qptp+BDjtqUn9IC8oLiucZmirhEzrSA9Un
3qA0h1fJ+mbK+LW+bYszDbhIJ6x06zOSCt5KEX+oyepE9U6P6tgGqng4Z745
l/wWTYf62nrpqOGLBm2SF3F7kDLWcdNqWg3/PdpmG0HuQ7auEQ1uShp44Mmk
Ng/FAJK/LxOSxjTwp25Bzj//4COnEE7azkkNfIOV4kumEx+lTH20j5Nr4BbB
pulr3PhomYFh4jcVDN8bsOLzX5585PJn4kquLoa7zpdfbzzOR7T2gOA0Gwwf
jzmpkpTFR9ZNRl+0zmF46eDEDtIYH0V5bqJtjcZw8ns99XIZHz395LmFEovh
NGlN/bZpPtqnmpI8nPirp5y+PmqWAJ3Hp37j0DF8El027TUSIM7j7tC4WgwP
LZoyvLNDgBa4jZPqCAy3/OLet9FdgHze6dR/a8RwxLDI7fASIInMWedoK4Zr
H/JaruYvQAttWOVb+zH8xKviDUFRAuTX2OZFEWC4etaPHz+jBei+x+hMxRCG
Z63joKz/CtCWCJPdxhIM74/tIzenCtAV5T9k3uMYPpZiqneEJkBv0vbnpskw
nL1oqHfqpgAZLDvtwpnC8Nsty+/ScgXo/3+N+3gNhKwqFKB/AWN28bo=
"]]},
Annotation[#, "Charting`Private`Tag$4844#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwt1mk01O//BvAZ4ZM1LRRKGVJRijah3nfWFiqJVJTKVhHJrm+yU5ZJilSW
lC3ZZmQbc4/sSwsSZV9G9pkkyvrrf87/wXWuJ6+n1zmX7BXH09Y8JBKJ+S//
11ezqZylJYJln/FwqrqFDWvmpBQ05glW4HAErbqZDRV6r83d/hAs24VbztWN
bFDoKqod4xIsXu9hTtUHNowI9yd/6yVYQTnPhysr2eB0fa8ZrZxgMQSE2srz
2XB383eWTTDBehzATMSP2RD3TC7qgyjB+tin0P3OhA0J3SGORgL8rPkYc8Gu
ugGQ+Gx8cps4H+u4V0LUvqMDUHPKWKd+My+r85Ly9Nq6fjiybbOLHGUZy6ad
emYX6gf1LPOUTzt5WM0f32FP3Aez921Wq24jsybmBL/+2d0Hv2dePb64hcTi
eTiyfCmjFyooUXuYDotYaJT5Zq9SL2jw+dCUrOax/FY/SEjsgWi0f//h/2Zx
6hoJc7WNPXD1uRl7JOEPHmG6+L1F3fApVUaAHDeNZW6NHdDf0QUywjkq+N0U
tth6aFBjeycIbhr8NJwxif0vLu/2E+8A+zOBsWlpXCyvnXeiYlk7WJZ318tE
jeMtAVmrzvJ+B8rBRaNK32E8Ul29sJHTBul2tN6Sd2y8+GNPluJYK1z/lWv+
IK4Xnz/v8FC7+Sso3+U7xy/XjvmRTYoYboHVnl+EnjxrxjMhLscGGF+g1cpe
Mbu/CncEfE7a+aoZ3L0UI2ofZ+GfffLRC8+bICNSDb3a9RbCDotXGz1thIhr
vl8t/aqhM3rvHrc7n0FkykAj06gZYpJSYnm/f4Qel6o9bgHtcO7FpH7VrQbo
qOGTSnvVDmtmhl6M2DZA23rdpW8V7WC8QyRS8GIDfK4orz3I1wGbst2nNI81
AGtN2UW+oA4g2sQfXqM0QAK9JCQ6uBO0JOW6PzbWw8WpnI68+90w9Ltp5brt
9XD+CLdsIKMbjlJcH/jK1oPJ852pEvXdsP3qW8N+iXpQoLSqlfL1wLLH0jKR
5HqQqTNZJqvXAwWzj8b9v9aBqJRx7FBVD8RH3TBg3a2DiSLD9+41vXChRD/B
tLoWNgtUu3i39kIKEeuhx6gFczO0xWewF6gaKzsUc2uhblo1LIi3D/xVs158
jquF17vXmT5GfXBPxCL8gcM//7ZvOK+wD/IMe048E/vnE91XTqT1A83stucq
gxogc7nlPwv64aga9taHGlCD626/q/pBmW+7i71qDaR0mrfPD/TD7HDqYOC6
GvCV0notJDsAisf1XKb6q0EtWvjAtqcDcCtTuiHXvRpSgpMsrULZEJxtRQuN
qgLLXIfszKf/dvpD+oKtXxVItR9YnEpnw0S4XJ+KcxVEKDc9C6xjwzlXXt4I
oypwa+FpTREaBLPzq5VtVlSBnpyV4XD4IIht8U8tCK6EQaaC+s2oHzC7KT6Q
Yl8Bm6ffrPZ4NgytYh9iVFa8h3WVRpQ3GcNQVOos/ne+DASjZ3Z1FQ1Dx1R/
a9FIGXBVtE/otA1Dpoth0paqMmA4fA8REx+BsHqRawV3yuAMe/liWsQI3Gp8
EYiHWOD3xXrom+8oTBvvo6h5YXBNFpoRfjgK2Y7qXO8zGOycc/lQ4ig86HOE
QmUMJ8QWKCnMUUjg8MxJ9TNB0iDawnluFHZtLhUMP86EnPL3TYKuY2BfcmGH
jnQpdOVtLNWwGwc/RWqBSEExfFBzVqS4j8PuylDGzYfFwGBWxCwPGoebRxZz
P9wohmd115xbksfhpJK9a9CmYjDro21x7B6HEcrxhNHQImhceSTqpekESK4Q
s+02LwRWTNxSiPUEUCSRmOH+QsjZMG7v6DIBKqkOvayVhRCxLUpfM2oCxvvJ
hbiqAI4d7phv+TABXVKal/VUCqDCyclWQJcD+bpfrssKvQPa9PsvHGMOzKS/
19b5kQ8v74hrfb3CgTdjPcdZ5fngG1K8PvkeB+qYqh7id/PBSVTkfmgkB36o
GMrLm+eDZfSlGcd4DhRFd6z9q54PhxJ5mzQZHLikZSiYOUeHHQpnQa6eA2Pg
a/y7kw7rM9MzBb5zQEs5HFrK6CCsOi/JHeJAcqbtyN1UOswVnAj+OsOBGiLC
SCKSDr/jT3ldXMYFgeXUuDQPOoz3/s1pFORC36vqv1ut6DAgn/xDZxUXYg0j
G24b0aHD1kCmUJILahw9I1NEhy8Zv88oyXKh47ZvWMwuOtSPxz+I38qFXQnJ
HkuydCi+/fNPwH4uHFbqqPAh6JD3Lm7nn0Nc4KlguRyZo0H6X22bG3pcWHvJ
6m8MhwaxPk+ajUy4EK+iIHLrGw2o70Gw0pwL+2i2cm0faRDMN4zUrLhQ7GZv
71NBA7cHGlkyt7nQffCChV0ODUxiekJGqVwY/BOkOB5Kgwh9mgj5KRdGZeIz
y31oUDMTGCWRxAUbXLSQ40oDdTOl54dzuTA9UsZfeZkGMpJu2TGNXHCq7YyM
U6fBUJzQV+1VP2HWN8qQO54HXvH75J4/+gmio73B2WfzIP51WKnBk0lQ1TM6
fmhnLvBecBjn85wCv2ttv3VXZ8FHy/TU0wHT4J3SJLPnZjrki0hZzNj/gXyk
V/dw3WtQiJMdIgxmQUZI8gm7LRFm3QIW3hjPg9ZLkriiVyyMzkqLpqktAl3Y
WTeBGQmJtsFfpOVIqOR1yYoJBS9Y7m1XL7eFhLgSjxw2RHuCU8TR90pKJKTE
kD9+jOwJkC+Uo7GbhBpoDNXn7e7QxUN9cEGbhBCv50EZqiusj4/VenaVhIwn
JWb9/zhB7Jf0HKlXJJQYtmls49pLQBq6n0pJIyGmd4DNo1pzsJu7Ea+YSUJ5
A24BbO/zsJ+iHKZOJyH5EFOtjT0m8NUxz/Z8BQnZnunNv2F4FNYIlcjEDZAQ
rbzU3ct0P6YebgiT3ExGVXYbLmuEWmM9ZvLujq1kdF2s4Ehwkg2eV/f+Hr+d
jERNFSXVi22x3R7FrfJ7yOhewrr9M2PXMNoSUq6sTUbVhRd0FsxuYq6wzqz2
ZTLy2E3R5Ht7G6eESifxW5ORYv3ZTl7kgs35f+nX2v3zEqueTzS74JqlpMcn
nMjI9qLFhd+LrjhxcmnXOR8yYp5ObVm09sCmjq2t0v5k5G4h3HSN1xMLj2Xd
7Qoio5HqXN4drz2xB9ui4WoEGbUEnQgcmPDCJ9tKbG++IKOdlWd1p9/8h3lN
HomqJJHRRNrqbZnWd3Fx4/X8X6/IyErFaJxP3gcr1Esu88wko+ba8ya+Z+/h
xVL3eP8SMrqjcTpzYsEXZyXvbon9RkYrbamlg3GBWNTxjVa5OA/q1rE872kS
jq1fxoi1SvIgv9nwy6Od4ZjR4t81soEHrXkyeTDQJgJf0zT3WqXAg3TWDY1R
PCJxhYBI3uV9PEh69OmC+Ucq9np1U5Z0lgdh98n736ai8OA3FdLBWB60Mpyd
NKkbg5k6haXvpJahtCH/N/4TCXjB4dI+U1FeREs0KLi3Ig2TiaanSgu8SKx/
9u39pWy874jz+2MkfhRxWfndvCEdz3ZkDolP8qNTk/0rTp8uxDr2NVTDaX4k
ueaK5WGrQhw+168WOMuPTNys3u5yK8SbpKRDp3gIVC7wV3NFXCHWPxu6rXk1
gdjV7qoNvYU4utH6OnUvgQ4YhLnr3irCylUyY4KeBMpY0+a0l1qMPUzUo7X+
I5D6yWRj+ZfFuGzARNPLl0DzJ1btXk0vxmeWhYcNhxKo4GTPD25rMfZGc9tr
4ggkQLPYlrmxBNcUtzoEMgg0YsoRpmSX4FXHfomXsgiUvBhcLFZWgs2/iTKn
KghEWdtmtdRUgjkzuqJWHwgUjJOzO6ZLsMReepZWF4FoWiIyMYcY2LLik6lX
H4HSigJzA08xcLrx6GLuIIFSRViHXa4wsKYz5aQsh0A/4n3MjIIYOIh8aMbs
F4GcA4luiGXgz9RzCdQZAv33wvSKcgYDS21y1a+ZI5D+oZt96xkM/P9/Hu1g
nbwk9JGB/wfebeco
"]]},
Annotation[#, "Charting`Private`Tag$4844#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwt1mk41P0aB/D5D+YvhBRPUY540EYISer+PUjqaI8SlUKWx9JpkbWylGRp
ErIUTVK2ZtCDZPlNyL60KDGlBjOZkAnNlK3jXNd5cV/fN58X3xffF/fKk/77
3akUCuXa/P0vXVn0sd+/SbZijt/fcjdFsGRaVWfzDMm28DAWxyaIoN4mxzng
J8keciIjZeNEoNNX0TwiJNl637vSZaJF8FVuILuHS7LlnBRapcNEcNrb5PCT
OpKtWyKlL+UlgovavexT0SRbYe2KuVkkgvQMrcR2eZINR3WaxoQ/IOvTNf99
C2jsT4Fpfs5WP0Dl5YE9q5Wl2F8UZV7uZExC094D1q3akmwXqyw9T+ok2K7W
PqelKcF+Xa8UpOAwAeZM54ed66ls/1s9j8xKx2Hq+qnFRqsJ9v27Mb4jtHH4
IX6QfEyXwjYvtFF86fQd6jUTjWt857AkX51nUiWEzVKXnqx1m8E8S+ciXQUh
JKGNG/8Km8JKv+uszDjfwPXOYd7XrJ+YaLcvj8gchc5H6guIdBE256xIE9iM
gLpckSEum8R/BMD7Q7RhkNHgdwryx3Hhs+KPX/IF4HPwSmpurhDvc6+O5doP
gUvdp1b1xFF8etllny9/fAHNLXP7XoQLcHG8ntkKzIM8zyfcyjIeniJeSnmE
DYL3RLFzbDoXH9l/p2NSYwD0L0o50rQ4uF0j5opCKxcWB3XJpmS8wRdVJL47
xX2GbjefNayBBmwxg4r8T/XBheA1Cc3JTBy6vGq9wgAH8m+YoQcGjyHYsttA
7NsDCV7h71wiGoG6KVr5UcM7WDhpt7lw3xvg6F7UctrfBZ/PNRgHRHEgtWRC
aF/+Cr5V7Kq90MQFh3Pbnl/K7ADtBY3nQrq5UOP1YTQ3vgOcDyPdS3wu1JXs
SPwY2gEtIqO4q5L9kDpM53s5dUDOhqUOyagfcqfx5sXL5v3jfkHJ036gawT4
taW0Q8u9C4u+5Q7AmrIYecGdNiCEwrrv5QMQI9Ps0h7fBmbgHfCjYQDGdk/i
5xfb4OFHZ87M4AC42MxIcVzaIFzVMkd25SAc6JtReK0975PkNq1OGwSvz51x
n0ta4WE0w8UthgezlOZ/Z/e0gEuxL6swjQcybQtto1pbQJWzaW4yjweuYr53
YHULJOi/zrjSwoOQcD4zjdECAW+p3Q9l+dD6n913qrxbwEbLbZcgng/pNJW7
JyktwK/RMfdL/AI+C7PFIxubQVtUsDgwQwAVC8sPjrU1wtIX+zQL5ndRyY1J
HaltBJkksUFfhQBkqBZM4dNGEBpa7bZ+LwDVs085cjmNUOXbe01R+StE0xUN
EsMa4SBPei434SuwBqyqK9Y3QkSX+1BP+DA42b62773dAH0l/6re7DkKGfoc
iaCzL8D+9udrw3Qh5B/TKlPaWweZOXHVdinj8Cen/6nDoucg6eQ7KhU0CXlK
6luZEjXQ4ZL3aH+UCHRFZ7YcSKmA0oWqR8U+P4HRKrOcF1QKOukrh0i7KRjZ
wYpjni+GqYCo2YIDM5B3iWZ70jwfhqfU5HPN5sC0Njiqa+V9uOcR3aWmRUEK
oT9JdXYiSId4tmrpUlC9ux3XJyQRTifsqF27loJyTp5gVJkmApTKFm3eQEG3
X9kKjj2+CX1UeqyTFQX5NO7QY6XTYXlmqmWGKwXp/dLUkx6Og9SuvCLVBxSk
Vmw5G344CihD1x9p5lLQ3cbYy0GdkeA5/XfmmkIKOtsqV3DeJhI2aurHmf9D
QbnNTexQ4wh451/icaSegvZuT9napngZlshWqqcPUlDpRsYT1+QLQP+rLW6Z
NoG4kYYVLeZHwKYme8OHVQRymGbIb9ruADPmIb2Z6wgUVbZ7beDB/eBpvGbV
n8YEChPc8HQesAake61O34pA3n7yJoWqJlgoZz1ldYJAEpmLmzyNTuKHMWoM
mjuBDNkeZh7qbtiZNrG92ZNAiGYpTZc+hZt+M5J3nybQfbMlvwLeeeF7478N
HC8RKH+PeJ167mm8532lh99dAiWMGsb25V3Akva35A0ZBCpX87y3PCgQP3vl
XTrxgEC3z2xbV2YVhHVal0kEFRIosXFMJbMlGM9VX8iMrCSQI0M4FMUIw8zs
DW9Tewi0zdE9MvRQOHbTkA11+kigo4cbRUnZ4Vj1br+mOpdAIb2lejPfwvHV
lJuns4cIxDY9Hi8RFYGPxYzJMsXznqcWnZIbieX9CyzrlKloVS+ZoTR4Bbvf
v63YvYyKUkXPuVkGV3HV28i+ryuoKHmr/5Rk2FXsZeEcrKRDRe0GXuvclKNx
/YKFJSdMqci026i+1voaDn7gt5JyiIq4sQHtD7KuY36PIWVLKhUxLst4f7W7
gWusn1aXqUogC/8NE3y7JDzre9zUQV4SWfe08SMm72CCfJ22dlYS3RLJPP5V
dh+b2p6p3UmhIZaP+tFDex7hqQ+FQ8rjNKRwSFb1TWoBtvZpou8S0ZB0p4et
uKAAx08PmF2ZoiFKX/I5NVyANVTVYiapJPoVE9zgyivA2w/FrH6zmEQujqN7
Jw0LcdIrd2+6CYmoPpGSyq2FWL9BfUQmiERHKhdJ2s8+xoH25kmWYSSSzjL6
EajIxM8H7S2Cw0lUvCJ/8I4WEx+UiI8TxJAoNCW/ZnAHE4eg6XVN6SSaHdt9
/FwKEzc96/a9UkWiLJsJ+1vrWVhp54RyNZtEW/wk9cstWdi5R75msp5EdWWZ
khx7Fh4Tb5N3ayfRW53gx5qhLKxi8g/Tsm/em6h9K25iYZf6TofgfhIl7K1/
9pbDwnkHhueK+SSi1Mpd/fWNhS3OaO5ZOTbff6lV3D2ZInyV2Co+PEGiDKM+
f6MlRfgl3TGLLiZRrV7H/voVRVhV4/z2pmkS6e5ZYuKgW4T//2+gnPfFKkMG
Rfi/GxQkCw==
"]]},
Annotation[#, "Charting`Private`Tag$4844#4"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.034013605442176874`],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIpIIaxWaBsBiifAY3NCJVnRmMTo55Uc0g1nxbuIcZ8
AJ0vAkM=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYC4hkzgeCnjgOImrlSwQHGf+Aa7zhLUMlBZl6c
5mkBXYfK+z9uGVsrOehrrRS+8ETX4cOi9QpnPZQcju/a0cu2Qc8hPQ0IwhD8
ld9eVpx5oOQwdQJ/ldlpHQdjELiMyW/h9V8/pRXBb2A52m9ojpvPwtkln5yn
BTcfxofZD3a/pTbcfWtVnzTP49WBu18X5H4VhP9gfJj/YfwdwVYR/4+Loqrf
KOAwHeT+11oOMhvF5jMt4HFYDzLfVwPOf1O8VfT3aVU4H+z+7SoOZ0DARwDO
1/ik8nLWSxE4H2Y/jL83v+btTFGo/86pwN0vMfUKZ8YiVbj/GECgQQ3ufxgf
Fj5PEhdeM9FXhYdfQkiQ+oKTKnA+2N6bynB+t43nrrRPSnD+bU3ZNf+blRzc
1xxdznBDyYE/NuC+kbki3HwYH2a/cOWkkrMiSnD3gc1/qQR3P1gfgzLcfzA+
zP8wvgjInBYROL9dgV31zBZBiLuClR36I7r9GQv4HX69fX3AklkFHt4b9PIW
M+5RcXhR+zj7/BpOqLyaA7cjn9cMTQ4HKVB6vqAO54PjZY0mnA+LX5j+81fD
3ujv1naIUY2QOfeHx0G0x+sVyxQdiP0GAvD8Avb3EyE4HxQcac/EHNDzFwCY
s2h3
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIdIIaxWaBsBiifAY3NCJVnRmMTo54YcXraNZjdRk+7
cIkDALmJAos=
"], CompressedData["
1:eJxdlF9IU2EYxo+ukmEOUmQ5L5qHBplh55vHFUbxFVTiRUFR2UWCpaldpNSC
klW0pIsW2UUxpSGRF4fFzAmFdNGgRCrctNBA1h+lIuaFEFLDMLOdbzzvB73w
XfwY532f5/2zspPth5otiqLkZN6RzMvNvHr78DvFVs1XzNiwjoO9hjf6t3st
X39vytqaW82H66LbQ7/zedOJj/ssPTo3ksZXNpLPN80XxLRyncfNuCX5RSDm
109Z+XL6wmxoSOd+++XVbTeslK9XhJU/2bb4sqlTsvh9QXLd67yd9/d66PvU
mYp0MOGh/GDU9z4tXhpr8JA+bXO46O1PqV/om5P+wPAPFuXDTuLn7b753mKV
8l2aWUxW7VCp3o+Hg85ErUp6Wk5n4qjkcHruYnxW5clSX6Pb5eFVZkyq5BeM
foCnCxd2T6yRfPuwd2NwQuf7I6OGMq1Sv5EfjPqYF/Sh/9CPecMfGP7BIt93
R9bPJ51HCrfYWj47sn2P6LzLmeeKTzn4m5E9A20HJBup2soV5ibun4nZQpOM
uLSvoXzsAaN8dlPfOUb1wNADht7jpr4rjPwUHBy825xi5PfaqtFudsxN/QCj
X2J+jxn1d6jybH+OT7LQa5HcEQl8aL2jEV9dqukYr9doHl1CwFbKD0b9P+Y9
lGmkj/u/vOoJaKRf6Atq5A8M/2DsKxj7jHzYd9TDPUAP7gWMe3J9u96XqNHo
3pAP94h+gNEv8Hmzn+OMvke/kR+M+pgX9GGe0I95wx8Y/sGdZv8qSrL7FGV8
wNynXSX817PkzeX3krGPYOwrWPh/JBn3BsY9oN7//5//AFqbSus=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
JjHitLALAM7SAnU=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4rrfVgXnblg4uK05upxhhoTDTBCQtHSouv/j
lvFqCYfiraK/T8dZOhiDwGYJh+tCnxzPH0Pw/3wrfTCn0ArO/w8C663g5s0A
mXfTykG4clLJWRcJhw16eYsZ31g5rBXS4UuPE3f4siEge9Z3K4cY1QiZczai
DmdAwMYazvc5wW4729Qabh4uPtg8O0k4/4FrvOOsi5h8mPlgOkcWbj+MD3Mf
mN8jDXH/SysIbSntcKRtefipR1YO6WlA8EwK7j+we+dIwf1vAgqPYCmH54kL
r5nkWzm4g9xrIQUJv2uWcP6Xnbe6/pYi+J9A7lG3hJhjL+UAix+YeTC+84Rm
obRfig6nDjutzZSzhPCllCD63S0dwjnF2o3llSDmnEfwS0DxaWeFKr8fGn/M
Sg4fQPrZoeF5TxGq3hoif1gR4l5Xawfla4+CGdYg+ODwdUTw9+bXvJ0pqgDx
7zRMPti9WooOElOvcGYssob4n0PJwb7p0fEZu6H2XVZy2GL+41CKFzS+7ig5
3JCuSTRitXZY+e1lxZkHSg7LX3jo/V9oBedPn8BfZbbaEq6ey021lMnKEm6e
+lvefQYvLeD8/uASlenrEfxoBcePyTm4+Rog/ZLmcPtgfHB6CFNySIm948bc
Ye7wYdF6hbMeSg4rQO77aO5QCcpP1koOL7K0v03/aw4NDwQfnO9WKsD54HiR
F4TzS5aXbPjXzwM3b7vXBos5P7nh9i2/tfyx4WFuuHsg6RfBP9i9r8kkmdOh
x+sVi8lCc4cm8VrWzDZOuHlg+2dyQsIrywLOFwfFzyME/xYo/E0t4fqfg9y3
1xJuPowPsx9cfvhZwt23v1bWIv2JBdz9sPQM8x+MD/M/evkEAD5pGh8=
"]]}, {
Thickness[0.034013605442176874`]}, StripOnInput -> False]}, {
ImageSize -> {44.0931407222914, 24.508064757160646`},
ImageSize -> {29.39542714819427, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {30., 17.}, PlotRange -> {{0., 29.4}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {-0.5826632620252883, 1.4104122349329522`}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
TagBox[
FrameBox[
StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["3", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["4", Smaller, StripOnInput -> False]], "Placeholder"]},
"LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.9, 0.36, 0.054],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.9, 0.36, 0.054];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable ->
False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.365248, 0.427802, 0.758297],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.2434986666666667, 0.28520133333333336`,
0.5055313333333333], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.365248, 0.427802, 0.758297];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.365248, 0.427802, 0.758297], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.945109, 0.593901, 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6300726666666667, 0.395934, 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.945109`", ",", "0.593901`", ",", "0.`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.945109, 0.593901, 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.945109, 0.593901, 0.], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.645957, 0.253192, 0.685109],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.430638, 0.16879466666666665`, 0.45673933333333333`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.645957`", ",", "0.253192`", ",", "0.685109`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.645957, 0.253192, 0.685109];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.645957, 0.253192, 0.685109], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.8017427266082287`*^9, {3.8026809446851177`*^9, 3.802680991475967*^9}, {
3.802682013769022*^9, 3.802682047876749*^9}, 3.804568913054068*^9},
CellLabel->"Out[44]=",ExpressionUUID->"e792ed8c-e828-4f34-9203-2a647a04c235"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "1.5"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]", "\[Lambda]EP", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800934803294652*^9, 3.800934828567528*^9}, {
3.800951966073148*^9, 3.800951966466264*^9}, {3.800952044593308*^9,
3.800952163791082*^9}, {3.8009522109247847`*^9, 3.800952237194292*^9}, {
3.800953108338159*^9, 3.800953126707988*^9}},
CellLabel->
"In[247]:=",ExpressionUUID->"7b41ef67-6714-425a-b787-737d0e979814"],
Cell[BoxData[
TemplateBox[{
"NSolve", "precw",
"\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{RowBox[{RowBox[{\\\"20.484682213077264`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"40.38408779149519`\\\", \\\
\" \\\", \\\"\[Epsilon]\\\"}], \\\"+\\\", RowBox[{\\\"28.8395061728395`\\\", \
\\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"8.888888888888888`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"]}], \\\"+\\\", RowBox[{\\\"1.`\\\
\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"4\\\"]}], \\\"-\\\", \
RowBox[{\\\"40.2670324645633`\\\", \\\" \\\", \\\"\[Lambda]\\\"}], \\\"+\\\", \
RowBox[{\\\"59.417283950617254`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \
\\\", \\\"\[Lambda]\\\"}], \\\"-\\\", RowBox[{\\\"28.223209876543194`\\\", \\\
\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"], \\\" \\\", \\\"\
\[Lambda]\\\"}], \\\"+\\\", RowBox[{\\\"4.337777777777776`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"], \\\" \\\", \
\\\"\[Lambda]\\\"}], \\\"+\\\", RowBox[{\\\"29.22481329065689`\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"28.69026063100135`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"+\\\", \
RowBox[{\\\"6.802962962962959`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"], \\\" \\\", SuperscriptBox[\\\"\
\[Lambda]\\\", \\\"2\\\"]}], \\\"-\\\", RowBox[{\\\"9.273903368388957`\\\", \
\\\" \\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}], \\\"+\\\", \
RowBox[{\\\"4.544087791495196`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}], \\\"+\\\", \
RowBox[{\\\"1.0862734339277538`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"4\\\"]}]}], \\\",\\\", RowBox[{RowBox[{\
\\\"-\\\", \\\"40.38408779149519`\\\"}], \\\"+\\\", \
RowBox[{\\\"57.679012345679`\\\", \\\" \\\", \\\"\[Epsilon]\\\"}], \\\"-\\\", \
RowBox[{\\\"26.666666666666664`\\\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\
\\\", \\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"4.`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"]}], \\\"+\\\", \
RowBox[{\\\"59.417283950617254`\\\", \\\" \\\", \\\"\[Lambda]\\\"}], \
\\\"-\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\
\"}], \\\"+\\\", RowBox[{\\\"13.013333333333328`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"], \\\" \\\", \
\\\"\[Lambda]\\\"}], \\\"-\\\", RowBox[{\\\"28.69026063100135`\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"+\\\", \
RowBox[{\\\"13.605925925925918`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"+\\\", \
RowBox[{\\\"4.544087791495196`\\\", \\\" \\\", SuperscriptBox[\\\"\[Lambda]\\\
\", \\\"3\\\"]}]}]}], \\\"}\\\"}]\\)) is less than WorkingPrecision \
(\\!\\(\\*RowBox[{\\\"30\\\"}]\\)).\"", 2, 249, 195, 22562004893941124449,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.800953123470736*^9, 3.8009531271315823`*^9}},
CellLabel->
"During evaluation of \
In[247]:=",ExpressionUUID->"58b1743b-726c-4519-9132-62a0d005f519"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{"2.00000000000023060867968580876717723775`28.784762272908303", "+",
RowBox[{
"0.7385489458731720481650625031578866979257415357905997710059`28.\
742603532776247", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{"2.00000000000023060867968580876717723775`28.784762272908303", "+",
RowBox[{
"0.7385489458731720481650625031578866979257415357905997710059`28.\
742603532776247", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{"2.00000000000023060867968580876717723775`28.784762272908303", "-",
RowBox[{
"0.7385489458731720481650625031578866979257415357905997710059`28.\
742603532776247", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{"2.00000000000023060867968580876717723775`28.784762272908303", "-",
RowBox[{
"0.7385489458731720481650625031578866979257415357905997710059`28.\
742603532776247", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"1.7180788754388699718668967211291306945962368709039930005602`29.\
397940008672037", "+",
RowBox[{
"0.9761811792275888495142615075427764654293363424569219777264`29.\
218913175720342", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"1.7180788754388699718668967211291306945962368709039930005602`29.\
397940008672037", "-",
RowBox[{
"0.9761811792275888495142615075427764654293363424569219777264`29.\
218913175720342", " ", "\[ImaginaryI]"}]}], ",",
"1.6043560762636770360450902914905972981907941771738780040049`29.\
397940008672037", ",",
"1.6043560762636770360450902914905972981907941771738780040049`29.\
397940008672037", ",",
"3.8956491285304137255402334376424383991239927620975145299407`29.\
69897000433602", ",",
"3.895638718944517674062320722340606749540284037093544137643`29.\
69897000433602"}], "}"}]], "Output",
CellChangeTimes->{
3.800952237965661*^9, {3.800953112162244*^9, 3.800953127469623*^9}},
CellLabel->
"Out[251]=",ExpressionUUID->"81b1d857-2115-44d1-a112-0c1196e98d5f"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{0., 0.}}, {{0.,
0.}}, {{2.0000000000002305`, 0.7385489458731721}}, {{
2.0000000000002305`, 0.7385489458731721}}, {{
2.0000000000002305`, -0.7385489458731721}}, {{
2.0000000000002305`, -0.7385489458731721}}, {{1.71807887543887,
0.9761811792275888}}, {{1.71807887543887, -0.9761811792275888}}, {{
1.604356076263677, 0.}}, {{1.604356076263677, 0.}}, {{
3.8956491285304136`, 0.}}, {{3.8956387189445176`, 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-4, 4}, {-4, 4}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.800934805610818*^9, 3.800934829648621*^9}, {
3.8009520405841093`*^9, 3.8009521643160667`*^9}, {3.8009522118256187`*^9,
3.800952238302854*^9}, {3.80095311251492*^9, 3.80095312776015*^9}},
CellLabel->
"During evaluation of \
In[247]:=",ExpressionUUID->"fb76247e-c69e-482f-914a-a6bbdd901b0f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",",
RowBox[{
RowBox[{
RowBox[{"-", "75"}], "/", "62"}], "-", "0.1"}]}], "]"}], ",",
"\[Epsilon]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{"Sort", "[", "\[Lambda]EP", "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.8008746125961227`*^9, 3.800874613419094*^9}, {
3.800939596258403*^9, 3.800939600023058*^9}, {3.800939645727189*^9,
3.8009396465883713`*^9}},
CellLabel->"In[83]:=",ExpressionUUID->"c16f29f6-13d0-4952-8989-a6da0e4c9f2a"],
Cell[BoxData[
TemplateBox[{
"NSolve", "precw",
"\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{RowBox[{RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"3.522510012854967`\\\", \\\"\[VeryThinSpace]\\\"}], \\\"+\
\\\", RowBox[{\\\"0.`\\\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \
\\\"+\\\", RowBox[{\\\"12.228549366777413`\\\", \\\" \\\", \
\\\"\[Epsilon]\\\"}], \\\"+\\\", RowBox[{\\\"13.755300704037847`\\\", \\\" \\\
\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"]}], \\\"+\\\", \
RowBox[{\\\"6.280499289914708`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"]}], \\\"+\\\", RowBox[{\\\"1.`\\\
\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"4\\\"]}], \\\"-\\\", \
RowBox[{\\\"13.957983774650579`\\\", \\\" \\\", \\\"\[Lambda]\\\"}], \
\\\"-\\\", RowBox[{\\\"33.965963824177564`\\\", \\\" \\\", \
\\\"\[Epsilon]\\\", \\\" \\\", \\\"\[Lambda]\\\"}], \\\"-\\\", \
RowBox[{\\\"24.506303401434522`\\\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\
\\\", \\\"2\\\"], \\\" \\\", \\\"\[Lambda]\\\"}], \\\"-\\\", \
RowBox[{\\\"5.436159461236507`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"], \\\" \\\", \
\\\"\[Lambda]\\\"}], \\\"+\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\
\"19.842591108652265`\\\", \\\"\[VeryThinSpace]\\\"}], \\\"+\\\", \
RowBox[{\\\"0.`\\\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \
\\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"+\\\", \
RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"30.466408374880512`\\\", \\\"\
\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"0.`\\\", \\\" \\\", \\\"\
\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \\\"\[Epsilon]\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"+\\\", RowBox[{RowBox[{\\\
\"(\\\", RowBox[{RowBox[{\\\"10.614521405780252`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"0.`\\\", \\\" \\\", \\\"\
\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"], \\\" \\\", SuperscriptBox[\\\"\
\[Lambda]\\\", \\\"2\\\"]}], \\\"-\\\", RowBox[{RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"12.052444004929706`\\\", \\\"\[VeryThinSpace]\\\"}], \
\\\"+\\\", RowBox[{\\\"0.`\\\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\
\"}], \\\" \\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}], \\\"-\\\", \
RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"8.845215234748615`\\\", \\\"\
\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"0.`\\\", \\\" \\\", \\\"\
\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \\\"\[Epsilon]\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}], \\\"+\\\", RowBox[{RowBox[{\\\
\"(\\\", RowBox[{RowBox[{\\\"2.6542989498631937`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"0.`\\\", \\\" \\\", \\\"\
\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", SuperscriptBox[\\\"\[Lambda]\\\
\", \\\"4\\\"]}]}], \\\",\\\", RowBox[{RowBox[{\\\"12.228549366777413`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"27.510601408075694`\\\", \
\\\" \\\", \\\"\[Epsilon]\\\"}], \\\"+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
\\\"9\\\", \\\"\[RightSkeleton]\\\"}], \\\"+\\\", RowBox[{RowBox[{\\\"(\\\", \
RowBox[{RowBox[{\\\"21.229042811560504`\\\", \\\"\[VeryThinSpace]\\\"}], \
\\\"+\\\", RowBox[{\\\"0.`\\\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\
\"}], \\\" \\\", \\\"\[Epsilon]\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"-\\\", RowBox[{RowBox[{\\\
\"(\\\", RowBox[{RowBox[{\\\"8.845215234748615`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"0.`\\\", \\\" \\\", \\\"\
\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", SuperscriptBox[\\\"\[Lambda]\\\
\", \\\"3\\\"]}]}]}], \\\"}\\\"}]\\)) is less than WorkingPrecision \
(\\!\\(\\*RowBox[{\\\"30\\\"}]\\)).\"", 2, 85, 173, 22562004893941124449,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.800939647733653*^9},
CellLabel->
"During evaluation of \
In[83]:=",ExpressionUUID->"6e12b5bf-75a6-41b9-ab18-4d6e8ce0ff09"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"1.25147299277507894769776481171293416345027506`28.79588001734408*^-13",
",", "1.25147299277507894769776481171293416345027506`28.79588001734408*^-\
13", ",",
RowBox[{
"0.7044418132311471198059829944620037038234383371091353176401`29.\
27332195685486", "-",
RowBox[{
"1.1837187019096520147274469831007333918272864851326280320654`29.\
397940008672037", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"0.7044418132311471198059829944620037038234383371091353176401`29.\
27332195685486", "+",
RowBox[{
"1.1837187019096520147274469831007333918272864851326280320654`29.\
397940008672037", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"1.171649153211529091483760355574507710167965060309438881891`29.\
397940008672037", "-",
RowBox[{
"0.2173326958640112444290943877853154896935951122957375964221`28.\
888366659510226", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"1.171649153211529091483760355574507710167965060309438881891`29.\
397940008672037", "+",
RowBox[{
"0.2173326958640112444290943877853154896935951122957375964221`28.\
888366659510226", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.0319282804099891449556339401930830445217344141673959431205`29.\
397940008672037", "-",
RowBox[{
"1.0033693925738271588977167870830430963652750219864339731272`29.\
238996779230405", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.0319282804099891449556339401930830445217344141673959431205`29.\
397940008672037", "+",
RowBox[{
"1.0033693925738271588977167870830430963652750219864339731272`29.\
238996779230405", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.06430282265860914075690077030619256584`28.78503321844003", "-",
RowBox[{
"0.7592061375927757232742273043289737443585461135130584415611`28.\
743992875124334", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.06430282265860914075690077030619256584`28.78503321844003", "-",
RowBox[{
"0.7592061375927757232742273043289737443585461135130584415611`28.\
743992875124334", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.06430282265860914075690077030619256584`28.78503321844003", "+",
RowBox[{
"0.7592061375927757232742273043289737443585461135130584415611`28.\
743992875124334", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.06430282265860914075690077030619256584`28.78503321844003", "+",
RowBox[{
"0.7592061375927757232742273043289737443585461135130584415611`28.\
743992875124334", " ", "\[ImaginaryI]"}]}]}], "}"}]], "Output",
CellChangeTimes->{3.800874615298991*^9, 3.8009396127062693`*^9,
3.800939648108144*^9},
CellLabel->"Out[87]=",ExpressionUUID->"0e4ab51f-91fc-48dc-b11e-74c81bf0bbe9"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
2.031928280409989, -1.0033693925738272`}}, {{2.031928280409989,
1.0033693925738272`}}, {{0.7044418132311471, -1.183718701909652}}, {{
0.7044418132311471, 1.183718701909652}}, {{
2.0643028226586093`, -0.7592061375927758}}, {{
2.0643028226586093`, -0.7592061375927758}}, {{2.0643028226586093`,
0.7592061375927758}}, {{2.0643028226586093`, 0.7592061375927758}}, {{
1.251472992775079*^-13, 0.}}, {{1.251472992775079*^-13, 0.}}, {{
1.1716491532115292`, -0.21733269586401124`}}, {{1.1716491532115292`,
0.21733269586401124`}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-4, 4}, {-4, 4}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.800874615948715*^9, 3.8009396130450277`*^9,
3.8009396483898706`*^9},
CellLabel->
"During evaluation of \
In[83]:=",ExpressionUUID->"0bc56279-8d57-45ca-ae17-fc2b034c080d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "2.6"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{
3.800166546436537*^9, {3.800166805610259*^9, 3.800166860773169*^9}, {
3.800874570860207*^9, 3.80087457810506*^9}, {3.8018008850094957`*^9,
3.801800915197033*^9}},
CellLabel->
"In[128]:=",ExpressionUUID->"fc527673-fba1-416c-8d9f-891a47b30e07"],
Cell[BoxData[
TemplateBox[{
"NSolve", "precw",
"\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{RowBox[{RowBox[{\\\"1.6037226082034441`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"6.035903738769181`\\\", \\\
\" \\\", \\\"\[Epsilon]\\\"}], \\\"+\\\", RowBox[{\\\"8.165109977443354`\\\", \
\\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"4.740772048464356`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"]}], \\\"+\\\", RowBox[{\\\"1.`\\\
\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"4\\\"]}], \\\"-\\\", \
RowBox[{\\\"3.313104753096014`\\\", \\\" \\\", \\\"\[Lambda]\\\"}], \
\\\"+\\\", RowBox[{\\\"9.468434049289387`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \
\\\" \\\", \\\"\[Lambda]\\\"}], \\\"-\\\", \
RowBox[{\\\"8.651447202832207`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"], \\\" \\\", \
\\\"\[Lambda]\\\"}], \\\"+\\\", RowBox[{\\\"2.549056072132995`\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"], \\\" \\\", \\\"\[Lambda]\
\\\"}], \\\"+\\\", RowBox[{\\\"2.5108100873927066`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"4.822861080577993`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"+\\\", \
RowBox[{\\\"2.2224147825861196`\\\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\
\\\", \\\"2\\\"], \\\" \\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \
\\\"-\\\", RowBox[{\\\"0.8314171248199549`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}], \\\"+\\\", \
RowBox[{\\\"0.8028747970168448`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}], \\\"+\\\", \
RowBox[{\\\"0.1018444341949686`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"4\\\"]}]}], \\\",\\\", RowBox[{RowBox[{\
\\\"-\\\", \\\"6.035903738769181`\\\"}], \\\"+\\\", \
RowBox[{\\\"16.330219954886708`\\\", \\\" \\\", \\\"\[Epsilon]\\\"}], \\\"-\\\
\", RowBox[{\\\"14.222316145393068`\\\", \\\" \\\", SuperscriptBox[\\\"\
\[Epsilon]\\\", \\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"4.`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"]}], \\\"+\\\", \
RowBox[{\\\"9.468434049289387`\\\", \\\" \\\", \\\"\[Lambda]\\\"}], \
\\\"-\\\", RowBox[{\\\"17.302894405664414`\\\", \\\" \\\", \
\\\"\[Epsilon]\\\", \\\" \\\", \\\"\[Lambda]\\\"}], \\\"+\\\", \
RowBox[{\\\"7.647168216398985`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"], \\\" \\\", \
\\\"\[Lambda]\\\"}], \\\"-\\\", RowBox[{\\\"4.822861080577993`\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"+\\\", \
RowBox[{\\\"4.444829565172239`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"+\\\", \
RowBox[{\\\"0.8028747970168448`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}]}]}], \\\"}\\\"}]\\)) is less \
than WorkingPrecision (\\!\\(\\*RowBox[{\\\"30\\\"}]\\)).\"", 2, 130, 34,
22567661377401331996, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.8018008855692043`*^9, 3.801800915569872*^9}},
CellLabel->
"During evaluation of \
In[128]:=",ExpressionUUID->"43ac5757-0975-4d44-958b-526a85138610"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
4.395128381858833, 0.}}, {{4.395128381858833, 0.}}, {{
2.500303296834466, -0.3705960999048549}}, {{2.500303296834466,
0.3705960999048549}}, {{2.564771367552213, 0.}}, {{2.564771367552213,
0.}}, {{0.6260848642929989, 0.49276603051116874`}}, {{
0.6260848642929989, -0.49276603051116874`}}, {{3.5599155040808635`*^-12,
0.}}, {{3.5599155040808635`*^-12, 0.}}, {{1.0229679653341484`,
0.07810050836783217}}, {{
1.0229679653341484`, -0.07810050836783217}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-4, 4}, {-4, 4}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.800166543390896*^9, 3.800166547543006*^9},
3.8001668067075*^9, {3.800166841331936*^9, 3.800166862242193*^9}, {
3.800874563882997*^9, 3.800874581321026*^9}, {3.8018008862471313`*^9,
3.8018009159871893`*^9}},
CellLabel->
"During evaluation of \
In[128]:=",ExpressionUUID->"a24c7cac-cc33-473e-b7ed-09df82cdca90"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "5"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Sort", "[", "\[Lambda]EP", "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5"}], ",", "0.5"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800166562518999*^9, 3.8001665628812447`*^9}, {
3.800339532860114*^9, 3.8003395898903093`*^9}},
CellLabel->
"In[180]:=",ExpressionUUID->"e3b16e5d-ae18-42ed-afea-82863f45eb0a"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
2.3146541396942277`, -0.02535111580965952}}, {{2.3146541396942277`,
0.02535111580965952}}, {{2.038331342468702, 0.}}, {{2.038331342468702,
0.}}, {{0.6407992624070532, -0.2647074635371719}}, {{0.6407992624070532,
0.2647074635371719}}, {{
1.0012150794904753`, -0.009310445464666289}}, {{1.0012150794904753`,
0.009310445464666289}}, {{0., 0.}}, {{0., 0.}}, {{-0.3716646758020353,
0.}}, {{-0.3716646758020353, 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-4, 4}, {-0.5, 0.5}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{
3.800166563444701*^9, 3.800339539961884*^9, {3.800339579489428*^9,
3.800339590506653*^9}},
CellLabel->
"During evaluation of \
In[180]:=",ExpressionUUID->"52c694be-b5de-4671-9227-12a698e31511"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "10"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{"Sort", "[", "\[Lambda]EP", "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.2"}], ",", "0.2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.8001665802265377`*^9, 3.800166580792862*^9}, {
3.8003473602245617`*^9, 3.800347376712645*^9}, 3.80456885513492*^9},
CellLabel->"In[38]:=",ExpressionUUID->"c2d60e3d-4d64-439d-b5f1-b8a8639ae541"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0", ",", "0", ",",
"0.3743144185183432347073862583026645187221349731325378297899`29.\
397940008672037", ",",
"0.3743144185183432347073862583026645187221349731325378297899`29.\
397940008672037", ",",
RowBox[{
"0.647944643781525555091838300499561960315896457622159918979`29.\
69897000433602", "-",
RowBox[{
"0.1658055066379045869815579671903376393915046646330429161858`29.\
54480298027201", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"0.647944643781525555091838300499561960315896457622159918979`29.\
69897000433602", "+",
RowBox[{
"0.1658055066379045869815579671903376393915046646330429161858`29.\
54480298027201", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"0.998996865660060367601336986542221409416472250425549856657`29.\
69897000433602", "-",
RowBox[{
"0.0136772947434721585087676614744037261321039358648589211705`28.\
286910379004038", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"0.998996865660060367601336986542221409416472250425549856657`29.\
69897000433602", "+",
RowBox[{
"0.0136772947434721585087676614744037261321039358648589211705`28.\
286910379004038", " ", "\[ImaginaryI]"}]}], ",",
"1.9462257378427086487325568831390053262985207648945402544841`29.\
397940008672034", ",",
"1.9462257378427086487325568831390053262985207648945402544841`29.\
397940008672034", ",",
RowBox[{
"2.2069836847970620735219751679456088275965222550927890528616`29.\
397940008672034", "-",
RowBox[{
"0.0229855063787596658349055786945654800554864651130945424538`28.\
168146398348416", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.2069836847970620735219751679456088275965222550927890528616`29.\
397940008672034", "+",
RowBox[{
"0.0229855063787596658349055786945654800554864651130945424538`28.\
168146398348416", " ", "\[ImaginaryI]"}]}]}], "}"}]], "Output",
CellChangeTimes->{3.804568859311782*^9},
CellLabel->"Out[42]=",ExpressionUUID->"178553f4-c694-427b-9a3e-86aaf01b5315"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
2.206983684797062, -0.022985506378759665`}}, {{2.206983684797062,
0.022985506378759665`}}, {{1.9462257378427086`, 0.}}, {{
1.9462257378427086`, 0.}}, {{
0.9989968656600604, -0.013677294743472158`}}, {{0.9989968656600604,
0.013677294743472158`}}, {{
0.6479446437815256, -0.16580550663790458`}}, {{0.6479446437815256,
0.16580550663790458`}}, {{0.37431441851834324`, 0.}}, {{
0.37431441851834324`, 0.}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-4, 4}, {-0.2, 0.2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{
3.800166581305282*^9, {3.80034736676245*^9, 3.800347377569419*^9},
3.8045688603859463`*^9},
CellLabel->
"During evaluation of \
In[38]:=",ExpressionUUID->"5d54fc1c-415a-45e2-8793-875d3395ce53"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"uH\[Lambda]", "/.",
RowBox[{"R", "\[Rule]", "100"}]}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Sort", "[", "\[Lambda]EP", "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800166590256907*^9, 3.800166590932949*^9}},
CellLabel->
"In[293]:=",ExpressionUUID->"90b1403f-09f2-43dc-ab86-39c6e34ac1ba"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
2.1450617341170637`, -0.021257964240190448`}}, {{2.1450617341170637`,
0.021257964240190448`}}, {{1.8991880089421604`, 0.}}, {{
1.8991880089421604`, 0.}}, {{
0.9989343505413181, -0.025890769500299476`}}, {{0.9989343505413181,
0.025890769500299476`}}, {{
0.6523580786420188, -0.08200339560060316}}, {{0.6523580786420188,
0.08200339560060316}}, {{0.6133710260426484, 0.}}, {{0.6133710260426484,
0.}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-4, 4}, {-4, 4}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.800166591770562*^9},
CellLabel->
"During evaluation of \
In[293]:=",ExpressionUUID->"448954c3-4b8c-4ae9-900e-87b9b9ce36df"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "500"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{"Sort", "[", "\[Lambda]EP", "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800166602638564*^9, 3.8001666036560717`*^9}, {
3.800953180989818*^9, 3.8009531977255907`*^9}},
CellLabel->
"In[271]:=",ExpressionUUID->"c5867d15-affb-4f83-a970-58502ae71ab6"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0", ",", "0", ",",
"0.6251711422677905532187290469867663155282823045742149681683`29.\
397940008672037", ",",
"0.6251711422677905532187290469867663155282823045742149681683`29.\
397940008672037", ",",
RowBox[{
"0.6526248255722772871635068983708714656128952731059899732768`29.\
69897000433602", "-",
RowBox[{
"0.074673035951051083310458537174570570315430666886436412798`29.\
206190809275245", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"0.6526248255722772871635068983708714656128952731059899732768`29.\
69897000433602", "+",
RowBox[{
"0.074673035951051083310458537174570570315430666886436412798`29.\
206190809275245", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"0.9989557672191235494441649557518694224250214675089170460413`29.\
69897000433602", "-",
RowBox[{
"0.0265838898439002517039454660631269104955269952510768396199`28.\
575433542775446", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"0.9989557672191235494441649557518694224250214675089170460413`29.\
69897000433602", "+",
RowBox[{
"0.0265838898439002517039454660631269104955269952510768396199`28.\
575433542775446", " ", "\[ImaginaryI]"}]}], ",",
"1.8965126483606129161877714975684385948492981550673900671348`29.\
397940008672037", ",",
"1.8965126483606129161877714975684385948492981550673900671348`29.\
397940008672037", ",",
RowBox[{
"2.1414728688655398349598157798450962957469420520885184556199`29.\
397940008672037", "-",
RowBox[{
"0.0198608404483218912443287555866307388147179127994214337973`28.\
117781366891457", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"2.1414728688655398349598157798450962957469420520885184556199`29.\
397940008672037", "+",
RowBox[{
"0.0198608404483218912443287555866307388147179127994214337973`28.\
117781366891457", " ", "\[ImaginaryI]"}]}]}], "}"}]], "Output",
CellChangeTimes->{{3.80095318193006*^9, 3.800953198594833*^9}},
CellLabel->
"Out[275]=",ExpressionUUID->"9a4fb0ec-cd66-456e-835e-6d436cbd7d05"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
2.14147286886554, -0.01986084044832189}}, {{2.14147286886554,
0.01986084044832189}}, {{1.896512648360613, 0.}}, {{1.896512648360613,
0.}}, {{0.9989557672191236, -0.02658388984390025}}, {{
0.9989557672191236, 0.02658388984390025}}, {{
0.6526248255722773, -0.07467303595105108}}, {{0.6526248255722773,
0.07467303595105108}}, {{0.6251711422677906, 0.}}, {{0.6251711422677906,
0.}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-4, 4}, {-4, 4}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{
3.800166604428187*^9, {3.8009531822227497`*^9, 3.80095319893862*^9}},
CellLabel->
"During evaluation of \
In[271]:=",ExpressionUUID->"f2944c76-6125-42de-9c7a-945ab662159a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",",
RowBox[{
"0.2374891467337787324088047102385541022612789519696924509021`29.\
057249529911832", "-",
RowBox[{
"0.8028546019039053543517392040254700532679904648679610977402`29.\
397940008672037", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.1", ",",
RowBox[{
"0.4103602476827904930974827867820610912316749461629579191583`29.\
397940008672034", "-",
RowBox[{
"0.9199967823451507732947378036217367894690103625221676596362`29.\
382045606050877", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.2", ",",
RowBox[{
"0.6325132614340338064606724797757945618337008173994847866943`29.\
397940008672037", "-",
RowBox[{
"0.9969463513600492866805439325006681051550875709224992364534`29.\
37657862532185", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.3", ",",
RowBox[{
"0.8983661464806765204328282865490136810518356955335865118411`29.\
397940008672037", "-",
RowBox[{
"1.0117986604394248391677330434612120547211143805339788696858`29.\
338150095970537", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.4", ",",
RowBox[{
"1.2132194606214072560152425658109284555296301326112167278446`29.\
358978980210164", "-",
RowBox[{
"0.9398425629846078013761494783848553304053852385701496357056`29.\
397940008672037", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.5", ",",
RowBox[{
"1.7180788754388699718668967211291306945962368709039930005602`29.\
397940008672037", "+",
RowBox[{
"0.9761811792275888495142615075427764654293363424569219777264`29.\
218913175720342", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.6", ",",
RowBox[{
"1.2213127273900431528823334673558248119938342390482437008927`29.\
397940008672037", "-",
RowBox[{
"0.2341254632770232770262092034821885597194057838759222967847`28.\
902119336225294", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.7", ",",
RowBox[{
"1.1462056976220943513227441662158693646748908075043656549443`29.\
397940008672037", "-",
RowBox[{
"0.2049914959325541227299672600454722499046824129731852508417`28.\
87426974111576", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1.8", ",",
RowBox[{
"1.1070228917699778321081079490164397513201721157339728599782`29.\
397940008672037", "-",
RowBox[{
"0.1797376523337093194544259341484853513277700915761132064295`28.\
842045645066868", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"2", ",",
RowBox[{
"1.0655678648783681952455499596090965480045810739079991800999`29.\
397940008672037", "-",
RowBox[{
"0.1414990387982489895023924064789054248077506698461980555895`28.\
793316676554895", " ", "\[ImaginaryI]"}]}]}], "}"}]}], "}"}], "//",
"Abs"}]], "Input",
CellChangeTimes->{{3.801986833849189*^9, 3.801986838184083*^9}, {
3.801986892248054*^9, 3.801986902202458*^9}, {3.8019869406722593`*^9,
3.8019870178662977`*^9}, {3.801987064204771*^9, 3.801987071093266*^9}, {
3.801987252563355*^9, 3.801987260944914*^9}, {3.80198732097829*^9,
3.8019873265086412`*^9}, {3.801987359799917*^9, 3.801987365633395*^9}, {
3.801987460268141*^9, 3.801987524205697*^9}},
CellLabel->"In[99]:=",ExpressionUUID->"141bf38d-c2c5-48bb-9032-5605f04bb986"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",",
"0.8372434571942719174709848054876339028996391379036395056783`29.\
35818958434467"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.1`", ",",
"1.0073676649583864253023301680161145856827842190835168673413`29.\
384643216109342"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.2`", ",",
"1.1806672068707732360145619199598521452833111841474963223604`29.\
38260262929695"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.3`", ",",
"1.35306993995489932677509118723192298330639713334041406073`29.\
36349874541293"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.4`", ",",
"1.5346678803011336999024836477931887900818194739419630573141`29.\
37318460654532"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.5`", ",",
"1.9760376304381093501790635490498365642526666691994111520203`29.\
346978451060966"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.6`", ",",
"1.2435511692888180617058862112801644953777287893846624120874`29.\
366300894915515"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.7`", ",",
"1.164392122382326297549203881433715740881463333262773216045`29.\
367539851218485"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.8`", ",",
"1.1215191958095043752326967028200482032456150494419962200788`29.\
369901027080203"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"2", ",",
"1.074921789081546487205347181983407558609538486715624845771`29.\
375761277750755"}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.8019869698351517`*^9, 3.801987526559959*^9},
CellLabel->"Out[99]=",ExpressionUUID->"2c1a6f30-deb3-42d6-8950-af7181d63d56"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"1", ",",
"0.8372434571942719174709848054876339028996391379036395056783`29.\
35818958434467"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.1`", ",",
"1.0073676649583864253023301680161145856827842190835168673413`29.\
384643216109342"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.2`", ",",
"1.1806672068707732360145619199598521452833111841474963223604`29.\
38260262929695"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.3`", ",",
"1.35306993995489932677509118723192298330639713334041406073`29.\
36349874541293"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.4`", ",",
"1.5346678803011336999024836477931887900818194739419630573141`29.\
37318460654532"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.5`", ",",
"1.9760376304381093501790635490498365642526666691994111520203`29.\
346978451060966"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.6`", ",",
"1.2435511692888180617058862112801644953777287893846624120874`29.\
366300894915515"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.7`", ",",
"1.164392122382326297549203881433715740881463333262773216045`29.\
367539851218485"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"1.8`", ",",
"1.1215191958095043752326967028200482032456150494419962200788`29.\
369901027080203"}], "}"}], ",",
RowBox[{"{",
RowBox[{
"2", ",",
"1.074921789081546487205347181983407558609538486715624845771`29.\
375761277750755"}], "}"}]}], "}"}], "]"}]], "Input",
CellChangeTimes->{{3.801987529950062*^9, 3.8019875469711246`*^9}},
CellLabel->
"In[100]:=",ExpressionUUID->"882c4064-a2bb-45f0-ba21-eed2b7dfee7d"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
PointBox[{{1., 0.837243457194272}, {1.1, 1.0073676649583865`}, {1.2,
1.1806672068707733`}, {1.3, 1.3530699399548993`}, {1.4,
1.5346678803011338`}, {1.5, 1.9760376304381093`}, {1.6,
1.2435511692888181`}, {1.7, 1.1643921223823264`}, {1.8,
1.1215191958095043`}, {2., 1.0749217890815466`}}]}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6]}, {}}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.9791666666666669, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0.9791666666666669, 2.}, {0, 1.9760376304381093`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.801987548309491*^9},
CellLabel->
"Out[100]=",ExpressionUUID->"c34f4831-99f5-4642-b2dd-3e6e7cf55f49"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1.5"}], "}"}], ",",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]",
"0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Sort", "[", "\[Lambda]EP", "]"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"Re", "[",
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E_\\\\text{UHF}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}], "]"}]}]}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.8019867923002033`*^9, 3.801986823442676*^9}, {
3.801986855897053*^9, 3.8019868720205*^9}, {3.801986922142303*^9,
3.801986925569375*^9}, {3.801986992672366*^9, 3.801987022726304*^9}, {
3.801987074106228*^9, 3.8019870784106073`*^9}, {3.801987269267577*^9,
3.8019872696218643`*^9}, {3.8019873332522373`*^9, 3.8019873338085823`*^9}, {
3.8019874440563602`*^9, 3.801987444465632*^9}, {3.8019874792163773`*^9,
3.801987510534107*^9}, {3.801995650749317*^9, 3.801995651743333*^9}},
CellLabel->"In[64]:=",ExpressionUUID->"3c69d6bc-455b-4e7c-8ee6-355abc159580"],
Cell[BoxData[
TemplateBox[{
"NSolve", "precw",
"\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{RowBox[{RowBox[{\\\"20.484682213077264`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"40.38408779149519`\\\", \\\
\" \\\", \\\"\[Epsilon]\\\"}], \\\"+\\\", RowBox[{\\\"28.8395061728395`\\\", \
\\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"8.888888888888888`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"]}], \\\"+\\\", RowBox[{\\\"1.`\\\
\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"4\\\"]}], \\\"-\\\", \
RowBox[{\\\"40.2670324645633`\\\", \\\" \\\", \\\"\[Lambda]\\\"}], \\\"+\\\", \
RowBox[{\\\"59.417283950617254`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \
\\\", \\\"\[Lambda]\\\"}], \\\"-\\\", RowBox[{\\\"28.223209876543194`\\\", \\\
\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"], \\\" \\\", \\\"\
\[Lambda]\\\"}], \\\"+\\\", RowBox[{\\\"4.337777777777776`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"], \\\" \\\", \
\\\"\[Lambda]\\\"}], \\\"+\\\", RowBox[{\\\"29.22481329065689`\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"28.69026063100135`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"+\\\", \
RowBox[{\\\"6.802962962962959`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"], \\\" \\\", SuperscriptBox[\\\"\
\[Lambda]\\\", \\\"2\\\"]}], \\\"-\\\", RowBox[{\\\"9.273903368388957`\\\", \
\\\" \\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}], \\\"+\\\", \
RowBox[{\\\"4.544087791495196`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}], \\\"+\\\", \
RowBox[{\\\"1.0862734339277538`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"4\\\"]}]}], \\\",\\\", RowBox[{RowBox[{\
\\\"-\\\", \\\"40.38408779149519`\\\"}], \\\"+\\\", \
RowBox[{\\\"57.679012345679`\\\", \\\" \\\", \\\"\[Epsilon]\\\"}], \\\"-\\\", \
RowBox[{\\\"26.666666666666664`\\\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\
\\\", \\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"4.`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"]}], \\\"+\\\", \
RowBox[{\\\"59.417283950617254`\\\", \\\" \\\", \\\"\[Lambda]\\\"}], \
\\\"-\\\", RowBox[{\\\"56.44641975308639`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \
\\\" \\\", \\\"\[Lambda]\\\"}], \\\"+\\\", \
RowBox[{\\\"13.013333333333328`\\\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\
\\\", \\\"2\\\"], \\\" \\\", \\\"\[Lambda]\\\"}], \\\"-\\\", \
RowBox[{\\\"28.69026063100135`\\\", \\\" \\\", SuperscriptBox[\\\"\[Lambda]\\\
\", \\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"13.605925925925918`\\\", \\\" \\\", \
\\\"\[Epsilon]\\\", \\\" \\\", SuperscriptBox[\\\"\[Lambda]\\\", \
\\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"4.544087791495196`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}]}]}], \\\"}\\\"}]\\)) is less \
than WorkingPrecision (\\!\\(\\*RowBox[{\\\"30\\\"}]\\)).\"", 2, 64, 1,
22568957072357172025, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.801995655735897*^9},
CellLabel->
"During evaluation of \
In[64]:=",ExpressionUUID->"62be9c73-e32f-4d98-89db-e9be32def3bc"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0", ",", "0", ",",
"1.6043560762636770360450902914905972981907941771738780040049`29.\
397940008672037", ",",
"1.6043560762636770360450902914905972981907941771738780040049`29.\
397940008672037", ",",
RowBox[{
"1.7180788754388699718668967211291306945962368709039930005602`29.\
397940008672037", "-",
RowBox[{
"0.9761811792275888495142615075427764654293363424569219777264`29.\
218913175720342", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"1.7180788754388699718668967211291306945962368709039930005602`29.\
397940008672037", "+",
RowBox[{
"0.9761811792275888495142615075427764654293363424569219777264`29.\
218913175720342", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{"2.00000000000023060867968580876717723775`28.784762272908303", "-",
RowBox[{
"0.7385489458731720481650625031578866979257415357905997710059`28.\
742603532776247", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{"2.00000000000023060867968580876717723775`28.784762272908303", "-",
RowBox[{
"0.7385489458731720481650625031578866979257415357905997710059`28.\
742603532776247", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{"2.00000000000023060867968580876717723775`28.784762272908303", "+",
RowBox[{
"0.7385489458731720481650625031578866979257415357905997710059`28.\
742603532776247", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{"2.00000000000023060867968580876717723775`28.784762272908303", "+",
RowBox[{
"0.7385489458731720481650625031578866979257415357905997710059`28.\
742603532776247", " ", "\[ImaginaryI]"}]}], ",",
"3.895638718944517674062320722340606749540284037093544137643`29.\
69897000433602", ",",
"3.8956491285304137255402334376424383991239927620975145299407`29.\
69897000433602"}], "}"}]], "Print",
CellChangeTimes->{
3.801986823827594*^9, {3.801986860364794*^9, 3.801986872434085*^9},
3.8019869264188423`*^9, {3.801986993967682*^9, 3.8019870234942093`*^9}, {
3.801987075210474*^9, 3.801987079138709*^9}, 3.801987270393096*^9,
3.8019873349421453`*^9, 3.80198744537703*^9, 3.801987480320167*^9,
3.801987510881637*^9, 3.801995656180057*^9},
CellLabel->
"During evaluation of \
In[64]:=",ExpressionUUID->"37856ad8-140c-458d-abea-3eb9ff8417ec"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8DPre4tjuMYQBT7GiY7
/AfA8Ir1/ArhGEDERqVcdvgHwBBo/MuH3hhAJt65yezwB8BRIgpqgdkYQOoM
46PZ4QfA1JYlpnTPGEBwajVYs8MHwNh/XB5buxhAfiXawGaHB8DhUcoOKJMY
QJqbI5LNDgfA9PWl78FCGECf34hvUQkGwKJ46S1vlBdAFtBTTykVBcBGbhvD
qfEWQMhQU0TLJQTAEsTFuxVSFkBIKSV0IyIDwGhU/DD7pBVAOq5cps8vAsC0
VyH9bQMVQPqKZhMyKQHAiZXSRVpUFED196SVXicAwIYz/PF3qBNAxCKSNL5t
/r95RBT1IggTQDsFf7MrZPy/9o+4dEdaEkCUQDc3QX36v2pOS0v5txFAY5xY
5eqf+L8EbVaF3BgRQM+nHgkBmva/KMbtOzlsEEAeDLAxv7b0v4Qk55JGlg9A
CiDmz+mq8r/MMQunDTkOQGxUhZioqPC/Y/8fgjfiDEBgw9/LHpLtv+ayEQt8
ogtAIj3+UcWB6b982xuNs0cKQKlos+G7tuW//ukCvQUECUBq87Fci5rhv5Rt
AuZKpQdALn4FWQYj2794sfLV8kwGQBN51AuWm9O/Sdu/c7ULBUDXZGwqr+PG
vy16pQprrwNAd3oqjsmVrr/+/mdPO2oCQKqPOECkMK0/HkQbW24rAUCOaYHW
YILHP6D8zb8oo/8/DfRMO6xR0z/ePB8lqh39P+B0xjR2hNs/QmehfBFi+j/u
uU3Cd8jhP0QSBWI+s/c/poehYGSJ5T8fiSKjoDL1PyX2qxN4m+k/IOpw1uh7
8j/esh+9O2jtP/Qt8srM5u8/VZfgiOuQ8D/kiMUEU+/qP56ljL1MlvI/Irj6
IqWL5T8EW23tBXn0PxJ/o/hhhOA/zmCpp1KE9j+cNFxl1SHWP7UNGl33bPg/
8DSxkHjnxz8mmiHoB0z6P4AssC2Wi58/+naE/atT/D+g2L1zY7XBv+v6Gw6o
OP4/AKyxZ0f10r+gZ4fUGyMAQBjDwExF6N2/kEHMjBklAUDg6yR9FlTkvw5v
q0LDFQJAgN51nJ9X6b++RLi9thoDQNT8ZNdcx+6//W1fNlYOBEC+QXCtV+3x
vwEH0pkr/QRAcoRMYTtq9L82SHLCSgAGQADd9yI5Hfe/+tys6BXyBkC0aemI
AaL5v0RsyJBN9gZAJD2InkCt+b+N++M4hfoGQJIQJ7R/uPm/IBobifQCB0Bw
t2Tf/c75v0dXiSnTEwdALAXgNfr7+b+U0WVqkDUHQKSg1uLyVfq/LsYe7Ap5
B0CU18M85An7v3hVOpRCfQdABKtiUiMV+7/B5FU8eoEHQHJ+AWhiIPu/VAON
jOmJB0BQJT+T4Db7v3tA+yzImgdADHO66dxj+7/IutdthbwHQIQOsZbVvfu/
EkrzFb3AB0D04U+sFMn7v1zZDr70xAdAZLXuwVPU+7/v90UOZM0HQEJcLO3R
6vu/FjW0rkLeB0AAqqdDzhf8v2DEz1Z64gdAcH1GWQ0j/L+pU+v+seYHQNxQ
5W5MLvy/PHIiTyHvB0C69yKaykT8v4YBPvdY8wdAKsvBrwlQ/L/QkFmfkPcH
QJqeYMVIW/y/GiB1R8j7B0AKcv/ah2b8v2OvkO///wdAeEWe8MZx/L9o72Tw
"]]}, Annotation[#, "Charting`Private`Tag$4637#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8DyTUDcOI4TQBT7GiY7
/AfAB4zvEIyME0DERqVcdvgHwBzKnkXfihNAJt65yezwB8BIRv2uhYcTQOoM
46PZ4QfAnz66gdKAE0BwajVYs8MHwEwvNCdscxNAfiXawGaHB8CoEChyn1gT
QJqbI5LNDgfAYNMPCAYjE0Cf34hvUQkGwCjVPNzOrhJAFtBTTykVBcDseLM/
S0ISQMhQU0TLJQTAdAclkOjXEUBIKSV0IyIDwFgS9IiBZBFAOq5cps8vAsA1
vwwRzvgQQPqKZhMyKQHAbuiCQRaEEED196SVXicAwGz8815/ERBAxCKSNL5t
/r/GZF0XOE0PQDsFf7MrZPy/bcmNwWhlDkCUQDc3QX36vwZyUYoAjQ1AY5xY
5eqf+L8q8Aot2rgMQM+nHgkBmva/BGd/IKvSC0AeDLAxv7b0v9IhhzLj+wpA
CiDmz+mq8r9Y1UmVEhMKQGxUhZioqPC/Z14C0oMuCUBgw9/LHpLtv2krTi1c
WQhAIj3+UcWB6b8i8VTZK3IHQKlos+G7tuW/z/ruo2KaBkBq87Fci5rhvzP9
Q7+QsAVALn4FWQYj278g1Y60AMsEQBN51AuWm9O/AfFsyNf0A0DXZGwqr+PG
v5kFBi2mDANAd3oqjsmVrr8kXjKw2zMCQKqPOECkMK0/OYxUDVNfAUCOaYHW
YILHPwazMbvBeABADfRMO6xR0z+KO0QPL0P/P+B0xjR2hNs/eAKbSclw/T/u
uU3Cd8jhP3l03Tfnpvs/poehYGSJ5T9gbkZj0/v5PyX2qxN4m+k/tlklMK4s
+D/esh+9O2jtP/LMKjpXfPY/VZfgiOuQ8D9D6xv4g9T0P56ljL1MlvI/AvuC
V58I8z8EW23tBXn0P6iSEPSIW/E/zmCpp1KE9j94NyhkwhTvP7UNGl33bPg/
bFl8Wg+w6z8mmiHoB0z6P4bRp7hjXOg/+naE/atT/D+ALL9ZlcDkP+v6Gw6o
OP4/RpcjdWNi4T+gZ4fUGyMAQNDJ56YdeNs/kEHMjBklAUBcETczg03UPw5v
q0LDFQJAEPFAaEM8yz++RLi9thoDQMCVhuvqebk//W1fNlYOBEAAhsNw0nx5
vwEH0pkr/QRAQFXk+kkhvL82SHLCSgAGQJCtrlvudcy/+tys6BXyBkCoeFvo
YvLUv0RsyJBN9gZAKFdYd2AQ1b+N++M4hfoGQKg1VQZeLtW/IBobifQCB0Cg
8k4kWWrVv0dXiSnTEwdAmGxCYE/i1b+U0WVqkDUHQIBgKdg70ta/LsYe7Ap5
B0BYSPfHFLLYv3hVOpRCfQdA2Cb0VhLQ2L/B5FU8eoEHQFAF8eUP7ti/VAON
jOmJB0BIwuoDCyrZv3tA+yzImgdAQDzePwGi2b/IutdthbwHQCgwxbftkdq/
EkrzFb3AB0CoDsJG66/av1zZDr70xAdAKO2+1ejN2r/v90UOZM0HQCCquPPj
Cdu/FjW0rkLeB0AgJKwv2oHbv2DEz1Z64gdAoAKpvtef27+pU+v+seYHQBjh
pU3Vvdu/PHIiTyHvB0AQnp9r0Pnbv4YBPvdY8wdAkHyc+s0X3L/QkFmfkPcH
QBBbmYnLNdy/GiB1R8j7B0CQOZYYyVPcv2OvkO///wdACBiTp8Zx3L80Dk2o
"]]}, Annotation[#, "Charting`Private`Tag$4637#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8CZamO3ddMJQBT7GiY7
/AfAMCzmLCLRCUDERqVcdvgHwA57qqDOzglAJt65yezwB8DqvvWCJ8oJQOoM
46PZ4QfAeciIMtnACUBwajVYs8MHwGeMLz08rglAfiXawGaHB8C89Or8AIkJ
QJqbI5LNDgfA3XvLCIU+CUCf34hvUQkGwOm3+zjrnAhAFtBTTykVBcBPcmh7
5AUIQMhQU0TLJQTAHM7DOrFxB0BIKSV0IyIDwPIC8vjD0AZAOq5cps8vAsB7
Ey3VaDoGQPqKZhMyKQHAHtMvw0OXBUD196SVXicAwCCL/obf9gRAxCKSNL5t
/r82NL1AC2EEQDsFf7MrZPy/hzusllC+A0CUQDc3QX36v2VdWhYhJgNAY5xY
5eqf+L8e74jRqJACQM+nHgkBmva/1AEetSPuAUAeDLAxv7b0vyX3mdYiVgFA
CiDmz+mq8r+qD17z7rAAQGxUhZioqPC/vj09ukEOAEBgw9/LHpLtv7C+SrgX
7P4/Ij3+UcWB6b8Civ9SsaD9P6los+G7tuW/pAyqkRJq/D9q87Fci5rhvwCd
U4/gF/s/Ln4FWQYj27+f8+kx98n5PxN51AuWm9O/XasQ4YeQ+D/XZGwqr+PG
v36EF9JEOvc/d3oqjsmVrr+kPXrtDvj1P6qPOECkMK0/BmoaJEa59D+OaYHW
YILHP3uxs/2gW/M/DfRMO6xR0z+vu14xHxHyP+B0xjR2hNs/z8hgnG2l8D/u
uU3Cd8jhPwpS+QFxc+4/poehYGSJ5T8uzvkmq77rPyX2qxN4m+k/VI2Ad5C8
6D/esh+9O2jtP+h9BAZm2OU/VZfgiOuQ8D+cmwDm2OriP56ljL1MlvI/YGj7
6Oo63z8EW23tBXn0P6DIl2Fhytg/zmCpp1KE9j+0yAKTE3XRP7UNGl33bPg/
0Lh/8Yd4xD8mmiHoB0z6PwC8qJKhK6Y/+naE/atT/D+guZr5cRq3v+v6Gw6o
OP4/cP2xMBFbzL+gZ4fUGyMAQNi5nBwQute/kEHMjBklAUB4rwkgycHgvw5v
q0LDFQJAVF7Dlh985b++RLi9thoDQPRgDcKuw+q//W1fNlYOBECEDNhZrNDv
vwEH0pkr/QRACO0ATlxu8r82SHLCSgAGQMhxpg2tNvW/+tys6BXyBkCq2EDR
Q9j3v0RsyJBN9gZA9PrMtxTk97+N++M4hfoGQGawCizm7/e/IBobifQCB0AC
G9e7igf4v0dXiSnTEwdAXmBvbNo2+L+U0WVqkDUHQJILubCTlfi/LsYe7Ap5
B0Bo/CrSalP5v3hVOpRCfQdAoiA7m0xf+b/B5FU8eoEHQECOleQua/m/VAON
jOmJB0BgnZT29IL5v3tA+yzImgdA6HK+DIey+b/IutdthbwHQMjd+arCEfq/
EkrzFb3AB0AyEvpJrB36v1zZDr70xAdAytkZY5Yp+r/v90UOZM0HQJ5LOQJs
Qfq/FjW0rkLeB0CWXpLpHHH6v2DEz1Z64gdA5HonTwp9+r+pU+v+seYHQJoN
5yv4iPq/PHIiTyHvB0BmPHFJ1aD6v4YBPvdY8wdAHnqCicSs+r/QkFmfkPcH
QPZwSz+0uPq/GiB1R8j7B0ASP3BqpMT6v2OvkO///wdALlSVCpXQ+r/UQmug
"]]}, Annotation[#, "Charting`Private`Tag$4637#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8AOyeIaXkAeQBT7GiY7
/AfADlNmWIs9HkDERqVcdvgHwGwWyZa4Oh5AJt65yezwB8AYSi0WEzUeQOoM
46PZ4QfAiHB3H8gpHkBwajVYs8MHwPpkS1wyEx5AfiXawGaHB8CkXbyAB+Yd
QJqbI5LNDgfAvnNpg7SLHUCf34hvUQkGwJJzvKHpxxxAFtBTTykVBcAWxdiG
KREcQMhQU0TLJQTApvTSmRBeG0BIKSV0IyIDwDoilNLemxpAOq5cps8vAsDQ
cjZMuOYZQPqKZhMyKQHAYlYl4oAiGUD196SVXicAwIVsg/n5YRhAxCKSNL5t
/r/6GtFlf64XQDsFf7MrZPy/2wQ3KQLsFkCUQDc3QX36v1HypKeTNhZAY5xY
5eqf+L+Z1qd02oQVQM+nHgkBmva/6uSn0jHEFEAeDLAxv7b0v8wSnGGbEBRA
CiDmz+mq8r+cmRyYKE4TQGxUhZioqPC/ZMTkZYOPEkBgw9/LHpLtv0QGENb2
3RFAIj3+UcWB6b+mkLIVsx0RQKlos+G7tuW/ED4/vJFqEEBq87Fci5rhvyYl
ebC+UQ9ALn4FWQYj27+MyKduV9YNQBN51AuWm9O/Gl1dxlt1DEDXZGwqr+PG
vwi2g0fe9wpAd3oqjsmVrr+sQEvTApUJQKqPOECkMK0/Mm8eqpI6CECOaYHW
YILHPz7l1fmkxAZADfRMO6xR0z+km1M8zmkFQOB0xjR2hNs/paWGraP0A0Du
uU3Cd8jhP5ojl7qciQJApoehYGSJ5T9alIRQlToBQCX2qxN4m+k/1JLiy+6n
/z/esh+9O2jtP6ynWxcMFf0/VZfgiOuQ8D/4YG1rHpv6P56ljL1MlvI/9EYA
fUT79z8EW23tBXn0P5zkSHcsmvU/zmCpp1KE9j9vhB8YbhzzP7UNGl33bPg/
y+J/a+Hg8D8mmiHoB0z6P5jkffYwku0/+naE/atT/D9i2Ke0kEHpP+v6Gw6o
OP4/RJippgBx5T+gZ4fUGyMAQMxhV3ePh+E/kEHMjBklAUCQLJD0RcrbPw5v
q0LDFQJA+FvnwtxV1T++RLi9thoDQMi2y5oOSc0//W1fNlYOBEDwdL1ep0bB
PwEH0pkr/QRAAExGW2GKpz82SHLCSgAGQAA4IFp0d6i/+tys6BXyBkBwgkhn
mAnBv0RsyJBN9gZA4FWlYNI5wb+N++M4hfoGQNCPdewHasG/IBobifQCB0AQ
Bo7JZcrBv0dXiSnTEwdAsHHD++yKwr+U0WVqkDUHQPBEZUcsC8S/LsYe7Ap5
B0AAGLQXhgjHv3hVOpRCfQdA8Nvw/Dg4x7/B5FU8eoEHQIBU29/nZ8e/VAON
jOmJB0Cgpl6rOcfHv3tA+yzImgdAAJEHsa2FyL/IutdthbwHQOBmGy3aAcq/
EkrzFb3AB0AwqddiTjHKv1zZDr70xAdAEFKXx75gyr/v90UOZM0HQLCOFyqU
v8q/FjW0rkLeB0BwjUamEX3Lv2DEz1Z64gdAoJBbp2esy7+pU+v+seYHQHDg
HO+528u/PHIiTyHvB0BQNUdeUzrMv4YBPvdY8wdAMC17i5ppzL/QkFmfkPcH
QBBc8QremMy/GiB1R8j7B0Dw0IjfHcjMv2OvkO///wdAkA0eDFr3zL+WZFHh
"]]}, Annotation[#, "Charting`Private`Tag$4637#4"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.034013605442176874`],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIpIIaxWaBsBiifAY3NCJVnRmMTo55Uc0g1nxbuIcZ8
AJ0vAkM=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYC4hkzgeCnjgOImrlSwQHGf+Aa7zhLUMlBZl6c
5mkBXYfK+z9uGVsrOehrrRS+8ETX4cOi9QpnPZQcju/a0cu2Qc8hPQ0IwhD8
ld9eVpx5oOQwdQJ/ldlpHQdjELiMyW/h9V8/pRXBb2A52m9ojpvPwtkln5yn
BTcfxofZD3a/pTbcfWtVnzTP49WBu18X5H4VhP9gfJj/YfwdwVYR/4+Loqrf
KOAwHeT+11oOMhvF5jMt4HFYDzLfVwPOf1O8VfT3aVU4H+z+7SoOZ0DARwDO
1/ik8nLWSxE4H2Y/jL83v+btTFGo/86pwN0vMfUKZ8YiVbj/GECgQQ3ufxgf
Fj5PEhdeM9FXhYdfQkiQ+oKTKnA+2N6bynB+t43nrrRPSnD+bU3ZNf+blRzc
1xxdznBDyYE/NuC+kbki3HwYH2a/cOWkkrMiSnD3gc1/qQR3P1gfgzLcfzA+
zP8wvgjInBYROL9dgV31zBZBiLuClR36I7r9GQv4HX69fX3AklkFHt4b9PIW
M+5RcXhR+zj7/BpOqLyaA7cjn9cMTQ4HKVB6vqAO54PjZY0mnA+LX5j+81fD
3ujv1naIUY2QOfeHx0G0x+sVyxQdiP0GAvD8Avb3EyE4HxQcac/EHNDzFwCY
s2h3
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIdIIaxWaBsBiifAY3NCJVnRmMTo54YcXraNZjdRk+7
cIkDALmJAos=
"], CompressedData["
1:eJxdlF9IU2EYxo+ukmEOUmQ5L5qHBplh55vHFUbxFVTiRUFR2UWCpaldpNSC
klW0pIsW2UUxpSGRF4fFzAmFdNGgRCrctNBA1h+lIuaFEFLDMLOdbzzvB73w
XfwY532f5/2zspPth5otiqLkZN6RzMvNvHr78DvFVs1XzNiwjoO9hjf6t3st
X39vytqaW82H66LbQ7/zedOJj/ssPTo3ksZXNpLPN80XxLRyncfNuCX5RSDm
109Z+XL6wmxoSOd+++XVbTeslK9XhJU/2bb4sqlTsvh9QXLd67yd9/d66PvU
mYp0MOGh/GDU9z4tXhpr8JA+bXO46O1PqV/om5P+wPAPFuXDTuLn7b753mKV
8l2aWUxW7VCp3o+Hg85ErUp6Wk5n4qjkcHruYnxW5clSX6Pb5eFVZkyq5BeM
foCnCxd2T6yRfPuwd2NwQuf7I6OGMq1Sv5EfjPqYF/Sh/9CPecMfGP7BIt93
R9bPJ51HCrfYWj47sn2P6LzLmeeKTzn4m5E9A20HJBup2soV5ibun4nZQpOM
uLSvoXzsAaN8dlPfOUb1wNADht7jpr4rjPwUHBy825xi5PfaqtFudsxN/QCj
X2J+jxn1d6jybH+OT7LQa5HcEQl8aL2jEV9dqukYr9doHl1CwFbKD0b9P+Y9
lGmkj/u/vOoJaKRf6Atq5A8M/2DsKxj7jHzYd9TDPUAP7gWMe3J9u96XqNHo
3pAP94h+gNEv8Hmzn+OMvke/kR+M+pgX9GGe0I95wx8Y/sGdZv8qSrL7FGV8
wNynXSX817PkzeX3krGPYOwrWPh/JBn3BsY9oN7//5//AFqbSus=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
JjHitLALAM7SAnU=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4rrfVgXnblg4uK05upxhhoTDTBCQtHSouv/j
lvFqCYfiraK/T8dZOhiDwGYJh+tCnxzPH0Pw/3wrfTCn0ArO/w8C663g5s0A
mXfTykG4clLJWRcJhw16eYsZ31g5rBXS4UuPE3f4siEge9Z3K4cY1QiZczai
DmdAwMYazvc5wW4729Qabh4uPtg8O0k4/4FrvOOsi5h8mPlgOkcWbj+MD3Mf
mN8jDXH/SysIbSntcKRtefipR1YO6WlA8EwK7j+we+dIwf1vAgqPYCmH54kL
r5nkWzm4g9xrIQUJv2uWcP6Xnbe6/pYi+J9A7lG3hJhjL+UAix+YeTC+84Rm
obRfig6nDjutzZSzhPCllCD63S0dwjnF2o3llSDmnEfwS0DxaWeFKr8fGn/M
Sg4fQPrZoeF5TxGq3hoif1gR4l5Xawfla4+CGdYg+ODwdUTw9+bXvJ0pqgDx
7zRMPti9WooOElOvcGYssob4n0PJwb7p0fEZu6H2XVZy2GL+41CKFzS+7ig5
3JCuSTRitXZY+e1lxZkHSg7LX3jo/V9oBedPn8BfZbbaEq6ey021lMnKEm6e
+lvefQYvLeD8/uASlenrEfxoBcePyTm4+Rog/ZLmcPtgfHB6CFNySIm948bc
Ye7wYdF6hbMeSg4rQO77aO5QCcpP1koOL7K0v03/aw4NDwQfnO9WKsD54HiR
F4TzS5aXbPjXzwM3b7vXBos5P7nh9i2/tfyx4WFuuHsg6RfBP9i9r8kkmdOh
x+sVi8lCc4cm8VrWzDZOuHlg+2dyQsIrywLOFwfFzyME/xYo/E0t4fqfg9y3
1xJuPowPsx9cfvhZwt23v1bWIv2JBdz9sPQM8x+MD/M/evkEAD5pGh8=
"]]}, {
Thickness[0.034013605442176874`]}, StripOnInput -> False]}, {
ImageSize -> {44.0931407222914, 24.508064757160646`},
ImageSize -> {29.39542714819427, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {30., 17.}, PlotRange -> {{0., 29.4}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {-1.7777776145124715`, 7.562858982173806}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
TagBox[
FrameBox[
StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["3", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["4", Smaller, StripOnInput -> False]], "Placeholder"]},
"LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.9, 0.36, 0.054],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.9, 0.36, 0.054];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable ->
False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.365248, 0.427802, 0.758297],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.2434986666666667, 0.28520133333333336`,
0.5055313333333333], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.365248, 0.427802, 0.758297];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.365248, 0.427802, 0.758297], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.945109, 0.593901, 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6300726666666667, 0.395934, 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.945109`", ",", "0.593901`", ",", "0.`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.945109, 0.593901, 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.945109, 0.593901, 0.], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.645957, 0.253192, 0.685109],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.430638, 0.16879466666666665`, 0.45673933333333333`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.645957`", ",", "0.253192`", ",", "0.685109`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.645957, 0.253192, 0.685109];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.645957, 0.253192, 0.685109], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Print",
CellChangeTimes->{
3.801986823827594*^9, {3.801986860364794*^9, 3.801986872434085*^9},
3.8019869264188423`*^9, {3.801986993967682*^9, 3.8019870234942093`*^9}, {
3.801987075210474*^9, 3.801987079138709*^9}, 3.801987270393096*^9,
3.8019873349421453`*^9, 3.80198744537703*^9, 3.801987480320167*^9,
3.801987510881637*^9, 3.8019956640557632`*^9},
CellLabel->
"During evaluation of \
In[64]:=",ExpressionUUID->"baf9d57d-027c-4ffb-b08d-723e5a8a508b"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{0., 0.}}, {{0.,
0.}}, {{2.0000000000002305`, 0.7385489458731721}}, {{
2.0000000000002305`, 0.7385489458731721}}, {{
2.0000000000002305`, -0.7385489458731721}}, {{
2.0000000000002305`, -0.7385489458731721}}, {{1.71807887543887,
0.9761811792275888}}, {{1.71807887543887, -0.9761811792275888}}, {{
1.604356076263677, 0.}}, {{1.604356076263677, 0.}}, {{
3.8956491285304136`, 0.}}, {{3.8956387189445176`, 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-4, 4}, {-4, 4}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{
3.801986823827594*^9, {3.801986860364794*^9, 3.801986872434085*^9},
3.8019869264188423`*^9, {3.801986993967682*^9, 3.8019870234942093`*^9}, {
3.801987075210474*^9, 3.801987079138709*^9}, 3.801987270393096*^9,
3.8019873349421453`*^9, 3.80198744537703*^9, 3.801987480320167*^9,
3.801987510881637*^9, 3.8019956650659323`*^9},
CellLabel->
"During evaluation of \
In[64]:=",ExpressionUUID->"c105aa19-e7d4-42b0-a9dc-ad6aac351ca6"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Eigensystem", "[",
RowBox[{"uH\[Lambda]", "[",
RowBox[{"1", ",", "1"}], "]"}], "]"}], "//", "N"}]], "Input",
CellChangeTimes->{{3.801995669977865*^9, 3.80199571765765*^9}},
CellLabel->"In[70]:=",ExpressionUUID->"1993fadf-9490-4358-a574-f28745037061"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"3.210270370801213`", ",", "2.3333333333333335`", ",",
"1.6666666666666667`", ",", "0.9497296291987872`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.32436621643169966`"}], ",",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"0.4784354671366729`", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"0.4784354671366729`", " ", "\[ImaginaryI]"}]}], ",", "1.`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"0.`", ",",
RowBox[{"-", "1.`"}], ",", "1.`", ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.`"}], ",",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"1.3840594055011526`", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"1.3840594055011526`", " ", "\[ImaginaryI]"}]}], ",", "1.`"}],
"}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "30.706033783568294`"}], ",",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"11.454000333203865`", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"11.454000333203865`", " ", "\[ImaginaryI]"}]}], ",", "1.`"}],
"}"}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.801995684107957*^9, 3.801995717985318*^9}},
CellLabel->"Out[70]=",ExpressionUUID->"4abe87d7-27ca-46b1-a538-bd1bd5a81df1"]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.801986803368832*^9,
3.80198680782872*^9}},ExpressionUUID->"7fad1c66-1cd6-4763-a597-\
5196829fd2a5"]
}, Open ]],
Cell[CellGroupData[{
Cell["Riemann surfaces", "Subsubsection",
CellChangeTimes->{{3.800338173104447*^9, 3.8003381794532557`*^9}, {
3.8003397372737637`*^9,
3.8003397409852657`*^9}},ExpressionUUID->"a46bc08d-2a3e-4fc6-b5e6-\
d8563708aeff"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "2"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"NRJ", " ", "=",
RowBox[{"\[Epsilon]", "/.", " ",
RowBox[{"{",
RowBox[{"ToRules", "[",
RowBox[{"Roots", "[",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",", "\[Epsilon]"}], "]"}], "]"}], "}"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"Evaluate", "@",
RowBox[{"Abs", "[",
RowBox[{"NRJ", "/.",
RowBox[{"\[Lambda]", "\[Rule]", " ",
RowBox[{"\[Lambda]x", "+",
RowBox[{"\[ImaginaryI]", " ", "\[Lambda]y"}]}]}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]x", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]y", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re(\[Lambda])\>\"", ",", "\"\<Im(\[Lambda])\>\""}], "}"}]}],
",",
RowBox[{"AxesStyle", "\[Rule]",
RowBox[{"Directive", "[", "16", "]"}]}], ",",
RowBox[{"BoxRatios", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",", " ", "1", ",", " ", "1"}], "}"}]}], ",",
RowBox[{"Exclusions", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"Offset", "\[Rule]", " ", "0.05"}]}], "}"}]}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Opacity", "[", "0.7", "]"}]}]}], "]"}]}], "Input",
CellChangeTimes->{{3.800337857557605*^9, 3.800337883825984*^9}, {
3.800337923599936*^9, 3.800337925887891*^9}, {3.8003397715021753`*^9,
3.800339773529853*^9}},
CellLabel->
"In[187]:=",ExpressionUUID->"de2fcd2f-38d0-473f-be89-2d15deffcdd7"],
Cell[BoxData[
TemplateBox[{
Graphics3DBox[{
GraphicsComplex3DBox[CompressedData["
1:eJx0nHlcTd/3/5vnSRqQISEpEpIprZO8CSFjSYVMmTJT0YBQZiqiVAgVDUKF
OBVCSUrSoHme53n63equfT7u93f9cx497fbZ+7XXXnutdU5nvNXBtTv5eHh4
7CV5ePhZ1/G5K1/29/fTeNXIVne/NVuR2nUs/G7kgW7C7boskwQS5alg8eHO
B3LaCE+tg8sPdslRdQ+P75q4rInw+32HCkdIDqd2DvZTTfjRkc/GeNHD2O2L
CD9wYM3pPmcZNk8jPDhjZ5lJsBTFw/6HXDNbSyz9rAS2B+SSfC90fwrxYv+E
L8oRSpnypx/Y4yHcItc/zup7L7DHT/j+p3uXXGjtBvZ8CW+NmxGtu60L2PoQ
fl9MW1ZvQif+THhvrsKUNOMO8jPqqlh2/Vv4UQWiM14n3bHR2dstR3RG3t+1
QynWbTjRGfn7GQt7RinLEp2R1z5XKlodK0N0JvepW2YUkiVFdEYenf5cy2yt
BNEZecjIxIPDW0WJnsjj9pskz93dS/RE7ppgKyeo3U30RN7m133JRr2T6Il8
/fiKrcXm7URP5K/nKIsJlbcSPZGbat0wn1/RAipsPbst6RFe6W30frOGQ3os
+8R2qF+HjNH7CUsZPfF6/8FqvSVfZam4/f5HrHY20c/Y/OPvYTYBpsOInth+
hcmktrAYaaIn8mNT3o2qrSF2SHid6LcLtdpiRE/kUXYB8/N9hIndIq/W4s3g
0RYkOiMXVU5+G6XVTXRGHn3f3Lkxs4PojDyp/13nOM82ojNp/7nrxxSnFqIz
8pUBJz9afyB2T3ivTbqGu1MjsVu0O79pF3X/LGR0Rt4pcH1qXNhwojPygE8R
O9ZNkqUCLH6WrVneRB96n/2l0a6JzvvWHSXxVIbojO1f77kyfsNCKaIz8m/0
+jPFhuJEZ+SXn20N/rFdhOiMfE5Kudiim4JEZ+SuNjxbpmfy4X0JVxjuck8l
s43oSfpZ0FO8ZVUL0RM576rTx4z/NhI9kRfsEgtzO1JP9ETemBgg1TunhuiJ
895jq1ZXlixH9ES+ZbwkXJrD6Im86FJ7cvijYcQPIH/h9tOhXJbRE6/GtHj9
Q3FJoifynqa7SyZ3iRI9kV+SeF42ukmI6Ik8PMcvSbKJn+iJPCvpRlx6Aw+x
W+TJEp/fbn3A2C3yFQdUrwvZtBKdkX+8pLJu4nFix4TfWje5+ff4eqIz8sxT
O474NFQSnZFXOv7Rnv6ylMNui+hZ1U8lfpyW47DbInqK+Iq/pgWyHHZbRB85
piNz5z9GZ+Q/PRKXd2+S5rDbItrDxd98iaYEh90W0baXDMc7iIpy2G0R/Y16
WSRbK8hht0V0Z/mV0Tey+Djstohek7jm6s07aE9FhMe56Y95fqET/rXnItpP
dPmOwO8tcMXAwUFndBPhGQG/jMr1GjnsuYg2ir8eNd2pmsOei+iAe8IJ1ttL
Oey5iNbTK5h/alQBh85p9AJ5mY6wFZw6p9HtLaezzzzj1DmNPvxyfu81CU6d
0+i0ZS86PfKkOHROo4/6XPyVECjOoXManWB6synHToRD5zS6NmbhAqsNnDqn
0fu8k/Lc9Tl1TqPn6Runn/Ls49A5jXbZ8OS93EhOndNofzeNW29MWzj8Rhpt
oJ3j5kc1cOicRiu6RmTbjqnk0DmNPnvk3tGbRkUcOqfR9w5neU3XzeTUGbjo
DFx0Bi46AxedgYvOwEVn4KIzcNEZuOgMXHQGLjoDF52Bi87ARWf4/+tcBFz8
BnDxG8DFbwAXvwFc/AZw8RvAxW8AF78BXPwGcPEbgH7DJ3uki8zIJmiwfeKq
o1MEn/Om+F6h/o/fAC5+A7j4DeD0G3h/LucgcDkHgcs5CFzOQeByDgKXcxC4
nIPA5RwELucgcDkHgcs5CFzOQeByDgKXcxD+/+dgE3CJ34BL/AYYv6HO+6/f
4vGwa4Kfa+5euv/k/8RvwCV+Ay7xG3CJ34BL/AZc4jfgEr8Bl/gNuMRvwCV+
A4zfMO9oHso7gEveAVzyDsC8A/XU7gz1HJPEat84TGvEyv+TdwCXvAO45B3A
Je8ALnkHcMk7gEveAVzyDuCSdwCXvAO45B3AmXfg73HJl4FLvgxc8mXgki8D
l3wZuOTLwCVfBi75MnDJl4FLvgxc8mXgki8Dl3wZMF/mqPMAlzoPcKnzAJc6
D3Cp8wCXOg9wqfMAlzoPcKnzAJc6D3Cp8wCXOg9wqfMAlzoPcKnzANZ5hvqP
h09qTqo5kb20b+K52VM0xNj65BDufy6r+WkUjjMHlAf7qaely4R4R+7iYetf
RvhUK/PVqivaATn7SnfzrFVa976Nsx/g0g9gPxzjBC7jBBwnjpuMP/NbT7yi
AoV2hTzVvEvufqoCe13iCfcRMvR4YixB+sffW6hDb7x/godwkdhCiVsTO2np
xy2fOg73knFgP4rQ4TWbp53ojvzOpS+PvXzayLywH89bK0Je3mb8HnI+hwX7
z58WIvogP9P78O7kMd2kHyOTxc2Gt1roip5Ztt4LBck4kU+BkVUmiXykH+Ru
XX6udG8HWRfcNyolhWbjr/CS9rhvFo+cNqHtQxuZL+oHz9Vi+Jb95eSAHPvH
/hxUHXnlNvUSjvsg6cjNyIfJfeT30R5u/9nPq0Ex8QzyhDy5ip6fvBT+jNcR
zufXRr9oAY75As6XQzfgohugbiSOZHOLrRFZH6Z3ca4j4Dpy2AmgnWB73K9p
VWEPqrNFONcXcH057Bm42DNwsWdAe0Z/hbzKMGHcZh1x0h7t9HkP/4aE65Jk
PNjecNwXYxEXZr2wPe4LDvsHtH/8GduXRp7/avysg8wL5xF2fM25XEcFzvHQ
OB68L54D+3a5X511rY+zfxr7x/XC/bLsPx6eUoMekkeh/S8qHkHf7+bnXF8a
1/ff+CqedsmxbvCp+c3JATnaMdrhwWt5byeJtRE7RL++8gv/6TjZDs7xwL/j
IX4A0A9wzAtwXhx6wr96FhGd/iwKKszx6uP0S4B+icMPAPoBDv0B9R+aZz7Q
hlLKtyY2Qsq0lrEVK3ko5HNGLVs3cVkXSF868rudFVdwtKex/ZA+GaSfraG/
sg4/4CX9eP5QLDC81QNyZnuXh7Lui+3H9P59HnmgGXyUn2dc+cxHNZ0t238g
p4/Gq0UUb5TTEwXkgFw2woPWevh/zinAc4rD7wH6PRxP/KButXD4+3/h3f/1
sdevhIzn2YTRF4XHdgLHeIDLeADHg+uO67lqzfkCxUOYrxG/QaPf4GgP2B71
wfuvp9s38h1mOFtPOv2y9TezyH5O+6TRPk/s/B4a6lQCQfrLF+VPa6Q3zXsi
NndZB9v+KokOMwJSmpot2oDjvoD3xf3ZdlJTx+BDHz36xyXPpl4Ftl0lkf37
s2f6pSRjXjLOUy+ezcuJbKXvf9SJ/49HgOJYdxrXHdcF993148GW8nv6gaMf
wH6wfdZO+4T+/naYGNO94MNq9A8RZPxzn/Kf1jARJ/fFffN2Vbqr3If/Y+c0
2jn+Ps5rqbNKiZ59B6ed0GgnqAPuFwGXyDz158LEnvG+fjtWju7PIv6f3Oeh
3Qr1tyfagaM9je05/D/9r/8n86W5zJfG+XLcl8b7coyfxvH/u7/aaInpnaPK
+bqIDri+gelrhYzlu4jfRq7sWvkkNYQ5ZzH+NYxMWjVumxCxH1zHvUriskK7
hMi+QK6/TXbtqQxBCvPi9iE7BC52CGiHHOsIuI4c9kOj/aD9YdzbdXi3mLJl
M4c/yaFz9h5/tDepjSNvLaNbLkmOr5Bo5diPRfTjxxkv3lYy/gd1mL/wR47D
t27O+IrG+OrffLmMNp72+07Yt06iP/tK63yZJErJd5D74r7mnzmP721XG3s9
SqFxUI86qJ8l9LN+bzvnutBc1oXmsi40rguOH/fFYc9e0Vg1PoojPqQxPuTw
wzT64fxCkWFGlkWEh+5/c+rJ5x7g8A80+gf0Y+wrfTbi7ELHdkZ/5JmbFZPO
PW7jOC/agIs9w7/2HEHsJxryDMX5mPwC98vxmTbjLft6yT7C833p0i3vtwoL
UzhOXK/cl2PXrM5t5YyTaS5xMo1xMsc5S/97zpL4mcb4mSOeoTGe4fD/NPr/
f+2qBdY/Tjz55nYncMSTNMaTHPEJjfEJx7lP47mPeiI3KzQOahARI34M+5H8
0xvzNlSMzAvt5910/eXvWpqJfeP6SuXvXVRo00L0R/8z/4hDqcF0QeLnsf38
pM9GI9f2EB1Qz1DJkbKzJdvJ+NFPhk8U8T4d3w//jieHPrXnQ7zAhSaOumsO
PbXz1KGN11tI/+z+6GcGPrMXvW8l48R911bp/cfpKzNOnK9ycfOWvfN6if7o
zz8IRQU0JjFxC45TIMEhY0oIyb9otMOwKQrxzztEyTmCXCTA2kE6ToToj/62
SrbW3PemMNEf42rvbL9PH263ER0w3vjl6Cql69FK1gX1XOFW1O+S0Aoc/QD2
g7ohb7pvtPtRYjvRDfdjcpxraUVpB8d9i+ijXfalzmVN5L6o86Utt4cnP2sm
/WBc92d97X+xle2c4wfO8WN7GyfKsiOsjdMP0OgHOPw5jf4cOepzZfSLfsNa
Ho76ZxmgP+doD9gedcH1TMyuexY3o4b4F+Rr+OT47lWVkP2DfkV8Q+/GEJvh
FOZRyENMmmnZH8Owf8JTetWnJGrK4LoTzj839eh3FZJXEn5iCmSH1IqiPyTc
QjvhytE4IZIPIn8/Izul5xE/iYfxWpz+3GSXP1OfQZ6X0Z487XY3x3kaD74h
HhpTnJh4FfMLjIexH7TDVeU8vUdbmToV+j08HzniFsC4BfvHuN3ua3ehzCSm
f/RjE8MiykzG94N23fQpOSEZ0Jway7/Wqht+vxFcs3NSP4e9xdOTrOemZkky
zw+QKz+0GS0tzPmcMZ6+4jBrxiyHCo7nCPG0o9B/LkdPFsK/z1nioSd3r6eu
ryyJ25GvsEwLMgM5jucv8TDKWMJft0+G1F2RezTXN/rSnM9t42FM7HC1LRc5
n9vGQ/2OOy80NnI+t42HG6+OWptqcT5PjIczb0bNah7D+TwxHtpkr+w+bc75
3DYe+my8Cy1bOf1APKCeHPsCcF9w6AaoG9oNe3/T++5JaQeMyefkgBzjSeSr
jd/KtZzL5OQ08n/z/Ur6lSKv9yRXJt5AvaN0cwSKn3UQf4jj7DrwWM1rVgtH
vSICpny7Gn3SmLOOEUEj5+gfsP+h/VAIgd7ZPYa3GkDyo5DoU9N+znMQ8BzE
/YL87teGa/5B7SSexH54Z87sf/GJqRehP/BXeGF2+WEBR10xjb5tcePYvXl5
RDf2eUif5pevLmzNIv1ntOob5EQ2whuT3tWhUzqInY96E5XeqtBDN1kpGKwY
KU85fEsYI7C8i7xnuE1mw9YlfnJU70uvWDNf8ryCHiuS1//5RxcsdFI0znNo
Jf35nB79iy5rJ37cdv482yWHOulXf9TmXpw9nFpaseRy5cJW8v++6gfGZCxo
Jee00hUhpS1TWujTjzX9ArKlKHPNcLs72SX4/JFettBgmeUYCcrJ9++HEW/J
+wV0jFdAnThPMznP5kRn/J56vZG+HFiyJWI48xxT+kqBoq1EHX3w5F4VaXNh
au+H0H0nfONoPYe+nRsTq2lF63WKkUcEKd7RJ2O+xTbDDva4Iifc0r10sRFw
3z0Za+Zwe3UlXbNCW1HhBRNn2oi6i310KqXjem23fZnJQyksHqvcurwJxPsv
iT/fXEy/9HwfG7GoEXqKe2XWyzeSdfw+Jvu10fpG6PqXQwqbc9wXatn39Uw8
uf9KRix7vapBNtPQMHQd8xx2RPOHgfEAODgOjgf30Rbr7ZP555fCyr9rvL++
6IRWpX/mC7Hs+XLoCagnx7rAcva61P6rM6DOjv+uF7xlrxfHusMp9rpz2Amg
nQSx7Ub1yKBdQUXBkF1x2C2g3VJs+9zJ5vfY9slh/1DPtv++f+0cRrPt3HDZ
VFqIlxWvs6+e2u+kdtPyVEHhlvGObq0wzXd7x2O6h/ZMzpwTGN4BdkH9NQtM
W+HvAdXhfpYdtMpE+91+rHxBwVq4sqS7Bc4sOdP7XK2Flow+Bw+TmiFR0PoJ
NOfSVWnpo60eNNCmFuI+IZGi1HeTQ50VJi0gU2f/a8v8Bvq4QEXo1KlNMK0+
cFj1GRocN56aY+dQTl/slIg4wcoTL1+Q2EVLF4AxnbfL7WwJ7SzZdv416/w0
7limaWHRDAHfhMX++6+SDh7Gk+Zl2ggCYnknf89pBA+hdOWt1zLorzNWb9c0
boTrJ1OhmLcRKqq+3QHTRHC4vdPQnWW3OvXausqRT+jDk2o91/NVQWB98crP
lAAVHJZxNdroI2SvqnZbO7oc1l7XPP34Dy/1US+pOUenmBb4nehnmNYIYpVT
5J+dEKf0X0yfE/I6m940bulMPs0GyDipasQ7TpQas/f40ePxyfSGaslDz8bX
gud1iZ/bw4WodQGp7tTWFkidW6l9QLQe+sx2nXYUa4KH7pW71mfX0WKnT9wd
O4mVB47LCvdVlaG2ezyqrBKrpOtkT+tdsm+Glk9+Cy+XSlJfO048/CPfCng1
87xSRu1vATfp2wfrx3TQboemBWtrdMF7o3TdxvfDqdEWJ6Ta5rLyn7dhjSUO
HdBwyVx54hVZyn190v3TNq2w6r111Gcelh8UnqLkNbYdok7dSPTh66blD/y0
/pnZDZYPrI9/r5WjthXOPrn2TitkRxwKLnnXB3OjbmlPEe+Cp+Lf4seV99L5
/82+dPtCL91zc8QS03EKlN50ReUl8/vI87g7lQX3nPUVqPkRP8WbNv2B2+oT
5l1OLYFJVgck/tvUBxzrDrjus9n9Gy8Z7B+q2P0vZdsx+woebHte+O99wYt9
37T2s3tMN/XTw6SWHzpr0UfHSmkISL1huOwQh3g2X8ge552hcdLK7HGi/9k+
5H9oI7b/Sdm98KLSgmL40T+jW6yHxfVnj9nDylOU+Fr1P+UXk/Nz7WTxyZff
dsAptn3qDtknfY1tn/nGXc1youi34umrB4Wf/1JpBNc3XVPM4zHe6adVDAol
av92wpxZZpVTwxl/oCNwTr9mBDm/wF0jr/CnbAc9fNwe0x2LWmFx/byd4ZeY
97THvbbdxxNA3pegj7UM3zrOopXusl9zPkyeiQ/PPBONLqpopvO6trnrbJGl
nry7Sb/VJ+8T0dvlPlSfjmoi582wYzuLZ8s20u+NIWV0jSQVWBLycodWJI3/
rzx5lYtUjgCJA2/s+i9+Vl4VXXI1QDqngDmPqm8XH5FPr6SvaNSvvvye8f9W
BdIV50qq6N1vR8kf2tINVez+8RyZyO4f/bPs0HgAx+PbML1HK6SR+P+IaueR
Mvtl2P6fdV54eY+RO1wPuk7T/8hdFSPnr4b/R+lljTWw9UXxmfXThamn/+oA
VmwdUM8jQ3oCp57OQ3pCLltPjnUBXBeOdQRcR451h9nsdeewE0A76fO6Ga2y
uwO+r06xX36sj7ab+WTGs9wOmH3hyaUT3m0w5qbT8R1K7bRcctEGx9gWWP/C
cHj0hXaI+WEvtD++i37b7lWVwsp//cwc32zR7aQLGwv8FIJb6HxFLd8N+sOp
Te3qHav8WkEvyqJu0flmelyvl+gflWa4MmfNDqPWctpZIGFF/ZUGeorQwnRV
Pwlquc0nkYRtGbRc9p+9wva19MdDEvcaqoSpI2qzF++73AJ7x0S65go10C0z
cls+tjXC7RfmnS8mXKP9eZNSJ7dWgVrYA3MNCQFK1eHbMKutP2AuX0WVbmEl
+F5/a+FrwEu90PP8JR9UCJNlfgoFJlfBlvhPUedyu+FS6+NbyctraYuirkov
s0aYqDD8UZm/FFUVJS8b5tIClr4NDUkl9bCmNkzhjHoTZK599cH0eg89b5r0
5qQ3raC1KFp6posctfXHiUr9EZ10k2GYwl3fFkjamjLXY95wav2p8bpSPq20
O5UqKePSDIYxXmXGVcOo/6JexgQeaAO8ZqxyNLptz9p3BrkL+praQfm5/Yal
53tgz2RZqwPf2uGEwfuaeYdZcX3AlYxnWZWwKmee0mk1Hvb7MzkQYyr5pnBc
FcQt2HLcfHsfaa881J7m0p6OZbcPZeujOqQPXbW/+m5UajfUawwEYLng7zU6
/sDKKtrMjr/lvAfzvK/+6bOe6rNVtPUes/l3//YQf/gnb3A/godAxxK5vd3Q
dNz92IMm5v38QFnbUnpqN8w9q+Sr+akIlDzFrJ43VUFUsp3ytNAu+MjmtzwG
Of1t+Aynk6LMe+Hs/Uhz7sepQ/uRtmDvRw5/Apz+pHLIn8Bltj85bDBy3You
T1gerAgl76ton/mhqfoP+an8c48KLBeV0ccjLKdcNGoAA+0b+75JSFDb8wSS
nhnn0SqBj0adv1YHP24LqygfFKV4rO+90XufQv995jK282ENRAStsnf4KETd
ezL1xnvpz7T6GRmr/3qr6YNOT3IlPwpSmstOFxiO/Uzrd4jvHNdXDY2JVje1
vghS58IuaISZtsEdn0KfEePaaM2v82TmrGoB6eqpz/pftQBsFZR0v9BAP31a
udJPuQmO8kBapMYj6BrrMerbkyqacs7WNTnGT4m/OPtO2a2ULoyL2bZsRgOs
cVkxKj1BnAp3+7i9fl0G/fioQM4M21o4WOxfP71BmDq1aNkN/XO/IMGGb8nv
X5W00hh4YHSOh8rS9L0WeO4PPfvwKGk//1ra9chidRdlEcpwjhqvfxANy23D
TBfPr4J72/smz3Pmo2o2KuyYcK6YHmE2zuBGUj3t3Dr9sHO/GLWUz8jt+sdW
GLbRx8OMvwX0Woerix5uBpYD6VgY2AZvxWaOtTJqh+yN6iobc1vgztczj76y
zkGFx86Pu9tf0l88TD5sGtkIe1pk3HsdU4h/dayI3e8yUoQ6ucT5ZYttAdze
Yjt4HvH6nB+/MJmHvG9mtX6n1wTnYHqDZ0/Q9nvMe9Q9D/7mjGPxebbUB/ku
pu6xXzKsewyLn/Qw+vk4UorCc8uqR+bbQPs16yyjIhyYuse2s6deqrG4gf7+
MzkrmLrH4x37AVhcpDxOLWISU/folwyedZDFF7dd8E8ZztQ97CfHbfvG4v+l
ClubGjHxhlmEyMnVZ4LpuJxtC69WdUBwfbqzGutc+CTW+nyxUzCkOmaYX15V
AQFzW6Ius86D8/+1pJvdDIJDN+/3Fc4phD4160F9YvQG9YF7pZcH9TE4Zc6T
5/8DPlgVJuw83w2q8cXv42aJUN6h+l7x8/qBN/X8tkdfAulJu8XLDbb8gUK6
bdgq6WaYeeLlz+6YQEhcMDkyzLMOot23N0/3+AR/y0Z76fL00Rrn67d0zBaj
8tsexr859A0WO3baV6T2wNaJiycpUaKUubXOPiHlHBBaaMCrOqyT/pu8ZnPT
kV5Y2RM9evfSv/CfnZDc668t9Cfvo+5JyXzUnKCEp+mTykh8kZ/58Jd8dRvc
TzC3qq8qJHWgz/4FY68u7YPKfAP/V0vzYN9pv8PfcpohSuXv/AfCfNTvQJnj
pncKSZ15p0aqrYllF2xmj0dwaDyQzR7P20NeC681Z0NrbPmE0Qad4BtU+cnm
BvO8Q83yeqNpXzPdmvxKsLaxk+S9GoUbkhLVu+DnMtkwCTlh6rec5ZYRi9JJ
Xep1/VhppUVC1AMhx7OyVQXwJd3umPfdRlpIpG7ptJU81Otbm+iJPwohpE07
xGlhAz056oPLMe8++OATKjU8rBTc7U82fhGuALssAbPG3jaY/q8+UMjWZ+ty
vVcGYkXg6aLAOy6uHgrT94/tk+0D+aWVxklUMfzq4yu1+NUE18xDspPnMuOv
t54iKXGzl64LiDa9souH0nYdy1vxIpXUb/ZqB4j8seOhxicfTjH5lAzCob7u
+qr99LM2HtpdkJfabn7tzegJv+HTwxOh2hN76Aj9djOD6H7yvON+76/f21/3
0w+3ufdeWMhL/Yl0G5P7NQsuTOzzuLmxjbb7dGyLWR8/pd8f65pIZcHeCaFd
47e1QeucfQJv5QSolIjIjc53M+Dh6gmnXerbIfDYU2haJkhJXzBRDLDIA/mf
p/Ot77RDrMJcb8mNPeBcZt86b3MMbKqb2Hv0aD9kNHppeu8Rp+iTPYM6jKSE
BnSg1z0JGtSh/Xj1D1ffGPj7osWn8kA/XSey8Nz5HeLU8boDN1dF/YTp9y+F
qFV10WetJa2qw5n3/SpVdqzRUemi24pnR0tKC1O7LmxxPZVTQJ5DWaYKRvpI
Mn+3oDBy9f5rxnXQUNAiZT6pF77uzkgxtcyATPbzF2f7Dz7mZoLUqvemRU90
E/F9cLjmHbb2ohkv2y8lQXV2z6wvsf2wp2vH8RMUL3XwSKYKj2UeTBO3KHK6
005vN3w3SoKlw72W5CgwY547H5+xfqt+PvOcQqZhp9efO22QsrC8T+pZN/jV
KimtuVoKxj8KHNL9asGe+hTktbwdJFKkD21xKYUtO8/qVErWQ/cl83kvHZnn
yKvC1v3qPdpHhy5JD5G5J0YlsOeVzX5ejPOKmrL5TIp/HoxmPy/+paDbu/QD
LzVWSmvQ/lcbikjwnK+nDWWzVp+X74NDhlu8hSeXQfinBEFJ1Ur6x7cPUJHG
sv/bRTahtZmgw34OKyE19aXbmj5olle/qmD9Bt7N6Jq3rqefjnk07U/qD3Fq
zxcTXcd9zPMav/Ll63r/MjoMG9KBRh2Q33i/YYN3TBMNzkKJntOY95puDnFA
bq/Va2rD8pPXXzQa630LpI9q79R0YPnJp1tOwq4H7WD/3VVYODmQ5lHqeP5+
WDnE5mlvqJ7VQ28TdXnc9z0QLAqSTRoLZKnAebZHHj1op19PflM+OTkQWhrg
2n5qGJWySs/STLqZXnGzPnEKiy81qUt8tUiacvexuqjSVUM7DVt1Vo3FN4FG
7y8RCUrbPGLejd/FtLb9NfnxLL4/UqPk/G8Ryo/2tOve9psOnfuwSJLFt6dc
ulb1XJAqks47FpoQSHvfmvGqhDWexFeXX7y9zUd9+fFK4SEr3p6kEhp9m8Wf
Xzu5qnhRPwQrRATGxBSAup55ozKLO22c/7ntaycYhD1RMWbF5etvRN6pTwqE
KdI5cuOrW+DnEscJFzMLIL+l89PvG43Akx4ySZrl9+pNQre8mvkbbhu50lu1
eiDUAcqWxPTDDX+FQTtMOjRoh6x5fB60w93s/WXPfl5jzt5f37wsKvQC/hI/
Py3P0+PQIz4q9tOqpgE7tGbHBcUxJe7rZjPvF704dzJDemk3vatvoZWSLMOD
o5fbNm/oho3aG812j+wHGBemkpFbCMfkt6U+MGflSyamnktnd8GIjW9mLPb9
BWnPI/qz7Doh7KDvpM0XhKhPTdGDvM99kNM++4e4OV/qWh3eYmiT2xAS8LoK
Fm6XUU+I7QJXR/uTf+OKoG/162CbsmpQ+GoYU3kV37/PgcLdpVtDuzroDuHD
PmqWvSCgo7F49dXPxD8va/9jMKtXlDqXbzV4Lm/4OXguQ9SZoXOZY/w0jn9h
usdlLclieP045UP8jBo6qFb43l2XbhA8Xqd2ii8NlluM+aP1uJc2u3Lz1PRD
PNTmk6t7Hj4oZd57WTG1oGt6O0yMWzgyYeA7CHPH9YYEBAFf0JTuoAVy1CnF
1mXjzjWCjc2wG49iA6Fe5+ed3Y8awDSgWN/2aRfMtG8KKmLFFY9dP4/t2VYE
FyaPaUlWTSfPYRQiunalCzPPB1cGP5MFq1a61qDD4RfwU9udn4z0auiBkgfH
5I4lBtJOTiv7hJpzwWayiPxvFv+0xsEy9EMgPDis6ryoKRcklm7cUcyKc14e
kbvYwBrP46gPmjmWf8B34fLplaf7gN/vx/EQOhDu+A2Pu3IyC8z0JXdKO/SB
99a9vve+BtJax1fTmizOoQ+gPl3pyrdzmotAfca14L5JlbRkiW9cRk8nXD91
/XmzSxEYlUxN0FUspw3vgqLh/U4o2tMo2cby77LmTVv97gfRjurWf0Nm/wav
+95lk58Xw7NYu8H4zXGBz6sr5R3wyDdDQeZxIUQeOsErtrYB+pVdJG2+9UHY
o18pK6xZcdGy9+mTXjWA+zW+BxYm/bCMHV8tHoqvAOMrB7YdZg3ZIS3LtkPR
Dc93OY0rhQO1ZsO9lzTA+9LyR/5p7eA0UXx7wsgSMF+ZEX3KvxykJl3W6BLo
gNdlAh+ashuhYZOoa+GcIDpgz9c85Y0NIFHbOTOprxHOeY1dXdz2FOxuf1zt
rNMANX7rZK26s6HtpsdKPa1O0NG8oHTiQi90b6M+nrtaBA3nepWUasvoo6qa
WclXO+FYcJyg/r562Flk4+fd+pQWSZI+3mPQBGu3yi75zFMM97OkFQX5q8Hx
Zy/vxKoumDKitPbU5lLwCBr3+HRrHb29frr44vPtoL57w6PD7UWw+PNn87XP
q2mtRsjqXN4NOuvPjY8aeE4q/EMs0jGY1l3gZhXCsttJ/80e+Z7ln/MK7c99
ig6kVzQmihew/PN0w5+HT7L8c13Sry/T3wTS0tF/xM1Z/rlRNme9Jss/T7i9
OGMai1vZC7x3Z/nn/G0hxxI7a+gR9oFaA+0bw8K7I1j+uZNfe9lcln++Kaxd
q8PiAf+9UtrJ8s/LbFZsNWL558XpdNlyFn8VVWOWyPLPGauj/AziAukJv/je
HGfxI8YaSd4s/zxuwqyO1m0/QPVn2ecEFl8RKv0omOWfsyNCcqXeF8CxOB5p
/beBtF4pVH9m+Wfjyx+n+bP8s5Obzf2jLH6Wd/W89qoWOMl+XzR46H1RMGO/
L7q9VtJs1oVUmKxwd8+d8l64/UO5r8OVh+qNyFKrak+EPW09a66f6wEbzTWZ
t3pEqLQblaPqHL6RuuX+l5ML/bbyUoWLb2mrh2WS8zfcUvPFtP0ClFDEI6sd
upngcb9Y50ZDG2i9LFJrPi9ANecWjM/5E0ueE3a4eJyTrBajwnkrnXjW/QQB
D3/lnu4uEKCXX/FMEKakKn9UTsxIJe9lTX5v6BQzU5gy910fdPhRAVi5nR3v
IdJG5685n7qS6gbZde56ugVF5H2P5Q6y4ebXO+FsQfkLsZTf8EhL0H6EQQeY
aso9+3JTkPobVF9+tDwZ/PaEKjxWZ+lr+jxqIO71NMkd1KF7b++ADvROGNJh
M/u+W4fuC3ns++Y8XTMmTaQM2scsWTBWsAbWufEazO5vAw89Jdkv50th0ZUi
zebXdeAVdfB+wuF2sNWQ/d59l+hA55w9b7+rToyS+TAUDx9eOxgP0+3seLhR
cdhpXdF8+JUkmS+o1UwvjB/1Wu8a83dMa38kS/ySqaP3aTi/EuLvBbfDjy0W
viP5FL296VrJ3O19IOoSLig1qgzCXn32OBdWRZvmux66VcCKx5VMBH/nRpN6
o/H1LMcX6eLUtZkPp9WuzISm4ud6nx530fJ2Am9mu/dx6kyjztXscf4cGifM
Z49TbEFF39HNBaCxTMEu70QT7T86s+NeHQ9VXKz/pl+uDSo6JmZHs+Io+Z6J
CXpXK2HTq/1z17DOEX9eW7Xn3wPp/YlKJ/StiuDxkr/r3Oax8pOUmXVJPwIh
aY/M69yW4ZS5rlmQ89Mu+rftg/mTWPHP2dw7J6LXyVL7Kta6zZFvo79vEDw6
EEf9yorRefhShure6mtTd7aRfiwf/30g7so4MyJgm7oUZdfgH7O8sJLer7jU
diBO09tw++nuJjFqtpTUp+iYAjph3yORsSx+INb43fh4YWrTeAtzn60/6F8T
aQlWHAg3tVbtCvAVoFaFn5V6kBAILp+vrf7DiqPuiCumXbzJS3203iPauu03
nLSd0OXM4nOUk19HmLLOmboYqcu/i0Hd1NdbmsXbt2QLnpDpANrN9bGwZwGY
/HZx9mf53Tyv1pCZPjxUOtuerw/ZM63PtudI7Wr5ATucI+JFseyQ/iCz6L8B
O/xp1/h5rXUpHN63P106vo6+ET3L5Z19O3QfHhv9d0khfK4/mLh/eCtkjRi7
wCG4C/qODPHFQ5y2YHPMx/cP5eN0NDsftwl5PmgngWfDBuwE5m8bspN7v6/+
TTuTAZKPXbS9D3VD3sbGmPEz++FpqmlY9ehC8j5P+LoLycK9/bAt19Z3YL7n
n0m4sOZLL9VJeTEwXw77AbQfjvwdMH/PFHH7uV04DfMIKNbM36k+TZjqlz1k
uco9A3Qjl6aGbu6mg8pMx3pN6of3WhEHFk0neT1t62jounixEMXL3i/BQ/uF
lXIN7Zfmf99rhQfs91of1g/5VQ/5Qb9Kr2T71VJ2/cRgqH5CW7LrJ5rHXXXG
L8gl7+ndOLQyZ9/zHpJ/eR8bF2Li1AfBqj9iYv3FqL+1m5ds3ZsIxkbFFR75
/fTpR4fjI4x5qVrbe20q89PBg/3+0ugP7WXuQjyU6+1RtsVrMyDkZqhS1vVu
2rnisZ7nUpaf+7d+Qm9n109EqmYeiLifB4e/3k3l0W6H5w3BS6Yr94Dif4Gf
La8lAm+S5BeB0n4YbuRm1My67+x/6wn0PnY9YVX5Bx8bi1zMf+k9+xKDq5/2
QJtzWYw/K2+NKHq+8LNAO53pWbetspHlP3vqTgkUlMLpUXNcMjLKacF+daOK
NuZ9Qh5XZfXTZ4Lpu1Ovv1ik1gJUtN4EPVb8lDRNPOmKbxCdWPv6/dvqepgx
JeidDisfdtybtU0lIIiee2DDPp5VFWB9Su39QD3NyvC8aOaDIFqvtt+pdg7z
ntXmSkN7w0dBsEpt2Hiz/6krxmz6qGLE4n+POh0T/5+6ot7l/I6VLL7ye5nH
9f+pK54frT57oD391Cn23v/UFQ/eu2dvwOKPvkm3xf1PXfFAZ+juaSxuuflb
4p3/qSuKxGcc63sYBCcC69wi/6euWGOTpP6ExZ3Pr7XQ+p+6ouVUnVIVFt8e
2VtyuKoDjsZcixTtqgGvs9Yj3iYGQnLm95CZe5rhqvYEP11W3np+tGBR8ZtA
KL9j6tTKyluF/807aMw7ijRlTpU8zYbT7LpHhGXTr0mu/JTrDDmV3Fk9YL5q
o6oKKz73midVFy7NvBe0TXR1vYZ7EDiN8D0VHpED4wTrZH1Y7RcrRkwOY+UF
WWNmxQvLFJD37gqG8iBoZ+dB2I9zhM0iYf8gmr9y1LvPrH6enrKodrxYyj43
6+CGar3qsxPtnPUuwHpXjndTSqprPpgs0BV++L6NHqlbmP8yqRtwXvh+4Av2
vNL/bQ/YfvX5Vy1OX4ogMPeho86TCjoh7kxmRGknHPB4ORjPn24ZjOfpcKXb
g/E83yPlaV59xfD163Z+o/5Guu3MUZ3dkR2krmdjL67S/iAITBwVmiex7Lnf
pkdkIF8wUW086+4ZBCUV633vs/IFjJN25xwU28TKI1SVxbd/38e8n5Zs8lEt
m9XedKxb/AcW//FvvkxrsvPl06sqR4s3FMOFsYanBDsaYfnIkZ6Hozrgyb9+
GF6y/fAenZ9Ry1yZ98osqz79mKrcT/LWZUP5GtSw8zWjO1qiPnNLSf3We0ru
267X7aTu2jJUd6V92HXXB1oq/HNtikFPZ6TQTsEKcLtmc9m3j/l7HO9q4ZPD
v5fSqlVvDtypY/Xze8vEgXzz15wuH+0vgfQfh4cZ1qx802XshdTFLD9wZlqT
aqdLMFjFjhMRrqmHz5ereyJ7sok/t6o214p37uXkgDxZatfDqv50EP54+56g
YQ9UfbeY5vWjH2ofx6eevcX8vcahjo81+y50wus9noo1nTVwWPyORcr7QNr2
yb7RwNpfFpuGnpfhOk9VZT8vqzHfRPEVg7Hot/6Q3EpaNur0x5RVXTCJv26H
vzbRjZ4hqlrcGdkOzuw8SHYoD6Jl2XmQcra/44uBfGdLw9bUi1V0afSDR8fD
uvC9rFi8nlwee2iHkgT1l7VYA/4N+QKPhj7aXYyKHsAs/4Z8xri4LfzDRSmP
ictuDdgxctUX24zC7wlT+YP9VBM+7278uvtThajbg+2LCJ87WflyY6IAdW+Q
pxEuey78AL8tP9u/xcYgnzpunaukDh91aag9mUfsS97RnnfFqGtD/RMeN25U
uxKPKPVnaDyEXzY59VzymzB1Y2j8hPf5nFinKyBMvRqaL+HJFqnbVd4JUZlD
+hBuFF7UbF1Pvt+C11j1dKNAU2/yXDIWdR3rN9tg0S5xojNeM46u0V3yS5To
jFzneec5/iUiRGfk3UsSlrTRQkRn5Cskl3yUMhAkOiPf9vnU9rhUfqIzcnOJ
u8KNNnxEZ+Qfs9a9tB3DS/RE7n/wguPtfkGiJ/Kn+vL3g+4KED2Rpz5IG34z
ip/oiXzPbMejdrv4iZ7ILcNDv7x/yk/0RG5Lnd2ucoS8NxJrcuPgjIHvMcbs
fJi24YsYaYf6XbpfYrpWndETr3OvSRzMuyFMFey2TR34HmMkmy+rHe+dLcTo
ie0bjkiVdB4SIHoib7mUJa9Tz0f0RF62P9z9xileoifyMLcJ6pdH8RC7RR61
PC9bya8XUGfkx45cefxIkZ/ojLztQsexniO8RGfkoe/LVBX28RCdiR3Bll26
w3iIzsi78s9U39tJ7JXo9GKHbPvUTbxEZ7S7fM9pT6sWMTojF80U1J/pLUJ+
H7mWgnuYXpsQ5f5LVG7t8ibaO6X698D3GIsK7+86by5IdMb2h/z7Nh5+w090
Ri5h5KfaOInRGfkooS3+cn48RGfkx4ZHbFtq2geoM/LgK+Myp4d2A+qJPMfo
acSh8B5APZH3TvS+d0S/C1BP5FHOC/2WnWLlC2w9katkud3uMCd+lexXn1Xi
MgaRPcRf4Lxzvlx1eJQpSvREvqO78cJaNUZP5O4xwquU7YRIv8hFfVwfeSYJ
ED3xulpzytJgZUZP5Kk9AVrz7XmJnqQfk80nxkf3A+qJ/OGlKc4dPj1ET+ST
vy03PpjUSewW+Zs9RyO2hbYTnZGLtHvOzbrdRnRGfmO96eJpH5uJzsirJv5w
vFXURHRG/lNKtaZgZAvRGbmSvF9QoEI70Rnn/WWzibPyZUZn5KJRpbcV0oWJ
zsjNg9ZdCRzN6Iy8w+Tgtg87GJ2RWz7Yc8voOR/RGa/23TPOOjTzEJ2R0wGa
fJtO9BGdkTuLvhp3V6Kb6Ix8ouvxpth37URn5FkPgl7rPGohOiP/ONLiknJr
A/geTnQZ+B4j8itZ+87Nt6kmOiNPevzKbd6vCqIzue/X+Gi+zTVEZ+SfL65X
vTSWOS9xfrcKU1NqNjM6I8+d3pjq7s/ojPxU33HXuGJBojPyEq+p435PZHRG
viptw4+fVozOyI+1p++S92F0xut65RNSsd69RGfkRzXpAvuyTqIz8sW8uZEl
Am1EZ+TqS0WWRyY3Ep2RG6vNCFynVkXsGfnl0lunbE4UEJ2RZ6sl84+yzSQ6
I5fecO7wL1USr5B59D6WLodkon8sjnfau3WuBt495LxEvktiLH0mqIv4d+SO
MYltu1hxO+qM/GeizNXcT8x+Qy6QXyr9NbWF2AHyzFc6y3pzmXkivzrB9bd+
ZQPRmdw3qOqhQ1kt0ZmM/+FUQd72SqIz8t95a8TkBMqIzsjbrlz7+GNsEdEZ
uYPX3REHV+QSnZEvspvy7PmD30Rn5DLZdUZPvL4TnZGHaNyJ7Lf8SHTGce2S
9wqK+sHojDx3XdvFsgJGZ+Sjf19MtW5mdEaufOhXpZlQO9EZeaT68I/lI1uJ
zsitlVYnrNNsJjoj/9m01H/44kaiM3KZDINMvug6Mk/kOcU5M1Pqq8jPeO2P
04tpmVNOdEbusznh/ueHxXCJ7TeQd63es1l7G2PPyMssZtSJqGYTnZFXOcZk
X+xKJzojl+2Xt34azMTreP911W/335vQS3RGLtJZXqOsy8QryNtzNrTyb+wk
OiMfQ2tVPjnM6Ix8bvPV/+5cZ3RGLr9i34XH4YzOpP2ScduHZTA6I9c8nPEq
m7eB6EziiLh1HgE2NWT+yPf60TsL2yvIz3gNs91z7WVYKbFn5Mvllmya/ayI
6Iw87rRxfbVUAdGZ+CG3uytg1V+iM3IV76e0flw20RnvMyI30Dbci9EZ+SGz
e46BbxidkfPZDL+wNLcTPNk6f5+jLTXwPcbisqCun+IdzPnNbq9y6uuxC9OZ
cwX52txco2NbW4jOyJffn7un06uJ6Iz8gltucE0OozNyCV7HO91mdWT+yCds
G3d3r2YF+Rmv78KUMrwulhI9kW+Ond6+YmMx0RO588wlzbmJhURP5JUbPo/c
K0M45h0w+eWkHec1+oieeJ+RJ0/zupn0ED2Ruwg+vPj5Qhex20Xv+0IHvsc4
uaqtzjWa0RPbKy5cZJfYyuiJvKz/RFDI3FaiJ3Lhu2Fbp19oJnoiP/q30yO4
sJHoiXzrG/Fbb1Y3ELtF3i8y+7FmSC3RGbmNyNaJ8r3MeYd8zmQB8diACvIz
Xm01Gm+p0mVEZ+TSBw/fKLMuJTojfxlisX7sqxKiM/5esp3r6Iy/jM7Ir+r0
NV4Y3kt0Rv50iVD/59VMXI48Ti1fMPVWJ9EZecsnRcogr53ojNxtWnmhtjZz
fiM/r/1w7I47LURn5DY5Gtm7xZuJnsi3010rc+c1ED2Raxo/ObGNv47oifzE
LoMdblWM7sgvn/l15p1uFfkZr2Wie4b9Eq8keiKv1IqermZVwVnnoaRPfpYW
D+wHjjoPtczwZ71+NaMn8p7I2QuPze4BjjoPNX1fVJqMaxdw1HkobY2qa6Ul
HcBR56Hk5uicnbeqHTjqPJTM56VTahJaiZ7Ip/w3ru/O2hbgqPNQvLvWVbxs
Zc4n5OenF0YHv2biNOSNXy2tM70agKPOQ2Vtlz3ga1QPHHUeSi4z7KxNYi1w
1HmoCSKqW02jmHgYryMKNq//NaoGzg72H8+yg4Ff7KUXRfBozRTlpX4N9pND
eI7CrANlK0QIVx34tVst9NE9GTpXdnQDcr7B7htox+gfdP2lTogYxGWEH/wK
mk/9ugl/O3Sll2fOXHv2WSv09A/8q4fiof7oMd9dj7/QriT84dB46dbfjbcV
vxeBytA4CE/22tMifDQFlgzgiZ2EbxaamCTrmUbGifNOeXc6cf3LcjIe5Bd4
jyzk8y0m90U+QtEp168rj9wXuayZ27oR4Znkvsi362Zr1o36CfuHdCR8+o3g
uA6RWKIvXjMtD74PaSPfp41FvvSt6UnZD+IUzgf53O2RNpHL+Mi64O+p+yRe
ehEnSvjyoXHRSgn3VTVOCFI4Huzn1VXZzmIv8lyGQq52Mq5aXVCIwnFjP+Wf
cnmOVfQTO0eepDTl6fHAPqIn8sR2O+0JkfykH7SfOqF0JyXW/sV+kB+5K7r6
9YMe0g9yU828NxGRPGReuL/1pn/bI3G0i6wX2tXbwOFvXlQ3kvVCHqT/IiAr
oJ6sF/J1MdsUe6UbyHohD8ibdfrEnSbSD9qn8by/HZGjikk/yLd0jkhY87eY
9INcK/NW8ArVatIe/Uqe+duvX9czcRG2/+H79f4BCWY8uP6veb82X3IuIeuH
fEnxbsO+wyJk/VDvlhnmywQ8mfovtucbtbpZ1FiUwnVCvvFGZ+ibV0KEYz/h
i2fV8D3sJOuB7T9G+libtApQyLF95PVqr32h7WT/Y/sU3n0bMmfyU8ixvb7l
wTS5t61Ed2yfFD4599Y+Xgo5tgeJMoWPn5qJvth+9/pJK+bN6yectPfc9H70
j0aiI1535Ewxnnamm3CiW8Ph0SrPmP2P/79AyOPF/XvthON1wefppgteVRM/
g+0lvsXwCm5j6kXIL3q0frly4ivx28hXdfv1f5+RS+wBucDXM9kWAVVk3fE+
vDPXT3odzawvjmfk7qzDG6/1kH2I7V1uqIi5f2XWEXlWhEjJ1kxmvZC3aY49
O66CWRdyDlzJFv7VzuhPuIHQ94vCTWQ+yFXMLIZvVWwgeiGXaFOOOLuayUfw
/4Ms5FaYPC8l7fBaoDbKSfoYk6dg+zl39W/2ni8kfgPbZ5hJuq1+WkLOU2xP
y5UuLB2fS/wGtn9SMLtlhnghWS9sn/0mWf3ypnSyXsg93p+efa7kC9nX2M/m
kalRpiZMXontg/cX8NxzekX2NbZX05Qom3n9B1lH5LdTZTbGhpN6LPF/KuGX
fVY5fyf2gP3JKA7rrDfvI/0gH/by+7550E/ui9dq+0M7Kx2ryM94n+GBdiki
ZjWkf+wvfMqahYkbmfMIeZTJtdBv6cx5hPHaiBuBCiV/hSiO/mMfqIsNF5oj
TPJttNPqxxMvFl8UIBzt9If8wysPwnlJ3oj2eN7PTcbuIbO/kNc9Pxqovqie
rBfyME+F8H1yjaQ92u+arT9CquyZOBh5stbnUadry4g+6Lf3v6agRLuc6IPn
WOyEKwH7H3aT+SBXvlgS6hzO7Dvkmv/lv5rxgdl3yNf/gWu7kph9h1z7t/yF
nj/MvkNu91lhdXwx499IXevd1WEFfxk/hrz5+ItPuvWMv0Ju1vAgOrGXiYuQ
797yTnOSRAnZL8iTr45NNdtQQOwf+YID3eva0lOJbsi/3U+5PeJVAqddUVv3
TSnN/krsltiLoKCe4pqFVWQ8GL+36UpoWNIdxM5wfkq+Bos8vJl6F/LuVt3/
jAKZehfyg6/MNmx+xdQVkS8eZSR4g2bqisgX3ddNefCNqSsi3+Bk2Twujakr
Io/w3yPoFc7UFZHrFm5SO/a6EjoG9cwH3sHf66A/JF6UMFwqQO0bnH8rRAy2
j6AN4tLqYlzew6RB++mhkwbHmwT1eimn+cZ2k99H3t92wdZEoxNyB39uJjz3
o7D2xLntcGSw/1rCy3/nSBosbgW1wf5LCN9jzjPTcXUzfBjUM4NwE/PNPOc3
NZLxIb/TH+ga+rEO8Ge8zp02TEs7pYrMd8WgvTTS+78aG5RZd8LiwZ8rwWjo
Sgedz3C6M6INegfbt5P79GyenBf/6SOEDo0HjgxxMJQfIzXmUQXheN8d8q2b
NdIqYO/QfEn7N68ezK5UKYCsIX0I13oYKhhXmQ2oP/KVZfOOHdTLIONBrsez
2KAuLRWuD/7cRXiV6he9xspEdtzYQ3jHpGcTZ2qy4qPBcfYR7mS/KMTR6CVZ
X+Ru+RFeJXLd4D7UP+Eh3vy39ZW6yLoj3/BD1dR2fCdpjzp4nX82OmZiFxwc
mhdp33lDY7TL5A5iJ8jfSzbpb5nWTtpjP8oPwmt+zugg64ftt++YL8c/q43Y
FfKIjSccds9tJe2xn9Hjb+gb6bWR9cb23g+v+59d2ELsEHnBPa+lhouaSXvs
5+SSjet4l7eAwKAOBcx9T00bFrSkidgt8uSok9o3lzeS9tiP2I3FYaHrm6B6
6GfSfpn5eveylQ3E/pArC/4cJ/6gjrTHfp5e0XKpt2gg60rss+SP3MmAGmKX
yPMaC6bZPa4iP+P/Z/WXXF+QWEPOKbx/jpz+n8iRbyBqyH5ovJr0jhMudBWn
0K6Qb/qbqrLAS4jCn7GfgDUXNgjkiVC4H/H+LY964yO8y4i/xfMkN3pbecSa
WmL/OO+xc+XFfGt/EfvH/sVStaaLKPwmdo78Q2nTMOGqMjI+nG/F1tToaYpM
nIPjcc0/sWbO7EDSHvs71XfHZzlfP+kfr2OULpmPN2Sex5D6hicVcnSGKInD
8NzYYCGQlX+KqZ/iucprdu3qQddSct6hv7c7obX798RSkg8irz5RO6rFJJvE
maibw6ZW0XGhmcQv4TxePigY7ndElEKO+/5kv847EBahUH88r1bZzpXY59wH
T5/LXx/4e4eLBUXuA9/HNrlUJBiwsI+ME8+r9JMfAlNn1RH/huv1Nrr6kObM
TFAe2l9k3WWu+q7PvMzUM20uvbYa+G62t7WpjV25OIXrhP+vkJNQMVFSnIwf
/cRIo2e/7Jx6yHzRr8gN+zK6/0I3GQ+xQ9MRO+ZU/ST2g+NspYPkD+7KIRz1
vKryfR88/kPsBPsJP109cs/wKuJvkdc3aD3Vf1pAdMf5Rs21PLRTqodwtItR
zZvKw4f1kHMK562RE5dwP62M6IY8ccGkM/o/SwjHftJHZ79Y9qSEnGvEr17y
nndxXxHh2I/LgmW9kslF5JxC/rImtjY3q4Bw7N+Pv+L3cbsCeMsrNvh9HouZ
dy/pmSbC1QCNhT5P8sg+xX5m58bWC+akEU7iQe2qupw5aURnbC/c35mv9jmZ
6Il84kvNlz6WCYRjPz5hnwrf/f1I9iG2z8z49vzesVjCSX49TaixzOgN0RnP
K7XTOpnWEYLEj6G9XdrqZx2+U5hCndGuolSDri+w4yH+De1i9+XMNYvm9hM7
wf4KKgp3f9eoBo72sSXr7kaXR4tTGL+h30gZ9bd35FNe4o/w93apFs3c4MdL
7B/7yfH1Le1XJ3U8Mi6Vj69vVaQIkX2E843P3jhMKKWf6IBx687uzIYVnvzE
DyBvV3hQ5zWLj+iA++6phbHzhnLm/TfktgsVp2dZ8ZH3HHAf3SgLFvNwF6bQ
7+B+sWqcf/5pP/MeIHLRsrfp0iuZ99OwH//8hnWbfgtSGIdg+2uxlil39Jn3
UrB9Xk9M6g05AQrXD9t36epMVjrDvEeB7RWn8nY1reajMK7A9qPajlvzvGfe
r8D2YuU1yavP81AYP2B7Px1vMep/3m/B9s3dbt0Ht/WSOAHbL1pgvWk/xbz3
gu0PmMz/fNWzk/gXvBpd+HNytH0XOXew/XDTx17ql1vJfsD2Mw4Y7/5rxzyf
xvbTZUIFdys0EnvA9i9vme0QV2gicSn6SSUd631RAcxzMuSlD17HSBozz6/x
/k+qewTeujPvd50b8vNw8KaS7ssDzHmK9jt6f+qXQJ0acr5gnto74fqOm/Id
pA6D/Pgcfpl6Pyaex3XrmnvJ/YpcJ2hf2+A08B08EUfFvIHv4JVm3bXPv1FC
5oXrsGOBqrNjVh7JTzEP9nHZIL3ZkXm/CHmnWMvz6tA2ErfgOX66q3fLzeoG
wtFe1sfa5F+rYp5nY/sj757cfmtfS/wtxolz/GY+WnGJ8b+4D9ZvVJOwL2H8
He6D6XxPllnEM+/1IW+7dEBdV6WPnI/Yz2vFvpzNPEw9CPdHbOKVpbOrugjH
/aFu0iyr79NB7AR1Xus/Z9iOqx2wbvo0tYG/30Eeamrb3izEtMf1Cvi40cK1
q4OMB+0t7Z3em80mzPtaaJ9GszyeL9Jh8ils31QXvvedFnlOGov+su21jdqo
y8x5ivp1PVH6ciu8jNgJcuNZPGOnuBfBom0uTQPfl3Nmc8XOJFWTxDxyTpE6
osGstXxCzHsyuA77/dsOSF19T3RDf7s7fouMlZoQhT/j+H9IlLvkKwtT6DeR
uwYe9I7cJkhh/oKc+l5l6u3HT2E+QvzMjsJxfFm8FNoN8qh5Pg/miPNQuD9J
/HOs9p2bFZMfIudbeUTQ8VwH0Qfv/7PpxK0QyR7C0c9Vjb8i4qLTTDje31Tp
/KywVKbuiut+PXhJSJA0854k8pBzRgPPgIk94H3Hx33pabrTReJe1LWVJ/gg
j1IO4djf0ie3Cz5dzCL7mvifd1PUg5syyH7Ec3bB+uNugV+FyPmFPE1hyi0z
B2GSp+B5Vb5n6ZKzk4TJuYx8VeGvteOGMec19uMx29/uqgkvsQ9c5zfdw7Ya
xvUS+8T1FDm6/8/x++2E4zm+ebNB+Eg/EQr9IdbzNvjr6NjZM3E4nnt3n13n
q1zcTfYL6hlrd0BC3ZyJt9APXJik7Ttw7uB9cb/bbM6ZkTK6g/h51P+WxJkD
jv5/iM64bretvjk0WmUSnXFffuxe9HKqiQiJH3Bex2N5J18uZvQkcdGCQ1U2
FbxEf5xX6k75HTuzO0kehb/X39x5V9GLqb8hX1WqUXcugKm/Ia/devPq3HCm
/oa8pLC3qu8tU39DXlztsvPCJ6b+hlzr5Rst4+9M/Q35A6sRa/gfMfU35N+S
1sYlBTDv9SEXuxe6Tc2zlPg95CEGm4w0VheS/A65q5hA8rvLzHt9yFvXvlky
U5B5XoD8Q/QI1ZrLCWT9cH0UeXddW/uzknC0o4Pbvq65EFhN2iGPelISsHNf
BWmP+0+1d9fBq8W1hGNdtiSCEsyezfgBrK8Wrnxr+rO5ibRHbjh6afu7O40k
r0E/Y5X6rElTpBXk2HmH0bTBvIPe4PDsup9kIekH7XyE1ood2/uY5yKog07t
3Awt/3IyH+QxvtnzdoXmkvkgv9q+Kir/PPOcHXm0lNMS3aUpZNzETrQ/CfuH
vyP7AufdOy6pmu9MBtknaL/2/Jn6fuuFyfML9Cf72o+5nWDFyehHsP89dL1U
0E2mzo/8p46IkJUvU+dH/vVLmaptMFPnRy4kE/zl/Wumzo/82Dcv/kaaqfMj
r9AXeB7ylanzI78ff1TTz5ep8yPv+Nofs+YxYz/Im/28jHwci6HAceicxf7e
Rr8c8zghj6w7jmux04/J3Z+Z+Aqvi+za3RcvZ37GfSNz5dCaz0blZN1x32xJ
U7o1/l0N4eTvaWxvrbhYzLxHh+s5VdzaCRY1kboB+kvL0dV2NVI5hOO852l2
NfSWZxO7wvPUxdXWtSiwiHDsZ97H0vHx3flse2uAJ4PDSoCHI46qWJQxOqDf
qv7kdWXV5X7iN3DevmVbJJeIVJD2eN//rlg/PrKjnpzLyA+v+iq72byK3Jc8
v5CYVbZxfh7RC8eZ8En3zueev2xdGsk4Mz0klwbl5cLIXo9ZxTwM7xu/5K67
O9MPeb75QTp5w/08MGHH4YcdBuNwyDqwUp73ZD58FBGVHfguuht7HSZeKJpg
NiKf7JP3Xn+7Br5j35phMWt0vSjVEKJ4feB74Pj/rkbVt/UPiVL2x8fFD3zf
G8+RbXVHXjT8EKLUR3msHfhOOLbnN0xfEuHIz/w9T1f7nYHv2M8VDU5Uaxem
FJJPXB/4PnkU+/9PVFv2dGvxUAXs8yIrL2/awHfsQwV+u8UJCFDO+QZyXtkl
5O9uqiVKthje4aOer0v5PPBddOTOf6V2+//pJOfLMJ2ZRQPfsbcv83/7VIz5
+52+Q7ETBr5j7z5sVVLzcB5qk+KW9pO+cfTT5ddPD3zH/lyZrJmDRh+EvJvw
deC77rnscaUGDG+XO8W83/iU/R376+mvt+pSTNxlqR/IP/Ade4kFT5x0jneA
3ZFI/agVTbDy9ExRsa3FtMqb7aYBT2rgK3tdcFymN40LsmqKSP/4vfrFdPC2
wsh60BJN230tI5bOYO9H44AFrgeymP0loZE+cF+48NJ1ofkJ5r3qsOBJ+gPf
q1fPPuDf8b4cnrPnhf0svLzaOyK9kFM3eOJuucVlcQscYuuPdieUnTrhYhFT
J71pPagndOU6nKiRbIJn7HXB9jmXxs/L3lwCeWwdG94Nri9c1bQzLHJuA+WU
IXt4yT5vtaUbl8XsLSf2wbYfMJ7evndJRxdUsO0T/YzltGaN2oc9MJFth9ls
LiB5UnTM+yr2+hE7B53uoNw3M3uBw56pnXte2cjMqvs/36t3jTmrp+wjRu15
Izhp4Hv1qvsMDjyhe2gbiw813w8LUKer5zYPfK++od7BfuB79boW5cMslvBS
JZ57mwe+V2/V82ZDiFoLffPypbifjj0gMXNYgV5zLp2Up8Y78L361gl9mUlr
eKmE8WKilaz8bMtkV6Wt8xtoy4s5uuMb2kBx9MzXdWdoMD36RWDge/URpbPW
Zp3tAt2TD/8fXXceT8X3/wHcvlZSRIXSoj1Sich7tIdUSGiltNOKFqQi7aIs
ERGF0p5S1NiLLElkX7Pv+85vJnPu7Xvu7/PXffQ2zZ07yzkzZ2Zez7d0bnld
ZvNxOq++U7dnTJtAF5yfrdQ37f0TUv9dyjM6Z76LmGxdtrgFtq4/Oo7OmQ9T
+eNJ58xPTkz+I325EX7dTllXqFJBHj929QOdM++lsqtrxYUOkCmblUDnzB+z
zlxD58yvtS+L/DGxHX7oFGyziUsjFW18b9M5868cVMrOhrQCVKffoXPmZyxo
mEbnzItkLMqpTCiHnJmLc+icebX3Zz7SOfP5BlP4JmzvhiQbTZ16kVrSP2GP
KZ0zv47HLXxycycoMvny6LPIxPi+xdoqePewNIrOmc93OphD58yH1hXz2Xj3
Q9KTfAM6Z/7xksKJlfY9sDPv+PA1xT6Imr7Vn86ZLz5aHUfnzHs9lS+++LkW
vi5MkPXj6SebNKXu0znzvB1v5iwZHoBxdz//zZnfPbM8hs6Zr70e8PXKmkYY
EquRmVo9SBY+cf5C58wrHjHgLx8WIdavT/Kh896PM+cRSXYJw9bTRYmh7NiV
tBfAY2h3jvYCmiY3xQ9UtbLmUzQyH/C5sqrI7sAQuGmO7Ge3Rz7hrIa8+N2u
QVjJzB/1m9bDovZxrkMQrCv9lc6NT7vt/4TOk2+NV49PfChKBDD1lJE63Bsz
bqKTzDAo8WfM2nO6lXXeMerMlVGGxVWQp/ClutXkN3x+zLuCzpl/OH+URfR9
9jjMx5F2g/xjvnXm1I5OuK+2ZQ+dJ4/OH+4YZk9o+9IFVf87HxBI3fj+yuY6
WMrsn1Uj+yeccrEqUj5fA08XqW9TW1wB/ntqW41bK8nU0x/b0vm7QEl1ZP6o
/xUqWb9Kz7IaFjPL/4vp7/LPfpJ6UFoC3mHX1em8cdQfgfOo++U/BAi/voW9
dD456o889EqLjU7yEqh9mTddOjJzXA95bsPKRas7uIir7Y9O0fnnEUx7s+Vg
x+ZjUlxEMfP/BxZLWdO59AKb+gvv9LPfi+xZtTOZzqUXLnf5On+BIBEslpVK
57Gj/og0NRgdFtMLqF/ru721kc6l/33DuyPvDi8hb/cOrJTek+jvLZqPDZRv
s98Xm8Tk0tsGOA0fcWL3L0HNj//m0u812H5c8hj7/cdytReNdC69YKt9lNWd
btB/+Pbv/FE7PyG6fH6lawuU/e/ywNnNXTpC1Pq/vvfitUXPW1nt/D0bnpTk
xG7wYvqF+3sXzKVz6bkkdV/+GGS/t9JXuEeSzqWf1WTvsa2rFR4z6wHNZ++w
94PUSX9Y26N/ZH3Cviuy+Z3TB1jtPLM+4Sz/nWT7iX1QwGwXtN2OdIhODCmt
Yl2XzR/ZjmDhIH2kLrwatgyObPc8pv3n/vLFbSN/Hfj8735ClK712ty7rRGW
WRln0rn0DsOXKulc+sAdvwr/vOInxvzaHkjn0u8R3J5K59KvS79du3E1FxHx
oWgunUuff/TIATqX/nbETP6WTh5qfneS6Vx6cnAwmM6lP2y/+17sZCHix1mD
MZsedsJZ6czlq5zbyZiLKgcrbfshbdeUNXQu/Y0e+XV0Ln2R1CfjySU8RFmu
vVuiWQ7JIy60nc6lnzXKu1lvNxdh+KPchM6lzzzzMoXOpb/muzZcwq8LRjVJ
xpDTb5PTdlsW0rn069+6uJ4a1wKnTC8eMduTDorn5zTSufQ+yQnZqZkNUDTs
/5HOXZ/hHs9D59JHrVH3Oy9ZCykTlwulazeSE9vL++lc+o5wZx/FE9T6HXgz
is6lH7tf6wedS694udw7fqgcanYPTjRxHSBDE3TO0Ln0JdJODnwhA3DvtqfG
SuleMld36iI6lz5CyeXEgEw/GJotvEjn0q/44z6dzqX3fXU0cO+tXsBz6ZWG
G640BlZBW9AaoHPppRt/76Vz6V+m9klt/VUHHX2mHstPZMPT73/y6Jx58/tT
akZz9bLahfqMT5/pnPlres5Sb7V7IJ75veNHfi+ZUvMkKSaMat/CZ7fSOfM8
Gnd+0DnzH0RPrPgo1wNdzHjIOOd43oZLdeRAXs2riNpuqGG+N3Tke0HP7HWE
iks9rJ555LhSWjnMfq8z+LS2jtxS9emlbC27/dyl+vd4BOfYYiKloIZ1fsUc
R6T16qij9xPZ70EPjBxHpLLNuAkfetjvQbsxefJiW71KdzWzn9MKGWkH4NXT
tTuC5zWAwW2XbVv7PODguddKdJ68wtzY1fIwAEt9FNfuXllFkrVbVek8+X2i
y2QX/+mAS6f22oRvLiafyTsr03nyn848vd65uR2GNMV+wucM0vzsGCU6T/7z
lW3qfBGtQDC/d+bI7wWZ3Ndmzk9rwKTtVQCdMx+aLLiXzpmfmXHSKMthCPj7
I2vonPmlti5/c+anX7y44IVsK6Te95hP58xXT/0VQOfMezUHCFjPGIZqf6NY
Omf+UkzkFjpnfh/Xq0J9vW6Qv3LZ+su8IFh57QA/nTN/Kuv36TviA0CeOMQn
f62S9FU+dpTOmVf/bu+5mDrvfHwgOZvOmT/XNbWOzpl/8vqNrN3hNlh01CaD
zpnf83vl35x57b3jh/es6qWu97tn0DnzvhV9XHTOvOYwXEg+z0WEqi8j/cJI
SLimYk7nzKuk806dpdME2aXi7+mc+dAxhaZ0zvxQwSerXTw8xAVL2bt0znxD
gtAHOmd+zrTXP0wUKqGjxVRcM7QLvHRXXaBz5r87TjsbNLcaIiW+zMi3KYfM
gBdT5tTVwZnsjrtXvtdAX1PR1QGHDFZ7aSxveExBhIvYbzTaZ+PyUlb/Yi7/
8ZXOd/Z4XfJu/cm6/mEwelYLt6NXH9Qf1Zt/hmpXQ/aMEwCPMDB6xXWxIog9
Xme0vec1Pb3RiqWRTi+7oD5b3Ow71S9IGPlLGFLTi1qGKWv8M14n5ZT3ez01
fVPRwZWh8f+8bzze0XIlVe8sc9Q3+M4er3uVd9BxKVW/V+7d8TaAPV7XOnyY
T46q197wTO0IZI/XxfIFbx3wC4OH4oTCHLdKmCEWqfmEdrnaDq6e4RkGWseD
ZkevLoO3umuMJKl+xfbWzcSVd8Mg9+CZ0ryAIugdk7PenOoXDDW/P/l9j/re
B9vFcruyWOMRGvevT7ek5h+4L0pp9qYkOKPj6E7n0qN+6oyPD9dwYj3YlVzM
tT9Swupn1uRPiPp2njo+rnq/jBxMA4Xkbz/33OgHQTWR9K7iVrhb7M5zizeZ
1b/UP/jpJWfWDqNeCt0vWzxAFvb4vsyKDyVvOp+Ln1MgSPzQ3lLnHdhNrgiK
stqfGEp6Xa28WSojQFTxWEmqibWT8x78+iUaG0rat/DnCO3gI+S2Lxyn1tdA
TlgtcnT6t1Ay3a1ynTN1/TvdyV7wXHYFeahUdOcvav6bV/V09qVyEds1lxll
mGWTriJc6tn0924zn7y9dRC43130NaC+T1XJsTyHql+2yFh9R6EPVM/ePtlJ
9RdrUnc+yqPqS6OGvm6Q64LkxsAZP6JLQbRtjnshVfcdZXig4nkrWHbUuK6g
+pVoBd3Ie19DyUuehuoOp2tB4qtV3XzJLlj6696tidRyLn85blly4RuYWvky
/VZIH/xcYOBYSc3nxG3egy1uOVDVVaudrTYMuaqbZj5PCCXXulz4PJxZDdVZ
3tXfNlTAi8sXeFXK2uCk/WGeA/L1YLL95cyOsATQfjR9TyfPECm16cu8IkFu
Iu6XXPf+dYUQcMdhHp3bP87lQOXLXf1gVZr1a7l+Jdy0InWnvWwiZ3a7GJX5
9ENNq5MqnbcvZnZ4Kp3//3KvTUbKSX4C9SN5rk37vt+hjqN1Z/2rH7DHM2fW
vNhpRO23Od93mG8/zB7PXDhT0fgxtV/5rPVpsb7Afr/+U2HjmCSPMLI4S2Jr
WlI++z2mmsNOue5hILnN1DZJlj3OqVqodWY3NZ/cbeIhViWfWMdF18dJ/lHD
7WSlvs22o8bcrHHLGffcaxtcw8A3O8Rlwj/jlsfWnz9GH9cfY+auSfBjj1sK
JoQl0vWdGeU7U8PY45ZveQx20/U3lWJi3P+MW84WHPbSpuoyhyx3TPln3DLC
f9bytVTdUVZnQ+xX9jijMf8NgRVU/dlb/UcOD9jjlpnrd+jOo+qyLll/vj6q
h6sXYwJpLwCd9/quNjDnn9kL8H3WhFFri+Fn2zX+y27dZNlqo/1fF/MRUoZp
O09S19ettjaNudT+076bq8Qt9DNU28Qdpf2CmDTnC7RfIJv3IG+CaS+MzXzF
E5JRBjFzUr9+0WghdQJ1u+cH9MALrf0N7oHdMGWWtGEktd+2JK3z1zgfDQnq
Tgo7d/XAuPQHvD+p/bZQXtNsvkoiSCcr2oeZZYP6jKXbZiWEAsEzg29Vew0k
7a0wju2l+sV0098hMaEwbev9lHibUiAm7lJbLNYOVR7+5b9iQyH4+l6167EF
0OLx0OYwtfxh98O05lLzMdx6p2ZlUw54tQ0cOkYtz5IHSvtUqPlEz9xwJ9rm
J6Rq5SS51fWCccvS981kKLj78uc7yKdCQYPD+NzFAyATo8BDL4+tHNHDoxMP
2ZvmBw/YDUHJzRfpClTdt8l+yuef71jnRROu9RrTed08W1Tj8nfwE/c/CJZW
twyQjuf+RJz4Egph0Vz9gRr98DSo+qNHSB/ZYRGnNIOaT1UNaVS/sg8ke27X
me7qIa3Xvv1Zn0TnfzbbSG/ohS/1Bk+MJLvI0dAytjwuFKzex39ftKkH9pvV
JYintpNvuwc66Ok9PfVchw2p67E3MosbL7WS8Sq3K+m6jbp5b5BpF5yfJf7p
86kmcuXVxl309946xJU1bk8ndKTJS14tqyW33v6yr4Ga/8pP+nGLLTog41S0
5bxNlaShf7MbPT3vFv307kPtsMJMpjMiupRcujT1Zy01/xvjnQr0rdogWXTp
CuWtuaSrcWIrPf3mce6XNpxshcGDG7PBLJ30dxy/YiZVN7E+t/iJdQvcLogz
UFGKJOcV+AfS9TY5y40PW5rAVitxGr1+0adqbkTInI4GuJu+TWvhuW8gELo8
mq5Pb70pZkKdj5/M3shbrjZMDi1xG78kLpR8kh0eYMgtTKyfUinFZT9ERp/R
C3xH58IlG0r7fhQi3p+7+OCuczEky/kLVVHb5eXXwRCrBvY4vJ2Ar4O2G3X8
/lrOLXq2AoRXymt8pfaTpotaY1Op/bYg9SGvecBPsOXzX8xnPwRCAl9Hl1HH
S15ngfz1pEpW/zvGyeySt9Mg6WUtuvTPOGEizXv4hwjV/7kHjROT4npDft8o
TJR2ZMP1tllydM7wwghleDx3mGweNDjffViESIuz16F9jaPFn5JpX2PIO8fH
oFWQCOQLWuGfXQEJXP4RPl9DQXxZqcykoj9wOf62y+pNlZDwKKXDndqOKnry
KsuV/kAKMw6u2T4qnfY4Dn8XfvSkRITgd7pOah3Pg11fKzsKLLpIJ5Hxs/af
GmCNdxuW5F8/v76TPPE6s+TCm374Vn3o6OLUdtgnIXnlINVvtov+5l6wII3V
H4OcheFNrzBy7bb35Om+WhgUn+TwpmUAghP41lRR60d20q8rXhfLQFFfojON
2l6Sn6x3alH7j8nHs2LCKgOwRd1iHp1TPS7ShesIdVynFyfn7hEqhwyVGVW7
D9TAE7ebHdOo4/Si7R77jV/Kwbj/WLfPmAo4MFHuw/LUNlKpmb/M9wQXoc9n
3nrFPxpqt6YX065Hgv+PibO9uQnTM0Lzadcjpmd1Je16SLXYck15x34fk7eu
8NrSaX1kzPPtciZThiFTrfmkzR32c2Wu9e/3BQXysu7nXjZbqLPgVRcZp/f8
kMp5XkLs2hxz2ik4ztwfz/ot5cX7jv382OQJClLV98LId5uFRiW4ChLHjQSc
A6j2IVRtQ8T5lFByZdj5Y13ThAgu6wFjJ+r75AwOtLVTJ8ZlFdFRszL5iSs1
bxPtqfbB48q3dvq8JUR3ntsYC/ZzYrcnOTpWUfNf/pT34TcxPqLc6XLgEqp9
MPj27js9/VX5ac4fg/mIV4I/V1dQ/UHSV4GqYmr+7yprao5q8xD7+dc4PaXa
h7CDA4H0eZTyD7cV2aXs58TSWv1N66j5D/g1cN914CIqtT3XSFPtQ7Sh9S16
+jWnXXXtpNjXWSbmPQkt1PRb9u4uHL95ELR+3J09imofZsWcOkNPv3ylycJ1
19nPiak8EHszSE2vNenFJD37XuBaPKn4oWIkecpow356+tObcl5bJbGfE+uy
Hr1Qkur3b1k86/y+vxNuJVWl2lLtwxY/6/P09DMWCxk9SmE/Jzb7xK9CFWr6
gI2m016WtoCG0WVx3yvFcPKef0BPcij5RVinTMzqn/fcvNX8t10YIuPXGR3/
s5ybeHFq63ralUDPIz1e0jhbx2OQdT+UR8sw+FNpN/ksaprGKptB6A24uZx2
T1jP8UYYDLbZ90HFKpkQ2usxnZIlMSW2mZzh3lISc6IHNsKX75mGuZCulHJk
mFqeYUvJgdFd7WB8a1yVO3V+rjfZJnkMtb2MxyU9GYyoBvnoBevCTzXBUO86
lXfU77X0+bS0bQv7OeTevbdKB33DQDN5y8Fb1wdA6cKC7+rCrbDOG5TN9n4G
GZdbvz5pF4JRas/oKv485nqljwy6cPh1xUEBotrtmuDnul7SaFnkc3p9Nnms
X71uQIAYFnEL2WncSTaqvkum9yuvLL+lmRr8xPiXXy5LJFHXkwZxPKOoeuvl
B8v1z/ESaVCV4HmghvxoHzFE16c4K6+f+paboDopKeErxWT2x7wDYlR9Tezj
NVHfhsH5ssfvs+e+kfZFhU30eXWw9hIVV+o61OSy6c4AxUi4PYp3Kn1+wl23
4Zr9/B5YI7lMSuLgRxg14OxC+y8OJ7WF7idzE73Mcfpg9MYZtOcS2HS5ZoVQ
H2wus7zjlt0Ktwd0hnjDX4PXqujN5z8Xw6bJ6/pt91aCz/Mjq0WuNsHlPUq/
h11rQC85ab+Czh+48iyg67JaK6z5/vqidUMtjLlo1+CkR+0/1uHW4zLbwbbV
cr49TyN4T0h4f04wH7b26enLO/RCjfEyDe8jLSCbpHxBUe0b7Kic8MOfbxCc
uJpV9ZzbwEblwr3nMtmwaX+ZxA31AehYuqB/g08rRPpZmNJew5sVW8Y/jqgj
Vy75GaV5uhvEqsL2J6xoAU+ZwkzRP68hrlRe4OmoItgibHKE3j9Re9OgFyoa
YybIes42vEw7i3ZPDiYuW7hohSCRWj7eifZH5KxV06yq6sk/GSdXnHraDUPM
c843VK40v6SuT5XPNd2+HJsJx6dXnEp5lQW8427EnnfoJZ9J9nnMezTEek7A
T7Zk4AE1/c2uGOV1i3OY464PGiZt7vxC1dv8VVrWRqawnpOUcP78N5/23dvy
gGvj30DGkBD/Mmr/nG4Z6qthHkOevG8VWjmhFLQkLKVpx2SYCK6mHZNDUVy+
k8K4CXT/+uLvK2YJ1H6e1/YlVK0hn/V8tWWM4XAqNf8qHw3nJ6WxTDs+RA6G
jbeoo6YXrvk8KWf0AHPePkBeWpm7nmqfYV+Osv0miX4YHlkPpOvRNF96erH+
euXfU9nvhZ1Xnv+ArvNNHXv05Xz2e2Gbq6Mm0/PJ/XrE6vEy9nth45IS99ZS
9cXTSgeOabHfC7NtOva2iaob5+xRe7CB/V7YvXdJj3qp+vjLrzN++rPfC4ub
Ol5hDPW7tkc/bE5+xH4v7EnnYpmFVF3kvcqryd5VkEm2hx9szAS4ZHa64eEg
mbB4+uO2+ez3JsxPSnTKUNPnGIzZMS6gBg4xz1l9FZz/YS5Vn5xVGrZKvJT1
/J9zq0Y91b+A5fuwm08msd+HmqOgFkivh6inezsKFNjvN237XXOVrp/pX5es
rcx+X2lywxV5un7VcLPzew32+0eV27Rm1VJ1lQHLP/Fr2O8TGb2Q0WynvtdA
JTCiRJf9fpCXSaoVD7Wc45dFeYk8agDzhFnGtGuAriOH/SRuZCytg9nKK++l
u+SyxreJt+Jvrns1Q9ndvFsaF3LAb5K87/KL/eCcvs1uwvpW0IpWja+mji+7
gqIk2+dvyHmZtjnKM8sh/0RvTe6ZFjg2r//eJ77PpGN8pJqOWxkM+aTvXUKd
d6nv3Ne2KimUzGxxcFK90gT2O2xFi6nzljV9e1a9pdpz2cgiLwUZ9vs1u/xM
Pyg4DkKzb9W7xEVtsDdhyp/mwwlw6GXrb4n+QRilVmb0sa0NptsffhO/NQfy
4yscPIq74VdMxU13ogX8J96yovOEc5n7DuH++6cRH2sgeWb0RdptuadXIGkX
UE3m7OyKMFLrhuYZI/WkkTpIHM7PM7CvhlzfYB4XvipQrRmt9MupBm52Wr2x
66gCq5WLPmzrzgPPWVHWXS69EPBW3O3tsRZYKdGtMPtQJqysMn5VlzMIXN4X
W712tIH5/r0/E3mrgP/ByykrxBtAvrnZ9VhMNazekRVykLcC9gnFVr/orSPP
+jwPnmjfDavnjdRT+mPoOpi7y876cL8GyOUOrQbU+vE+emAbWdwLHsGTF/lM
awWRqJ3fHxyohNBXWlw1g01kkoKtdcOXfhgQX9T8aagUru/O1avf0gpd9h3j
Baj1rDQ977CjZSTr/HQln+oE1QKqnX73214svII1HuX1bJA752Uda5whbvOG
/FvUecKlhmdF/T2JoM+VsIke7xLNvyq73T+M7H1gM7Ru+RtmP+uGM53hqy5T
/XJbr+LB/phY5nnFTtg/xlDFk65rpin+EolkjUsk3xn9wjQgjHy2VGK0rFIa
a1yCvK/yKYv6XiHFwwadwRWs5U4fnV78hDoupNd/rP8yEAT5fM598iGtYKE/
kPVVIZrsrA61KCnLA/3g5yUN9qzxsRgBu9AWdQVRgjh/Luw01S6i41VM6ty1
x+390MUr+ZG+jj4UZbNrIDGUPLyqPrRd8CfruaBbhuGZVtT5/P3kJdfkt/+A
0covokqo62KDQ+NbSqj+d+EDYWOfnmLoXRG2mXZYUDsR5Z3fO1NrGMY52Mk5
uZbC2Umddn5DnaSCxdXJ61t4WOMqEtWV69cGhZFBBz4ob7cSIow692r1DQ+T
vS38s5dS3/sp4WHrDV12zob1gsE4+vz26bUPSR9eCbByMwpfpx+l69opDQcL
WtjvR9ztFfBaT83HN+ZKupUjHys3Q/nUzCx6eoG6SSURC3hZ70e8Xm0rpUtt
36Hl/Z1q0Tys3Ixoq7M+NdT041bML7e34Cb+MOMzir839zRQ9dRLExeIzx1m
jc/cPN44r4uqh/M4ri87ys47kFggUyVIbV9rX4VvktT+j8YNUuqupR14FEZe
naV/d++SdngyXK2UmJYChLtWs7bDADluzd2GOae5CGlNAbu++zGs507Nh8Qe
TdzDTcwq451BuzDFMtq+tAvzcnqJ9G/nQVB6Juu51pZq9xpcnmpVdZGEXkhS
VdoAxGwylVFYWgIZ2k7mXOrt5LPRWTkxW/tY58m/DPm8O342kdq1E9OOL++B
6cncMQf5y1njWGVbynR+2fdAwBPvl2lm2XBrhngCfX64xcm7x/JZB+t82P+j
nOYEan1OnREpYrelA9Tizk2h3YGiea4mu6nr8U2y3m3FnZWgsk3kuC51vuM4
SjmgO+gjLN72cChUsgS+aV5pbdiYCwW57XtoX+aKvrjMqXcCxBMeOTHalylm
trPhvVtnDIq4iPPTn8rcDOkjl0x794tenpUlAXGwWpC4LNlze7tkF+n9O/em
BLWfb74YOopw5mf2w06yir/Pjd5P5gq+dpEw4yfiVKrHjL3cSm5ysS2kz29f
KcUc3xqPnldvJT8aaj+lpxc8LdxY7s9LLDR5peleVkseGpqfKErN32B7Usjo
QW7W8+0dEC6+gZr+cGzpqzm53MTMeNlz/dGl5NcK10VjqPnHPXLM+KbIxXru
fe6vVlFtavru3U0PFohwEbsFf4t17Eknb3hpWdG/K1YvPevE8wHY1nN5yubE
UMgQGff3+mjF+wOrIjN7oF/v7vulUAoSqe6W5ME20mVMreP5nF5YknJ+ceac
cmhwvfYpV70DQnZsvP9OvQECTF+PpR2T/UtuJ9DuD5dq0pGhNz1A5rbJ0Y6M
5sy+StqReVFVtlb9K3Vdk3zEnfZfjnc5zrAc30l+cesetlHjIcSv59+n/Zdt
Et3vaP/l6r5lDZIf+sB8XZQg7c4cujktmHZn9MLaFC/d64V4EbFp5ZZFrOup
dKuxBaNu8xGLtn4Pot0BdB6hGReZPEyddy3dOPK7euyH31+b00Y2PHL54/e5
Fz4sGukH0XPQ8vlLNovc6YYpyR3fa+KyYDkzrpjjF/8hRK8WnhzS8t/Qngfn
ShTVS76EwqSldyPCW6qhXv/c+cS5DfDM5dv03bGhIBwnC1YVpfBO8c3DKaua
Yf/qiCmrqPmYE/47BgyLYaevgZ5DdSusn1b22HFnKNTfPyG3PrQYzDXevPEL
aQNS75jUzPhQeK6U4N0UUQiSWTov6xd3gJFL/HmfpFCYkP6nMGhlHmzzjvtT
aNcFm/1syxbGhELkmm1nK57/At/bYZM/tXRAADOe+U7gMveDL79hq3L/kS6q
P3d/d99RmVrOI/O51oVqZoGRpIjecGIPVD5dGVtLhsLBJOkB21U/IEUs5pHM
2H4QOVA0hqckFNwe5U7IivgKItZeEjMv98JBZvxzcWR08KWXaSA3/mLDrNR+
mMSMfyYI1n44XJQAl6/drVlpMgg3RGc7qlLzMXcdJ6wU/hmuimbO2P9oGGZ8
evtlNFV/ctd+ZqtHKOj0WjjqSg5BNTNe+mS3nathxwcwO17BPTu1n9wtXbCV
HidcqBZyM5bsg/6jWm80jAdZ46WTQt8UvD3YD4nLMt6uEesnefaPjJeujpqz
f+6xPpgFkcd4L/eSK57L6NN1SauH/qJJvaDw/FpzjVo3qbY9ZQw9XrppXprv
otQeUPHx2LUsqYd0YMZXf/4S8Dhh3Qs6hdbve+26SJ7JpVLJ1PZqNJE5eO58
D/C2DY0ObukgpRYMdtHTjxt3Q1f6ZzdcUeWzuxDSRkalKDbSda3IDxPzfneB
n7+ketPiDjKeGY81+Z3z4tDFbuDj2xKaXMcej710TnKftEsXzBs9VGe6q4WM
DfqRQNe3G8nO2F3UCWOPj5HLm9tAJkdc6ZtB7Q+/BjwcIss7oP/t47eyq5rJ
tcz4rWzGbl7Hm52woG3y8oxXdWTuoLVYBrX8cXXTTMLcOqCmKtxnunc1ORhx
rrqOmr+6zp9Uj+p2ONx4s0pAoIL0idpaOp2azwSJ8R7LGtpAfNVryxtyVaQp
M94bLK34/JJnO2yPn+9ndbOM1GTGe4+PFyN5fdvAfe6PqmnVhaTlM4fkGno9
LIzOMmlphRT/zPW1cVmkia3ecXr+C7/MKxDtaIHf0hJb29rzyNvM+PCC+XbS
Q/6t4KZjIrkn4wfpx4wPZ85TC7R51AKrlRZIvtBIJHdM4plIz0co6jHP7KZm
kHZzHdB94EV6OWo/mUbVV56dY/C4rREOukvvXfbsCzmfGU/u4h2X66zdDMZj
fHjXPvACG2Y8mTfg8JjDeo2w/JiU/9JnX2CTxwMpej7vMvM+S3fWg9uWzAe7
M37A5NdZZ+Sp+lIVgd8pHbUQOWr3/OcaicDPjD9LrPmmMG5zPTTaTep339UD
ncxxN41LvdBcJBOCStplaU/KOGtxJ+1JqRio/Fy1RZCYuX+zj9TKX6z7SK/u
5qx9t28IZsds6x58WQIOMX5LLL92kUKP+OZMdOclJBSCRq28SbWHZsopU6nv
dXL27h1fVQmSGg2a02sKIYUZxyb4Z511W18NN2Z37Non2QW1wTUDc6n24caH
HU5GZ7JBgr8kwyOkD3ao5pygf5eGePnqsRuSQZjPTvOP2jAkOlxQOkPtPxc7
rSxOnn4B62edcVa+kgmfJ9W30F5Vkd0VU5m91PmY8RjbrdOSoWOJ3JaIggFy
+Z7wmIX3uYjAorV3dh9OgYIZvhM8SobJlg4FcBQQJSYY6u+n/Sl0nc3tebPB
RFeI4LpwI6VcPweuvbnoSftT7w66bg2wFSRaW+9upv0pdH5nP7G83TOPm6ic
/26zRGo7rGPaz+joMLN3cvnAk9m/51PLAJC6Zl7071oYPDjjwNEYeJ4VWrdX
coj8RhhcUaPWw6KcM0Y7P/aDjXWtWqXdEPmDqZ+4uEn7QmU/3HcSDwsWLIE7
o7xuOk3sJpf4OB+bl8NLBLjKDP1ePEDqMe2V8cfVuwfr++DoimvDNwK7SaOu
j5J0u3Ft8Vs5m54eaHj0pnW7WDv5jmkflnhdVl7P1w2+W3w3f+1tIM88y9MX
pL7Xyvtsw3ixTtjqqPdjf3YF6ckcjwf2NNp/l6bOv9v1ucLMsskdzHF0dtw5
j7SprTDh4t/9nrX/Wx69dDdCtwk+79iZRJils/bbScdjFTM31YHN0GPn8uhS
WMfsP7dX/Pq0elUVtH4qmxHll8lcFwySUnniPyasEiZcnxhMpP3x4iV7Db8J
1pCuK1/Yq8/shsJPgh35W3NZ/ea65vWz1XVr4PUzvvSoU01gxvSP7mfJleo6
JWD8jPzmGzhMfnvrohFHnad8uulTuN58ACJsI468reslNZl2u6hGVVavrRfc
lLWdHI07yQlMe9uXsD/efqgbpjkrUO12C5nCtJNjNgRq5Ql3gdxEA4vCAzWs
9i1mcdX+eRIdYHzTr+PulWLyJNMuxf0OvC4p2wYbnl0zXnDuG2nCtCcO8V5x
HdNbYMVQvLSqUiSrHYjx2Hz6zqYGGNeVfON4Ezu36WWwSe0lyVpYMDRW8RN1
XXPZFJwjhzrhDPzwH/jYCNfPFFWquxdAydbzoZJRPZAwVsbYWqIFfGPMdAds
06CtqXffe5lhiPy2tKu9tQ2exlR9nfgwkfWe3RwV57E1DVzE08AXnrTThPb/
2ouK01XU+2HHVZ1mB48WuFocZDE4LQpCvGsn6QgVwTqJoDEmsrmwa1vazZp5
3eTis7xSS3sHWMv9ep1TdiF1PfI1wF5rV1g53LjsXqK2lmqPf2spj/7+jMyr
6d6VKV0O51e4D44mWuD0fe2T1+6Eg9rMaovZmYWwft1x2Wn+FaznWVTNCm0O
UdelEZW3p9OOVfHJr+K0YzVXc5n21LPDYLDg1BeVzBaY23neJWlaDJnxxU73
+ZNSOOCzdZ8eNf/N3x/9FtF7TyrrPa/UkSkHjTBJc63sCvCc9m2DeUwoOTf+
qeLjMS2s90E++gQodfiFQd1gWLumyx8Ye0j1bAZ/BXxn7n/5G95SuaZeCVva
iw1OylXBZ+b+14XkxCPuP9jPueaeKnpbE0hdZx1397uT3cB6rwS2VLjVUdfp
X2Qjoso31MGpA4ZOfq/qIFJ/8M1bqv899fzprPBHZazpu8o2Ba73CINN48wP
b9pXDjOTCyYGeFdDAHN/SurqPnXxqRXQsdZnSvqdP/Bgb93XLNdqkndu6euL
Tt0Qu27C41vt+TDW6pMn7V5dvOI09osHP6HUuGnDxlcFsJ5ntt9D/U5I37jV
cpVmE9i9ieVSWpEIlsw4QYzAzUevctrA2/OnxLFDcfBxct+uJK8hWGlgK2lB
XT8unGXgTDtWrOcUxhxeveUSP+HFHNfpI8c1nHDuUM7q/e9xnhW34lM3FOZD
meA5/mVcvbDBPXSOp0oLeOxy5jPMZ+eT7U0fcHHUboNjvXkfJyT+AnEtSdln
OwbgkenS+ISnrZCpO/IcAhqnAtk1JUq3q6Hn6sj49lH9v+PbsFNwXdT3GzVo
fJgUvzQlnb7O0nk24ceFIiFW3sKFWtM6Heq6UurJvQWyw4LMdX0PeZG0+Hu9
/1NO0XuIEGDlGDRbWGZsoKaXP3WL0G/jItC467UV8RdWU/WSknW3xTXZOTtW
tkfvqFH1cNdfMyts+tj3T0Wnjp5J1RdGl3+eYN3FGnfdoTI8gZ+qfz149VT1
mDbW+6rLZwjaCVF17gpe1avTK8GdGR+xW961jh5nkNtUYaw3VZD1XvNT+wmd
QNU/NCqXZexmv9d8+Of+BCWq7myw1fP+hR4QUBwlT/toEu1jjSz4a0jFh6ZP
bk3sZh0v573decAjjDRaZRTqZtDMuq5fMWfq8qi5TXBDbdb7wXu18FrLY0OT
dyHkz5PhkirqgAU8b3XacxuhsL0h6knAT5gs7fRo2cNe+LnGISVOuBWu/9zz
/WBBOfza5yzRP1wPEUdATrK8Blwjzv29D9LWOHIf5Ke91d/7ICe92vKbKjLA
flaP9v7uPtDdVX3GPbAV7CTe8E/SrGSNJ6QKmx1NOT7Aej99gnjFitPU8Zg4
Kby8zf8X635B8xPrv86dkObgooK0KtY4v+eR4sX7qbqdy6K5whep695Lhgn7
PEpBqA0+zxlqBeEEvxNmntR+pzjujVNqKZzbsm5gJnXe6TosPHuDQT0s0Thk
VtheDkE/Df/MNq8jPyvItfceZvsy6PM/8rRj/iNPO+Y/8rRj/iNPO+Y/8rRj
/iNPO+Y/8rRj/iNPO+Y/8rRj/iNPO+Y/8rRj/iNPO+Y/8rRj/iNPOwblaaN/
o/WageXAsxwDLAce1cOwHHiWa4blwKN6N5YDj+o3sRx4VL+C5cCz3tvGcuBR
3QLLgUf1JVgOPKo7YDnwqH4Xy4Fn3dfDcuBRHc+BR27aHMwvQOtPBvML0Cfy
C3A3rWBvoMWCJLZfgKaXxvwClo+G+QWoLoT5BSwHDfMLUN0c8wtQnVf4f/0C
VLfE/AKWB4f5Bahuj/kFqD4B8wtQ/Q3mF6D9TgpzN1jeGeZuoDov427gbhr3
hU4xo1Hs9Yymn465G6hugLkbqI67G6jujLkbLH8NczdQfRbmbqD6J8zdQPXd
mLvByg3F3A1Ur8HcDfS7cS8G1UUxLwbV+zAvBtXlMC8GfS7DvBhUn4B5MaiO
ezGoroh5MSw3DPNiUB33YlD9FebFoDruxaB6HObFsL4X82JQXQHzYtDv3of5
R6hegPlHqD4J849QHfePUP0D5h+hzwOYf4TqPzH/iPW+LOYfoXoR5h+x+s+4
//WPUD2Q8Y+CMTetFvOPWI4Q5h+hOs+F//WPWOsH84/Q78M9L1Q/iHleqI57
XqiegXleqI57Xqieh3leLG8K87xY34t5XqiuiHleLE8J87xQvQXzvFDdAPO8
UH035nmh+iTM80J1V8zzQsuL+3SoXoj5dKiO+3Sojvt0qL4J8+lQ3Rrz6VDd
APPpUB336ViuGebTofoszKdD9VWYT4fqxzCfDtVzMJ+OdZ6I+XSo3on5dGi5
kjBvEdVxbxHVTTFvEdW7MW8R1Xdi3iKqn8W8RVT/gnmLqH4B8xZRfTrmLaLP
HMxbRPU4xlv0w9y0C5i3yMpXw7xFlh+HeYus93IwbxF9P+6Hojruh6K6O+aH
spw1zA9F9Y2YH4rqGZgfiuqCmB+K6oGYH4rqMzE/FNUjMD8UfXJjfiiqX8P8
UFb+HOaHovo3zA9FdQnMD2X1t5h7i+qCmHuL6osY9xZ30x5+218n9o97y/LX
MPcW1UUx9xbVJ2LuLaqfwtxbVA/F3FvW+sPcW/TZi7m3LO8Lc29RXRZzb1nP
z2DuLXLTcK+Z1Q5hXjPLF2O8ZtxNO2m9wi+hj70+0fTNmNeM6rjXjOqVmNeM
6i8wr5nlm2FeM6qfwLxmVG/DvGZUf4p5zSzvC/OaUb0H85pRPRzzmtH/w51x
VMedcVRfijnjqI4746iuiznjqL4Hc8ZR3RRzxlkuG+aMo7of5oyj+mPMGUf1
dMwZR3ULzBlnLQ/mjLP8NcwZR3+31Y45vm/yKAIb5yHU77UMkXdFCGych1g0
JXY373hhAhvnIRRem+m+8hEksHEeQu1+nIHffAECG+chVGdNvdGawkdg4zzE
uMuvLHnPoOVnu2nzpxhcHa3CQ2DjPETMW24Zj/siBDbOQ8ROmdQ9mUuYwMZ5
iBvbzoePThYksHEeYuiBjYEGnyCBjfMQaTsz906LEiCwcR5C91V5+8FmAdZ6
Rp9zf+mGGvsKErjH9NV1xPPCHbE8Ji8dd8RqGL8M98KWMk4Z7oW9ZLwnPHdr
NeOm4XlxZzF/DdUPMf4anhd3knHcmn7fPhdHFMCt/AalrRN7wbbp7Y0lp/kJ
PC9OC3PiUD2PceJw10wM82hYdcyjQfUmxqNB6x3VhRgHBHevuhjfCnev1jEe
FvpeND3uIqE68q1w98qQ8bBw9+od41vh7lUc42Hh7tVKxrfC3at0xsPC3Svk
W+HuVQrjYeHuFfKtcPfKgvGwcPeqk/GtcPfKgvGwcPdKg/GtcPdKg/GwcPcK
+Xq4u4c8LNwXwN09VBdg3D3c9bvG+HpoP0F1V8ZXwp2sGMtsd6677P2BlYeK
OWhoeiLpRhZvHnu7s37fPseYXFl+Aney/H0bmwXN2NsR1UdrhtpXBbK3F8vb
mpOpKk6ytwuqS3EtDbm+iJ2rjupmLhvMHb17OJyshUxeNO5kqW7fs1WivoPD
yVJn8ntxJ+sMk5OM+4ZdjKuIe1jnGL8Mz4MFxsXDnSwDxjXDnaxdjJeHtiOa
fvjriHeGthea3lIr5HroMWFWLjpaH5uYPGfc85JgHEk8B6/fZMR3wPNUVzAO
FO5zzWH8Pjy30wfLo0b1ZiaPGk2PtsNsJrcZz0tsZTwjVm4h8/cIzDFk5Q1i
jiGqb2QcQ7Qe0fxuYXm/qP6MyfvFcxo1GFcRzQd9fwPmNqK6FeY2oroR4zai
+bDySDFHkvVcOeNIounRfmTAOB1o/mj6JMaXxPMkJRl3DPfRcGcT1ddizibr
PXvG2UTnLaiezrgAmINGIAcNLSeafjmTb4x5nQTyOnGX7S3jcuIuG3LTcJcN
+Vm4s4Y7bmh9N+zOqDzgIETgTplR+HEt8zh2u4fq6ddbwn352O0ea/ynv4JL
ZzW73WONx59YOWeBI7vdY40rz+Tx0TvKbvdQvSUvjlc2kd1esDy1g0M+kwbZ
/Quqy139KRbV3c7hlHEZXKyay9PMkUf9m/FZcKcsC/M30fekMv4mOh5Yx/sB
PjMlvxa2y8PUaxlvDrUD6PtTGbcO1dH31zDOHe6gIV8PTY+25w8mBxtNh+qz
GKcVd9BuM74D7qAhrwF30JDLgDtoyF/AHTRRxlnAHTTkKaDjhXX+yLgJuIMm
zvgIuM/Ixbg5uHdW8IrIlBcSInDvbLTPgFWntgCBe2e3G1ZpPrrBR+DeWb7U
1wPTknkI3Dtr2hTsEMfNTeDemejs9+pSFuznK1B9lPegrHw4O8cbfT7NVdOo
iGc/X7Hu73Zvhf2Yd3ZyZH5wjMmDxZ2yPiZXH3fHEhkHDXfHRBl3CXfHGhkH
Z2T3ZrtjcYzHhJaTlVPOOAKojr4/mvHpcKcMuSG4U4Zy9XGnDPkguFO2e4LH
pYQ57Bx+ND3K4cedsl7GDcGdsgnnjWT9j7Bz+9H0KLcfd8omMp4I7pSNdjVO
KXrKzvlH0wcwOf+4UxbAOCO4U7bLuSlpcRXbBUDTv2dcANwpQ/4I7pQJ3jb6
sG8y2xFA0yNHAO2fqK7DuCS4U9Zw8YVSzU32/oE+kTuAO2XIK0H/Rn/P6j4D
P8keDo8P+RG4x5dr//TZ1zcdHLnfV5h8Zjzn+TTjVeHeGe5/ofoUxv/CvbP3
jPeEe2fIVcE98c2M643mj+Yzg3H6cL9MRFRs15QqIQJ3A5UZtxHPh1eRHHHc
UHuO6sixQsuJ/p854wHhDhruvqFPY8Z9wz2yxZh7i9rjg4xrhs6fUD+YyPin
qN9C/dLpB3cq/CprOfK6CcZZw13jl4yTi/pLtFzajGuG9hPUbtkwDhqqs7YD
46axxhMYp+wI49fgrhkw+dtoPaPtmFE84srhXtg+hRGfEffCghgvD/fCSuxO
9I8pYzt6aH/49SIq7ptzG4cXpiBtWCC9rIXDC5snYnu38Gszhwv2VP9VVfj1
eg4XzHBv3e6+PVUcLli+8vnyiDuVHK7lQcZZwz2OzqUjfhDuhQ0sG3H98Px8
5W5B94OuyRyOWNYPl2DP1lQOR6yXcdzQdQ7ar/Yxzg7aD9F+lcG4dWg6VHee
s916cHYXKDA5sR1MTmyOY6zf9rnsfhatP0HG70DrGX2aMH4B2q9QvzyV8U1Q
Ha0/ccatY123M3Xk8qDp0XrC/Tt0/L5ifB+0XtB6isX8L1SfyTho6HtR3YLx
a9D0aP+txDwUdLxY/P9OGYGcMjQdOp6Q94TaQ/Z5jlzv48RfrN+P5sc7u/PI
pQ1lHP7ILsZvwl22/3XW2C6bPOOj4S4b7rihv5czjhvumskw/i/uml1lHFU0
X1TvYXwi3DVDXjDumiFfFXfNkCOMu2bIUcVdM+QL464Z8lJx1wy5w7hrVsK4
qLhrZsR4xLhrhvxTdH6Opn/LOMWs5WA+5RnnFHfN1Bm/GHfNihjPFHfNnjKe
O+6aIW8Ud6YWMJ477iZEM34i7o3OmTXi7aLti5ZrvWBN5ZChMMu7QftvBOMG
ovYLHacGmOeF2jklzPNC9U7G80Lfizy1gP/fzSSQm4kddwTyDXHPcYntgQl8
3GWs34vWn8ZO0dJto2pY/S66zgbGkce98hTG3UbtBTofNGY8R9ytGMN4oKh9
RvMPKV3asUi0jMNFTWAc8F2TJBS7eVthrk3rM9eTqeSFoOhw5/RiDi8shvGX
cacjlvFf0PZA+8Ofj2lzb5j84vCgdzL+Mlr/qP1DXiHujok2iISIEG0c7tgk
22bV09/rWN+Ltls64+jh7th1xiHFffM9jAuPu5lGM/wUz+eVc7iZK17WpQxd
LONwM0M3Prn7/h7rOVjWfnT+e/7xt671HJ4mGVF2dO+tatZ6Rr9bhXHrWMcd
c/4V3ONy7E0/+/kDVHd8eG3s2UdsRwx9BjEeN+v+E1M3O5VB5AB7fAb1pxMw
9wf97kOMp4O2E6tfYJwp3GV7xjjXuMvWw7jVuMu2j3GocZcNudK4y4acaNxl
Q+4zWk5UR44z7uUhfxz1m+jv8nfvznORLmWtN9b9fczxRP1nEON4ou2Nzrtv
LrlWq7KOfb8M/V1S/zkMPa1ktbdofvuD3lQkBHey6mh7TVQKbXTe2A1r/v67
DPr/7hfV4GlmGTwws5t1PKLPTsx5RPUTmPOI9rt2xnlEy4HWx/us618WKnIT
6N+oPanE/DjUnqxg/DjcL5Zi3B+0/CN5P5WwqfL1cfPdXeC1bsStsGXcij/u
x64rqbLz1tB2yBz97XXu1x54z3gEQYxHEOJL7D7ozF4P6HcftvfcldDWwfqd
6HPct1c/jan9H7VTaHuJ/HgRcHIV+zkNVJ85agu/zn329R5qz34PWn1T5edi
uXJofWxhXDm0HKi+dXdVdv7XYdb6R/uPcg1xPkaEm0B1tP5udu07yzt6mPW7
0PWXJ+bToemXqxm5Sl4c5PDdJGdwS+vfYY8rovrufTu1ojPZ44qoHvjcp+Tc
WPa4IqqHk0Oii3XY44qofljZ3Pb2Bfa4Iqrffy51/YE+e1wR1ed4XtfMc2SP
K6K6U4/C9clH2fs/ql9POL/uQg37vQZUT1tWreHytZrDdzP+Xq2d1c9+nhPV
951O0pafUcBqV9H/Qy4eavfQ+Hol46+hOhpfn8N4bWi/ZHlbmKvFWv/jPUVO
VjdwOGhuew2j4s+kczhoa/XiVK0T2e8Pou1clRQySn9RH2gPtpXnP88BGVJD
Qd+8H0ZtDjJ30Of0zqp1zFXKrdj3C1A9J2PrxI2v2fcLUP3SdKPrl1rZ98FR
/fgGCz3rhez7BahumhWbtGc/+34Bqp/lMpy3bj77fgFrPfDoqeQeY98vQHX3
wXeu+y+y+yNUX/jRJbZkOfs9F3S8WDM+sv6W//VGF1a8++ug4Q7ds8EvL1zd
v3K4aaRJyHnxxmLW8qD1h/t6qL6W8fVQnfV+AOOgoTpaf5aYA4jqHxkHENXR
cSaJ+WtofU9knEHcz33I+GWojvYTmc2ihI9oD4ebdul367WuxxWs4w79roWM
14a+F7UHexj3Dc0XtefvGd8czR/Vl2AuW9Lf2SWRtozLhrYf6n+zK9VOH9PM
4fDlawJf8MfW5rPmg3y0ZLdcubD7ZRyu2TLGe8Jds32MG4W7ZvsYBwp3zYQZ
Twp3zbYwLhXumo0bO+JY4a7ZmSUj7hXumgkxrhbumhUyfhbumiGfC3fNXhSP
OFy4a2Zy/6X99PoWDtcMGP8LtcPINUPuGO6aJTtd/OuLVWhYaHdqt8GhIonh
8O0V5A/p+omzXUo5XDPBab0WruIlkM7U0fyW/od35sZ4arh3ds4w58R4Ufb1
2tDxsL/e2TtL6/DFZ3o4XLMUxmvDXbPzjAeHu2bIlcNds+KxI04c7po5MN4c
7pqpDP/669bhrtkGxrnDXTPk4uGumQvj7uGu2fC6EV8Pd826GL8Pd83MGacP
d80urhxxpnDX7FnY6LrmN/WAu2aH55Nfhk/XAO6ajTP9Nrf5UiWHa2a66M+k
9tPtgLtmh2uvnp8qXsHhmiVv8pofm9XI4ZodZ9yoAcbVEmFcrZdfAk7MMykD
HcY9fDXiHpK1rh8dnK+WcDho5T5nqm2qBji8s31eG0QPAg+Be2ea+e6Zwnzc
BO6dqf9wVPO2GebwzgbcvL40dXVyeGf3jyatPpLER+DemZVZv9wzJ14C984c
FFp1ZxYMcnhnTm7z9JuchAjcO7traL543lpBAvfO7q5vPXLkDA+Be2fjPGL+
PI8VJnDvLNxPxv1UJT+Be2dejFOGe2c2jEemxaz/WMadHOt4zqDsxh8Ot2vA
dsQd62a2o+DIdoT2//DRkLOG+2hLPox4fLiPFs/4a9yPy88tbWDf3+e7tbf+
xb4WDjftLuOj4W5aM+OpsdzY6u2yrx3+wOnraTKdaez3KHTDRlzFunOeGmKt
1PFzjavuV34ZXP2Tn+rNVQmqE6SOydd3cjhrQoyPhjtr8xifcYnq/zpryEHD
vbMyxrHCvbNoxr3CvbODjJOFe2cejKuFe2f7GZ8L986Qz4V7ZwcZ5wv3zpAv
hntnPrEjHhlq/5F3xoU5R8g7e804R7h39pPxlXDv7NbSEU8N987yGH8N986s
uw1MCTl+AvfOTmJOE/LOlBinCffOvjDuG+6d8TN+HO6diTB+HO6drWMcOtw7
O8O4dbh39oFx7nDvDLl4uHd2IXx6ZbRiA+DeWdCH9ZXnBasB984sfStH5bnU
Au6dyedrftab1Q+4d3ZLxfmxZuIfDu+My1t/rQDVL+LeWdDBwwLxB9oA986e
jZu2/FxWOYd3tjPlmoNpxADYMN6ZMuOdzf3tt+pEWy9kMP6XNOOdfWX8L9w7
K9719IZ+Ky+Be2fJN8UmLrvdxeGdmY8Sk0k4Jkzg3tnV6CN86uOFCNw7Wzz9
U4EfdT2Fe2d5G/aJ6XkMc3hnF45ecX2iyUfg7hjyzlC71DTincF1xjs7w7hm
fCOuGUQxrhk6XoJGjhfQa2rMeObVDT80sl8vXHIfPE6Iz1vzsQ6yytU+taiy
nycsZHyxVbZdNu7UeUqpnC+3YkI5OEdPPhreVgeW3vfv777WzeGy6TA+2g9m
/U9l/LUYxpvDHTTcE0QO2mzGE0TtA3LQbjEeIu6dfdxr4iL2qJnDO1tgV3em
xp2HwL0z76WCV0GRm8C9M75+reGga8Ms343xzshJjHd2xeR/cx1lXEbyjXEH
bdUe545Tk1s5HLTjalct7C8PcThoFVJD2s0HqzgcNBOJt73ykys4HDT+2/2T
Bg83czholx0vqZyz5CFwB034zs0XCnu5CNxBS9NJv2pYX8/hoHU5eoSMutrG
4Z0tMI0XiV7ZAbh3dsLb5iGxcIDDO7v/4+Eq5wNchPL/5h7HoNxjR/3sU+sf
pkOs16cgrpv95DKNpPxfua2wpPDSASL0J3R4PdJ4VdhL+hlvUHeY1MrhnRGd
4sdptwL3zuIuEuHT/hm/Qt5ZneBDmWQxPgL3zrhbzaIPaLPHr5B3VnXL8w3t
SuDe2T7F+EDJzezxK+Sd8cj039pszx6/Qt6ZUIiQa8Z+9vgV8s6q/ezWvCtt
4fDONr3Z8aI4oprDO6u4+YeL+1I2h3fWMstlzIklbzi8M7WUG+q8X/PBW6jX
jfbOdsXo/O2nXg89OysZ1QttApvMV83LYP2/gXV2R5pHcRHkk7kTG/KKoH+G
dFhBYTtZNWqMjZ5MI4drtjfq62nuhj7AXbNdVye/P9/TA7hr5r5LeVCVrxtw
1yzlh9zb+WKdgLtmUkd1fDKk2wF3zXha0t9kTm3lcM2eN19N+6zbxOGa7VBZ
vS9vUx2Ha6ZYtblad1UVbI2d2r+f6j/UjTP4hhJCyfRXHzMdhMqham3HorWS
VHud9+dBC1V3+cQv53Emm8M146831Fq4IZnDNdt99uzTu9YvwIQrYF7k8WRo
Gb7RV5NJHSfLniop3mM//4x8n8VzN284l93A4YX1Ljla/3VhGocXdjlaKlHw
cQWUENpdl9zZz6uHyQS9HfOcOl9lvC00PurGeFvLmBzm1yM5zKDJ5DArMjmQ
6PvDmRxI3B1zfz7ayvSf8UPkjrU8q1GM/CcHG7ljvb1viukcbNwdE4Qei/cL
2OOHyB07uzH1ooMFe/wQuWNNF2o/jvsn1xq5Y1OTfY0r/sm1Ru7YqLorn6X/
ybVGvpu0lUqf6ZJ2yI+colWaUsYaF1z2WmT04zRuYtGGaSHP7csg3PKudZRF
C9w6suHJb+q86vupJduuHaiB3WZ3+D/FhkLtsS0Pz8nUc7hgi8abaszuquRw
vsT5rbsbrKM5nK+9B8adaPH/yeF8hU3Um3myp5jD+ZLYPpxsnVQJRlF3nYI6
yyDRU7vNIbwZ3rWd3j7xVA+sYjy19BFPDUoYTw33v+SzyyeKTxcicP+rpyDu
2KrVggTuf6l7Pr3IbSFA4P5X1ZdX4prO/ATuf1nO3HggPJiPwP2vmVlXN6yP
5yVw/0tmvMlAbikPgftfwX4frosOchO4/yUYKSDtKMVN4P7Xfbub+6MUuQjc
/zJpft2gd32Iw/9y7bzy4uzzAQ7/q6vb97VNUh+H/0W+KTsVk9nD4X+tLJiW
9DSli8OPG63v+9HmWQdMnbh242VN9n3ISwkVNvozyjm8MJV2lZPiKgOAe2Eh
TVE8Nyr7AffCFLNCP+hatXG4hALbpuYM9CZyuGBnbZcesP/5DjZVz5PQodo3
y9SWrYbUcqZd3+N+KO8NDBvHRV827oR9/dwCBl9DweVK7ffg0M8Q8kI9stKa
/RzjLT2ZxZ7BvCzX5hqUOP326oKk+/qb7hzl5fDFnnPLnNW6VQSbrI4LV79m
5/UFTzkxmkeL/Zwh8hNDeLaJ8m9KguLeKamzwitgZdzmv/2Xuu6OgP7eYeAq
U9mYoJENXTPnpPjPpY6baRlbbrQJEr5VZrF3sisgaOrN1jhqf/h4uOCBw5gW
9nUR44LlrDl2Xa8/iMMFyw8MPuB0NIbDBSvbpTp3I7cw8XR+lgvVr8EQj9Zr
f2r/LJHzVIoU/Ake97x4xqRS5zVuRrCPWm9rqouNJiqmAX/giLuExrPFGHfp
49pZQ9U78kDR/6xU9J4u0P42PDPy1ADsYPyjkevKPghk/KOpYtflVLdHw549
PZqnTw0DubmbP9SHm8Pzik8s97zg1Qe45yV2wGC0k0Y/4J5XidSUqbVBPYB7
Xv78nRKzNrCfj0KeV8LwTDXajcU9r5mfrywYs7UbcM8rQsAlU+tTB+Ce16Ky
lldj9rCfj0Ke1+Tyjsch8W2Ae16q7hXP2g+xrxeQ51XbaxKo/72Fw/MKD+sz
W3OSfR2BPC9XiTjTNwGNHJ5X2YMz0l4t7OejkOc1PjmkuC2wlsPzKn2t3765
kz2egzwvb5MplxTcKjk8r8iHC56pNFRx+FmzEkRPfV9dBheaj/u8o/qX2IGH
yTLU8b7G1WbMnC/lHN6fcoeDSsbUVIi8y1MYrMF6Toqw61vx87aMKIHyIdOD
ElohZhha5qkkr6oSIYKzQyoUNlXCrqbo+MnU/Eu/pVhvUPoD5iFrvz051QT7
bEum5lDnLXMnPdq5VacEFg0s3RtEtVfo/stDxYL6lrFF0LLAqd+QOv47D1it
pf2RtQYzFQe6sjg8Td/1kjtzRNjP8yD/6+DnhXq3dYWJjfbOkkGBlazzFu65
t2zCVnXBT9vUx4KzqsDqnozeaIVauObbeVQ0tBtw/8vK2XuxPnW9j/tfxuaH
7lkNdQPuf0U9SuNPEe4C3P+6PDdHVkaiA3D/q8dCeqmAbBuH/1XGN1jSM72F
w/9y4jEO997UwOGmfSr7vfWMbg3IVG3QK2lnP78hsWl7nht0c/hfd2IvNTV9
/826H+2xTpf2wsD24YgXpmdqHPBoTz4cra3d9vtAL1kWKLxKdVcL3Nwxko8a
2X+WzkclbzD5qD4rR3I1J8z/m6tJTmdyNd2Y/NVcJlfZlslf/T7QbXkutxKc
HiQP3/ZqhF2Pr03Ppc53xzKe4FHmfl0m4wmKb1rukvS7kNX/6Mjne+xc0g99
p0d8t7GM77ZfRmXySp1SyNqwtN1XtZJ1n1D5iPyop1S794XxxUJGfDEAxhcb
OX1j+1wbP7lpf0+rgrWMwzU04nDBQcbhCjK2c5Y8UQierZIZU7M6oDyVl99z
Zz+H53XrpPTluFFFHI7SlWMikz/aFcH7SQ+f39uVyOqnUiuepQk3cxFjX8Wk
BF9IgOLUxNPPBgfhl7TCzjZBbiJ1tnLOOZ6fYCfzekjp8SB4Dzec7V0gTOD+
190LE6HdsRROMX4Zz4hfBk8Zvwx3wfISpw7RebO4C6ajWvVdZliQGB557oTl
ggXIH0uj82ZxF+z+PUuRY47s96eQCxYy8ech2pfBXbBV56u9t/yTT4tcsMPT
J1aL/ZNPi1ywx3YPqktt2M+LIxcsITfs3Ph/8mmRC6YdmvOufAz7+b3fx6Ra
flDLefzFq6ySDahdZXttYwMNFZ77/2I9j2TYPdY5i5reOfta332DZg4vLELG
+POF6ZUcftxl9TDBKDKWwxE7LWnatnEq+30l5IhlrxSIoR0W3BE7MFF+QYU/
+30i5IitlR89QLsquCM2baFSL+2n4I5YfceE3rR/8nWRI6a8ULHK8wL7fRzk
o6VMGh5/ZksH7Phfn4tEPtcczxsNkfLZsNZgqLVg+gD5VRPu5bm3whTGHUPj
+pqMOyZS86uKzgl/4f/qsWRUD3nLcfk2Oie8O1Lqa/2VUuA+oJG49nEreb6o
TIP/WD1s1TAsvVhdCjav9NQMvFshounZaC3TXihepU6Km/yEvTvafx2xGyS/
zMqVtVFsg81nmt1uJWayriOn/cibMlqXnVelpZjLvU+umdySE1OYkVbLaheM
ZO3P/aHWW/q8NZ93hpWDTMpI3q/FjpG831vmcmW6Yd2w1+v3sUuh5eBxcPYd
+22N0PHSViu4uhsSbbilTajzWJ70S/kvY0LJxHwX2b1NOTBjUv8nNeo8LXjA
x8+fqq/WGh+wVy4fpj0aaX/WqY34hr49a//mP+sGrfnbXqHrV8Ora8+R/TWQ
+lZV/dOyP5B4XNZMNqoSXjV6f1Ao7wQhIPwX78+CJpMtCln7esnz2d5ifrXU
+jSc/aLgYznMy5h95E5zAyk8g/+dOLXfHzA4TOR8q4QN5BSBE6WN5Knhz2c8
VtVAz64RBydMdcTBeT//zr62/dWgMj8zJTsiAypyFjnzBg6RhwN1dql+aIMl
Hy30E7kq4FpRsgQ/bz1Ihmk1ZDh0w4f0iQJu08uhd9Vyr8nP2klb6auLFzXX
g0iZdpC8RwX0vNhXP1ukjfQYU6F40rMOOq5uc7h9tRyCudRvJ99vBJ9pZdyC
vd1UezZmv8anHLD5k/rsbXc3iHiq2io7D0LerhfWmyPYzxFDXZnaeLce+MZ4
Ouj4+854Orgvllk6Z35X8ScOX2xSaeoJu75a6BYy/ut21ZWU024XbA92/ut2
4e7Ytjvnkgwyi0HFmev+gdWZsIpXOFykZxAOFT66WnxKmFi30exybXcKtEfd
Oet6eQCWV94+P/o0F4E7Yk/Xn/9aoR0Py2+M+EHCI34QEIwf5PeiZcyfkHxW
PyhYv3dH2gB13WIaMbDxww+otzQtmF3XBwF6gjy05zsuotJAeSAfBk1cfvye
1wsbfUc3xF3hJ7qWT7genBnDfh/KMjN59S5uDo9M9HLpdim3fsA9su4jjXHX
r7PzT5BHllgXlR3/j/+OPLINThf/fKeOF9wjU04vXkh7kbhHtmMw9hpXRCfg
HpmC7oRu2pHEPTL997e+yZHtgHtkxPq5QTH/ePHII1smekPB/h8vHnlkF1fq
KSQ9qufwyArSf3TUP6jmyM9/vja8V/xsBYdntyX5240W2QxwmTIE34kKKClM
F9yV1Qbtemc2Jh7iIkIZtyuXuS7bxLhd45sV/vrX5L2//jVYdI/413ELwlpj
LvwBLfHeXtEFrWDPJfzhgcYQ7CCMS/So682lZ7OWLafOG0/ND1muUfSHwxfL
U9L8GWzDfj5KSeJ9pB61/gfW725WOVzE4dSreebxXbT5yeH6RUxfn3orNpPV
D15Vq0kcn1oJ05TWvuH73Qk6xivd+EorYcLl04U5OdXw9JuY7YuKLnjZpHf9
ZxHbH/StSdBOSeXmcMr2GdeoVq/sA9wpex9/eHjxph7AnbL0ecUfaWcTd8pe
VizxemOKnt9mO2U3Z826RvubuFMWedZXTMWiA3CnbNZlI03a5cSdMvV114+b
WbUB7pRF3ym6R3uduFNWFAySj6xbOJwyR1F3e/mOBg4/Lr3yVtfy9hoOP65p
nO5BiYAasJ/kukdDuARs7d3a+ZXagd9pjtDobX0wjfFl0HnfoMeIL/OIcc12
jbhmMLBsxDXzixhxKufvHnEqA0X91Bv9e+HF1cNSRVtzYWP90cMx1Pn3mkvF
y3+8EyCEc17K7bHLYY3bT+/pjvLaJUio/TnFtfhZGejW2jVqlXWAZ8Tu9aZ8
PATu2VmfesE1/WUeTO+2cq/WLWM957/IIOBxnUQvaH5/lxt2tRKu7cyT13je
BIr+sW+22fXDgoGPLf9X15nH1ZT2Abx9kbQMMpbKTmOUIi14TspOUpNCtheV
mLEWSSqhmeJ9VZKiJkT2VsNw1U2WkqWStKjbcmmhaLnptr73ne7vPJ/3dz79
dT6+nXvuub+eHr/nd8/z+z5LaiBWsau9l2ZdI9+VcxZZB9cRg5O517zO1ZL1
0rpowrmKtwbyXzj+sr97TE2mCz6R3UEfdDWtv5IR/LXayyTXSXnbEpe3u4bj
Lxtr83TwIE2uX+z1LB+vI+13OX4x8b+H7k9bmsPxi5309lr/4Fkxxy+2ao/9
iVafPI5frHDDjstpjz9w/GJTosw3rrtYzfGLmY99xb/XVsfxiyXqTHyVmiAk
4xU+qvg/ryaJKb8XmF6tI66aFRqrpn8nT3zS5D2yKshj26ZZ4QbfyeWFsW5d
tfIM9pE9iNrZnZiqzGAf2bT8epV1S1UY7CNbsCyoI2uHMoN9ZA/rHf+6V6jE
YB9Z/sj3v1mIFBnsIzMeP6PoxkklBvvIel4yJk23FBnsI2uWW/+zyjBFBvvI
kpztpvw4U4HBPjLbGJddES8VGOwjy9k73dblszyDfWTexr2Pje3lGewje/Fg
gnjaLjkG+8i2ve4x11KVZ7CPLDdOd/bRiXIM9pENXb/E2DtYlsE+ssyzNjot
l2UY7COTLB1cVjGyDPaRGejdslNfI8NgH5lZ1Nattzz7OD4yrdBDPV0Xejg+
MkHR+fyW8l6Ojywhbi8/Tq6H4yO7NWNq2a6HXRwf2e1hz88Mey3m+MhWvM3a
e2VMF8dHNvGCzuibkjwF+8h+9Te2K877zvGR5R4KjDqQLuL4yLoXBYRYTuF6
D8fmy53jq4s43sOIM9mVQ0JbCfaLWUQuUXs0v5njF4sIzjPvedfC8YV92RYo
mFRQSxQcHn/bt66SDLW9EVzh1UK+15TZ8QrpvvcO56OXnHtbyXBvq+hIJ9oH
z6OyNNhnsYjUJ+cL/FK6iDArUWNThIDc3vD8wVN+O/GwdzMcEirPYK/Q5Fqv
Sfa/lHO8Qssr7/jmry5n85yNf5rHOvn1Eo8lq3cLLWTZfon30vzVBof2EJ9f
G/P3j1Rl9I71+8gsk//xkZGNbv0+Mq0gb9EHxRryp7S+7TL3+2TB4W/kSfay
d1t1PxHVzki1h5J5cn90uI9pfCPHR+YwOST3dkAVx0d2oOjoyXlhKuz9KAee
ME0z6yRmi8zsZSV5EPaUievUr5z+W4XjIwuTU9CbVKbMYB+Z1blLwWWjlRjs
I7OMnhAy3EWBwT6y1KXPM3+LlGOwj+xVylLD7y9lGOwj2xp7dJNDcw/HR1ZR
GG/5+6ROjo8se/OfZla67Rwf2fHVw0aW3m4m47aMeehVVU80LRUV5STcNfr6
IPP99RxvneLsu2vGhBWR0Qne0/VDXpAFpkpTb9f0ER3R1/u/KKsxQ5rGKtmv
/EjUpL+XAJM317VPNBGRQ6lt7r4mMkz6/+DUlOKKN6uEHB/WOvG9I/MefuB4
/UqEnidHzn7K8Zp52RhYpE1RZbDXbJ3J1RjrbiUGe83ch9woqZijyGCvmWXU
YIVNh+QZ7DX7mm+zeHqqLIO9ZtGGVt/eZ/dxvGYeNrFrgrS6OV4zq9GuCzyn
dXA8brpP/pWbLWolizuPb2fkakiP22b9O+X15OmqdPdVTt9J5mf1FVVHssk0
x3OlHco9GWEbxxlFBrYQjWd98S8OFBHimnLVObArI8qhLXnRkmaS629xcHlS
GZlpbWYVYy/KcIgoXj5/XhPxiv60Qjmikti/d/wc19tMfB4lJPPPiskco35/
meOGf/xl5OzBfn8ZzBvxPXYx+3Y2EaOUiyZbp3ZwPGiRj7YXOTlWsT6sB/0+
rAzwYe2W+rNgnZcp9WclJYsi3BUr2e9bkn/I2ZTT+JlYuF9ZuEaG+o5NRvpY
zhnTwPGjvTAqvNYxgfarAm+4/su80Xv9isnUEYuntR9uJ6cjJxc4ScZbfEWq
yzrnJNYP7tbvBydVUj/4qdwT7+K+tZEt0u8B5y9KHxuy7zFZPIHn/rNGK8nc
5RhlLMnbL4UPfxqRSfsp+OnXBOyRvG93m4/Y4ksp3aetbZecKbm+D9m20XVd
HhmdNnlLZEILGeXEV/kquZ81t2MP5Hx4S1x3uPc0m7Sx36NdWWtxxmhNDgmv
CJM7JU994p8vFETqbm4lXoKAYt8dArautaR0+MNsnybystn/TeuxavLV4oe2
OTq1hLi1unx+0k525lfzRlnWEN6Xi7PUuj+SoSXCsY9nthO9//faZ+RLvfbf
pJ76fKm/XlvqqRcmXi3ZZfKezA0d5Sn3U1eGGWPMr9RvJm0N/XUqG99/6lQZ
Zu79XqoJ87SX9v3xkRzIMw0PvdOUcSiv7aggpI6knux/TgOejzVU6veRXfh/
T1/GPamnT1ovYH1kfkOr6t6pdxPsI6szNvq0cmgXwT6yn2Lfdxbpiwn2kRWP
bziz26qVYB9ZTFCh8ILk7wjqveAjy8orXFMY28TxkdU5j3qSe6mB4yNb7zpD
W/cc3W9sxhtl/a//rR/1LU7bbaX7XR/MHHdno4RfIZNuzgkScvxlGfaPEldq
VXL8ZRW/fhBfHUn7I4G/LHxi3c7K5fR7d/CXvUn9OH/wpS9EBfnLZmi9ZASS
/GGtbf/zfvBc8ZfCfo+z5wWruRN3VxM7h8QRH8obSbCYJ16p2kGmST2MJ/o9
jBkHpB7GR6NLdWSthCRKfYjZ53HNGYEJPx5ZKazneMQ2rdUKIkNTOB6x8bXp
Om8rMzk+snQ1UeaW+y/Yv9/XEwTdFyR/d47tfONFJkWkYmZhlm9dFdE7ZlUZ
Nb8t41hNxoj0X76Q4Gf3rW7Opf7EGKd3m+oKG8jChNV78/yqSd2KmX4T7jSS
8/sGOxr1SvI9q34f2cnX/T6ytHL1mQVH6sgV17cJ7vI1RF0ts/aOWML9xky+
F0V9T3AsMTvT3lenivtX8w28h6ULA1Vw/2r+ylNqF+PHK+P+1fyjq4Yb/pSj
iPtX8xeLC6pjPBVw/2p+Ue/BezsN5HH/an6MQ/URt3q6nxd4pUYBrzhNBvev
5r+dUj9xuV4fx1OWV/Bjal1nN8dTFj75fHyYYhfHU2Y9LyHMYqmY4ymb8PCG
0u/vvnM8ZXEk+tqwu7TPNfAwX38DgYjuW4O4zirdel/NlsYZjlv4E72FArrP
F3iVvtJv0Z7UywD8+SZlGZEGjTNwtRM1pDmR+gKAlxSFHX27mu6fYu9nm+k2
okTjDPziD9dSk/xpv1DguhFVohIN2t+evf7fOytdMjs5/rKIPwRl1bEdHH/Z
sexfFEvSaF971kf2utfuqraI4y9rlSmyGPOilY0zcM0QsU9gI/39QfzO5c++
LX6uwp4HfIfl16ToVTTOcKw4Vzh3TAV9HhV4d5uqn+5vdD818D+/rd+zXY7G
GXiefUeu8gW6H4H1o8nfX7Z2DvUyAL+r05h+4AXtZwFcWGG0ZLsx9X+w/pnd
C3uP36P9AYDvG+S4I2BLO8dfpvnr4KSn1m0cf1llh2HlXo8Wjr9M4UjSwetN
9Dkc9vwFTkdXvGP7erH+sknKnrXjnGmcgZvYBcvElCqxrwc+0mtdyuCNNM5w
zK59pFv9UZ6NM3AtrWseSbvoc7/Ae8YY9lr20Od+gW92E9Xq6VHPCPATPyl1
zbWjz8+z82qg95nGULreZO//zra6cQ20Xwdwm3kz9t/e3MbxmmkIwn7OVqT+
BuCzZLsPxxV+5XjNTKaRw4wz9bkAVz9lY0aqWU8f6zXTWRo0N71PmY0z6wmx
umu7/jCNM/CXgoVpEzoV2Ouy88S4tBVrvGmc4fjCUPWv1Z2ybJyBB6gG2ET5
0jgDX/JUc/15ZerNAe6jdn5P4SjqzWG9acRzY7IF3e/A8o0vb/q6izhes+x7
Q0L7brZwvGYWfj3f7DVpP1jgzuFy3y7bfeZ4zWqaolbwp9RyvGbOgs4rh7Wp
jw8+98O2DX75GTTOwKeWxR8ZbkbjDLz7zQhlYRKNM/D4lvDMtQY0zqx37GZZ
6NV4GmfWX6Z8JV9en8YZuK5lr+d/zOlz7MDFJcXiD6a0zwbwdMfFz9zMaX9s
9vzg8EcB1rQ/OfCG8hiNQWuaaX8KKV8yKO/xa9lGjtcs6cSDoDenazles1oL
gXfnWeqNAM5z9V2gMrac4zUbdEj0+/goGmfgkwT6T/4eQuMMXLNgj3DvMRpn
4P4z89ydOuXYOAO3HSLzZu9uGmfg20X5g2686uN4zVyvtoZOfdjNxhn45ZvH
XROu0/0CwHcsHqkbEkX3G7Lnv9LvORzSyvGamWpssrroT/sbA/8a6bDepp32
QQJelrO/yrpPyPGalfje9//LrYLjNdMI0Kh9n/UW5XV8XpbR4Cyjk8oor+Pz
4pa71FfIKKG8js/zdb+lccpTAeV1fN66Y92zLBvkUF7H55n970IbZFFex+cZ
HDRXNEygcQb+KbFkVchpGmf2fmq9Y2u9aZyBr9Ub+dl6SzvK6/i8oU4PZsct
b0V5HZ/35t9rJXeK/bN8nvYp0cXkeQ0or+PzgiQfy0NLiPI6Pk/8/su1Bdll
KK/j8/rXA685/jg8noHj8Qwcj2fgeDwDx+MZOB7PwLei8czu10TjGY4eaDyz
/efQeGb7A6DxDLwRjWfgpWg8s/3A0XgGroLGM9wXnp+B4/kZOJ6f2f12aH4G
judn4Hh+Bo7nZ+B4fgb+CM3PbJ0bzc/A69D8zPY1R/Mz8NtofgZeg+Zn4Klo
fob3x/kG6wdD+QZwnG+w6wCUbwDH+QZwnG8Ax/kGcJxvADdF+QbLUb4Bx+co
3wBujvIN4I4o3wBegfIN4A4o34D3wfkzcJw/A8f5M3CcPwPH+TPwbpQ/A9+E
8mfgOH8Gfh7lz8CNUf4M3Brlz3BUR/kzex2UPwM3QvkzcFWUP8P18HoQOF4P
AsfrQeB4PQg8Fq0HgeP1IPBAtB4EnorWg8Br0HoQ+B9oPcj65tB6EPgQtB6E
YzlaDwKXQ+tB4GVoPch64lB9AziubwCvRPUN4M9QfQM4rm+w3jZU3wA+E9U3
gMeh+gbw0ai+wV4f1TeAh6P6BvBAVN8AXovqG3D8huobwNVRfQN+PkC9jhmg
XscMUK9jBqjXMQPU65gB6nXMAPU6ZoB6HTNAvY4ZoF7HDFCvYwao1zED1OuY
Aep1DNTrsE/t4II9tvE11GMF/MbR49oyUdQjA3yL2spbjTnUHwp80eoZvlP2
tLHPqcNzdpk/zCqPPFjE8dClSzn7e5Ly6WfPe/nG5nF8SZaPshWSvT4Q7N/B
9w/8Orp/OG6W3j/24GjqXLtxbnE7wR6cvcLE3JpZqtibw4fz4fXweY3R/cN4
8Vj08/ze6Hec/q4ths9S7GqK8fsy8L7wb3jdAmmcsb/gVrSQP9ZVle0DDPy9
x9gf89aKCO7zfwOdD0c4Hz4nvM6jvGDPZr4qp793tqfLsq+j2jl9uevHm6au
/A+9f3idbsWMpdtMRPh8Pj4ffg7nw3lwnQHuh4H7+S9nwTqf
"], {{{
RGBColor[0.880722, 0.611041, 0.142051],
Opacity[0.7],
EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[
GraphicsGroup3DBox[
TagBox[{
Polygon3DBox[CompressedData["
1:eJxNmwf819Max7/nfIuiVFQobS2lkKJCy5Wi0pCVpLKiJPPSzpa9d5GZvV2z
kD1z6eKaWRkZl0i4n3fP5/f693r1vM75ne8Zz3nO5xnnOf9ajD162KRcFMXo
akVRqvwiFcWzonqqbyziG+0t/HsTE20aUjQQVRetJ2rocn3RKM0xR3Sn6t1V
vqeyhuhY1SeI3lD9CJUbqtxctET1L0W1VN9Ii7YR1Va9vtdhjc31/UOV/xU1
Fz2n3y+IGhUxD2ObieoWwf9yUTtRN1FL8818W5pv+G3tclPRzprrY5UfiTqK
thA1EW2n9lL0gertzS9r1hGP7USNVW+KfFTvpHJ6in47iLqIWnnNbcx3C9NL
6retv9c3T+01xyaizqpv73HwOFl9q4k+hR/vh3Evqu1rr3ewaKhomOgYtQ0W
DRLtpN9bF8HbnkX83tlEW2fz1kDr9lK5t8p+ot6q9xB1sDw6qm1XUR/V+3pv
8DhOa4wVdVX9kBT73k30iurf+Pcu66yzu2hHcCHaQ9TTPE1R30NFb6k+wN9Z
f5B5ZY7BLuFziEv43MtlH8vgdc3zJjgTfZ+Cn31E/b3+/mobKFqq+lKVu7vP
t6yfQobPq/zK+NrX4+BrtPlg/QO8B+Q6yuUg876VZbe/aKD7HeRx8DvGJfwe
6HHM+4kxBnYXiapJ5suRsc92OHLmnEQjRYe6ZH8zREeDF9HTKfg+THSj6uel
GLdY5Xrom+oPqFyffap+kuhw0RGif7qcILpMdLroDNHJbjtStEDjzk+x/ilu
O0o0TTRRNEk03SU8TfV3vtVCv0XzNX6m+T1GNMvlFNHZXo+554iOFR0nmuu5
WOdUtx0vOs3lCaIzvR/2cY7nYMwV/naW6HLvid+XeC7mmC36d4r1OovH3UTn
qX6Rv8HLXH3Pav+PygvNN98u9nfm6qTv/xCdq/pTontE98KfxhwvGiD6Q3Sz
2h4U/az6+6KrVP+fyv+Krlb99iLKa4qYa0/N2UjUVt9riP5t3n7Fzorm+ze8
3OCS/XXRmOaiBcbOSvU9TrS92lqIblLbd0Xs53pR1xzygj94+g0bKLrNv+Fp
lX5/JLpF9W9F3xQhqw3UtlLltWBH9dnooeoPeT76j9T8zUTzVH9EdGsRcyMn
2uZbXvO9j9Wa4xPRA6o/7DkYc7/oxiL2tS32WHSl6k+K7vZ8s1Ls6S7RGNX7
4ntEjxfho2jvjP8R/az6L25/TLSP5muZY66p+n5KijOBjz+xyaJOKfb8A+NU
XpEC0895z/Bb8ZHY+SVuY98N1Xcj0buq/+E1XxI9a1ww/mW3w+8Tor/U/7MU
e9xBvG2Zw+/hsP+2D3/Ofvx3zk70aBF+Gz+IL69uXvA9ddT3T+O0mtvo9555
xqdPVJ+jUvjzLUXN7cfx5/jyzYrww9hL7BdrNy/CJ+OnW/g3/hvfulERPPO9
qccRA2B38at17VvhA3/HePww9rGtecc/tiqqfPmWnht/1cH7aOXx8ISfbOcS
247//MhjiQFYj9gD3w5P+Ed8J77hG/sT+MBvb2PCB+GT8Ocv26fDB74RH/mp
66yBb2cMvrCjffpnfFdZPUXMQvzQzXziQ/AlO3o/Pfy7lefezvzhP3t6XnjB
X+J3iQ3ww53cRr/eRfj6DqLhOfw6fhPfjt+kjj/vW1T59zdV9vMa+LGBnmtP
/4Y//GN/8zfAv/HnxAT/KMIPL7WfhZdBHo9Pw1fjeyt+fXBR5deHeF/EV8RH
lTiA8fjqGjnmGGg/PqKoigMYj63HD+BLnilCbx/0HvDN+xVV/ht/fhM2PYX/
Y40D/Q0+8N+jiyr/fZD3f4DnYs2D/Q2exvr3APtvfDe2Fz88vqjy34d4T6O9
3tP2q/j0m1W/IIVvPt42e5zq96XwwfjxW1RelMI336ry4hT++DaVl6Twu7er
vDSF/12o8rIUvvle+398J2vgN08U3aX2K1P440dU3p3CL9+h8vIUPr3is2cW
VXED4yu+Hx8NH6dY/vAx1b+Za7bHT/B3xjPvDI+f7Ln5PdHzTTXO9rH88NNz
PFeDFH7obe8B/16JXfD3l5m/M4uqeOZsYwSezvHvSjxxqteb62/43U726SNy
xAfneQ/4zQuK8MHwcpH3c5bXg8eL3X66eblU9LVomcakHOtd4n6MucJ8b5HD
t+HX8ME/pyofTMxAvEB8QMzwS4o18Jvziqo4gN/EC/j464rwvdvZ/+K3K/EF
eruv5Ytf7eKYgfXwz/hcfDgxAzEC9VWOAY6zzNgr8QTxBvFFJY5h/ErXr/Fc
xA/EFmf4zNbGofp9oOhHZJ5Cvhd4Xfzhg94bvv3uoipW4Dd8POx++KsWKWw7
az3ib7+K1hdf1XP40TUp/Crj8YH41RXGEeeL3/+pCB+Kv1/tOIR4gVjhX0XE
C/jnx8wTPrlVjnjhEe8dvolhiPuQLbHLfaIm+l0zRYzUOodPf9Vz4fuJB1gP
+7XYeyO2IEb4PEU88EoRfn7JOvtc4n4b63vdFPtpo7J1invWNSoPE33hebln
ENM86LlZ72D93iPFXel67ApYdbzwqmW1j36PtJ+4WuV40eeqt1PZMkVs8yQy
9j7RL2wOsfpV+l3PfdYUUb4o2sW+Hj+4mep/q1wmaq/6esTeRfh9YhTOl9zC
+yo3EOUUcQYxBvEAde7yrVLELTXd9qHbixTzEOe0cEzAnCNUH54iL0D8AD/E
ObQNcz/iHGKuL9yGv8fX4zupcy9Gt7kvoOut7ee7GWM7qr17jnjgc/c/R/X6
/r3INh5/cH4RfbfJcYfl3PCt/xO9Y3yeYR0n3u2VQo7LjWP0/Fzj+lu3XeP2
a11+6zr2jHnQuy1S8Mr6M1P4dfgnbv3D50W+Z5QxXOa4t6Jno6wjdyBT45A4
eZrKPtYr9OcX4x36w23gmfj1eddXG9PvuJ39gp2Gxg+Y4j4LrsAa9g5bh56X
5qd2inKR5/vN8z/qOrqziTHJXeAny5fvXVPUadvOegAe+qeITYlLt02B+zXG
Jtgi93Vdiri5ojt/FaE/zVLU/7S84RmZ905xfsSFu6Xo95pljXywCXXcztgO
KeLJNsgOHU5xzweDtIOrLinyaNm6VZr/bVLIE7numELf9G+tnhXWtW5qaJpC
fqdbj5Et9py7z8IidL++7QBnTTtYetdYqfBOnfPdwfzXsbw3cXsr6zL3CzDC
Ggt9LrXcp4GxxPxbp7Bx4LqW5+HsGnreCr74Bg6blHH/Oz4H3ht4nsYp/A3y
z5YVduIZlY+JvsrBe0PPOauI/jMtg02N7bquM+dOnqeO6rtahk9bx1Za/+jf
wPw/lcJWslZt9wevLcrQQ3SQu39j84mvbGK9W2FdZR7u3HPc3jOFTLF72O8J
PvfrjUnk/HCKe0hr4xccv1BEXo429H2vFGuTcwDf7ax34KW9MQPWwOJnrnc0
9qobz9iivd1On5Ze7wXzvvU659jZ5/W7Mfq85dzJeKthfi4wlrfzvg5y/QPr
IHdW7Hlr7xEezlLZI4VukhNAt9FrcAE+wAbYBKPoHX27u/9K45I4hj2hq+j+
Lt4jdc68i88d2fc0pj9xv0of8IEfwu+Qg8anLHcffN9E8/m65Yx+4gu57+AD
sP8npsgR43/6pchvLDSPfb0vZLmn5dnX/dgre8S+YIPOTmHL4O1olZNS3KlO
dcndhViA+wx3GfIi3Zwb4X5D+zifRX/Ln/gBXrmXDUkxnrEnuD7Caw30XtAR
YjNw30Nlzxx5bMZw1/suhT8eblkxZ021b5CjDZ/dxnzyjbhlaArsglvGIKfW
lttw92/rPo0tsz6WIfZsvxQ27TuvBS/8JubhXnxSihhoV9V35o6aIwe/n9vp
S7mv+4B9dAD/frLKf6bIobBn7Cz24QCf71LbLvwoMea1KWJjzhFfPCPFHXuU
29F3sI8OJON6jM8aGR/sOfdwHfmjn9z5tzeujvZ593V7P2NmjLFE2zi3swfi
Peagbbz3O959ulp3R6fQ30nmlzwAseehPnfkgF0ifvvC32hnD9gs9Jr9He49
NnGdOwLfkB8x2gT3f8PnjF5UfOBkn/Uk75H5WZ+13rIOcmdA1w4x/ulD20S3
93C9u2U0yXvp7rHYGWLMVuaBM+Qs2RN5J/I76DX4ANvgBR6ws928D/Cwoe3V
FPOG7TjWc6Jj5G/fTqFz5AVoO811zpTyBNcPND7u8Lmf4HH0R7ePsx6gD8OM
WTANvsHyTsbzZPdpYzkf6/OC35Ndn+D6EcYm+yUXRVzFXehRy3aG22mb6vZp
rmNXKacZb9Pdv5tt2jT3eSgFb5uLzkzh84hJbve8t/l8Zxpzc9wHPaI/sfIs
/6YkDzx7nbYZHsu63AuJs7jvcA/BBhMedZCvOJ9cf4o8BnmYIz3P6eaHuO4M
12d5XeLzmu7zvc/rNJ/Fqa6P8LgzPXa268xBzog3HfJIa+8GbmNt8j/kWsjn
kDsiN8NbxYY53i64P/TKEUvw7ULzTgx1bop4hPHkjsi7ECMQK6CL5GfI/0y2
jl5jfPKbvDc5IXw697p3bQeIC7EJ5IUu8xz13f658YldQ5e565DXYk/MMS9F
DHekeQD/8EQui/nYRx/vBXncYJnMt35U3pr29XsTcrrRskI2N1k+5ILbqk+9
HO9ij6a4SyCD2y0HeL9jHRncaTnAy0Lzg+xvs/zAwq3GA7K5y/LhfemHFLkr
YnRi9S9tE8A0b7fYN2JOMMKdnfgMe3BPipwdd2jyLfe4Tq6OPB15NWKox1Oc
JzESdyF8H/M94zlpe9LtvAlyzzysqPoG3p5xn5r+/rT70PaUx5Irop180THm
Y4rbFvkcwdctxtiT5oH4lu+Lvff1XGd+7tLcqdGzFkW8H1T+HoF3Dd43eCfg
vYCcPXnr10R75Mj1k4cnH79C9GpynjxH/p48Pvkm8k7k08g7b6pv/XPkE8lR
f2/srDSWmLeL12FvnB1nSF7wR3Au+kn0Toq8JfOSoyNXR26uicYPcOxSw/EM
ebqmqg/MkT8jt0W+j9whOcTKOxzveh+msE2/q/w4Rd6IHBS5KHJJ5JTIt5F/
IpdFTos8znL3RRbIEdnwJgDGB+WQ63OWLXL8ynIl50ROidwSOVf29aNl+bLl
SQ4WOVVkWl/zDfYbAvJ807JYZtkw5jWfCTr5tmWLHNkzciWfzzkMyYHx+1Pc
6cn/kj9Jll1NyxLZ8R6KLPnGWjMsv18tww983pwJckSGyJVcKWcy1PlNZLja
5/CH5Yms11j2n1qmyBP5Ip/HfWZgaZXxCjYr+AWwtJHjq+YcxGZu527N+dDO
nKuK+E6ugviXOJi2mUXYbex35RvtYJN4fLxtO/KhL/jajDcRx8TICnvCetzR
WJ83oa1ynBnjsY+cyQ/G990+Z/DCufU19tEB8s27q+9eObCDTm5sPUAfphn7
vMPSD31Cr/Y2lpH9hcbyXcb4ast1geWEvO43HnkHxC6/ZgzBAzhDn8EdOGYv
X9se1DaW/zKOOaMhlslb1m2wC0/sAd1kT+AAfQQXz/os2Ru5d873CmN5uvH4
jnVjurED72Cm8Bkv83mu8vnDK3EiMQ9x41KfH3skLmzkc+YMGxnjYH2wsUSe
kfdS2jjbHvZrnN8NPv8ZxgtyYD7+JoocNLlo8tvoJO9SvFP1KeLvfIZbdvDV
3vjhfjPMZ03u/irjjRiT+IS8IX/bwBsIeWfy1a0tO/IZV1sm5JHJW/PWyN8V
9S5iX9zLhhtTFV7QYXKTjJ9nrPCOAcaaF7F/9BhebnUf7p78HQF75J3+bp87
e33FZ4HMyF9hb+Z7D/xNB3lX9oE+kV9pav2G38XG4aIivqGntPE7O4Yil1vP
2OSdlrdJ3ih5z+b9mHdkcs+824Jh3rR5++UNmP1gN8EwWKxvDO9oWfE+yzsy
uGOvvGlgF7Gr6CJY5D1oC/sVMMz71EBjGD3s7j3CJ284vDfw3sSbDW83vCuh
n+gpb1680/Bew7tUbWOIv8sjh85e+Lu8Rra371ofunqeZt5Xe/POPuGf/bDH
wZYRexxkOTX1OGSEbJBZQ+8RXLBPdHaI98a+hnpv8DDQuN7B2GZv8M9eeXNj
X8iI+xX3LO4y7I29b2+5EDtuY+ruNvbWyXtd++ZtXeub457B/Z3fw3LV3Z87
CPek3u5Hn8rdaWfjhRi1l2XNee3l+XZyf3wkuOxsvUK/sDHYPeSxq3UVncUP
48t4v+Mdb4W/85aPz0IvWhpD6F0H47SuzwFbzfzsc4392F3GFOeK/Diz+sYk
vO5u3ocac5wJZ9PfmORc63l+7CTY281y2syygu+O3gf2H95Hmgf43cfnie4+
Yb1Bf5gTf8Te97ZcKnKqYAXsrMXpOpiq6F8L4/pyY3ArY7Op9zHX+AWPzY1Z
vvc3jpAHe9/UGK1gk5J9sYdu3lMTy+kc74E9YZ/QZfT1SuMUvF5mLM817noZ
g3ONHTAEvnpafiONNdrADOfHuB+NBTDxq88fHMBPP91Pl+SIpSp3S/xOJa/H
HXO1vn+b416/l/q/mONOMgHMlpH3mA2+y8jtvsS5l3HPe1b1iTlyuctVjsnx
dxGfqzw4x99CfKFybPbfQuTwE8TFyBB/g1+upvnm5bjDfaxyVI6/q/hE5YE5
/gbjU5Wjc/yNxJcqx+XIOx6gsf/Jccf7jPVz/C3FFHSrjLcA5Ix/wc8MVdvz
Oe55v6jcL0fuB3zhi3qLjmKdMnKY7zKf5zkvx52f+/4y9leGj36Gdcu4sxJ3
7V+Gn/sgh13gvCq5ZXJy16JTZeRcL0FXyshTnq36QzlynE9hD8rI132n+qk5
cpID1XZRjnwu67MePGyi+vvZb7vot+c/S/UfcuSXx5dxn6TPBWrbuoxc7XPs
vYy/K/mQM8rxtzEfcQ45/r6ljb5/g/6k0MNtrZfYnhW2Vdh2/l6HvznCxoDN
d2wPltlvYgOwBYwhnuN+xVhsFPfwr6zfjPvJmJ5XBMbRJ/Rqje0l35dZL7g7
H2Pbhm/nvNEFxhIbYFvI3/Duhl0ilgJ/2H7yBytsH4iPiYnwZWChl3WfuyIx
FHamsf0kdgtePrY9+922GSwhG/a5nuR2Q458w/qq35jjToxd4r5xk20R2EQ3
aqrPTTlyCRuqfkuOHEN11efnyGEchsxzvEceqfJfOd7vsNPEbcTg4O6QMnwS
Nod1FtiuImP2UEPfF+TIVfS3LrJPbDky4Dy+V/30HHlcbBEyRnb4X+SKTAdo
njk53mawmayPrePcket59nvoPfyBU7AIDtGJlTn04i+V/KcE8qWN1X59jpzU
sTn0EB0kj/6EdWqc+rzss5+s8p4cb3DN1F6vDD16JMf7GWc8tozf1KeBhxz5
2o7YszLqzP2B5380hy3ADpCzWJoj9zG8jN/kVJDxW9kxguon5chv1VF9YY6c
SKn6/jne9vdW/Y0cORpsALqKnp4JfnLkmI/je/b7r/r8lsM+XJrDLmOTz1CZ
ynjTOpl9lPF+8bDq72XHHGprZRs+QuUdOfJCD+aqd9BjVH8gR/5tmNoalmHP
m6q8N8fb9Qk5xtCfvluU0f9E75n9sr9GZezx0Bznx9lhO6f47Nqr3qCMfXFW
b/q87suxHmvNVL1tGXlHsLBxGXioXwavrIts2nseeGznsbNy2Cls1PQcvgo/
hU1tZjwcAfZy5M9+zrE39vWYytZl6BH69Jh1ame1LcpxLyYm4i6HjXgtBw7A
wOs5zpUzBY97lIHJQSr3LCN/18a/qa/KcWac1wZquzlHrvGVHH4Fe35hDluP
ncfHDvO5HJ7DT+OjX8jhz/BlG6m8PUeu8esc+2fvP6mcmiOnCN47GufX5cAl
57VVGeux1i6qL86RW6yt+m058p34w33tE2upvDVHTrRuGefNWeMD78zhBznb
kWWc75YqT8vxDvl/2vQJwA==
"]],
Polygon3DBox[CompressedData["
1:eJwtlXusz3Ucxr+f95eE5JIItXVcW80tFEpznRmjmuI4buecImtLG1taGt2U
W4qcXAvnHLmEolKx6eLWVmluW83S/TZ0UClFvZ6e88ez3/N83p/v5/L+vN/P
r6Bk8p0PRJZlM0ANcGWeZXMZ6J2yrCZYAP8N7Cc2AH018TPoa+CnGWuJnoGu
Db+WsUfgk0F7zQW/widqDeLd0E/AT4KN6A7ojO+3ol+CJ/AXfDE4QKgn+kn4
fNAv+Zs/4FvASvSr6CF8/zS6K3p78tyzoG7yN39rbTAX/j3zC+GzQS90AQi+
fxBdRaxB8l1/Bi2T79yO+KPhu7UGfdH70W/Af8p898fA9ck5mBfOge5ewNze
YDf6W2I3MDYC/QL6DvgRxq5DzwyvrRxUweeArzKfUW9xGrTL/CYjmb8MPQ5+
jLE/4YvA7clrNiH+Ivqu5D0vwJeAEehC8Av8fnA085ucgD8ePltb9HL4M+Hc
zwYdWO859ED4nOSzrAxznak58YfQjZNznNBTw7WjN2mPfid8Vq3RBn0K3Sn5
DAvDb/r/WzJWBP8SFKJHgZfDb6S3ma814bXA8/BK3Qm+nTl9wDz0e/xeojPD
14Ju8EvBQvgr4EZ4DfAsvBzcCq8PlsI3g57wesqh6gvcAr8cLIFvAl3gNcEC
eAWYzn6fgh3JPfEFvETxzGc6FH5zvfUu4oPhHzM2FP6WalqcsbeTz7APPUw5
S66xp1RbuXPTEXyGHo5uBN+Z3GsHwlw9N4FYae61mzHeA34ZKNNeoDu8LlgM
36A7MqdB7txqzf7w1rn3OsuZHyZ+WP0Emif3XuPcva8e3Iy+An0QvUJnVC4Z
K4IfYmwT/CrGVqGXgW3opuiGyWM3wWuDRfB1yd9eBD9kXkO1Lo+QN6jmb4bX
UQ/B14My4ufDtTs8uRfOgRbJPTGKubvCZxmW3BvyBHmBemQW/F8wNrkmp4V7
Rr2imlbv/ANGJvfQaPjxcG0WgYPhnCvXfcHnoBi9Wr0KHwDfw+9W9I/Mb5Q7
Z8qV7tgK/XvYi+R5A9EfhnMlD/oAfi94Hf6a9ic+CT2VuVMy104vsCW5hu4h
dlvuuZrzUfUZtPebjBWjv5N/oMcL8ibdP/OY3mZK+O31RmPhX4PR6DHy+Nw1
oVpQjsfIq8K50Jxx8G/Cc7VmiXId3qsYlOptw7wEdNLZwrwU3I0elPu/QZ78
CbH7wmd/F+wNe7C8d5t6PFzTqmXVRGW4RlQbqqmKcI2ptuQB5WFPkBfIQ46G
c6pcVskjqntGvaIeUe3LY+Qt6oEjumvut61X/Tb9cp9Fb7Qm7FHyJnnQ6rDn
yGvkGe+H99ReerMNYQ+S98hj1oc9R14jD1ItKUfKjWqqc+4zaO816D65PUle
pBpbFZ6jmDxuXdjT5GXygIa5e0a9ov+Y/wAuqvr/
"]]},
Annotation[#, "Charting`Private`Tag$87749#1"]& ]],
Lighting -> {{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
Opacity[0.7],
EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[
GraphicsGroup3DBox[
TagBox[{
Polygon3DBox[CompressedData["
1:eJxVm3n811P2x9Pnfe8VErIOso5thjF2QqJhGGMsM9YsWYZsRbJkrRAhWUpF
IUVKthZFGmUbhRa7NiRbQkb29DvPXq/P49vvj/M4530/933f59577jmve+79
bHZqhyPPb9yoUaMnUqNGteAlN2q0ctDkeL48Cs4JOjeoS9DZfj4tfjs96P2Q
3w3+VNAlIV/huufBo+zfQbtVjRqdEfyCKLs6aI2Qe0fZwUHrhnxQ8POj/LKg
9v7GNTXVvzBofNR5L0meG3X/FnRI0HXxfHFN370+aFzUeSboBreFvj1r6gN6
3egynpdFvfWij51Cvsm/Xxn0uyj/e7R9aNBhlfTtFdQj6FK3e6v7gY6Dg+4I
upN3o70qqA+DGHyDoK4h3x7ULah70LVBtaz6fa03bQ+wrjf5+dnQ467g/Wrq
D7r3N6fe2fH74aHfP4LOS9JpYFDbkPcI2jPKH7Be6HNvUO+g24LuM0evIf69
rymHbkODD/P30GtCtDfL32gTv/856MGQNw6+U9BDIT+NLSSNySnBTw66O+Td
k/R6JOj10GkEthA0qib9+P6THkeeHw0aZH0fM0ff0a6LbmNr+j7ffaomO30h
6MWQx/j3Ma5LvSeC7vc35lIvaBx2HHyfoL2DXgo6qpKedwT/Z9BIxi/4vyrp
9VzQ425vsvWmH5NcxvMzUff2oL2Cnvfv6P6COXq9ZB3R/WVz9Pmv+Xj6HPrc
EvRVtNM36NigZ6P8pCjbL2hfbD2evw/eMn47Iei4oIlRtkmUnVhJ361Yp9Zl
u5DPqjROm4d8SiXdtwz51Ep96hP8mKAJIR9RyfbvCdqGtVypH/8JeY7ndafg
HaJ8n6AdQz6/Uj8ODfnDkF8J+dfgvwR1DLogqG3Qa1E+NfjwoNOCdoj651Ya
j5eCDws6ibaCHg5qF/THqHN2pfFj3V/n9TSDeQs6M+gd5ironKA7o/6k4F2D
3g96jLXCmonyD4JfHnR4yFXQlSEfGfz54N2COgfNiLY/CGqGzcTztUEXBk3D
joIuCnl68HnoE/LM4B8GXRLyG8E/Cro05DeDzw/qEvLbwRcEXYGuwT8Juirk
d4N/GnRZyG8F/zjot/jumKDRQd2jfFaUfRHUA98XNDvkRUFzrE8nfCRzid24
DN2+Nqcv35ij52Jz9PzWHD03iTW9c9D/Qt40+C5B34U8Mtr9JWhq0OAkfb8P
+sG6fxb0o/nnQT+Zo/PP5guxh6AvrfuW0faaQatEf36rSW/03TzKVgtahl7x
rdeCGkWd+cGnBa1USb+WUWfVoJqf0bNHkl5VlKWqQUd0WxC/vRpUKj2j48qV
ODr+Ptpaizaj7OhKPog1tVWWfqtVinXjHO/WjOfGlb6Pfp9G+etBzfyMnmuY
U2/tqkGvDYKaVOr7X6L9NYIyMbESR8f1zNHx82j3jaDfhfxFki4bBm1USW4a
1CJo9Urf38Sc798Y9dcKvmnQxq5Lvc0qlTcPOjC+3zxonZC3rMTR5ffm6LK5
69KPrYO+jXbftk5fBn8zaNtKz+i23Qo6/sGc7//RHH23N0ffm5J0/FPQjtYX
Hf9szve3CFoU9d5K0nMbdCYmhdzT+uIfvmYdoFM8jwxqXwlfEMOJ5eCMLn4G
01zuZ/DLFX4GmyCDZ9rjP5MwyzfMRyVsA8YB31xVE2YhBtbxAbiF2AgOAG+A
Cz6J5xlJcwCOARtcVGvAMfi1LyphEDAJHFxwpfVC7mm9wQY9rPeNfgZbgV1u
qSlmE5eJ4eCRlYxJ8N3EdHz51a7Xy33u6bbQC4wAVsDPgiXAOmAcsEIffxuc
wjOYZaJxC22AHcAQP1XCKrtXwisD3AfeBwuBm9aK926rFHPAM/dYHzALGGBQ
rQG73Gs9iOfEdXABsZVYS7wHw2xkjPWA6/VxPZ73z8Iu4IedjHORwU3glRH+
HjEfDACWGeb+gG32CB0fdp+Hut06PgOvgSGIj89jJ8YWj7juGOuKTuCFJ6zT
KD+jfx2/1PENz/dHG78G/ZTUZ94Di4AXwD51XPODsU0dP9EHMHEP2xbYBJzz
dE2xCZ//Rq0Bo9QxC3yyvwGO+I+/OcnP6Pei36njmJdqDTiG5xOSYjZxfax/
f9H9nOy2wDHUB/PsZywDZgCHgHmm1oR/wDavhjwv+MmV8M3RSTgG7HJsEtYB
oxyThGnAPQsr4Zkp8e5xSTgGDHR8Eh4CT/wtCX+AXR5NwjFgl78n4Zi98dHB
myRhiUbBFwTvFPRzJYwG/plQCQvtSx8qYRhwy6uVMAw4561KWAVfNKsSVgGT
TKuEhcDGMyvhZPDMb5VwE5gJXAoWBZu9a5+2HOdUilXgw6bEhSQMU4JnY5th
2DhrPeTrK+EYcAMYBpwApgG3gAfAMbWo2zgJI4GFwA9gHXAO+AFsNLESpmoV
tLSmeE78BsOAI8A9m9qP48/BLGAAcMyFxjTgA/APOAg8dE0lLAEemuM2wQp1
HEP7dRxTfyYu8/25fuad0cZBYJE61uGdOtbh+YAsfANmuC7qTgn6OeigKNsz
aElNWKGOa+o4po5rfnI5+GMT4yV0Bd/8Yj2W+rlpFqYBz4APPkoN+ABsA665
IQlPgCXALGAEsAK4AczzcdI3ai4DL2xhzIAe4ARksAuYCiwDLvjEsaaOdagH
7tjSuOv6pDYZB8YerMT3eRcstJXbIXZvaJ2I/82rBnzTzDqt6WdwxNbGEnVM
gww++Nx4oZHfW71qwDrrWjew0fr+jVgJrgIzg53B0OgBFgIHgavBy+BmvgEW
WDsLHyxMwgt1PATOAO+AJTatGvDNchxRCct8af22dVnfeD4zqFfINwQtYR6S
+r+526pjnW2rBqyzXdWAb8A7PZNk9HgwCevsUDXgG9bJull4ZueQ30nCOTtV
DZiJdsE4O1vnr4P+WgmH9Iq67YKOpAw7dqz6NmhxpZzA98xzlB8YfC/6Wsnn
7ol/cJ0TQ26VtIfld/wfPvm74Isq+bpEHAq+X6U8EPmg/UP+KOj4Sj5wpSi7
r5J/aM2Y+VtN3R/GaXiUrxw02HPdwr/dUgl7gbvmBL856C+VMBKYjpwTWIg6
4CJyTYxDx5owFTki8i2rR/mQkNsE3VrpN7BWN9ejzqpR54GQD4DoRxLmAiOe
VRNmJO+0ZpR3rgkvga/AexslyWAV/PdrlXw4mId5IAdCe+AeMA/8cJcP8DPy
xkltHeG5goOBwA3EazAJ40pMJA4ylpSTA6jjDOryTO6CGEHsJ16AYSZYJkaA
C4gX/P6s5Ymuc4zbbJk018f4nWPd5o/W/2biBdjW/VzD64Mxoa3j/B6c3AT7
/bsqxTH0Hx18QKWY+ItthnKwBbEdvPFk8H6V8gCjgvpXiqdgB2L+JNc92fXH
MJYe/52TbJF4zHePsw7jg99bKeaCRcACyzFM8IGV4vKx1gfsMZZ5qBSLwS9n
+71xwQdVir/gF7ADmGd28Cf8XZ7P9Xt8A2wCrkJvci/0lfHo6L4TX4iR7JEZ
G+LudMdB4jXxjTEgZq+Yg5jn+Ej9+t6eWE6sYzyI2fVcBjK/0yfqEOvpN1hw
xZwF8Zv+EcuJ44wZfraem0DGF69kjEDs5h3q8/s1Ub6k0m/1fAcxPhmPEN+7
sv+o9IyfoA6+Hb9yVfX/8yPEpSeTctT4i25Bz1XCM/iOa6qGHAoyMft04zVy
1N1DnlzpeVXjI3DItSG/UOkZH9Dd9YnvyMzJUUl+hPwPvuQ6v7uUvlbKaTE/
4KrXPYc9PI+Lk/bIxI2hlTj7ZuLHYpcTf/Dp+PPPgm7yc0/L+Hp8Hz7wLPs8
/CM58z5Je9FeXisXWgfs51WvL2zudK+bw6L+skrYFT/PfuBp+xjkEV7rfW2T
x1lmLXdJ8m/4OXwJeHSk/Q3yBL/bp2rwN3dWDX7gLrcJ1r3bNnmxZewQzNzf
tj3a36FO/6Rc4WnuXz/XWWD5da8j2meN0+8BXjudLc/wWunvcvwbek61/0NP
/CHY+x7rc4ll1kUTxwhsA9x+r9fC2KQcHTYIJh/k9dLFdbDnibbvt23L99tW
GzuGvuN1M8htNgfv2F7waSOsT3fbKLbHPmKgdSPn/JDn7lKXo0OLpLjCvnrt
JNt60PaLHZM/XM3xkTYvDfnlSvsW/O3DHqsnXcaYXwZO9m/EQ+IicXUVry9i
aPG6bh10RchvVNrz4GNHWrcNo/zxSjkK2uYb+PmxrvuGfeyjHpMro/7bfp/8
Bu9yfnRVlL/negP9Ddrv5zbR+RG3e6bnf5T7hX2Ntl0d5naJXw+7Tjvbzmjb
zwjPxxm2i7HWc6S/2962PMbzdXXo9mylPdJ4c2yA2ECMAEddHnWme45Zf894
Hm9Lyl2DqW5Pyksztr0cc/ewfY13mw/5XTDbMPvG/f3Nia6DjD6tbGvjPLb3
uQ7lTe0P23iMe68wRy97TOr9Oc/jTjvEwbuScvfM4x1JOXPa6ZeUx29nu3nV
489cvOLyYZanefyneF7+lXSeQbxsk4TPOJ/bNQmHf+qxm+kxZ/yneY4on+55
vzvpnOBMz91My9jMW5675XZn+Z6kvGG9/K0V5vpt93dg0nkDMuXv2vYYk/c8
PoOSzh7qYzXLYz7I9c/xPM5ynXWS8O6ZNeH0r43VN/BaA3+SZwBnYEesPcrB
srcmnWswj+B1chhgE7AMWGiqbQ8ZfM65zHzLxDBiGX50lyTf+rrX0QLPKfP5
SaU4uKvHfqtKfgqZWIZ/wc8Qu3azz9mFMUzK8YFtyaGS3wS3swchR0N+BqyJ
vBx/Vtp70I+Xk87CeKbOItffyRiVfrE3+crl6yftizrUlKNFZn/U17ESua11
AWPz++euTxwEWxMT8bVgBXwjc/K954VvfudvfWWZtVwz5mFP9JckrAxOBt+B
cYl9YGfKyYUis08A/x+YJFN+vOvva/6r5fmWO3pOyEMxL8ssE9M52wKTtXLZ
Ms8da5zyd4yviD37mdcsL3EfwGyX+zfq35t0RkYdzsuSZdpBJpaB4bJl9nTI
rV1WLBMTivHfqOAj2O8kxVAw3Xs14TNi7fsef+QDzFexTJxZxdiOM7tVXY4N
EjuxSfDcap67IZbbmDe1jJ9raizYzBiPcuojEx9f9G9tXNbMOBC/yJ6HePHP
JJl4hE1h5+zfWtqWsOcBSeff+CXiDj5qhrEc5wlX2g6xXfax6yWVg/EuTnpG
bm9510rrHr/AXncjx3p8NWuLewz1OwwbufwIy+xVwQQbW094C9fBz+Jv2ZuQ
a90saX/FfotcK3sX+Bapoe6mSfswMCZ5V3Amex3ysWBP+NZJv7PfIgfLfoi6
v09qm7Jtk95jj0Vuln0W/A9J77GXIp/Mfgq+fVJd9l7kb9lvwf+UVBf/Ry4X
Hwj/c1Jd9ob4jqley8j7mPNb3Ufu7DqstV28vrbNoVPWnQF8Gz4OjN6BtlPD
+QGc/Th5lT1c1sEyPmf5HY2kfMvyvIvrcJ6PT8R24C/b74FVwax1/9fSupE3
J+c/z/qA8/C3PP+YGvLq3BvAp5Fv5xm/+l8/I9+clPOh/kmWqd/a9ZE7Jt07
IZ+BXbd2Ob+3ts7YHL+T6yBOH2A75F1k/CG8jWVwDHkqzlP+GOO6fda9jEOS
clh72EfiH8kzXODy4TXhoENchxzVoe7Lw0m5e8qoe7Drf2D/2Mq+EBk/h2/D
r+1nf4aMj3qc/hX5KPaecPabz9vv4HPwPcjd7B/YK+I38Af4BfZlzHVbzzv+
oa3nHbzHHgzMxnif6PEk1oADbnY588E8ESc4iyJvNMzyw+anWG5nmbqMVzvL
lLXzWJGrIzeOv2WfjMx+l/OB01zeyTJ+uJW/j21wp4J9NdjyCscVYkTnKLso
6RwUvAP2BScy5td4nJnbP3h+mRfmkrkHQ4HjwUdgXvbqXT0vXT0X5OLJU5Oj
Zvyv9ZhTvkO0uVmWbXa0XeEDwRn4SXK3nNFeZT2ROzoWn72CTXa0bfM77+xm
30w7+Odebot2KGvv9tezTF3OD7gjwXkC+JF9C9hwaNIZPDnnGyvt/ckBMP7c
8+C8gnhIXCQWchZBHmV5vjsph0BOnL0254nk+37z++Q78BvEGfATuBh8xneI
OewxwML0q7PnCJzOfg/czVlMJ881+2z2+cv33pX2b+Df7q73vu3lQtvMaX6X
MjA++0Pw+0X+FuN8hm2Ds3HGlzEn78ndK+xhlSzf2SE1+EZkfCi5a7Aj64Y5
3tHnMtxBWZp0J4WcD/dRyBXhAx5L8v2MJ2uYdcs6RgaHYOfkkVjL8Cct4wM5
Z2U9gje5g4UPAReBgfAPX/k3sN+Xlvf2Ouvl9YVfQmb9sd8Cl+NzwD+9rQP7
s9u8jsAz7PHwJ2AS9k7gjZWtJ+sRW1niOR1uW1nZ/RvhNsEN59puOc/nHJ1Y
PyTpbKnmPhIXfrWdn+s5Yvypz70A1icxDn9M2fmel90tU2eUxw0dwHjoNNi+
5SH3i3s4DySdJbF2h1iHEa6Pzvw+2HU4DxnqNdLbc1afr2Fuk3EbtsLcPeTx
wUfd7Llj3wRWx48SP/fyfHFuwH6KXBpnYpxpcXbIORv3gqYnnbE1i37vkXUm
t3rw3X1HgDuxnLVzxj8p+Oykc/4U5ftk5cJYl+TjOYvfNcr2zcrZcV+Ie0Pc
BeFOCHcwOJPnbJ5zBu5nrB91G2fd4eAeBfcpuJ+xYdY3GF9yTax3/MUY9521
N9oy5yJfuY/8PtblK1umDfK0/w35gyT/wRknZ36cQ+4W32mV5XvwQR8GvRHz
8GGW/8puA5yPfvQBfTm/4qyKM6t/RN3uRb7vspC7Fe2n7+J+bNH+uV/IP2X5
/r7Bf8zyl9zHZXy488vYjPP4cCaHH8QHcm+Fcdrb88QdMObtuaRxY34Y3/c9
3rzDmSNnj5xbfhZ8ZtLZHeeDnBNyjsh5ImennDVy5rjM/hd/jl8nNt1pO6zf
S3vdY8R4fmzdO/n7vMMY0savXnf4PPBak9C5ddaYMXbogr7cz8EOFlo/9J3k
PnG/hD5jD4zB3m5znvv2pftKfxb5fc536dfntglsEBthbbAWvrPdMyasA/rz
qfvO+vjCY8IaIsYQXziXJR4t9jgu9Lhi+/V8MGfs2NcrSWuA/r5oPTawXpxp
s7b2y7LBBbZD/Ar+5QiXoRflc70GWVd7ZY0H67JF1pqb47H4wWMz2zbRz+sJ
O+1n7MR7/a0jus73fHLnkDXwmfuU7COwB3wGMYa4Q/zhLs6vnlPiAL5mitc6
ax67ZQ3+5jXLO7+4DfwFeqNzf9Z3Uc4IbIWNgX9YJ+SYyBFxfwAd0IX5ZPyY
F8YOfzXN83Gj5web3MX3G57y3KMT88bvzMFRxhLgBjjzhvy17YN3GEfslH3P
UuuOv+ZuEvfAuUuFv+Fc9mLbP/feuKuPTtwJ4I4A/WQ/NNB+hjLO//Gn3Bni
DhHzBsbkGZzHHVTuaPzo+WSck+1/kOeEM2POk7nvxd30Bz23tIeOrAPO/3ey
zXL2Qp6KOeI+FHpn+3/uUNTvWKB3/R7ANvYJ6Lu61xPn/fxGTKY9cg+NvXa5
s8bY7+C7JdgIuIL4hA+jPfT40WXj7WPAMuBGMM5BxjncecMnbOB7ctyX434g
9wi5T9jNfo54z7hzJ437efQNH8F48xvzxHyxHrBv7Jz7MIwL9w24d4BtcUel
qddTC8c01ksTxzLulHC3hDst3Avhfgh3XFjHxEru1XCvhDsc3IFhrbJmaWMz
jwl95H4G9zSYm+usc71/3DWkjL7R70Ye0w3t85n7Fo653PWjz9w53MNrgfXM
GT/jw/88mJOV3AY+gTt/3P9DB+68ruM1vpX7gs1he/h0+rmW+01/6PuWHrvV
HSvpczP7Mfq0jfsFrgXfsvdkb7ad1xG4Cpm9z7aOA/yO3i0d09gb8e72rre9
3/tTVrvDjUEmuz/4We4gcRcJf869IO4HMS6sC9YHvpo7Oc1zg50xJ/hA+ruJ
62W/x/0q7ASbYI3wLveU8Q+sdfLSPG9tf4kejO8kf3+6/ffW/jZ12rjtif4m
32acsYsptn/WDv5rit/n21t4rrZwzG5im2LcsK/i5xa2D+wWe93V5awt1tSO
tqHGtgfmbzfPJ/O3u+cTnfCd2MKGrku7zFUTzxdrCTva32PHHNAf7DJZD2IM
sWpSaphL5pa8LOcl5GY5V+GMhHMQzj047+TsAx2IS+AK8tbkr9mDckYBnuJs
gvNYcovkFYkfnDdwjsC5B2cenHFwxwhszR08/Ax4BD++o+1gpOMe8123a3jd
rhevYJtw+rmm10N9fcCX2ifjP5bZ3hmng2zL9Hu4/TPjwbiwn6Zf7FmwCXxU
G9vTGrnhXjzP2BO2y/zPtM0scaxAf+L3Mscl2nrOax9sjY/EH4DLOtlmwBPE
H3wO94PvdN/B/a857hF3frD+xB/2RuvkhjvyU6wHNst3iTkPekxWqxru4q1q
zMN4EmOIjYzPOY5t+Aza46wfX4W+6MpapD3uDrO2W9rOsEn2BrO8vlgj63ht
NPdaIV5zjxG7p01iSW+PP2uieG3/5rWODsQD1hhjVb8nhQ/u5liEn8Y3E19o
F9tZ6nXAeM92vOX7+FfWF2P6mmM3OAC9WX/oPsHrDFtnzbP+GJv5jlO8x7zS
7/85PrP+mJP6Hgs+1/4EW6Bel5CvL8JPS0K+vyi3cVPI52bl6s8OPr7ozKV9
yOOK8jnPBp9QlEdckLUPZT86NeRnis52zsfGXH58yE8VrbO3gjctut93JLoV
5b/eDD62aA9FTuO5orxGk6Lv8S3K/uPya4r2TqzzS0O+JPsMIXjrojvLmwbv
mnUeeErI/8y6F3NO8N8V5RjPDH50Vr7stJD/lZVfmx38iKI7XKODz83ar3fL
apc2Pwy+f1Eu9RbaL8rpshdc2315O/j8LP8yJuQji+5XDo2yF4pyJ58Ef77o
bvWJrJOivP9X+MWiPEsjfi/yfzsHn5h1ZrAMGyvykY3J4RT5thlR/kjRfZaV
gj9W5AtPx5aKckCPhTylKI+4XvCPs+LnFyF/WuQ7Vi3SD92aBf+86A7rt1Fv
YJGfZs/6pPet2MLMrL1JLeQnivzxb1E2oijH8zNrtigP+gs+oSgPOi9rrBnn
Y7PGi7FaHPyYrPzIr8GHFZ1Hsj8eWrRHZn88pGiPvDTk4UW5pe9DHlyU5/su
5PuK8nD/C/neojzfDyE/UJTPY58xynuNE4Ofl5WfOrnIprHne0K+KCs+dQ75
0KycYNeivf3yfT22kJVbnE950Z36C7DNrDzglcxPVg7x3eCHFd3Bh//dMuO9
gce8EzEo62zqcXx/0Vka62yBdXsn+KFF9/0/Dn540f8MPgp+YNF9Aez64Czb
Zv4fzbKBWSE/nXV2NTfkF7LOkN4PeVzWORa2OSHLPucxflnnSXNCnpx1FvU1
Npt1Xn4c6zsr5/dNyNsV3dm/IvilWTF4s5Cvyrrz8VXI92ad5X7AXGWdS50X
8iFZOdkc8oZFObO/Bj+o6L8O9Ptv7vu2wbcp+v/Bw1m+DD+2qMi/sPZvxraz
7oj1Z2yKxnYYa6voHBr/d3TRuxcFvzgLf7wX8t1ZZ4Csp9W8pljTD2at674h
bxX0Q8gdg3fOwjGnhtwhK7/5VlYf0H9ykb/D150d/MKsXOfwrP7Ql8GMfVGe
9e2QDyn6P8dC1lBWHvOokK/IOjfj94Nd5zrsIessYc+Q/5p1DvBKyEdlnSWc
kTUfzMWtRT4a/3xjyEdknVucE/KWRXcd/h38gqz87JtZdoaNzQ7+XNaZ5ftZ
togdotcxRbpx7vRZFua5Icouz8JnV2fZDTZzZcjHFt9nCvn4Iru9Nsun4E8Y
y9OLxvO6kL/JyoPSp5OK+jUnKwbg/3uE/HlWXvn64AuzclfEh3auQ1/bFvUX
HU8o0pP5v7jIBoh1exfFu95ZcZQY+kpWvCRWPhF8r6IzkO5Zvgm/hA/oVOQH
emX5JvwS8eeMohh0a5bfx+cT0/YrimvY0YVFtvReln/Bt9yW5evx8yOzfDT+
+Uvmp+hciPnvUWQDd2b5PvzegCy/jE/Gv95pH0vM71PUl4eybBp7Zu1eVbR+
l/u5Il+HP7u6yKf1yYoB+P87suITsen2LL+MTyZudymK3UPwqUVYnnXZr2ht
LsZPFOX+x4Tcq+h+3BdZcZeY+1LwQVnnEAOz4goxBf/du8iHY189i2yM+b+p
yAY+zfIFy++KhjygyH7wtf3tE+7Pij2MySLWZdHdB2zntiL7IQ5cUhQL8FUd
ivzVDVlzwPjPYH6K7+bVdPbDffnmUTazKHc0LfjqRf+HeBKfWnRf4d3g6xdh
VvAFmAmMgS/81v7w31k+FP95Qpbvxm+fkuWj8c8nZ61P1iZx7PyiWDYqa0wZ
z8+i7PUif3Jqlq/Hz5+W5ZfxydOzMBD4hzkZnTUvZ2bFAPx/u6xYQhz5KKtv
9KsU4Qni2j1Z/hRfCvac4fF5JCtmEC8Yj+l+d50iHAmGbJsVt4hZ1xbhWjDt
zVkxnvi+RhGmAc9gI1OL7AT/em6Rj+2ZNa/MKf7srCKfhk/9zOMATmxfhBVv
zLJLbPKWLBwGBgNXEmOIL+sGf6foDIexGWS7PSkLw4Hf/g/h51HF
"]],
Polygon3DBox[CompressedData["
1:eJwtlnnwl1MYxb+j932uCTOqIWuUpaQUYyuKoSK7tP/ad6QiWpUWikpaSXva
aP/VKEtJpX2RSpslFI1lGssYy0z4HKc/zsw597nvcp/nuefe8u26N+h2WqFQ
WAwyUDMVClujULgBUTYvFG5Hb0RfA78XVEb3QPcg/g9oiN6GrkPs/sxz24Fq
uZ+pRfxzdG94A+Kb4e3BtejqYC3xZejS8EXgbvhycAH8B+Y/SHwdujK6ObgT
/QV6CPw54hvgbUFVdBVQh/hx9ET4aOJN0SPR9eHLwEPJz2huEfgIfiNjj2V+
x63wNxn7E10XPR09IPzshehG6JXocvCxjG2C38RY18xrXgRfzNi/6Ady/3sb
cHXuNewJr0H//jB6J7o2ur7WDurD32fscngT8J5yyVgb5l+mHMPXMlYJ3gy8
C28RjlUAbxF/BMxnfs3Mc1uDq3I/s4rYOWCe6kN8R7hGqk293N9uCa7I/Q8f
wq8n3inzO1TrW9CjSrjmU9Qb6PLwI8xZja6Obpf5HcpVFfTLJZyzVegicCn8
ErAhuSfUC0vAevUeY10y52xvuKaqZUP0Xclr1lobqyfRa9BXwpuCesnf0Lsb
gS3wmxnrlrnnBqFvQ9+j3GZ+thWomPsdH8CvI94h89gd8I8Zu0+5BxPRNZJ7
U3vkHfUeumXmNRXDB4Gp+netAb4ivDfU0zuSa6TazEIfhwcYBv+dHJWEr9cc
9SJzvuTZc9Gz0cPBxfAjYZ4RPw99dvKzNRj/Df4tqEW8JPp8+E+aw9xSYA+8
NDhJ/A3wK/wXMCf3PzThmR/RL+YeO3bqnXpXNVAqeQ3697/Amaof+Jp3L0XP
Y84m9Ayth7HBqoU8QL0BhsNfZ+wQfKD6P7nGqq326FD0a+j98AGM9US/gt6G
7ovujR6L3onuh+6PHo/eje6vHoJvZWyw8pO7dh3C/6YaHoWfTnwufKQ8BD4x
XKtnc+eqmf45c866q3fRm+F9cj+7F7yU+x3K5cHk3P+fU3jf5H/ZxTPz9f/q
CfRXyhG8D5icew3rkmuuWs9U/vRu+QP8MGMrVAswPXfOdsFTci1Vo7nwF5Jz
eYCxhfDWYIy8Fb0c/jyYljuns+VnyWv9RJ4oDqbkzuFZ8P3JuZFHTNZeVs7l
BcQXqNe1JvQa9Hj44+A7eT+YAX8iOVeb0NO0F1TT3J44RV6rmsl70Yt1noBJ
uXM8C/5Mcm23o5fAn1bP5O6BInjZ5F5cQM+PhbcHQ+W1xEfKq8A4eYlyCn8y
uXe2oMfBOysn8h70HPVKcq/ty+xt28PeL49rrlqEvUJn2ED0hHDulLMRqmW4
VqrRMK0lXAvlvInyg66R2ZPljZ+GvUseKW/fF/Yqeby8ZGrYS+Upu9EXgarw
EcwZAn81/K/ymF6qdThXypG8+kDYC+XZ/ZSLcC+q57qhR4Vro5rIK7SntZfl
GfLeg+GzRR6ss+1w+KzUGScv3RW+C8hTtffPSPZuecBq+O6wV8rDyqEXoP8m
VgtUQA8Je0FtnWnoReG7RAudGegT4b1wIrMX7w+fhfJkndWHwncBndkH0GWS
vUwe+Rmx4vDdpRd4itjocO3VY2O0F8J7UT28Hb007BXyrIryXp3pme8AjZPP
SJ2NGpsNnw/+kDfQH5PkneifM985Nspbwt6nPa+z7+3w3UFnYFvt1/Be0h2m
hXo3vJe05weGc6ZcFYNW6tXwXpandUQPD/e2ev5R+UV4L6mnKykX4dwp5zPC
OVeuj2a+u3WKUxx0CZ8pOkvKgA7wYeG9pD2/Et1U97PMnidv/Cbci/JInaW6
w+juojO1Lrpn+G6kO10X+Vd4r2lP6izoGF6bzoSF8M7gGPwk6Ep8RNhL5BEz
wz2i3tCcCck1UO6/Vw+jZ4W5atAgeU1ai/75P5qSb6Q=
"]]},
Annotation[#, "Charting`Private`Tag$87749#2"]& ]],
Lighting -> {{"Ambient",
RGBColor[
0.19699838300000003`, 0.252204821, 0.33320940200000004`]}, {
"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 0, 2}]}}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
Opacity[0.7],
EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[
GraphicsGroup3DBox[
TagBox[{
Polygon3DBox[CompressedData["
1:eJxNm3n8VtP2x79Kdc7exzxkLEVJXWNCpkpIoUGEDCGFm0uD3FCmzKVBKn4y
ZrpmLtcsGTKLa+oau+Z5LBrI/bxbn+f37Y/12uvss5991l577bU+e+39tDjm
5ANOalBXV3d/o7q6hirvTnV1V4kuLurqCtGiJnV1i0VNxP/WJJ6P1vvOopVV
10i0UHW/isoi2i4Rba33f6jMqquK4JeJNizq61IRbZeKGhfRB99YpYi2f4r2
UD/HpOCPL+vqXte710RrihoWIcNaoi5qs6donSL6Qt6mHgNyres6ni9Wu+tF
deLX83tkWT+FbBuINrKMyLK2x0m/XdVmYIr6bUQtRC1Fm1oO2jYXrSZaXbSG
6NIU7W5UOSFFe9rtLX4zlW0sx/qiVkWMAXlbu2Qcm7uk3RaWEV3upT6OTSFv
R79rK9p2Bbm2FDWzXFuLNrHcvJuk326n8lWVj4nai9/B30Ouv4g29u9v0fvH
RduL72D5aHeJ6maKVhW/XQoZdhLtI35wCnkO0dztKHqfubJ8fLez9cjzrv4e
8u4u2sry7uG2yLanaF/1ub/oOFFP0V6q68vc+H1Xt0XOTu6Db3RQ20dFl4s2
TCFjN9F+4k9Iob8eop1Fu/Adl8jV0zLRX2/LzTh6ua6z9b+Px97H75H9AJfI
daBlROaDXO4t6ucSeV6XnoaIDhH/fBly9Hfff5WcL6tuiah7EW1uFf9vlfuL
bhf/luW9V/x7luUB8R9ZT3eKf8ey3y3+Px7ToUX02cM2hH1hV/9Umw88DvTR
zvN0muq/8O8eFf+Zx7GlZHxVz6eIvtTzU5Z/fz23F73B2FXuIHpX/MMqP7E+
eonfXvQ231PZQTRP/IMq/2v9Ifc7HuNhqt9J9KH4o1XuLPqY9yr3ES0W/6bK
v4p+Fv+Wyr1EC8SPV3mS6DfxH6jsIVoq/jvRANFJoq9Eh4uGiL4RHSE6UfSt
6EjR30Tfi44SnSz6ATlEQ0U/io4RDRP9IjpWNEI0Ud9ZqHKQaLDoDOnrdNFP
4geKhotmqk2daBH6VrmS6ATxp2MDlucMl8hzKjah8njRaNch2xiXjOVMl8h5
lkvk/Ie+/YTobPHL1M+B+FuVf2AzostE80XP6f0pzL34xqKRzLXKJqJTxRcq
/67yAtGFRfCjioglp1n2S1wiO7FmhugK8XeonCYaj+wq+4kuRXaVh+A3i5Bv
jvipoqRvlaJzVLeIORS9IP5XleepvEx0PmNU24NY835GtqkryHiX49108feo
HKfyyiLW0m5FrPmhqu8v+r8iYs5p4keJSlET/J6+OaMIeZHzapcTRavoXSWa
JL5xCrmuF90smlbEd+fSt2gK815Eibw3ukTeEXp/uOgW5iCFjLcyd5YX2W4X
XVWELCurTcMUsvyk788WrS66zW1pt5+etxa9xFyIrrNsr/E70Q3i7y2iRK41
y2hzl+g+1yHj/diW2g+wfKeqPEL0ryKekfPBFeR9yCWyPOwS2Zuq/3VFd6BD
lduKXhG/fhnffFz0hL+PvPdgY/rOkSnkvE/ltSnGyphXEx0p6oj9FoFZuhi3
/GrMQVz/zfiGZ/ANGIHnxcY0PINTwAg8b5WCB7eAa8AJ4IZlxi413ABu6eq4
CN64xDY9TOXBKXAMOGEl2xWYBrxQwzQ8L8clRT1OoWxqWcEJa1vWdf2MHPjt
GoYBq+zl+DzOshDP8d/tLOtG/k3hvte1XOCFZpYJvABuAL+AG2oYBvzCM1im
m/FMDa+ADzZIgSNqY2jjd/weXAQm4tvEmxp2Ac+AHfj2lpaVbxPHt7Is2/gZ
XEBsJda+kgKjbO/+t3W7Td2OZ/DLvm6DHGAdsAyxG6wCFuB7xHxi3bYp2rSx
fLQjvoMvwE43p3qs1so65XdgCGIBPvYot+9qWZEJvNDJMnXxMzLV8Au4oIZx
lmOpIrDB1v4dfgnsc4HxD3jmQtFFKXTEe/wXMQgfT0wC4/Qyzqnhmx7+Phih
d63fIvwf3+nl585+36uoxzT8poZdDrLcff2OcRzo5xrW4Rns0s9jAcMc7LGB
O8AR4JkTVP9mEZjm8zLwDZjmizLwDbEfXHSo5f+yDEwDjvm6DNwDXvmmDOwC
7vm2DAwEhviqDNwDNvquDGzxifXFuPcTvVQGLgHT7J4Cy4DJehvDgE/+XQZW
AwOdXQYeAuv0NYYBt/QzhgHnDDBWwRfNLQMzfc64jYXAxocbJ4NnzlX5N9HX
tqce1tMx9mngnPOJd8Y2g1XuIvpV/KUqxxnbvItujIUuUnmh8c/vReAb8AR4
BswAvgH/gBnAN2AbMAN4CPwD3gAPHWus9WkRMZN4Du4Aw4B3wD2j9X6Uffip
xjBggjpjFTADOAhMBDb6sAxstMwygRNOs1yj/Y0apuF5egrcML6ox0P85s8i
cNPIoh738Jsa7uEZvPOgMc9DKv+ZAkvMN7YZWwS2AdOcbznAMRcVMQaww3Is
kQI/nV3U45uLLcs4P+PrT0z1+ABsA64BH4BtThIt1nd+FG1VBha403gAjEM7
+p9aBu55vgiZwAZTinpMwzNYAEwFliHGg1uIN2CNu4xzwFtgHvAXuAnMNBmd
Mo4UeI5+hhrzwBOvid/gHXAMOABcA75AvivKwDovFoEd7jV+qGEaeDDBCGOE
Gk6aUdRjHdohJ9jopiL0xXvGAX4GFw+0HGAhcBB7fuIQ8RIcMDIFLkA+MAJY
ARx0e1GPi1YzxkAm8MI19KG6c1WeJXqgCCwDjnkRXOl1jXzgHrAGuAk8dGcR
4wHrPFDUYx2ea/gGvAOugUeOa8rAOi8XgXHAN4+JPyoFnpllucE6jxf1mIl+
r0uBc54Uv2EZJfJcIL6N6GnxO+r9HPC5aIKorejZImI6mIO8xMq2I2z+Z3wh
/kp0ueiPIrD+J+L3FGXR6cbX2Mkalh0dbuD1jfzTxU9z+xmiq0Rr4afwu6JG
ZdjTbR7Tp3o+w22usm5us4yvW84xeneOxjNXfLMy3oGX8NPEB3z1rqpvXsa+
cjeVm9g/g6PA6eSraPum2xPP3nIfx6ntxqJXxf/gNQie313Uwj68k8qW9uHE
NmJLHxMxhLjYKkWOAx/eWeWm5ruo3Mz+vKvK1vbbxMWP3N8eqmvluECM/K/f
EzM/cd1Yvd/c/pb4+ZnfEwOJP8TNs/T+xDL23OgD336YaBfJtrPolTL8KvX4
S/SET19xf4uvZdzEA2LBG+jfMai278UHt7UPP64I3RAziBeMm5hR2z/D43fR
AXhoxX0yuIQxsbZZ1+gAvAJWQU/EkmOK+r30MOuBWEe8WFtjOtPPFzimsad+
3/bMXn4dtdnb71gfC/1bbBye/ez1qr9EtAV2Y564ebLKbua/V3mD2xBXiC/E
rwmOq+y7m+pb3f2Mjr4r6nMIv3suWDdN7X82rbQeytiX0Sd5AGLXc5YP2UY6
HjKuSeZpiyy0JX9APCK2jrJcxFdkW2KeOWJt0wY56/SdsaIGer4ff5fCHyxE
T6IpZTwTE3m/r5/PLWKvzTomPp7HPkZjaFiGbMTNU6yXJh4TJftvYsvfy4in
vF8pRXv26sQy6olj+CNiHvFuovlJLpN5/BY8bafa31APEZP43ZNl8Ne4bhXz
08zTdpb9Guu9SLH+4Rul+D1xgvlZwzz2h00Sh57S84055m41t2FO6YO4cG0R
sQEeX361/Rx1Y1Lsl4k525RRsocm9oxxPX0RM/CJ65XBP+K6puYX2k7AT5O9
jka4Db8h3jxXht6xBWIXMYN4MULlRmU8g2nxBfgBsCvrn7V/bRkYbgO3oz3x
ZjXmvQzMim0392/xofhSzgPAh6ztgfYZ9Hmk1zHrnHUN7sVfDLCfgMc/dHLf
1IOfW/q3YOPN3OYH+xR8BXi4tfv8yb6D74K3W7kNOBo5WYPXlXGWQDzB523i
8f5if4R/GOy1zvqaaf44r6m2XkcL7VNYm2Dttm6DLW9Zs/My8nesTbBVbU0Q
Xzp4XNjI1rYZ5N3DY7nK9djMKvptnzL2FcS79tb5TWXM5XZl+JuW1huYYlv/
lvgMT4y+UeVw292q6vNAy7Gb+0YPlep7+hvsLdpYJ8wJ816LcTt6Lq70WmB9
Ee92ss7XIA/kZ8bU0eNq7jEg/5pqc5TfrSV+YBn7iq4umcd1VX9xGXub9v4t
sX57y/2253A3y49ddLEMyIw9vWvddLJ+HrOOHrdt7u656GCeuM/4Onu8HT2G
+bbTzh77Tv4W8X2OZcRmamP42PbY1WPZKEX+GZy2cYocNdiMPRqxY04RY+zp
cbGP6+Y2zVLkqGmzg/0yPhkb2c/20yJFnh394LNp87z77G2dt0yRZ6f/1cX3
91zeZZ1gM5umyL/Ps577WrfsH4mnz7i+j9u0cJt51uGB1jl8P+u2pXnqN0tx
BvCu56635SHOst4Wee4O9Xzhj8nr4WuZ38Otc+Tub751ivOAWv3hK8zREZ47
5vEoz8vmKfKD891mgG2mlXnq26Q4V/jYvz3GNtza/Mc1n1EGNkM3g6yf5baw
gj0caxu43vXs08G2pxnf3lKGX2pQhG+CB+/eXAZOXSC/ukWKswy+9bvKpWXk
JcB8YD/2KU+U4e8O81r7m+3hLynOO/guJfgGbINNDS0DL2FHw2xLT5fhK/5Z
hL+AJzbha/A5xIRnzc+2PORJyOmQlzjTds7ZRp8UeiAekQuoYRb44+1XiVP/
f47gNuy/yKuAc8m3E6/Zg5BXYO/winni1KNFxKrRrkdnY6w3cinnWA/kP8BV
gxwXznU9+52pXi/4vPMsP+dHY63zzc3jD8Gd55mnPN/tF/gb9H+m62tnTxe4
TRvztGG/dqFthvIi83ubr51VXeK528I8sQa8Os489nax27R1PX6DtuM919Rd
6vpu5n+zPYz3bzk7m+A2bc3X4h35GTDeMvPIT95mkusbmyfOEU/BJeAlzpDg
wSe/lPEMDw6FB4ty1jTFPH4NXHp7CoxzudsnzxH4DRzEXhosBAac5vpVzJOL
oJxunnryFMQpyivNc1YAzsO34EuJu5yJrGUef0g5w/XE0qtd/6l57O0c2xJ7
pe28PsBcxAv82Puei+utZ7D5TM/dYNdvYQLfs17A+PD4Q9Yf8Zv1yP6VvCh7
WNYfOGC2bR5/AQ7Df+BTXnfbf5SxDya/elsZ+2FyqeRU2ROTPyWP2svlXWW8
Z49LvrS3295Rxvepu6eM35Fzva+Mtuxrybse4PL+MvbMH7gd+2b2uORj+7r8
Vxm/Y79LPvZAlw+V0Zb9LvnYg1w+UkZb9rXkUdkTUz5WRlt8xuNl7I1Z4094
XsizgfvB+ewLiCvkoWabxx7A9rNrfBH5n/5uwzswP3jnKbfBT5I7Yn6YC3wi
WLmT6to5F9PHJXOKz8MP1nzecoxeRD6evHYPf/N5f5eS50Nd/6J5/BwY/VGP
l3rkJddCzoV9ZO8UZ/Hs/cmzk38n9748F5Di/ct+jw7x37THhxNn8H34vV1T
5BF491oZ+Wty1+iXHDj5h7Fuj68D4+Dv8HUXmF9g/4PPwueAffA1+JkJ5hd7
jbztdUHemr0r/mexn+HJWcHPcd275ldye87Ku7ue33G+/57bzDNPG8r3zRMH
P3Cb98wvtZ/Dx+HfJplfZp+Gz8JfLTTPXhj9k0cea38437+d73fMSyPztGGd
sich7pNvIw4Rg6aax7cR6/A1+JmrzeOf8H+fleED8RPgJ3zFTPP4EnJa7EuJ
6WuaJz/aNsU76nt7/bP2ibHP5Mj3sVdhL8MefTketz0M0vshOfwq+3By6bel
8PXcIRhm/Zyf4h5BgxR7fnLNtHvI+XbkIJ/MuTN78CbOLWfzk80n552pox3r
N7k/ztQ/8hwQP8hpL7Jum6fgX7Btg1GG+Jl29N/AeXDaN7TM5DaIOcQq4s4C
9897YtK/UsQodFlY5l8t02TrsLScPVKcDXJGSG6BHPTV/n4Dj4Fn8tQz7Mfw
a6yvAc4VkBNn7e3iPN75jpvIR6xlb8m9jNvdD/kD9E3/Yy0bz+RbkDFbTmRp
5Jw4ui1djy9slOrlWtl9ci+kzrmjxu6T/rkzQj3vJ7vNcM/LH9Ybegev4iuW
ei7wM0tcDw82B3ODq8HsYHRwOBgffA+2Zw9KvpV4yvkjZ6DHpzgDbZ/ivPSR
FHe9tk+Bx/eqAlPRjnNSfgeuZ8+JXePryCfWfBd5wwX2UeT1FnttrpdiPfJ7
vocvZR9DToT9Cnsm9tXse9hjsW9nn8Q+g70uewj2KOyN2XOQM2YPxn6FeAEW
RE4wM/lA/Axn6B1TnEGDD2kz0vOVvS5esc3gw2m7rdvjt7e0LTX2OmK9dLfe
9/FcLPG84A+IkdjtLPOcSf3hO52/q9wmBc9dA/Am+wrwDOfkfHfHIvag5BHY
dzIn23leuGO5jX/LnLTzePku/ohvsbYe9voiZtJmF/se9j/4H76/k+VZp4y8
2Vm2b9YC+UZiMrGZ95y3XSGanSI/xT0Q7oNwP4N7GtyL4ByJ8yTuhHAmd6Xo
qRTnYJyBcZ6H7rhTdGiK+wITRc+nuFNwWYoze84bOHcgH8ZcMa+1cXTyeJHv
IMtbu/PEOSHzwhk9Z/XcgbjJ3+BuB/cruGfBfY4bROM9t8xxzTfs6rkmJu+W
Ys3he/BBg1Kcfw5R2TfF/YFZohdsZ2AU7I5zJ86hOI/ijiz64R4uuuli/XA2
hm/CLyETukPGOnKiVaxhMDXYGry0oeovzjGHG6g8I8f644yOMzvO7jjP41yP
80nOLDm7RDfk/w9IITc+jz0DPoZz1CdFL6K3FPphrMwZ98SYw2Otp+dSxJjh
Kg+z3JxFHuG5H2hb4Jwd3XMPhNwGeZB59hv4GfzJsyl8OXMOhmIN4bvYy7Pf
BIPT76n+DmNDn4y1t39zsO0IezrPvr2364d4nobaLqZ5nNhTZ9sX56PEhTEe
z0iPD59BPGA+z/IawP5rGBS/gW2e5v6QFR7ZORtG/yNs76d4LrDLYZ4L7H64
5R7ub8IP8hy0sl4Z93TrdZzttZvtmDboET9c0+sU0csp7q9Qz11d/NkutmfO
yVm7L3ndoDv0dqvnirXIXZnLbNPEH2ISMWisn7EZ6sAnw73OWG/72N6x+7tt
79j9ql7z2CE+oIPnnLlnHeBHWAvEYM5BwAwQsZk6voPdDrON0zf6ek/8GlXE
HvJk5MLIg5HzIzf3ttfi8rOeMu4rE8t2tKwdV/ARO9uX8x3sZZjnsHbOz9rA
7/Wz7vBp6JK7E4yL8bFGuHe1kW0K22L+sAvsAzt5wXPU0zaHTd1kX8s8gD06
26bQy4VeKx1cMrfEZGyPc9mG1jP35Ljbj53wfZ65B8Vd9Fc8r4wX+fCt3CXi
bhE2QwzmmbFxn+BS2wnnPxPsw2vnSIyVM2bOn/FbnNXfb11xZs8ZPne5uAff
3vO8p2XB9umb33OHj7t8nKVzt4F7Dtzf5A4B9yZvsG+kvwdsV9xHmGV9Mu65
Xqe1/T06R5baHQRK9pL4CeL6y8Z7DY2lsDXsC3yKnje0LlgX4HWw+nivOe76
sT5uta0cBg6yLTFe7rBxZ497eNzH484hZ36c/YHxZnlNYfvg9ge9fmjLvUDa
45vwUdyxQS/cNURPxC3iVzuvoztsd+jqWuuFeyrcV+GeDPdTuP/BHRvO+NEz
/9VAd9x54O7DU7Zh/CP3+riPyN2P2bZz7vYw7nEeO+3m+Hdd3Bb74x2yPedx
kmti3GCYR22rjBmbf8F64nvoqp39DnGfe0iM/Q5/+0qvM8bAHZu7vMbu8RjR
EXKyLidbt9gad4bQw93WzX3WD3iauXjIeqdkHqYYJ7EXeTqFj2BOH/FaYxzc
n0QPMz2v6OpG/+YB9/GMf89v2eOAu+gX28bHYkusQ9Yj/h3cwH2nqSvIhIwz
vSaaed5Wsi3c5/ljLA9Y11M8Jn7XwOOgju//w98YYr2AW561ftHjaPf1mu3o
ANvkE7Zj1u/NnpuJtj3mb5bnk1jJmuWOErGMe1bctyJ+cTf0FtvEeNvPXLcf
bpme8Phf9fe6eS6ftP3T9jC37297J24+57WAryVfQf5invV/ehVzcJXtBltg
z8relTwBeVrOisiTkNPgHIgcBTmBTVLkAcgzc7b0tO1x9Aq2RlmzzTNXWBOU
6HqG7Q/7fMLjRK+3Wn87e61sbNufYHtay2sFW9vRawUd83yZ7ZvnO61r7Ikc
KWdUb9g2m3ktDvc8zLWtdbO9PWhZsDPi7rO2iVv8fpB/N9zfwC9x95c7wszx
SM8HNkk8r7N/AEMP9Jzs43lhjeP7t7P84AliDrbKWdo51u2JnlN0y76in+Xk
/dnWM7HnEOsWLEUsZl3X7tSP8/dXtZ/g/XSvF95zzr6v9YceWTvsh5ADndfi
ajfr61Xb7yDrB11Pse553tfvu1t3rGn81GzbBD5jiudypNcHa4x1jq30ddtD
PGbaEoN7+j3jXj5m2fL4HPe9+f097u952xPxfLz1zRzcaznRC+Mg3rZ3TOln
Xc/yd5iPie6DOXvZOkCO5vrm6Bz7ePIS4BFwybt6t0oVe++X9P6AHPm3/VXX
Mse5x37iP0pxHvae6trmWFsfq+6OHHc7PlY5MUcOYITa35njzi972ME59nZ9
xG+TY088QWX3KvbDDXP8nt82QMYc+9wvVE7JkZ8YoLYb58jNjxQ/Lcf+7TKV
M3Ksr5+wqxx3iO7KkYMj/7a32l+S438JXcQfnSNncLPKnONM7yjV75DjDGAb
8fuKf0b8fSq3z5FHXFf1R+bIcdytcrsc5ySDVL9njlz8DypvzXFe+LPKzXKc
F26oNj1z5IZbq7wtR76NO0735NgL9hC/kcd7tPidcpwlIHu3KuQ/mW9Vcb5N
XSfXj0UHVezJzhW/QxV4uY/4DlXcUxuDDqrI3/RX2bmKXAN2sWUVtsEedLcq
9qEXid+1ipzTUJUHVfG/iQtVv0sV+acLxO9cRf7pfPEdq8g/nSd+pyrw++Hi
d68ifv2m73Wt4myJPe5fqtjn9sihd3R+qfijcuRCPsS/VXHH4Uj6qyKngV2g
L3SFzvYyv3UOO8PGzhS/dRU5qunie1dxV33THPaNbZ8lftsq4sM5zHUV8YS5
al/FfJ3NXFdx3riJ+J5V5HTor5f7fBA95DgTehi95Tj7OVbv98hxfnOQyrk5
7uk3Y03liE+L8M++K4VtfpLCPt8QXWVf0VLtF6eIDZuI/zlFPFu1ipwC+YQk
/s8UOcFlqvs9xd5pifilKfbqv4pfkmIf1UDt/0iRK2wsflmKHOKa4lfKkUva
Q/x/U9j816r7JUWsPUn1l+fwuS+ofD7Hff/eOZ7hyZEf5zz5X9X+lRz/V3hK
5ewc+TN0/JzXxfcqF6SI31vk+D154hPUZk6OM5Vf9e79HHEf3X2YI76j11et
2y9SzAH6/9xzw7wcr36ezfHfhW9Uzk+Ru/wyh51hY0PU5u0c/424XeXmOc7P
j8OOcpyfDRffIsd9glPEd89xlvZBDvmQjfMv5pU5bag281LkMV9krefYm/yU
Y22wLgayHnOcBR6DTeU4L2St0BfrZTA2mONsb33xrexb5ufwm/jMP1W+kyLf
ulT82ynyrb+JfytFvvVg8W/k+J/HWyrfzPG/kENyPMP/R+W8HP//OFHfeifH
f0ReZ65y/KekX45nePr7t/s8LMfv+W0T/fY/KfK5q1Wxt2dff5ret60i15ur
iEPEoLXEv58i1/wLsqXIk34q/oMUeedRVfhBfCDnzfhxfDjjW5xjjCeq3KCK
/B/roK6KtTAKu64ir0ycaVqF3tbK4b/wXdjsJ7bb1XL4Vvwq5znrVRFTVhd/
ao58dv8cOkI/p4tvV0U++2TxG1URj4hLPMOvqfLvOfLizM8fOeZojRx+E5+5
dg5ZkbNJDl+GH7sam6kiX3yN+COqyB9jp0Ntq/Tdpor+r83hN5fngXP4a3x1
sxwxlXhKjMKesCV8QFGFH8Bn/J7Db/Stwvfh9/ANa1fhH/AfK1fhQ05Q/TpV
nBPiM4iX+I0Rqt+sCmw7THyLKnD6VjneUY8uN69CnyPFt67ifID5X5jDBk5R
2aqK3Dk+bFEOP8baalTF+mqXw6fjz1kHK1WxFtDNxlXop2mOGEb8WjXH9/jW
ejnmj7lbJUccJYZiv2UVNoxtNq/CPqfq/cwcdoj/Jpaz3osc42SMX6eIAfj/
b1JgheU4IYXvwG/sn8PH4d++SuEL8AMr54jZxOsyh37RbaMcMYl4hA/7Locf
2zIH9gJ3fZnCj+BDfkzhs/BX12O3juOUQ82zx7oixz5rvxy+Ej9JLmVhitzK
lYzLtse4R3kN3oA9V/H/P86F2bux/yJGfZYjTn2fAreB2b5L4U/xpdgy/dIn
fpHv4RurHPPNXBPTqiriGvHn2xwxCH/weQ6fAAYkdwMO/DQFngPLrZvD1+Bn
iJ8LcsTQz1JgLPDVoTn8Pj4f3DEgB/Zg3P2qGDtx6cccsYmYDI4nLh+YI7YR
18DIX+XAyUfkiCvElONVXpcjd7B+DlwFpmqcA3OAN75N4d/x7ZNUNznH+c3/
ACVRoes=
"]],
Polygon3DBox[CompressedData["
1:eJwtlmeMVVUUha8M5d27H2WkCUNx6L3KKCBFhBFkAKWXgApqLBRJTBRNbL80
doOCRkVNDNIREQFBFFQQsQAqKjZ6GaoNFSzfyvLHyltr733PO/ecs9e5xZNn
DJ9eIUmS+aAi2BBJUgY+TpPkQC5JPoF3A6+hD4LR+SQ5jf4VXgAmwb8FAb8g
S5Le5G9Cr8lcUxt9En0b/ErQBt6I2IXk70ZPQxehP9f4/F/9vGPi7am5Hv4T
6KBn0cXkT2gM+CBim+FDwGepx+issUED8vegt5AbBrbDd4ARejewmfH3oofD
t4LZqWPz4e3BfeiN6DaMVQUUMt4EYoPhc8j3Rt+K7gdfB36kdhX6a/jl4C34
8dS8nNrVqWPteL46qEnsOvRl5I9mfvZNcCm5aqAVsWvRveDng9boKehB1L8L
DvF/69Gt4Ccz81lgYHgPtXfr0FfAj2fmb4MPwzFxrVkp/B2wj/q16AHwY5n5
GvBBOCauM9Efvh7syfmdBsM3aTz0+9oDeHewBH44NT/IeEtTx3qgV4FdOcd6
wQ+TXwF/HXwRjokf1XrAV4NvqF+Ovgi+Te8HfxE0YG1WhPk2atqiQ2vGmJOI
NYTvDp+1O0FPdAZakp+InkLue1AJ3ljnF74W7M55Tn3gR4ivhL8BvgrHxMvB
rvAeau+OgU/hF4NF8EOp+QGeX5w6dolqwZc5x9Rb+8kvSN1jzZhbE1BM7H50
if4L7Mi5pge5yqAF+fHovlp7vUPOc+yps5F5rZbpzIdj4ke0HvCVYCH8ZtBV
a62e4PnnU+/t+PC7aI8XwqeGe/F2Ynfw3y+j65NrDQ5q7UCpep2aI/DKOmPo
GeoBeC7cq3XJ/wmvDq5GV0Wfp15Aj0FXR/8NLwQj0dXQM8m/Ev6vLuj2qge1
4LdQ8xu5qmAoPE9sX3hPtZcf8UwGfxVsgQ+WR/HsMvRc+FaNCT9D7bOpY53R
S8O5OfIH6juiH4LXoa4bukN4b3Zqf9F/oZtmfqd28FPwqfB7QXHYU+QlijWm
vm3Ym/QOldC1w3tZA52i64bPpjynKrpe2At0pgvRRWEvkIcMQj+lM8f4ndGP
w/vl7cX9qWmCLst7L6aDR3Re0fXJ1+OZUfBHidXLvKdz4bOIzUZvysyngW6Z
Yy+Rn45+IGePnwh/Ibw3XcGT8HngXBXOuuaQ9x5o7UvQk9Wr4doi8EzYU+Wl
vbR/YCC6e+Y5zib/dPhZ/ae876qwl8sDH4Y/Ef6vjmA7KNUe8XuWOVyjtUV3
yvyOugtOZP4v3Qnj8p6T5vJg5ndVTFzv3IncCHS7zGfgPZ1FcBd8Q2rvWxT2
FnlgC2rPhM/2sNR3w7iwV+iOUK+ODXubelZeMybcm/KcxfDTmb2sMLU3Twjf
JfJoeUGjcO/KE07B0/DdqjuxD/+/g98s5zXQ3awzrbOsO1reMzJ8l8uDtNaP
hc+O1lzePCrsXfLo5fC9mefyHOhA/f5wrw+QH6OPohtm7vmO6PJwrw9M3XsF
4bOoHuxC/hD6htSeEfCfwUx4mfyR/D/oZpk9oBX637A3jEI3R/8S7vUhqe+G
0eG7RnfEjfA98jx0W32DqDZcK09tzfMFeffa2NS1E8O9rWdqqDfCd7Pu4Lx6
KXyX6M5YEr5zddfqG2GYvDjsjfomaIk+G/au4cQWhL9h9O0yj/k1D8fE9c4l
1P+ObpLZw3LoOuFvDXm89nLn/72qPa0o7wvPvTnxA/CK4b3QN0/fvHtCvaAz
/134m0ffOrrjupOvkPez8twfwneAvL8m+ENzD59dzekcvEb4XeRxx+BVwnur
PR/KWE3D3qIeSXT3hvdKe1gL3Tjs1fqGqYveGO4dfdP9B2xASRY=
"]]},
Annotation[#, "Charting`Private`Tag$87749#3"]& ]],
Lighting -> {{"Ambient",
RGBColor[0.1830429875, 0.21424763749999998`, 0.0962851875]}, {
"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 0, 2}]}}]}, {
RGBColor[0.922526, 0.385626, 0.209179],
Opacity[0.7],
EdgeForm[None],
Specularity[
GrayLevel[1], 6],
StyleBox[
GraphicsGroup3DBox[
TagBox[
Polygon3DBox[CompressedData["
1:eJxNmHf8lWMYh08i5LxGhAaVEkpKQ1pEQsqKRCSSSFMlK3tFtmgJkVUqKVJp
GkmSUalfJUK7SKSs3Nfnvd7P6Y/78/ze517X/bznnOdblTr2bN1jj1wuN6lY
Llc81u/yudyWsM1hj4fdGXZX2Cthz4QNCnss7A59T4bdHXaP/vvC7g97Ouxe
n0eZ92zYE9Yj5ynziLsxyeVuDbs27Iqw/rE3MOzRfPr3Hdag9gNhL8hHvREy
8dwrcjuEXRn2on4YX7X/c2EvywfvS/qf0k/tB41jfShssOuAsJHGkj98N8bX
zCH2/bA3wt4Mm+jZcQZjzHk+7HVjh4S95R5zjHM22CfYD96x+vGN1w/7264j
7Tc0bFjYaFf6vWMNOCbJwnm86wr7VHNgfM89GKe5B+MUexA3XSZ4Z8oEy99h
G8M2hX1gHnEzjCVulrETnPtR399s9+Cd48r58Zn8Imxh2Dw54P3YGeD9zD14
P7f3dHNm2nO+fnwL9M+w9gzj5oZN9h1+6kq/L60B41euMC41Dq5FYR/JtSTs
E+st0/+Z/klyF7kH1wq54fra2h+GfeNK3nJjiVtpLOyrnBPGH+Sjxu9hP4X9
HPa9fnxr5Ps2bLWx9FnrHjP96B4zrXeGIt/tcnk/9P0wzzrziNtgLHGbjIX3
H583y7RYji2+Y+b4Qx+MW50Hxhvi+3xVknJt17/WWivN/9M9WHbKDcsv1uYM
fnWl7g5jifvL2I2ewVzf67/2gLFl9G8U1jjs8LB9wvYNKx62zfPeZT/67Jmk
e8xUIkm5YSRnpz33SlI/vr2T1A8XtXc4Ry5J63EeHePvq8N+i79LJmkNvnP7
JenKGZeKv/eQa/+w/+Q6IElX6h2sH8YyzkG9Q9yD69Ak5YYrn6S1OY8kSVfq
ljaWuMOMhf2asGJhB4aVtTaMNcKOCDsyrEKSMhFT3h6J/kT2Yz1rGCuFHZSk
81V2BniruMJytCvsVV0Ps9/+9jvGPeoeZ20Y6+uj5wm7MVYPKyfj8a4wVjOv
nLafM9QKqyhvPZlgOdG9o8LqOAPsdV2Jq60f30nmwXSyXPByX/Gbzx1wUTw3
CzsjrInnC3tD+WA/NaymXKfJUducujI21Y/vdP11rF3HuEbW4wwau9KvuTXg
PdOVs2xlHFwtwhrIdY4r9TrJd17YxTJR73z34bpQbrjOsjbncbYrdS8wlrjW
xsLexnpwXeJKjeyO585vJxPf77b6qX2pK+zoFO59zv4y98jpEdbZWdE16A10
SPsk1TGP5FPtwv3GPXenfp77uzfQ79IWfzvutg+1GvjOeZeZFoEbHYQeQsM8
4Bw83+depr+elhs9RO4A+6Mj0BPwoROGysJ9PFy+ET4PdG+YTC+aP8z8gfYY
6ecSPvQD2oL7n/t2mozsjcoXNMqb9hmbL+gg1jHuTTcf9tetO1z/aGdF17zs
7y2/A/wuDLLPK7KOsx756IVM+7BOMh+9gf5Au3HvTzZvhhxjnGOq3FOM4zzG
G5tpsvGexwSfR5s3RaaJ9iNupj3QF9zRC52Ze36+sdy1c6w1yxy4P9IHK3fW
J/ZBV8xzvo+NyzTNXDnm+QzjbOtm2mu2s863FvMvkCnTTAuMRT98JdNCfZl2
+Tpf0Exfysedv9jeaIZv7YNeKJJ1kflz9S+Rd5k5o5x/onxF+ob6bt4wH72A
fkAXcLdulwMNsEoO9MZP9ljjM7XQBevkQhdskGWtcUv1r3W+H6xbZOx651+t
Dx20yVqcEZplZb6gSzKdwrrFs1xlHH12OAM6aOtudbeaDzdaItN9rNvssdne
azwD4vjN4U7kroUXLYHe4J7nHuM+W+/eDpnI+dcZ/jYH3l36NpmPD52SkxUW
vp9ojs89i+VyE7NLVvxoF/jQFZkWKe13e7P9//Es0Btoj0yXwA0TegNNk2mj
kklBAzEzZ1DC2miVA2Rd4HmtyBd0GD04A+rt4wz8xmQ6ixVd0j1J/x3byRw0
Bvqja5K+MzQb9z93bC3PF91Q1rqHm8MM5fXBig45wj5og0pJQSeVl72CcQfp
r+j8Zaxb0j5lZK9srUw/VdZfzfsGDnRHVfOP9Rmm6saRX9t5Mm1UXQ40SI2k
oMmqJAVNdrTsNcyp6HnUlKOOdTNtxHOmLZrLwr1f31r1jKtqXD2Z0AJN5a6v
j9kamE8/NMYpztNQX6ZvGsnYxOfq7jX0HI+TpZZ9Mr2CFjnfnmfJDR/appl8
zX3ONFamuU6XO9M35POZ4v9FOsnXQh8saJZz5Gvlc6axWviOSvnOT5ULrVXC
98H76W7t85KCTmojF/qytRxt9VEXDYQ+6hl2fZJqnUwztbV/O+M6+3dLZ77Y
us3twzM6ghpoiT7WRUPx3eF3hN8QNAz/tzPE33W+U/wGdjOmmHNc6ztlr6P7
fEf4nvNvjS5JWgstNNi6Q6xDTM6z6mSdVs4Af++w63y+zefLk5SFf6PyHe9s
TDvPhfNB67V3Lvb6Jun/VXUxt6sz9rNmD/m7WhOubs5yk5+J7sZ0k5nPDVqZ
z9/N9ro9n36mWutjr4/7t1rnXPv1dq4usnEut/j3w/l07evf6Eo0ExrnRpnO
tf7NztzL/A7W7udZ9fbsOKP/AeQf2Vc=
"]],
Annotation[#, "Charting`Private`Tag$87749#4"]& ]],
Lighting -> {{"Ambient",
RGBColor[0.30756835, 0.18676585, 0.147065275]}, {"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{0, 2, 2}]}, {"Directional",
GrayLevel[0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}, {}, {}, {}}, {{
GrayLevel[0],
Line3DBox[{312, 1, 297, 217, 16, 30, 45, 59, 74, 89, 733}],
Line3DBox[{3, 2, 255, 312}],
Line3DBox[{3, 4, 5, 6, 7, 256, 8, 393, 667}],
Line3DBox[{315, 9, 298, 747}],
Line3DBox[{377, 10, 219, 315}],
Line3DBox[{12, 11, 377}],
Line3DBox[{12, 454, 13, 526, 14, 258, 307, 15, 316, 222, 29, 44, 58,
73, 88, 103, 262, 442, 717}],
Line3DBox[{422, 104, 119, 134, 149, 163, 178, 247, 324, 192, 310,
269, 193, 194, 195, 196, 197, 198, 250, 199, 350, 767}],
Line3DBox[{133, 118, 263, 441, 847}],
Line3DBox[{133, 148, 162, 177, 191, 271, 311, 206, 326, 254, 205,
549, 204, 485, 203, 202, 201, 252, 305, 200, 325, 654}],
Line3DBox[{422, 704}]}, {
GrayLevel[0],
Line3DBox[{1301, 871, 1270, 1094, 886, 900, 915, 929, 944, 959, 1119,
1313, 1838}],
Line3DBox[{873, 872, 1164, 1301}],
Line3DBox[{873, 874, 875, 876, 877, 1165, 878, 1398, 1755}],
Line3DBox[{1304, 879, 1271, 1830}],
Line3DBox[{1396, 880, 1096, 1304}],
Line3DBox[{882, 881, 1396}],
Line3DBox[{882, 1465, 883, 1535, 884, 1167, 1297, 885, 1305, 1099,
899, 914, 928, 943, 958, 1115, 973, 1137, 1277, 1707}],
Line3DBox[{1332, 974, 1158, 989, 1004, 1019, 1033, 1048, 1161, 1333,
1062, 1299, 1189, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1820}],
Line3DBox[{1159, 988, 1363, 1156, 1254, 1828}],
Line3DBox[{1018, 1003, 1159}],
Line3DBox[{1018, 1032, 1047, 1061, 1190, 1300, 1076, 1334, 1163,
1075, 1558, 1074, 1495, 1073, 1072, 1071, 1070, 1626}],
Line3DBox[{1358, 1139, 1332}],
Line3DBox[{1358, 1745}]}, {
GrayLevel[0],
Line3DBox[{2470, 2036, 2429, 2255, 2051, 2065, 2080, 2094, 2109,
2124, 2260, 2474, 2996}],
Line3DBox[{2038, 2037, 2333, 2470}],
Line3DBox[{2038, 2039, 2040, 2041, 2042, 2043, 2769}],
Line3DBox[{2045, 2044, 3156}],
Line3DBox[{2045, 2046, 2047, 2626, 2048, 2697, 2049, 2334, 2464,
2050, 2471, 2257, 2064, 2079, 2093, 2108, 2123, 2138, 2280, 2431,
2860}],
Line3DBox[{2494, 2139, 2300, 2154, 2169, 2184, 2198, 2213, 2325,
2499, 2227, 2468, 2352, 2228, 2229, 2230, 2231, 2232, 2233, 2328,
2234, 2533, 3020}],
Line3DBox[{2347, 2153, 2524, 2299, 2416, 2984}],
Line3DBox[{2183, 2168, 2347}],
Line3DBox[{2183, 2197, 2212, 2226, 2354, 2469, 2241, 2501, 2332,
2240, 2720, 2239, 2656, 2238, 2237, 2236, 2330, 2463, 2235, 2500,
2890}],
Line3DBox[{2515, 2282, 2494}],
Line3DBox[{2515, 2897}]}, {
GrayLevel[0],
Line3DBox[{3447, 3195, 3443, 3421, 3210, 3225, 3240, 3255, 3270,
3285, 3300, 3315, 3330, 3345, 3360, 3375, 3390, 3429, 3449, 3405,
3445, 3437, 3406, 3407, 3408, 3409, 3410, 3411, 3412, 3413, 3414,
3415, 3416, 3417, 3418, 3431, 3450, 3419, 3446, 3438, 3404, 3389,
3374, 3359, 3344, 3329, 3426, 3314, 3434, 3299, 3284, 3269, 3254,
3239, 3224, 3423, 3448, 3209, 3444, 3433, 3208, 3207, 3206, 3205,
3204, 3203, 3202, 3201, 3200, 3199, 3198, 3197, 3196, 3432,
3447}]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}}}, VertexNormals -> CompressedData["
1:eJx0unk01d37Pk5KJRWVqDQghYpEkukukURJgxIya5AKyViRMpQhMs9JkopE
hpQdSSLzfI7hnNc5h3MOIZJS8tuvnnfrt9bzeb5/tdbutfa593Vf+7qvay8S
NhcP28/i4eHxWsjDw4f//Vla+ps72A922z+V9Dzvgm1fhLXRHgLWZVUxFFz7
wfz0xkWTxlToEi76baVNgEDvSbVrdBbM8TbKeCXRA4tflp/l20XALine0xQF
FrDnjFCTNvSB4f0fsds0COhK6Pqde5QJrvc2m1Tl06DwenGtjQoBhz0XPsnR
ZkBA/95F3hN08Dy8avZSeQI6ambErw3QQcN37pvPpgxQtvWQ2ixFQEpYuu6R
TTQYWvUqxqeHCWrqQj0vlhOwds+4Au1HF/TIV2j6bqKCWNbT3A39HHh6zEZ4
jlwn2Jfk7LxR1A2bV258Gj3IgZoSkZZHQu2A5k7eD3HvBfX3c0p9GRxoX/zd
JOZCC5ion9hdo0YDI0aXbUQDB8KW/rwhwd8Iyj/FDLX06dCofKaq9CUHDm20
rCxw+gD0RZFvh3UJ0JI3TyhJ5EBQavLGY/KvgPto9eASfgZYK/U6vbzFgcR5
m2Sdnw+AucrBUZu8dqAevVK8Ro8A24VJp8yMBsCzpPxjgmon8Iif0jm/l4Dk
DMcd8l394BNsph8+2gUd3q5dRToE8OhATKxeP0xNrds+SadCoPzsA2a7CfA7
qKcXGMGCio1hxvWivSC72XaDtToBYmGBk/aPmSA9cmLhuBENAmhBZwMVCeg7
9kiVx4sBi+tlTm94T4edc05NJUsSoGDN92A/QQe94LiEfGcGlOrZxrUtIsBA
UeFlBtEFZ3/Q034mU2B9Y9G9CCEuXHYYWRKq3AnahS4pt451Q/5vuSKB2Vxw
CJ1v+3OwDb4vfKezKxbXc2hk6RidA4GcO4mrYprhcE/LqhtJNFgkMvRYtYQD
ljQFKYHRWqD53RSTHKJD3mD8jpZIDlD4JsSjl78Fq9i5dfQpArZfDL0d58KB
vGtfhVY6sKEp8qOMg30LpOSZxIkYEBAUeG3l51VsuOtX/lW7phV+KV57dBGv
IxPTrVYVA5Bz6JS1hGk7fGg3LufH67Oor8S9TQbg98FD+W3LOiHHkuiQ1idA
6OSRZNnqfuh78KDJfwsFVO/O49PA+Hc8ETfbJtIPUocquTWR3dA+sPOkmhoB
br79Z7dvZMHNvJ9NXKc+2LhNOjB+I+btJ+HeO50MKHnpfUbiCh1iS9MGPs0j
YCAPHp3vo4N2ZfOJzykMEBbSe3eLRgddl+OpQRZUyGxL8Q/60QFBGg9z4o5w
gbgiPzocTAGnX3dvXTfoglWFuSoP1bgwVrdsRvFnJxiWCrkymqkgOskbcew7
B1ZlXZiIYreBxOPYHjepPrgTYd39upgDVfuGzFYta4LrvRtkqg7TYa6kxdVn
/hxwL8iiLYmuBOF6OfqJXgJcFd2sRo5wIJby0T2WjwOMghKRrIoGqIoJ/2li
RECL6wBPdyMbdrLpXTsFm2BR2iZfeWMCpqyJaxmRbAgxL0m6a9UMU6zWG9WH
CfBvelBjr8GG7ZudNtiJtML629Zo/hECPj7mu13CGoBvXbKiT7LagLA3XieA
v89Ztic06vwAiM1a7n6+qAOizRoOn8X92mEW0Mjb2A/98/fHam6lgF9YxNXL
OwkY56g1f51kwUE5uyM/jvWA6dB7U+piArbUznN0uscE9vhY3mY2DS6MI17+
MjpEP8rOLhHrgYt7rrtX3W4FRTGq1rYYLsgv7Y8qrusGIaXqCr28Dth04/C7
XbxcmDloFTl3JQW6hsIhdpAKd8QqXV5lc0CQ+PUy+VAbLJhzNjJ+Jw3WmL2b
vHGJA808gVfD+mrB+0qzwdyruN9J1Qq/N3Hg9fVbN3uxHujYWCrbaVaDXa7F
mXCMQ0rNrh+WDhy4sT5Y/rdwDYjnntiz+jgBaa7LVDIB69baiTP+Gz/Binfe
N/ebEVCqFf+FthjfA/mx+QJB9XA9zOzbV0sCTN2kgiTb2KCnip5+SmmE62Ck
dtWOgEHdpjcLwthg9PTLcnOZZtghUyzBcSCg9gHPuXx1NliWOIuPM1pg8pKv
laM1AZ+nDL769Q+Ag5uj+kBXG3x+vUWN1P9vrm8/Kz8cAC37XTcSzTshtSn1
TGANHSpsp7WYB/shwVcr4ZYJDZo0/EY1VtGg4/PD1No8GtSrOedfnfcBnkYe
fR2VywULnY6FSVU0MFNxTKXxNcOL8rLj7CIOaKwI9fvC7YXYtMO/uModcHvn
/dFnvhzw1tWVyI6lwMe0GOfO091gPu/rLaEzHOBr7bPUJFqguXG+t9ZSOjwP
fRHbi3F2sp33/QOeA0aVYxsVLN5CnmvrWwWMZ+rat4m0Ng6MdzyWbE4pB3kL
vhcO5gTkr977/ONbDjzP16ESC95BaFp3laYtAVGfCu9YZnLAOWeRmWxWJQzU
0iuOnSfg+0ejBZ64j+ZxrK+bXKog5Uz+tgAPArRBpz7dggNMHb3OENNq+PaY
M1YdhPvoBqcCFTlwocfcJ066BobvlVW9SiYgcDr/ot0iDtAvzms9srEWBFSs
zecWEkDlYa1VleAA53L6lDSjGmaq9FevbyCgfO0K7WvLOZB5p0mmKOAJHIyh
h26vYcCibePDGlQmBKfGhaVpFADf13JvWSk29ElpurRtYsDQrgsGhi8+gJKn
zmvrz2yISd9aql1OhyiN1lPzBxrha5vA6l4tPO/cZxEm/DTQqbZcyKlsg+pL
YgLWHhyIua0Qz0yiwNnJfnruaSrYqywXffoU68Mj/xYvSS6kigjt7fd5DjGW
Pj2PTAlo+yE1k7CSC3rLm/wr3+WB8vzhclErAh5FXXUAPDfiKi02O23Ph8o7
P0Z+nCFgQVeovdEsLqz4srQnp7kALpoet850w3yr2nBx2QgH2vosf3ZFFMIK
Xs3ayxjP0kapyfoWDtA2mhknGxaDfMLz5PyHBIguK9TreIL1quUNhxNRAvM3
DSyhtBEgGzPEc98Jn2PkwfhP9RIoUBfyMMC4bNjxwPDCFBt2ab2tvj5TABFS
X7P1Whnw7oLvofeY/6c+qIcmR2RDuFlQn5kKCxI3+yacx/r/5qXyPL6BZyC2
qCVuu8gAaIwECpqHMmHtLE7EUdUSOODlYj7rCBtWUPTcMs4yYMfO3Lo1yytg
zVb+o0XzOPDL7G1aJ/ZZLS8mK847VON7nbQkN4wDoY9bfHdcooGS9EnFpsFG
WM97V911DReWXY5uInEWrXU5N+DzHH2xlOj+D5zRX5xnBWjakTgvadcxvrA9
H619aDNM4ly1SM6BxDnm9Kt7GGeUvqPqD85L9jb+wXlOeFMexhldlyj8g/Py
4IhxEmdPni8VKYbFiHpNPPE/cEZ/cc6vespL4szv/fIRxhklr77/B+eAb8Z/
cPa4vn4U44xq0/P/4Nz2hPMH59nMaUZSRDYKLmf9wdmrqPQPzl+ubX06a+AZ
St0vHE/iTBuZFiBxPhiffPiYagnqk0s7SeKc5SvpSuI8S7dZYe3yCrTg3W5j
EucWv73JJM6CluJaTg7VKD0dLSRx7nTyCiRxNn+9q71xsBEdDpbYS+J8Okjy
G6kbh8PFL2HdQCrnfdB/6Ab6f+gG+qsbXW9v3SZ1Izr3yzWsG2jpC/4/umHo
kiBI6sawmWgT1g3UVZSuROqG+vTjBlI36OKhBVg30P7FI+OkbtyYs9uM1A3z
48XvsG6g6xpBlaRuPHrQ4ELqRlZkWAjWDaRhmX+K1A1epS1/dGNTRKngBkY1
ElN+K07qxsMF6/eQulG9Uy7lZcATtHh9Qdh/6Ab6qxuR5Wn2lK34/5Ul29Pv
fUD2z4bFTAbZYLBzbhGpG91OT+5h3UClI2tFSd0IXd/RR+rGSCVLCusGKq55
yE/qRodLcgGpGzcoK+ywbiCvwBBFUje+rt0fSM7BvvUvPttqVqMdfifPkXPw
buuOX+QcHCrfwZ4WrkEl5T665BzsnaWzk5yDMVYiUngOorv5nwL+Yw6iv3MQ
+qeDyTkYphuXiOcg4s/MUf+POYj+zsFFis/syTn47d4jTTwHkbibqgU5Bx/+
nPxCzkH10RADPAeR71kHVXIOSvZp9ZNzUEGemYvnILo7/cOGnIOMh3P0yTl4
pvL0LTwHkfwNNEnOwfQ9e9PIOXi0OyUez0EU13P0DTkHv7anC5Nz8FPZokt4
DqJ1mnctyDnYwmdzhZyDL41eKA0qd6BDrHMD5BzcEf9ClZyDAuFRC/AcRMOs
Y0nkHJS0UD1DzsFdL+adxXMQbdy1J52cgy0nci6T/m3f8R5j7N/QtL7+D9K/
1TFip6nYv9WUPJ7E/g2dnvPq6n/4N/TXvym+FnS2xv4tOiB12k2kFd3m/ZQk
gPs1vXw6kPRvNx6YSWP/hlgd79aQ/q1LV/QO6d+eAesm9m8oZc9qY9K/cW70
1ZL+7a5/Rx72b+jcDoon6d+m3+6uI/1bY63ZeezfUJtc7rH/8G/or3+LFbv3
kPRvbcs/xWD/hpR+KqmR/k1nhXcS6d9a4m8kYv+GSoflakj/VtVudZf0b9f9
H+3D/g0dkK67RPq32js2iPRvMzJvrmL/hk4ETc3yx/7t8ewma9K/xWv5XcL+
DSXLViwn/Ztv8dwFZO6oqTQ7jnMHeuXJukfmjkFG2moyd3yP6+zBuQNVCfY9
/o/cgf7mjijZO5aixwdgocBBy4NLOtEFxlcvJZw7Ar4qpJK5Q2xougrnDnSi
IGA2mTvkJuEImTvUPO4vrY3sRgtiXx/5j9yB/uaO3IlhKpk7kCv3PM4diFqf
yyJzh/OGVQ/J3JF18pU5zh1owEaynMwdEasM0snccWjDB1ecO5Chik8emTuY
a5S+kblj4ecoB5w70A7bdA0yd4w+SeXZhnPHh6Q8R5w7kMmVpEgyd9g0DI+T
ucOs4goT5w4kw02hkLmj/cNxUzJ3mPy6Io9zB2qxuuFJ5o5fFlO9ZO7o+7WI
iXMHupZue4rMHZ/EI6XIvCzlFytim9eOWl+vLyDz8oMXT8zIvBy1lr8b52U0
oS2kTeblu1m7FMm8fH3Pz/M4LyMD3lut/5GX0f8jL6O/eTnn0PyvZF7WbVUS
wXkZuVxxcyDzstGR/UpkXu6zlnTBeRk9ibCcIPNyc9rFVDIv24do3sd5Gd1J
qYoi8/Kqz2+KyLycSRyMwnkZRYoYxJB5OZ7tKULm5VcbIRLnZcQj219C5uVB
6TprMi9fEIvZj/Myan3juYTMy2sK5sSSeTlgVc0GnJfRirWPH5B5ebx4ljSZ
l/l3TYjgvIy+a+vuJPNy9NmylWReFtPoaMJ5GU0oLwwk83LIjVW/yHeeUf81
H3ued6GK/VNAvvOkxN/oJ995shpUZ74ZU5GN2SiPNda3OfG/5cl3HuubCr2v
JHrQ6Ox9VuQ7DzEmZEe+83zR7+IkbehDsRou0eQ7Dze09Sf5zhP3/JN5VT4N
zZvh+0i+85w+//MR+c7zjNdvmfcEHVmc2s5LvvNc3Te8gnzn+SVaXfHZlIGC
M83X/cc7D/r7zrM0fbcs+c6jzp9o4buJivaK8zwm33lObvktSL7znDtpc/BG
UTcyBudH5DuPInWikXznudT040mIey+KeBRYTL7zVB38eZR855mtIrW3Ro2G
itepWJPvPO0s3+vkO09yqNIxLX06evml5S35zmMwylNKvvNYNT9pGNYlUHn7
mrvkO8/U1oNryHeeK8uuTS7hZ6D60ho78p0n3P8Wp+1zHyx9vDCjazELNIoO
3esRIIDvaSRtLqsLnI8u3Kv+jQIPrjxx0v6B80Cdhp6pNgvK+cIW9XrR4J1o
tOGlY3Twlm6tDw7uhuZj2rHFQY2w9NdF8D4/CApx7nT1jwTEKpob6cMbNIFm
llo//D/7oL/71PudaST34be6chvvg3Qjvu4i96neUjhE1pnUangf14k0tq2J
JuvstNvaS9YZoBtmjOtErw7rOZJ1DhukBdavGoD44mSbkJlOMIll2HHx/Qpk
NPS8x/fx4ge13zvVOiG/Y1PdSV0CxCpLDlkz6WBncyI60o4BSmI8ir0rCWCc
qibWinXBxeu7GuuGqNAedyLRjsuB/PmRHd2mVDC9Y1XAreoE/Y3pJZ3ruXDF
ZDiVrVoJph9PZoYkEsDqG1z3PpgD32UjT7D7X8O1r8vLfHkZ4Jc/a73FVcx/
pk+jHJ0OOvqpv138GZC6cFZe5S86fK6/25n8igZipb/Fz4UxYY1JWl/5MB0G
S8VUxxZQ4M77sqh7Sygw23hM9YosF1ImdjbvWM+E7YF3tZXU6HDrhYCeB/7+
MFfaS6KNDqkGd9uKmxgwOrlV7vYLOty7p8jDfEcFGZ2ffI9i2kHRQw4JBXLB
yV3lSZotA7L078164oJ9uXdXW8dtOrDUFK6wLnZD7+StL8oF5XD2kZ/j4OEh
qFnCu3jvJQLcCaooZWEZoGfZm4axDiiefzufXN/g4+XTvbAM7dlksJ5cFzj1
weiJEQcW3VVLThNoQjEe0W+L0uhQpsUo0bo2ACoOiTXeDymo7Wj/sheydNhe
2ZiO0vpBKNOzs8+fivSn97ys+YbxObh+9MHafvgV9uXt7rIe5LjuaWdPPh1e
nQnWyb/UB3Zf1Hw6XjYj7y9SX5x3c0G2cd40A593RH3Bcnxe5FUu/Zo87w1J
3zoSt8PiHoYYN9SW3Kb9H7ihv7jtdYhNa2+ggtMiqZjlTu2oj2W64m0IFyzy
guvJPrJTdsxy9Wegqo4FuWQfTV8qtpM80eC6lGKeoERL42KSJ7JHPQzU6DT4
MsaO7DZjopV8pqrbZhNwWdBrJ9lfdae6UNxfNKR4TI3s77/4jP4ffEb/Dz6j
v3zWjfG6/vY3DbTnXvFUUWGi9evnJdYvwX7gwGJzBVE6uO4/N2ovxkSvXL/7
8awmIOlYS43ymk7wkaKesLzbjWwrhWgS+H5tZcwwyXuh2V7xHt8L5Po8PZm8
F//iP/rL/wcbXlvNvlwBsb/l5ayeE2jttiObf4dzYItvo8WhF/0w84orP+FN
AYnufF45rPNBbDFLsh7ZVcNcXA+Ux2y9RdZTX3kucyyLAr5RXjv62F0QURI9
ukOQCxFZWZbk/io/9Tfj/UE2ok2O3F/8GoM7L5cCoRatWXGnumCTaUNf4mYu
OO7ZEVmzgQGNkrrHdTFPQ9wj1LIb/k9/4W9/eRJdf+a9o0PTCf/2mQsVAOJF
tC4VLjQHz5sg10eMpoR4L1age75aHeT60sV6+gdLeoGvOvAOq6ERzXEZr75T
zYWZX+5mQie7Ye7E/C1N0q3IP/LU44zu/1MP+lvPMlNvCqkDN+syVmAdQPWb
cuikDvC9l2ST51pj1VuIz4UeLhPvIc918PlmWxLPq9EPhTCeyGSSj5/E069U
u8F3XhekmievD3lFRRcoBQ4PfnIgpVb0FKlLNCOnIqxLaNFFugypS9Teroek
DixubBbEOoBQ6kwjqQOS9ZHpJP4reIL3Y/yRq1nrEIm/puy15qW+DGidOCx+
5jaBTJY6pw8a06EkzqFj6yMKJPjNlNk97UJHV6fwpa7iQnrsgwbye65fngT+
Hmq3slPJ720LJpP30JjwNYhoSSigofDjr7M/R9FhQXhRxhFaFwyIamu6N2B/
ksCjehn7ENlNP4Km9jBAS9abSHIi0L2TuVOd+J5y1ngPOvINAGPsXUXeyS44
3dMTa4Dvi2u+nCJ/5Ft4vXdk3oVOAn5v2ZGzIxDnuq5ygpxT95ZdK9oHb8Al
oUKEnFOnGiJdSd1LiO3V2V5QjqaZA2dI3atcPuRk8ZYFF7/69lvr0pDBm23P
j3JpoGTVp9c2QgVfZmmMsXsbmt0e6D6riPvvetDfeqhZUvJkPXWGjotxPei1
TOhjsh7xzs8V0a8oYJcMV89pUEBR2aiwbIzzb92Av7qxyj34Lfn9L9u+IPw9
ynn5K5/8/jp1T+mG4S6Qe1j0zXgZFSqNGa0bRnD+15A/pfecAvdmB5a0i1Lg
wvYE28TfnH/zE/7yU03B1tGikgr2LfJ6ziItEDW1YwNLeRBM1FNqFwb3wsrb
Gxqb+WuR83rtbbGGgzBRMFFM/m5aTznv4WVU5LYsupn83Yk4pZ5NUgPQH2r2
UJLVCduPeLsmYRyWlA66SZ2mQPmHtpYVdRQYmXXs6Brsf9wap+jnu+kgf+DH
koF8BrT8Tvt++hMdLvL43iH7HqaR1IP7DnOjeKfJvguKeXa1BjMho2dHt0I4
HaU7x5ocXk//9z7o7z7MhIEZx2NUKIvaKRRyoRM1Zy52eIfzQhKRcMl/CQ0s
x7Y0GU0w0S371td7hAlIi2xfeOB2F7SdXqCieYeKTm/WN09ic/7Nc/jLc/7o
ZN+6+wguembMkekl4IOsVXrGbQ4E/BA1IHnSf2q7P+YJ0C2SvEiebIg8udy9
gQa3dxcSC12ZSH/2EF/gFB0Ur306WtnQDweLt3qKilDQsNG+K174XmtV9pes
8S4FjzIHkR98DNTk7x9Y78eBiybSh8nv52Q7BuHvoSFc5jL5/b/0H/7qf8kJ
aRfyvOvl/erxeWG8ObyMPC9FSkiIPO8z06ub8Hmh8evtU+R5VZMy35K/K+PX
KYh/F+J2fQglf5d6+OYysv4TP8dYuH6QEZ3gJesvjwiWZk1gffcJcEu/1glq
kyXmL4y4sJl558iADxXeHNNxGD3VAabjh53XXeBCno982aL7VMhbLFcGqh0Q
/GB4t5oTF37FsUXeTBKQZTr6MtWHQBUpJ0sWTdBhyendOG7Q4VqPPO/FcAa6
wdrspz9Kh7He49Xj++iwa7VH5/HVTGS50NbmF/bxTosCKSQPz9dde4l5iI50
nXImefij2cWZ5GFzsTwH8xAlu48ZkTwMvSp9nuyjg3+oOO4jWsvbFUH2cVWO
12+SP6se5Yli/sAb9zw7kj8L517n0QwlQPzhwye88h9gw1676AFH7Htazm64
/KMfFjyI0Iyzz4ZtN2Por1X6wfOdc1HVOAHtFwpzNgSXwMpagYfcaA4sfvba
WeRNP7AMFmdV214HC8bxzif+/WCdO+NXlUSF8U9vto9UdSDzY4WcsIPcf/sr
+OuvLs63m+ObNAiLQpTfsc9VwqXVJVkbXvTCqyeeZbxebJA3vyROcy9Cum6U
ctXTTPhddO+H5KVu0Bpvb3HaU4sUOGIbz3YOwtVZlcaQQIUddD5fc98G5HRb
b+/DKrx+d7EY2Zcwq7d5uC+gpGFXSvZF4bGKL9kXx2efZ+O+gLbFuutkXzZ5
2X8i++IXC024L6A/Hu1A9sXiyAafL/cI2F46sFd4KwNeXHVZegrX/3m3JCL9
IUdPPQf7Q3BzLxUj/eFNx85LpA6PRarTsA7DzHOPF6QO3xs/9EVgHwteT6kf
yTpIh0+lkdse4rwSoPS5idQH1TjFQawPYDLf4BCpD7Pu+sWIbMD+R8hxke2l
ApDgn33IgsWFHRMtucfW9sI60S9KT1qcwWDQ4H6z+hBkdU3Lknx+PP3FAvMZ
9XxcYk3y2Wlo9mGSzz4vCy5gPqMRfupFks8rVgfMFTjaB9p1XjOdu1kozDU4
O3UpAXZRWQqJs6ngPvqLfyueU5J9BlUvRLkw7Xg15cVROhwQJcaF5jKRe1uD
ZjTGk1mSPL4onwnG+1CR3IE4cDtnOqNnx4ZndXcekj7Zqa/1I/bJoDl2oYj0
yfZmv8ZInzzpI5SPfTIoPR+jkD65zWxzIjlnlYIoXXjOghDdOoucs9sv0rVI
/zx8BtKwf8a6cm6I9M91hY8MST8zaBnngv0MnFdm1ZJ+JkdFq4bU//vh6lys
/3D1wlxFUv+Phm8p2VJBhQOS5yWuXME+OdW09XgY9kuQ+ZH0k6/zL5/CfhLy
b33qJf3kdKZlO+lPjtjfmoX9CcRTl18g/UmUnGMWOfcz1mluwnMfxK1L1Mm5
nzp1JerTKA2CuoXLm/SYUKeGcrcI4lx/OU7D7joNeC7/IranM+EbL7/uh0UE
5v33TK4gHYTyj4yPi9aDmEuQtykfF9Yxzm8V7CFxrT8rYlkFkvPvntv9Fefu
2338tgsZoON28+OkGwGSPmKJE9hPM8yOWAdR2GA25o2CV3XAKhcB/0M3aXBq
r65t+q4e+FR/YPfl682gcchr0wcuF/wkVIx6F3aBt4Bexs92KlQL2NNe47ns
81K3I7SECW7r+FxrVF+D2MXzX8TXsUFKYaz0fAELTsWsqyrblA+9Ql3EdrsB
SGwWfx+9tB94zs59vmrOU1i2c4/G0RUDIN2/+M1lVwKE7182OS/AgK+iW13z
uXTY816lNUx5ANS7aFJpXd3g3JejNCuLBjt3JQ4tkeuA9BWVlSHhPUCdf39g
H4cDd/e0KLPXdcKrl/syHTO7oXrF7AMXcJ1tsTIHTdMZECWTL01Pp6McuTdX
Q8Uwb3vV+CfbCAhvUSyKDCZQkdZcN+UFBLj4fIt2YhGY55c3GPoTKG265qAH
LwEHeQu5832pED2vZjDVvhOW7vru8EKRC5dk22qUDXogaJWzyZmeNshc57Tp
qA72w19au/SVMN+qTa3j/FrA8ecE7PfkQg9FgEPuM0m59hXvgzptrO3JfYz8
f4++eE+F5V4Rm4zUOpDv9ufmcrZc+Bi7+vcDPSrkMHYYXRnoQOc66EVWFly4
fy3/3mAXA5orWfpWqyvA//GPkOJcNlyjlrFv1TNBe6lV34TWK5gr1/Ryajkb
OJrhYZf0umGRzfbbD1LbkKRhM/tdLP5dMc0PZP0eMmXncP1ouYSyDFm/yEzq
V8PL3fBK4cp6zs12xLrX7zdp9n90AP7qwL/0HP7qOR3i16nF4Dwzls3Ld4wB
20Ym19q60eG5hxwvqeeTp3rUOOcq0Y4S/gxSz5VWD64mv1+SdZMff4+Wu7qu
Jr+3rGw/KmjKhFtHnvPkbMoFXy1xTUoKG6YYygkVjgxYGWX6xibmJVQ/94lf
sJ8D9VprZ2bkueA12L2lQeo+utOSqHzBAutyvJGTpwwX5r6uzu/yTUff5v22
c7AnYOUJLyeLtVgvPUt/b5ufgdrKq+6X4Fx1m49tvnEJF5zZcEWp+CH6NfPo
mI8fAacXCbxfiv3mqlCPvK1uj5B3zJuYoEQC1Fdkxb/r4cAR8+arrWNZyIBF
YzlVEXCJ1vtqHPtxbQ2/tld2j9G4/Q7ZBmEGKPgWZh/W5ICVzvHSU5KP0NmG
2zt0UhggKr7UIfkCG6ZX9dlKSt9HOT0PThx6wIRrBao3DBYNQPsz/ySB2kRU
+5gz5bG5H+SXqpuSfphvf10T9sPoxcyHU6Qfnifds3gP1pejjOpem7t0GM4t
Cs52xj7TTvs7OR/tJx2H8XyE6aR6aXI+Rq7Mek36lrYLKVXYt6A+Lc9dpG9x
cNbYli9IhVOq4V7dkV3walo6tXwuF5YN7S++v48CJp8FtUxcKPD29/fq9bO4
UGk13DrRTIH7Iaorit92odAKJ8J2ARee+r/Y/SSIBS7Wi+4G+GbAYZWbV96l
D0DrkSNVg0wmrGIEi8nkPQb22wca8xXYQNjGHbPtZcDFM7c+lru8gKm0W9mu
U2wQVRIqPvGNAGfHgcKt+0tASjtDfTqKA82Xu0N+b+ICWn0k9een+2hNwfRz
EWsCxm1/cqPxPdu7R39X7800xF3imGt0koD5X94dMl7PhYdDp3gfwgM0/+rm
4NvnsG88YZF/egXWe2v63BfdGcj7kfkXTQ/cd4P92jvnc2HeWRGJsdhM5LJ7
5NRMCAEJ57L9vuJ8UCpj03lFJwvJXYrfLJdDQKVmyBDrPQfWLgvvkbB5jHIn
pvTC+wnszzxO6Hpx4KyewZKe0iy0ukbhVZ8hA7wOatlsG2CDPWMkvMwjA3U2
RkoJLsLzkj9T+mj9AAgNHG2NaUlClws3y7tYsGC6oH8XiedoIt+ZIN8M1H4j
w43E0+Q7XyJ5LyCoDvC9QKHHbyeQ90LIZO0rEreV9yBNYX8Jaj3nqEXituGZ
U+ClYQKCJJMrnJuegG/XaEHcG8zj9Ppgcv2Bn8AGp6YnaKZtczG5XmyZ8SjA
hYDBTJ05Br3PkbCKueuPxdj3Xm7PJNcDFUef4XWw27/ThVx36dr6aPF7NgTk
SFdXvaNg3M/Svzn2wjTF8oPWFBVOcIVdjp5shQml7PDOQS5ojOe+r9PphyNh
m/vktqWhUS0P7/0T/eDB2az7WY6AtWq891+zXqC8/I1rQzW44OblrEeui86+
MvaK9QLerb4gSa7P5uf7SO5vmO19Gu+Pqu9oRpD7V0TaTvIHMSD07FHP+AwC
Pd6yseT5Zvq/5yD6OweP3fqhvONGN3weC/jqFtGMAl82/o5ZOQh5R9c+ZQp0
w+YztOui3Cb0IqMqIuXYIKDjfNnGQIPspgATBtECEtyDkQGFHNB12V2ucAP7
uc7p1UF+n6Bj3TIurYkDwb9lqp0e0OFn027+oNXV8MPV/n4Wvke/Hot4Ld/U
DU/DctQ3BLWg38PXsn/NGQSfkwPZBlsH4EilGPvR805IT8mIq9LFPNfb1SqC
5+b4RTeW/f1OaGyVY4rvJSCP+XttxrwmiM7bnyDKQ4fjLK7YxGs8x20txntf
tkCVxKiE13YaUA9J1dhgvlrqvVdfsnsAvmw196083wkHLsiu09Ej4F1OaNxd
hQ7QmOzybOH2QM2JQduGOg6cphud/3J5AAK/shZoRHfArqMtPWUGBHjsVRBN
jRiAefGFGWdXdoAlz3Su0EEC0mvKJgZSqCD5pWPrILML1mzZXd36iQPrPy6d
LZw6AHXzixW5fe04hx+jrTAigLnyTnNSzwD8Xr99ybsPbTDaxB63P0JAxdeb
Z5N52KC1WYSZJdsGXWv543/j9W8mU189nWkwmrDy0q43LbBIaJFNZzIHnp3e
ENC/iw0y91We839uAfclt6XFThAQew7C5wyzobbU8Nl2aIQb+e5pMng9XDbE
aD2dgBfRh7Jc3T/C5vVZFDsBXOfdnTYWA0yo1r+mW3uiEI7dP2GiJMyGeZVD
+8l1Xn7+IryOFNHIGXK9e1ezH/m77+1PNOHfRfpDeyTJ3931uVWKdyEbircs
CxPltiIJxcGE38ewD6ldHEHW80xFKgnXg+acrbtP1nNLsUeHm8eFr6wVxu5v
HqOTwXpzb0fSYX7YY4I8r5uJazw+L7Io7bT/c14FPX4STwkkJ4XxRLccBAgS
T5r5oRVkX3ISq2NwX9B204w8si/PWhQ7SJxT+eu+VHxoQ1rrvSdJnG+sMWWQ
/boR+2YF7hdqy/rRTPaL1qt7gez7hxzTGfXoDqTfd7KP7LtM/LVokie88ZOB
mCdIvN3fiuRJU0eKFsmrquXsEMwrdEj3hBjJK6mKvU0kby3oKZOYt0hCrIVO
8pbXQuEbyU+3QRkFzE9kY72vnORnvmjJc5L/0wKPKzH/0epAtWSS//XmwbNJ
nrvMpKRgnqP4/viVJM/Xybh9cNw0AE/PBNuoVHZCgtNxdBx/Hz34er9VTzPs
Cbz22tGTBnXKYesaKjjglDU732qkDS559R5g0Xrhe2qM5pFaDlzeILVie24X
bPvo9nZ3FRWG+OQE8ho44Hn1wXTZiwHYXnQgRCW4HU6VVNWHHCKANc4n+Gaw
B+RWH1eXsMN+O3Bx2tNyDgi/MW1uucaGJIWdBwVymyHs+bpNHqYE1LJE9OOH
ORCbb7T1RH4FHK198VROhoCY6shgs9V0GEkUuHWC2QQf1D40Ct7kwJdfwkd2
4pwQLhlUmB5eCm+S98es3cGGtK4v2xZIsMDQMWHue9Xn6N6eszK2YwOw7qWt
yM8tbGBWSecl7W9FH0zVXM8fJ8B246ihYDgbkkXXe9450YwSVS/tS8T1zPDd
Pjo/YQDETg7f7p1oRwTH6lUR5omhNR/P9TcDMJI9XWZo2o5CjkZrHTQmoC6H
YZE8NACzH/Qp3rjRhspDeLT1jxJw9qg+b2lGL8SKp21uTmlHtfE9A6ZFHFAQ
VT6VcmYA5qdpyqt87ECb2ludX+4n4IzQfqMbOC/req8TCj/fgbqEa5hBhgTk
cM9svvuxExYKHjDUjepGlDcitvEY/+9HT13n1RiAkh8njc39OhHB+1i8CfOn
banjEY19AyB7s7zZ16gTWTJ/Kvdjvu0rWriV8aIV/PdqmEVW9CE4tCR6ezUH
gJ/BzVIcAKvAwcWbnnQiSZuIXBbmSfZ5jgn/yybQFVQ74dtIQ9bnAp0kEQcM
vcZONcoMwEP1zBUZ9Z0wnLrFTRx/D8030/s34n0uKJboN+NcYi9bOBevyz+a
PX5YhQMJye2nZX5+QqvmuCy5Sd4v45B9ZN+jHy3Txn1HC9wP/+l7uVqCLbm/
80a5ZXh/pBUq5Uzu/7MmoYrks/uA3HXMZ/QzoLiQ5LP0gopU8nd3prA/4t9F
PhU/88nfLTv1wqh7/QCYcztjz/Z2glHL57wKnf9/3eyfdfR3/Sy97U+dMQmu
JrhOsF8psJSs89xp3d2k/vglhr30ePMYzj1/IUDqj/jpPqIDBqHCeq54pfRj
dNMKVgriXD6nTcdMiz0I624rDi7wawOeTputhpXtEPwpbSfJT4Nt/WcrVJ8D
dV+CLMnPRxbn9Pers4DxrVfWuTYTgjaGS+7vH8B6HzqxI/cTJE5n/O4ppMPZ
UxXl2dkcaJVbIXa7swncvWNNDKk0+HjgltlwHsaxsuxi+2grvF86pan4sQ+U
1A7EPCzhQMFH7ex3m9vhmp6xeTmrF/pRrEcp1ge/lk43/pNsqJTWcsqMb4Fv
0q4puw4Q8PZBuqK8IRtYMRKZm1tbQOOgvg0T62fB7tfXn+2jgu4hAb7VdhRo
YQbE337HgSWuRxZky7EhUedrsb9FKyx3qEgKM8G544xEbuzMABjssBQY39kG
Mf66F1KxPrCNBaTu4/WlcV2Ox060QefV0d7XmJ/8Sm6TV1eyoTXz11zrbe1g
cPL6ZSuCDk3L0i5rV/XDj5CsBIHiPsx3hczy7j5Ybh+RSe6vvClQAe+PUstK
/uw/XKE9n6wn5bVDNa4HnVVVTCTrCVMLmlirxoaL+U8lcta0on7ZzKlruL/r
HBzfvBdlQxGHz9TySSt6MD537gOsA34fy3Zf52cDZUmo/ObpVnQt5tznJXid
/VFhP4kDR/qYLMYBubSzkkkcKIKPXEg82XUiARhPtPK2YBKJ5z2rzfIkntrf
X7/FeKJai2eWJJ53eatzyL58CojVw31BFX3tV8m+/KuP6G8fy0JYImTfHzzh
Ncd9R7w1pifIvl9d/2GU5EkI13hObyEdLTzi84bkSQFEiCnT62Fu1H05Rw86
JO79WF/4lAOPzwrJZnHbYH1GGYe2vA8MPxwJW4F/N7iqdq+SUzNcmIA5089p
sC3zwnPjfA5o1d3wSDnCBmeb0eH+ghbQfR1//zLWw3UZ4NvS3gWCOubntjVQ
oS72taEtxiFMuOxyiBQbGMYq+728WsG1TsSzB+vtQ/psjeH5bBhWLu4L4bZC
1dqsDCbG83rvRt5ds3uBurb386BlB/TFDqy4XsoBL4vQ5ou4vxFhSKvtcBvS
Lj1uFadPwKOM/olLS9igPuwgfW64DT2bfzVyySwCnB6eicjF87HMS5fPfXMv
On9+rK1yGQ02hlS4npVnQ8REZPTBg62oITVzUxv2G/GGoi1Oq3vh9rtt43za
HWjCnxLCfcWB2uQa900WbBC86eEjE9KCZNxcXz3FOhy854KWIsbBll43WFDY
guSUXR2DMQ5vk29pCO9jwwuB1T0HWS0ozy46Mx/zUIpw2fogtR0W1od+dAzr
RR8jfETqcY4IsLqMykca4adPo9CilXTU4fP1XlcuB/Qa63/+lmSD9Y9fZU8T
2tHB2t/EPHzvba3mXPTGeOq77ji3Qa4TzdugZ3tTgQ4FPL94Z/D3c7Mqs/H3
UHFnLv0/voe/3/8LH/iLj6zBb1W1xWxwV585cnB3F8TFHTOY6qfBzN6Ab7zd
AxClw53cSqFA7dPtqnIRNPhc3+hM3sefcs8y8X1EFrm708n72PI92OzwSxbU
rLDb+VyLDnuCj+1umeiD2jmhEuK2/XCAu5sld5WGNps0cr1z+mBv2PIt5Pq3
se1UvA5nbq3pI9f/dR/h731kLeTVIe8jTX7LGnwf4bzy+hHyPka1JG0k9eSH
kpkB1hMUJ3qe+A89QX/15KTyfRth7J+vOO6Mybdqgy2/D7mQf8c1GhhaOmcd
Gzzf1laNBLWiDopW2BXsP0VmrZFywn52V3tA1XQVXh+Jey2Hc/S6EaX8Z7PZ
kFPH83vvvDbE698duxd/v2mco+DAy4bGDk3R4xJtsMhCesgC822q+E7DWbw+
rfdQX1miDTX9eqpsi9eH1vwM+zLWDqsum/ZeO9ALnR+/3w4r44BGjK1F7uke
sFSVXxC7vBN+PTUMjcTrkSOtewJw/WVbFXq0TreBxILPxkraBKTdnDC4uYYN
tw612EmHt6LOzF/aBbie6zMvZxP43nUAzaUW++30R8GNBMbNy1PwXt9qNkhl
b7j/6Fg7dBSPzDQ006G47fbxLwJsyHp9S+ISqxUW3hH7Mgef98tTndOqc9gQ
pL/rkFdEG2IHbTh6V4EA5XNRmkYYZ3dP3ZNZaa3wTeV2iTHe/4vH1E3LvV0Q
8SzKr+VoN7LN+rGxEfvMhLeSz5yL28DcVyQsQ70PFW9bKJaM77vn1uFIqwMs
OHZD2V5hUTy43Rh/XIV9+ZZfQcEnsM/3HTmWffEdE/Z/9bK9OEEH2tXFnn4e
BFxg9u+U92DAjQXq7zqc6LAw2ih6VIYLEgfHrbZSMsBolbTLThsCAmi/5xau
48IVrXvsoLBMcLUa9h1wxPnirNh7IREuBA+qwnf3LPC2/iU/5kmA+y2lgm4+
nO/r9jvfC8kGFzXHu3rh2If0pr1ZwuGAzTxPLfb9pzDwsDUiKI8Ay/Lt/WlY
R6fO6j+LVM2B6l12VkuGCBgRLFEuceJA4hF/q+sLckAqOdOQdowBFmiOmxeV
DR57GHZVrY8h9MpqbbvlTPA/tdPmYzv2+TUSdjb56TBz8snVZ4dYkHuG58zC
bUxIiZw/08H/EpUuOPu2PAfnurLdXppKDKi8FRih+O45Yr5/1BDlz4Ed8wc8
SHy8NiupYXzQVIHQH3wM7keofnOlgXa9gLx1BRNpamgXaH+lQ4Pehnfd1gTo
Bl2eWKibAxKR5278WsuFT6wprSltJui1qG7M2ZaPPK3vOnVksmFpzPS30Lw+
OLyxO6pShgWeb0706M0joGufjlzPChpIK2mu0/rGRN+sNTTS5xPAof8s/GZB
hXmcjeWDbzrBv22R/oA09lVzogl3rFvyo2PSm78y4HFBwbrkbDrsGrhZLphP
hR0B024nqOVATYj3nOs7BMI3A+jiB5nw4uMmFnyiI6OK2EU+m+mQWRfhbI/9
43PPy8dU4hmIbtRAe5tEhy9yUhrHmqigotYRP8unHe2ogmGlYC6spP1Tz27u
n3rQi//Vs3r4rVXTfCrwLp663rmiCxmv1rlP4PX5kU9KcgupUNI41FO6sR1M
/DgJXfe58Iy6nxu0G+N5OrjwK4eJCJ+vr/ZgPM3Swx4fiKSB5ey9l9kFTCRY
RBixBugQOvPJmyLOgJKA81qx3wk4dMYsZZs+HXT7D8teTGOArqaM4afbeM7d
23HgEz7XnWePGp4606His7yeo2cL3NIoVLg8w4YRls8ffO748LpjfFDhqYg/
+HT4esXVlDNhwxttxo9AjM8u4Sj6AA34wvOqFnVSYc+CT3PYom3I+ZsJbGrk
gr2ll9L0WwoY+SUySzZSYN11etehbxy4Hu2YLlhOgZCDdx7vVqWgWFmFcxJj
HPgoduMSRYkCaa+q78VVUeDkiDW74QsHVp1TPj63lgKW8T5u74gu8HerSpqe
zYWHK/wjK45RwIf35iufDxToEOSz+83mQLIMz4WBy3TIzb+6VXMFExoOZm77
VE4HtkncCndvOtwU0w6VEWKiktfntiS9p0OypYpDgg4dqtW8l/auY6KHPeoV
qmw6MOy3RXjYUOFWaY08Q6kTyYzQW8Z0uCAlu7RuS1QfnLky8/HEZhbq8Mh/
+VWIgAVvn//BwWa6lsQBBuSP/8FB1KZ55tc97Cv7LtyT3cKCIwGmB0Tw94n6
d2ZSvGgQml3+wxgxoVzphtnzL3QwfDbUK3ubBrpxX1MvFjJhelQ8NfMzHb6/
Os7QjqaC9jslxTc7O2CX78vvUxe5ICZ1bgdlmAnfdji+LM2nI4VSQ31/PxrQ
vKeFhZfR4Ylyxq9JVSYKDs3tj/yJ+fBdT1D7IgVY0/6pneUUtNMrfc0EgwNP
d+7mqz9KgWz1NNO2jxQURis+eB/j+WiX5aEnllRQXJ0aJrG9E4aG8iztdLlQ
XqAQeTmNCqNI88b6mg4Ubq/0rceQC1s63he+DKeCjnqn88enHegJT9G5vuNc
2DGyQibJjgrLJoXvPhWpRepGsnmc1UNw5NKuVDL/H77WlzBPrBHZClFcBXMH
wVicw2eD53a6JC3mCNaBhaPrFygKEHDzf+cy/OdcYBD2z7nyPD6UlNgTsFX6
Soz0EQY8XdF26Aa+743SAz+PtjLhxLV+Yzs3Ohg5hb05yKTBdg+e/jDTblDh
Si2p73NH7hvTrPWfD0HRreTfjYJUaGHHlngbd8HOx466uaJcMP9Ur8Pw7oOM
C2Oeb7eyYESqVsh2OQGVx1v51t+ngqVkvoRgZQdM7HodLHSQC3Vt/+Cg+A8O
sID3HxzS3w+etU4jYGb24hwartN176aSBkc60P+3XvPPOjr3v3XnxGJ76ygm
RPW1X+c7ng689DS5Y15sWPuJ4hf7iAEi2VNlPleyYb3D48GP2zhgn62Sd0CR
C18Gvu6y3RmLvh0w4/c8hef1vKj7n+W4oJrdPq2/OB7t9c96M+ZAwGlWoQVF
gguUsIeL01YkItux8yKrXAngkRXUtVrGhVLplWs4+sload8z+oFbBKxIaXAw
mOGARaH0NNcxFb2vKnb9eZ8A/ZtQJNfNgTeO+R/y3dJQgdxanqkmPK9jT+co
JHNA+u7Uu29b0lCK79bFMRsZ8Kze6br+eg6Mf7823b8zET08/5Nf7gMDyt69
TVisyQbqRCblZlYE2lD+3TOeYMIil7k69p39kPaEcjmnIBRp2X9OFj7dD0nJ
a3/ISzDgR8OOyohxArntv3iVi3UvWU21dvgdBVTztnn8oHWhbxkVddpzudBo
InpvywkqZAS8feCnWQt+Ej2eQWuGYOB/90v9n/uF9P53vx74yMj259PhQkhS
sMokAyXzV4y8fUyHmG/3ur8JU8EiP+Tmh7AuCLfX/GqL9/9se/M9zxQF6kzV
xVzCu6D6WMZV54VcOPPYJzaQoEBT4GW9PbFdqDIreSJGGM/BKwOXq6upYO0n
oEU3bEeX2k0qLKO5oC18O0AL6/wFmQWx9flMpDPG2rqTQ4dswURhK7yec5Nw
ZOQz4Sm1cOksvK51/ehnCicCPNWRjfpHFto+f5tWxIUBmDk/UyHP0w/LYiU7
R9poqECENnvnbBq83vK2ZPdJfB9vVJVuzO6Et5u1597exIWhT+IeDgV9OKeo
iO+RZaHjq9IlXfkJ2PFNU1/+RR8MTOSWjMqwkKSXa1LdXAIG/ld/te+f+iH4
f/VvTW241fKJBXLbggbdV9DhkqGM5cAsGuh4zZ60xnOhOed8ac52CtzrmdM+
jvVfev/Kq85GDMj8EjDPI7QBPQuwjDTTYcOBD3daUrdxsQ8QfmLkG4MildyO
N5oT8KB2UVq6HgsKE14/CKu5j5rnMxaE9Q2ATdPKMeMzDNhy7c1UfdMzNCEV
d37IkgO8iuW7VtdQ4OXSl9nCcymIKlnvJPeLAxPXByUXpNFBKP6Dxl0eJhhx
f4bOwf1GxuPLOXUEdKY/ruRLy4Fva7wLVZs5kDKUP9yF19tbXosmJOQgbX3p
Tfvx+t1z517TsM9Ryxh94bg7B3W6qw9NY5/Duii0Of0BAS4GNWvUfj9H0eX3
2clDHBBKDDp8Fa8v6zoz5syTB8f9aNEv8HrLlX/wkX36Bx8k2fcPPntOdsYK
mmM8zoqH7v3VDeMrj51cXNAD+jmevy3jB4H2M/wq/VAdGFf4zzcnusFbovQV
6zABIc+KaakfciFf/NvhfOxfky0mss/gObXDfdEPbmwruiV+ej6bzYVae2Nh
9RIGeOTtu7buJoEYhnYPgkXp8Ewvan3PCQbAWxFRzyYCfXG4+EBCEfuq//mr
xH/8FfL9n786ZJX3lGLTD4ISfsOrD9Eg75mC0dQczNcLcdyDi7vhOFrCc7+v
CWmHW49vMxmE6kOhV20XcsDppfPqRybt4FhjHbfVmwaS9n7C5SdYECRg4/N9
y33okPyWlN84AIUzApy6ESZMygoV9/c8RQmqwqZzcV6dP+MtssycCuvfqo+e
/NCJbnUIlMmu58JVNbPzhW8H4abmz7pex0pghOfF7JbvBeX31BXqviy48X7U
LiTuARy7YrV3+xOcS3edSxtd1YLuNV+KilrJRZr11KLL+D6ca2EnxX+mQkyR
6FPK2kbQFI+s5M0YhFunLxRG0llgscjpiJUkHTY0p0k3lPTBF8uv09+3c4EZ
lh/VNhYIK5Y/veCH8877S+cMRDGfv3vwqdx6HwibVP2+L7IiIPVanEsCvn9m
x1ztg/OCYeJsNlPiLNZPu9QcVUnsdzZl0j+234Egs/YfWlfwffzNSpmN9TnI
59FnK5kw8KinpCzG/k6Ksfuy3jQHTiw8v39G9S5ke7jte/iYgDfpS5+bt3Pg
cNzMpY6FEbBca9WlbX0ErB3zmCgJ44Bby+lN7zvvwrhcjkczMGCNrrDCMz4O
LDppbMjfEQIPfJsNno8zoLX1ku2GWWzQsz28PL3hJnyt3RvquJEFK/x3Wl+J
7Ien8al9jJmbsFiSukAypx/meL5YcLKWCmNJUfFVki1I+ntob+XWQdAcfqPp
/hr7QoODW3J2U1DAQYWuz6McODa2cU1JTR/kMfd6h0qxkNJnsWBjPgJaWaN3
eK5RQPthkZxGCQV6KSPvzxIcyMk4EGM8RgP7Q5WvrT2YcLPFTz2qhQ7bvmhl
vP9Og81XT/k9dGaix4mHZTa10eEdf86oEvQBsTAucPQAC62v9PzgQP5d0KX5
qTGyNHjKSbyrMslE6/y6v56bosPe89saK/dgHz7uUK85gP3vpBvvaZwTf80Y
O7S+pEJz7Mt3P452gJKJme1lay5oGsaflKFjnuT2Wc8Ka0NFzIaTewu5APvk
QyMe0eDggrsh8Aj7sdN1RaMMOqxrKflxP5wCZ5H/74WRFPQx5LnW1AAHFFoH
lpI4hK+wIXGAcsq1UBIH9ni9Hfm7/pV8n/DvIrNurjX5u/c8nIgXXAqIRNQd
VS94j3zMFmka3hoC55Mbbi05Q4WnzMWp6083IHcjZYv21kGIP7nhQuLePuDs
t+ZKG7BgaM2WA1cxDo+0i4K982nAmxEwXpXGhMijficMaXTYMbnJ23M1AS8q
Gjc8y2UAV585NhRGh4LjLxPvBTAhKEheRQjjZRm6/8fKYhoIl3mtFPnEAMOI
ILMt1wl4Mue+6pK5dHh01bvnFT6vqv5mpRPjr2BPQXz9qsEhqDksvFNgvBeu
rnXYLefAQluG7/bcWUKAxeroIwfk8Jw6LFaZbtQF52WFrnoIcaHvtIr5H5wP
rT2BcYbUfDNzEufg5BIHss743GBlXCfq/h7/naxT6Fb4ZYVDBPBnPa91jca+
6cxmTrQ7HSISMy8Pb2TC+Uzl8FONsUB7tnF/Vwcbfubmabw5zIDmNlONaYc0
ODkj8SvEhwNBstfKjuB7fcQqvmddQQBKS9+TH2BGgGloYIvkVi7kb9nffMMz
CHnrPDb/aENAdzDXrYn8O5mp398ivW4jYW2fb7OdCDhb5sVctoYL2x+oNZnm
h6A9+YU5s30IiO4TvxGM/YJSFG/1loXh6NqpTx5L7uH8Gc1Q8MJzoOh5mkti
8l20/Jr0yN1iAj4s7kjne8eBcNGydcrbI1DRuTS72z8IsGdXBDw8y4GXnTu3
2FjdRcLvVQreX2JA/yeJpdxSNlTKU6pWbbqNlu6U8UgyZEJxZVeaTugAOD99
2tJp64+WC/wMM3nMgsiHjxfJRhHwQ7s24JMNA4X6PEjWO4P7npAVQPK5UCci
HPMZrpacfkXymW6/rYzkIWU64QrmIXRvmNlD8pAnWmfG+BgV+E+XvmvKaoCQ
jtFlnzAPnVMdcqj1mJ8ZO1aeL29HPaYfzRZ4c+HDu7xX5HrOKrvFeB3O3CZO
kutI9FXN3k908Mrlj9MYZIDavKnUdyl0kFKPVSB5whh17cU8Qf3vBXxJnli+
73/ks5QKWjHNo9mhXcj62A4XHezTUPHIVfcFDHC7sihHeSED3KWf5RXq0sGn
b1yQPO9YUMgNfF5gTm7NIM/7L/6gv/xx1RAJq+nGPKQ9lCiY1Y7eVCkLxaRi
fe9YsGpagwaT3j8ZBUNMVPUt2m4z1o3o43aR58WosEpXIenArS5w4anqnDeP
C05rLuWbXaHBYhvhjMAPTPhomHhwxRAdtq7L6yLvy4JZprdNx1+hLHXPGvK+
DPWEGyfkYD16mT7xopuOsgZv1Khk0sCzf+MRUleD1nXLYF2F1oaaVlJXG+bV
XKe96QPhE8ImzA0sOGla0bV4DgGZ73qk42/huSmy7NKNfZ1onL8sc0aFCwWF
hZcemfRBQhrxIWQvC5nIB238KkhA1Lwv7NyrFPgaoqIuWEgB9tovI4dwfux3
3m78cZACK00CMwOYXSB8vogmiv2V97akc7SFVPg2bMsfFdcF/ZOzcxbwc4Ha
PLbKDfuQjXMUDQfPt4PGxpCvAbe5UKy18WlhChX+P46uO57K9w1npNKwSlkl
qyQlssetKISWIpUoZGRklBTJVvYmW0jIHhl5bJI9zrDPOdbhHJGGFH7v9/fv
9Xk+z/s897ju63rPOeTu6a4+uYBHCuoRS/suLsAbbbWKc89HwC/N3CalegRd
cpmkX8Cee/y4h6VSxwjETHwoSZIagcimuE5ZrE+Kt2lvyviOgkrQD48blwiw
7Pgs+az8AlDbOm8Gp4zCLcFm+y94POQpjba8ubQABNvFSE7fcZhkjN17+kQH
+pN7+Uda/SJE98zJVl6bBaeXlnvZ/waC+rmWJ4X0WeC5mHVKcXMaeN0P/l7h
jYLAROE3HKLzIG4ZT3nNMA0pz7OkzFjewofDKdrnfs0DP1koJfgUBaSYz07X
0zKAJBek2BdHBZmCvn8HMb92J8fZY9ufILSRK2R6H9ORaMtIXgbza792/sth
ZwhGama4e4yPyLBdyDFRXHAB7vELO3BphqKIOCXX7e5k4ORZTcNh9d4bJMre
XhSOijzP7jENI0Nh19DXvWtUyEr7+Ok0QyRq5zvg+rmYDKKW6e1Hu6nQNXL7
H0NjJLJk39mbvUgG/PWvgoqeVLj0wS+jXCUS1UaMDFAMMT/dmV9cR5oHB+XW
oqyAELQr4RBpXWAaXO2CXhl8mYMrbMcOvc3wQ0fy2wMwUwkDf0UTGjhnYY3y
J7TnaBAy3aORd/nEHJgbba4cGKdA2PMVv12v3qJ9f214JLmo4O48ElIeOAmz
ufuRgfwM5ue6On13kUGdaWaPDdaXssPXWZPUp8H58LVpn2YSxCu1CQWzUuCL
dlnQtXuZUH+2zORmCRVqNvbKtNdj+vzBAYOC+9lImiLm92qWCmcbmI3SsfVj
vvv3b7+RiTaNgxj0sfVf7twUtbMcBcvqPbk+JQRk8TtPjiy2ALoXUnG12D5t
Qctwxy4b3IyFqV7YPpsJHKFrT0bBSuKPmlB1L3o2UKyT8HURcq6mcLW2jYBI
6VmvhydHkP72lwPZq1SgSZx/Jps3Cq/WjF9Ri/Hgn75NeusK5kNfvGH8714P
xtz2YPdC2meXF/+712vBE7f+W/+jNi8AW4/kdZgV/1t/ROsGvu06FZg/7lC9
LTcCnpYFRW57xsHbmn3EcALTVzuXQjk8h+AD07Pwl7QFeCJ+tC4Pw8d6HQJZ
jg3B1FXimfR/mA5JU1LHYfV8nnlOco90IJrh2yedjNWz85N8qp0qGbJi6qXv
huWhImOtWi/VBXCce2T04xUZXHK7y9fL30MMfjix6z9e7W9N/Ifh61tBJw8V
vkc7tBm2/sMrjXWrP2J+6pbEgoce0zS8vTaXr1tEAs2xW/avRkch+faHhTCh
IbRe+aLi4uYC2Ege8/mPh40Q7QPGw+hCfOz/efj3vcAtiTuYH9nhOaGBJyN6
k/TZU8dJsP2A7yNrQxIoPUm8ICE/jYLiNXtKP5PA8kwC2TxxFP7GLwLL8X4E
cWM+9yIXISmkrL4J87nh/NrmvT0ESHly3+Uzpqezbm3J+GF9d2BM+IjVgREU
qO7uljVPhD+7H1VFsM9D7H6vYUpSD+L7uzu49T0FTk39vvryzAxsb5yqVtOL
gMfdhnaP1+bga/fPxV8b0/Dz5zPvsM9RqCP2/tGTGA8ETAeNvnmA3ZdJeHQB
EeDAwBFfZcyPDI5a4f/Dr32+s4zhaLz9lNd/eD8H6cfgygiYeyUzxw8QUW/n
DrWNTSq4HTiWmfZzEYSsdrKoOjTCwuKt5CjyOCR73L7bjvWXdvTWObEDQdDK
9JRVB+uvoIaaZlf8DIRLi9WrsZMQw2qoqM+/SdhY4+Jl156DfQ33vtclTgKz
RZnpvxcTUHQ3Zh7iR8F4R7gv04l+yI90N0/A4nYvo872s/AsiOzJyeXATYGh
Fh9fTPYkjHks6FCTZiH9T2xp9cMpbPQnXqcqTcJp+/7Hkpok2JzyE/Xs6oPS
6+Z8dolUkJcOOuO7NQVubbtHmPr6YbvYZKFvEhV2CrvLvCmYgjkvHQlW+gDs
z+bTWk2lwmqSMs+W1hTc0SzfzyIyBJpG324ZZlGhINi9hZg8CV9XHWWuuwxD
8LOPr20LqBBpPnC6330Cahwrq0VxOBioqRacqqLCyyr8/TaRcQDKsJqrJgFm
7I6s9rdRYWQkJpAxcxT2Kf3r4qgkwr3UfodyPBWIzfcUredH4bjVU71rTrPw
gLs+z303GQ6UFXClm+EgQOOep/PPObAcYtdLxuZmudMfZkJkLzBbJgadUKZC
uSCvSf8OMrztyvmZ1NEAIx5sHaVcC6B9MrRnhR3Tb5qHNzhJvvCdK9/rs9kC
fLy9dEgY06nNxXyhZmfrkEu4+aFn/AtgNKOxRD5OhhsunEtRVl3oKO/rjpJb
VKj7RBRwkCbD/k1ii0ANpr/mfBaeVHcDfuhvkWssFe7+y9Ma9CbBZ49eC9aP
vfDJ4vsSwuaLfszzmn/KJFBsmk/avtQHjcc4Tz3C8mJ6RGwqcnoKvv8x2Xop
OgBOXjpJhlj8Naw//C7HdIjtnRHU4jEIlTkpbwZyqMDzNeTx1MgkZIbsYIlY
GoL8H3sy35VTIebF4tUdIRMgfvd0rJA9Dg7/7bAN/UKFi5+irK/tGofVHfDg
OBkPO2xds51nqODwPECO6TURbhdX7a9TnIP3k0sF75ZI4PCTGe/CPwAnZepu
KczMw4HXjdx6qyTYoKlKcXA0g9Zb59PLjAuwcdqrkcBMhki5rjxbVw8oumw1
52OO+ew9j2IdeLB4no91apxrQGrTPx/FbluA7XqeP5JOkMH3LWHua3AfctFq
1Vj8Mw/co5kn6uXI0PvVVVFSnAwqf1q/uHh+AYNfz2l5EVSors9R+7NBgvXU
kfE2w68QxpN2OwfDf8pHyLq3k0D1isdbXftuEJ0rf1AcSYUwk4a4Oz7YnIqv
4Hrf1Av/bnb9rojB6vZ31ilxIRI0yMjzn9HqB2/npeNjWP0/8Bc2Yc+aAr5J
0jOF3gGISv2ya+UDlscn9buPrk/CG/P3tXFOQzDv+i+LvYUKYgKFx2xuTUBr
+Fml8m04uPTbUHYHputyzn3UV0gbA0OzxNUjp/Eg8UczWlsCi8fTtQKLrHEo
Tywp6uCdBVcajwZqIQHFYkBa8vAwCOie/CZqOQ8euhL8dX0kGLnw0LqV3Aon
s949laJSof9EmGHeLxJcuvGd+8asIUjeNM02wuKcdHLQk4kXm8tJh/pdCC3I
NFJH9T2mI6Y/eZ75dAbTD4NOwvbvB5HANf2BqPvzsDH0QdkTMD3jdVjyQAjm
L5dyDx/83QKTPGORjsFUYD+YieN5TAbNiM5Wtfg2UIjcmeD3mgqf/81Y7dUl
Q6f7rWfxrzpAwt9B4dd/v8816chWxnyhGqN2IfNWJ2SpHGA8HYTVWxBrhQt2
j+qXV5hUXnWDiYnSOc43VNC9z/268CEJbvNGVWg+6APe8fN6mtFUmCrenPBr
m4ITm2EGxEsD8PH+QU2HfCqc3NH87ULuJFyshEZx/SEgdrqVuk5jeX/uq/9N
aBz0/H5XBqcOA+Hg5SHPu5h/E7kUKT9PAMN1uayreXPg7ipmzhlNgtbbrPkq
N79Az42A+69rqUA1m/T7+o0EbAc18LtveqPaHTW80cYLkM7cgqqOYT43kbpL
N7wTGazmMhLsqODhyfZt4jwZrrDsMuscw6Pmusz0GLM5CP51IC75Mhl+7q50
DJ0iwxkt3K/UAw3w9q2nqVQAFX7c97bbPUiGb0dR2GH7RvBMi+Xj9KEC+ULp
fd8GMpyXXnDi3tMMOkczOCQxnZew1bVank2GF4GjO+f2tAJr2iXJDDcqvHfb
INhifvSbks5j+/h24A80OnjIGau3SzWVvApkaMj2pRjMd0I8F7d1lQMVFN4f
IpZhc1ji/gn/CONe8HYXC8G7UIGVNcx9sWsKtL26KqMKB+DrwJdX6hhfPZy9
wSNpOg57f4c0vLHAgbyo7Puz2Fzmyh2/OFs1BHpLdicizw7AathmudYUDVp2
ta4wWI+B+lI2RYw4C3nbx3LrDEjwJDVWXIynB/qqd8Sl61IBvU/9+PcQGYYM
RLeML8ajpZtPX71VWgAF/A/6iWuYTm7WqctL6UffBv/sj82bhzY+n5vOmE9n
CMe7J34YR/47daWfx8zAfEmn+KgFGeIzyu84HqWARpG6d+BABVyJ1ezM8aZC
5tOxzChBCtzwLyqIbqiCQ4Y3WB++oELKorWG/BEKHJPUcIoQrgH1t1lkdiwO
Brw6F8L4KSBvx2SLl/oMVKaa1g4rKgzXudv6cFNg0lYUl5XRAB9J1s8uYXxf
yHozMn0HBZ4Kaf8w92oG+4dcmU3nqXDeYNnuBIkMVdTavzm97eC6wdf8QATT
mc8zQjaekUGPdVzzE7kH/hx7f/oF5jvw4tkJNbokmKXsEFjhwAFbXtLOjrB5
OHSp78aTmnEICrB192XD8m+ievEebgZwT3M4hQ5OwdWqvet3tafhXXTGyw89
ZLDFf6rNVhqGQt0yHmrTHGjqRpygpJJh0xl3mJU7CzH4vfbJZMB8yQL+l/db
Mkj8WGYSHSCg7zumakpos3BqJcz9eDgZUjbUS1m+ktEFrpKfzYJkeCQyIp7h
RYZS0Q+STy5RAJ8XUHyePQc+9uRohr7E9ID204A71yng0S7tt8GdCxH7R/fW
PqXCM122cTsTCojdbshqyswDYY2d0u2PqEDYf43lqj2G40oLGn9/hKehW+b0
O1Qw+dKmWuJHAfbGVJnH2iXQpWLxar8mxvMV7TQypu8u39xhvFBQDpZrjeYv
D1Ohu/kZfw7mU27fuqLryl0DfvcTlj5PzoPFvQyjztPTYPB150W9okZwCkqP
++wwDypR/vqaH6fhR+Cz8nslX6DK59pHvog5SIckYVnbGXB9txj7CuOZkb/l
y7+/z4B5DUHmzegMmKqepd3LxMMtnxNM+09Mw7N9UdaHBUiwtvmp6IoBBRLi
jQ3vUslgJpNpd/VTCZq5+XQ19iPmzwJO1Tz+TQbBnQ1nhlkpqEey9uafJBK8
m3PIUcZ8C3uQP2++2xy6Oqb49m88DhS/fJ8Kisd0y7u5ufc7iaDIOP9zqyoJ
qQxZeO9+TIfg6GKVkt1EOFS7snFjNAUpmPfcm3Kgg15q0INHbEQwbjzj3H4q
HTWwr8U+sqfDhYvSFhz7iSDnEL/h8TEDSUZFzEU+ogMjTwhujQfT0Xm3syJe
vkNvX+k3iNvQId92cWfmUSKUad7V1mrKRq25xbrLlnSwm+imdEoQofoPMby5
MBdpUAXdXO/ToeZWS46ZIhHozgoWHHkFCFT6y2i36ZCBY2H7okMER/O3S3S9
EtTx9iBx4yod+qdOM73RIsJ1Y+NyvYBKtO9EwaELGnQIy2FKqBIiwESl/TGN
qAZ0SrS8IucWHXSzOXRt+fHwLNxRQWbbJ6Qx0EoJKKZDwoDScbV0AvS8Ovhd
QboVSa97aSfuo8NhCYHvh1aHILZJOdBmsx+xTbuGck/QoNR67fAhhxLYCI9p
yCgdQ5sGsj6bfjQYzXT6MkkkQGKX4T1v73y0t3VyyASL88gHjPmGCaCbXG6S
FPcR0f4elrrsSIdvFja3HvUSQGj/u3ZPxmLEoa1KY8DiLxcuX+zXToBmezrP
kHMJCvKqNX9oRwe3/k88b+sIMEZiSDp0qgy9C0oPf2BLh1Rq+NexAgKc0wn3
9rhcgaAz7duwFR1mffnMBmIIcPVrSIXkvyqk+i1bONWCDto5Z+d22RPgKF9e
6z63WnQ1ueVdtRkdkDpbUJYwAfie2RmWcjSgVhfRXPpdOrBdFTgeFYLVa9dU
kItiM4pX2uo/Z0KHOFcHwVo7HBC2Rpn8vreh90/pcd3Yed7wMzw+oD0MRwwZ
eLz6O1H9drJxM3Z+f97tdBa+QZBo6Tks79iPHvI+b5a7QIcb0hGR/eydMK54
UVWPFY9YlncpuQjRQVqOO/sL4RX82yO0Wn1xFC3E7+N3/k6DnYJXJm6GESDB
y0ZI3bQcid4qkZnA4gzrD9V2vySAmzg+wmKiAqUm6mj9xuLMfVp7/KENAQ4d
uHJK9m0VSrsuHTCDxVny5tXN0ssEEBXyVzycWY28LvQ8S8fqXGaAw0xHggAn
R85obLLWoe4/9r2C2PkN58XY59fxIPDYI8ZppR6FinLds8Tu2yT/NfxRJR5+
0nKO3VFrRC6CXvY+1nQ4/f1j+NNreBDczHln97gZqVziPNTxkA7GgQWTbZU4
KP6r1L9fsg1lBklIs2P4dlP/wpttGN8a0woy33xBaxO5dwhYHhmvTETbmg5B
IowyuUd0o4b4hQ0c1nfH83T69W4MAIOWxNUkjX5kwyapaYzhi+UG1yQmu2HH
6cTyctshZLK35xkVyzvn9+FPR082wamc4erDUXhk73JYdRR7bv8xtFKv5g1/
r7Exs0US0MuhOapgCB3Ocn8bMRQnQMTT7TovymuQ6sBvI28nrB4SM7epsmLx
kaEuLcTVobC+lfhOLP4aIkK3LCh4+F5/0VizoR71LNxO/ovFv7tKPYKehwfx
K2/D29oaUJbz42ERDD/hzmIs7owHTUs/+7QDTahH16CFD8vLhMpC8EcBPLTo
qrqqdjcjwsFXvkexvBzJFLK3yMeByNILy1hcK/L+EUzTx/ISLsVx5+5eHEwV
qnWqanQg97Wf6ctYHHZaqaucOT0MQlfU14jCX9GrL9x1Qdh6+w6Gf6+VB+Cv
mq3hAZl+VBigXZuM3YvdPMTfN6oXdtQ5GAaYDyJWnUNFDE/osOzAwNv6pgNU
phP9M98PI/7a2Yt8L+gQfZHxZPHYZ7hqrOz7yxKPRg3chduwuO3tP2KfO5EG
3ISWmwGpeMQoSXjqUk2H6oDn/QVFeBCd1txBM2hAnLtuFCo60+G59frQMS88
1PNxfLJ3akTVYc8YKrHzTMYcfH9VEw8FBOeLt4qb0MzuxRRxDDeZtR4J3MDB
Px2NIzrsLchHkPoyDot/PJuyVUMKDsbEVwdUPrciRYXcAZ7H//X7XAmHGA5q
9wTJO6W0o4DHk39qsPhnrHwsXnk9DPubZbXl2r+gu+IvOHIxHH1K0qurHQLB
JekVTc0uVNE0x3EE2yfFj8tH7MMgLNsfme7m7UXy1s4J9th52v1szPOUBuCD
DEmzXKQfRVxdW8W70EFMeFy69XofbER0pbycGkAqPAJVwW50SBNSwfcnfYU9
mctCg3lD6OIBT14uTzo8k8vgvsrfCgdHxNJVr+DQdZT9wiSADsPLXGvS0TVw
/hx1t4ozHrlaH5eajqPDqrqDh/eNLHg7mmr8HuHR6+k6OIHx+YWO6773hPGQ
/fsah4lIMyr7NJm5icW5+HnurotkHJy82J5VeqcFVfyIl/uA4TyXm84IR+Ng
f13kbPYnrK4qfxobY3hsrKzE8hkcOOl/oK2rtyPfPaXuhzD88vuvynrVw/Dw
go3I5noHGjxw+sAvLA4yQq59rELDcINvVoqH3oloH1O0WLH1P086K5Y9GML6
vZxvgb8bMYV+tXmG4fajc1qsjoPwJDilIyO0FxnpHStyxOJ2+ErOMmt+H7yM
TqZWRQwgMyLMjWFx6839SDxm2w0e37ulD7MPofkTNh8IWB0KUm8txb3uAEnK
Gdp9v2F0hOG5Sqo3to9d0tn0gibQtBF78qEVhy6srbmyvKGD6THDcWGuTxBt
rvPJ4h3GA7hIhYJYOjgrq9aeiswCkWvyUxrbCKih109g2zs6VNwTFWAOxsHP
Tn/n1tpWFLrz5rsm7Jxf8+yGhxVwkPWTWZljZzv6Z5YhHY/haQM2D87hhiFv
4EzYrmcdSCorL/w5hltL8FUeNB2Gnof5zaNsnUibIqTmhuGBGSzT/7qHwLQ7
lyt68CtSeSiclIzh315K7hbhx3zB2pe9Pm3dKNn08JltrnQo6RKmcZ4bhNqz
iTsvLPSiyz6HuusxPPHwl6jX0gMgKqp/LPVwP4qVuiTyD+tfhav0sqrpPvi5
vXzl1N0B9JmNyYOExVNw7O8nzrge+Gdidlc8ZxDJSRpXJD+nA3F1Som/vBMC
Ol58Yvg2hBqNjU6bv6SDltzPc1ncbaB25/ky+SgO2W1+73XxpQOvi8m+Y+0N
8KT9bnq6MB6llkgqrL/G5rJvLF8puQLze1crbxPx6HbUraTsSOy+2/geDLq/
g0HRh3Esshjf8nXitiXS4ZEnzaU3eBQO2iuXZgYQoUZFM/8u5stDnoc8sCGN
gFI0YfrK11m419KS5LZJgtLf3wa+y44Brjzmh5Y9DkIvPD1a7bQAVirTp9SP
jsJx5kOPUnSGYeZ4vTLPzwWYr5Ux2cydgu17+M4Rb82AoqaOAe9eEmQ2Cde/
VZmEWK2JYpPMWeBJOXOfwWQKjLbu33XcRQI9pALd0pgujru+sc5HAUtNE435
1Xmo9dE+oB9VB5Wv5PLeVFKgYjJW9Pf0JJixsxx630CBQXnZMaUXFDCZDB10
ekFBXUXPunhIU5DKfFue7xcZRl14ra71EiGCRD9RcSkLPSo7eVHrHDav69v7
8RYjgBqCSsYEipHi06OmXAfoIKBgdSwJ843w6319RngfmtUOW3zbS4MploBR
+bpR2EwZDzJef48uyKqW9XXR4K477V1X+Ahc+C6pqDxej9Ii+VztR2kwISBf
XrCKg293Y+xjt/qQBInOzPKOBozn5bmPPCCBykXOETXDPrC99XhZJ4EKah9f
c896kcAgdLdYU1kvTE31ngiJx3z32dlTAgLjcHOs8+zZQwRQHTH9YDxIBd/v
4r+faBMh317nG6vCHMjN0rgydpBhLclWQ6dsAiK1hsn3smbg8NHDfbYUEuAK
+DyaZdpRGeqplCrCfMthg3LJ02QQDb+k+SuuB3E/bqZmnMKeV3ak6thZMpxi
MF1PJo+BEd6ZO/MtHtYfhVUnbVsAiRvtotncYyAnxdMTJUuAM/67jw7tXwC1
DvqEcBkeGC8lBBMb56DvZ5RH2DgJRJC7iPfaOMwreRP1e4ZB/5RBkCP3Avy5
6HCJc2MMto7FfPI5jwMGnWaRVs0FcMkWeP5jehSoWdYjuq2zYL59YdwqkwRa
3y/LKHKOgc3v+w7Z7sNQsW920v/jAnTT99m91SZA0KqMgM/9OYjXsxDDi5PB
R2lD/4BUA/AcduasGqPCfvMmpnErMsTac0WVD7ajQRFZNwNnKgx9WnTWcCPD
T5bgx+3EUZSUd8Ly4JFZbH5Qy52ekMHIztmB624n1N9yGzLeSYVeXXF/2T4y
dBLazVKpA0hcgJ2R6eQ8zF1MOn27igzXSuO3npHJKJBdPlZwiQS6qp5muxLJ
0Mxq5h+yYwR5bvY/f3drFth0ODiliGS46fA9sENoBpV7rO+rezMBJjpGXfEh
ZJBk3Bf/uHEe1cb0JHAa98Idlzs8IWVkuG6wKFJkTIERvbknXw7FwxezX1dW
3Klwimx4bYabCHlj+abVPSFI1FZd3xKbs7Suut1/b1DAsaGZdkYwDs5TXK7V
eFKBKWyO0GdJgU19UYqwRSJwuK3Oij+mgu32tUY3fiKkZGTYUoTCkdw6hyob
ppc+VA4byLtRgLjtnAP3rWRo28VbzvWACo/vtXG/FCZCl73xjzvfI9AKi3jm
PUz/cESd22CPxPyyMlPZxIl0EItyCP+jR4WOuQ8fQ08SYbcMXuRzUhRitA30
OoXpW9kz972YqingepXT+MeudxDmfJFvSoIKLFbqhvEKRNjFGzT7MjcGHXxu
OXQe06u3rpFdb/2hwNhjU/OYl++B81N+sdjPeVBGf/OUMB/3qPfXtUbNeERV
0ZeVMadD16V0XIzFNMyvD54pXymEgqd23XGx85Df3ccYcZ8I39RG5uwa36JJ
nz4xuf98B0OXTuXBGbjqa5LxbqoCdq+e2Jc8Pwd7L4itmwQRwZ9t3e14fxry
kxJ0DjLA9MkRGr+12CxEagep1kchICQMOhs2zkLBRunppbV6tKq357n4dSq4
tgnXbjtFgZnW7f8kPecQW2tKrUvLMHhJBXob9pJB4fZFJX19Ksp8v7yfdLsD
zOzfWq6mkoF+/JLkzx8EuJVDfHrSIxt1JcVvZWP5DfehxQZiftmm3iaT0BqM
2sH2/C8Mz8KH+5Vh61UtwlQ+S79HTIfXt1theewM62CVwvCvwmsuZPkPqMz4
+gsilq/ztF13FVYJ8Ps5iql4l4+OhtfLkbC8MN7d/d56hQD5R1+2rCQWoqxF
0+EbmO84UC2ntkAnQLEoS9hx8RI0/9tv7Rem/9t/V7AWzBLgzbSaB0tsGdp3
1mfSCfN9iU2xTnGYP93Y0rvkMlOJttcOyLljvlud+jVZe88IbP3e7ZR0Nxft
fjl7JluKDisfLjp7ZWF+2eSgHVd9LUpfses7eAPT//VXc0/mjsChykfcYyo1
6Gzzq4d88zToxRtn7MF8E0TE65CfNaLhzfq/aZgf5zbtuXQ/ehRcfksbpfWU
AbvRptTtVhq8ucTzOc8LBzN2dclyt1sQX0fNjVJ/rK6KTNke7B2Feznx/fYH
KtGg25+kF5gfV9mt/derkQgGBhXnpeZakWrbuf6T7TR4Kdbrlzo9CLLErj8d
rf3oaFbA/efcdPjcS9s0FWqBYzpS6kpJo2jvzrPnvOxpoGNiPKSj3go6MNrQ
7U5EfPmVcVRs/7CwkvcsPwnw+mGnMOFTFjLasDE4henhZGZTzmStVPi2cX/1
gO4Y0hn70stcTAOJa6uz9ypwkHmFf5jM1Yp+RBu9Usf0DKuQiMlrAg6qnj55
//lpCxoSjzl+H8MZyCH86d7F4PZpFxdlHY+eTQ6vDSXQQa1ZYORSXhHcdh5U
fslJQBMswVq+mE4jsetddxYmQVx+Uquobj9YidD/3XhLhSXa8JcY6zGotnrA
JL5BgL5z3QwKvVT4dfPol9CCMfj5JsdZUmsWDMp9jqPvJGCY+xRibd+KnKrP
XvjQQYXF60qj65JkkOjlUuByHgWP93Lofs0s6LjarZ3A5oWXDxOXL88U8Jdc
Ost4ZQbsbfVPo3QS7JzPKe/XHwcO0UbIlZ+FCx8Dmd+1kCD4durml8dpqJi0
njAnuABRA8IyNc5kCCgd5ztROYQa+ML9fDbn4B3VMSQR4/n+izfa44s/IMXr
jg+Ux6nwcndItngbGerHT6cdcZpAmS21ly/vnwGfaWcev/dkiPY/qBD5ewa9
ytVSje4ZBYn1C87xuWSYOD94mYeVCG0hh5POomQ0kHCM6Plf360obLjuJYLL
SRH5vWxpSC7E6J0U1ncOC+e0kzmIwNzaePvGTDoSeYN7HYr13Y+kJh4cxtub
pyq/sL/JROTSwL0uWN9Npg6yBAsQ4Wpkd4l1OKZbsh/2FGC89/K307iRGBG8
1V465h9+jxgVIl9NY/y28nRfDJ80EWa29L0nX+Whyz9Cxn3v0cEzTyPA9xwR
ks8sRO7TLUJPWszuehrSYUqkKk/rCsZjPkZPvjwvQ5byqmM3L9FB7mq55Tns
/EfHvjqmM9YiQcXJkynqdGgd4hllnx0Gftvc3T37G5H6xdDtr5rpYK7TQi7H
/PW1re1fF0O/op/VUpaxv2mgqHD+0ydaD+idfOdVHoNHuoqktc1qGuyL00tv
MMeBHI3xUZVJGyoyt0/Ix+pTjVRDf8GTBbfjdZm9+Qlop6RTS1wKplfJHI2M
IyS4cdOByZ8+DfTMgoRO4ylY3VPLGchDBJST2zFEC0XA0zbS/N/7lronXi1H
iFAv+fc6n1IE8nteJ6uJ+fpzFrLBn44RQUZkO29cXSSSsZV6/d97DLNtaauH
sbhZ7OLd/iI6Gv1IXz09jPFbgjUn7xl1IpQdJVMmpmIR81bNF2tLbL21KqvI
DSIU7Pt89+lkAqroik30x/jthepC7hNnIvjQVU6uMqWgU84Z4czGdOB08dxD
yCbCB+vhVaXaDFSYVv9hrx4dfinL4/cqT4DFk/Mf9EZmYL6o+8/2YRKwtSoZ
vJMah/KArk2WzmmoaJBUdXlKgcmhBdc0TiIIJ23bxbEVi9oLosaOYvVWHMrq
E3iQCC8OPGW83BuPPlyX+VaL3ffS9TM6FVj9KBptBH79lYhUlc/9+IndN/jv
T+c8Uaxu426H345KRp4NjeK5NnSQF6+inpUigki1fbRhTxqK4426FPUQ422+
88qlakQQr3xWDOsZKOFBWormAzrcvpG/K9mACGeKHzwybM9CkoHH1Rbv0KGR
M+pjigs2f88c0ji2kIvajAgCbdcwn7j7clzJ7VGQFQjRL8kaAo2idY0MlkVo
lL17tjp8EiIOCto/OjwLW4+vvteem4Lk2syQl/rT6I5Eo+sZq0mQXNb3TOOn
wK06F4W7OEyffAxjHt8bjYh2IqmyF+iw+CaUd+k1Vs/nrOKMv+cjMYmImNNY
PeME5YLHfozDny+42PKpatScaHi98CANmrX/BSZ5TYDTnEDf2snn8NI74M/w
URqI1C1rXZUeAxMYO39EOgNxO1RV/SjHdPv2CrMriaPgZC1FuTWUhzovDz8q
HKABlW7FX+A1CnmajeevcpahD+IeoXsxX/C14GIn3B2F/BMWWiKBn1HbZ39d
0RIafDp1W9wG0z/HDkXNvlzoQvoLNyo7/GiwP6Ttly8fERzJ+FP8pp4ICocF
2bH8LpztOhR9mAjWYm9UDV+/RK6OcjctsDpX/uC3uk2ICEuHbbsudHuh2Nxt
b99heW9gP/t7GdMD3eMPP+aPx6GjXK92uGPrcy5LOU5geU/dxhgkE/8KaSuG
S3Ri/PNid+1p9RNEEHOd34q55Y3OGPvbD/73fk9pjODASwTWB0VlqbgENPNm
iWUOW19kdDVY/TQRWhKYp1wlfdCULqNHNcZXG5bDPdtkidA5QVHg5/FFtY8b
J12xuuo9r2drd5QIt34S7VpkkpCN7hldCrae69jBlAJlInx0eVLTcsQPDf69
0PkX47cV4ZNkTw0i7C86k9d/0R/hewJPncPq0HSzOD8YO+crw08eKYdSUQX7
cIUy1qfv0p7tatEjwmW7CXXL2ABkPJHLK4PpkHtHSoOWjIhgVdmqe/NAELKK
x1/8dB/j28Gr1Tg5Iuw0XZ8jTqSjQ34042Rs/S/348nplkRI6NHujRh6jb41
nwnMx/jTsPEh29BTInwqULl8Yj4Y2QswFgxiuiWg6/M1Qcx/ccp76DJrvEN9
L5TP25vSQVOnaJU/lAjqn+ZidJzDkNPov5DBm3Sw4Bu7qphPhKcv6Y+o+Ajk
2uFSteMKHbIPxKj2YfrTiKzLZJCSgxiXvYNeGmE66rvCvqCrXSixtVJuKnQe
cBV6p7vPU2Ap50Tf8nUSRAgK7fKK6oOtnU+nZjD/SI5tMc6lfUEhUdFGYn7Y
nH0jVv1NigxpgTtvMt+mwL991L78lACIamTYVviCCsoMK5QAnhHQF1qQPmgf
hyLm3YZLZekQv+2yKafWHNQUk4RutrfA1anViwU3ZyB0MOpl/ech9ARyrUai
54DBMurR739kKHleJLFUOY+ei9a9ciR3Q+XbzjCvOTK0/Dl68WoDFfHslsxO
Fa+DeNcoMVoeGfY71hFfsxOBOzcvUv1MLKq9kqxQjdX5edFDeS19/VBn1OPs
5o5HlQOKp8lWNCDM7PUnp+Gg43VZV61NK3p1YftvX2xecJyn3FXnyAPRh6sh
THwEVLhhr62aSIfTjxXmIXIcJFolbv2lz8CONTa3LiYyHCfztbiojoF4wbPi
pSgCnMvaedz5BxWoPCPhHRwj8GhsG3/WtVkIkletXh4ng3G78JHbh2ZAM/+j
BsvMGFDVbG3Y1CiwWHjKmI1rEOYNFQ78Js8B2J+cnd9FgfcMF7b0F6Yhz7Bf
WW1tDFZvMRguWFOAtpBjvd9+FFo+pDQeSp6FQwc3xY22k+GMHfXeoWPjEOaU
mko+OAs8a56shL8kEEaK2atuEzBQepiZzDMLVTdsCYGPSOAccGq9OmcKSCfT
AruFZ4D6T2E36SoJrIJHaMUcY6A4ZzjcPDkDqqosqg75ZLgsaWXp+XAKDtwu
fiJeSIHLinq/mCUpsMF3wfJx+AjEJZ6nWWQmIxXbOy1VPHTQOhxgfMqSBPw7
ijzva/dBTOW64iOsrs7eaP0VKDAOt/RujGvsmYXRXWXXV/aSgYdVbsDREYtL
ldWZggkcaFw+JvVNZwEmDv7xdHo7Bl7SLZP+q8Mg6ND64eLjBfgW17t2dGYW
AnKtPXfyDULM6LUcL7lpkPRqCsVLUdD49bLZECMSFPhdqJDGY/pNu+xf1OFZ
tH3gZuNK+QhcLLW6sYNEhqbUmSbeYSpKZuUefTT+CXbIbg0upmPxzJA9wuNO
RZd3PM9NOdEMZcfHZ/layKAteNy67RARRDkaZZ/oeqDlSFj8gNWbgmBPVuEB
Iky2SGi0a4WgWKuygiIMr1ZOJJplEUFX0bjN6GgxOhCbSvoNGC9tHPy6WE0E
NYjNOBVehmy3XnOOSdMBH7cStU92BGLU+G+zhuSjbbLdfz6KYHwS6PVDxm8U
njpq5d7nykHM6df+NYzSgNPobuhKGMYbOR/Ea7qqkcptwWezx+mwc6Fs9/0S
PDC+XEksS2pCUU5cbWfv0uH5kdQLSoIjYPJH6qyKUjOSfMB11LaPBvNH1HaY
sfXDfi087zXfMnRoyRs/Vr8E7y9FJ6onEUFwchfTBGMzSpRyGnqxTIPL6fuu
TXWPAJ7m2WehXoNc1th/35ykgeVwkYvoMwI08jG1ySd8QbiBkvuA+RFnNZlr
nz4Pw2//xzeuf+lHd29EF3Y10ODDbLDOQ8zHEbm2G2vPdyLtW0pkoSoa7OQL
Ov2Vqwuu2Cj87RUiIudf7fOXYmiwsPeSnQ9xANYrOiynfw6jQt+5+Og3NIid
iHyzzj8Go6xaHUsesyCUr8v1Yp4ENqyD3vW/OlBgxmPPxWgqOCOuZzoYjz2t
KDtS5z0Jv6ICkez7GeD6dbrygj8JSvM36X1uOAh60VBavbsNnbTAD1Ri/DBD
qL+z2fUOCLk1FxTECYilW+yHdBKmx4Yfz0mdJUFslrvyvt39wKKf8YGQSAXG
L3z5B2+NwYw3c5t/H3a/v5t7Xk1QweyqJ3Nk/CjsOLGPMz8dm4eXxvq7J6lQ
xd/wzyVjBD6fa41+NjwLrpVDT413kaFxu5Xm+pNutMnVJzKgSYXmF1+HpWXI
cIJN9EScxBhcc/mtkGdDAP2f7pvMTAvQp/X30gSmb/gjo62D3Wdgp4jUUEwH
CcJERCO1cojQsUyRUbk2B3NbOjO+rSQYvfvc6xN5DFwqkhxNrWeBg/bM8kIZ
CU7gYwzSJybAXYI7wbx2BiagizW9nARHOVZwSqYUKDH/+s9LMgF+Orb3uT+h
wsNkxgpbDCc+uzr6IisQVJd/2Pq5UaG+9NNKuhEFXjA1KMqKBIDS39Otfp6Y
T+Ls3iq1p0DejG3f5Za38OMda0mnDRUyyyPnHmO4SN8a6yHuN4ALK9wqsKMC
O/7t7l4fChxo64vbLZkKIkKGOlm3qMARbpDX4Y3xEKvSNYsLofBklvHg+F0q
5GZNmLZnUkAddzTu95MMMDvMYWamRoUhBbZ153QKeLC+Wy0ciIDxV2q+/8WV
WUDirfwwBbrDxTLjtmVD3s58bv79VNiUslmo6KOAc1qMm9quGIi53MD85DAV
VO6sGTMenwYU+0A0vioPkI2GuEbXPBAWbnzjFpwGvWWKc6tQIhD3MNVNjc/D
+u/YBIGyaaBkabxA50qx+rz8kaQ7D6odW4U9OdOwc8lSUW4mHUoCcjhwj+bB
nkd/MjNmBs4/Gr3aaV4Dt6znNF5ZzkGic+Brn4AZSF1kNK6SzoUXeCZxlYz/
/t5Z4vy3+lmICri95ePYBPsEBRL37JwFJ0u307oNs/Bih0JVmEQJfPme/d37
4Sw0FLwTnW9vhYYblwte76ZCWijfdvJxCghE33fUValEL2231nYGU+GLsVve
BicFTBwNJqLYiJAWop+/qy8GnafnHt3C+C0yF91eqcAB4UWXZCVrK9JYDFEJ
/e/zlJ2HQ9yjPkBLK37AR4yA/H+pbBrE02FCeKm7+ekQPN4IuVQeOw+6CXF+
X+tJ8M9/cn/uzAjwXvQWuaQ6B8Yq1xjfW5OgTzr3rYDAJPxl8Lzy6MQsnK2c
WfffQ4IvHaH/RrB5FZX7OeDbXgrgcs6ZJW2jALTf8HS0qgYLmd/6kelUKIv6
xMg1S4YOaxVFAcw3qXU2/Px3ZQzWDiX7lhZQwWmB+VrK8xKQKvmgfaKbAokH
lzRmWKkww/Ix7ZMyBZ63+y57vJyAC8SnJu5B00C4cNE0lWcKVNuf1s9WUsCA
dkRgwoIC/ul/iT4EMlgcv34ufWAK9JPcf/tkUWDsBcdDhqQpkBnhGzZLpQCz
9rQGlQ3rH87XG2NPxyG+7cDTiFwchM7f2UXcswBGh0o7ZVvHgGg3yGb0CA/L
uxS223EtwE3pPxIGpmNQorBxZasYD6yTNTVxRxbgJ2GvPa/aGLDihTqEHuLB
PGFB2lpxAU7vOr5vWW4MDvs5TKrNDcPWkdMSnqELsK9g+3Tff75MXqjI2gIP
CwPE0bmNBaAJSJJ3/yHAC38B4TfFQxD0S9D2UdwijLzdRuqi42GPTe7nU3oD
UMS8OTuhTIMXSkyW0l4jkPZsprL7wRDM6rueeKGzCKqR4p1n+WfhIzkyuofz
I1QPNjG1sc3Bxz4ZLa2aOSjdoeQRMNoKow/33A1rnoZV16mHM9Nz4DfSVNl0
uAjGmvBftKRnwAT/3tUH86H/plzl9L68QFURKTPLWL3pXx5RblogAhztGcHv
zUFfSfdUvynSIT3DmFU1dgQYm3lmyobKUPPfyGLCNjooqphxMWrT0OZJFkW+
yM/IQFS2NZZ5HG44TEhnqI/A8scYUxe1JpQgHpKlPUiDyU0lHeeBaihbiRwI
9xtDX6/T7Pe70UCUT7+64/04DCXkuJ1cn4EME4fjqYskSPp+LrDXkgI1Cmo2
DzuDQKY2MyjGGePphGq5dMxnP01cuPsiIhjq7s+WhFhSwcJfyNo9nALm7+KY
lzTD4WRur+1/73FlavVKayooMC+ekEA7HwUrUnYl/2So8Ib3xTH9VQroJHRG
sl+IA8XEB1+DGTH+0aarv7o9DW8GetkzJpNhyHn5kdDHeYg5tWM9d9cMHKGN
CKXyZ4GyukCSzf55SM1jJv5YGQPRpGpeq5xZMPfZZNI2IcEv2TY96t5J2Fc0
6fBJF+N5l2dZ8mJkGA57XVBeic013c3ezn1kEL+UXvM8kQJBDm33KjcnIPnf
CbE39UNAzBDJlmNYAHPT/af4+cfBeID+uTZ6GP7GnGOKN1uAYqEfRtz3xqAq
ny/b/9Uw1NzZs8SasAAZjRXsVRE4KLI2bnI614FSGWreHDSgQ/58fZDFOAFm
xerO8Zsg1DvcS3LC8svwjNM+9PQIUAuF5H5eqkV230jPqrcwH53B1H/Pdwj+
Pap++PYhxpv31wSbMN2rJFwvTRrFQ8bZ3y8m0ueA01G86R2GtzyhhOSeG4Ej
psfr0rZm4eW+aNL4LxI4lM0myuqNQfRwVrZvOQFO1ko8dJ6nglWU4v2S76Pg
8YXE+1UC01nMp1t3TlOhQi24apfmOPBrhy9FvsDBFrG5cFIE06t8vZHXHAYh
nvDgWArWHwOdXZLDTxbhiVLnr9gUAnBorEsr287BJvcblWEGMhx1Y2Yje/XD
dbOBKNpBKnxNPnzHZpAEc+ZJBMeVAeDJMPFnmZyH6q8uS8Ut2Pw9qSEihMdB
ftCGao/IPFx7W9R0JJ0EbmciSh12jsN5w7RmuWUc3EsfKRPjX4BHHStlMc9w
8N5s/IvSJRx8VGWt3d+3CAYSBWVeHcOw+pGeqavejShXy64tn8b8776X1xRj
8PBkg7wx2NSGAuvc7MRk6OCqvHcBLzMIQ6EWX9XfzcNSRe7+Qsx3iN6qq4nA
8lp77maW3Ml5qOmrWsnbRgb5kbNtcsqj0LPku1bEOQKEAumujlEq9PLVjUl/
HYXR6KDfIDYMXa3U3x/7FsDucUjkNgEiHNI4nqK04olyVxpy6v77Xlncs9dT
wkR4EUWx+aXyCkW7jKkq2dOhHje5nHeSCHJmu6PNGryR0VirvO4jOhzIN2SQ
UyCCgZnxxeYEX9Sqx5iOMF8/ekfSgqZFhC5Olqfv5v0R+66j9AuWmL+T3wq1
uYfp9mVNp+XFICQpoSOoZUaHI3tDTGS8iVDnXeHiwReKUtZm0l7dogO9LUz1
Yz0RTvvF6f4gRqJ0pRiFlEt0iFsadNHQHYGShq7jV/8koK3I+xbbT9DhYpb2
tTD7MTjH3Yx/5VOEIuMslI6/pcExKU5ZT/IUfNo313zdvhCuPWv+0yCwCM5X
eQ5bY/FxfUAbj1XNQR5NL01COmnw+ddJBfvno3DHdDag40oVchsSzuvD9HPE
9pjScn48mDy9/IRzsAVxvhW+z/yADg+ed1ssPxkGWjbj+vFHnejgldo1BVsM
v1wiqiw6BNv+aQQfE+hBVkE9l5bt6GAi/+uta9cgBMulPtAZ7kFLEzjzA4/p
kJ2ydOSd4gDwVj13bBTsRwMnhsuiXelwTPXszYeyA0BUmbPkP9yP0t+xdKc8
oUN0dWl4d2fff5+HZE+7DKA2qdtp/31vIcJ1dqcoEID2UbvuUOksqF4/1avB
gumN4rbKg+uzoBgr1X4/lgglYk4M0cpkGH23e7G2ZhS6v58/ckRxGHoL5TPl
+heAV8hLBb9KBBuWGZ/YoBg0F4EyHNXo4Lh6heOKwxTWBxMltjwdiDe3tsm4
cwFKi15nxv0Zg7ReJQfVbTEovMiKLTmABusQv22PP+ajQ78fvz+F5cUpLOXB
AA1eK9/Y9J4egfGnJ/e/aGtGWtfnmo6n0MCRYll26M4oiJiKCOaVlSDlHhyz
OoEG6a8DrI0OTgDv3Vx2x68zcFdKzEoa45MjWr8kJBtGQWq3h31EyCzIhffa
/F0jgeaAAuLjJUI9KwNv8oAHGpEQ4jP9771cRI+kqiARHL/9lZ065oXePG/r
YcHqH9930nHjGBF+HIvb+e7nKxTyKK/5OpavlLKTJizSRPAuaR89k+6D/LaO
7BLA8ptinnHGDojQ89k4DV/oh+Y/N3w4ZkWH8kz/3fuvE8Fiw3LZ5XIgIu7K
Pb/dnA7CPQktFfZEeF5+ZIZ74A3aAysF45hPrNW1u/H9LREqxEqf7v8Zjh7F
S1ZVXKdDYofqmsDKCPyw6v3uKZGBDtQG7y1moMNB+eWDKdVL4NRncep4QgUY
9lQK7t/bDw5oFKesj4O72um9Z/kXoe3JdpnKPEyH6TtQ0wRwIPPpTD887kDM
Vgy4sId0KKQKmhgID8MdZ985Dbev6A1qNB+ywXSjbkNyRdoQvHr2nO12cxcK
Wr1oaIzxAJkg7HHLsx/WA+rubR/uR3znZ8bvPaVDxmaDl/ybfui10U5IbutH
J8+qPs7E8GStXK4srH8133UTzDvz0RnXB2ydWP2MF2afcuQeA05W22OtLL6Y
fvAUeo31176jLWaBNnNATv2QEPRKDlJIrmwefTPgERkUnG45BEl/6T49Y82o
uHqYm51Gh8n3LJTS7V3gJvl5U+lWO6LWnNyyKliCDvrYzqCXU2AdZZ2SLzMD
0SvLPvPmJLjAnbpkUYDFwdphKTu0DS1ol6e5Y3mpCpimOtydAw7HGkXenDJY
LP9uwI35MEG/TXuVvjm4GjB6TIKvAq4Y+boayc2A7NvgVL33ndATX0hCTET0
dUD/yHgxDex3zCwd9cRD47bk+Vu2CYjL8v3jwUY6BJIWzcQdhuB3SOhd1r9F
UJwxyOtzfgn6NhO1BCJbQW7r0dyaYyFiE7d7ecrjG/i1WGrd88BBuktRwqnT
rYjzXFvLDw862D6wTwx5jINXOw/hqlUbkbxuga9ULh0M43cPZhdj8/5+7tqG
UB36Z2hZbjdLB7Y9D/5pO5Kg3cjwWLJQHzgVXD8cEE+F4Er+lEEnEmwWirzQ
5emDSrHXZ85j+M9Mh/AP09nwfHFR8fHtBbiU+MqjiYcM/BKph9jvfYCk0Nwv
2XcWoEiP8voJFxnuupuu3XcnQaJ4lULlv16wlCrwNYijwlORYNyCfxE4PfWw
U7y1AFHZB3KbMF2D/+Ft+DmIBP6nz45dzOuFqRybK0pRVLDlCns9iOFhykFK
tZ294NvCkpMTToXhcAtyf2El1Cjx/4o9twB56c/LznOS4XW5xl+OQBIouH4M
/7nQC4Fnjt28FUYFSUsN8u/HJBjJ0jfg9OmD6evu3UKBmP9lM9lpf4kE5ngz
vRNK/RDsty1rxYcKj1+FniewtkCC2WnFJ3gqEJrfGKlJk4EuprNyT5AEZWEp
LmknB0DIn6VKFfPdp9gSE8b/TUI4lx5NVQYPjutN03tPUmGlNSzzse8g1H6T
OFZ4ah44PVtOqYSQ4d4IMR6H6czzkrXn+nOmwFHsgZs2nQyP+Xa6rcTjIfh+
2x036Sa0ZLPjrRM2H5UmqFtc/niYOi13W/NeE3ofqiTlj/GJXgcajcrFQ96D
0Jap203IPXipNRCbmyt28bw7NnCQF53K1WzVihTeOCmE3qfDuv5CxF6nfjj6
d6+LoewAuk7+d/S/9/mc3fTYbRp4eHzkpdKsaDPideQ/UIbx2y8j+5nv8niQ
3L5zh+KlZpRYVyf7EOv3sYQLZvft8VBbseQ7n96Eno93cGZg+2xOa//zPtoF
HJ6vuWxShlD909d0f2zuOLadTE0VwMNxBtNnTpnNSO8gi/I3jFdVp86l7Ipp
h+UM0XNcLcMouXpvh4sPHXCiV5rZyDig0PhnSx1bUK9J2QGcEx0uu0n82urF
wRilrHS5sAVVcr30jnGmg9Vun77P/i2wtaiuv2qPQ6J/xZZPBdLhJOJOte/E
wZ7aoW7fphZk3/lNsQtbn1do//C8VhMsXDOo1Z3GIRN0yZkjiA4vn0Rmtz0i
wc5GZ9GU0//9P+Lam2NY/TvQkiVUzuTC1YoXpv5Yne8VD+M/d4AMjJ4k78St
Avhn7ZJ2B+sLDUvhmik2MvhfbfCe5yyDgxbez89fWYD4XMrvPRierF5oFOxD
AtO1JI0b3H1AaWIy0Quhgvz1vRzstXWgq+r25Y8wtv+2btkWXjLYunVIPeib
gn3VxVciCwbhrqAv32lzKqwXs+V+ZiVCoijjsgdWjx+5NBSbfswBzVXj+WQk
Hg6vB37ihSZEfvF+VgLjc0+tyzwj7/Eg9KhhvFS4CY2+jNLox/SJwEOfkR9q
eEi9PdgsJNOMlI9oV/zE8p6zIH/ojjEezl7690dpogltUeJKTmC67r4om2ji
Ezy0h4ZQJoOaUNLm3a5lTNe1ytZHKZX1AtOMRSfNYxAleUXypmL5zYv/mMLI
gYf6zLi8291YXdk6mSZjc3b8wu5lghgeItTZ1C75NqO0hO8Bttj6lU52MxWB
L/Cjpc18h/UwIvhaWTF6Yc8t07CTHsXBGyNv45LAFuQrFawuiOWx5V7WXatF
HPwZrZcVutKCau0Nw//7XnEnt76XvkkruNLtX5qq41D+cmE0BGC+dezRK5cu
zOevF9KsaluQ62lr4U/YPn1DR5fL8U2QHKK+9qMNhzi8WprZsXqwIXvGdtiQ
oLF8pmiffB+wuX+b2ZWA+UHyazI7ht9wYBdGin3A4LDjKw+GJz208tw40gEQ
PfFLPwbjhQIB7cFzZJBZr9q3UY+D6sBm586FFrTc06ql5EIHjSa7e7ubcdC9
mcr2aqwF3ShZmuPCcL30PW0hn3Ew/+gV4/i3FrRNTLRSC8OHZu8xvH1IAoYw
AWtmjT4YEym+cBl77vOjp/qKP2H7V7ZYMjK0oju30x66YuvbP9w/LBc6Dr5X
+Lqlj89AgauDqCCNDF8e53MyeU9A07FzpuFMI4B0nf5H151HU/m18eOPUqFE
iZCI5lKGUgqXKUlJkkIohSRDhpBMRYYG8xSZp0wZMxS2MXOmOI6Z43AOjpRo
kPrd+/M8n7W+6/t7vv15r7M45773vvZ1ifdLIPELDZz/fn4nptwJ1N1Tm+t2
UuH2e6MNB60mYeZbisqlzA5Een3H82nLDGTNfF9QWu4Hg83SoPiKBFa+k1UX
CmuQbpNS4ZPrDAirEOlS0CGBL/mNQcz6OvTkd+65FOL6xfydb3/MVIHUt67e
03to4O7Lt/Q8aAJEW8nmF917oVuixfq4RAPSVOb/Y2TCAM4fTxZrbvdCe3iF
xkxRHcqrCkk9TzzH09uaRW6NpqA2ynSdrc40THgFZJ4QGYc/YfeGKi+GopyL
FMWX16fBtDOai7admJv5tq659dgCOpvijn69NQ1+Qjn6m4nza0T36zXWoadw
vMNhaQZfvxNK+sw7DouXr+4I3zUOzy7SjJx6muDHx8jL5sQ58vtKRe5zwXEw
vZu8K12zGYqlNajRz+jwbU3z7deP8yCv73vDALHfT91J9ji9bRwCzhsqN/0Z
A9WtqsK71rbCQZ35FklvOgiEpM9f20/UmbQ++YbsTuCpHyvPekKHE6VOMDk2
CvRBpR9pAV3ASDB+LP+CDkxx9OANlUNQ9OpsbhVRz3K+RB7Z/oUOiD9NzOlg
NxwttnNId+mC07+y3xrzMeC+7kG1UAcSWLo3fXldWoMkeQQKFIjzYi83z/zj
NBIMPxB+cpK9Gq3jmqwJIeq50Z1JnYeZJFjY6yQW9bEKnXi13+obsR8dmNfX
b4kjQU9FVbS1TTX6e8LpdxRRB94XC+6Jf06CMI2sxLkNNWimfzhhH1H/FTeK
879Vb4H5e9d8V0Y/odcRRvUKzgw4l2gv1/GGBBrXDF8+vleFvvju9rlN7FPe
kiGTmzkkmCZV8j4Ir0Jji/G3TYl5h18nQOt8TD3oeS+HHD7Wi+SEab/9njDA
csdFBSaTOjgy+M1w3LYXfY0JCqUSdd5Ueh1roFc1RPxNHS9d6kVxYC8y9YwB
JrXpYpdby+F83haX0gck9Ov2tmDuFwygaF7oV3VPREcPc17k15uGT98CHroK
j4Ma2VZ40NMHnFDJ0DoT4jmeitLcQzzH3Xuyrj5NDEBOw7nMH29MQ3n1pkMC
xLoS1Xxr/nLnOBzSDi4YYmsGG7tnIqLE87rU4L+e6vIaQpekWTmIc2EloXxm
FbGucs/G05sXxuABh2+F4/NW6LzKXJJE9BsbGQJ579PGYE/9j7vRUe3g7eEg
PudOB2eXfZfytN7BFWdR7l8HpqGV1ZB2UWgcPlR0ydy7TYJHr6x/0dhqkXPa
8NNgos63nrRbd46bBPLoXWxXWR36lJ/F10Tso2A5BfaYnz1wvSC9g2eqEakI
xXRsIdaD1dwKVypxLpCC3jw7tVyF4l773p0l1oOZCTI6/vMj9IV/iE+s7EY7
UL/wBuK5JG8Tu8mVSwKm5iMhdeZVaONEnk888Ryf2nxXFCOerw2flt/Ox1Wo
LSv52TTx+parbOOkbKL+W/vucU2sQje/bOrhJq4bG5ap1Gz6AGCckRwt2Iv+
ZNBehXozIOWVqO/3gio4KW3HdZCfhIZZSn48fc4AlV4n5y1Gg3C3WmzYN5UE
k7Y2qj4i02ATN3PI/H0fcKwVeMxT2Afi29KP6H2cBjbP1ijS5W5QuyE1X6H3
CdYZf84VrJmFrTlCR1NXk+DJh69zyl59sMC9qHXz5Awo3BxQ2HqsB4R2ibF5
RZEg3We7WmrzDNBYbmxM6euFE+t6Mn3K65F1S1tDNXE/x7Q2vxiR7Yam1Uy/
lcs74Lfm0axqPQaQ9x/eHjDWA2Cz4nr/WBPquKcvfYu4z3Xj12eq+sdA7YxG
QmlyG2w3PGCi4UmHjPmG9S1BY+D7M+RU7oEOkG29WaTuQYfRKzybdU1IIKyj
42knWIsOO3K8sSaer+Nac+WHP3vhdIJUW4xEPfpQVldUQLwfX8NKXtfWUcht
+Vh0ta0LXM6W3J0k+uT8bMEy+yQSvPx2U6tBvhp1K1/4+pg431l9BZX8XpLA
8f3uqvlX1WhZzv5NBzG33kbQu82fBNfjvO857qtBSdmu7B+J873uZJXZt/Ye
qKRdoQpZNyHf7ra7McTnUi0/X1ytNwbMn8bDXZg74aHvxL3RR0R/Qg8+0O5B
gs90No4Myxp0Q3BPMTP+/aufYikjR8KAhyTmf4Kot7L33IdvEfviznj+PM9E
CfwtuKowcGwaitq6FTcQddaWdGH21vtR0JGwXENf6YLcYo4MEWIuiOSQkqxK
JEHEovqrX6rV6NYB2bX6xOfSKj+i847of+5PWDmso1Sj4dHk++VEXeKyDTKd
kR8CfiPh2os7SfDU73AEF/M0FF9YrSKUPQZ8SgnPH5i3Q9S9zh90Yt8Z3cpd
y0P0w9JlPZFNPbWoUK6z3JTow71vH6vkGyPOfTXpl5PX20Dg0N2QGuI5JmjQ
jkpMN0JjLl+Xn2sPii3Rbv7tRpxTKkX8x/fWQ0Rd7U+J872o6r3kiD1xfm2c
ue9a0d8DzYc1/lida0Irict5D4j7uZUWOvHr6wBIRozrCw73QeHTKK2CJToM
VOps1moeAJ3zwdYk/h7gJlXG7u2eBkWjEKYIQTKwxdUcT77/AD09K56WQ9Tt
V6JK+iG7yDB8U/qswsuH6K7wcbF9xL6+G1s05SFGhkOzogrHxd1RLW/HrWNE
PS+Z0nynIEOGXwb9HNbpnihpmvl+MvG82C/zz8mdJcOeVWB/PPExih6wfLKT
uA+fLYw3779BBjnlqDOaEk/QTIii9lZi7ghUSHYo9yLDdlsZ7W3Vfoj5GMdD
KV0GtAec9NtUS4bJbiYX8esBqO7MtvK16gyojXp7+czVfpgT2ZzwTTUc9Yas
X8O+jwGNEZW/npIGoTys3KjrYBZivr962wbvWdh4MFBqt8EYpFSliB0Oy4B9
YRLLQT3ToJ0uWzUyNwAXxRp/N1GTEIueyAX9ulnwsRV5ttQ0AOn0qalmWiHy
kL2fxSiZBfFbC6x1Jp/gTp94SM+7NiT7ujRSnvi8AtsVjmyz7QLt0sQgTVIH
crhaS/VzJOaCPH/qZ/ZuyK2z15XsbEdTmk8+cxF9KVXyy5iqUCeIsZMPK2/r
Qom7WoU+PyC+jmFhpIEBBQZL56xCTPzhVDCvSPkDOiRvLfjtaEGBxxtnqVKb
nkNygpdWpzUdep8ELf91p8BH/mgRzueBEFBE0+kxosOwMv3R0TgK+OlKFvNJ
hoBx9/l8bVU6xL8Wt41op8BVJk5VlfpwOCcmeWt5Bx12OBrdP7dzAgJ5Ortf
eMaAFs0jU3WQBhwWi5JK2RNQv4E7LjolCaiZN3csmNJg6GHDT61gKhx/c0V0
b3cm3Lm+TdM3bAr2xFpqk5omgd1XLNWKWgAX016YyVydBD7fw9b06inYdZk9
BGyLIa3gOzdNgQr7Dz2rvvCWmE8i0q9v9yDmEKkNf/cRn3+tVnIE6146CpD9
/HTLlRYgOY53BgYR5+l3owzPfjq6U+vkdEm0BObWMkR0ksahXmCPN+eGLpAM
kLlSpNiJDqdZpTQS998yci5v44MB+L0rS5n8mgxz1XNHJ6h06NRfNZlzfBBy
eCX56D69IHljDU/H3Wm4EKxyV85vDI4/ltloRnzueJMM/UqmMTjBefUFb9Mw
JBpr0TNeUUGq2vGtIWUMSi5Udbv8IsN3MyafofvBSKAsUtBRjgE7Ni52FCqM
gcmjt4Lmz+pQvn1O0heHaVAt82e9QdSTIff6q12vg9CCzvKf0PuzwKLzaunh
TxqaKdr83nChFXYV8faR08bhi+MtmVd5A8Djc5j2clcWcne9aNfaOgtnbXYt
t5YOwEaNHIujLNXotXiQQqfPLCQLR21sVxyFsge3qAHHqECd9y2yjx6Do2t5
FVL4ybD1lX+NkqszivA2L9Yi5qmGuWL9MWEyeAtMz3S4uaCPd/xZl4j93m9A
/lO5jwynzOlMRiRXZJrIsRGIOvn1peKqeUkylCVvjR3J9kAOK3oiLET9p20D
tmAFMnA0lTFdiXiEXK+2r2Ul6tK7wTXawdpkuDbLUhra6YVYx9i4Bon50ezq
BaEmGzJss9N/NvfRB3EuhQ4nGBD9m0Dyw0NxZDBIa5aTP/wMBbs+u3nhEgPC
LQwKY5TGwaUvsD8vegKCksKXnTRH4dakLa20ZRhY5Z6MCqdTwW7NVlpAD9Ef
q7+3e3+dAr+KGULRJ8fgU6XUkdLqcchhmomZ9h2Ak11r426kfgKPaF5z5uVp
eDrk/c57zQBYzU7MbFzuBoW7+vDj1Ay4DF4X/RY7jmZc0lPnusfgTY7ZxltL
4+AQkn9iOn0SGf9qfWQk3g/cC6nn9t0dB79vS/49XWT4feOvHXAFosIK2sAj
VaKvdt6tXkEZAr/1JcNTlgWIVPlwIU9qFvhHrXlzakZgQrWSb+rPPYhU7bdZ
3TgDOktt2V/9BsE7KbrzFHqFPHuDTbkTZyGm+e/ss+oBaHjbPLZ/dRoKu2Ux
x9c2C9zJTRsMMwbgYZTCuCLtDZKaeTxS2TwLpyupm2veD0CJmeJl7pIS1HKy
1KgldxbCbHWrJWj9kL50d2pMowHJB9xYeW1LrKsjDeUhDcOwi51tzd54KnTX
Rs4wE+eWZ+yhW8sCxHnBMa35PtoZucW37FpPrB9fH7cyFiEyHFyXWcMZ+oCo
wwdbjIhzxMbs1bb7IsR6Kyv+ejXRBSW0rL4aT6yroixxxqU9ZAh9p/4mo+4h
unTnVFEDsa5OfDBPyDlABts1MYaMNW5oc9uqqE/E+fJh9nJe+hHiHNlL27Pa
xB29+3nmQSWx3oTu6+y6dowMR/XBy5bqgebicp95EOd10q48ASZZMsQGpV85
2eKJSsBpOztRn68bh+wrVSZDsOWxip/vHyHtGBYVfaIvSjzxpnzqPBl8q0dr
Aj8+Rr+eH/qhQ/RFRSdWOKeukmFtV4LNYRZvFH7IK2famAF6ge6fr5uS4Sqj
lW/A+gniptnt+GpEzK0x65JkHcnA43R6dQufL/Jdr6h1/BoDXoisu7XyjAxr
Dj/S/7HDH900bRi4eYUB6azjZTIZZFhXyDbKkvkMBba1BQxqEn2ID/+eMj0K
mEZksa9jPIZ9B7ileV3pcOBp6X7mq0RddDu2tPaMH/zsfyw87EYHrTnzb0e2
9EN52lNfSY4QRNtG/jp8nAHF81IB+zgGYMeWWNaWy7FoneVXY43fszCWuKCs
d4SG1rBX6wmLd8HCpjOMrtFxOMPhbXQvlo7czb+5Je6rgs7zQUaf0TjcYOIz
9oofgqPG65em6VRwSY6uG2ceh7vdJ1fH21Hh/pSRn5YUCZpO7FnLVDYB1m03
lGqzB+F7jGfEriOTQGmPeXiFcxyCKfzrSyOHwLlXn9P4CxXc4hwurloZA82/
QvXOXv1g231k0+jzCHR/f/a1RkEG9Ha8Y3Yq6QcNCwtdaZ4otHmL09VwLgYE
ZPpybvg8CH5cR0ujtk2CS9Fduedc41D5uCTLXm0QTK/OhW4SJPpQhqHzR9Vp
qNhrY/tMexAu1CpsPB3bC4xXazxCiPn+2lPm3VXEufTZwUptW14vcLnHCnFP
UUDA7b3zSTIdCZ07bqimVwy3FVeJL6SPg7FxOKkvg442ebRe+2hSA91pu2Wq
X4zD0Ebzw3J8ZJgeqR8dLHVCReGHaxOIfUEKYCUZMAbgkOm2vNW/k9C8tEl4
BtFXtPWsOnHYegAWLmaJfMhOQJQX1NzYiVnguSQpb200CiufVULzjlKhI/cc
fdJzDBw4vKZfXh+AS7ce5FZMkOHTU+bM0iE66BjqZZ39OQDXZPd3qpf0gX5+
14LSHzqwMbv7fGQbBMEl2Hzcsg8u1tpfOM0+DV9Ji0nPPUaAvzT1+V4bKigJ
Hdif2jwGV0oNHjoLjMChKR3RlEAqRBmwZZu3j0HkSnzAScMRKL6+Ucw0kgrm
xzKDWDLGgLJWslnvJgXUU19rfiwOgOoZE6YOBzrIrknnTSeu77caN3FBfiCm
mSi8Qlx/0a1+M8eWArvNPdvu/QkCJ+0Nl/rN6SAhrdDx7h4FCrIdMlJknsHu
8h8yPBZ02KvlsX+nHwXcZswtTouEwoY7TmEnr9KB+iZqYcWbAtyCv5/U2QaA
5mDWygV9OiCbywcuZ1JgU8PXA+JCEUC+uU5NUJbol7iV4oySKSB38NuRXRbB
INs1MmKvRIdrnuprm0Yp0C3m/afwRTR0lqs0n+SkQy0LjxGtiwKJ/vN8CxFh
0CIh4fVqOx16uD/sP3ZqAnyotosD5ATw+ZKcql5PgxLFKe9K4QkIW5bdoxz4
Eq5qu92TG6LBmOqvgPRPE7AtNHDbhcU0OG7Vk98CNBAz9hHwTZkAkw1PBkS+
JUCI3RBbmRUN7owZWv1pIZ73p63RTL55sOE5lax7ZQpin+++9teDCuJd8lIa
rK9hZo2ig3b6FFA8MmK/rZuCrGaNQ694S2Bhy7cViXWTsLpW1z6odBIi/Zd4
hfblQ9qn6Ae3rCfhYHLja22i/0nZMqczlUsG7a8Gv7km6CBQQ+H/LTsIx76X
nOssJgE7Sh0M2jsNm2s2eBtrEddfsS+rR5Oggrxm0HPfNIRFXTrjtW8QKjyt
Vr8g5tTOmHPibiHTMDhfOFEcTQbn5tSZdQHdcN9VMEY7bQbGftCWxfZNgtGz
rZazW/Ngy9rw3t2rpqDTKrFlsHcKfnI83pH84h2MMh2s0OahQpj+wr7l1Cnw
dRO+GmibAp5NLkPiT6jgaW7TL8JLhkv8WiHh8U7I4iNv+5Z7DNh2bbe1qGw9
PP0RVxEjOohmCnYeEIBZ0LxfMyAzPQQx+Z/2NE1R4dHwFq0nk2MQ+ODM/jpi
fbbJ5g6xpz6FW+BwrZFYn8ENyxpv7SngnMx8+nT2C0j6bdCbdJsO43VD3pPP
KUDhKXn8aSQIzKhKagvadMg22sn7pZACQX8f9Us2hULzl6DubcfoUKrmSN2/
QAGJWy+aF1WigFtelCzOTIdv3kObAg0n4KyqkH9GWTz4fvGUKc+ggYi8xU0q
FxXevcqOdlNJg412KU0X2GkgbJFAfnuF6E9+2NQ4zJAh2m+AyWSYDmV3jWhr
ZgfAeN2buhXtHrAfbdLZgqbh5amtMzNEnynM29DPE1IAwhJXz70iT0P0RtNW
j8ufQEuymTVwsRVxb5s7pedEzGukQTup0m6YXP9TYar1I5KsUUxc50Cc43y1
9jsTaJDN+ijrijkFSejoRpyMbEKr/h//ClTr3pn5dEHxqke9l8c70FCls26s
LQPWHNRdib7cCbuC8h+JrnQiiwpKqzrRh0eZ1YqELY+DNMugMyxOAJdS5ivO
pSG4eW0pbOjeKLxUHM/4yduOQjbEbHW/PA1mlmKCjQeGwemA2vq9dVQIaGO8
G1kag7DfFrSe7iFgztKbiRmlwurT8ZrRP8agmTOIOf9qD7jvFduqFt4Jde+K
gwcHZuHJyLMBUsUAHB0IS9T7lIZuDw7eu0b0S5HT9LCTaweBKv39yvyNPhCQ
MfDdtYk4F7LeMC4ZDsLWk/ejngvGosqhhJWOrFkofr3GrI3otwtSzr2eUsxD
D5NsKpXqZyFdvqeyZbgfmvWmHDNkm5DPVmYDB71ZGKkeYlLNI+akT2e+aRh1
otDCmsCRO+Pwta+0473CKPhVF310laQC/0sP7l3xxJyQlzu7Zd0IJPmfeiwp
+wB2zIwwl/6eAXQ6zseubwDUu4oHolXKUGBCkIdf8iwMdspvViPOncU71M1c
HM5oZbOOQSxx7nyJKQvm3U7MOc9PlUYvOiODGp75VcT1P8K//6YT/VjYxJTP
bdaHqHzn5G/889uEQsur7AeJPrxvYM7H3Q0tZRdlVBJ9l5zjesPvRH81uOf1
ga6Tnij/52L0NaK/ismckC5VIYPmLBgMcj9GrK2UISGij+pZb2f2XI8MfJbX
aDlO3qjICsaeEv1SSXD/3+0PyJBV0aeyttQX7VBZXxqoz4Bf9GtBX9+QIUis
v/hw8nMU6iTR+/wCA76vnARZkX54fYj/ufTWUCR+UtZL9ygDLkWmBxWlD8Eg
t+a+tcS+7p5x2syKnYKvaU2JA2S4db3m/LhUEDrrJB/2QIUBnu2FTpeHh2FV
79KbU6bFiMzfw3dmYgast74qOUz0q2dWnnttXXiAXHNj3l8m+lVx3zzfaKIv
/flaozDzmCvKYzYqKyb60vPehqXC4mRQ/5DR+ITmjoL/fjBPIvpPhYFzZR+I
PtNGJenGH4FHSLM3v22ImHd8cnJXHbhABk/WO29spbyQ1YFgvw1EPzmaVLzo
c5sMMn/mNOcXniDZh6jXgegbE2h/sr8FEn2g+GjZ1jF/dNXh9dGHOgw4Fs3y
LFKpB/TXjfpedW9Bim8iPzTcYoAgf+ybgQfdYNFlqn++vB3J5a9L9SLe/zOL
j6SRyE5Q5/EOFqjqROeusZ8KwzlCSlel608T9ZbL8chiTCTKvc3/xXaBCkXh
L/mDrelAI4vqkt5VIeENt7tvfx+H6jfk/DCjKSjc93tnvv1bUPh9QXohnwof
t+bEkLqnYN/puYOR429B8M5ZyZ1HqND3zVztnHEn2N7pIkt/6kSdM1FSKS4M
+DucIWh8oAu4U+hbPGU6kd5LL3NtewZoW51u9HLsBj/2pao1azvQYM+QXiax
roT9Gmtu1fRAVHh5x1hhE5KmiR2+TKyrv3+Cx3O2d6HyI3FJqScmoeihV9i7
g8T7+Svul97UC2I9UWsDvRuQx/K9s4VaxP2ft+76/LAHyAaevel+TUjZsuBb
HHEfnqs/iydzT4Htgt3L9XsnYfNnqfdKixFo/sh6e279Tuj6EyrhQutE5RMc
HEnODHh9gFJ1s/YT7Hms5x+4rhVNZEpkm9kx4EmgBNMf8gwEuI6q/mTrQLEa
Pi9FhQdATM4/tp44F6/ZKvVTnJrQ8s+pkjrieR2eV+Lh5f4Ez+03pHz9044+
Js7qrb/IgHrzw3NyKmPgEzj56H3+BPRUs7++TtRxhmZNfbJMD+Qcb46h6rWi
YXc9cX1dYk756wFvmzuhvszTpNSnE/HpHDH0J+oqswLFKux9N0Q1jT1M42pH
weXfty4Q62Gb1ybnr8JTYP+ZcaY4rRscxDlW0dopINTOE/3lZDcyHtacGMuY
grvP4k0aVSlQbTet6/piEoWuJLp5PeiDu1eCWTiEKBCNqsQX1o/DxS5FE7GB
MWg/4deb60YBw/XNM/QEGroTeK3oMstHWIzvHni7igLnA4INn7TSUd+mO2h+
oBiCTSgf2UrGwVJLO2Z1eQ+M6zgu8852o1f58j7zZrNwOVzxNrfXBByQfHv0
3fYB8BNtuiT/cAJEr2l1VBsMgQbny49tS1QYvrkqx5NjHNoK9ky17ByE5p6J
aw9+98JO9T89GrrTUCh4UDOV6B8eOYluj9jTBL82Fyhrx09AxD65oNyiKdA1
HLv3OqcFrvOFRbTqTcDx5uJCqSw6EjuY0BjX/x7O2q2Tq2oah3JLum92xwBE
PdndElrQBxM17uYqbNNwMenO5CfGCDyVbrhz4RIV7qSKLYqWj4HoY9UVPkMK
sGqml3076gnmo1FHUh7QYUi39gm3LgVOW203ebriDkd+zwc/JOa1RvVbq7ZY
UCCVEqHv0vgINP/oduTb0MFxy8mL710p4H+nLu/yoBe8Gxqtv2hMB98P33+n
PqbA8BuNM19dveGlRGFhuQEdWjfH80VFUcDOyioxJ9sHZCK/jOSco8Np37f3
UhMpULJU6c0T5gsWCodJ0Sp0EJVd+4a5jgK3JfOmLpc/Bc31k6OB+4n+OcZJ
qZFtAqKam6l+vkEQOWF2b3CeBqtvnRL2ejwBgo5aJie6w2FyX894+Qsa2FxQ
nLQ7T4XA1vIhl7E4om+aHqYOTgG5ye1uxINJeBMrvm3TqTSoXPVu0Ld8Em4k
FNULPh8A/vocDTxPv/At3lvxjQ7SfLrWzMoDoHDWzh8RfU4Vi62pF4WYC6bn
+/TWD8Iga8Zqp0kSrL0yFjV6YBq8XwRrymwfhIfbKWxqbiTgKM28qCM3DXc6
/E21lwfgcfztuut5PaCxaHTD6fU0iIpsv+RbRoYuz/16Z8O7oPb85fM/m2ZA
zPHg+vUO/bD7SIWq+oFuUGv9khzoPQOWX8+IzG8k3q/E2V8XdyfDC5u/nHV7
pyBI9F7RAaJeMDusZ140TgFWDwophGMKEp4yDLOGp2DoNEtsJlc6ZOh0GQQq
UyHfP1uqp24MdGfSyOsN68HsHNOI6eZpmAkwiNqgPQwSeVayeu+pMHJ4q0rY
/Bhw50rqygSOwlblynM72Kig8uq1/g2fMZDcfWVQ05QCugbmIZGvPUH/1frW
6/Z0yNTw62q9T4FA67s6qZ6PYbNz+r4CMzq4vks7e8OJAqLr126aVfcC6Yfz
IfamdKj3ZCMJBFAgt8EuQ2reG2x3FtaNEX1sMNsjbtcgCoiEbYzUoDwBUl6L
8F8tOvzmtLp4j+hvHzlIyp8y94POY8NX86WJebOnkf9wCQW20e4Jtwf7Q9bF
e1sKpOhwMO/Vwu3PxL5PTW+OSXwBsxdElNavo0Po9qvPAxYp0NMkerZAPBCm
r196wEz0w5y+s5/J2hMw1sdP27UjFHZI7/NbLqLBkwUz164/E8D4+Wxvins0
bC4TOf5KhAbLa0nb330cgPpPA+eVDvWA1/DKmbCPxDzyc0Y3WKYbVJGLzRX+
DjRXmRVKI+aCmq1K9UXl46CT//Nzmf0E6CmPqPBPj4DnyZ09DWsG4YCl1RHR
1X0gt5+5SmX3NBRNzqbQpUfhh1+v9F7iPNsYuDIqlj0GSokbX1VwDEJQqf2e
Bxt6QfHQQyGboGnQLGvrOUXM/cUNEgI2VybgmbGD/uzFUXC+92I6RXQEBrRq
N34h5hZZlh+cQaQxeF6R0ki9MAD9RXL91NOf4AT/aYknAjOwZVxtZqhyADZu
jD1axdYDPGX1LqpE376pduixAPUTPG7gLh3V74A7+TT1ih0MGGj0SU5sJkO6
6amvp4r80Py3imf5agxwvD3YNvGZDM8nvi5O7nqG0mPtHmorEH242KLrFFE/
g7q0JT8kZiB3sQD367dmYepBmPftV6Mw4eqTHRT2HrkrjxgyiRDnWX2BauWZ
cbg+KWGdapAJiw13+h9LT4PxRNj35PBRiI5vjWFJiAGpjxd6nPRnIHPoeuhC
5hCYSrGqQrgnsqrre6GnPwumJ5p7jNgG4TRtXlNw3Stk2dx06H7VLKSwXNkV
PTYIClHTKusGglD9IZkdki9mYY6ky1gzMAB57o9KC3gT0E+Kru1w8yxMLCh5
1xYNQBlnNPh4pSBF9t1Bap2zcJjPyqe7eQDMpHbrcC3moJrtEel5tcT3ZX4f
LvJ2AKY8M4D+Kw09ORZ9SKd9FqIOZ8bSyANwwSle0EwiHyHL+qKt72dhNNxW
RWxkAEoetBj8WipFnD4qA4tJs1ArlJ661NkHsU/3WyuptaPZvM2r4+7Nwq7Y
0/FmxNd/vaRo4i+G0KkzOhqlYbPgapmzvFOQDEUNXmZb9jqgvNcc5F7i/N31
7Fj5LgEyFDKd27gn3h7VI6cJFaIPt9A/VSuygwwiak5ix80dEDffV8N44vUu
abfWGwqToW5qybF8yQFFz70W2EVcz+1b83dFlAwseyfmHUn30ROUeewa0bdL
7uR+67qTDNeq5VcG4T4qi3cboxLX/T58CVXaTcwFAy9eWO52RGJcqt+5iesS
/uGevPvIkJdco1bd6YiK1m9b5Uz0tw5Z+5bRITJs2vjotsWoE1rFopB2n+j/
77bO7vHdT4ahr9R5pT1OyPzT9hv7iNcL5m2JuXWYDKFv18ZZyjkjlcqoHH7i
9SyST6u4JclwXDIvdZLtAdLN9M/UIPrkrrEe9lMnyFA28o2j9YIL+vIEvnzH
/1/WyCX8Q4oM181qEzfbPED8Y8ytE0Qf2Bh/ZeHuSTIEhgQlBte7IMF9J/66
Ea9vXxdgZgJkoF8XWJBofIgiillO3iH6bU0t5xNdZ8hQ4L3z+aipG/qQ4m4c
akrMFwWxiYuKZECeJc2rVF3Rar53sv1EP2np6/pgSJ0MW7QOP7NadkNpJ3Xu
4ZzShjOB30a0iK+frSDzTdkDDeb0dhkT/dt9Fp3iTUZk8Gf+1NeS74lq33vU
lNwgnqOBsOMzHTKMbvhteILmgQ6tKU4Ku8kA2oezQ0E3ybB2rq3ZZ8sj1PXH
SPr9dQaYHX7qIGpFBrfz86uCvj5CER+4Qu8YMuDA9k6k7kmGd3ESLzTsvVDt
0LYVST0GjDTNHmyzI8OGudqVUrPHKPRGLN9BA2Ke+vHiYbIvGVwfZz/RYvJG
vz+YS4VdJZ5vUqS/x0syaO+eDthx8Ql6spGuk6jNgKHeIF3tcjKkWCyd16vw
RSxHjFIo5xhwvOyMnF0yGfaE5147xeKDqkTIRZZE/0z+fuB5NzHntgpzb5hU
T0YibdzWe4h9J3VBXFJYdhjayYlprZXEPK7VKc5FzOPftLJcjWcHQKhs9bWr
On1QVftAo3HbNKTnloQnRY/Ar4+JO4xuU8FaQ7OQuXEMau3ueDir9MPmv1Jb
dhgEoaqDBzK2iDGgJZYedWNtP3H+iU1tin2OHGN2B8qfIvrnFyfyVMUHQWck
Nrwo7CV6JfT4dXXJLHxK+aiYWzsAGbvUnMvLs5Aps0BVcsMsrGFq3HXuej8k
Ns6W2Cw3omt3zmfMuMzConaXfVTiELhFNBXfJ+bHo6tLSWtYxqHskr2s4uMB
EDAYtZeyIUOrnPdI+hfi3Nzcu9NYZwjeBfBG1v2kwi/VsuGJjeOw9+OfXX+n
h8CY9XCs9ScqeGx4rtu4MgZ79wvLnBAdBuFLH3/f+kCFXYe+Fuh8J/pD3r5E
QZNRMF+qf+rNTYXSVwshWklj8Gxrkf1qtWFgPGNzEn5qgG48q/NnlpgFyZd3
TTgnB+Bnfqz7hfPF6LzynQNbM2fB2ZqsL89Pht+Kdn0bTe1R6gP3WEeinrAk
Hk+p5SPDauXS3GQVe1R8YEEgmLhuot7vZ+o5Aky96VmaVlT4c6fUwa11DISm
pP5GbSfDVd7aa4urHVB5/A5b/Ptar1I51LSIOmO9paH/45v7KIY6HeRJ1A3p
u71RowfJkCPOzeryxgmJaN3nTCP2+/k3nBZbjpOBmYdfI3KzC9q1M3bPCWL/
jlFdzU6okiE6LtPpwDY3pDGknTtL7EfSckRoyTUyDPvc2yfv7onunWvgP2XM
gAWfj/t9Xcmwud9TwXq/F/KlmZ1ep8+AN3Vz8sfeksHsoP9+VkVfVPPme/0D
DQYEkHrt6yT6IdXzYYTOw0D02viqlqEEA4SuHhc5V0XMCxnRQZlDVDivURqs
smYcPDjmjUgTY3BNtpB5E8ckyBR93r/sOgQyw+8C2KhkoLQcZc+2fopEKnMO
1SsxgPPFMxr/4AhkS9+AM/LFSKfEXYErdgZoZwS8HLaRQWgiP4g0Z4e8XtDu
kIn77OB1Ub9WiNh3fytc8jockHG5+eXTxP3ce+35Je29xH4//K77Sooj4kjT
d0ki6ud1zbdO3BJkkLIjWRV2O6PvEaWnnxB1snHuw2VWeTIkHJmzNfJ6iB47
7X9fRNQ3w9otKQua2DGRfUKddkdDZw5rtRF16XVQ3gZpCzKw/dCzSHv7CImm
FXFyGDFgj7O6tWMYGXYKrzvEveCNfkyKllReZkBo93I9cvwEbkzTvxlqbUh/
SsdRmXg/ttJcepKkLuiJHZgweNyBFjXVpW4Tc656y5P4V3pd8Knryrm2VZ1o
0nT3WnkH4n2G/OAfuNMJclZfK+YonSjRZsfuv8QcemN53dCi6QCMfApXfpdO
BivRQXmZGTrMGNl3SIkMwtefjlpXrXshqWu9bbXjNFi/sap6QRqEn6yd7EIv
+1BF6BFP50Y6HPN7sJVz6yA4sP/V14ghwYWAjYZeJ6ZBfMf7wtqNU5BVKLZ8
js8CvWCW5dKSmIS6+32MG8ScYbcpuENkNgxFx7Y7nHs8CZb37dLyS8fg5Xnt
D22h9aiicF95L+80jLzZ2f9geRSUea7TWDsmQOTMhOMqkzHQb5V+WfpnFPgW
rLnW9U7Am7CpxVS9MXDV2fWZ7SMNXohSw9TnG5AQEyvVX5MCoZOzu+DpFJxE
lseioiKQQUgA9XgmFT68y7zPeXkKmJ7+1G7gzYTjyn3jwyQquAU+UdBM6IeU
yL0cwlJhyCpY6EsiLwPmfh95/8CyHzr4ga2/OBhJfgp6TRJlwCrb09u+UPsh
+mjt3qU1EUhw3T3N0+uIfbc0FJaeNQXrh46whQxnw7tR/W7V+1Q4WNR2w3pg
CkrZyYHJ5jkQmpERZQRU6IlHnWA+CCGL5YrMl5JRFyl46FzaLKjc7i9QIfqZ
s73bl9gex6NNESE7932aBYUT01ZRsgNw2bfn2qjuS2RtKdhl8HUWXn3+O/Dx
KDFXnjjKsiN2Ejr8ipjMfpGA5W/NrGPlMHz7vkVJMZ4K78SfNbUR++1cbOkZ
Ca9uUDjmxS76qB1d92romCf68zebsi6wCXTByobymG8nOtFKDvlk3X0GbPlz
e0vQYicMSH2YSDXsRDzuHd2CxLq6qa27RaFvGC4I7mfpi6CCGeuNl0OUMSDN
3FJmWdcL9leZ9JtRI1pmeKmlEOe7SwRp9PHxLticXMUmLtKJbn9eFVxArNvx
F6vYH2h1wZqwGvWU9Z1odn+2/g3i+uahY/M1IZ3gsa/NwLuyExnqa/WHEd93
cmQH10BlJ3yftGtOD+9EbWbtZ/nw3x9Z/AwpkO+BeevTQZv3taDnbqRmd6Lu
DZSW7anv7oHH2hubcm82oXmz6/rexP4Nj13xcNMn5rjrkyWv0z1g2KKZlvyQ
Dm/fKmbN47yFwcm7ZkGekL51nObkRAcbkelkPmsKfD/CqvBV8TFoUA+qv7Sk
Q1Z/ophHFwWSff39HXiew4+/EqacO+jA/u5T12+RCSCxZ9iVxwfDvWEJ591D
NDBnEyrrz5oAU/YyTSiMBAXrzRz+FjRQW+G9qxBIhWOVuW9sfyTAkS8+hYHx
U3DuYJL4ubZJmJfJVfTnfA0VvlPWuWaTcD2SW6a0mZh348oy+2xT4MarpMpn
BlQQNBJlNTWjQMFMctcdo0cQJbtzztuODnLrRC9qGE1A4T1uuWAIg5uFFV92
ZdMgxjSNYsBJhcpDI2uTpF9B3Jed9Z2baeBfUbyleKERbSuii88btcFz1eNy
w15zsPh5ekO5xRRoRE5LfXbJgi+xp6bJFcT3dds9mHeyB8wTi7KkD7YgZXY3
X1aifi6J+zg/i+kGlf3nFpTU25G82Je8F8R6u65yqH5PVRd8fLvPSyGkA+l4
bDIm2zNgQtlijUpED4wPKDx+JNSMAhx3CPkRfWaTkLfW0kA3bI+OOrXv7UdU
GNIgF0LU+ebYuPUVvl0g2LWPU6m1A92l3zAKJNaPnuyQiHHNGFgGLxlpek5A
aHvpt8ZfozDF4wp2inR0WMnERsm0HtYPm+xJpY3DwO0fa9hG6Cj6z5igZGch
Ma/efHwlaxyO2VtqixbQ0dedxm5tW9/DhxFO29q6cchWNQvqvfwJlAc3XHgY
1IYS4qQEsohzWUT11K4020+g9rzrUvqZNmTwJCYb/10ts6lkx7x4J3QVjg99
2tUBG45eaA5A/788bfh/5GnDv3nawbUT/+RpF5KYPFmdG0HC/mIQztM+4CJQ
gvO0eTzupQ9sagaWbd6A87T71ziN4zzt/vdILrS7BVILGFE4T5vCobgB52l3
/GR8efShDSqX8iVxnravnd4cztN2vKjXqTLdDkFDDzpwnjZ74O4InKc9nHL6
T+wO4nMcfb8f52lbz7O9xXnasY8OTxw2IOrHuUU3/HepLse7inGeNhfTuzv7
07rhcahyIc7T1m6kyuE87biedylMnz+BxFy2JM7T1mcKkMN52sdlFjkpO3sB
RjmbcZ52mXLmRpynTdrTmJYgSgJJma/SOE97pbtWGOdp+27SCNUnk8DPWzfp
f+Rpw7952s9lvYNxDny/mO6Qwa5asA6R/CcHPp5lqwDOgd/8QkCz4FodlK6m
/5MDb5okJ4Nz4Hl4b/KmldaD0SPVKzgHXnPoqTTOgW+tZJ35pdAA20nJTjgH
fob55D858MHzc0f//GqE6zl3uHEOvMOK2gzOgd+hbrKdj9EMnGd+KuMceGkn
rpM4B3587V326e1tkJ6ab4Fz4B80vnfFOfCZlLn2xBftQCd/TcU58JLcq/7J
gd9Q+vBLSVAXLC7xTeIc+ODat0z7LNqgo50ku4PzE/z4dTQV58BXzgvP4hz4
kwKOy8bePcDE0i6Dc+AZn9hkcQ783gaHZxn1vfBB2vgezoG32LyzFOfAC8oc
bzFJJoHQitIxnAPPPMV5GOfA63w5lqe8qg+MJ+L24hz4npPf//ELdjK+f53R
roI7nJ//8QuGqY0z2C8ILldKtLKthtbPtStviftQn3jkNfYLhOsEdujm1UCE
pUY89gt8XpdOd/zuBa5zPFZVm+tA03FIM56oD+9H3jlgv8Cy9mCFbEU9eLdx
dWK/oAkGK7FfUE1LO2Yb2wC0PN/v2C9gMVmbiv0C3oeZItINTZDyJ3Mr9gtm
tBv1sF8g1Mz7WUWlFfzPFG/CfoGic4oZ9gukLOjLbfztoFfqEIP/zmj/ATtj
7BdIS7QZFO3qBGGOlnnsF9zVvMiL/QLvjWsS3Ee7IPBryDvsF6RL+VOwX2Dx
yg37BRD8vY8P+wVUXpI89gvSspfi5DR74Z7EFhfsF1zPKBzFfoF4z/wRWTsS
JJ3U24/9Aut88nPPyymgfPvX3XREghc73spiv+CYwoEq7G6Ebw+YfFj0Dk4d
OHkNuxubF1/8lWXrg7SfmZdnIsqhY218BHY3/poO38HuxsucMB2VqkowU+6M
wu6Gi76X5lwmCZiyiQnrQxXs2J4ptfv/cDcU/uNuwL/uBrtLYwp2N0Yktj6V
a6uFh+kFbtjdKGDkWWN34yqPu1R4bz040oLmsLtRqXReAbsbl4/SJuWUG0GU
6pGC3Q3yz5f7sLuRf15vmSzaAnGP7RB2N/pd2FifnuqCEWfla1ulOsGpOKAU
uxuVQhNy2N1QFnHW9rnVDbmLxkXY3eBsZ2fH7sam7VKvk9J7IMRdWxG7GyXB
xcO5gxVwVHPBYMmU+BxVpw9hdwPOr/6TORwPZ/nsVXziSHB1JOoBdjfcuF2p
2IsR63TPhutFIPHG+R8vxkZeWhV7MTItp3VMht8Ca7W+KvZicg8lT2EvZoyl
1u1odAkszin948WE9Vj/xV7MqerfdYJJZXB6534X7MUEpnBexl5Mm78b+x+2
cuhzLOvCXsyhbw+5sBfTzHgqbPulEk54vL2OvZg5W+0A7MVE5JoZX5OvBs1t
OXf/hxcD/3oxF5gUyNiLWWMo0sUt9gHaThtJYS9ma5JXFvZiErz5ziU9bYLc
YR9j7MWYSyyEYS9G7jgTzTmoDbwdXP5iL4ZL2XYcezF0VQ+dGOVOom8rVcA5
q78v6l/EXkwik5hnkcUn2Kn84xH+OcyTDZzvsRfzYPXpTUIhJBj/STuIvRhx
s7su2Is58Mt746bgPrDt+jaFvZi8lgsl2D+SEpVw8nyUBSaBz8j/wz+Cf/0j
R3ZhPewfCdFvXHJjzoOC+a0M7B+J+GakYv/I3rl4tNsuHzz4Xc2wf6Tjc2oP
9o+ykcbLbYcLYSl99QvsH6V4sCPsHwmb23m5XngLRS9OfsX+UVZ4vhX2j3x/
TciL/S6BOxyXRLB/FDFjPIf9o4tvrlpxOL2Hw6uC//GP7q1PD8P+UYH/ep0C
riqo3hSTiv2jcIe3e7F/ZJdyMtJephaSy9z+8Y9qJ1KOYP+Ii7XnndfXD+Ba
HhGJ/aO3emJXsH/EfEykyb2zGWoU+W9h/yiHh7Me+0eOV8p3H7fpBBOJ743Y
Pwpb/C7UxdkM365HrD/PRoKaze6y2D/KEpXga+zzhF/HN+eWqQ7Aab/dh7B/
tEfcfg57XjzOq3b8KYmB2nwbT+x5CbxYK4c9r3BJi73aA7FgYCl1HXte63bT
L2LPi8W+m95wOAHiah1fYs+r8XPbBex5Rf88t9U1JxFeHsmaxZ4Xexx/M/a8
bO5sTwtyT4YYlm812PPq26O/FXteVKqp6pmaVIims57FnlfFw4Z57HmdqxRK
rnnzGq4bCN/HnldQgXAO9rxUNpvt48rMBkdyTgH2vKRDIgWw57VjqL+dcT4f
WD0ze7Hn5eNpwIo9r/N/Lxee9ykGCkOPF3teZ3XNT2HPa00n67RSSBVMqNCb
sedVFzG1C3teZ84pNxxfVQoy2x0HsecV+GnTC+x57akOPHtSsh6EV7uIYs+L
vKNuDnteDrq5XeZ/OiHri2Qm9rxIJ9RzeK3zoVr/c2hiwSDIm/kEYM/r//Lp
0L8+XVw1/2Ps0xXHXCz/zfMaNSdOcmGfrslCaRD7dIy/N0/WJWWiFc1l8f/h
06F/fbqGnP0XsE+nE5H/wUYtH+W8pjpgn67h76Fl7NNZZBXyzGQXocsVG69g
n+7rESVB7NPZjffR7Hneob9hYZ//h0+H/vXpzPbzqmOfzp3iU2KU34Q6mIXy
sE9X//uZIPbpjlzaEe2p3oUuRlUuYp+uYyFFAPt0nLG8q68nkVBFYj4P9uns
uUlnsE8X8DZhRlObgjYVVEljn+6S9LQ89uk+Dxlgnw7pDy7/49NZ1cYfxz5d
d+5P3Z8xY0hq0iIW+3S6fpLbsU/3Q/pb2HJkL9pyyeYfn05bgeMfb3Gjp/+k
b9dbFFRl1oS9RV7n5jjsLWoXzqmHVpWgoS8fObC3mMB7+Dj2Fqc+5g8Hib5D
vXe3TGNv0TJBRB57i/mxXPdI4hVo05G/zdhb5NBwv4O9xcaZX+tSE6uQ/loB
p//hLaJ/vUXBOd872FsUzjwxmdbegOw4v3z4H94i+tdbLDn6MAl7i8Z+SRu/
cPWib1WiLNhbHL7JqYm9xRnRiKdem8bRm+k/MthbrLibwYu9RalVlYsGahMo
WfHPP95i2s3IfuwtflQdwN4iIo0H7cTeolBt1hPsLXa77fBKYppGaolRi9hb
dMo49o+36AFypfmzk0iNc5Mb9hbVGuoKsbfoKjL7rVZ4HLGJcf3jLX4drLXG
fiifBvf++K1VyGeXtBH2Q2smjGyxH8r5x+D5DqtqtNZ72zbsh676EH4D+6H0
4Npkng21yODuDk7shxJDygz2QyN8cuWnNtSjpMZmceyHHr/u1YH90IUbRfet
IhvQcMERQeyHqmx5mor90L/ReZ+1ac3I40CUPfZDXZ7mtWE/1J7U3x2k1450
drAHYD+0bmK3J/ZD9e1sYkPedKGdTTyPsB9KZl4Sw35ofK5++VOTXmRhppmE
/dCCs/svYz+0RutdatDRLvRWz6cB+6Fp9UrfsR+qjcxG9pAnUdPDY9n/ww9F
//qh879MzfVVI9HglUn36JPTiEeMcx77oWEpJu+xH+pStoo/PJOGjhr/uoD9
UHaqvRv2Q003hUq4hFHRtnGxf/zQo1SOQ9i9zZjbr877vQ5R15oFYffW/fy3
j9i91ZBUvC8f+QFJNK1Lwu5tmIryPezeVimlfYn0bER+CfsPYvc2tEXj6/HN
xHMZl1s++bcZcZ3YwHbYj7g/MRk52L2Nuf5s5JRnG8r99k3t/3Rvjf7j3qJ/
3dtP8gbj2L39bXfhAJnY72plcmexezvL9JuB3VvqoE3Lfo1PaDlxdT52bzVC
uY5h9zbG0aH9WVwPmlpg7cXuLUN0JAO7t2n0nLiLmVPo588JY+zeVv/Xve34
j3uLpv7r3h5aVL/PqvMI1a1vwe4tGnrf/o97G7Y7fh12b3sOv/lDsqQjDtn2
b9i9/eF1/CZ2bwVy6uLCbkyhIuuaSOze2ryyPYG9ZobNkVl7tyZ0RIBjBnvN
50LIathrZqvJ6/1wpQUNnJzVxl6zD7lIGnvNinlhzues2hAF6Zlgr9mS74lK
wOMx+HwgZdOT6nZ06c/ZxowwOuRzHt+FvWZRJ39xiTOdyAIeHsJes0z4yG3s
NfOxPjc50d6F5iNerP0/veYX//Ga0b9es2FD8gHsNbvQJA4UrepFP0KHj2Ov
eXSv6mHsNf/RX/wpdISEWgPsorHXzOexOh57zQKK/gWN/JNosffmaew1S8h8
FcFeM+fMnS+7TWlI8ehHQew1k/7rNYv9x2tG7f/1mnnf7rp7ZvIKlEsZY68Z
jTp8+sdrTlu53Yy95vL1lYrpbXSkPpd2EHvNS2OL0thrZsy6toUY09CoGEkW
e82VItqN2BmXu3x/tWNZG+pfqc3CzngNB+UcdsarVVtc2XKIZ3j36DR2xseV
LcqwMx6ytTWDZa4DKWS5HcLOuJ8bfQg74xby/fweu7uQ/1ZqJHbGab+fsL11
HIUvIx0lda7daPwqqyd2xhMnBKyxM34l6e6WoLlPiCuPOwE742v6mOSwM37B
2eOliFUvWhVUaYOd8dP/dcaX/uOMo7X/dcat/uuMG/zHGUdp/3XG2ZT8prAz
Hqhfc+UElYZ62y5vxc64vvoWTeyMh8m7H55nnka19J4q7IzrK3MkY2d8ZVvj
9GPiflKN3YOwM2572dwHO+N3LplgZxxpRvH+44wPRDVQsTPew+YoP/OThj5S
bkpiZ5x+i24jpjIGMr02Em6tHchRg53fkrg/xyX9JLz+joLTB/b+1R2diGXP
yBsvYr3ltt4/+jR7FHLao4TYGF0oZCxebYG4bxdFzgr8PTMK5HXRKyy7PqEI
5oMGV1LoEOCpV0N+NQL6TD3yl+x7UEjygq9FNh02vWeS7HwwDIGJbm929/ai
/KpgkdESOrTc4TL5sGsInve3Sjmo9KF2Dd7Fzg90qLzJ+Zw5aQA0FS6WcBWT
0XAbs30RiQ5jIjtlzWkDkBB6UF3LdhLJd/pkP2Afh8H2i1wJN3ohm1/Pw25x
Ct1/eED9Fcs4FNn+XNMX3A5rTF/6HThFR0XC/Iad68YhZNMcI6axClp37/xY
sGUapd+Q+/CFcxxIca2/No95gVTqjkcVN6bRrGUnj6jgOOxbCvW5cbQc3dC3
FHDePo0Gnm6aHt83DuSkkemQ261ox8ZTzfm6dMTY1yZgLTkOM+W+3tjzyt8z
ax7+twOUWw5twp6XzJHtl3BeephkV5hOQx061nLnAs5LZxLws8J+2aETTONn
Q8rRhT0mvtgve/7hwSR2ytwqV2fxjY0iLZ98ReyUbb9bEYy9J+tvasxbiHOq
IObqVuw9rQ137cVuWs6GZ68NkyZR5ybef9w0S/KjC9hf+/tL/2Ds2R40y3td
Aftrp+VjdbG/5lCwoELWpSJRvm+XsL9GNXWhYMet63gguxqxzjeWi23Djlvb
y5pSi+whKMkLH2xfoqIzeWqXuxhjcNYz4Sp24q6tHiMn+ZCRWB9LBnbiHr1h
VsJOXEhG7KxmyyQS+LolDjtx5xrcZrFHsy3LiZmypR7WIXk37NFYxStfwR7N
Xs+qkgrHOki2PbofezSJbWctsUdThXZuohDzq8/TuX88mpAn46yufCkg0ubJ
8Wh7H7gdUa/BDgiT5vhV7FtldDNvqPj4HL6OJp7DvpXAwA8J7GE9Ojhr2bQt
Eond5FDFHpaMwq1X2EWye2u1vbv+GfAcMlTELpJjbUIT9q08L+xl0EQCIcBh
8ynsW/1fHhb618PipPX+dBMlw62fURuufQ2CE5HOr7Fv5aIvroE9LNb3x+L5
dF+hxKILpdjDuuK47R32rfqj9olWxIRAJBp2xb7V0t2wRexh2QSWzA4dSEBd
m4bCsYd1Pp/HBvtWAbHN4+6vw4A7Y3M79q2WyHucsYfVpevZ8pU1GRV93y6C
PaxIb8Es7FtdPvvbrEolEoJcHf7xrSL5FG2xh+Wd/oo5zD0ddT2YK8Qe1jbX
vazYt+JgHV++Wx0NhnHpu7FvZVy4fxh7WCcNVRsLv7xBvwfzGrCHFXDp1loj
PzJ8KVSa3tcZDycUrtpg34qkJ6aBPazk71lxyaNvUe5NGXbsYflNlOtjXy+8
+Pjtt+opUL6lQg37etvZpndgD+tRuFpoZQhC77TW2WAPy/oVpRS7ez7HLfcN
CebBvXx0C7t7Q5kZc9jd28CSkJYQ2AEzOtwM7O7pRiW1Y1+Pj1ddV3aoEqQU
FEyxr+ciPVKOfSX3gff+MjEDcErV8h72lca7zv7adIoC7Vs9pM3E8tG+9Lhd
4a500DWZ+sdBc+3fpiMuHIG8NmT/46BFrr26ZgooYDQhYGXWU4Bs3O/LyzvQ
YZ2QZ46fKgU8DTl2zn0uQs/5z65NMSf6nKHzjs6aFFi/du37wbISJOJXFr6O
6POFox14qfoUgKwbe0YT36NLBR0lNkAHBSO1QY3bFJg/rzUngKrQh/S+1ZZ8
dECs/mdkiXmtPZ5HLsGrHlmWGu682U+Dk1pgeESHAs5TYbefLbShiPzCNvEb
NIjuPzyB86LNeXSUvGxqkH/hwWicFx1lKe9nxEqBECs/3Z/+vej3SGnHDqEp
eGOdoofzezmQ0E+fgXrUa1Qjj/N7vaZSI3FO8sU3l/+4ug+j7/n913FO8s2W
0ATsKr4pJy+mVVFQrI53K3YVT1cbRDB+VKInB2uc9l+io90b1tdgv8z26RVO
7OKdOSrUr7eejs77jv7j4rG12f/ArlmEu02pfV0P+shL88GumV3fak3s5cXK
VK5bfYiGhE7WHMJeXljJqVPYOxtYbBcY029EP45V3MLeGZuhidp+GWJes62N
j3POQ6zjN2zGPOgwYiJsgvOcvdeu1E8WU9CTfDsunOfsT3t4ATuSewSrNdok
KegA785l7EjKGWh2YN+h8shuthStSXTzEF8p9h0W1GiHXuZlIDONON1TQ3Tk
07kvHztQ53lUl7DfJ0NaSRWeG0OObA162O/7v/Ko0b951EM8MZKvXPJhQyuX
1IE2CurIE9bFedRbHDQXcG6zhfHHcHMTEjK5Xz+Ec5s5smX/8Yz+P7buO57q
//8ff0ULpWQktCikkpDtXkRISSoyUigtyo7K3iRZmdmzZCsZj8zsvY7Ncc5x
rCINlfo9H71erz++78/v38fF5emM++PxuN276H5lNlZc5TU3iVJPh8Riz2iF
k+qFHUM9JS0u92s0JHlBdx92DPON8q9hx7BYg7L9zRAd2XyPXR4yn4CVuc/P
sWN4q+WAk441HX3TumKJHUMevm41PO83jTYh6V/RjeKVAzPwvN/e4Bf8eN7v
+uDPqDS0B/12fbcWz/tdXmskj11F1sk6+1THHsTc1jWIXcXpNo0d2G1cYYwY
PNPagxwj2v2x26jkEs+O3cbvHrQmd6VedNfeQxS7jd7xV5yx2xj0e23f6Voq
QrbRY9htXHiKfmJH8umcJmtSdB9ibmp6hx3J2M/Agx3JLXeU20Mk+1FlzFV+
7Egq5JQ/x07HTNrBuvmQfmS349th7HTsNfNow77ky2WWIFIlDYWX3nHGviTL
+eFa7I75Cly2O3SKinJvOuzH7tiFMREu7GweZjjSonipHfl79i9gZ3OD1y82
7GwWiaewVhW0odTI5cPY2dybMaSLnU2zS4siEtv7kXzyZDx2Ni1t32RgF+CN
6UCHV3s/Yt7VzoRdgMuGUR+wg7Z85fxm4ZV+ZL6t9o9UGx1Ua1Jb8XzjL5Lv
b0bfmEI75Ck78XzjeIuwJex1DnbeWWCSpiEbIQ427HV67BG5hV1Ov+1eb47k
0NFvqe6/Luf/uGnoPzetmf9GPPazXpkG+7wxqgPjE4rPsZ8Fn1r+Om7SuWnS
zmz9kBIvqoYdt7mUivOcZ8nQw1HC+31tOrr/ksNyyYnIscFfNt3SJe6LfHPm
IbVM5FD3clWZFXFvuqTuSyT202rS+cFDh1+hWD/fmTgzOjD8/kHvI+478/f6
xUYbcpF1+oFPqtp0ENC5P2YbRga1yVn29835SJ0b2fmI00HM0mMNHZHhVZn4
5rdMb9CQj8F2AwbivD1Jcry7ZhIWqE0budkrkPL5zWZbcqeAs+7nSLn5JFgk
nf4zJlqLsqIizRm2TYFjgNldBUYKWKhmjx7a1IbWfLnFRfTZwFPrH19ZTYHY
ZokOgd5uNNJQ8DGe+DmlEXkp7LOEOx84/G2ChqxeX23DPgu8NgzC/malSMrN
ZD0quuLgKYD9zfdB6zyxv6m52Whbmf8IorKubsP+JneDOVP3jg7wUHS4ONY8
hVY7vRU6qDMBR7a11H+4H4/usGdgbw4JH/SXwN7cmMy7zditq+qzEF+jRUHy
vkoS2K078K9z5/KPc4f+c+6UxWV0sK/XWF9esu90B0o20/qNfb2np5X48Rxs
7c77ziMJNJSVyVyD52A7SmWdxk6rDecGauJhOhLZ6FGKnVbbucst2Hdg7SiI
djsUiczP5fVh3+Ft+e21BcT9EuJGbTpbE41E371/hb2G1N+6bNhlCMxN2Lfp
0AvkZJ2jjF0G9rZVN7G/YMwuVv/VLhGZL57Wx/5CC89kInYWqE0scRGrUpFV
b+gW7Cz8j6eA/vMUNE0uhmM3YYpB+Aw6kY/2h77IxW6CkLpnP/YRhnIyvBpN
36ETYnLq2EdgCzqUgN2cN2O1FYrfh9C25pgA7OY4hacryhP1OUBRdFiXl4j6
RHI7VB8Q9XnRXOygKRmMBqpeGbolowxGvpMjFnQY6ZKb1bMlg0a/e7z4UCpq
KNGP7LhCh40j6c3DT8jAK/fRdmZbJuo3EdwvqkaHon0RC7xFZNimpa6pVJuN
nnn1u3kJ0OHG2op4789kWCNZCSlh+UhFuXBRlD4FhjZDZUcvT8JNpxX95d63
KNG8KFbZdQpgFC3w/56E8ym89/RbKpGMLD18qYwGqXkPNP96Z/Rfynkp3Uj2
/SM97J1pnFhriufBiswVGonwFKHnNb9d8DxYj+FNTniuPq/XlFTtzhy0Rzww
F8/V5+bqf4odNJXH71iPmo+iLxflZbGDltUW/dddurqf5929iRY06inrh92l
i3++82IH51H04ELcgWqUqilFwQ7Ox57dSthjOjx8UyReuAydCpoXwh7TNFXu
PnYE9M/43ffP7UY+nDfssCOw9K9Pd+Mfnw7R/vXpZLtnCrEbEiO9j8klxQfd
Xen964aIrjoeiOfqn+ExlzJt9EWbtNd54bn6+1N2TmAfJNTshTwPpz/q2J3C
kH2XDn1e1ok5hmSwObYspBuQhCw7hSjeNnSYbi05gufw37E1CnIODkCJM6eK
8Rz+L5HkXOyGiCmbnzZTeYLKRb5txW7Iw6tuIp9vk+HoSvAbx6gUFDd8X2+r
+f+Z24/+m9tvKHx7AnsiErWDf153BiOmlahw7Ik0SBze0OxCnJNVRt+3XkxH
vishRUUX/s+cf/TfnH/PYMFF7IzwrC+2VtwYhnY+SP1tu5MOImd/3z4bT4Zh
N7ChHn6JpHWUNjtJ04HxmeF27AK8k33FwqoSgTrK6/uwCyB1Wf6vP5KuWihT
tzcK3cubLMX+CL//kmUM8XzLPaHidW65aHeOa1EbkStYM6JOYkeg215lU+Jo
LBLqp9/EjkCGy9mX2CWJit4cd4ySgBg+u7JjlyRU/euqncTzBc4VubScKkIv
SsHSq+z/uAPoP3fgg/ebv16JyfrCH8VHM9DnF9J/vZLO51XLHEmTQH7adF/e
rxw95fNInzk0BfUZHxuwH+HV4/mxlS0b6Vl4//Uj/I3ikgTuUUDMrEmQ7lqL
tGnzpUz7aODgn5qE5zOfVSbX73c/hgZsS+oftlNgX6OdKvaqfm129RB+TUak
yxFr1h4ig2DuTW/sf9nGiySU3qqF8IL679j/ykYqitj/2iS/7gkDTz+Y7vT6
6389Ld7213s67xv27NHpR5CRIPjXezqudE8Muyr7Tcdln4rkoauebB+xq9Ju
/bBCumwQdoqxbNP5kQ4xrctu2PUO3+ExfpPo4zbEO59ynm4GVpaT7djp+yRf
nht/ngxLVEsv/7kEJFr40Pw00V/saXiyH7uNiuKau9c3TiLx8X0HsNuoEN/e
4nOuGZmO0A+MPZlCK++UTmLHTajc9K9j5Vz24tjd4bfoQkxjJ3asWv71gPj+
8YDQ+n89oOMNDT3YfXvbQ/7hHNKOFKS+jmD3jcO73RC7bxvGBi/u96Qj7i71
Uuy+yWwqdzEOHYT9ryRb4lsLiLxREofdW2BcYsKu2WXNWdd1lCHkVfvkJnbN
kros07F/Gjy299xZdgpiJLuwY/+08zNLGZt5CxrO/dTwZGUK8azmHNkcMQHd
TuNN2FmTHhs1+jlHQSp30UPsrO3vmDzoWkmC4LwMGVFaLUwXVXdiJzeo52cM
ds1e2Aesn+CmooDHvH9dMxE5dhPsoG3t/RkzwUVFGgLWLNhBy9WNMsZuWplw
FtoeS0XhzyZEsZtWsMfyDPZr9uyzVCxmqgVPrquK2K95/Y6LjOdv/16Id92R
VoCaX5/Qx/O3oxkU7LErJ9fr4Ovg2AfRkeNHsStnYzexgH3G8dy0TH6fcihr
iDuJfcbHZxi0sZcncInBLjXOGy0n3WLAXl49RXEO30fhhfIklagIdDExUY9O
rN8RLrr4/hMFDsxQu7WeNaD7487p5kRdrRp3zK+1IvrdhRNdec4taO2XqPSA
cAp82pjBb72OBn623dbqr6oRb/Y1+8mXFEiUiFRzGaSCh563U5hfO1on3LKF
uX0STr/PvGSvTIM1/L0VjLadiKFlOWrnAhnm1X7aPNkyBYGt54+puNWgy8UO
4nV2xP3ksGMQO2sPpmzebuDpQuO6jO+ws7Yp4twf2odauHVnU4wfM9HHaZns
xH7Q0Oj9eOz6zUgd1RoIpSEGue+u2PXzPVOwu82gHRQPd46KCxP3jJFXwUOi
7kctlR8KcQ6h8u3RDKY+FLRjM4PxPVbiPL1W9wg7bhqO378G6o6j7OjIN9hx
u3nxWxN2dmQ27bmU0DmGHgru+IydnXpLxJm3dQg2ro5rrB6loHM6/TLYrbs2
4b74jWkMxP7Mhnz4PYgY19cGJpFpcLhhpw+eY+xlwvz90e5xFMCxWx7PMda6
eD8a+x1bmd3mY10GkO/sbxnsd9T90poSgH5Yde565fZ8KkpWcejCfsFWb8c7
2DdZPif0ysu1B+2n36Zh3+Qlmd8Eu3XJ6xSZvD/3oCaPhxnYrbvkriGFXR5t
R7ZxRVoPSts9swu7PIwiQwvYv5v7ISDyaqQXcX1dEsL+3cnqq2ew7+MS+LB1
740+JOG0Xhb7PlVaAlLY/0pgOmKUdasf3XOyW8T+l9+qPg/soInYNbXMP6Ki
a+JrWLGDFrGVVo39mrvqr7Ffg/r41whgv6b6Xw9lzz8eCnr8r4cS4OW/Evx8
EN4UkcRfJpDQCwW9JuyUfUxk+4GdMsP+n+EPeqio15rRDjtlKQnHfLH3FK/L
Qnff3w+8j98uY+9p2KpLt4qrH95zaJrGhFDRjROD+39JkSFOjC1xo3cfrP7u
l3JpmYpYHMfH6qaJvOHssGBpXgJRJ3n0niXQ0ajy1Dc26gQ8vGkwhZ21uh3h
opuZO9BO499Z2Fn7Hx8N/eej3Qiq+4gdNyPjSMcS5jpg/XWwBztu7+wrHbHj
5mtooiQt3A8OlpV/Hbdkzxgh7P/qCvPNdc4+gXlt2V7s//Yvlv51VN1cs4d2
GT+GRyca/jqq78VanbBPpCi945lOw0Pw1jo6iX2iK7eRPfaCUezqCzyywRBs
GimFvWDpUgYy9lVNLizaKra4gINtWhz2VVW9reywI/zrWydvRNkzOLO57wn+
+5btXxP/OqoJz7WzI/XcoHrtzb+O6v/4wvCfLxzf95qGvVSNOUtJXm4PEIqw
HMDz1V3uHV+N3WGunSTayFg4jFdsbsPusHHeQg92UTee3iHcrOoFIaw3xbCL
alacwIk94q/5Tvr2o5FgUTQdgT3iG6u0HmH/tHL31zMXOXzhpaaHOvZPxdh7
/jrFnSO+iZ8Z4sCDye+vU3xWVXQjdk7Dt56VFZkKgCaZM9nYOf0fvxj+84vp
4TQN7JkaPCI/p/UFw74uxhLsmT46yR6HPfcLrE9+RRtmQEqo1FHsuedfZ5vE
3ui4/GV1TosIyDwV99cbXWF5/wd77io1e5qH5N9BYFGNFvbcbxgZ9mE/sXPs
puy1bWlQVPGcoXJwFs7PSBtgb9fmyIFHZ9gKwPJ5nxf2dr+36OwNP0fs7+o/
PvtCE4jzEI2wOdMh5+x1OewGsnwYy5VMpyBl8f5S7Ab+PCtOxp4XY6KPWXBG
L0pyjmfHnpe4gNoK9rxmTRNZdO/0oW2ZP7/d2TYNE1cCDmDPy2LRVfdPbh/6
xXS7BHteSsufr2A3M8jD9t41tXZ09v4TaexmCsbyLmA3U+YY24QyCxXl5xzR
wm7m//iG6D/fUMZxzwR2VdK9Z6OuhZPQ8ds5AyFyE6Cf9Vjx1J1eJP/zzeFR
Jxp6/qHVZ03iBLzsecalcbwW1m/w+tPiSIJQgWYv7MinyS/vwO729puPsgvD
+uB4+qYf2N3eqbF2J/YcJ5wmFHQaOkBxeV8Y9hwP6RrrYA9UjpK73iwpFly5
M+uxB+prdCMpy6UXri20lR3TrwFh0Xt6+V5zcGjvgRTsgL+8fcuhlb0SUG4j
M3bAr4azupzq7YTHbUk5Kp5F0NHQcrbJfh4COvMbsb/MN+qtVjRWApst+hSx
v8xY3+WI/Zfic4a029z14MKW4IL9lxPa95hMNg1CdYWGkCVHMZhe2x77kHhf
K7kx1dhf/lOQ6nehOwsKfkroYX+Zn7nmC/YKoYRDSlLAG9Gcd1Zhr1DlQsOH
wzZUODctmMu9uxLVM8dHkq9TQSKHX/mlKw2O7I/l94qvRZMeyruCNlDgWA5/
rYZ8MYqZWr1uYwAdPT+wLxY7et6dCR+xQyqYd2LtYuEASj9acBo7pE7ssSew
C9+xJ5AvtHUQya2e/OvCd4kfadwSTUXSL3vPLTwiIY3gYprluwl4++Xog3Mq
RP4bMyq5faIT6d+REtd/T/Tvvs9MFbdMoTqd7hC3si50nd0hIjNlAt53nvYL
fDSFHn+911GZ3YG685PX18VMwAY4vRNto6MN8vZOqXebUE7ltXRP4vdWXFq0
x27duIZcx9UXZETpOCSD3bo/WYfL9NO6IOVl6Cnbg2PoGDNMr2klcuMt0tuO
M8Mwm5xyPEOKinaK5q5OrhkHLsNNAtjjtryjcO8O8b6jRoReYY97i53ZpeTg
cVDW9TVtcqagI++YGF71jkKJndwKdn92P84R2yXTg5S+j0Rh94fv//V0kOS/
nk7Q1ZJK7Ez9ZuHYnMs2gKqYFz5gZ+pSSM5G7FzrDu4LPe/nDPp8LnrYuf6h
pvbXrUaBDwZEn7tC+KmXf91q/+RvEdihvltMWm9zyB04GCIcsUPd0fcuGLvS
Uj+6KFW7PCG0b1ULdqUNemI+VWuSIC7wII95uDckfZjZhZ3ofA25v+7zFhmr
5aBuP9jnfeqv+zwuHTyHHeecb1kv1ayDoEzqWhB2nDs2BB7F/njZbxWxwU2h
4MhWEY/9cYMn/ivhZ9tgy5sEJ9PIKeQi8CHDmbgf/f91PBv+cTzR5L+OZ+ne
W+bY8SQtjVkZ36SizOrbd7Hj6fJx6xblh0NQXSkjPU3vQxGWqqMrTNOw8+zH
XI4HNBQz1MM3q9aLTs06FLW+JurKaGvtrHgP9Cy41ysFTqKCavup07uo8C5p
QsN+phb6Cir0uZd60Iuv/hmrg+Zgo31K53JEI6hOXOQVJvK+h7zZZj79GRBa
qa/GzqPpJbszheFTiGvnIw/sPG4wyd+Jncfe7J17NBRoqDeXieH/x3lE/zmP
PIHG4X0CI3Bywzr7yE1UxOfSsWPpBf57iOmU4uBeEBY6IGh9oh6YnI9HYz9O
N//VaezHiasWkXcaIbjE4UrGfpxLRoFncgUJpubWFZs0voSgxllR7P6s8Cuy
dsp2QvBxoAw3TyD+E3c/DctPwdBJ7VidN2Ngkr1ti+eubvR1a7e8hBEd1C4n
mmRwjIIV54TigFIfeq3XKuF2n7gXnp/agl0Dw9p7Sk8ZBpBfRw4/dg1+xDlT
eLl6YVTqQeB+IvcuiEl/Wts3Dkl9pq8OePbD2bHcktXVNHStVL5lNmwc4OFA
xBvXEaBuaV7/+FgvOhe5b7mwnw6hYV5dmwqHQSxCNKD3Yy9KPBKe3jxD3Asl
xV9no4dB80vJQevWXjStZ8556QcdfLP8eLEr984rLHSWi45aSaWXsCu3rSBE
Jm+2F36LUl7fYp1CtWzfbugUj4P3gOanMot+sOXVuTf9kobWpHasFJWOQ+ZC
Ld/viAGI5K9TmhOjoeWnObMN4ePw/GHxIvbpjIerXNeNTqFWn09z2Kcr07vW
bcbdA4l3bMe6HaaQcdHGDQ5vx6H/M8OwowkZ7LT7PA+L+6Iab/s/gnZ0WEz1
7Wy3IkNxSWpwR7M/ur17vErtFh0UIsrvqPiS4bLq4QcRskEofT3ZrlmXDq0f
7l5xzCLDxh3CS5Fuz9DIiyGpKXk6GPu8O0YfI8MTY/lZZs5w9F3lVb3FVjqI
r+ui6cpNwkfJI4+rxqLRntUliic/TEEdzfS0QM8kVNjmKYnfSELuTgmByspT
YKKQYJvUSgH5+eE7vU+y0L7JwalDRB94XEWu5eBWGuy8NmF3wC4fXfeU6VjH
SgW+J+N2tFkaROnpTCQpFqI6jut8RtxEn9ilpHzJmQqZk5zUYwc60KHF9l/h
7BQwLGkwSJGgo5di/TyMVz+gp5MuzGLdE+C6/QoJu3iccvdYju/vQcCbtYRd
PHOH1N3YX/NR+3CjcncHOOf+KsT+Wp37mULstdn+DnNW72mFrw7ICHtt2a8N
FrCrtcxfmgr36+FgW+1fV8szJWJfQxwNTr54sJUxsRBx5u76qHWfAm0FU19W
v6Aht7Knig4+3Uiqfd8A158JWDumqeSfTEd/BK5uPyP/Hl2LpBh4F0+AweP9
9Er9cei5xn1n3zoK6qo00qZVjgG7NblUInsYNo7NG96eoaCjRq/Z7hJ9t72f
5Z9oQzKMG2un+/P5oKwK0vUcRzqIJu7ktb1FhpMXvs6uv+OHZjyydavv0WHd
zZ/6cw/JkH78/c8yk0DU9i70uMU1OpxdbRnj/JwMlvy/a16KB6OrzV+sRk7T
oSm1gH6jigw3XM7+TOAORcP61hFUYTqYq9soyW6YBE4pvka12OdolEngwGNi
Pw5XbB3d5TwJez42CXUIx6PEfO3+8aApkONDMxUnKWBP1rRwZE5Dt7VjcsNG
aMAsoMIfakGF1mlOtx95OciB+a2KSDkVxovensA+8hcV1xempRR0/nnRXx9Z
L3PTSGzJPDzZeJxZObIIHZ6KTty2qQNUzCN4spwpoFFhcvLusQEUpHZxDfk9
GeKHmi+tVptF2UFMM5eelUPVScG+MMZhePrGTAf7etubfj/k3dkBscXbG7Gv
Z31YyRb7eks/ddInbTqBFkxPwv+Pid9jQyp20Hy4jA3W9nRA5K+L/dhBu9E6
aoEdwO32EflCdxrBmJ3zJ3YAXbgvc2EHUK1bIVOQrxVGpPROYwdwX6yQKfbX
Ao+4Lik7NMFDo+lr2F/L8dv31xmUmI3xYOuqgRMCz69iZ/CZ2zM69suKjZJq
Up/UgVDr6yTsl+U/an2893U/tCqrL2072Yl6tLsHsrfNwgztpsWkPQ3es/GH
U/K6UWb4vrhpfjJkG3pbYa8N+ZUkxNZ1ANMVDivstQnZ1Zdh9+2nV9Re/epm
uC7oooXdtyvfdchX8/qIfUNbKoipggTlF43YN+fr2j2GXbYC/g5q61A1DMmq
MmKX7T73J668tc2guKdrv4LeB3C13P3XZfv+wujyuaNDwM97ZnHv0USQpMrm
LRXOwiWbhYVolxG4fkmF789BJyTkxL23d88sLBzkyZ1aTwcfq12PUmLbUSPJ
Ky11F3FvlrKlYe8p7ZlbmUdVDZiVCv71nhq39DKsau8FPa6gz59e10BPzp+H
2I169cffDDtQZaQ7Tacne6GSongPO1Dxo3wcFV414I3MhT9b9ELGhx+fsSdV
rmIQj10q69qO6fx7NSCv9ZAXu1RNL3fSsGM1v7H/1LaaHnh9YU81dqxkd+lk
YffKRDfwiVVSNehdrZTC7tWJsh4qdrV+/CzoltaoBoqLlxR2tTIS+M+572kG
w4HUPbfiukGkawsV+1l+NzIisM+19eOp3dR91XD/wQZO7HMJc5NkscMl/7nv
zlRCFYgUHOHBDtcn1bIrRx/1wRuOH6J1XlVwN/fgzwoiL6m/s03E/tcxnZdW
l4i6llvzfhfuT6d+7XfG7tixHnFFh6NVsBRYEYXdsf/xxeA/X6yzUyK0n9oN
0l1WWkiwGWRiInIkiHoe457eh705Ucf9qb/2lkGUcEM/9uZeZnq4Ye/M4VKU
akfaGHry0tAfe2dRlMsfsac2rrA2IP5gJzK7tL8Qe2rhhXmiHtrjoKZ7+USr
aAcid17bPuFCB96nv32ws7bwe5aiIN6Hjux3m8HOmtX/67Wh/7y23ZGvlrEH
92VIv/TLdBuKjuk5jz24ZsG1YdiVe7wnemNpYxtiy0lLwq7cUM2tRezEHX+w
ZMrm3o5GbRHCTlz+3r0p2JvL53X+EX5iGv2RvPgae3MZurbG2K0LyVbpUc1q
QzaO7erYrbPc849zZ/+Pc4f+c+66K+U3mDiOw5T9ze6iX21I4+crV+ziWRhv
f4rdPQsno8zT3O3ovGqnOHb3pE6Yf8S+3q8vPNjXQ8wT7n99vSl07Sf2+1Rn
f0nE7m1H2vYDvNjvk5wfD8ROn0nOVbn7+tNI5quZE3b60j3ZNbAzdUOtY9Fl
qAb6ffjnsDPF8T57d3xbNax4GBp+Cu0Fjvv2+98SdX4otcgyyaoOrCVTn5cy
9sK0VzlDnCdxf/HUbRdd1wimAShC/3APjB94z938aA5kTMuzBrX74IKZ/e4v
X6pgtLNCuuDOHJhdHAy8Tm+F+UurjoejLsiLOnRujrgfZ6bYOEpS++CRpb3H
+r1V8I3j/U0t4rzSlK/6jt2o65M66jEbaiAho+8kdqPcRrr7T9/uhJV7eYFF
qh1whm23lh1Rz3ynyzY/ud8LH48rjpYoVIJC4H4L7B7uXmYx5pEYhxvCwp+Y
GjqQRf+BDg/ivlPUNDwxSNTDYub2HdnDxOd/IOpxH1EPw7oh6jtdxqGvUFGz
7mA70vXoE98RQAdu2QfxxkQunnrmZsBQ0I7WckWcYvaiw2i5/Km672Uw9txg
sJZvGmVolTEc2jsBdxLaDFe8x2HQZM+2e6/a0M5DlzOVQulQItqRf8VvHC5e
+z5zN6cNSV4cjrr+jA4JiYbXDMrzIOXNj21GOtPI8kTcHXeiTvS81tQm24+D
etu9G8vr21HU0qW8PKJOvl0qCeh7NA4xF0s5JSltaO30yuemcDrwnOn6c28k
CywUe+6YE3WyNch4VerWCaBWLy9LEfXcre1ncWhXO1Jf/bHUgqiTIMlry/uK
0kC658ShRaJOWmp5LjFu/z9OGfznlL1+9v2vR+ZrkUQe+lgDOUWX3mCP7PRL
Q8nBc+NwVLfb+OMmMhLmddfB/vvXb3Ii2B07+WtXz1EhClossebC7hhpkrsc
+2hjW84snAkj9unhDA3so/3nrL3/x1lD/zlrdHPHXOzxXTDUY48TbUcuzQza
2OMLXzGnYH8tKuGXLJJpRxH31Guxv1ZxZN8Yr3sL1DcpqD0XpKNXMwKrNfUn
QKbfoBj7aHsLRfTXrK6FLek772IfTV2u9lfUjXHYFTdzi1G5HZWY+ahhT+1B
WGp6WNoQyDqKyqXyD6Ne2/y78QlTMPPB+6+P9mOOi7FmDwW90DffgX20xr0a
Vnq+XUDKvmJdsXsSld1u+SA/ToWrSE8V+2j1w4bJZwuqwCVy1V8fTTJVjB37
jCpOruzV5rXQHZsug33GG6oL17CDlmW98FhK7AO8Mcj+66Atsieuwo5V6o2e
hLeOfWBtz+GPHauvvttmgzwqwZM1cfTt1154z8ArgN0reZcHXNjJat1323TC
iugzzmuEYSeL1YnkgF2t6Oj55MOSvdD66ts37GpReT0lsc+1WnIkx/3+e2hn
+PLX57p331cG+1w24cLzD8Lfw5x6ixX2uXyVNz/Gzlfdxv67K2PdMNysW4Od
r83N1X99sbDGDbdlmSuBQaaiGs+n9Vh4cAl7ZDZPMosz3lbBLdGYPOyRMbp6
sWDnyFnQzMyarxr6AjVzsXOUHr5dCTtHrnIc32PEaoHvGVcBdo7q7TP5sa+U
EFFmbCfZANrXff76Sn+coxawp5axvFn8w6sO1PZEvQJ7ajfZtVSxv9Yce7SW
f10zEhXia8f+2k6RDpDaMgFJD8K+yvI2IQf/gcPZxDlvQHs+gZ2myUOTaW+T
WxBnWc+t/x+nCf3nNBleivTE7huvuVvdoNY06qjSd8Pu2+JnWyHsx5k+4tBz
6GlAaajvDPbjTF61F2E/7sd6p93pWo0otUdpHPtxj/516KT/cejQfw7dGFdS
vqH7behMLD66SKyzSzobYbfufmGT2ftzoYg3IR87d2jyquNf5y7z/uJj7OJF
i4jWWV2cRuvTzmZgF+9XTPOO+fIKaKRo2gmf74NbVUrrcf1ILAqJ8FyuhRy9
77OGSkSdoDaBLd5zYCQ4ZrOXqQpufl7ZbjbaC4ysw0NGRF0NBhUpSBN1Ighi
u/+4EnWSremxSNTDWZ0Up43BDaDOutSjdqEHJPzimu8Q90K3Oef2L8l9YBBg
3+J/sBIcyGslx4jcsil5/nTjsz6gku4/d52ohCY/DtMKIoe4Vif70HtbIeTd
Sak7jV2QfWR1kzbx/NozbEbJH8egdmvI1dPXO5HOg+rZBOJzO3jkxXqvdiL/
R2zYyrnQg+ZXJR4dbKOD6TcDW+x/BZx2Hii/3I10Bakl2P8qM0uOL2KYgN59
tz+t+tCEXEtvMjERdbKZcnTkYsk7YHWQ/8YiPI2Gbx3nfkfkyTt97quo+ybA
QkGWjbm8AQX3vL7FQOQEmuCBUJM9EyA4UeYYs7kR9ep9Ztj0hA73fb52/d4x
AW51GlFHHBtRmn1AW6k/He6uqt+ldvYZKMadUIkgvscD7xWlo4nv1916ZAfX
9Sh0gUdT8ZbRNNLzucIptXMC0sa+uWPv7ObUxiGf1D40v7j1JPbOhN6eO4m9
M46ALDnOgn4k7v1QFntnzGdEjbFrto558J2yRz8y5g+/gF2zEicpsr1IF1xp
TVNNd+pEo/clGrAPuDacf8vRhjEQnj3s0NDbicrX6/idD6bDKtvjadgZ/OX2
O+t9Yy9qWCg8gJ3BZi0562d6XaDfHraSNNiOZAolThSfI/oRZp5V2Ed7tZn8
zrusFqroyQ3YR5s8J7Ife3OeE/dyOWn1cGG/Wgv25pSVREexJ/j27YyT5b1K
kDW5/h17glQhthPYE/yz7ZvZPEsVBKW3xGFPcFvooCz2EH8clvqRFtSJmH3Y
vLCH6JWp0BZg3AdGI7FVKTLV4B/ypFSeODeEG6s2GMyNw6HjPXJWfc1oaG/c
rkk3OjzTz9/q/mEcrt26XW1o3orY3ZUd9Yn9e7+GefaD2zgwlW/6dOpmO7oV
Fl78gVgvOlvmhr2zPYx8tbssG2Bzuv9N7J0t8nYcimnvAR6GyvHDaQ1gKpx+
yop4v3G7vRveu/RBlXR45GaLKni2MSxm9c05EBDjyvxzeRzCPPm/h6/uQLeK
hG8NEa/nF3sw583rdaCeyFg2z9wL8ZviXpI85iCkKz5wmaEVhr9rDJdv6QYH
fUZbZqJPyZC++qPMoA+GHCpJYVrV4JjBeW078X6tLA4SZTMOppe8WRyWmxED
Nz9POPF8w0zRrQ/SxiHr0oGdC9FtyDZvTQL2BMNVE+wt53ph9VONd07Xa+EQ
LEYVEK9f+7FDBWtoHzRuO5IS31cJFRoLk1Ti86cGdOaExPfByzpRMQvjSmBc
anpBJr6v5hkXXqfbqcDZY3mIZDiNWH8LrOvknACNefvHo/IeILf5oMQ2M2I9
9CDTeeI8rLiis/JjQyfwygkr+Gt1QHSR00ZZoo8WsJRLT/naCTuDT+TR7rbD
l+fDsgbEfrchbREusOyCkbgjzQ8OtoPjH6bGPKIfKZB5Ql82IcO143zFFaGe
yKLjusOyLR06/Lsl7KzJQIk5ouhT540y5R5/2HiLDnufDzPs8SPDDc8IL7tC
PyQudHabjS7x+Ue+HC18SYax+NoT5MonqKJ5k+wVeTroXwzTb54gwyHN13Ef
5p8hXxW2lIAtdFjcZ5/loDgJWs5fwrWGItDz8Xmmktop8DGoLgoYmIT0+wO9
lzXjUeap64uBx6dgTeivq8f7KMDksry6OTQNveI/fkZLjwba8qF/SnloQN1b
fOiIcQ6qKRdcHcRChbZzAWzZUzSIH5JZ1mDPQ1Yczn8uCFOgTH6Hc0gtFXjr
+Eh5ji2oWSi531mBAt9vpXYf7+1AXXHZYmc2TCFBiYhPMYJkuPNFp7rEmo6S
T01u8JypRqkMDVFH30+AWMpyr3LjIDzdrEU2YepBgcysQjd6p2Eq3kSl/fMg
fLzmrLBntB8tGeuny36lA5n795O3zN2gERF3QMiiFexWkR7tx/8PvXraSYmD
BN05TBLcbi4g/FgwyZD4vswresxMeEiwLpTzRP9WN/jmu614zb05SLXuOyvA
T4Jntxa2CSS7w8ngibzTRB7wlHp49vYhEhy7OcizPsgTLup9YVtL1BUl1ovp
ghyJ6FOWsoQ/eoPn2VOjc8S+YzNWSjihRYI2Nunj59f6w6lvTqaPiH7hYN27
jGE8j5GaWmioHAQfNbxc4g3noCrKUGldMgkKS/1DqNdDIF0oV/g5cV6lUhK2
NXANQMD87zcc66PgyBFd4aeSc3CApL/yCg2CW/YXKdbTL8FCrbVvfcMsBD88
Ye3+bRCC9Mepn0+kQnqMxO2Y97MQZn30t6nmIOTb3Pu++kYx7DTg3vKydRbq
NwFbGb0ffoWT1mnfbgPTfAshtluz4NprmqlVMgjrAiIDok6RkOYgd1P2LB02
bH8wvCWdBiafGPL83PIQ3V2NQ8yKAoK/uAf0rk6hV6X67EVRHWj+zHTNldoJ
CCqqWgOVdDSxYMCYnFSK3DruJje8moCegMS43SrJoNAb93C1LQWdF7YaDCqm
wZahP240pQlQPn6ZVTp6Eul5MOeXao3B2qwMhXaFIYjR++TmpteHpqp673vJ
T8OKb9JpXcYhODW+myXsWD+6fp2P0ZN7GiKWJldvMiKDiNB8CFeyB3JPlLLy
Ifopg/5E7bW3ydAYubv0S6wXmhZa3RJ4jw4M0UHlmY/I8ME/fcN2fl8UKCr9
Ze81Ip8zq5u5RZIByH6WG4ICkKP/vU9Wp+mQ6Ef+SKkmw1m38CYpxWAUOu50
WFaYDioCBgHxTJNQVlJcmMAehpbkxvUufZqCL3lnsuTcJyHt0P1zIW7RqF/3
VWFH4BScWqWT8fY0BZLd/9iYoCTEMv7H79AgDT7VC2T5O1BhmtyedWYmC0Uw
SK96VEKFXOUIvvcyY1CZKhDOIUZBJ3c4lpxIJ/rwi9uTRHgGIZ3b338rYzfi
oQxsz5GYAVFfdeHsRhqcN578M8eXh3TtTi1Oa1BAuF7gzINxGlw8YZdW4/gK
ia5iihmQocCZKqWarowJdEO285f5+gk0fOKrZNa7Cfg6/4xlb/MU2n/eel7R
rhn5cFvZLM5PgG25Xb29Hx1ZbntZVaVdiVB+/NXnjROgzZ3CsdxAR0d0nja0
z79FnBsWeb7kTMDcTBrp2zsSfHo6f3shrwtRH8wG20bOQDoPx6RS6wg8fZvy
4mQaBd3oZs9y6xmH1wyfWwWMyXDMOLmgJ90DCZcztn90oAM6sI1kfp0M26cj
tuqHeaJra/Ne7LKhg9otnY3ku2RQSOEIiXjhhZa8n943tKDD8YfpZWN2ZFgM
Waf4p8EbWScPCN65QQfvdT9Ya13JYBHBZFi91xep+bRJ/TQi8k95qNauIDKI
BkxOVeb7odkUke+ROkQe/uI1nfKCDL8/mrBG+gYgNSnPzBxVOowYXHIxKCAD
69lyDZ/3T5C4wdWq68fo8NHMwN+/hQyjM+PrBmSCkfnRppyUPXSwkQh/wPOR
DAwxbSccZp6h+LP1UL2ODhpKBnpuOybBW8jqyeUtYcgo9evDAPIUnOM6scij
MwnB4guvnUkRiFR2YKW5cAqKbT1W+OImoU1lZJOjazSSTon1V7afgiMPAl7J
rxB1aHl9x2X1eGRy8Tl70N4puDmv16PiQAHGowvtG4uTkMH4ahuWQhqkWYRt
/c5Eha0Dlc9O2qahuwlaq+MFaZCn/nzXOWUaqHgVHig4nwzCwZdm3nyiQIDd
Uu5ubhJwC0imx9U7gGzh6uQ04vx85w9WtWwkyI37ue6grjOsO/hBlE6ct95G
OglmOVQQVh2uvfYqC119K/57rTsVugrC7y1VUIGeJMbCm9WLtneK6wYS9yJL
tqyzxeFB+K48VnpsVQN83C3v3qo+CxZ7HtQaf++GGS2jrfQZGsrwT2tkfjwB
jl5MBlZcZDCa/RnvZzOOfO6UrRXuI/JuTYAk1WsUiqyFudnuUlDZ5qIjgU3j
YG7pvLVz7yhkIKb4LU8oaFi7ZvZc2zi0PTt+RY9zDGzj3AeLLuWhx39+qVaH
zgCtsvXRSOowBHCffvyRSkGxx3nZqUQuf3FqwPTL/UHwV59tOsFYDqWNOt7q
r2ehNthSBM/3Rsz7b7efpyCfxuQITiK3DYjMO7sHDMMhnqQCnyUKYvei2Rwk
+r2Eoz3ZQVo0qLjvwFL28zXaJ3xxWqOXAn8SevjcJfvAxDxq9+viTtC0Xcwg
nZuFzJCATL/1g3B19m6N/mwllPivM7uTMQtxEWIdvZfJMOITwnS+1x15c8qU
rX5Eh/ZBylsPXRoIq1XbFae2ooZmo3uqbpPg+qigYZM4DTK4y9iKVzpQ5Y+A
0U27JsFolasWr/AQaJrWe38e70EGbBL+EDIN/V92DqhqDMHHxQd0Br4+1KIB
Z3RUp+HbuWrBadow3PJ7y+NKoyDH91pdPbRxOG4qUuZmPAjcf7K5qWQSatbO
W/NlmA4Zdal5y7wkuNRUZqLG7AEvHH7YRVoS/Zf0jivr95IgoCHxYvuAM2w+
iJTTiPvXb5vaiX7iXtZ6ocEik+EJNUlPcliJ9Rjn2PJ1wiRQ/dqzMT7bFWIe
vYnnJe79W1yuN5MPkoBX5BDL8DNvkO698YeLuK/JWZ2SbWIkeEfvok2LuBN1
qmZ26PYcHCqODj4kTYKE3yf8U6Z9oWfsBqMbkYfFHOfTjiiQYFzuxYNVPz3g
6fVzO7KI+/2Ng0MO7RQJIoTUvkX2BEDlpeY3X4lcWrDZNfqqJgnOP1/9YumY
N3j5Dv/RJNavx5was7hCAptGycXh5Kcwc7a/YMR4DmT4QjZHXiPB6QfC45u2
+cHs5lv7won17dfyhHTciNdz5mdrv00IRNqmmMzpzoFxkm+wKrEeeWyzacVc
IIQbvj7lokf8/NUkYzlEgqRslVHp4AgILDWaz1afg/W/qxT2FpPAVF1i3Trt
Z4B6PRaeac4BqcdNzvzsAGjn3lFRl4oHtR8L0CY4Bzu2zLG27R2A4nXKfAxB
xHPyzytFic9BvmfZBZfgIagIETQPup8Pq76njjEGzELap6pttu6D8Ias9/aT
SAp49Mg4Bg/PwqbfMieluwbh1tCRP+tO5wPfwc8ffpXMQkmK3Zit+DDo8iYs
pDFQ0fYw4Ygo1glIeJfwc+vsEDzPXi/gzk1FrPz3G+O3TkBouLSaT8wAhEjG
uH54mAAxhZribRxz4BRTuPQmdxSi9HpZqeQS0BRuT+2JnQGkf79vZ/wYbF0e
M+aqaYK3Ao1dk9bT8OGoB1cx8XoMep9Fqpi+Ao8Mlmt7q2fhc0vlB887g7BB
sOv3ObkceKP1M0+ENAtBjY6banTJsORsybupyx2dj42rC3tMB+bPX+puJg6B
32FjlVBEQwaaTgV3F0Zhe1JS+/vJcXCU684avUBBFh6yx1HAKIRcXK+8czsJ
RlYU/iiauMLd6D3ipThnVpnq/95JgpJBif397W4g2CDqd4yo/4TS7joKnt8r
kPp1zt8D8ue+HVYk6tmzGNk0i5NAU2r3nrEsL2C5w2IdTfQ76XtadA1OkuCH
zfT4LiNfaAgKUpoh+g4xlvXnKg1J0C4qlfftcwCo8Dpvdrg6B6us7SzUPUnQ
2757p2lQMJhpCy8HE3W1Zv0VNuZ2EjyY8JHt+R4GYy9/GauqzsESZ8EOxpZq
cHjFf4NxfyfSaBeL6VObh6j530Kz6RTg9OI0mGToQq13LtTvCqJAie7v3uCZ
QWjNk90xf74HJXyarzNH00CXdSg6+6cDSpwDy8pOdcDzkbJSksMchL/RrBM8
2QmrT+/1U9vWAesVBs7TbOfgZ02mRfDbLuiGLiHgboPLCogdz4vmvPgxgrmq
B8C14IhnWT3w6eWEp9jMwdugioU3xLkeXLVWJLVqEm0Uzym1Juqg5TlD5OML
o/BRnUHdIpqC9tuFc4lljsMlhx95x0SHYIYDOFjO96I0d+dLqo7TMDiUdGeV
3BSUxoc88mJuAZ7O6KqIKDLEvpeY3Hx+HHj0wvqSayZRxBntc2k846Bw9fCF
fvsuEFjerD0x3Y5+eL174krsO5esc/ute+loPpYq++rzG7SfWm/XnzwB3osb
r/orjkHJnhfBKkR+87njVR+fNA4CT1ge0iSGgCJ3+7OVby8auivwQ+buNBy+
+fNCGEM1lFAXe76wjsP6k1wz2WnTwGuaXhkX1QUcW5KVVkijcO3Arhu13+iQ
HpLb3uQ0CFX6ZbczQ0nISbUNZU3TIfcuL/Plh0RfIDc/65xOQg1iP4+8oNDh
h0iXpGTyMPzpFQ6vm6KgZya37CvXTMDn6gPMNkl0FJ7WkHzk3HtkmXFw96fi
CYi86L2yvH4IBFSvq7eb9KPnkgsLcpunYay32OWePhlSK3K1+GU9kNwVhT1+
D+mQZNFzgkrkN9dfVdb6XJ5I//slKV0iv+mderJpoyUZTqxwisUd8kbsG1g4
bO/SQazXqinUnQzx8YGJsxO+iGvbSEWAIR02fgrzD0okw8CyOe+JyEBUErVY
c/kkHTL33HE17SRDxjEbHu/1z9AWTQHmXD46yP26btC1dxLEu1nqs4zC0W+2
vaoBQ1NwqPJSsffLSbA/QHt9pSQW+TaLLNvfmoKOmafl54n61VggD6UHpyCl
7Oz7T+JokLpXdCq/kQpsLJ8N40Sykd8FVS4lUypE8X9k5e6lQfmLr79KKHko
JubZgSA5CtRdFmJu56Wj9VYHb8y6NqDnz4Pb2z5MwLN31h8rbtBgOGuG3yYv
F8UfPBc2VkIBmfGp6AvVNAh7yvD8QVkmqjyrTmYxpsAFW9fQz5upSMCBD245
DKLw6eKdp7KJXG2upK17gwz39DIUDmz1Ql6zjwpMrOlQ1WjhoO1AhkQr78gr
93xQjMnnQ6eu02HB+vOyeTAZDDT6FX6E+6PMmrdFddpELrUKEed6Q4asleeV
05ueotG9MebXxOnAUr9n5M4XMvzIlTYb+xiCMhg9nfxX06GjVoCZ48ok+ORz
71MJiERvrZI7L7+cgoQ3nQFdrBQYTTuyQX97IgoWI/Hob50CSRZaif8+KjS+
ELzZUpCB2Ei6e+jMNFgc/cfn2v6PzwXi//pchz5YOL6+0AF0m9tbfL91wCGb
VOpe7AYGmedgd+xRd/VlzbI2aOBbSMHu2Pf8Gp3XlzrhqwcSO/unHdhjDHdO
E+fGfT3eSoUf3fBTi7XbblMzfJ8P6T5P3OMapZVF7/wHIfTZbuuOxG60Ilo3
+/3HNLRenZK5e60D3le8zt7Q1QFLTYfWtzjNgcdBrlR2gw7QE9y0JEHrgHeX
G8uzH8xBNasmlaufOH8Mf3y48LIRJih9Ou4X5kBh+FhpBA8N2tatVTvLbQzT
UbJZX/ZS4cjDm7M3v/XA2p8xRsZnOlDsK6mC8vpZ0LjuxLyyvh8o2zSt+DI6
kNYuseLrRK673qn1dmPcEHSIWOgdz4oDfdqvnO6YWWh6J+uwsmUEuBuTN784
7gnJ8cIqp2AW5OwdA5j39sKW/JRvdmoNoN7y66CG/hxIjQYca9DohjnzK3X9
Xi1QNDIxspXI4dW5j50kLFuApUEs3nENHe1Q1ZN7FzQBlKfzrGxZXWBSKGDG
zd4OM27ljAeIHLKVlRISsacXxneFaD683Agbfk6Y6J+eA6N1czMxqt2w4/01
9qyuZjhs5HKo4yGR30IjB85I9sDOaKdf9eaN0D5rprMLz69O/Xktd3cHvDZm
vaiwtRNmNZ5otRKf89lwJ8Er33rh/LYUsQebWtEru7ZQ76lZWK3xIQvNdIBY
ecvE4uN2cNbor3/5fA440geu5u3qgo+fPAquzbfBatBpoDrOwdpZluinpH5I
YzuZb5vXgXyDB9iD98yC4WXOUBLDENwWjzi+b7YPsW8VItcfmAYFECaH3SFy
juaGPUeMu5CNYnamzuMZ8Bb+OIQ9ndP5r7cseFHQ6RDTbdjT4b7YqKNcMwgL
9b2XWnzLQCho9SfB2Fl4SbIWZ56jo8LomB9nHfOQ2h3UppQ4ARwofRq7XTXN
sjfOEvl/ctb3G3a7mPJPvqxvGwM+K/ojas0HtPllZY4RkaullsnhG9KHQdXR
T0mdQkHZhyH27toJKJq+/ybVdxASWaXkSw1ISKTGzaZkiQ4zch+G28YGgdp4
qzCnNB8mO2LjgopmQWH6/DPsBy2etBNyZOlF5ycpe7AfZLbhWYTb/iGoFhMs
LfzRi+Ysbwdb6k6Djg3X7a2lg9DcKLM2mtqPsnqqHyQzTMPrwXUKTzpGYNZG
emxTFAUdr1hzn4PIN9EvviZ4Hx+ELL9dxz7NkdDFaO9rL8h0ONBIVkzfQYLP
mXKWeyVtobrSY8sVIuco7bviyEjkH47l8YNfrGxgncebpY/E+rmupvfYfz+T
5axW0GQH1uw+hmuJfb34Y3dRpRAJ9s9qHX//zgHMbKbLzhH5J+ztYOMmERLA
J48wp1MPoCnkjXgHkefflf888OUoCTgTc/NqWJ1g7F7Llh1Enq/hLFv5KUkC
F4v5p91VTqCvW/rUishLMjbxnhHHSRBH/7Pv26dHMGE5v4GfyPPaE/2fInRI
MLNUPp531hV0OfxNV0zmoNx0lKfxHtF3VATEj9S4Q7j/2K1WwzkIavKN3/eC
eH6d9QyPsTdcvaVPDT4/B+bCgpHHf5DAf//FTMf+QOgXk904pzAHxSd/i55n
GYSMEZf8b5cjQXm1qtTEyiwcWXXc5nPuIMDuOLlE+zTIKqiaq2ifBcG8j/eU
G8Yg/OaTzfumJ5HCht3bbtiNw+G9o5rY7VqzMn1pJxMFwc8FXex27RT6k5Jk
MgxmnabfB75R0En270PdTBOgELto9117HK57RdLpryZR9eYNfdekx2Eyd//d
IO8BmJUfP7bneQicp/ZEfeCbgxUh+7f1W0fgXsHA07nS13AnweNY/eFZOGhy
LG7mwjgMFV7J9BavBEbt9oy+J9OwuVjY4lLjIKi7s/dMSydCxOk1UYqtRH6u
XJh3KB+EXWfuhbUMJcECGcy1ifcV/eyTR7prF6w9mn1h5yk6UnLqOcC7fhy6
j1BVz2iOwyqVL1OPjKiIR+6IZeX3YaAETnu+5hiEPQ7xchwSA0gvOYtbnOgf
uUB3pIDIz7wrN0ddA23BbcN2BleifuZWfZD5sY8EZlwsN2a07YFB2kJijqif
M/ZPR6P2k8D91s3bxdIO8K5Q7kw9sZ7vyjR9XpQEV/ecDWK6+wAs6myGqET9
ZG+JduU/QgLJDsTjZeUIFzROvS8m1mUUBCxfypGgrpdpXeH6hxA+UuotTdwv
u5wyu2vliRxu/iVDQ+QRGJgezfpG1NUv1SXGF0Q/OCp48bTGKWdYdlF960P0
g43n5AoPniXqiulemEicC7z9/VnjILH++EZi06HrJBAwNt0nfdoNOud1XggR
5/BZuwLO7wEkiNl8wddDxxOiJeMs4y8Rv7fykPfFLhKsE7hw2UnND043by+s
IHJ77hmHRe9BEhyuVc7fX+YPXF8uiQyenIOh4G4ziV+DcPecg7vVqx6UFpgy
uyFzGgT+9WVM/vFl0ON/fZnKZxVt2DVT+LRqusRmEs0VP5HDrlm7w+LaQeLe
+D2VqCihQ9TV4WWzHTpj0HFUmHXk7Ag00x6WNJZREEWrhxz5aRwO0bUvZIuP
wMB6u89GlRQkO2Pw0f3rOJTEvlXecnAMGosit2yTI+pWV3upLX0ckFSTD+uj
Sdixb5whR56E5ieefzrBTQH+kzdlH2gNglBJeveKRDc6amy53nfnDLyOVeAa
JvrILQdghHaN2C/enkZ3WsYgUyX69bY5GpGjPwvz1b5EJ7hvnS48RAFJu+L1
UhU0iOldeZUp8gqVkveqZV2jwMPUHSM7Zmig/jnAVcI5E+13+0xuPEqBT3+E
BcbMaJAXdSr8sMET9PxbxohCNwXqfxa5VFtRQUc/cnht4AdkVJ36RnUjFWTS
twVe4B1HvYfZXy0xklFArEPooDQZdNU+1py/MIU8TETdNuS2o3rB/fK9G8kQ
sb2pquMRHTn2PzbabVyJUtfS4r8MTMA7neKpm0tTSAeSrc6UNiByo26+1fcJ
yHlz4+2LODri81jT+WuuHK3YuJ32bJuAL5aCZeEf6GjyrmjhB9M3aFd3iKJ0
6QQ8em4YYTxNR484Reifk/NQl/fFRb0U4jkHV1vc66GjTTSr1nz2IpQeOM21
vWAC9kc8WdGsyIPTU7GMdqPd6J4sww85kXn4DcpHqd6joHJqwZv5NgU9cLo+
6N8yDmqrbl3YaEKGRwFsQYonXZGz6+OgCTs6qChcnVp3hQwNLgvkLHcXNOrh
Fbv0gA55I+pqO83IMLpJ75yrpyvaJ/GVW8OWDsIaaWLkm2RwC3txHjtWa67G
3ki8T4cdW2KcOa3I8NSQqe/yiht6tUfTX+c2HRT1vtdeuUOGag6q4KKRG+L+
s5q/xJIOhcaSZ9htydDr5ba57Jw7OtbsX7L2Jh1OvNt29rcT8XslOr4ZbvJA
IiK1qrkmdBDlPtC51YcMky6RWRYqnujsosJRvct0sCbbtcQ7k2HuolpGy10P
tM6Qh3XCmA4kFQdn7wAy1Jyf3SVS5InGXryTIF+kw0+7JysL4WS433HPqLrQ
Cx0V9H1af4YOv6/b+dlnkKHz/TOHN9d9kPhSgeI5oEOCjWyJYwwZunKMxCWk
vFGkW0DhA3U6uLAop5nnkOFA4bmRQ0y+aA154fKwDB3ShhWDmhAZkkZWR7Z5
+KEhg5ITnw/SQZ3mnuA2TIb5lCcHyNyB6JWY6VcDDjoMV1dqRNaT4bpW0gGz
U/5IPJhn9co+Org6tH1tnCKDVjhsGuR8gkLfDntcZKGDz7nv6z8wTILMzceZ
xjefopdiRotxX6fA9XbzFk/JSfBUFud16nyGVvS7XFlbp+DCvQK2W2yT0CbA
opJ+Phh5VE38qJyegqe7OEoT1CZB4nXWnFdyCDKOXXqmUUH8vObDpwH2k1Cx
q2PmW3QYig1g1fzxfApeGr2LsGqahLkSBuZdJyMRi8rRIA+tKVgbY5Yd8HQS
8pnruDe9DkenxOIkh9yngOuO4Z6xmUmQ1hp4eOxVFFLnUziuLD4FXaz7B6uk
KXBRTkT/E2McMnzzeej3PA0uMDbKNLynwJE89h/nHBOR41Ard6wV/nfvlsBa
Yt+H2MVW97e+QDXT97M6G2gw2XWl+fcCBdwc0a1a/yT0YmbEpUKJBm+2Hxu9
a0wF7cEaT5hIQT3sxyQC+6iw+PzuavpaGgRsjbGusclAFy8qPt18kArKuXE6
DuFU0IsX1t3FlIa+i0ourUukQk1CknQlhY7KPLMvpF/JRwOzJhaL6ROwMc9m
XrV9EGrjlRQcRHtQxMtysYCWadDu6tCQshsDSyeBx1ZsFNRyvryKFDYORq9P
jpQTue7GF0mD4A+9SIok9/+19uXRVH9f/9Gs3CiVKVMllZSUTNlKqYgGKYlK
GZLImDQgEpIhJeqTmZShRBPSQSHDNVzTvYbrXhfXHEU0/97vcx9rfZ7v6vk9
/zz9Y/Vae+2zzz77vc/rtdfiUDxO9YPJvV0frqd3wO+4Kx27LLuR/CXbOloZ
G0pHgmc/U6iHiG2tmWrinRCh9n2X2b1e6D91VGfBxw6wGSz7Vv+wFh4PzN2r
cK0f9P+ovO/d2wq9x48uZTUzEPPF1jUd3X1goZbN0HzaDiMucf5JXUQ8G1O2
wnSC9waKrSffI6tr3DTTqrQb3ZCYzCDfI2tbfm+HrDoXnGfJxDfceoJ0XAKG
5Ma7Iev8r+yl97mw3onvjfj1dCRzSNXcLbgbINfn4u93fciYlfJs6ds3SFln
s6Z0YSecFR6h7DDngNtGySSVRd4o4MBvZ8NLfcBafsHUr7IVUoxCvPhy6IjB
0ZsfPK8fGCsaTY4c40COkG7UWKMXcrA29uC/3AcTrbSVoyeJvpHoFPxd1gfV
CXUr5V7og1LHonz/8xxoDxK8vo52DRVyTg8H2PdBVUnfz4LrHFBp1RGyFbiO
Vlq7j6881ge54UpbWMkc0Eq4fTtvYQBqm2mSIL29DwSjI5WzmjmwuvnMo6zo
YET9Mf3MH7E+oH57t/Xl2i4oeS71Wsf2NrK8ZdIr2UTUs1rOwNu8Lqiw1egR
DI5Ce/2b1o9a9ILakd2VlY+6wfOgsURIbzzyKv+TO+cmF9wUGwK7ensgzG+Z
JrMxFY1drOrP0e+BH0+ZWjI9XGiNe0UP181AL67e/Ny1qRvuO/r+em7dh37e
T5izdrQYURX9K8fZnVCyPfv4IaN2OLZcHJb97EaSSaEHewQ74dAVhauzfbkQ
c9/thgwlHVHMgsc2pHQD56RrHieZC5qjYtPmpMag0LbIwF83uyHFb6WIJp0N
M6K6U73US0DNTUJhbFY/zJ5UOOqYzUW5pSPcj031qGyyRipYhANvDTja7aYc
8NBy4a7Z5IXsvryexr3SB/SI2BORthzYgD4c+zrog1Le3nyU4EzcF4n3w5Z6
cmCu+qrq9y2+6K2o6jwFqz7IeNfFL3yHA9GRbj1Njv6IeX3Mfdb+PlDaiQK2
5nPgkAfd55xkENqz3Pdj8IY+KHpjMLn1JwdSnxSw5rwPRRnL1aJyfvaCLX3z
uld2XWDaXzI5l3IXCS8KNEKJvRB42kfebXk3zDrPdNi49CF6cWfVfjH+XtB9
MzkTthN9QKX3wcC2ZERLrB4NHuuBhAM3Jgw4VVBWGHKcOVBD8NUnHblyw4Tu
WaVmv54GemZrPwutrIM7rJhTAe7ku955wY+ZdZDWnxZb7FEHViPmagUEnk3b
pLXRrx6SKzvWy16rIfSVyEfyHStPTr70sqetMOTMFcrubEB5f4JFznT3Q2AS
R4t8vyzrofwpw3+aETWHs598vww1JK+aPM2AmaaVFA93GhKrPBXB7RyA0gu2
M4pruECdnLAIs38JdOaiG7Gbu0HnfuZE2HgdZF5fNZxiUQcMm8dN5HtY/FuN
gHw/q/78UPaYGqHL19PUyfez4t/tHjMzbABn/2LlgwlU2PacVdjjQOzLN2CJ
PbcButdTdPwXVUFFV/XkPkKv6T838Uyq6oFxfe0S95d34G1wupmYSw+8kpK5
tXZLO8z6Z0b2676bkK16dpLhMQiX/WwmSoVSwbdg2xpTtz7kKqgxjA4TfCJZ
ex35PrgDQ99lXSsbDUcMVJHvg4vIa0Z/De2B8wfjHPjCmtCzXsmTg885wNQQ
rS7p7oA/Oiz3J8tD0db4d7OnFwyAaay0lcwEE3Torc2vDDzQ+PGSuav5BsEu
eb7jrhdcoJRnZM16UYnuvC7Qzj/aBXGz7jq0nuaCkUZswKolH1HsDHXXxl9d
QPFPo/y+x4XbPiX7BhNrUWXy7KY94xwwLU0vrjWpA656XdyMr3Wg4gG6Kh5D
MLZgzuaqDBpsyxLd8CGzFpT6VpgLuA7BN+dRpU2t7uiX/ZIQLVMOuignKOx3
tQ+c+hpSWIBA+KQzI2pvLzL8pNtX6NoFyoffBJQL1MMtxtI1LN1acIza0EP+
/ojvw8KJsn1NEG7pZe5dWwbW4XI/9KyHQJC7WUVooA7Y8tGzBM/VQX/VhuJ7
xDnunPaPIfku1Vsh+t5r0hUgp5AqQr5L5aVyn7kspQEkgzUPK9VVgbl4/opQ
4hxH/rkWS75H9mmGyZuFCpWQGe5SSr5H9h/v9MHUO33cxYdVDcUYIGjTGLmQ
6gplo69GyPdr9nz6prZYkgHUEuPI2DtucBNV/KEQuHez7KUMOQb0VJVxvbdd
gDbHXfMTyb+H4BOombeDAbqN01wza68ClVM+qGlD6KynyVEhRxnQ7eBoIsny
ATvtsyufWRLxeJgbSXgyIP1S9Z2aUD9IyHuwushsCCxD63S7njJgF7Vtj0ds
AKTQ6kOajYbg2jE5tVbZFnCO+fNz2DcMAlv91IY2DcF3w5IRrZeEnnUdbwq4
HgfaO9H+1Q2DMFImnnMkvgUOvfr4hk/pLhwTSumOXzoEs6yVJINqmSB9hFKd
PJ4NRT7jsjs+D0C285uzG6QZwLK6zRdr5Q59B7xmnyZ0q+HnTKUAW0L3mZU5
Vor5whufB3Wxx4cgpkdN4FMYA6IMR+INjvhDWJcO65XJELzobtCD/U2w087+
UG51GdzvTDDeRZwvy8pxGvmO87zlr03ZZrUo61GhAfmO88Ki1q79nXR4I+P3
S0CKhuQaZjUdpAxCoUDhQfIdRoVZ9ixz31pI0R/cRL7DOG1SIkpbvAEeH3pT
s3BDNdgfXfr7AZF/yYrHD++OtYBovY10ZGIJyAv7ulP9BqHkx86ntW2t0BMX
bzJ//kvoeRPbJJk1CFmLW4Y6c1tB7cs6judQGiQKUsc+VAwCuqM/V8ysDXbO
MKps6IuC19aps+oyB2HMweLp12310Bg/zSdBqBbU+r3K24i+1y9bu5pBrQdR
Y10BSnc1dP4s4dQSeaPaffBQy6bDUO0jw7U/6pChom1tkNQgHCiycdjc0whs
ZWMlX4Vy+FRvOqZK6PEOL/XPtSWNQGc7rtMMLYck95xR8veMdqalPq7bRXxh
/bZzR7uocM0ppF3wej+InZ/gFxdhgZ29lJ1tdA1scqC1kXh8bsTBxMwOOBVo
3Zf1thYEwg4xSPzV0+Nn9kl0gOJsA62O0jrQYlQ2krhTkV+kgT0TRgvFpblD
NOj6YNpC4m0KFNEvke1wmtt1gn9zA8ypNO0g8ZeBopLut9tAzcSoeU1cI8x/
9JtJ4r72BV1GB1ohcpmkqK9SMySvFG8gcdOLqRaNJQxo8dTbrM+hg2V9Hfa/
+tBxOeG2ZhBatj1ha14LvLVdjOM38aR9cfRqBK9TXTOl0togX6gC7/cErcR2
RRQNfG4HecbGM4HbpI39yLeIHM9YUw3tXE5WCbBg/+dlrSRukD452tdfAgk/
np5WorDhasw7nAfmb895zLW5MKp9/tSzRDb8UKVhe7MHG7b5pbNAe+sTwQit
CigdPYHXtdhVk3zLlwXs0N18X6orQSGkGePrWWoGoQdYcCdQo9A/jArDct+w
n6TW+bbnlrBg5PnFLZ7+NWC9SaYe+68cjs192AHLGJu7b7bVQo6dFfajGHGj
e98AE3p3LZtkiNFgEzrUROJ3x8+FJVOYMNJ+s/mVdz0MssywvfXm1V9Mv7WB
RLn9o1WLGkFx4CHO29769vLI+60QH5JF30FvggA/SbxfA2Zoy2QzAzpMtRmu
tXQwDt+L7RcUDjlSopohyeDrfI2JFhjdvRDnM+9ktFziiwbYEr+yY/3WdmBn
auHz/UFVOmu4gLh/6x7NcbnWAYNXvPF+Z+5XVFOVL4d2yyEd7VIWnD6wE+M/
a2eqHNhUAKJrmHNQEBsOfbbB8dw8OGtHzkw2rIw0E3Y0LoV5VWxePYSJ3NDn
smB1gMW2ttwyENwni9e10adfe1DMgn9mlCYP7C2HpapGOP67SQ4ExWNB8v4l
7skixLl4n2/GdSta/+TRcRY056UklopTgTEvANtrc+odUsRYwGy/ki9mXwMX
2EEsEn8nISFud70DFrIkQ2lz66Do6Dec//qHM2khSUxI1jItMIygwZNDAjh+
Xye5JDGvdkjnkygoOtJA8DhXOonXbnofd/9bK9xDQRr6p5ogScgRn9fCFfkM
0VGiz6e3uSi9osMKL14d/pDlfjBSaQbVzCobTcNWSPJ7ivNWcqa36qx/PZjP
1c0fEWCCy5gXtj+k8CA83ooKxW6hhtaHWWBQMID3pRbvetvcogjuOwnJ7LZk
Q3hZGbZf8cetsseYDdEWp2KslYpBczsTxzkhkda/F9iQv2X+yz6L98Af9gfn
ucHm2j0deTboVEc8Zr38ACO1O/H3XmAdWnB2Nht+i8hlO2uXwniGJrZnnFt9
bojFAouelIcDfB/h8E4rHA//oW0z5bJY8FBZMchOsAJiq9/jdcu6XUDZmQVh
nYofE5yrQADlYlxu6ZMZ56RYEHTl6I163Rr4eJqG60HuBVPf83gHWKeXROza
VwfLPqvSSFxl+/A0tiITJE5sUa3cXw89mRS8bkR+dLOYdxt0TI5HHn7dCK9X
cDFeyjois2lJC9hJ7TX5E0oHCxlDjG9zKhyNvNcEtcu1J5xqWuHPPDG8Ln+U
ovKP0Dqo2Cha8EujA35krsf2rrRPE3LHSuCZjuVkuBgbvMJ9cZ7jwryW5d5h
w22XL/0CafkgntOPz/FhzsnIqAA2GO5cJ594owDOxH/F/lWXJcxBF9lAeZLp
ovMIAetnNLb3UhQVMbZhA33MhK92XhFs93uM81PSIqwlvo9N1LExa/JCMZz7
sgXjn32bOQbKbGiMlrXVl/0AgW8bML4xoj5QS4ANW0WPxVVIlEKBQyk+r6dZ
4RXURkKnJ6w8nHz1I3yXY+J1T694P8MhhAVVX+acemtDfEfLfXGcidf/2a4h
z4K2jsisZdNrwH2DN8YpmfIbFhH3iFll8+XdZXUwIDyOcRVTu5fBO9ph/ca9
/BppDTA9UQXXf0HdaYPAgy2QtdG4Wd+IDjtiudi+fPhEtsvVRgj6J125lejz
wgkpGO9VXLpW8GYleFSYtxcHscBbay3G91v1V8x5z4YjISoz+JKyQUfkBY6/
UGCGnXsBG/wu6wneGcgBlV8m+LxeOC7/df8VUefRC6NVrF7C2jheflKeHL0m
8JQNMprzIkVFX0OIzS78veuZvGldk8QGzYJdExuX5ILUCmdc/1LnFh5dFMmG
Y/zqT2gu+aBLCcfrhjTumXnSl8h/WoCJmv47ODDEwnHOE/WxZpxhA3uFeNnx
zkLQkgnF9renyw5V7WDDnUTZxHbKexhasArjOYkz9HMXsEErLeFnenMJRARQ
cZzj9E72uQIW7B6Jfn/TrxwuR7/G/j+khVvu3kz0vXiJC07Xq+FG3QjGMxd3
vk/2JfrVwEvmuo802DxtG/ZfOzm/501JC3ifu2ehVNMMo/8swfYX3c5cmPed
BlKGKgO5p5lwMjsb561/4Bt1JYsNUWD1KaQoEWJnzcPx2FJWBecyCTwkJHxY
KBmoeaLY/4n9nzdMtrHhm2dxV2BECljKb8R5e5jNJ1/SwgajpT2K/gdTwfDC
LdyfPWuHLnxtZsOETteQvuUTENgdiuPpiRvea9jAhmr+u9MDGtMhPd8Tx/Py
8spQ2xo2WDh5rLtU8xRunqvDvMVA+oFWykc27Ln0y1UPnsOeYjquN53DvaNf
3rGhzbm1PyMyB9wax/C6lhnyG82z2JB9cF34wZRXcHuOLl43Z+nT0c/RbNj/
dP24NC0PensdMF6s/GUBvxMbDA7tFPc9WwjDhRfwfjdfGjQWlCbOV+/RMzOR
EuhZG4jth+26TSyJe6eFUnVVdRkVZstNYjxuYVNj/EQrqFvP6Cm0aoJc6St4
XxZqq6S/97FhGu+fT+T4Bmz/0EFK8t94TNFWbF+gpC31b/yPdTW2d6h1kP03
fts8FZ+X5pwH4v/G41ftaP//rft/jfP+r//uf7M31nNZRuKmCqZEfjXe8X72
A/qv/f7C+9R49+u/9puxURLjr491Y5z3sx+OWTMx/lLhFF6X95Pgnw3Xq8l6
FpJ7uetWUSKyXMTA+Yk97IzreSig8O2QUDI69eUGXvdypckWsp7fntnBJuoZ
Fajw+lXa+fSVZD3b0SOn3TiYirhm8/9Wz2iqnnVpAbiel4wtaibqGY00s7D/
hXW/r5P1nKQesYmoZ7T9+TDGz0ea4Xoe/1r2mKhnlDnzEj4v/y0Hhsh6Vjor
MUTUM2InT2v9Sz2j/6Ge0VQ9h0VfwfXsnX90E1HPSNquuOUv9Yym6nlW55ZD
ZD3nHcyMIeoZWWrU4fvOQvQxrmdlm6vDRD0j0b3vsD0zwqeG7M8FExR+oj+j
i7d5deiU4HyG7M/nDLIvEP0ZnZW/jOO3ti/E/XnZBFIi+jO6FIewf8rdL55k
f3aTvriB6M/o6/O7uP5FZvDh/uykanxSZUku0gu2wPfar4v6pmR/PrJIeGG9
Sz5a7cc79//oz2iqP+vWrDlL9uf701RKiP6MLorepv+lP6Op/pw0Jw7352t6
nE6iP6OzVwpwnHu6lXF/vmOwoJ3oz8jBKI7xl/6MpvpzadpYMdmfZ3380EX0
Z5SY5oJxltBiLtmf/fVYR4j+jNQVJfG6Rjc83cn+bJ9lMkL0Z0ShW2H8a7i0
HMk3lvxD5RJ8Axnv66H/hW+gKb5RlrViAck35uWkORB8A/HL2OC6rRkRXEzy
jWlx2tSaeUXom4A0ts99Jr6V5BvfXa0zCL6B9j+iMv7CN9AU3xje/SmC5Bsm
nEIfgm+gW3kd2P78PM1ykm9Q87WCCL6B1OZ+4NXPTsU/5wi+kRe504vgG+ji
JUV8vt4Hb+0i+UZH55FMgm+grKBcHKeNk7kSyTey+xcFEnwDrXN1xH6cldxy
SL7hf1yRQvANFBTlgPPDX669j+Qbix/dbyL4BkrbuAzv64Xw9TSSb8ztl1Uj
+AZ6LOPF43uS2vIk35gjKtVK8A1kvrUT+xFunlNH8ue3zSwHgj8jLfPtOJ7t
Q6/7SP5MOX66k+DP6IFGMP5Oy9qkYkj+PFBklkLwZyRTJo/9DPhXfSD5s3tH
cwvBn1Gqtwsv//HT7Un+PCRhX07wZ2See6/l3/w5kcef0RR/5vbe1iD5M2NE
pZLgz+iP7i3sn/7xxEySP7sYBjoR/Bn9GPyN8fiyKnWSP+t4fPQh+DNKGN+I
/esoR80l+bNmRoc2wZ/RysMzsH8lQXojyZ9P0dTjCf6M6Ck8HXfnZIAUyZ+l
H2w4QfBntOanG/ZzuCfgC8mfi6Ubhwj+jKa94PHkdarfVEj+XP7tdyHBn5HK
WAS2/36c7zvJn4dPao0R/Bk1UkSw/ZQeXM3Tg2hKD57/tNaf1INje1StCT2I
wm1eYHsNk04fUg+G8rl8JPQg8l5Sju0t1wxHkXowhBa0l9CDSOOOCJ4/TOnB
Np4eRFN6MPDy03OkHjSOPMEk9CDqfPII9xNN4ZuSpB4Un868QuhBtNJtJq63
KT2YytODaEoPTnfySib14Gz19y8IPYgWHMnAOBRdSSP1ILXDV43Qg0jJbjbO
5x7DXXRSD57dXXyJ0INo+Nx2nP8zala5pB4cs17vROhB5JH8kccz469+IPWg
zeaot4QeRCuU0/F+FRY7hJJ60CLv535CD6IlG3k8nNodH0zqwbovt6QIPYho
pfzYT9+SmXrkfOPwuQaBCK0KNPesH29+Yj6aRM43vq4plvpSXYlclrvi/Ox6
uU+fnG/khvi1+4dR0U9d3vcyu/LwCXK+IaOjIOPpX4NUjgbh/b4+N5FFzjek
j6waudlWi/ZSeLzaPCaJS843dhh39jHEaKjv7Qq831/UpcnkfKPoHqp/5V2P
PBZuxPjRmJxf5HyDXuOcvGpRIwrZL8O71y4+f0vON6o2aPTuoDehARNlvG5r
vxydnG8kl5/qca2lo64rtRi/arHzFDnfyC2xXKwx0YL8f/DuKcpDdVVyvhF4
pIm9fms7yq18gu2X1FJdyPmGhND52S7XOpCThCe2F3r0chU535AE2R3apSzk
7K3G46vjY5vI+UbivdWzUBAbLfNVwHlebSmSSs7rDvoFa452UdG1mJ88fsgt
n07O65rHtuy3ja5B926sw/X2H/M69D/M69DUvC6/82QUOa/7lsi3iDtEQ50Z
k3jd6lKpJeS8LiyywZ5/cwP6U/MQ9yW9HFFxcl736ft8zpq4RsSIXI7xW91N
veS8TitlIZ+vUjPaRxPB+d/8JsacnNfJtfdo6HPoiGZXiONZ3WcoQ87r9mze
lLE1rwWJr67AeE5Wwwg5rwtYU7FYiuirM815Olr/zfMz5LwuXNnBLTaeidYZ
hfH4VaaXOTmvm51wNKcEWChj6A1vTvXf53Voal7XuVpAgJzXUea9s3qWyEZm
b42wf7eYNyf9rFiQVFLeWtldBf6MKFy39RqLtHMuscCHIplMEauCW9uNsJ+d
wtuuy8YWg15XMfvSXjbsM57Dm3O6ds30E8iH4JDU/PtRbPgqm4r7s5zgp3UH
1Al+KO/lb5X9HjTi0nD8F7xOYbzRwzKOwFGiFm9esa3mka1bAgs+hdabfEqo
QLJSVhi/v/W1Hf/GVshv29ukbNyM2rcV/rf4k3nxo6n4n+7YpE7GP2YnkUrE
jwzt5Nr+Ej+air/o/d7zZ48XwQHdyp1biO89OiMM71fAzMBnznoiD6qNAody
q+GY+jG8r2vdek6k/eN57rqEPRQHCvL06Sj3DBn/unzH1UT8kCTLm+ecySnE
/FzP0sxKgKP7zkJxOba3r0y30xHvgAVbzijlfqxDqum8++4/1kVT63as/DXs
S+T5e0z7KyLPKGVAGdsXdVc3/jFhwdn0GQz5M1QwtVzK6/8Oexhywggq848L
D10h+NodHWx/KnF2BWn/80XYolVnqChNVb/93/ZVPHs0ZW+UaFPrbcmCbquO
20v5qHD/GY+3PJ9WHfOB7x1cbvbuP3idDQIXnbC9U4f05qeaLBC4PDDSZFiN
8mKuYVzjYuyqDwvz4E/B8gKnGDbyeFeJ8zxLJ1CFtJdN+i7XbFgNE+Vc7P+y
1wCFtH84fTiPsAeT18l/iwdNxTPXXfwhGc/4UtogEQ/yif6E/f8/OsNrsA==
"]], {}}, Axes -> True, AxesLabel -> {
FormBox["\"Re(\[Lambda])\"", TraditionalForm],
FormBox["\"Im(\[Lambda])\"", TraditionalForm], None},
AxesOrigin -> {Automatic, Automatic, Automatic}, AxesStyle ->
Directive[16], BoxRatios -> {1, 1, 1}, DisplayFunction -> Identity,
FaceGrids -> None, FaceGridsStyle -> Automatic,
ImageSize -> {360., 381.3618074056228},
Method -> {"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"RotationControl" -> "Globe"},
PlotRange -> {{-2, 2}, {-2, 2}, {0., 5.802316951265804}},
PlotRangePadding -> {
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]}, SphericalRegion -> True,
Ticks -> {Automatic, Automatic, Automatic}, ViewAngle ->
0.5011114127587017,
ViewPoint -> {0.3238927033719261, -3.3486732981607807`,
0.36260261842336333`},
ViewVertical -> {-0.01031655144691719, 0.10666112573620945`,
0.9942419087037762}],
FormBox[
FormBox[
TemplateBox[{
TagBox[
FrameBox[
StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["3", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["4", Smaller, StripOnInput -> False]], "Placeholder"]},
"SwatchLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[
InsetBox[
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All},
ImagePadding -> 0, {DefaultBaseStyle -> {"Graphics3D",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
Specularity[
GrayLevel[1], 3],
RGBColor[0.880722, 0.611041, 0.142051],
Lighting -> {{"Ambient",
RGBColor[
0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}},
Opacity[0.7]]}, Lighting -> {{"Ambient",
RGBColor[
0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}, ImageSize -> {12, 12}, BoxStyle ->
Directive[
Opacity[0.3],
GrayLevel[0]]}], Center, Center,
ImageScaled[{1, 1}]], AspectRatio -> Full,
ImageSize -> {12, 12}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.16666666666666669`] ->
Baseline)], #}, {
GraphicsBox[
InsetBox[
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All},
ImagePadding -> 0, {DefaultBaseStyle -> {"Graphics3D",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
Specularity[
GrayLevel[1], 3],
RGBColor[0.368417, 0.506779, 0.709798],
Lighting -> {{"Ambient",
RGBColor[
0.19699838300000003`, 0.252204821,
0.33320940200000004`]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 0, 2}]}},
Opacity[0.7]]}, Lighting -> {{"Ambient",
RGBColor[
0.19699838300000003`, 0.252204821,
0.33320940200000004`]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 0, 2}]}}, ImageSize -> {12, 12}, BoxStyle ->
Directive[
Opacity[0.3],
GrayLevel[0]]}], Center, Center,
ImageScaled[{1, 1}]], AspectRatio -> Full,
ImageSize -> {12, 12}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.16666666666666669`] ->
Baseline)], #2}, {
GraphicsBox[
InsetBox[
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All},
ImagePadding -> 0, {DefaultBaseStyle -> {"Graphics3D",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
Specularity[
GrayLevel[1], 3],
RGBColor[0.560181, 0.691569, 0.194885],
Lighting -> {{"Ambient",
RGBColor[
0.1830429875, 0.21424763749999998`, 0.0962851875]}, {
"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.14004525, 0.17289224999999997`,
0.048721249999999994`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 0, 2}]}},
Opacity[0.7]]}, Lighting -> {{"Ambient",
RGBColor[
0.1830429875, 0.21424763749999998`, 0.0962851875]}, {
"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 0, 2}]}}, ImageSize -> {12, 12}, BoxStyle ->
Directive[
Opacity[0.3],
GrayLevel[0]]}], Center, Center,
ImageScaled[{1, 1}]], AspectRatio -> Full,
ImageSize -> {12, 12}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.16666666666666669`] ->
Baseline)], #3}, {
GraphicsBox[
InsetBox[
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All},
ImagePadding -> 0, {DefaultBaseStyle -> {"Graphics3D",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
Specularity[
GrayLevel[1], 6],
RGBColor[0.922526, 0.385626, 0.209179],
Lighting -> {{"Ambient",
RGBColor[0.30756835, 0.18676585, 0.147065275]}, {
"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{0, 2, 2}]}, {"Directional",
GrayLevel[0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{2, 0, 2}]}},
Opacity[0.7]]}, Lighting -> {{"Ambient",
RGBColor[0.30756835, 0.18676585, 0.147065275]}, {
"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{0, 2, 2}]}, {"Directional",
GrayLevel[0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{2, 0, 2}]}}, ImageSize -> {12, 12}, BoxStyle ->
Directive[
Opacity[0.3],
GrayLevel[0]]}], Center, Center,
ImageScaled[{1, 1}]], AspectRatio -> Full,
ImageSize -> {12, 12}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.16666666666666669`] ->
Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.3}}, "Rows" -> {{0.5}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"SwatchLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Specularity", "[",
RowBox[{
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.6666666666666667], FrameTicks ->
None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "1", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[1], Editable -> False, Selectable -> False],
",", "3"}], "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"Lighting", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"Ambient\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.20067051333333336`, 0.14943112333333333`,
0.06032302333333334], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.30100577`", ",", "0.22414668499999998`", ",",
"0.090484535`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535],
Editable -> False, Selectable -> False]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.17614440000000003`, 0.12220819999999999`,
0.028410200000000007`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2642166`", ",", "0.18331229999999998`", ",",
"0.04261530000000001`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2642166, 0.18331229999999998`,
0.04261530000000001];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.17614440000000003`, 0.12220819999999999`,
0.028410200000000007`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2642166`", ",", "0.18331229999999998`", ",",
"0.04261530000000001`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2642166, 0.18331229999999998`,
0.04261530000000001];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.17614440000000003`, 0.12220819999999999`,
0.028410200000000007`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2642166`", ",", "0.18331229999999998`", ",",
"0.04261530000000001`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2642166, 0.18331229999999998`,
0.04261530000000001];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "0", ",", "2"}], "}"}], "]"}]}],
"}"}]}], "}"}]}], ",",
RowBox[{"Opacity", "[", "0.7`", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Specularity", "[",
RowBox[{
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.6666666666666667], FrameTicks ->
None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "1", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[1], Editable -> False, Selectable -> False],
",", "3"}], "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"Lighting", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"Ambient\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.19699838300000003`, 0.252204821, 0.33320940200000004`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.13133225533333337`, 0.16813654733333336`,
0.22213960133333338`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.19699838300000003`", ",", "0.252204821`", ",",
"0.33320940200000004`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.19699838300000003`, 0.252204821,
0.33320940200000004`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.19699838300000003`, 0.252204821, 0.33320940200000004`],
Editable -> False, Selectable -> False]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.10315676000000001`, 0.14189812000000002`,
0.19874344000000005`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.15473514000000002`", ",",
"0.21284718000000002`", ",", "0.29811516000000005`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`], Editable -> False, Selectable ->
False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.10315676000000001`, 0.14189812000000002`,
0.19874344000000005`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.15473514000000002`", ",",
"0.21284718000000002`", ",", "0.29811516000000005`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`], Editable -> False, Selectable ->
False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.10315676000000001`, 0.14189812000000002`,
0.19874344000000005`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.15473514000000002`", ",",
"0.21284718000000002`", ",", "0.29811516000000005`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`], Editable -> False, Selectable ->
False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "0", ",", "2"}], "}"}], "]"}]}],
"}"}]}], "}"}]}], ",",
RowBox[{"Opacity", "[", "0.7`", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Specularity", "[",
RowBox[{
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.6666666666666667], FrameTicks ->
None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "1", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[1], Editable -> False, Selectable -> False],
",", "3"}], "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"Lighting", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"Ambient\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.1830429875, 0.21424763749999998`, 0.0962851875],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.12202865833333335`, 0.14283175833333334`, 0.064190125],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.1830429875`", ",", "0.21424763749999998`", ",",
"0.0962851875`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.1830429875, 0.21424763749999998`,
0.0962851875];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.1830429875, 0.21424763749999998`, 0.0962851875],
Editable -> False, Selectable -> False]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.09336350000000002, 0.11526149999999999`,
0.032480833333333334`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.14004525`", ",", "0.17289224999999997`", ",",
"0.048721249999999994`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.14004525, 0.17289224999999997`,
0.048721249999999994`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.09336350000000002, 0.11526149999999999`,
0.032480833333333334`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.14004525`", ",", "0.17289224999999997`", ",",
"0.048721249999999994`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.14004525, 0.17289224999999997`,
0.048721249999999994`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.09336350000000002, 0.11526149999999999`,
0.032480833333333334`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.14004525`", ",", "0.17289224999999997`", ",",
"0.048721249999999994`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.14004525, 0.17289224999999997`,
0.048721249999999994`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.14004525, 0.17289224999999997`,
0.048721249999999994`], Editable -> False, Selectable ->
False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "0", ",", "2"}], "}"}], "]"}]}],
"}"}]}], "}"}]}], ",",
RowBox[{"Opacity", "[", "0.7`", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Specularity", "[",
RowBox[{
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.6666666666666667], FrameTicks ->
None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "1", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[1], Editable -> False, Selectable -> False],
",", "6"}], "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.922526, 0.385626, 0.209179],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.6150173333333333, 0.25708400000000003`,
0.13945266666666667`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.922526, 0.385626, 0.209179];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.922526, 0.385626, 0.209179], Editable -> False,
Selectable -> False], ",",
RowBox[{"Lighting", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"Ambient\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.30756835, 0.18676585, 0.147065275],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.20504556666666668`, 0.12451056666666668`,
0.09804351666666666], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.30756835`", ",", "0.18676585`", ",",
"0.147065275`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.30756835, 0.18676585, 0.147065275];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.30756835, 0.18676585, 0.147065275], Editable ->
False, Selectable -> False]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.2306315, 0.0964065, 0.05229475],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.15375433333333333`, 0.06427100000000001,
0.03486316666666667], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2306315`", ",", "0.0964065`", ",",
"0.05229475`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2306315, 0.0964065, 0.05229475];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.2306315, 0.0964065, 0.05229475], Editable ->
False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.3],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.2], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "0.3`", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.3];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.3], Editable -> False, Selectable -> False],
",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.2306315, 0.0964065, 0.05229475],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.15375433333333333`, 0.06427100000000001,
0.03486316666666667], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2306315`", ",", "0.0964065`", ",",
"0.05229475`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2306315, 0.0964065, 0.05229475];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.2306315, 0.0964065, 0.05229475], Editable ->
False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "0", ",", "2"}], "}"}], "]"}]}],
"}"}]}], "}"}]}], ",",
RowBox[{"Opacity", "[", "0.7`", "]"}]}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All}, ImagePadding ->
0]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",",
RowBox[{"LegendMarkerSize", "\[Rule]", "12"}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.8003378913384247`*^9, 3.800337929996578*^9,
3.8003397788488503`*^9},
CellLabel->
"Out[189]=",ExpressionUUID->"602a29d0-0e2e-4208-88d0-48290282265a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "5"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"NRJ", " ", "=",
RowBox[{"\[Epsilon]", "/.", " ",
RowBox[{"{",
RowBox[{"ToRules", "[",
RowBox[{"Roots", "[",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",", "\[Epsilon]"}], "]"}], "]"}], "}"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"Evaluate", "@",
RowBox[{"Re", "[",
RowBox[{"NRJ", "/.",
RowBox[{"\[Lambda]", "\[Rule]", " ",
RowBox[{"\[Lambda]x", "+",
RowBox[{"\[ImaginaryI]", " ", "\[Lambda]y"}]}]}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]x", ",",
RowBox[{"-", "1"}], ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]y", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re(\[Lambda])\>\"", ",", "\"\<Im(\[Lambda])\>\""}], "}"}]}],
",",
RowBox[{"AxesStyle", "\[Rule]",
RowBox[{"Directive", "[", "16", "]"}]}], ",",
RowBox[{"BoxRatios", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",", " ", "1", ",", " ", "1"}], "}"}]}], ",",
RowBox[{"Exclusions", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"Offset", "\[Rule]", " ", "0.05"}]}], "}"}]}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Opacity", "[", "0.7", "]"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.800339910960108*^9, 3.800339911795102*^9}, {
3.800339991368039*^9, 3.800339994698779*^9}, {3.800340202477195*^9,
3.800340205209553*^9}, {3.800347220686782*^9, 3.800347253851025*^9}},
CellLabel->"In[28]:=",ExpressionUUID->"b1650a8b-406f-4152-a295-09148849643c"],
Cell[BoxData[
TemplateBox[{
Graphics3DBox[{
GraphicsComplex3DBox[CompressedData["
1:eJx0nXk8VV0Xxw2lpEEqlEihVFKkeVg3UaQBDRo0EhooEiGlSTRKVIQMEUXJ
mAwbSWUoM9c8T5mHNBje271nn3O7z3vff3ye77Pfffb+7bXWXmvvc+4z+9gZ
3eN8PDw8bhN4ePgZfze+f2o0MtKJZldsi/z7d0bDwAB/6wBkNR9ZalrWSPJG
6Qsn13X1QYjiVp4Y0zKSqzS5K87/0Q2WYmFLZTRTSZ6qrFB56Ec7nFRc7yGn
mQqY+9bP+HxisAlk309dGmtaRvKemVNMeAdr4JbixyzGc0k+q2GctEU2HXh5
/v6vi+SdA5IjcmMKIdHEe7qmax/JnZzXS79amgM2uauXusr+Ijl/kJ3t+Ffp
sGx1ydaymCGSH+n1/HXnUxxcYLbnpZE8z/uQj7o5FN0QTI4x5Se5k/bcBacW
BiAVZj+jSX793WKdIohCDzqC6CMjY0iu5r2KZ2ZrEsI6G1mGe8SYfkfPthvf
6WXTGfP4zMcT3LspnTFPnpxzQOwnpTPmk/tN9SL/UDpjLnX9cHkYXzOpM+bL
rB6tU+OpJXXGPN/aPTAxh9IZ87zt5XwlIpTOmAvfjP3qAZTOmM++XXNgdyKl
M+YOXVM0dWsonTGngcCo6Ww6Y264VGH5BjadMZe+rlvxmk1nzJ9E6nT2t1A6
vxSa4vBXV6tnP5TKv1M6b87cvafkUSN625aSMLqX0hm3n/5YzX/xb0pnzH9/
KG8W4+sgdcZ8U9Ev1aNClM6Yq9Vd7NgyhtJZ7+WA2tKKRpSz4KCaZRGlM27v
pNlueVOW0hnzUaVZglXbKZ0x3xF85LdwHqUz5tLvdSt2DFI6Y35k2dL42o2U
zphXX/4mIcCmM+bv7ismWbPpjLlKi2xDOpvOHf7njWQ1a1H8c9q6yDZKZ8xv
qpeHqPZROmM+42L1s72DlM6x6wauJh2tReFnjK5rCFI64/Zr7UQs9olROmMu
Z/lZpX9KLakn5qKO9Wg8jdIT85e9Fg+yjlJ6kuPxLhE630zpiTlP4Zm3SmLv
ST1JXnro8/INlJ6Ylxz85h68gNITc8NXljnz2PTEfPyXoNa7bHoeZ9pzGQq2
X+xzup3SE/M9Cw5pnO2n9MR8yoYXo02GKT0x33fMRH/9ZEpPzK877X/YP5fS
E3M3CddJUosoPTGXuxsbY3mS0hNzxU2HhQOsKT0x3zYr9Xn2cDqpG+a+pvkq
i9ZQumFeP1ZY5+d8Sjeyvb1V5Nv1lG6Y/zzQ5Lj1P3aYh5Ja5OYMtnPaYR4K
/Xx0z9EfnHaYh4Yl1X1keXpI3TB3HfNH+LI4px3mIbOyuvSwlZx2mIeW7+w+
4HKI0w7z0O8cs3yD55x2mIfEeJ7ZuNzltMM8VLlbL+6EyCcOe8tDPMp0iR0K
5pA8LCTnc4Cf5Lx/VCH4sj+HveWhJXvjvMat57S3PNQlv6VE8D+6pSLl1nty
eh2cuqWiTfqJcUP/0S0VKdb23dXm5dQtFVkddlP9IMmpWyoatUm/O2Izp26p
SNto19oRLypOYn5L+KuLf3YZh56p6KCLzdiyck49U1GeYOnMCz6ceqYil1e7
VcZLc+qZiniWnOpVGM3pv6lIXj4qwXoOp/+mIrUUDYdt6zj1TGXsgxoNBc3/
0RO46Alc9AQuegIXPYGLnsBFT+CiJ3DRE7joCVz0BC56Ahc9gYue8P/1zAMu
fg1c/Bq4+DVw8Wvg4tfAxa+Bi18DF78GLn4N2K87CL9uJ/iHwf/r18DFr4HT
r4k4CVz2EeCyjwCXfQS47CPAZR8BLvsIcNlHgMs+Alz2EeCyjwCXfQS47CPw
//eRWuCSzwCXfAY485l3rHwGuOQzwCWfAS75DHDJZ4BLPgNc8hngks8Al3wG
uOQzwCWfAc58hsgbgUseDuH/Pw8HLnk4cMnDgUseDjgP58i3gUu+DVzybeCS
bwOXfBu45NvAJd8GLvk2cObbRL0DXOpH4FI/Apf6EbjUj8ClfgQu9SNwqR+B
S/0IXOpH4FI/Apf6EbjUj8ClfgQu9SNw1o9E/Q5czkOAy3kIcDkPAS7nIcDl
PAS4nIcAl/MQ4HIeAlzOQ4DLeQhwOQ8BLuchwOU8BLichwA+D9n0+Fgjcz2Y
vAo1jlV9/C28GDBn2X8RGn+MZ5Hqz2IoZj73D8nvxGoF35ucCq7M/kdIztN1
9k29rwfZnhWXItBaj+3pv2VSOTlgzvFc4PJc4PJcwM/lmBfgeTnpDG/9e06R
Jn95bllMO4pT2vYq0vQHYHvD/Md5UcGLDHs75gYPTcsEaJjnWM+NrnGLI/XE
/HPpjSFBhp5fP86L/Bt/sZ61FseeNwpXkuPHPGhWu5gUH6UDrqf6bI41zRuX
CrgfrGd5i2FUtUYlOS9W+0yUfv7CMrMzJaQOmEv39Lbyentw9J+JlpgZBVpK
cuqfis5mNI7YzU7l7Ae49AP/v588MNRPcxIR/8/44f+Pvwwm3vqqYfC1mHwu
Xq8jQnLXlgZ4AIeegPXkWEfgso7AZR0BryPm2C+SS+p9+xgc94/PD59EytNl
Gf1ztEe4PZ4Xru+e/jabWbSYWhfML3RFp8575sHBGXm789gdLz09OPQvg5wX
Evkr/D2AYzyAx8Nhh4DtkENnhHXmWC+E14tjPAiPh8NOANtJc+3Dfa6yLTA2
uWa8qywd3Wl6ON9iFJ3kW/XUejVcC9ClvdM9X9Eoju35dLG6cYUUHQSqzwpo
ug4S6/sNnXR/vXXlegSNo7PppQy/6rnaeNq0rAN9MJ2sX7RwAGw3nIuJMR1D
w3xmPi9cggTEYT8I2w+Hngjrachcx2HyuRZOvpdDZf1JzhpnOmR8cOT9LuNP
jj+VqXMFBCTmP5tfTa0va7710CXWVHfuuQfn+IHL+IFz/Dh/6zIUP97GGD/W
B+vsIunkO1MekePEOhfpBVgfk/Mn2xMcdpkcLJ+ggjjtELAdcvQDuB/MiefC
OF8twyEGx/6F9d9cuYeXxvAvDn0Q1kdGomNzwbVBWDZLypY27RM60HZ/e/N1
xKkzwjpz2ANge+BYL8DrxWGHgO0Q64z99OLWNZtvMnTG64L9aECgdNCNsS7Y
j/C67NpQtXYKw4842iMu7RFuj+MVtjfDSnmfeTKVoGD7AzQZ9oHXMc8mX2he
RylwtAfO9tjeXldfKBlmtOfQH7D+HPMFPN/DUV/vyGr2kH4xs+1PuXFdHpm3
YC5fMerXzJ2F8FxL6dzfOILXcWbhw+bCB0XwYqG/jawmHw3v10s2vTTpnPkA
cexrwGVfA7yv4X5w+2SNexdC+B4gnOeQvGXs07z15nBEdoywpisPDWlMlHaV
rYGz13RnH+m9S+4jhN8hhc5HhbvvUnkLPtct+LrwvJhXMWknRD9ofPabkbwv
JYD1wXGpttumVHx0PkedUoSq1aX3D96g9MHrqLX993HH8CKQkDwdZFr2g2xv
7XxOe8LoLI76pQgZqNSqzRX8BMFMHX6T/ptwVFyt0iWN1Ae3D59zX1WSn9KH
zK8URnRtl1H64PH4tk2JWtV5lxwPXq/HbwoN9y3K4qhPI6DYsXF0jAw1HtZ6
xcNuz8eF7n5pnPkG4HyDY78DvN9xxH/A8Z9jvYDLegFeLw77R9j+cf/Ybpe7
xOi8yy8h54vznOhnxqEPpbI4zjEyUeGyVx0KM6j54vh/er8J+vM4jeQ4Lok+
9Rsb6J3GkX+mI559b0qDZqVy+gXCfsExHuAyHuAcD9538HM5xgl4nP/63TfY
v/a16/cZqZxxBnCc4dh/Ae+/HH4B2C84dAasM7Y3HJe6hAtuhnXfJfcXzHNE
XDYifyp/w35apL9ch5+nkuTYT8WfxCg7C1BxD/tpv99tKaPOUlJnrJv2e50r
00dTfoE5T2uc2npJyi+wnsIzg/3fVd3liLeZoBpV6ypxpIrk038NiazoyYWZ
MR3z6NGVpL/j8XwuuKg/z7aIc18GvC9jjnXYf1tA88sMxPlcxOW5CD+Xw38R
F/9FXPwXYf/liEvAJS4Bl7gEOC5xxEngEieBS5wEHCfDH9/fonGoB+xFs1a8
K6yCK9b2NfzZ/9mPgMt+BHg/4rAr4GJXgO2KI64Cl7gKXOIq4LiK+8HP5Qnf
M/0B2/5F8oDVR76pUv1IDpWHxpjWgQvvrP33++5y2HMZ8Jxr2ZvD6Mflktme
shhe0r9oBrnrzhrbkPs4ziuei0d3hffmwZL9xptcZbvJ/ei2I9/X36sLOO0W
sN1i/0o55jQ65UABanyVZbbleynZHq/7ve1TXayKijj9EbA/4nnh9l3Txfpf
fb/LEQ9TIefY8sFJgtS8sD8mbz1aY3afmheOD04Hboz68ymPtDccH7Yqv/JL
L6Dmi/0xwi9xWtWUAs68AuG8gkNnxKkz1q26O/aj98n/jAfweLB9Yl46OU82
eQlln3h9l9Vp3VtgUkSeF2F/F0sbOrh9eRlnHEM4jnHohjh1w37Nk+uxtznp
P/YAnPaA7WeloX2ozNwCjnXJg+QqW8k4fqp/vI7VTa3ekmdtUGgzfeRvO5xv
SBlNvVO6toE8H5vmL3D2fmkRWqkqxqepWgtnJ++by8NTTdrhxJWCu8e8rgbc
D/brrm3B46VkqH4wr1g1eswWKaofPH4hH/HtA0+rOcZfCzxTRNY8ZltHrP+R
xtxLOoac+mRC0sK2RTVz8znsKg8ejRy85S+aT+qGdZg9JifbXaeA0w6B0w7x
c1+u29S6b9R/dEZYZ+wv2C/C9UVKPpbdJfcLPJ4g/fVix1Yh0u/wczfY10nc
ZPhdf01rh8fcWpix/cPLrVNa0PC7lIeGcys561CE61COehDhepBDH4T14eEJ
j3VSuLYe7y+2jUm2+srfyXXE/DjqLF9o0cARbyPQPIH6n7fmV3PoFoG0I+KW
1K3Nh9HM8Ywi8yWnHm9Dh6ww8hwG858ZnTThh9Q5DM5XLW1fefhZ/ABhhw/T
/8YFzDPNDouJX+wF5YOTs2UYumP+SdQ4e+hmF+e8gMu8gMu8AM/r33w1Ai7p
X5p9LLeEc17AZV6A53WrJ/akWe8IJCi4xGq+bIdL7uuPbVgXzll3I1x3Y3vA
8U1G++aV1Qx7wBz76XRnu19b2ks56q945OBkiDrmpMI4hcixIW6DsFfthcty
w0yoj3lyYc1KRLbH9j+11v5H19RUzv4B94/zQxx/TGfPzB3VRdUFeN/sOcmD
ntRQeT72a4N9t4M2JRVzzgvwvGJapwePqhkGQ6L/cVuuvJk/3p+0c3JfXtB4
xdPPg3M8CI/n33OGIsh7YxsTKcd5zlOEMMf943p/a9V80d8/33CcZzaiGdFT
lL3+VHCcq9QiznMbHAewX//rF6lo6rQHQfIq+Rz3khGoNN7NUm4r571kBHp/
YaHi/re1nHaIsB3+ey8ZgTRvnblPC8jhuE+MQPpzN00anMF5nxiBDA9qBIz9
z/sAESjt/KGHH5uT0L/3sBHQYeGjM3egD/69t40Aca0rV806BjjuZyOg1iav
/dl/3q9g+GNDv+WyWZz3sxHARQfAOvz7fkUEmPsdFL0tU84ZfwDHHw59AOvD
sS6A14VDN+CiG3DRDbBuHPYDnPaDz22wvXHEf4TjP8d8EZ7vtN3nq7ppXdBO
PJf/8MZPw36FnHkI4DzkX3+vBwvtIrcJ3SnkPRTmVvMMjKsE35P+hfe7Ywab
aDvjSzjOh2uBlqpDD/uVQto/zhsr9TIDrMcjsv/pVg6DNzRrYPWOjoKqmf/p
H+H+cXzG+9SYbYUTMg40cLznkIn89ndpzrlM5Q+4rv8hJeF893c12T8ep8Q0
T1pJSgnY5u3c2c3fDA19CfONKmoho2fSSPI26lwaz7fxrcy1G0NJHH5dC16r
xktNGI048xzEJc9BnHkOzmP3eeerdbpUc8TPFqRY9TP7mi3nfVwjuv65y/rB
Vepcy+7tq1VlMQ3owzw919NvS8AsXm/rPftaJI3ff/79aKna9V4IJvxRc2xc
/8sx7ajcjgYnB7ohePGuL6N0isj3mafs5LEYntMNg6Hb1m57U0PGQwf1rWMV
VSrgUWDjLt7RfYD7l3gfFJ/7OQdirvf4PkvoJd83nhJTqzVrdi7p7xKu+x5/
3dCEmn7NS3Ti7YDbGgkHel0Q+X7v1n0B6T4e7SCzJdBc2bGXnO/bjNJIw5O5
hL+MoU0/HCTeF9GCnm/fK1PfkoT0/NvFw8dQ78faqcUoyBq8R4sCnwQ5Togj
/UjZTSZu/JgWkArTWSGfRtUXhte3XB3QzgMlwq/3GX46vjC2Ft06tGLXYohC
/M7TB/rdqfdI+Tet1gsPjEQ4Xu3e7hzuvLcG8WsuH3N/RjO0ibp3f4ACcj9a
4+7Wnn6jHuSz6D837BlF1iPbdl7a5hPwCs3SbJ9zaU03uV+UySW6LFAvIOMP
/zGJmtHC+Shhh/nOM/IBaN8bPh3j91S9YNL9pv7EBg9kNZWXyduJOLZxliuT
yxF2OImVt4NSeWxjmXot1BPjxPvsemKcHZmscWK+W4c1ThNivrtY8wVeYr7y
/+oMywidRf/VGU4ROk/4V09YRuh59197AGwPiwh7CCb4C8IelhLrpeeS/ne9
wI5YL91/7QGOEPaA7fAOyw6hhbBDDvsHEcL+wwh7Nia4JGHP2A6332LaIQQS
doj9S4PlX1BG+Jc54Y9ziDivTvijJ+FHmIsRfrRj+6l9/hm9UHivdt/BZW0I
JWyJ2SOcC1/ytJaYWfaCj5/hCY1fTWhcsfz38gu5cOjgMbN7p8bQJil67dEe
1YxUhJZILlmWgPRyxwce//oKbfr2cVPC2QYUZdUZE6jQBheumzusEegFpZt+
I0qFdcjVMTDjCm8ejHqeNmud/2iazjev5CMWtYjmyn/3V2UkkjrWtOLUVQFa
cXxfyDa1BuSxc7bIqv5YlEac5+xlneegE8R5jtOpqIFVX0fRZryBjjXCVcjx
nJuHJ284ujghOma+0Cha9m4+1DpQgnoU35b7Ngaj1jfqd2PofDQNXbdBuZZ0
FG33oUf6xlPUIxu0x8SDj3ZjRfTyY9tiYbjqNvrU+ggFrJSdEHi0GJ4vfecY
ZkyHCA/J6QHX6iBmKq+J5IQkONWR7ZxbXQM/xs+sfP+sGbaKjuqZZdMD70fq
ni64VQ3yExd0OYfmwfXaRcmDRqNp93qltxmH1EBo9q+myxkRaIvrkYUWCy4i
rQa0X8qqHqbyfXm8a/F3WNNe57dXpxfmu+wba+/ZAP0Zi5ykXubCnBiLnXr2
OSjrhObCG49bYJKWw7ruJV3gHVJi+6gmGR33WCR2eGwTFPxe6Sb9qR0K5jif
Nn/VCxcVvdoqHVthlVVJWNLyXDhX0yZfdKAaCV9olboa1gEV3b8e/szrAYfJ
s2YcdS9B4fFr8jNl2kBqW1bI1CvdoLozs+3nYC8EfrJzfHOyE6z8hCIy8nJA
QX+TRIoXo94+d29/yJECNLa0Q8ipvhrWEvw3iwMPwa+KO40rM+qBSN0jejGS
1Wjjr0dH8lPzgNYu+FLkNh8tVaQXXd0VCo72u+ZOSXJHTmq5v1ZFd8Pe7xOC
VPlL0BPjaQMf/PJBf9LZOfE23RCUsvuV59pCNHlZT4pQbz58Olo7eNSrm8y3
39u4FWin5gPH+iK8vjPCWfbwRZtpD6BymWUP8wvLNVQZ64rrZRfXBNu4pVXA
wdFdgrsR4xFJZY4HrHNdXb525YMnMf6VrPFDRefRY3K++fDs33FCIzHO/uau
m7sseqD/nGDis7AqsKq83PUpNg80Ji8N4h3pxvET1WUVuj7dmA+yRS+HHij2
wBUVHU173wpkGXll1JWx+TAjvCatvbMbik8VCWrGl6KxDytz7fXyYfW/doWw
Xd0m/HQ2y0/hCuGnOv8+F8qI5x4i8lgUyTd5Y3wFiMlFR138ngdb3WcNxwn2
wO2IibG32xj1Wq/TVcnl+eBN+JEvy4/QIt2DakJOdRD8ZlppVMVXiN7VeKLU
tRKMlhYZdU9phNfrc+bonOiCQO+YbpOODxBt8Ghz7+FCeHc8+ErapG64WCxr
8HR+DnzvkWjaerEApP7d18Bm4jv1po0F8PzxKW2Ho91wtHxN1WnxAujrfvty
eFIBBBD9BLL6Qby9rH6OEM896cV8LppqyHru6hWTzo7f0QVj01cG9YxPQQeE
x9GnXC0EnpIlmvX7qPfVz56YWqhhWQi2Z4eEXrtQ9zXTpvXsvaf+CHH0A7if
dRH/9AOH3Fn9eNnxjGfrByTUFuz7248/oVsUSzeEdcN1R/FUVK21o50R+2if
wlfnwP5jPbOS1ajvuSYvWXPt7IMc2PXw++oTPP1kfqV9RGHOt4vfwO7Iy4/v
eJpRCJHn/HxhcENLtx9Uifrr1bW2/uvxzWjiKMOUi9+p+mvXnAu2L6zqUccG
m8U6f7oB7+MpK/18skyr4eDNFLdwSarOul0QMz0kuwKcnEpETsox6hain52s
fqCT6IfjuYCfyzEvECbmRdZfLB0A66D373xhOzHf52KLyx139MHlj1LFF8K/
I1prddnxGznQVCJ4Xr27DwZO1+jx+3UidyunSc4+32Ds70KhH4y4esi29G5y
ShMy/zR46df6XFhnPF+i/msBFEsGyUknVqKFfi7PhnTqoXl4n6fdYDWqEvul
7L2yAXafPnO+ZVwv+Go15hpYFaJwiUk9P9PrIL7DOWkbfzdIPlzfEGzRjtY+
S0kWn9MM/CtdIqaKDUCA6dW7X5f1wRYb9wlrJ3+HU7VlSl7+ORB123ejtHYV
KB78Mfv7oQqU/urnLSiuJs8T4uvLdM9Vl6PMnfc3HJak7i8SWBw+EzzkxxL7
+ZfrgBYYZxAfUA7PVzd+8TlbDvrZE7v+TGwAORUJn6UKlWir1rgAq72lYEe0
F2G1R7VE+wsH1DdnizaQ96rXLUKOxxqWwticHfJOY3IhO8dps9LhKpBrUAtR
uNsAqwnd6CzdQJHQLVGMNa8lMsx5gdetr2G0kmq4+W3EOvhqNYSdLClQZtQJ
w8P5I40bGXWO961GZ98uaJ7uy7M1Mw3EV++UPy9VCJ9qWFxggd9fjkxbdJlc
cGZc5SjbLshUfvBd+GgySqgtmhOvXcjY782zdt6i/NpO67JN15pCaJdgtV+1
lNkeqoj2Rv+2h49Eezzfr6z5IjxfDvtH2P5P/usv6BDhL/ctbj95+fs1xKwU
GVs4UA37/MwkduS0kOcJh37uGZEpq0Rmtpfn2TXlgcH2+TPcaBngfm+KZNK4
aqi9rhgum9cIhx3kmXxbOJOjSUEsHnUi7blRWB7sszENcxGtQpbn3ryO52+A
rAXDD1897ILgIY+LKvs/oIDHBtdvLC6EL5c338n90QsyHybdjLzTgt76y639
1ZIDfuZ7po/seQd5h3YcmZxYDa7vjl6qmN4Cq+4syUxw6AL5sg3DQwtT0MK+
s97yGoXwfXvdW90JWfDlqr7lttYqtKt3HM+am41wRSd01atrXXAt7UpW5LUU
2L/Rr/GUWiEE/lm2OkEtEUYtO6Bf6FWN+Ke9lhKMbgbVwT+rNbp7YSTyc0HQ
yRbYKqbG/6QrB7SXTN9oYtoHF8cITa050QZJ7kJWfQY5YOokMs3ocRdMmXE4
svfjBwjWUg5yXVAI9jE3Dq+sqyTjoU3UFtcAhr2dOP448o5cA1FnfUerj6as
nBFRCn6q9rKSbjzkd6nVd+OLtSPuwv2snF1uMjxknegko59SPP4x6K6y7bnW
Rp23fIw7aWt1vhRWDt20/rMav/9chjatGOebvDkBWjJXSu/9QJ3v+TRk9V82
TCLfT36yrndupFsIyrLz2bJooI+Mn6JJIqffMrijx2XfMN4eUE67HC3LiIfj
dSOXCbiGgMLm6HO05znwLeaf/kFhQzaz/7enJ25yftkAtw7MzlbwLANz+VEO
s4/TYduTCKu/48TnsalKgQF/x3mImBd/AKvOekPMq10pj10HGDtNlanDyX/1
BKznB+t/9ATpr5FMPY3OBRis1K0j47bV0Vs8Ss/LwEdo157eifh9nk5IHtuy
5ulDa2iD2iR7jSHoN/GKNt9Sjr5plV/hFUqABClz94jKQSjy4n0/rzYfFYWL
SG5tTYTHvxNKbzzlodGLJ6hf402AnHv3zny4dAcGStatKYj9DX3WSxykVUJg
OY9JpunbD7D6XaRSVEkTrJ9+k7dSKxfRtnxOPaxQCjvLHaXCtEYgl+eTm25U
NVzSPHZqooQvoPEywq5SzeQ6OqxVtE7spIOgbGZct/4w9b2h16alBueeg/L+
tBCVKdR7m7XxVh8lZvmR53j7MyvOHtiaDMLXKxsXeXrAC4/lOXk/h8l4ddVv
S/tWT6q9Jqs9Er7Gai+tcVi+u74Z1suFlXXVl6B7gtHiR+XoIB/zdGCBRTM4
L9j6oKYqH/2cNVJh+5wOJ5wsrmvcb4bMt8c/u84rRGI8T59cuUyHO4IDOktf
DYLPhsizBUo5KCbqa3hgbhI8zoheWzhxBOTcT9m8lKxEbpVKqsHL/eDq6Qsr
RVYPw+N1ShquttlIxMG49c20QDB6wGv5atYwJI3M4D/e9gFufe431HMJhPcO
1eZy84dBd//90feefwHVUW2yFoaBsLJm+YHWlGY4u6Bc9tr0SoiKvXzBeQId
4ibvOn+6agTO2Xbfizavh+BrvubHCzzhiKe9PTyizuePmB3fdtskAKx/TWje
60C9D+lmV2U1RcsHeD9seyMhPASd0y586l9Rgrw+jw+JFEyEuzRT9SaLYVD9
MU/4JZ1hPyVtVhITnoPI2uTpK68NQ8+YjY2RqoXI1WH6UbmUANitd2LmwZpB
eGuy85N0Xz48OdF+9WFlIhzbeuvc2NpBGPddbh1NvhB+X7ZXqyxJhAyZf+wB
Dj1j2YPUsmcNKReHoXjaje2+OwpB0WKD3I6qADi/d4ylWeIw1K7Q1XI5QgeX
E87Ww2/9QcX6pPi9d8MQemOFWH5lCXweI54W/tkfXAjdTObNkV+6qwI1B6+5
O12EDnKE/qHDTP1RAaG/+hmW/tK+TP1R2h6W/umO5e9UXgzCLNVnLdqh32Cm
wJ4ZkXVJIKE5s99eaxicq28fWTOcA5bn+iaEpj2HPmLd9YC57tBjz1p3vkhf
G6XGZmjvLGjrOUYHkTG+yzJn0UE6ITOnOK4BhnhjvaW3liI4/NVDQIsOtPKC
h4axDeCq8SBFYW4JUhs3ol2ykQ6b+osu/HnQAAGRS0Slyyph2ejjzq/v0SF3
+vzzJQv4aC4LX48aCn4DR6adC375/S46sVVHfbwzD+1TL8vfXVKn5O5Vug+C
4d5ysbOayficlTvzY4sqHX40/QrOM2oGda2UzREfq5G08iIUOJ8OU2ZGndsr
9wN2LTvl178kBDQOKfcGpWaD8q6+08YPBsCywNgwVDkEdh91uVLwNAM0iLih
xIobsJmIG5KEf02LYPoXqBH+1TiTd1fEAyqPcrqwIqT/Dh1W3MpQX6rARxvY
/Pkyb80bRPuw2ltO8h56SMSx+6w4hrrcWHFMjdDNhKUb9AmydJNL3+Izam8z
JAYe2VZoXwNDk6wO1S6kg/Yjd6U/ls1wfs6kO+lZ1eDzqWLLrTl0OLLMUC5L
gHr/SrlIiD5T3w++Cxq4mIfWwf5fNUc7NzYgEZq59A6ZcnhyKKryxIIG6F9t
esb/bA1KPtrwNF66FPalsfyrbgrTv2A4leVfAaKnPvyN2zfjb4Uy4jY0O+wz
+xu3N49uEvp9eQjg3Cmlda5VMHpmzNWlIvFQd+Nz++qjdfCgr3tinXc2+u7r
Mm9FcQXIa6fzKs/9AZFW967eWx+C/vgLpqYkZxPfufyCDD7RH7FPQxCv+47Z
e2U/gb6s56t1f+pgtLyQ9dq4OvCaz3s07T1j3zNUUzNe2gAqXUppZo3V8GPo
wtyEKaVw8v2hD4GLeWkiylEmB39HIB5x87WBO08Bf47eznsidfA5S6Z1jnAe
uiDpc3CecwVYPrmtkG45SMZnw2knZF5/oe7fr+ebS5YN1cI6d7vgx52loH3Y
Ry1xSi1sPjc3TR1aUHn/z81LoRJGdYiMj7fmobkrmi4WWNiKxNMu5aa2usCV
7WOH17aPwMGB2q9CgfUodJvMm5s7PeHuNlacudHOjDMowpYVZw7XzTfZnRKE
Dhq/Wye6JAQ9G4KAeRJtsMAuT2FK7VdQccueeJDBHVbdu8ioMaFwBR99YUU1
TFnAWzhLKQS985J7VttZDVK9xUfGPuyGBdP3i9LkQ9CPvUcE54oUQOKpjJO3
V4yiSdy6Izd2bQg6G/5K3dzuJYraGFoW4yBAM+RXdCxdF4L0O2+Pd/4eiy4t
sV8uz9+KNqk/iNOHENg3uHv/hKF+WN4tSN9XWY2m332kdHFdCMgvXzUzUaAX
Lu2tHyfV9BUdagpMsWHwxr3lteundMFIYGx2emgQ3FC2djVk8JjzWVmNWq1g
fdXzQiYj3/dp6uuZxOCWh5ZIz3lUD4q7hlcLRdVBw5Y/aUvXhkCW7723Ab8r
IWMjT9yR4jZQXHcze8m2EBBVd9yf0VoMX/7sDljfPopmmuK6e4FSCIyiCXoo
3Q9H60S7Fc2Wj6EtHrdp4Y3FjDgQ3GVdsSYe6VWck9eMH4bZija1pYZ09Npv
wnK+BH9oqttq+iByGHInbW49+60EKRYZ3+ir8geLyytvTT8xCAbEfXoKb/O1
H8OIOJ//A+2pJ3JOMuy2wt6FbiKbCiUE7zn65djnxyFwRCh04C/3atqgGmY2
SN7fqVo4znRoRvB4qn1H3BGSg2XosbCnIskQv35K5qXaZliRs1goYGEZOplw
cChmMh329Dl3L2LEZ0HiPYErwQZT1jLiQMRJlZsNac1kHNjiI7F0z0Q6jD71
D0dzCa4i3qoREUy9b3/1oVJLU3kSVBD943t2IPqffiXM8KEC9Z2OrZHFi/Gh
vuC9csd3xdYa8hwj/O3T+5/PVcK+RTed56ry4DwQ8UiFf2i69QocdZe98b03
Qv2+jaFUm/vPt6AfnR6ykKcVtDdEe2TLhqBomsmlxHw6rJ3x5VL/yBjapwkH
PVu9Q1DOhiu3XZuTkNvC3MUfGf3Wvnja8vJZCBjavvY43DEAfev2OooP98Cl
dGux/etD4Oa1JFVLszy48K+/gx7h7wLpLinLwsjxw+I3CZNN0yqhzlKLfZzQ
ewx9/zvOhtc6NbkZtSApNtz8yLMRLDs2nVq8owI6lEamvPVoJu/7biwTjt0h
RocgvTXJk782k+efA6FBFboadNj4L4dFYSx+bvWmletvk/2AZWXz4x1SdMgU
+2e9kK47a71wvLJgxSu0hohXPs5mzfUuA/DEPi20YHUIWvdn14o+rwzyPSW1
xwdkx9eFwFnbBp6nyg9QRodKr/GXOvL+92TraVfhoTKwJeLzwQ96zrYMe17y
Qnj33/h8h7hf9j65e+2sqK+QUSip+KS3FOLNWfF/XRYz/oNREiv+35/bITbK
cgS+lyY8l0+sQcEzV10YTvSBsMB1HRc2DZPPvRS4R9bsWSw85C2b6L1gGEQ9
Pnj8kq0HSzUtly/T3wGtpduh5tIw+On/0jKe0ggrM9aE6j6PgV2r7ivsDmyC
Rp3DG3cvqocS8WsGd6zpYF81SUPBZQg0NM9Uvp5bDYazilVXZrwHtxy95TeH
msDGwjn4R1stKnLMaQ/UpoMh0U81qx+UQ/Rz8aSXf4hiA3lvK2+8WPnujFKo
V5hWZRJD6oaMO6tCnETL4YJRg3m9bROonStQH1Vbj2aqTd388BYdDPg+/B6b
yEfbZZYT/G5aEBx5oZBevcIDqQj+nHQ/bJi892yoV169qTga1kmdUo6pp34P
Z97dZGVrnTiQ+lmV4FM6BKMbTH8ckatFe1rnRafZx0FRsvsCr098tM8Cp0rM
7F6hEvGpkz4LeSK1ST2ZS/jqGHXSrUOT/XLBpVHUdk5UBTwdx+I1X5kcubSw
+Me+kkuPuhl5RcqNwUex9bCkLFmwf4EnBE/WVlvwvh6ihvTtHge0oXUxIb7r
W0pBLIF2SqhzCN43NX+8k1CLZgR0oyNz4mCxrbj8tmweWrXYPf1V6u3ga76n
YeTADRD1saJPqm4Gu3U9185fLIPgHdtHjITp0DHYXb4/YRh+G6VOE1Chw9ah
RXtGYvzBSrTUOdSOj+Z3t4CmZxoI1d8m3D2Q6oYypg9906SPwJb3+2znbq9H
tDFbFH0mPIW3kmiS3XhemrpN2Ae3oE4krRT/rlfrAnSb7OlTr20A5WB7f/vw
FjR6x64Zk3RLQfGZm89BxniQiNHbloNlyH7LUQtFRrw195J9eeviCHzkK+O7
87sG9bmXKl0x84GmfbqOKoo8NDm/ebcPP+yE0NTQ2OD6UIj1F9N8LTcC/j3z
l6mfrULN21ubF2b5woGLpTfKHg7Dxms2whMcG8HLtdjSb3MMFArN8RgpHgL3
gSdGl2bUws/ffuraznEwPXx+ofXdBhBf6Lx7dUAlihx5bOXoRofzB8WP671s
AIXUbd+rxpWji1W5x98a0UFdL7xGhsFnelie3zmqHIIWWZc1MrijVjCcVOyC
5sLXjxYWBaOanpTwkLhC2LqifMUM2Wo4tVzdoXl8O5KvtJlSblgNdhsuZ3Wa
NIC57PGiNwrVqDSAvlnpC8P+zbTFst1rQQ89e3VNuAldH1i1Ybl7BbyQWLzr
JVRD3gqVdSUHOuDn2OX2ZTrVoKQ9c46vRTVc2RKT3XyqDdaf8xWyUqoG/Tbr
bbc/1cJhuf7TMlGNkB7ZMOn0zgoQuXvwyzKhGvKcR0WgtClVqxLWX3wx8Qrj
n38r+l93fBiCrpdLXtZkxHnPw6zzB/x+Qtop1vnD+MaNEYo/GfagVLstNKkd
tc06GeEgHw5zOmqk+Plakb5s4DIbRr60eGqfzuvBfvihe+fPoYpqtPZGm1Mz
I7+6OkZ3+BQjn/mxNM5Rue4remPycX4rg8uqzVndIdIFv2unr3uwuwHyFy45
lb6mEGn5C9lNSKLDLqLO2sOqs5CnBavOOn2rpS5wcJCM/yesk4ONjyaCarz3
AhWVIbhktWa3iUkpmrjgpluGcQJE+v/THsZOZLV/b3aeWefuObH8b50LF0PT
mXXu8eORhvxKw8Q+lYn69MY2FEIgWP7LwYjgO6SXPPMLG4HaE54XX40kg3bs
mdbIp17ke3HPjISCZN6mwo9Pmqcfy/iDbMqepN8RDeR7iVN3umQE76CD0In3
9xdtpr6jtFrtmhJa8hxmVdFXbJNk+45SCGofPA0E9yn1O9nqJtgTephZN+WG
N2wxqOAl71O0Te3/tLpfJd+rX2Zg8PSyVyw4PJiZyNd5FsZaHGDWR0sP7/tb
H6E6ETNmfTQo9M95DmQT5zljifOTk6zzExCQZp2fPBILHznK8Je9tz8apfqU
I79jWbpKJnTg/Xf8SGECa/zWdv1nd1jx0MbyZ97SXpSIzn57sWDqgAvsJ3SY
TeRRW1exdDh9f4recUZ9Jz0cFHXFoBRe1cSUlmynQ8i/eoKQLkvP8jVxLq9H
huEr/fbCfWYV0JW34JimvR9oTG1RejN/CO7I5xkc2lkKdpWmQo7uCTCm2iFo
udMQmSfY8BcLnml/T3zHwUebf9PvVb7Oa/Q512PTlXkPEMd+jfB+rb/2obZ+
XwOk7J3qSl+TjYJj1VqPe5eRvz/wRiVKMGR+NKKlRMSmtJ4F/x/e7nseNpH7
dTBdMGcjoy7mdVjtI3pyEG5ZGpRpvklA1X5jow78RrC44NXhtxvqYdbL2IST
6nXwZg3/dkX9MhCYnZjk1zgMPai8uES6GRnvOnF6WlkUWI4XsDRICYLfOg56
Egy/a5+lljiNUS/g9zcUs7JRtFsIEkz3/H5+Vgeg7Qduqs4uBMPUQouzjPan
7r29bOheD57z1k2SjmbUfRkGpdsY/n64b732i1+V8KPb3cB2pAe2nrY+8l0h
BF2oWStSczoPHH1VPo5j1BEvl53rE2bkSybeGdvhXjgyK25zkGfUEUfrVcW+
M3h4ieuyJ6vjUUPTz3E7S9pQi6toxTFG/ZJ830t6W/MPUHhvsLsjsg79rBTO
tWPwSj/Hee7dveBuo/z6nVQhmts2OdKWwXk2z9oweqgLysz776WEBiGfi2uj
TzD4/J/uzbtmtMHq6H3tPxu/guhZD2sZBlebdOlz185GcJx9OXZNZTVsX1c2
4RijPpr4x09Ti1H3dWfrl2uOaoUO0ySn4c0hoCSY1ohy6JB4mbUuQVbMdQHf
ANa6RDhvvLKbUQ+etqPNK1kaAi6Swecv2LxEqrpFPOaMerCU98PlGOUQoJnt
rVNtjUUukgNLWtMGoXzeicm1dblwjj9K0flQEnjOqrmiU95Ivt/4RLFk0qgi
OnzxDzxstZ2HNs3lTsf6Q80QXpDmldT2ED5vSlcTXzwC1iGZGsuyW+Cj2IYv
Q56RsCWAf6tdSD0MbwqMEQlrg9c6Le9Lu0vhqLdPt1zpLzC++bpx/KoQNDP3
o/2WRx9h6pqnV8daMvptU5B8ZlOAcvZYG2o+ocOZyVV3Kj0byHgrOSlg0M6Q
DnyEfa6yHNKTUXiPVA0DPHoZOoQ2iNxSevcbNm68YtrP6N/zWVCiX/gHEJnM
a/FUZhBmuVqEDTH0OT1bfNL4J8kw/t/+YZjof4/Me3HRk83ke4+vOg37DsvR
IZmveUbqwQaY+q5BslmkGoxlXqxVK6GT39F8jXWxqZqYAEtMXjyZWnIXBM+1
GHxhxOfMqMv3t/CkoFB9HQ+apxdMSD/Qo8oYz1bVTy9uMMYpbmP4NIsxnlfn
CL+bzJwX6Huy5hUjLbEwKLMZbDU9da5cLUL+A14LVRjxp8pVeYua+yB8gdjg
AJtMpJE4Iu24DIFqRviwX2UzTLj7sC8osgwWWNrfsJjEsB9bi0un7ajvzcXL
sivONATAR49/zm9RB3F+K9WRUjKakefMQmJCPluKkGXDgLKjdQBk/JY771pJ
fZ9u2H2unNaSCA6EXdVLXo03ep0HKkp2s/L0k0DDA01UuEB9n64q7dng1RcA
D4j+BZKZ/UNJLav/VzO3+i152AwNogJ/vM2q0GeZmJMSknR4SdTRsqw6GqyI
Onoboc/Gr7df71MpBtnZ19Q71eggT5x/fmadf6IpxPknPt8WYZ3TwsQQ1jnt
a+9vheVHmyGJqAtmLNIUPj6fDtKEfWq2M+0Tsgj7xOe9EqxzcnSHOCcXHMc6
t/dQZZ7bw+8I1rl9KHEvkMG6F4DtxL3AWeI8n+7GPM+Hr8R5/t62zzuy7zVD
2Yk7h2q3VMNsp847Y2bQwanta2O8SRWoV985VzGrE02yXp+qFFYN47sPyr5V
GYF7iQtSqztbUGPPik0brkbCVIfZlx11eGhmr9Wbr19pRs3gLuwR+RD4ifqr
nFV/IelMVv2F70nnhRrpZDPic+TQca1Otve37/EsqJ/rHoJWf8u+9yuqFmoj
pR3+lLbBorropfelQ9CWSasknZuL4fdF15K/92JtxfOeyvsx7Fzgqh48zwHV
j0Vyb035aZa9BrqdTxlx+8VO5ZniAcgtw/5Pbsxomp/Otxo77xA0fs4F+Zy1
UeT76horbwg5+ITArgf26uz3cZmxx9OvMHiXgPGjMLb30iNDXlrYM3jaOaWE
82zvpU+8mVVznMHTl+vHdbDNK1hZcMd4Br8Ukio9EEW9lz42zfHbCu8Q6DCZ
5vlUqRzObHWSFXDrBtrVBRZNjPi8sUQi5adwAWwgfifhvRTzdxLg+XfidxJE
Fsr+nW/TjdrzGxl1d6jC4gkSjPleTKv48Xe+ZlrH5se4h0C58iKhv/MNuiJi
8/ecBBoXL9z8l7tNOfP3nIS8n/KeZcgn3gBdV9UN7j73gGtHnKMdrzSAwV2R
iR+SW+Hn0KbESddKIUWKR3fDeR7aj4lriqdOaoXg6pObesUfwPtWbY9dfPWw
Mv7h9HMPO0BFalmMmUYZOMdMvr53Ii9tw4s/u+7kd4LD0VcrEpOtQZrY98VZ
+z5KJ/Z9xQceXfM66+G0mOzEaEa9c0BrUkuqeSnIKbP8tyc9Izpcoxqpday2
/ylGJ+NYeTbTT9EYwk+3E1yYFd+gkohvEk3T2jScmkG35pt6jEEV5PQtCn04
hxHHiDjjwNq/0FU+1v5l3nGFPY9CwpZ5zDyKNyDieM/wMNwV8riSe6YCWSbG
3Ix18AMV6z9pp6YPkfnbeMPECt6qBMiID4mY7jUMlQnrN0zbXwx9KmIbtLYF
wBHiXiZpI/NeBuWPIe5liO9zXxTkfFr1KAQ0wpYJ7FXMgr7l/duLNPrh1DEz
6/PzQ8DUe/JFn9ff4KRAhdJbs59Q6zYxdqVKCIxpcl88IeozrKgyGi45PETm
1da3bvTM9Y+HkTesc6oHosxzKjTcxjqn2v7sZu2Dzf3QVb55fcK6EOR3u1rH
4u03mEGM5+6hY6d+eYUg+Yb263qM8Uzg/eY19cxPmAaKRmcY+Y9YXqaYcuRn
eCIdoypjUwdvrwut0VjQAEE0TcMJJuUwjVhfW9b6IgtifbFfLDoTavCHEQcu
qPAuC2D4xTztW8Y3FLqgjrZ4ba5oCLgVam9oiC8E79UlgrcZ+7595FSDeEYe
oj+t9KCp+0fg38HKV88tZearsDScla+OdrBuHzVYC0uclnm27MuFjbtUsrq/
VIBZpKfh0tB6EJTy/XroQgEE8TX21KaUggrxPYLLBub3CGiRNut7hLbPcC77
yQjU3RdvOR1TCxq0JVcGjbzB+t3GXeuaqd97mbo05J38VU+wWME618r5zjzX
gsFLK5nnWr4fdn1c1zwE+xR6Kh1ta+Humfwt8zfEgVRoyqPlyrzEe9oRKNln
5+X+nBNw6Gt3xf2aJvK7g5LwVyv36tNB4KBCb1JVPRx0E6ZVnWHUzdeeP8h3
LIXCZUVPchl5xfEsUYG049VI8UjLxRZGXuH4b36OIoj83Orf/tFnov+ZRP9G
rP4Rjejf+9jshjErGsCx4EK2cl41Ojv1zfaXE0shubWQeR8nTrxXQJPkZd7H
3VMzZd7XtD2e/fe+BrWYr2Pe12T+2sl8HwDX6bT1Hcz3AbwP/lj1W2MEHC/r
2YyOrUZBZRtPB83zhbjpAhXjHPloF6+ZHrnYH4o0PjlZ8Ji7o53/noPB7Tus
czDHctb9TsBX5v0OyI5j3e9MvMiyh3u3mfaAzPax7GHBMZUmIZ4u8KrpaZ7v
EIJ0y7xbXnUXQi2R/5y8w8x/UMk5Vv4zWdy77EhyPfhcVhNZZ9eGZgV9nDWh
sRRqvg1JqEfy0J5YL/isrd2Gqk2Vux3nOZP3+4d9mfEWhV9jxVtL5Dwts2YY
ml3SNA4KNENAl8xks64oSKpnfe+GvwuQOs763q3ogHlqzB8+mvvoxumaukGQ
80u1nzfbGw3KvvSN2TMMk1VFN8sqN4Cv1Qa7cXtiIZG4b5Jm3TeBlxbrvom2
lxW3B82ZcRtJnWTF7cr3LPt8JMO0TxTvzrLPamJeD1nzAmEz1rwuZLgUSVc3
k++ZyJiFheUI0wH+/JPXIdNOVl5323BU3oVX1HdzOcoptr4XKkBM7+2uonjq
94W0k32HjeP8IX26h1rXTT5aj5rp+dPtgeDL/27umvvuaDbfynmKFSNQdrKQ
Zn2mHgl/kevY2eIJrwNY+47LFea+g3jqwpn7zvV/9zWE9zWRTNb48fs8eaas
8a/t/ud9A/T5M+t9g6T5rPsL/H5++QHW/YXe89fs9yBIWtyUeQ+ywRVdbvnM
R5tREdQQmxMEXeItrxeIeqJLh2LOT/Yjz3Uhanr4+eHxMbCEOL/9Uc88v4Wt
xPmtn4RLcUpoAzlOs+iVabZH6RAsN48+ENAACUtuXWlJKwfZ83+6L5nToYC4
z526hnmfCxbEfe6TkqubD0l2wYvKerkPa0NQj3ZJ3OKvheD3cu2zyGnV5Hs7
Jjv2tTw9XQ2ja1nfF8uwvi+GDuL74hzi3DuZqGvCjVjn3nA8P/PFR+q7tiYn
c+mk3RWw6+QCC021ahhjx+NoGtWGVs8atCjbUQ0Jw5nV9kYNxDlJFdKgCTZL
ZtHBpnPewdnetdDqfYpn0mAj2vnwmsr92xUQJfjlg21IAwy+CVP7WcZYr8c6
HoeN6aBhOnH0TK8GEPCz/qA9Uo54AuUaBy7Swch89abFHg2gGx408Em3EtXv
MzfKvEaHS1qLnRsWVkPU3J4gje8d0BfoJfrgUDXY5LPG+eQNc5zwhv6HOc6r
QYtWBaXXwg6TqbtakhrhXUG03X1Gvs/D+h0AhP8+ODDbvu/sd2DkgDF/7Rtz
46GE4NohRr4Sw/wXJG9XuLj19O1GcJPVdGX+zhrBC4rutybPqAcXFief0/Mh
JFz0dQ2UsvoheZxAqUzi/Upg4UaSC+esDxzbXgwjzP91krz2/ospolmfgNk9
I68m53H0w8+JH3cijb9Y9hfJTR3zbQtGf0an/3bP2B8x99Db5viwrZhoz0vD
nO/VeIdxrTWINU5+khvVbau/WtFE9DOa5O96DA6OyW0n5j+W5AeVT4gcqO0m
dWHp9x2lqU2aLHqG0hnzQx6Bx1T+UDpjnv4zedeDm5TOmN961HDUbBqlM+Zj
Dc5tLnxB6Yy5I1xasv4mpTPmS6Yv+PqhhdIZ89ZT/fHvoyidMXd40zNq9dvD
pM6YV5xKExUVp3TGvIafP3Okh9IZc3vLXFBvo3TGvKcqTmJqFaUz5q4Pta3m
5VE6Y27Z4d6exqbzO0LX0Lxt59RNKZ1Phguf//vf6SjWrOfd9ZPSGbd3k9w/
+9g1SmfMZ/HnZAtNonTG/GxFf77sM0pnzFvX/vi10obSmS5sEO/Y1ogynlkb
L66ndMbtw+Xm5Bs+oHTG3OGJg5mfrTGpM+YJ/b/fflGgdMZ8++LKybG/KJ0x
9+869si2g9IZ8xtVxhIPqymdMd+5XMZ8aT6lM+Yt+yMfyNVROrN0qkVDJnP6
H5+idMZ816OY3tJ+SmfM3x5IM558mdJ5d9TNR3//Ox2yeWtnVoyhdMbtD3m9
+Lr4IaUz5nPUZU93HK4k9cR84+PA6Qb7KT0xTx5/+LayzVlST8ydNgZnyW2k
9MR83uVe82M8JaSemF9fZD7lfhelJ+Zqo4JudtZQemKeoO92dXYBpSfmNU5q
wzZselYROh3ykH8rd5LSE3ORst2mDr2UnphL3pOJ6rWl9MRc18llRstIHakn
5gMjtyofXaP0xDzpeP3L4EWUnpgbj/pw9OloSk/MeZ6e/jqx+zypJ+YBTaWD
1vs+k7phXl9TXH+0h9IN89oGvyixOko3zKPHZKQ0semGueO5Ii3Eptsj5sDy
kJyk9ZgxJyjdMLeZvb3cp5vSDXNb28yDdtaUbphvuDBQGfKT0g3zV9bhzjXm
lG6YK++zmpObUUHqhnmpSpJ22oN0UjfMj8QFj51oYUfqhnlFXFufsCmlG+ZT
Tb5o5/TWIMM3P+T//p4/5idTbN/0RlG6YV47xULAvpDSDfPDaFp9D5tunsS8
LfsE1uiYULphrqQaf9qoi9INcxdVg3Gy5yndMNfp3frCqJfSDXNUp3i68hil
G+aDr588Gd5WQcZJzJP9bCbptheSemLufW1bV4U0pSfmPFMsfs2NuUzqifmb
cR0JkbaUnpirPNky+L6PskPMU8svj3Wup/TEfGRVQhmdTU/MR8v7vBepp/S8
Rcz7tvqcwsseFaSemLueHW6u6igl9cRcQ7tFdr1aCakn5kdshI08PApJPTFP
2Oe2ubMjj9QT8zx1kYRVajmknpivvRPyO1s5k9QT8+6X+1+frvxI6on5ZrnZ
M4VuJQPWE3NruwF5K5MYwHpi7mSVsXDTPE/AemKeMy9k/apTL0k9MY/5bvh1
5ZlkUk/MFcf46w5BBqnnPZbdQsvLak0HNj0xLzBa97iaTU/MTTalrQU2PTHP
0E3a95RNT8w3j+k40sumJ+aWXw90qTH0xLphfiPOJs6STTfMx7WoPY1zpnTD
3HMjz/3zbLphToueqSTP4wleL1l+fZfgJ1fP2LdteQipG24vLKvvvu0spRup
Q/fxuzU0SrdiYh5O0jsErrDphrlp6aKwGjbdMHcROdNDY9MN84nIXMuHTTfM
px3zl/zFphvmNJ8LwzpsumEuanmm1o5NN8zf9E+zvMOmG+ZtDpM+27HpRo7z
7geFgK8epL1hLpy6uDnblrI3zMfH+M3cYUHpRnL1KT/1VSndWPOrhSCD8XxX
2XTDfPucYzPq2HTDXKJ03pyNDN3cCd32sPIZWD3rzoAfm264/c+DFpdH2HTD
XPTJrJ6DbLphfnttndh1Nt0w77lVcN+WTTfMNwRZejgxdMP5DOYxozZNkb34
gtQT865BqafprpSemPtunHPO9w6lJ+ZJNb/HLTpP6Ym5qkRahJEapWcUEYf2
ROQqX2PoSebTrDwcTH6qRtSz6YnbrxbVClRns0PMlUe7ZAay6Yn5kkOv80Z3
UnpiPvlxYpcxm56Yz9PO7b3DpifmusZHXKzY9MS8dWqH4xM2PTG/0xT2/g6b
npj7qr8ZvL2D0hPz6pqhcEF/Sk/M1SbX7Uu8QOmJeYfWJM/2TZSeJcz+vsPE
s5fvXmezT8wVNp0Ja2TTE3PbJUp7Ndj0xFyzZWp6CJuemC+PfPtOiE1PzJvS
/kicZdtfMLcse7k/aim1v2D+zCqsw51NZ8wfZoX1XWDTGfMJV3bdDWbTGfOt
1RKh2Ww6Yy49pPvk4VhKZ8xNDO0fJMVROmP+9cPT6NyLlM6YB2XVLyvTpHQm
/oLs2vFjHNl0xlw4JTSsmU1nzC8LOUtqsemMedf82S/C2HTGvGR12MTJbDpj
Htf1It+KTWfMA+esjE1h0xnzzFZpHx82nTE30tj7x55NZ8yXPBUSj2XTGXMF
cWm5H2w6Yy7OP11zRsoT4DgPgZ/JtKnBeS85z0NA+tXhw+uvUDpjvmlMsYDY
tgzkSsQLPiavRs/qqubvFy4HzN8z512Eiv506liUlBHP/QP+zH8fgfyMNzR/
kctDD5j/zEfD/OriFYvd2urJ/q+yOLhZnvntVZFN9POd5JeSKxzW3vxMPLeH
5BsNrr4OWvaB0P8HyS82LYzZkRRPjgfzJ0e7PfxF3gIeD+Y8P2Y+Mbp4C+H2
Eax5gd64q4rDjPbDrIUk+buBMBXnveHkuYkZU9d2NPHYPsFNy1vJcyvMW/Xr
3o86+50YpwAN864VkxteHu8i9cc8N2zTgEttN8I6YP1L9MJDZAJySf3Juuzp
ubDZw2WkbnhdSsOU3NMP5JI61DH/ZqJ3iiYqLnPyyPniPNlE8prWPdk8hOeL
208r09uo87uCPM/C62ghqG5rqtBK6oD1FPFRbl2sVk7qgNv7KPXdn8OoX4jx
k1zOTnZrXUQTyXE/fupvxO570OEhURfh9vrXG6vsVBpIjttbzqRVf+8oIp7r
koDbe+3QELnyqpbkuP1UqUXX1dQKCHvII+02z16oX2J0Nclx+0/yPR/cPCj9
cftrj7TSDb/SSfvEnMfcO+ysTDRpn5hLVH8vlLWKI+sgzPdG35I9dOkzkmHG
h1Gkv0ia06/KV7SSHI/H6evw1J1CsQjbFW4v86Qg46JxF8lx+9L2+IJIvY/k
Ouaz1hccNoZpLmFbL9x+deDl2L/1EV4X3H75us+v2NcFc+v+9rI2Nv0xNw1x
PrOJTWfMJ/0Kt/Vg0xPzBWtU9JMZcUDmnGj139+XcyDG81yjKlH64UfSznH7
tSs+jTrq9JmMq3j8kgeW6C5lq48wt24Q3G3NiKt4XXA/MjoDOTPZ4gbm6cLH
xn9miwOYdzUrvBhjFE7GW9y/g5+3kenZl+R64fZ7ee9ajh4fS/o7bn+v+ppl
GqOewuuF29/xU5l4cO9Hcr/DXNdtlsDfOguPk6xfftIdahnjxP2T439ptUuf
UXfg8Q8y/1TBSpudxnWbqDjG2h/awU1/zY3lbPaAeafa1M03PCrIOIb5VtpH
jf3HP5Ljx/uIW5TsKnVjyt5wf+1fzNYbrGgFjvZo4Ljm3tOMeIjHieMSf/zG
Mfv+VJC6YTtfetkhcwajrifP2Yl9u+Pwiol/7RnbLeY1m9/uYLdbzGdUlAK7
3WJO07xCU2ezW8yHvt3yesRmt5hv/TWn+BXb/kXW9fnbXNoZ+xe2N8wNNt93
X8Vmb5inSWVEvmWzN8y7hGu9E06GA7YrzHnqbL2M2eIA5v6jhN17GP6O+8H1
1O/5efKy2tS64/WK/elpsIJc97Hk+t5pVas5q5VB7kd435GSH8h8ciOXzLuw
Paf5XUlgPz/B/Mye1PJ1bHkX5juFymqfsOVdmNfHN8h3sNVfmB/vktm1nC3v
Ivfx4MTkAOVMwHkO5i9lTn8bNEtGW5gL1oIymf/HeGgN2Nt90wPnc9UkP2VR
GNLYUQIVxP6HuUnk4WhVtSLC3yIAc+lbC0d5euQT4ykiuVfB2JNNHTlEXKon
eWQOT7qyUxYRl0bTMD/dLNLc2hePRgj/xHzwWtTm8Uu/Ee1bSK6yYXOqQsUX
km9l/qUjy7RA0+arBfi55Pjz/e3vr1ArJeq7IpKPCwuf6e5RTJxvRpC865jo
/M6OAqATcQRzqcYZzqpqeYRfCJDjv6qb/u5mXSqZ97DsogOdXXp9fnB+KzCx
6Rga5gtfLJjPI9uNsD54/FN/NhiXjJSSfoT93dY344nptRzA/ePnLhDf3VLc
UQ7RzH6H4TXzbzooWl3nXXogmvQvMu6J7rmtNIXyrznE8y/krm1yUg4n+2et
Zwfo6JXuqGT0j8ePeVbwqls76J/I80k8TuXd6Q5h9U1kfoX9Tlp0T58423Nx
PR5q4XK7fy3260GQZv4tgLTuxMx9OaFkexzna3V4/eoPh5Pzxe35ikefvLot
muRqLD3BdZymiJNaNBnPsf5zepI8LzLyUjxf7C+00tiyv3oym8X0k+v+PNEv
ffWJJJKTeVSE2rNtDM4a5gDZXs3sW+2BKXGEnfwmucgsof4HiZEkx/20bnGa
f5/BWfPlJ+3Kawn/GL3ZEQjrj3m1kyi0ZH4iOe6nMSBlRQ6DYz1/Mvv7BjGJ
2zz4GHpifTB3cjkeJrc7mlxfMn/fM7+jVoayTwtmgwr0LOn3uB/DpaTfYf42
VmSC3IsC0t7wOCUyFgiHMOI51hnH29eFmbF/7QrHW2xXc6ulp6luzUAc7dHZ
Wz8jFxS0ku3xOg55Fq61YtQLOA5jO7yX+D+67jwei+cPALgoilRKopQuHSoq
RTq+o4juSEm6E12SdKAkQgdFCqmESuoh95Fc4yb3fd/3GSqUHL9nPDur5vn1
l1ef5rXP7uzs7Ozs7Oe9Tm36H+8FcHz/qmg9q6uj7wVwPCD1YeiP7tH3Aji+
xkzLSPfY6HsBHH8TfGH2LvHR9wL0eH6igofpswJ6PIbjXdEWq95dN6OfQ3F8
2EfEsLtg9DhxvblfqIxH408cx/XDvVfDE41DiPMFTtxeXLmmNJl+rsTPL8pq
Rld2x5bS92uz/prlyD0xM/x80+pCGX3d4evF6VOgjA+zneDnRNxvxISEl0ke
taHfU+D4XAu+1SUBz6nj5ZBXHvn/GsDhPWlQyMuT7scWUf1xn57Cc/ukHDqO
3zNefP5OuuBTDt2udrK2A49JrMkyiMqny+Pjun10+das+mw6jt8fbbA3V1da
mAOqqPEzrucdzhzGD8IT6OsUXy/VySKbTzCvU3zd4bje7OnGsczrDrc3fF6W
v9s+v5w5XsXjajzO3K7yDqD5c3xd4+tLzKdsrifzusbXBY73qzT+yGdeF/h4
8XOuxI33rvZB9P0LqHz/NRBzOB+WNPMfjeMso8svYfV78Ipe3luoNFoeP/+W
D39+FM4xWh7HgwrKUyzP5tP9QDTrfgEbDxTd2zcWz28OgbGTBFQXBDCvj+PO
73OZcXxc+P6y/Kq90Ys/jgvHQ++7LI1kHhduD+dZ/QMQXrAvfHKEJ92f47iH
L7eGy05/un3idvJ6x4EmqXmj8y24nVTvqN3lP7OcPl7cTuapvxO4y+yXcLvF
7UTQ00pJpL2ebrc4vq5JKuXgjxqI9xPXg8VG4bIWo2p63gaPw7MdjvlpM7fD
un7HyLex2gNM51wk4qpfR5fH7eHEhVar9FRr+ndxfN3cOLUywRd0/eB621W3
fvrwV0/6ORqXj0lOV7uzJp6O4/HtBkGxBd+Zcfy7OG62qvdIop811V9w0u22
6/DZ60WP3SEeh+P5nPQt7dHNURH0cyKOF6kUBBj+0Z7xfXZbs3tdEH3/4pTH
5WPsSm4FTRjtH3B8SatAWFrzaP+A+5nlM/wzGameANcnroeY631JVneM6e3j
8QnHpzqe7NjR7eO4Gd91t9LLo9tnjdfqQMKRGLFxzp50/4zP+3L/UjFby0J6
+3h84n7p8fX+lTb0+cXtM8aixqdprRHV336n72sFgzaD/lWx9O/i+pmYZer4
vnj0POLrLkasSNp1XCg9L4rjXSGZ2XaZSQA/b+Dr+tvge6DvkE5vB++/dZPU
pdhbIfR2cPylqnOi0IHR7Ywd6U+yYeHRL6oCIJ2+H+F25Xb3Xmjlgxj6uHD9
z/kstvk487hw/eBxl8rKHY2RTdZ0/eDjjSme0/yp3Yi+rvFx7bfizJPqq6Cf
v3D/fCBrR1Xrzwr6usP7KV2UHnXqj+sOb8dfzPHhirZ6Oo63Yyoz575/2+j1
iLejHLj3a9el0esRjzM5+H6cDXw0en5xOzFbusX5qqYhXW94HC6eMtNmQ/Vo
/ePf7dI9mroWhgDj6QxLlDfV7VfvfZQ39eGx+giHybF0edyfb6vnCXF+GErH
8fOj7/aD1id3hoKRakAODvW7mnHHYrIGY+jyuP+JLLjYEascQrc3HHeJ32sy
27iavi5wv2Sw0FC68o/+DfcP9U8vlq397knf9/H51YhYtk6Sed/3v/y4EK1H
LVm3rQ15N6ufn+7/b305fX5x/wxiOgKbO0bPLz5eTsumXW3fKujxPz6PQ8Un
o71Ec6Hdba/mz3YDgN/hhqdXQxJcWH1n3JBAAT1uwf3GzL2Oyu0VGXT/j8cb
bi+uhk2pHJ1nwHGHMYnGPfdT6PK4f/jyKqF+GbN8dUuyAfJf9iSaViP/5ezP
AqOEmS/o+sfX9Td/h33W1gl0HNdnB3+FXfChGDqOxwnRfC4/Ltsk0NcRjg8L
KlwqZl5HuB+mn9N1JTu/PXOH6QHck5ALs0LQZa3s6TTwdYs6X1zCR/p+iq+v
IsvSg130/bSermfX0Ou5Icz73bHrsh/ROvZiqh9T15vLYbQ4hD5fuL8V5do0
/tp+f3o8gNthZXKjxt5nePzQBSJG4t6ge1Ha+dcyifQ4AZ8XX+mP0su3h9D1
gMdXUyZJmWjuiaF/F49bD2WaTDGqrqDPL36/Omg556W9+Gi7wvf38urpp292
jbYrvJ9hdkpxy3pG2xW+HvcZrYlvEMul52fwfi7nUzVKZbYHHMf9/ELjjNy6
P9oJ7h9e7tqhLlY52t7w+00lGBUhw4wTxwVi8p8ee/HuOdg89NUb5euWnFbU
abX/I+DduFh72VYn+vkL90uvdOVmMIQK6Psyblcn9pf8Nj/bSMdxfdbetlj0
lBnH5x3Xz9w3mionmecdnxfcb/xcdVq4daiUrh/c/h8vOndAk/ncjd+j4fip
BXGPjpm8p/sBfL8zmbz4Zx+zH8Dt4TerPUDXogVqS+bH0+0T19uug8bHlZnb
x9vB4//TOTHS63I+0r9783XAp7vba8CPZ0+HxtHv71qoeaY6uFhZwKctbXS+
Ed/X9DgOnb05q5p+/sLxXP047aAHeD1bFV3PliWWVY+Pl9P7g/t5IbeaHxeZ
+4PjeP+nbulX35/zkf5dfH1FuccsFNs/+rs4LvXT8t6OnZX07+Lxp+OmbZK+
qyvo9obn2564VlsfLhl93sHt/2stt5tqzujzzqWRemqAh92OZKQXMO+rfhtS
kF+Ar6OzP7a2+OY20c+zRv4r1nvzdMBoExeBtvuNwD/a+cU41UJ6Pvh8qeZO
q+IGcJXHexbyRPB2ZBZW9nryVIJss28ayEHA8QR7yG/R4AiMWvzeIX8Bb+f5
Jv1rfmbu9PNyduD+LOSJuE7oTX8xuR4EPvsyvvcxpJ+/axwlZDXr68BQpccN
5Efg+EypW1GN1z3o5/eyn5fvIk/k0VjXWy3M5/c5Q4uXIT8C1w+v+brGX25d
0KPM96El/2dq3roW/r7qkCPRWwO0JN//h5wLRyqeWWuoPTk3gJ7/XGA0Jg95
Ii0/nOby5XfAOemzx/Y6jq53Hdcu+/uRaQfEz/tDDuZlyBNJ47Ku6berASVz
9R8ip6OSqu/s/GthtrzVQLb7B8cW9bH0Os+pxn4ONaAV4nYiFT/JEzl9Axq9
VtID+DmdS77DtmU8z5Q8GPhSS7yprgl+qpiwD7kh+D5+//qzOMbURhhGxfH9
un3y9yVNr13gA0PTRSivux3VTs2nPROz0UsAxO+CALEV13cqZoNGav/xfWGc
KNeFQyo5oOhcrDfKY19Ixf2PvY6/aR0P1lLHhcv777T4UjUxhKwf4LjORmro
ay5IpM4Lvo4s7kjxmGnmgSvUebGj4ifcbTgtPOLAOqr+cfkJTi2bfLMgtKHa
D71+pnz97c7zBWCQaj9BVPy7lrP8irhY+vwe8OBA5xc0cfDn3LkWAydR7QeX
99+i4xc0OwnidpvFardAbYPXQs/nBeAtdb3g9RXCTnrVl62KwB2q/eO4oPbB
c8F3Yul2eyFjpN2CPg+3l3BbKsTX4yKZkesRXDjso7JdsZi8fsElmUeg7kMJ
yPr7ugOhzq4nd0rGgp06+44hfyTkuc9r5I8YFTj4dxW4ApvBgrXIH1H7/Owd
8keuTJJfYcHvCV5pDd5H/oi5Z7UH8kcYS6pScuZ1w9MptufOZ3rDM7DSEPkj
25+0nfq9vQ78OLb5PnINEia9kFxdUAefzbVJf2vtC66sB2uQP3JXZ924kwa1
cHaO8AUD1w4osf/2XuSPAJMd35E/0ta96vCOhk4Y+ahWBfkjoSsy7iB/5GeQ
8s2jfiFAN7Zz/PrMsfKVc6z1Nk6pgi1iikp6hm2wQNoqAfkjnXGTZdv6iqGM
UM+GSJMW2PXS/CnyJhp/M3IWtSTBScOdCWVajVC7Yo6Px8kiMGuHUgJyRqIs
37SfKcsGpkNZi5Ar8WBeSxVyJXbdqwDN4gnAxCxQbRZ/NBi3ZEMI8kdOq1he
LlmWB3wWH+sNqsgEbn0GwchTaHDhVFs6Nhf4V6wSQO6G6Odm09DZ1SCgxUBU
TSAeKE1t9UcuieITP2HkklwQjl2Wtz4argkq0XGWMIF6l5Y9RC6JmWCRb+z+
fPDGztYL+RGSwUUbkUsiy+COzx6OBU23Pwpq3MqGlyNsziKXxKX/1ME270KQ
NGtKwbOaGJhpe2cPckm+LN1QqHe7AHjXzbiMXJKjqt8XV91tBTG8l/mjnGLB
rp4lrsglmfQ96QxySaZslPcJn1AC7I0mdyGX5KLSVqH0Be2gZ8g0eVppEbgo
6NKFXJLtaRPSkUtSPimCnyEbC/p+PE6JcakCb+NL7yOX5OH0mBfxjeXAQiaK
Hzkg8QrW24/s/gQv/D5vOiGqAWbGHxJCrgceX5W/njnrlG8Z4HNhna+xrPMF
Ss/mPzpy2R1qbktciJyIzq3HxM99jQeDRbfd/bUSwV3q+egm6/kIzE8MORb+
OgH8HBu1A/kOuH/jOutUE3Etkd4fP9b+gOaX4q+TFztDzvKDHm8ZnPK/czy5
NKyjwU6G0kxz7RcwUejREPJEVB+oVSIPpU8yy9NPIBKcp9rJOVY7gfveXXHb
LRsNFjcajznl0k0/j4QXjF8FB5jlqf3fpDSy/1B21gGj04IJYGb5orPfKrtA
PTXeEEzrCWpvjQWiRqx+GNdPz/tTtdoKMaCaalcqrHYFbXlXrBXSDAFfqP4W
30eWRoI4392fgZ3iAq4nkszywVOskVfSfKamq9D0E1C4fiUVeSX/acbtRF6J
enO9Z2bZZ8BTFTlSb/R67wU1qZOPJtDn9xXr/IKde6/1LlfJArE2GpeRr2HZ
05iOfA3bxRXhz+4kggwqfpoVhyVt9b9l7RPAlE/yI77Gbeo5hSfb+ArHsBNc
TtX/k6yR+ofbNk/Un9/UAKfGb429yyyfOeHgFMXlgfBTSPjWoXcNUOXSqZHr
znbCVXTdQeGvtVmZgdX0/INj8vDCXXs74Dxlfs0NXzTh+OWPJZBbgccbEksh
WKVnBV5bLVBGPgUen2SvtZojs+YpPK5Z7PeZo5keb+id4bdVUm6hywU79IpY
RTTDDNGd/GP12ujxUqty/FPkcWRrK/iJmTfS8/zOUeHeyONIVMtvGmDe16jy
YKey/kLkcZg9XiVygHk/PfKutgnldcf3r/KzXAel96dT49cy2MLaPvglbr1f
kdn/E/sDomonxKL1pfh48f1lQ/ntI611MXT9GLPqB2SrLOa++SCGrAdwufvW
N54JMeD998JG5HSoT1wqYuzfBl+LM+T4B8zBeE5hc+R0iCrfeIucDukXcjp+
yY9h8oDgdOR0CIdrJCGn42jZibq8m6/BrYELh5E3MclBbxZyOnScWtQlflWB
J/sZ2vd4csDgDP9zyKfIalmiZZ+SA96My45ezBz3zVG+urTsRzU4r6Z7YFtB
OlCdNiRlMlANE3I+HUCuh3GeQabduhKQrnS8+vT1AugYM1HgV1Id+PQm466N
dhFYKCvtzDDogHNzY1uR62ExPcTlZ2k50DgxzRm5HhMzv+5Broesj4WIRk8M
cDbSeiSmUgWinp1dg1yPWU6WW32V6fU54J1enwZyPZYa2Gs0cZWDldX+y5DH
cdOg4CryOGZumSTZdb0MjHEzXIk8Dvzeaj6PLN8nx1Jw5qd6M3Ix5nC/k0Ze
RoKVVe2BBYkANnVkIM8C91czhLbwqm1KBGbBrPLOvW9Refj00/12rTHxQJAq
j6/TnZXb7F3PxQNfav8ha/+B1FHOcA+dLGC+argKORrWx3ZNFTgZA45tSjzx
USUROFPxtaw49Fmd+eXnp3gQ4Mo6L9M2jZwXuOP9wum5t0afU8C2kXYLHxx/
dY5/UyXZzuG+zQ/6Sh7WgEWxWblv+33BOFOnOcjR6DidGAuD8uh5p9oN/8kv
LKuE5xnquUomoeCqghMD5QnE7TCxKlMq+VkmSIjoE0GOxvuG6SO+Rtkt59pt
mrngyZWhkbihw0gcevTyd7dx1YATi37sQ75GlNGGCORriIUt8DHYWg02WVs4
Il8jySXgA/I1yo4WO2dtigehy/ydka8xaKKdh3yNtUB8+M70Z0Ajyu/Bb/Uw
sPxnvSHyNSpfWLeKn8wDTpEm6cjX0FVfJT60LBYqvGnjDnkWDxIkZx1EvkZk
dqYJ8jV8j67aP1xfDewZ2hfCFaNAkKLoWeRoPN7pEbIhvQa4LftPATkaP/gf
87w/3wKaJtx9sXVrLPBT5N6NHI3TbSGqyNHwLhJyMA2OAXr1pULI0bhq8bkR
ORryr5PNeCQTAe9FvVT9O11Av/1YHefxWKB6vGSBr1IiUFrQJ4Z8DdxP3HXi
9sn7UAF0BZa8QB4E7g+z++TShFeUAs0gsWXIg8Dx5MFhyUNXqyHnt/RDyJXA
z00qSz0kdnhUQq+3rP4KP+/cvu9z4HVuKUiUO7uyb/0gPa8iajlPe05iITzT
7z8P+Rf4vjZD0N77kUMBjK0rT75XXU/PE+6qCt1SopkOxrQsmo/K4/i3SbPt
Vrd5A62wDJ/VXg1ATTpC6LxHGThjtnOuXkMaSHAwuIm8DDwPo2tWkPYkigFW
VrH2H4//B8T3rnNo8wEXqXqgx+dLjxiISKeDI1Q94LiuwOe5EWs8wb1JH7eg
vJS4fd7NnXE8XCEDePYzjqE8GDhefXPZbFfPl0B8eaqOc9kA2Fijnp6blgcl
HnAvt8stgK+d9tShvPH+tquT74yJBP5TV7RXqXsCv8vGmi9mN4A3fKYmoXdr
QPmXda0PZdNB7fofXtqczaC1szHbmaMOfH2eLXn3XioQ9mhxQ/nB7G2XhM5f
Hg693Pu9eAPz4fhWi3KuymoQc/XsdQU5BpgyzkbFJCAT9CtPfNowphX8yrlb
Ey3NAMtCRRQ/HP4Ccspi7qK8/Vd/zmj+/cEPrBS/0d4gfQce6esYfLx9CATB
pLd7O7JhxB356DP3S2DH7mUhi0vaYdzjd+pxMgw401bnraltK/iyAJxzDK6D
zntrdVF84tLFv/WmNwODD5zaKD5OIsmWGQe3gjY/tuUqBY2bpqzknlsAf9Vd
80HlOU/3CX1/1gCaBGqUUfzj09V7UHnBZuUvbRpFwCGv9KxRpCe8VbWwa+Ia
BtxsyPN5iUAdkGuZUPcuwBOe388vfZ15vHFzj/5c5psPOGUHLso0ZYIJ4jqf
FmxkwFrN1JhA/WowRfPSg5yaTFB5ftfXQ6sY4NSthEdfuHKB31rvC1oV1UAy
900nYG7fretZsFZlKciXPCT86Gk3eNzxxCpnHQOq3j1mlrExEsw6F/ksRLwX
RA+/Xp3M3P+jkku/5ksF0u9tS/MzRUOfMaDCW0d7jtspsHq669o7smPlE6r5
lC7IMWDYsuRmqe4WeMXw9BozM275GeZBBc7M353+PGeOQW0n7LcxSXzDjH8U
CP3Zuo4Bzi6eJRCVE0/P15TovlqX+4IBrn++HIje4+s+7ZBF3kHJkIwA8g62
r1RO13JLBaBAYwlyUqIk3hchJ0V0QFP3zu4gYH+j5AVyT/B9ZMXMX6F6jmX0
vKh6stw95JhY2R7ms/pdQa2b4pHfPe/YncfODKjcHblMtL4bOlPbob93iymL
bbwQTM9nKrC2A3zv7U2xueAPGn8VaCMPwt2L1f6dJz6UW+P0HkyRTFuK8qFN
H/lbDH+GfdBsKcwH151Z18uw90h5eONga/x6+2ooNWOGa6oRh/yKwrkKbuOi
YOO7lDuistVwA3g1kncdz4cry6eHhYf6gBV37qch50ItbWYXci6KX02XyrEo
BfvVW0a8hpnAtBM5Fw35KYNWdqXAfuneHwmcrSB/S+Q3kfUMuHLMj6r82bng
qbHO4A77PnDZpibiKvN8yd+MT7E+FQMLSyouHJbhkd+UqGj5hBnXED0akFTR
Bdc+H5wxOId5Hc06vcG7JR6oSnb/9+FRGPgQEGSAvI+aozeSkbdyKtnv+5xj
YcDqsZEJclW8SnhfI1dlX4502mHoD5LMl28NusglH37jiILwSwb875LxOa/6
Jrg++pIZyteH56V3CEqCE1dDwQy1jq8o/wkeTx7iMbDk0QoE9hoO4shJUZCw
nT/vRx5I5Xeslz3uDS5fn3AV+QUChzdsRU5K+B5R51VHvMH8zZ8jkJOC+2GX
N1H1Itc+geTuCZ3ISRmzeW0wclI2xVvtimoIBUMXfl1DTkqQY3MqclKC7jge
DkwMAe2mfjOQk+IbnM6LnJSN/hwypWWj68de22nsc2K2K4b8fBWORaPr5+Ud
S6tdmO28q9eg3u2PdT7z7cPmb3rGAK6zFhX+uZ5qg0PXhjcor9ovneYD56Kp
4+8He/yNm92Y26lJiOSwjQqi17dsfagUh+LfpHjHJ6Ulw7Q+tQiU1+vI1l8e
qh+zwLHwABcNvY+gL6T8F8oDPNfo6zvkrWzpOqXVHvcJbIwdlEHeyvQ9DziQ
t2J7bmks59QwkPVkMH0kz/OSeQyU53n56nqLPJtSYPrb7SDKE8hQXG2CXJib
5ZVuFhIFQNnNbMQjSKXeEykE+L35ZOeD3y/DNX56zzcy+5MpD3zO8HQ1g47j
vHxKnK0wxd7wNeo/BTVurpZNbQFZWoqmlcgn1nZd6cVsJ3yLL1ldutoIdups
iQ6qqIZ8B49YovK9D3rUpqk00fOueeMWxDDrE2ZaXz8Y3F0HZl9e4WVVnwlX
P0+RQuV9bkmpX8kezUuQmPRrkiKz/Jm+vqo3R2vAro5Fw5M/eYIXuUMLY5nl
N+Rpr9FTrKXHjfavDvAfYZa/IemxfPKcCvBSqb7joFgBEI0VD73J7A+jVjfe
PrG4in6f3h1zOcWRWf6blLm17oMC4H7O4mt9cB1InRuzRYl5fUW7D0qvtSkG
Kq6OfBuZzzVm99bs3+/CrB+bB63Jj8zgQkubB45D38AyFV1/uQ0MKAnPx8c3
e9PzezcGN/q1MrevxRC93VPQAd8p2iXP7hgrz1/yLSFYllmftouM1L+0wZxQ
niSU9/5kWesW5J6sGG6JMVEuBQ0epiHIVelhlIv0yhaDJdMf5Jyx8gJaM7ln
oTxaeFzEu2z/988LCsGth7PckGujM3nuVeTaLAl6KqAeXgBU7rL67SE+WdRv
QyGFbf/9jiwA1ftqpFHeYzxeuibwJkvaGH8P3gc0svc+9WC229nXzs4/9cf6
IsbRvsC9zgwwdvkbizHzA+HKmDd7UX5m/DwiFGLy053ZDnVD+dpQ/uRdF42T
kD911pkPZjLbobHhwTvIx+nROt6G/CkJjgzuzTMLwIzXrP5qiftIfwV5uVsz
q9aWQCuTnCXIqcHvd0QndOetvR0MBF8rmCCn5sw9u+fIqXl2lKPwm34ZUAnU
zUF5jWqS7N2QU5PdsbbENaQUROx4xJl4fIx8oXf+EpWBEJgVpd3laFsLlys6
8nVfGwI7JHdEyP7Mg3d/lmxd3F8CV8Zb/ofygy1yD+VbMCUXLnwv7y60aDT/
SKlJwvPelwxQJdsS/Od66WypSxb3mf3Dennt7D/XS29cNOVKD7O8qcDu9D/X
S+/QllvYyYxnz5zb1/HHeulbthXiRcx49GetsLXM53cL11Q1p+VdYGqOMl89
NwMI7Ug7EOM9+j3a8dfJHJVODFBocSp4wx/fTaw5eFroFnM7GbePO6H1MGuk
+VYgzwLfTzUHjk9RO+RDfwexIUXWZybz/OqafE0OMRj97uypZK/FNuZ2IvOG
pb7rxcDt98atRK5N1wmlfuTaHOExfyqiWA4mawlNQ67N3kc1F5Fr4xIQfXXF
smqoKjGRb1PHMMifc1dk4rt6aFEEDCZFVUCfsVMUUT43td+dESif27WXj4XS
hcrh1/Y3c1Ge89qSrZtRnvMf+zfaguBCWPK7atPg73pwwUmRz3FJPrg2fx5/
zY50kFNxaMynwGbwfVG7OMfWChCqOGGZ/dxUMPNk8MCJX03gXX1TrJhLDbhy
we43fJhKP3d7CUeujGQeV6HUgnUv6Pf134CI9pKF2Y4MMEsmw77ij+/U7m2X
Kbdmlt/jf7ZdLToCcC2cskW7Ygz93vOdWPDThPw6iN8vd6aFvA1lXkduhT2N
mx+Ovmcff7Qk2IHZTkosX75o++M9+0nRhERJZnn/4dvCXq/d6fdhgoztCqi9
PbDnr5f64/uImRo82Sj+qFp00p/fR4ybnXYZxa/2lGX9+V2VjsijA9+Z8QIl
H60/v5/K2BG0o92BARS3N+ij76Twdwquc1YuvsTcT4f6Hi+NP75TSDetEDvH
3M7GvFdbGQcTYfHKt5+FjbuA9IHADwwd5n1wv6nEjP2JwMJt2heUR3dmwpHD
yKO5ofh1wsTOfMD7ReEb8mLodSOGDy4nF42ukxQz3rBbjdme2yRitXnupQCT
0sV6KH8aXi/hmyUi1lkYBLyp8Riu/wmxKtqrXuTT62csTG7kjq9jALOEVcqz
91rT5+Wbxi07E+Z4AK6r37BiO/P5t9trB3JS8PpGgev7Y3XOfAR7JxXeQQ4O
7t9kH6Q+T2OOX04HNeUgvwafn21DPdcrD5cDackKe5T/DY+jF463X96/rgoO
LL8RiVwYXD6z30A9JbocKlPX43Oqn/gZMtmTMyMf4vvU7Aux518x6/lAlY/Q
y9VpIP/k9lKUDw3Xg7y8wJOhiekgoH/ZB+TR4OfKSN71KRvkMoFku93I7+K4
y7moCfLJr4C0YPctVQ1O+ZCrhamczz3AFOcnLte22UJfm0dvy/0HQHHP1LGB
VllwpqASZ492AeQ0MuBHTg1+j7wysv2k9KUC8PrsoQTk0eB56c0F63h5KvPp
9syYfOni2OcMmLNwwooXZxshfn/ve2LpQeTOnFir8XLPUCk4USRpgBylHd6K
X5Gj9KP8auuHZ6Vww/W5bWj7QdT40/N8bpfhlFRwP9e9F/kveHvlSbHyWys9
gGoSFEb+y/Aj32Tkvwj3Pj0te+IdmJPQ8wjlH+aycnFC/otEgPnUtUVvQWFH
9ryxJe3gmL1RdyXzvmyzTjPlvVsGWGAxNQ35ZefOhM412FEObugvr3Q2ZQBr
Xa1JyC+Tm39oM/LLHsusfN1y8wNQfX+8byOz/S/xVrnicI4B++47a114FQ8i
TeEe5Mh8PNI3x29RNTBdecTt1MoPgH+/lwRyZHjTSgqRI6Mdcepq1v5CcLhD
xtvcvwkceHBaAi6uh0eurXrfFVMILDZzvED59PD7eoXpZ7cPB5WCgZqbtcjf
weuaHhe+//TrZBngfZVxCjky2SdsbiBHpjI7cXYnbxGYtr9LBHkxdB6tZ15n
V90shU6Cu9eiPJl4XKHbeSnWxLAY5qgdCkTOy+uAPReR81IpnPhUSqQM3Pzl
p3r3Pqf8ay1x0S6x90Bjne5E1RZHaJj2n6xRajPwCOp0CYgrAUk+cqoeU1NB
0texj5ELY7xDRPPZp3pQeqTlU90lf5D+wtLbCNaDcB+zlEceuaD6kKbVQr10
oPNJYynyYm6Zy8ciL8YpOjt0e0QpCNsz6xzyYiQa9gYjL8Z+xZXhQPtiKPV1
0krkxfip6HxAXsxYoxnfTfa+AT4azjPrK5vB86pr9uo+ZaCU7055IncqcJif
U4m8GFtRl4PIi9kZd+VWWGoIaLs1pRC5MCftvIyQC8P5cZ6c84MK+HqYt/3g
T+bzRe2RbQkOFfDrHUVhZ+UyeKiBezryYrqDIkuQF5PrYVFt4l0DM4evVyEv
xvVrWDnyYhQmPD1zYHUJ8K044IK8GMPJbd+QFzPV4fa3W9/zQfwxa3/kxchH
5S5FXkzULmvB7S/L4b4Pz2V5S4dASXbglx2CZbBz647Zu/tLYdRQvB1yZAan
lxYiR8Z9cH3JZmUnIDbxhg3yYgyOvJdDXsx4eD7o2LW34EX7p7fIi/k87rA3
8mIi410Tb9R4AhnpRdKWP2rBlWyOnp9N9UB/t23AOuZzxvD07DXvGA1g7Jh5
T2b0lIH8Zt7FcQ1p4LnAnOPIkdE9e60JOTLREguKXS1LwSHh5zJPbjCP1/rq
mo+m1WB6vfvqXWPSgcKB69xaLxrAMetTliHHKuHF1PgwrbulYGy7+SzkyLy3
W5qKHJlrlkXTtbZVAO459zmRF+PlNb4FeTGeFlEqM4bLQL9t13955VUgUnWe
zfXHXwFwfp5RtSkL2Exaxo28GLcreUItF9rBVPPukIiuTFBTZO5t0VsLhNNn
11+91gic3KtzpxtnkOtJwJZIhScC6zLJ+WFoGxU4z212JTkvB3cs1ZRKcywH
PAtEE5EXoxP24gPyYg5OOpgTkVkBP+/TMbvB7De2pUwKNdpRDqfCc6HPmwqh
8N3OxnPM8TZ+zt17br9BwvVUoHtMv2K7dDP9HO1f/HvS0PlUsPrhOwXkxXxq
dglCXsyiTXY3xb6U0vsxJrgu+gTz/hWwzPjpzLNt9LpKG7PTDg5akfD81r3b
txhXwyk3M2XurWkATas2Tv3vTTaYp73FLmNpOv0cdB4Ien/enQWE4qddE6Dz
HvDIP+Uq8H/DHIeEV/RmhINUeCFosyryVujvZJfG6rwQPUDnMRgKj+g2dfkE
Yh4H+PuvfgHuu+tv2a7fAB5VbTAXl2OAsh0Sd59wp4Mfhrn3KpWa4cy+Ehc0
/+YUaTOpSqMMjOk8rLl3ayW8frZkSZM0AyQ7n5XS8C0Glw5mzW3uTYZ766x4
UPm+L3PmPecqBJN3q76MkfkMunehvwxQp2Br06mRB/xKxgbefFYMDuV/NT3C
/F3Rp9xj5vtmg+gTT45OPjJOXuI759zkdQzQrxr60S0nCnb4seY5hTtG5jlB
vnVMlJCNDyhynAKRt4LHJ6JDpeOymM81l+bVZYU4fIXx+73f9jHvF7+Ma3UX
c7cB1/aijyF6PwHja/Lx28znR35Bvc3dBQn0evV7tQPqH5jPg1ZVR0UWGX2m
x1FbfA5MS2XGg4o+Gpie6aLX98peLXE4YBcE1ba9+xCgXweBc8WBoAJmuz+W
uXOCGwMYKN3tWfcgCTxIKmtE7g+en/nG//bD7GovcEp09Yj7s/zh6mnI/dkf
V/if5LRPwOdgjLde6S9Q8a2g/w5zPw+pP6mauDQddmlt2NnwqR+4z7w4b+Va
BlyTmHduo0o2NL46zc1owQDguCTTupxZzwpjfs/zy/cFPG+Pe6N5Wvcmznfo
vNzp2zhbyrccTDg4fwyat9xUyfElihnXVX41ZKMTBdavLng4I6wf8AxP2LCf
Wf8n53E5Pw0PBBrcT26ufMcjLyyY56TBjCd5j5Xr+JwCxwIebeQQ5bPeX4P6
A+ZfktaHgf6T+hynmP2PS1yxPfJ39ht5CfBalIJ9j7YttErhkj95Q3aC2ToG
PFpmLxSY3Qx9YbvgDOb2q/6TiFvGPK5ChRTJgovd8Ct13i+YBXLs9IsE2RWF
d2czz7tiU0MAco5exlYfQs5RgMi9bTArAODvShomjnxXAnZ0Se48ejQEvGt8
aofac4F55jE0j/E2xrdEc18LPc7rv9PSieZVxBsbJ2stbwUK99/1v1CohJ5c
Qe/D1jOg6uTPJnuLGunxfE/eMi1UvjpvzvzswCZQNtbcq4nZ/oPvz/+Btl+0
XOD+BvV6qnwu5J18NhaVP7Q5a4oa8zrnUFY/kcC8LuaN/GXAqf7F7UuTaujx
/4epnhWAWX5Fz8LZgt61YKN8v4KkUzFI1ktIWsRsD3P+awxu5q+knwvW1Nxu
VnJlwGDHpXqmXNWg8KiVmv+lBgBSayYcY5bXXnOigut7If08pT3NkNOQuX2e
qzxJc2NKgPHRo9WF5d/BE1uFmoUbGJBjlnZotaMD/ZzVlsQ7WesVA9o6xokV
iYYAr2Nr+DoPj5PnC9iSH8nc/p7Fi7nMWtrp7/HP8nNNTHjJgL02vDdXVLTC
7HHu65C7hNf/V/iU7lF6GgZ+aqqb1U3lkpfI8IytYF6nlRNl+wJ+NsJbJk0j
LtLAz8wRF2lIzNRCZpIXuHtolRPyoazz9a8iH0qp/emvnXkF4Ix8w9H/tlaC
GQuCZy5j7g+vyRGfrvnloOPsxZt5yj3g1a7q0LdyDKi/2/LSJfc3cFrOi3e3
mP2DX85ZVRlm+39iOXDxplQFEHjEMTDI7B/se1T3jWX2S7xLfy/ZMyUMFN/N
eHFQdqz8j+FfbTPWMMBKy898noNB8K7WLXvkQ+Hnkf8m5/iCok/Acf7gY+TI
4PF2pnvxsMrbUnDtP9b1Ukut9wiTKejt3V4C4fPym8iDrppdnXq6PR6+3b6/
S3xOCfxaItYwcKkBDnqFOKF2tf/6pVWuj5rBR+V7X2yeFcM7D3+WuzCPqzK4
+YKKQCN4zu26m2/NZxgy8pcBN5/VcvR/WAek1VtlWnqTwVDD3jLI3I5l9C2+
uu/VoN3646IUAW7564fKxwUyy3/YdW2lQdxXWDsv0wl5VZOv5Pggr0rnTdKu
J67B9P2IR91AGTlTTqdzlmxMLgSSX15tR3n7fww3hyBnakO5TdWUpCIg0Bk2
Mm+M56/6p+RkTgsvob8jEP7vkcPOylB4uEZ3WvuPGnjMtKkSHe/2zG+nR977
eO/ZXc0ct3TrR84sdCyGmqsy5iWtZoAFsSb5wqVFQGeiZp6h3Ge4eeQvA2zr
NXYLkCoA6lU6Do3M4zXOU5+byNyOs+4k0G6ZCzhSzwp/V6gE5wferdRglt9V
esXncTDzvBnee6q8rQccPQPWnmJu/47ahTbzCxCYTw/LWoScgumaERzM8mPm
ala4xwSDix9ktiPXw7pr+8LN05NBv49kpuQ0H3Bn/W2L98z+rS3v5Pw1zHZi
Uvci7rKSP8zrjFn8nlnPCyL31uUw+890A7ngcT2x8Kjd6TTkZLW+DRcomdsM
D/62y2jnL6Pzrx4tcXZqTKyGpUtfmJpxFsO2qHGrkHPBseGUMXKa+B7+Ti+o
8wb/qe9uiQppAOoBjedfXysFhdeX2n6sTANmy/z1kd+E33se6mneNoc5fjjd
yn0a+U2Bjw1EAPKbXoY1nh7wAstrQ/cgv+lSI9c15DdxO7w6r/zaHdTuO70S
+U0pXd0DyG8SWpL18sbNdLBz+lUBpeA6AOLXL9vErB9FrTdXgiZkgKkDXjEL
h7+Bn9lX/1Ni1meUjV6E6Mk48POopeYY+z6QpMjVOolZ/rn6yRQjoXBw2B8s
2vm0G3wc91uL2Q6B6oL2Ux94E0Bci1zvSWa/1L9vIihkjjfWts968v5YLFgg
Vr2lmNlvjNlXNfU68/wmhNyy+q3pAbMUwchzN37+rdRxKS95WQos1QfOIq+n
iVNUDHlSuofjhB9LF4Dz1H1ka9zIfQTOe+mbViteAZ2s53GiefX8xpWaqB3q
XDRxXVlaBtKOu0ei+fOM+bsMUTy6RtDETqoEjJkq9xPNk4eVVqWNjJfG745t
sywErStyX/J+8gS8qxmF8agd1nzRVyjNA+mckzlD5hYAkewb2jzM412dH5dt
KJUDJglmdyzvGCsf11Y8kLWWAXKrK4SchcOh7qzGa+tkeOTNn2xU6Ga2H+v5
EWMtK5Lo726ax3CUVE6KBIri+jEWvZ4g479ii4KQLrDqyKSmLub2r4v9ev+R
PxGYGb43Qv6RoM9rke+nSqDc6UahVaX5IC48cNtO5vN1ytLz4e+Yvzupb84q
tcBkkGz+dRNyiJ5wVdxEDpHE+5n7XA4Hg2dTOb5qM8cbpx7p/j7I7LfPzhVY
GfM7D0pVxhuXSHDK63WcLGr/4Ad/fDcSbHtVD1u1HhsiRwB/b6Jjc9Bil643
+Ea15+WTVnojHypHMnxyI7M9n+OUEEA+FC5ftcTtBtfvUGApenPEh9qbNrP/
1Y5C8NhL3cDQIhS8Ewx/iXyZE3cc97nqVcGipaUvD18rAKFXpTOQ34Sfx9VT
JccGxReA7Oi1Ix6TepvSIeQxVdasPxN++CO4Tb2X2Wiw4Tjym9yF/H8KMPuT
dRPOrUQejVe9mCvytiZyp7o9L88HZZN3+SF3qStTJBy5S069t7x5rSpAzeG9
a5C7dFamQLCmswXGrVw/7W1hGfQZK3IPuUtf739bb2XeDLnTz0w7b18F86h5
D1XLkXkPqHduTVgtZylM2d6bhByB9aET5E6K18Luec8uGB0thktOlI+MJ/H9
ZVlr7Ru9RYVw95rH5ug9II57eZ2c6rCrFC7zZ42jGKYj4ygY4f3SuiEgHw6f
XqcTqdQMgm29GHmyDJB/31LZ9FgqKJp2qQu9F/BOLU9DrmLAh2m2v7am0u9z
LyyHpVzCDWDJuc56kZX+YL2S0SvkMsxaELkHeUMR7iYplwfTQDLHKnXkDRU/
vduDvKGBA+arfPZ9AJ6SD28it8L4hMYp5A0lHZhsOFSeDvb9dLVB7sO09B+W
yBtyjtg0Tyj6JYjeO3UP8oaWha/oQt5QvVu1dq54Gag/q6ut4jcArGY9H9Oy
JRuOib79M/hkAXwpz2oPJUtCCpE3xG91f7fJjQIgS53H1F6nLOQNdel4cJU3
5AOeeWNSkfuDv2Pa0ylpMlbTC7xZt+Izcn+Ki2QDkfvDJ3DCkV8zFLgfc6qW
COOUl5uQrQFu+MPIbwrZ/RMbqe+POOWlCtTCjjf7wdlpy5qftdfDSPkm/3aH
AXqd58Xl+TU2cwpg9RLeYuviWvC4rf9p+NNGuPeImmBEeRkwkORuQs7O11WT
VyFnR+j9pDU3c0qB3b1bpsivedb1UPhiaC0QC5t3wqMvACRMnamJ/Bo8zxbX
b5KR5ewPDpRnjvg1zRzCXsivGbdgSAq+CASp+VapyAfpmi3cifyabN6dLyIc
R7+jbwjsa6hyYcB3Jrw6RibZQEPazgs5Sng+0/lEyDvzAx+AnE8hZ8nxQfq9
z+p99yxDBJjPkYoymfF5X8HRi7WSR58woN5H0FpSkgIqPlw49pLZL2lEFG16
yhz/SxZOcDp/OQ7M+xXx7MryLuCbPcVk1fcPUDzKI/7azERgu+TqI+TgfOrU
X4McnPV5GYMDrqVg+xKbe8jBwfNpy78kB+xrKQRvxdRzkIODv/c5yPf7iZlJ
IThWnd2AHJyV+s0GyME5nTdlfURxKTgg512JHJzVM4XbkYMjGxVvdMe/FJzj
PuGGvJv1xdyuyLtZO1FtZ9C2MnKdD3yb+F4BBtTAhbdZ3zM+BiPfM4Ibci/t
tb9lgJvUfB2eNzANOrtQ0tMTXLmfkof8mvDpskHIr5kY7bwlbFIZ4D2pMYic
GtFmucXvg8pgnJ+Gwtmf+SB+sQFETk3eofkHkVMzUGqsPyWoFHC1nxNHnosO
V918VZV2qLD+W2xPQjW9fkNzwch1CncNqVnv6aiAPYdyRZFTs6m9Vxs5Ncvd
ujYWT3gDeKSdJGQDOeVP3Oia2XvpPZAPCXIbDHoJH5kFcwdqcsr3nn66c/fK
ADgu4kfk8pkNcJGpl9T2iCFw8fLdg2WnS2DU6hkTT3mXQoM46Xe3nBro51yd
5745uV1pQCrE8A1ybermqx1Crk2xbKfTwyce4Gp1+Zz83GYgrKh7ReV6CXgs
sepRHH8qcFnKeg9lITbyHgrEfbx88/sdf3DT/FZsY149KB73siVILA+cn784
buOpdPCe6k9usPoTGDpWQqTdpww4pLHaeaTgSDuHxiFpnFpmxTC8jVVvPax6
A6d1151REvIA/CuuQOTa4HnXias7jEu/l4H890PBDMdmsMo038JmI3PcMFX4
sOqqVKBke7UAuTP51PvA3qsbyvm4U8Gxy6HqyMHB/QlPkr+sUEYImJVnIIy8
m82i4zYh72b++sph26cVsPH5kM4e/mGQJT2Y4TKzEsY9LX7z+VYZxP3hVFZ/
CPsXJnZu9q+BxqtZ/S0QGelv4YamofTZQcxxSM2TfLQ/1dR7zp1fE+V3/sgH
+jtY60DwvHF+0GbxHI9y+GJdqw/6rhOvGz9R4+4jN7EMEu9HwJJ9cnsm5DkA
m64CM+Td4O9frO1qHGJl34Ig6j61nXWfAl2nfK7JF3gCbz33ECu3BvBk8a7d
3cXl4Nq931k+bWmgfKVvAXJw8PrAqBUPLuhYlZLrFcGm0G88fnezQGxg1jtV
vjp6HKs812hZj24GeN6RmlLg0ACmtV2TniZaCX13NcjoPigFpnsaDiD/5WSX
ZRZyan5xWzOAbAVotri3YJVzA7jc05ZhF18NQkr8zvEw2+cNF67tyKn50bBq
A3JqBvMz7yj9LgPbFc+NvE/B/Z7pluTCNVKpINLpVcxzz3oQMW1NUMzOOuAV
PN+P41Y6OH3/dgxybW52Jeog1ybpnf7du8zjej/FlRO5NlYfG34h1wY0nbC/
db+UHD8AfUnXD5HHs8Btav9PsfYfBF5dExPPlwWUo+dkPR2uBfwX//uvP6AR
rL4k6ZFxJYPNr/lHvlb4j3yt8B/5WuE/8rXCf+Rrhf/I1wr/ka8V/iNfK/xH
vlb4j3yt8B/5WuE/8rXCf+Rrhf/I1wpxvlb8bzxvNJHIP0x/X0DkH8ZxIyL/
MI7vIPIP4ziZfxjH64j8w/T2ifzDOP6WyD+M405E/mEcHzb7O/8wjm8h8g/j
+BQi/zCOfyDyD9PuD5F/GMfJ/MO4Hz5I5c0m/RodIm82Li9H5M3G8VVE3mwc
J/Nm4/h0Km82rueBqSy/5vCh89pv/6hnXH45kU8bx3cT+bRxPJvIp43jlUQ+
bdrBIfJp43g7kU8bxzcS+bTp7RP5tPF9gcz3juO7iXzvOI7zvZN+zToi3zsu
T+Z7x3ERIt87jpsR+d5xvJ/I947jZL53HO/i+jvfO47r//473zuOn1D8O987
7eYQ+d5xfBGR7x3f10h3AMf1CHcAx20JdwDH+Ql3AMdJdwDHtxDuAI6vJ9wB
HPck3AEcHyDcARzvevi3O4DjU+L/dgdw/EfI3+4AjnMT7gCeJ2wmnAscJ50L
HCedCxz/QjgXOE46FzhOOhc4/oRwLnC8sPlv5wLH3xPOBY7HBLOcC9Kvefro
b+cCx+cTzgWOFxPOBV6/TXorOG5PeCs4TnorOE56K3R+GMJbwfEcwlvBcXnC
W8HxIsJbwfG2hX97K7RTQ3gr9H5e+9tbwfEPhLeC44GEt4Lj6whvBa+7Iz0g
HCc9IBwnPSAcJz0gHCc9IBzvJzwg2rshPCAcb7jztwdE59ed8bcHhONBhAeE
46sJDwjHYwgPCMdJDwjHSQ8Iv09fRLhUOE66VDhOulQ4TrpUOE66VDguSbhU
ON5BuFQ4Xh31t0uF42WES4Xj2KUi/Zrh4L9dKjq/KOFS4TjpUuHvmEgHDcdJ
Bw3HSQcNx1UJBw3HSQcNx+MIBw3HbxAOGo6fcPnbQcPx54SDhuOkg4bjpIOG
46GEg4bjpIOG51tIjw/HSY8Px7HHR/o1pMeHy5MeH46LEx4fjgPC48PxasLj
w/F7hMeH44sIjw/H7xIeH46THh+ORxEeH70/hMeHn7uxI0n6NaQjicuTjiSO
k44kjpOOJI53Uo4krk8c9yW8SByXJ7xIHI8gvEgc30t4kThOepE4bkl4kThO
epE4TnqReJ0n6Z/iOOmf4jjpn+L4A8I/xXEewj/F8duEf4rjpH+K46R/iuNm
/n/7pzheQvinOF5L+Kc4bkL4pzhO+qc4TvqntL9D+KfUX/APzxf8w/MF//B8
wT88X/APzxf8w/MF//B8wT88X/APzxf8w/MF//B8wT88X/APzxf8w/MF2PMl
8+9dIzwXHN9GeS6kX3Oa8GJw3P3Hn17MqFOzncpPPnJYfzg1hgZ/OyA4Pp1y
QEin5g3h5uA46ebQ67UofwfH8XzgDcrrIZ0a0nfA8a+E74DjGpTvgOsZx63/
cgF+0++1pan86jiOn6f2EvnPcR6zO385GqNOjT7lbpBOTSrlI5AeDXZnSI8G
OzX4eHF5OcI3ofNaU+4MjuPtYKeG9GiwO0N6NIcpp4b1u6MezTTKncFxXB47
NaRHg90Z0qPBTg0+77j8C8pRwnFc3vofTo3y6b8dJTp/OOUokU6NPuWnkE4N
9mhIpwb7Nbhd4fKFlEeD47g89mtIp+awvk0J/4rR84jLk64QLt82aV4bT3AT
m1Njkb/4fo3M6HnBcZ3s1G2hAbVsTs1FKv8e7ifx78pRec5xPePye6h846Rf
M9GFlX+b9GvOU3m8cb+Kt68CWfnS8XnB5dUGP9/W0RjtN3A88i/XaTSPN/YI
SI/mmrPA8bLyVjaPBrsq+Lzg8vvjtk7SOjM6j4/j0faSra+Y9Y+3g+PlgxYn
x9WPOlZ0XmXKpcL1hsfJY13+dqxwP1ZAuVekU0N6WzhOels4jr0tHMf3C+zO
kE4N9lCI8hC7NmReX919LJeB9GsEKbcF1w/toFHuD+nX9PfNkfdi9le4PeO4
dcHu8H1BTWx+jeqsWx5n1o62Zxwfmsxt/dWnls2vqY/as0180mi/QZef6ibp
Jz7qbuD4DVfVuiyvbLp/wPGCC9c13M+PtkMcx44Y6dScWzt4mu+PfgDHlTw/
z7hyhq3+AXaCcL3h8/i3jzaaB/U+5R+RHg3pIOA46SDgOOkg4DjpIND3a8pB
IJ0pdcrzIj0a7B3g+r/C8giALeURkPlaRSlnh/RrGgQLhq7Z4rxPo36NZOiZ
lhmCTWx+jfmaH4rTHerZ/JrOF86OF3hq2fyaSV84c9Z8xM81o66H6891J7Y9
j4OkX/O6+ZC68aF2SHofGtu/NIedymTLB7sjmuVxsPq9UafGc5qmRbxqM5tT
0+h05YxAQQObUxPaImg2T6WOzamxqh2MuBNaTe3/qKezb5XDK6MPZWx+Te7M
opva+zohzkeK348bUp4O6dqQLgyOZ1MuDJkXOoXytsi8vkISLI8J57PF9XOK
cklIB0eG8hBJB+dur277pdRWNqcM+31UPdPrYYwJxwTHvSjHhHRwSMcHxyUo
x4d0cLrcWQ4a6VgNh7M8L9we8PcROyh3A9cDzgPvSbk2dL9M1TN2QHSo9a6B
rPWu0Jxa70r6DprXWB4Qbp84/7Ap5dHg/gTH27/87bbQ+asT7oUdYtYzrk9c
//a7NQWMB4rYnKaSl28WfV+fR8fpcUuatLr/vDw2Z0fv1pvQF3reEMfpcez7
qctm3/SGpI8T1+vpmHuihc3HMSv5tDRRvJvNxylvuFySIj56X8bze2spNwTv
J17feJnyNfB28HnA3grpZXh2sr5rwPWDr6OaPpbrhON4PFBDOB04Hkg5HaSb
Qzo4uB1iB4d0c0hnB7cfScrZId2cRMIvw3HSL6M9HcIvw3HSL8NxHcIvo51H
yi/D40AcF6IcQ9LN+UC5Zvg48Xlf6HxRQIYej426Odh7Is4jwM4Rvr/j5+J+
wsXA8V+Ei4Gv01uEi4HLT3H428XAcRXCxcD9wH0hlouB9wc/D9pTPiPeHxy/
SLgzuP988ZHlzuA47gdar/zttuD4DcptId2cAWWWO4nbLb6OSnbteT05v4jN
zeEM65SoZl6PuL3h83K/N/XijD/Gw3g9ZA/hAeF5zrOEB4Tzih+lPCAcx+Pk
FZSbQ/ovZjp/Oyw4Plfsb4cF10N9DcthIf2X6pUsV4X0X+SnXjDnKTBmc1v2
NbOcDhzH/b93IctxIL2Y6ZRTQ3ou2J3B4yVcb96Ej4PrreovH2fU12h+qfi+
oN6Tfk9He6aEg4O/AzKnHBx8vPg8Yu8GbwfH9SlvgnV9jTop5QrZgqs3vqW/
Z8dxnPcetyt8fjcSjg8e31Yv/dsfwccVkzTepF5u1IvB442uYJZXheN4vDH3
4t/OC77u5FMizqs6GbE5KRw3fjm/ybtFHxeun0VyezIVb7+l32/i8s13lv3e
xXzejKbyGxsMsvLlJnU/ly7UaoTJVP7kJ6z8yUCNyp+M5xtxe64SL65SWpNM
uyS4fgZST6nV7BrNs4Hbg1qF2JeD/aO+DI6f7DPv6DMa3Q7Oh/+AW8YxVz+D
juPxT1zBSQfb2aPbx+1qlm+T9aLkUa8Eb2e/iuAVkQuj7gm+f1VS3g2O4/H8
R8I9wb97rrtZxnLxqKeDrzsPR5ZXQvomHKf49B9IvWDzStQ3s9b34usCr0Mu
phwQ0jE5S7mHuDzun4Uof4R0pYUoVwKP33D/v4/yCvHx0i5PCstvIv1ZDspJ
IR1G7KqQXkn+PsbFa3EVkHQfuPlYviGuT3x99f3DK8mazHI6cHvG8fbMsJwO
8dHrFMdJhwLvfzHlj+B+GJ/fin94IhYlLD8C7z+uTzPKEyHdEOxr4POC32tt
oTwOHMfXuyHlwpCeSPRlli9JeuJvKC+GdF1XUT4IPr+4/zlP+Tj4/OL22U85
XKSf/pvybkgnK5DyjEhXXZ3wknB9YveEdDNLKCcF1wN+n9VLuCp4nIMdFtJN
VqH8FNIxKXy+JazkWQOd7wVfd3MCWD6OmBnL8QmxH3F8gEMNy/HB7QeXH3vk
T3ds9D1C2AWWg4O3j+Ock1ieDj4ufB7dKJ/lcmXxlRkcTaPPlbLc7cJz0ujx
JO6HuSjni3QwX1IOC+lbYU8Kt9vfrHYLtZayHBzcznG/J0F5JaRbKldkcHKp
YAH9HI1/167704XU9tHnIPy7S7I4pMbPzmfzW2spj4/0T7GfRTqeP7c7nGri
LKN/F7cTbQXN1nOJzP2c3KDUzdUMlHt2a+pU1ILSsuP5rTsL6d/F9eYirv/c
i2v0d/H+LBS9ZlHTj9vPMBAdOd4EoN373S77djk9fsD7gz0vvB3aIVWtV2X8
qoB4Xg63f0O54fFn1ldT/dKoZ+Gy4trOQ1yVoCTEYSTPOb9H+Uie86e9Kb++
5JazOSl6lLNAOinnKZeBdFJEKPeBdFJwXgvSScFeA+mkzKWcCNJJOUB5E6ST
spJyLkgnpYNyLvD4GTspk96xvAnSSeminAvSSbGiPA7SSTGmPA7SSXk4huVo
kE7KRkeW00E6KdgBIZ0UHsoZ6SHy3r+mnBHST+HYxXJGSD8liHJM/Az/zre/
l3JPyqhxF3ZVzrQ/Lzl+yYvNVblE+Smkq/KI8lZIV+XD+Z5NP+Vj2PyULMp/
IZ2UiZT/QjopmZQjQzop/ZRfo0OdFxw/nylRVZYYwOakbKOcGtJJqaacHdJJ
2Uo5O6STItjDcnBIJ+WHGcvZIZ0UF8r3IZ2Us5QrRDopJRtZThBut9hJeUL5
PqSTcpByi0gnBTtHpJOSSPlEpJMCZFQmHzOIZXNSDAPjMpoLY9mclP1etkJL
05LZnJT47iyh6Un5bE7KxJBlX64cjGNzUubOnlWeLBrD5qS03JR5P7smHgZT
4/xIykmZGvtI4cSseDYnhc8wZ2L3jM/Qk/IsHlOehcukgfzn1fGA9FPmOdUq
it4NZPNTdHRYHgfpp3BpBnalSlWxOSncpa/lrFJr2JwUr63p3YGh1eDd6p0/
xYy/Me9rkrES1tWgSO1ZjadnMJuTMqwm/MZibAebk/IjRnK+Ym0t8KScFGnK
SXGwq98qaPOBzUnpVcqfrTq5gc1J2SHFc+JCXx2bkzL32uTYhvTXbE6KHA+/
cDFoYnNSkiuXNP9a1MjmpPhdiZl7fM4zNg/FkfJH7lAeCr7/TnnD8lBI92Rg
JssNId2TlScXyXRNi2VzT6JOV4/4HaR7oks5LKR7UiXPcjcSJMYseT/EKV9A
3a+HEnTsP8c3wrk8Y2z3G3wDlesfj3f3qQJukxZq2lUEg66/2zOIHHtK+LG+
L7hFOSnWlKfj6cFyUqKpdqjJaofgkeG304uFI0Ev1Z/jfs8gnOWY4PFwOPc1
VYWICuBWNb5/g24ouCXpzRU+4Rvgesv4adNeBubunDierzGMzaNRprwSI6re
PChP8w3lxZA+y5hili9D+iYO/3BMZux7nnbGswGSfsoGB5Y7Q3ooxpSTQron
8b4sd4Z0T6qv+LXvG3KCeN4A+yY5lN9B+iYbKe+D9E30KdeD9E34jVbH6CmO
fseFfZNIyhMhfRPsj+D76SmWYwLNKceEdE8OUB4E6Z7ozpU0/bS+ks03yaX8
FGJ/QDrlrZC+yfASlueC6wf7JhzbWP4L6ZvkUc4L6Zt0y1SUaBTFsPsm8zZe
8p8ZA0jfZG77Msn5TrGAa63uiG+SasjyTRbaJJwy2ZDD5ptsOxfGHXSnms0x
+X3heoiDVhObY3LARjXJMKiBzTHhyU6+aRHdyuaYvPuw/pTmIms2B2QC4ZgY
sxwTIEM5Jjspx+QxyzEB/IRjgudPRP7hmPBo3xtxSUjH5EYpyyUhHZOpBSz3
hHRJkil/BPsvC1n+C1Sj/BfSZ5lP+Sakh9JL+Smkb6JIuSekV5JEuTykVzLG
KeKrsFItm0uC885563DMDlZIBXsyGIeceauh3HprdX7NXDav5IavBjzFXQNE
nO7G7eTLBOoX48coR1RB+bUSkben5bK5JI/0tQ+eXp3I5pJ4Td26I+e/WDaX
5Jzjw0LVnzVsLsl7tf16QdsS2fwRg9TuB+LSeWz+yOSndb9Xdz9j80ekHl76
/bFKn90fWe1zQGV5PJs/sid8w4W7dvFs/gj+npf0R6ZT7gbpj0yZynI3SH/k
fu3uEb/D8ZeyCfI+8PfOnN7dycj7yM5juSF4PL/SgOWGrKT8EXyftZrG8keK
qe+RsVe4SJL1PfJ3yjHB9yMHyjG5MHI9DALT3JH8PKCGys9DOiNXk9+OOCmk
M5JFeSukM5JOeSukM4LzGZLOCM4/cCLoQRLKg9rLnbLUYEc55BVT/47yoM5f
G+QSWDkAJgrl8C6pzYPRPD4TP1zwBqtMONehfOOzheaP5BtfPrh+xIkgXZLP
+1jOwtx03tk5n/pB2Cut/zqkGdDX6dWYdRGBoPSLn8eysH7AaxwU5ijHAFm1
uuO/qWRD0hP5FaHyqvlVPZsbUrpPeC7KR0e6IemDt+yRD0K6ISvWjOlHngjp
hhTlZCYiH4R0Q3IXyM1Engjphgz07Dc+5pvP5obMjm0683NKHZsbcrelpuw0
Vy6bG9K2+fon4cvVbG7IOb+S9pKATEA6LJvyx/N9rWD3RI50vuA4zJvA5omU
zuBys9aJot/HYU9E7qPBSJ5w0hMx21qxXHA4iM0T+cg34dmSnHg2T2TuGp4J
6bWdbJ4In1qXA8pXmS7/+a/8XSYeLPeBdEPUYv/2PrAbspHyPljhUTckNeV6
OspX+Sa59EMfaAC8Ta9Ly5YUgGM5sx6cyC4FOlR+nnutI/l5oG49Kz8P6YAM
dC8fcXNIB0QFah6r9/0A5Kl8R7tY+Y7AYyrfUbYZK68RY8xIXiNo5c3Ka1Qe
w3IcXHeNOA7Q+zzLcbguFKSow9kKpJSi9BJkGXBD73HRo4e/sDkgXk1ajenT
wwHpgCjeHhadWZkEG6i8iN6svIhgnDErL6IulXdIiZV3CCRQeYdI72M85yxH
QwMvNm9FgXJbblEewUzvEY8ATpnB8ghgx9KRPJNewgtRnkm4dXv/SJ7JDwz5
VesshsCWnGSp4C0FMJrz7ezqL6GAzEfXze9zJtA6DFhTXsnpY6z8/69SWF6J
OeVWtFPzsZ/9WW4F6XQoBvxwU0ltpecnt2ZCEfuXDHDv8R39fTPy2PyOSXoL
X+0w84brCc+lBbLyh7PmZ0b9DolSzsOp4t1wdRnLNZj4ZMQ1ABrnWK6BzXGW
a1B+c8Q1AIrzWa7BIsp/mcfyX8ClApb/Qs330u7GeKvGEUeAdDcev57+GuUH
I92NxMXCzuj7aNLdyE+3HckbRrobXydvHXEHSHfDSc4lAuUTI92NQOdJIx4B
6W587/A4iPKMke5GSovkiFNAuhtHL2iFe0nlsLkb39f3T0P5zEl349HUJVHq
EzLY3A2NlaW/d1jHANLdaFuSwJVwcnQ+ELsbvhOfrUBOAeluBN4VqZkuHE6/
D7Lyij3txzy/eXVaKYsSRtcDYOdiqmfE54YTLfCVz9yR/JADM41Qfkiw+YnX
SH7IaLME0d9Xm4HZgx+BSenV4MS8O8903xeweRMfRGYKTpF7Ak6v0B7J/xOu
OBbl/wF7zVRG8v9oWg8Nx2qOkX/zrnlY7GMISN49UcXBvBY+L1z3iyOQg37v
vN+T7+TjtGqo3PNpwxnpBmAaX9Ou11gNqv4rqZ8ZWArIfPLtlO9AuhV+jq66
PH+sq8Ruxfx356af/2NdJXYrrCVU9YL/WFeJ3Yreov5Fb4+OrqvEbkWz+mQ3
gTmj35niPPYKxucT9R8UsHkWySGXJ+eLsHsWZq8PZg/bm9Hr07BPsfuUWFTQ
H9+NYp9Cq3SGKfJWSJ8i0yjrlc5gBptPYcR/U37l4g+A9CkGGKy8QMJU/kM9
Vv5DqGTIyn+4n8ovtIWVXwh6UvmF6qj8ZnGs/GYwhMpvNsOQ5R/NOzLiH8Gl
O1n+kRKVn+fR6pH8PEDiCSs/T08uK5+PCCufD4iSY+XzIfMjzWl8fbkzMwSI
U/nzu7xY+fMHe+RzHnSPrt/AnoWGjL9qnujo9yzYs3h/R8lC3OgzJD0LMysd
7wvCB+j3sNizWHTbfZHk9hg2z+LbiniHN6Kj72GxZ3E35MJylP+f9CxcPjlP
0/pjvTT2LBLtO5Zk//G9BvYs3j/aK6b2x3cZ2LPgXhOpIPjH9xfYs4i5Jr/9
FtfoemnsfWhy9quIx5SwOReSnz+YrPhjnTN2Lr68kRvJz0w6FxyPVvvMdo2n
38Nit8IyPbjnqkk2IB0K/ZwzfS/b6yHpVqhvYjli+P2m+Rrd7PPM3x06Y6uI
vKrfKSwvA6/H06e8jI2UT4Gfo3f8w6eI3Mlr6j09k82nwPmXSJ/CSP0+L3Ii
SEcmMkdfC3lzmVtYbs6PZSNuDuDsYbk5pEPhPijXrnSznM2hgE+8R/wLj52r
xpf31YIVmk2/BSwbweOx1jLl6WVsPoWAjVXTeMEGeIbyJvB7NzvKm5D5mLP0
P5vRfEq/7RN4Yu8UsDkUYxV1DLxfu8MZlPeB1+EYU94HbufYB+HOTpy+5WEC
CGpgOQt4ncPDfJaz0GOtqdHU1whEN1ZKePRXwvWK2gOl89PYnJ0kwvV4wcpz
C9ypPLeNlAN1m+VAATXKgfqWysqzd79zBsqzB9frsfLskW5F5tMtX00Ck9kc
imqZmNx2tUSQJGww78C7JuDyXenSgRX1YMo2w/u/sgpB/WWlY851A8Bm9yqV
lcsKwHUntW3mjQXwIjVOsxMdGaeBzG2svMG6lNOU68py5Zopp6n4a9hfjtsJ
Kh9v6Pp5Wx9JD4E+6RlypicygN9TKXdplRIoT+VHfYrzbL9g5UclfYqx/ieU
bwy+AbsIn8KLynenN+3vPHh67Sy3QpraDn5PtMmZ5VzYUfnE9Km8l0e0WPnE
VKj8b+O4R/K/wQ1U/rcvlH8RwPIvAIfI//cvOqPTOjfZN8DY0leu3xKY9SCi
KH4cloDlxRqdigml8NqBaYn8h4eBjsYTM9X5NeDVG/U9ilvLYerl4wvO/BgG
0f6X105JrAeS8Gb7/awKKGst9MK8vhY4ffGevnNiA9xhvb3fziKDzcUYXLDi
HLycDj5RLsZSysWYslbYcux1T1DtUexnrtoAMn59t+eaVwDfzK6dPk4kHZBe
RsH+mkGZ8TXwQIxR0eTqZvBMxivxmkkZ8Fi+b0z+j3zQqHGdV6hxCMhl3quU
qykD1sne3vNFymAzkTfy7ElL2/K6ckg6Gq5pN410S/2BpNjHz3LRzSCTv65s
M18FTGnQsSsRSQUZg60u7r4DIKzt+te0E1lg9//qOvOwGtM+ADdkGaSGxPh8
FUWkkbFMaSaPMbLOMMYy+UhUSCpNzVgaa5FxLJk0YYYUUdHktEjGyaOM0KZ9
O+2biBRqRtv3nXOe5/f2ze+tv1zX7Vyvc906vc/7nPf93TprXWZsyBP1Ndyu
ZhRlqZ0nuK/RkVNno/YglZR7Hv7raHIncX+7f7htUCUpdfxp/SDjQmrzx6VZ
e1d0kQW3Dbe36dSSGcmlQ91OF9GHvLvhwLsb5LKdrPz7aBIZlKZ1tKqeLJ62
cZmusZxavL484rJ6CsHdjWtHPWf7Z5VRj13FHXdPdZCGgXZrbpxLIWXqGYee
Ds+jX40fuSxyvOK6NWDJSSu3curTp9axrSWGpByel6LpW0Mm5dWcdbeupm/M
2sLuSNJIJO+0hrJOKy3mndZzIZELYy7UEu0zmcP/+LGMxAX7rg47VEwmd15Q
zX/btKpOOf+NxDay+W9Z991kkj9qySeP/By20RKqM2DEq+fyVKJRUjn4Qngt
ybf/OXgllRPXvtGhqYfFPQ7PwdLDEt0noh7HuDzLjQej0om784WXkns1pPPY
/u/+Kqmiey1czpe4pBHjJQVnBmg9JfmJ494a9ymn4x7Orn6knSrqd2jP2XHO
dHOpqN9hVHCsvEqxbqyLzx5zpqOK3Kue4nf1ch0Z1Nb114UUuajfMdOwrPXq
gDJRvyOZ951xvwO6urjfoX/QM3R74zli6C/b+syku68X5750QpxrirCOLbpT
p+xl0DEPWS9jHe96wD7GZ7zrAf8edDreprqpOqpwnwl0OmTTBg3d3HpV2MeA
7obkIx9V/xR3CvT5fF3c0dAYFFCg7A7gjsbHhnpFkoI6UUcjyMr8lLIjgDsa
7SumaRonV4o6GjbmV97s0ygTdTQ+2+OimfvsBQ3n/crvWb+SGr5m/Urcy2hq
sHtyzLRU1MuYGN7S3KoV370u5b0M36iwl8rOGp6f79Rnl8Omgj+FdRp0NOY9
oXOVPbLlN+T/mGPc4cm6GK6V9aquXEVSlqorJ4nKfqdfGk5wd+NA4sa9r9U8
Ce5umO+eqDUh7xEx4PP24T7JpWtYn+JD3k0+zbvJ9D7rieBexoZBSUHKrrF2
m9W98X2ek1S7lUvuzQwnJ5YsdfLRzRZ1ND59MLQ+wzRa6JVM5b2SeZR1mXFH
46bXGotWl2aKuxjWJYGLF1tJRV2MlTYTTQ7cfkRn8o7tataxJUd4x/Yh76HA
+lOd91DW8x4BrMfGB7MewUcOrF8A66uPh7B+Ae5leD7O0FL2X3AvY4D9YFXn
DvcyNltWHh8VWSjqZRzZ/aGqf4d7GV/t2jdK2Yvx459P6GWMHJfPuniolyFZ
auuo7MjA9QX0MuYkB6t6ebiXMeyk/aVvIjNFvQxJit53yue+cS9j4suQ5Ib+
aaJexoGzlmbK/iDuZURrPu3UXd99fzL0MizTh2xXdglxL2NMjHfF0cwEUS8j
0+C3MGW/T5f3OuF6oTWW9TpxLyPk+KaQO2tDaNKhn57tKn5Hwsau0C2fHk4L
3ypO/zSWPObdDXjuoJB3N3AX4y6xbDnlTAnuYoTqT5w/qn+DqBNkcLxpyI7X
+aIuhqfVEePEpmeibsUdbb1lyo4D7lbUzFIPsy4uEHUrLm3TVttvmifqVlx5
Uaah7Djg3ofPNqv3p8Y+EfUsdJf7bT/dkijqIi18G32U5nY/X9DJu0h/tnS0
P3tbSTfx+dIG/DrifT5fGs9RvyhnPRrcsxjlPTd7/vRfCe5ZBFZRU2W/A/cs
zMZ+5a/9QZ2oZ/F01equiuPVop5FrZ+lpbLfgXsWU0Y1b9xqUEIyluV67plf
TyzNU9VzFPyTyLsRZFCuqHPh6DHhUHz4JYq7FcZJk1wHZ9WLuhW6C86uG5PU
SNP4PPaP2Dx2cpvPY8c9C58Lt0/MfxMsXC+f/CvZ7pHic/SNS1m1suOsjfoU
52rajlRXFYj6FFqz+iy7dLCc4j5FhlX9DvJITnGfgu4pXbU6q1jUoch10ru8
tfS6qEOR5N9UornxHsUdiq49QcSWyEQdirCUvaVOYf6iDsXV6z73/f+uo7gr
sWUU6xPhroRP9rCpyl4z7koMy/FWdZlxVyKm2Xetsr+MuxJ6Ixq/VHaWcVci
WTK53+sJ5aJOx7q9lhnJxwpFvYn4/fKSvY8bRL0J63itT86VNlHb2ZbDdZzq
+c97JXl3ZPys3+LzyJ9N9VpJNorzi3fll/XDKki8tm4zvVgs6lCc2u0uXeCW
ROrObF8075cO8rq5yvXy7lS63C7WpDExgvjyDqku65ASR94hbRvI5vZ3sbn9
5NstbG4/7lYENCYe7ghMJ0c3sDnqAWyOOtkmZXPUcZ9izvWs7UYzvCj06AN5
j77oZHnnlxsraFvfWA/nH7ufk3W+mNLQ9CKOhPPeOqxbfh/Geuvm/2Z9ioQ0
VZ+CFoSyPsXkobq//GbQQaxyjx/tVPx+vh9RXDc4N5JM8do+4gsFl53+4dBh
xf9LvGPpwM3tOdSN90qGs14J2cl7JWpTUic119STjo+UfxYSzdth/3mWnyt8
f3SS9cTJMd4TH9seZJV+sp6cSk08WLW4giytWfrL3gN5om4FzJ3G3YqurLFR
k48EEdyt8I/OrtmffI3gbsWh31mv87pXgnlSbC15HnxsjZ1/Cb09SePGovJU
Eh9soer87g/WT9I7X0kDXfNVnd9ZlTeP/X8vyXx8RR+rxlRiqTPh4hjFee38
+55/Ks5ThOYZz91klEZ3N7DucHO+qjtMTJaz7jB8/2hpyPoUi/jce9yn0Eln
89Jxn+LBMlKfalhBcZ8ins+Tx32Kdj6PHb6n2FjXpyZ2eRXZeS/dZkNXMWnn
P7ebWTeEOPJuiJHa2eqFP9UTuYvHr3H25eR8l7zwpXce8eU9lATW96EtvO9z
d84pVX8Bnkd4sUOq6i8EjV3t+rqri/zqkdiVtb2Umj1tcrgTHEt28H69bL6q
X0+DeL8edyvM4/rvW+B8XtStOKATFX3FWUKtR94yNdhdTXzmLvJYaFxLTI30
k/ZK5ESd955mqT1T9p6IB+89OfOuwU3WNSCNCaxroHs71H56RA2ZULSndv2u
XLJOs3C0pKOYdH3MeiVRfF0aGsJ6JXB/RW1A1C2fRZV085nTXf32hJKE8z/X
z1mg+PnPrAi4ofgctY4xqJ66PkXUrbC2vO2l7BHjDsUOu4iQ1ZJkUYfCrl9L
5iuNB6IOxamLCUXPrj8gswocDBtynwrPZdy55u33w4l8UmRT8o+un0kN67DU
jmX3Xeyeq7rvgnR0bDl3vDiPfpA/TXXfxXRZs1bZkixi5FRjqey8j+9fo+q8
w76cs1ugqvO+s+XrnRHW9cQ2cYzDoBE5JOlWxH9HWuaReSMCTKr21RK/4ILI
3MY8Mmjy3RP9bxaL+neBtmdDs9XlNJNf9y1k133EPT21YP2JIuHz8gX7vp54
nVw7+HB7KfVYNVvVr/+Zr3+jjw5U9esv8+upbH5fqIkZ65cFV5c8PFJRI1xf
f1IeN7foP2miXkbFj5P/HXj1N4J7GbZ+Dm2zLUqIHu+5j2Y9d6LFe+4aN4ao
+uNvvn6j6o+7vNcR++GaGFEXo/yUl6mea5qoixG/hfUdcBfDkPdr/Hgn4ibr
RJAfeCcCehmzeS8jaL2Tlud7cop7GR3G5FNJZy11djOLUPYU4LmDPj/pq+0y
uklwRyMo1zXKYLYvLeX9mp2sX0NeJbB+zZJp8qnK749Gvz9+ldyhSPF5MdVU
9jXS+7IO+9QOVYedTDzHOuyEfy9Wzb4XI9/wbvtM3o3dybqx1Jp3Y3Ev4wHv
7+BexpSZrAsTyXvu51nPnUp4zx13NLxnsf6ITwXrUAjzPHmH4gXvQMH5dDrv
QOHuxroc/WslIenEkHel4bwQw7vSqbxbAfdllfJuxXe8cwH7zCW8c4G7GxM+
z1fTfCwlbzN1tjlH1ZN/jQ73vflFKX1v2brXy8emkBPOCZOMHtYQ+9TPbgx9
mk3fWX+sc31rGknn3e2VrLtNXHh3G3c6BvJuEe50zI9gXaS6hWx/W+cW62Vc
0WNdp0R+Pt3Azqfkc96Bwv2OYybuhwbYR5PPeH8Enn/p4v0R3O+AvvnuCRWR
yg4R9DpfWfiXKDtEra0TVd12OL/E9B2h6rbvSrwVPO1aLVHTcNRxCpHTCh1r
I9faVDLlh4Dv2hXXp682PD+oLy8jrSsWfmF7tJgERjtnbVWcJ9Qf/nzxklsl
yXg5syhQ8Xtp8YBPo2OK6si4cXWSSfEVdKeG5yivGami3odPQP/fc8JKSSbv
aMPzyDN4RzsAdUB02yszt92Xk+y/q1vvhtcSG5vNXh+0KC4VdxXrxyje5x41
1kHWWe+h7CATe3PWQXaKO34lXLHe+GDiSm2HIaVkhvuKNf166IbE8O4G7oNM
9s0Kt/g9vdf923VXqp56v6gRnpO65tj32+kr08i8pWzf1fsU23d1fcD2XTOm
75rRr7GKjJwqe/lLSw0N3lL3ss++dFEfBPpiuA8CfRMd3gcZyPsgK9fOXWzy
uPu+bmF/tWF5vO5h0TxMWuTbWegrnodJp8wIf6e2QzQPkx4sXDnavbEaz8Ok
eXvUPq3eLJqHSb+Za30r7G73/QbA2yQ3/pbcKBSeKwd+Kae/hUtQjqgP4mcu
aw0cly7qg1Q9dtptr35f1AfZEjft72VpUaI+SKTZweHmB73xPEy6Rn1454WI
OFEfRN5U/KPk++45jcBP25q8e+D3RNQHwZ6BY8/AsWfg2DNw7Bk49izs2yHP
wnxH5Bk49gwcewaOPQPHnoFjz8CxZ+DYM5wvsGfg2DNw7Bk49gwcewaOPQPH
noFjz8CxZ+DYM3DsGTj2DBx7Bo49A8ee4byDPQPHnoFjz8CxZ+DYM3DsubsD
8k/PwLFn4NgzcOwZOPYMHHsGjj0Dx56BY8+wbsSegWPPwLFn4NgzcOwZOPYM
HHsGjj0Dx56BY8/AsWfg2DNw7Bk49gwce4brFOwZOPYMHHsGjj0Dx56BY89C
Hxl5Bo49C10S5Bk49gwcewaOPQPHnoFjz0LHBHmG+8OxZ+DYM3DsGTj2DBx7
Bo49C/M0kGfg2DNw7Bk49gwcewaOPQPHnoFjz8CxZ/anVNbzuk4q63ldJ5X1
vK6Tynpe10llPa/rpLKe13VSWc/rOqms53WdVNbzuk4q63ldJ5X1vK6Tynpe
10llPa/rpLKe13VSGfYM94lhz8CxZ+DYM3DsWZj7ijwDx56FebbIM3DsGTj2
DBx7Bo49A8eegWPPwLFn4Ngz7INhz8CxZ6HzgjwDx56BY8/AsWfg2DNw7Bk4
9iz0X5Bn4NgzcOwZOPYsdGqQZ+DYs9BPQZ6BY8/AsWfg2DNw7Bk49gwcewaO
PQPHnoV9J+QZOPYMHHsGjj0Dx56BY89CnwV5FuYsIc/AsWfg2DNw7Bk49izM
CUGegWPPwLFn4NgzcOwZOPYMHHsGjj0Dx55hXwh7Bo49A8eegWPPwLFn4Ngz
cOxZ6Msgz8CxZ+DYM3DsWejjIM/AsWfg2DNw7BnuD8eehTktyDNw7Bk49gwc
ewaOPQPHnoFjz0JHBnkWOjXIM3DsGTj2DBx7Bo49A+95Xdck8gy8l/06kWfg
vezXiTwD72W/TuQZeC/7dSLPwHvZrxN5Bt7Lfp3IM/Be9usEz7jbIk0IXfjt
5929A+Dgn3no7raYhXlbhHmnCMcHjo8P8y/x8YHj4wOH4wOH9w8c9xTg+Oj1
tJfXo/fTPf8f3j+ex/5rrvIH5bloHntt38IPzQanUzzPHL8eOLwe3h8cBzzA
6+Hv8fHh/cPx4f3D8fH7h+Pg18O/iz93cJxe3o/w/v8HdJ5q7w==
"], {{{
RGBColor[0.880722, 0.611041, 0.142051],
Opacity[0.7],
EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[
GraphicsGroup3DBox[
TagBox[{
Polygon3DBox[CompressedData["
1:eJxNm3kclkP3xu+ZeYisJd4i7cqWpZSQVKQskZAlXmXPTpG0SEWUJVv8rNn3
nawv2bNv2aJQ1uyvfe09X9f1fPr9cT4z9/3MPXPmzDnnOnNmntb7Hz3wqFxV
VW2pqipRvhrEc6Og5kHLB60QtHpQw6Dlglap1LYW1Djo21RV3wW1C/ooqG3Q
mv5uxaAmbhtDVGsHNQ1qFvSvoAZBywR9lfTcPujXoDeCXg/aOJhpEbR6/D4w
aI2gZ+J9q6CVzWdrl/DSJuj7aPNT0I9BTbP6bWc+Vg1q6znUn+Fr6aA9ou0B
QctG/Qf4yeJtU/O9TlDXoA5+hoe9o81GUe4Z5YZRtqw091/j+2bx7v+iXDee
uzEX8wqP6wWtYRmfEe3GBvWM+qJo/0VQ56hvVulb2q7vtmuaj2Zek07R9vAo
TwzaJqiLeeSbP+O35tHvllHfoBJ/v7E2Wf1tVYl3+Orh33nubBkhsyei/eVB
g6N+QNBuQbuzTvFu6ygHBG0b/Z0ez5ODRiXxvW3QX1FvmfXcL2jzoC2QWdCO
Qf2DdqjEH+NvH9Tdz2vHtx2CnkW2/o2268a7dZLm2txyqctyPctrg/i9Y9Bz
Uc/MNYkfFLtVVn0v9wcfewRt5zGYW1/z298y6ul2Pfy8MPpbELRT1J+K8sqg
f0d9V9Y3+h8fz+9GfWDQEOaNTIJ2Qf7WhT7MK97tEbRf1B+P8rIk2ezvvpB1
1+hvQFCP+G1kPB8aNCxobjwPCDos6s9GeVXS+lyatCbw807QzkH7Uo/3VwTt
E/XhQQcGHRR0fNDBQYcEjfA7np+JtjOSeDnBvzN2S+sJ+vRz/L56lj5j89ju
JoyHHkR5WtCxyCboxaiPCzqGd0Fjg47285igTbOeByODoJOiPj7oOPM7Nd4d
F232CZpgXuH9nKBTKr0bHm0ODno56legC9F2+aB1glYOuoX5JY13RtAUjw0v
U13CYzvsPmha1M82H4xxVtDJ/+95uPloG22XCpoU9YnmC5mNi7HGBnVBRyr1
d67HbR/tG6CPSbxchM5FvTU+NOrnB60dv/fGh/ibqZbpWth00KFBl8bzTUE3
V6pfFnS1v7/AxDeT0avoe2jQK+h0lFsFHRn12ywvePws3r0f9F7QoUl8XRd0
WNSHBf0d9RuCLq7E14rBw3JZz72iXCPohCTcwD6xS3ADX4XPeq0SxuC7H660
JrcGrR/fNQl6kLlGuULQVVG/q1LJnJ4KujfoPpfXmre7/fs1/o131wd9E/RJ
0MygJ4Pu8XfI4cMoT0V/on5EJX3dGZtm/lF/NOj2oDuQe/CyX9CdUX/E/CKz
x80f48+q9PtdnlPHaN8oaKHX54GgVeJ5pSz5gW34cvARfAJrwKsGfl6tEi6B
T03MxxkBujOi3CsLb7DFnYtkCy6DXbsbv+q42KoS3oJXHbwG6/i55r7BQvAb
3ARDwf/G7mMF88lagqnYPPYOXq9lPukDrGhbLcFgxsYfgL+/JK3HTK/P4qCP
K8nmWq8JawMugVn4dPw4uIGvBGPBqDpW4XN+TxoPrOoU9GYlTAD70L9NPP72
xtJ27g88/MtxBDFF70q+DMwBe7on+eu5lfzmjtG+v7G9h9vBx1Z+hp+efu5i
HsDFMfHNYUG9or6b8f2ULLlvWi2JI7r6O3Czj+e7XhLOzfYYYE8dJynrOEkJ
bm1m/MHvg3vgHdgDJm+YhVPw1999gYHZOAiW7W58PzkJM/Zxv+DioEq4DR6C
i3wDpqMky2b5ymnmZU9/wxjgWB1j9/JvfA++gmsLjHXwRNzQ33LEn+LL8a/4
/vGVfO6oGOddfFfQS0E3JOEgOAlGDXW/B/j5ufj96iScA7fATnzy8/Hu2iSM
mx3lNUmY93KUNxpP+e148/IqMrSPQC+2sG58gA8JuhAdiHKjoBei/nqUNyVh
2RtR3pyEcYd4fPo9yH3XcXi45/oidpLE7wtRXpf03QBjP/NdOgtvwBrGALPA
MPxW/6DRUe+d5N/nVYpFhlTShw8q4dRGWWOeYvnC3zj3tUX81j0Lw/kN/DvL
bc/xMxj9UiVM2cpYj3y2i++Oz/KpzHOi1xJMBndPr5ZgLXgG/o1xHcwHp0Z5
vRnzzEqxHnqNTRHLdIlvNgmaAn9RHmuM75CFYeAnmDo96i2S8A8+6Zs6uNjI
MQF+Gt0F967weGDoJZUwrb1xDf7AOuoHGMvPdVtwF/8OzoBP93kM8AjcAkev
9tjDjKn4PHAVn3idv/+38Zx4YUySn2c88AKMvTzq+0Z5iDH/4Cysb1XJH+Gf
Vs3C0QerJdgJJoFdw4xfYAhYcrvnDI6BZw9Vwl9w67pqCcbC+93VElx72G3x
12DqE273lJ/pF+z8T1Dzmvq/0mMQgxGTrZW0V2Qft1o8bxD0mMcAU2eZ76Hx
fkjWt4947FuS2sBT86h/W6mf7yvF3EMq2eh3lez03qjvZ7z/otJ+Aj16q5J/
xV9f4vY83xr13yvtHXaNekvr+l1R7hM0P+qL/Ds2BTaC5S2Clonff6kU43zu
9+D7A9hx0FeV4q8hQedVimkXWJc2AaeS4uT7ovyrEs/091mlmOnoeN81KX5b
OsqlkmLdlf17I+vFvtaNO+L3vYLei/qXUe4QNAcdiLJJ0NuVcPMty2FTP4NJ
P1SSLfI6JtoOcvsto2zoPsEJ8AKc/MNyYQ26+3f2NX8ydqWYapt4v1qSH9o6
yuUtz15R/reSvzqcfUAWf8jvDcu2t9uyL8B/7eJ+pkdZ82/3RLmi1xrZMCb+
EHvBtvEp2HsHYxe2hE+73PP4wrpBXEJ8cmPQ134mfrvJdd5vbJ6P9JwXWR/w
A59WsoeZfsaWqqT3PF+YFGsil8ei/LmS/qEnDbym/awv+MyVk2ImeGmU1Bex
7YNRLmsbWM86zB7zfvfD92v7d+KclZJyK59bX9Cr7HWmHWvd17qHjjW2PjMk
c328aI0YB57nWmY/Wk+ams/7PQZjsYavWY9f9RwWW47DrcOs0UNJOs3cm3mO
T7vvn9z/T9bLZ90f9kZT9ibJPp91KEn2iV7nJLv+xmuA/O+yzmDXq1gmK1kO
y9ovHZGEJcj/xKR4kZgSvSSuQ09/sYyQ453W53nWvRWsf+SuTs6KNX/1GjDW
vdbVFy0n+EDXm3us3h53ZNK3DbP2fWDLtCSMBSu3iXd9gibaHrAvYoN/RXlE
vD/StrSq7RcZNLMuLvaafez3jSzzxdY51hFemlsmyKNN0v6U+Gd+Esa2dAnO
XlrkH9AN5NvS75O/nW7ZHp6E02e5BA+/ifLrpFzCUUn5H+RAubbr5ADbeS1q
Mbc2WXHQt5Ydbdp47RirWxLewD9xQ8qy8Z5Rds4ap53H3MS6xXi0IY8EFhCX
U/7mOr6SuISYhLiH+BA/QOzNN7QhfscmscfZfq5/t67ffxLltkk+/Tvb8GyP
tYF1+IKkeJ44d57bkk8grwJekPcj1sM/4hvJBZITJI7d2u/RSeLTjc0n/G7k
OvEA/c1gbkk4hE7Sdyf3P5q+zQf1jp7jc57zQPPQy2MRJ4MB+H/myf6knpPa
zO/B6M0tB/RlS+vMlv52rttu7vb4n17m+bYoN03Csu7+9j3bbjevNe2ZLzH5
OMsNzP1P0p6Q/eCEKE9Jyq1hS1tZhke6foTH7JmWvOvpNtj61p4vz3unJTmv
va3zjAPmsv+8Own/sFHsvo/l3NU6gL+l7Os63+3oOb7t+g7Wa7DhdNvmQOst
680+gT0C2PhJ0VinJu0LiLO7ZbXhd+Kl5ZKwi/62S8ILfBZ7idEuwamjon58
0nO9PsL9gmG04buHk+In9GI78/mRfcBuST6CtSTniS6wN93M+1P2n+xDiSl6
W7ZgOvHLnv4OuQ62bN/zb7znd+rPV4rRBnuN5vuZ+gDbHvqGr2R/w1rhSzcP
HnYI+jgpzoGPdpYtukT8SA6TfBHlfl67c/0eG/nQ7WjD+IyL/2Nu7HX/2Xsn
6S5r+mZSfExsjNwP8ZqyV6IODp6W9MxaEBPub90Y6jpjsa863N9SHuH6pKR2
tDkwad9CnNnK7ck54pPBTnJ62Dc5CPb35Emod7OOgUNgEPsW9i/sD/hmmN+d
neTH+W2Y+5zu98NcZy7oIvwuME/net4Hm+c1rVfoGBg63HI42PXRnvvRlgN+
Gh/exfj6R9J5ERiwVZQ97N8p8fcjPRfshXxzzdhBvmik37e2DFtZR9CPUZbt
QZYbeRViaPCUc5Ajk7AA+zjedjHCdeZC3+RF4Y+xyIeRK+3queCXwOy+Wfv7
Ju6/l+fLWg6xXp5sG2GfOM7f4pdP8tpR4qP7WM/JExMjnE/bpL1lR7fhO/Ks
5JmvqhRHbJ2X2Ad18gHgKbryUaXcHOdanCMdl7SOrCd+lLOPkpVz4HlIJfzi
eaDbTPB7fC5tu1oOzAUcgs+xnlcX12dU2u9Ptc5M8zP1ev5oJ5eLk86j0JnT
vGZnJp0bDM9qc7rbj7LckNWZ8dtJQa8lxVbbZ+Uz+GZEVh+nus/Rtjue8av9
Xef9Ge6ftZvqsRfYbrCRi6olcc9029DZacnvZ/s9fgWMx7fcnrQHQ99mWu70
+WjS+SJ2+khSLpg8ML9f5LUZa5mO8fqfb9mSI+N8Z2ilHBS5MvJSnDc0dJyJ
flzgtSOvxhkT3+2Mz87a92G/7FuwU2LOmeYN/4TPwi/OSjqXwueT8+Oci5wg
sdiOjsfQac6nBhsLOHOk7XjzQPwD5rLfw6+DORfavtiLEHcSMxDn3m5ZgYnk
9IiJwEVyhrwjv0aejXfgBvtksANfQO6OfBg5QPKE5N/A63s9l7/si/E/7IeI
+4kBaEe+jr6RI3lF+iCXtrnzaeQu3krKX4AP7EPACLCa+AC8rvk9c9zP477o
ce8xD2BsqilOJL84J+lMDR8Prlzp+b3kOSLXJyxbzipneS3YS7GHJHZmv/iQ
15F5v+C5X5wUMxEvsa8C45/zXF/0fNGDJ5PWkHk/77mDqdgRPhQ/N9S619m6
zbx+sx6jw0Oso+dZN5+2fhIvPGWe0dPZ1lX08Rnr5DGWxbHWncetP+R22GN/
Z1141/oAv++YZ3K27CN2de4SH0Dsd3pW3pmcM7HwXOsPOvKG9aSB9R8MR+/x
Fey7Pk/aI5EfZp9EHpAcIH296v4Z5xXX0c2X3T/nDTvbvsi/8S1nW58m7Rnm
ub/3/Z6xOLer78fme6wXQq8uyfIFDUJfLs/K232KTyuKoeb723p/n5ln9mHs
xzjj4a4HZ0OcEXFGtX98Pyir7eduv0s8D8ySLbyfAI7Yh6ID+LF55h9/j/8l
1iLm4izpa4/1tZ85u2nr99SJobkXwVnPBx4X3he6j91dLkxLYq6F1nnOX8CF
npVy0m2Ns5wXcA7CeQhnQpwNcdZBvED8AK7z3eioT8jaPxJrgPnED3Xfz50G
zq04vyJvTF4XP0/Onlh7I+MoeEo8xtkVZ1jMhbM3ztQ4WyMX1c65KfomP068
wXjJ4+PXiJmJnUnecBbDuQo5LPJa5MIPzIoxmhqnweuOlfKvl7ktZ4zImfM7
9hXkB5ExuVvysau531Yeh/h5R++fuxrnsU1yXOSoOdtEP7gLhL6QYyeXXM+P
k1smN904q39y0MwZvUIG5Nf4nRz2xo6VOBfb1mvXq9J80LtJWWecnJlyT4cx
yOfXx2zicRljPY9J3pn5M/dFni9xOGvDmQhrhf3jB4hDwUtwsLfXA9myPqx/
Z+vAjEqxEzEU693e60+8Rdw1xOMssmwPyjoXZC58A28zvM7tvdbk+leyDjH/
FpbH8p4D/F/mtVzH7RiT77izMA4ds34TT060jhLrorOcQTHfth6H9bve61O/
R8CYjE1Miw0w356mHrYLzi6JaYljR9h/1qzjYB0xJN9jR/RHvHBi0GlZPp5c
FvKd6Pf4DPACrGRfhZ10t92ga62tb/y2vdviU/pl+Rh+J0agDWvGurCGxFH0
2d1rspbXBf1aw/McnHWWhPzYH3ezPrDeyBObBDfwcYfbFxbbLme6k7N8zJ/2
BfiQydHg9yxMwm7wh/j184NeLcKkKVFemrWHauu1OsFzGGA765Sll+hke+vZ
GfZb+K9drYPoEfPtYB2B92Q9xXbxzf3MP/qHP0Mf8SVv2xfjU4hdeabc1rqK
vPpYr5eyDo20P6BvYjv8BP4CnpA3cmetkHt934yvQjZ9bcvt7YfQkbqu4avY
Y3Cugj/FbyFTbB6/1tR6U49n8a/wwpoRr2brwSDjwGa2h8FeX/wu9wY62X9w
X2J/625930YbzvXbVMIE9sPcLWOPCa+9K8kDuUyyLsPLEOsm8z7R/qx+boCt
449mWGf5nbXge2ymj+35Zts37ybZDvCXj9qfdbb9tbc86/t14gj2L8QszAu5
LmNdpB34hp6Otq5ihyNtlwNsW0/bjpHBmraPDvZDrAt3GlmPv5MwDBl29DqB
M/gQzgY5fwQH6ndJsBdkyTN9sLac6YBRJxjfsUfky14Z2XMnsmcl3z/Z2I19
1e9C4hPYQ7KnxOdzNsnY2Di+5zT7Y85uOUfFLtg31u+FUXKueFWls9Ep1m1i
cPbinDty74dzSM6YuXvGnpMzI87XOAdHVsSO7BvABfYxHSy3kZ5bPQeBzqAn
8MXeirNeznwvsf2eb16ICTlDZz+KT2N+7IGW8fjTrAOMQ7+DrL9N7auw+wmW
7YFeP+TJHZrWlWwe2yeW4gyDs4w5tmH8MP6YO0LYBfeJOE/k/IyzM84ZuXfE
/SPkw/nsY9bP/SwveN/OvoZ7X/Sxh/mDH+wYXlpV4gdeB9tGOasgduYM41LL
6BL7skMsc/K+rSKW5dIyPO1rHlkzYm/26/hafBNzot0xWd/hX8fbF+zjNeU7
xhzhcYf7N94jI/AambFnGmm7QV6cUSI/bACbwrbAeeQ5xnaIPeJ30WXWAJsh
FhlmebFuu1s2U/weP8F5EZiJr+lrPo+1Thxv2SL3qV4HsIl9CvgEHnHXCBtl
nUd7reH7RM8DWaMrE+xXB5kHZMaeY2fb+GT3N9EyRZ7MZ5Tnx3zGen7EM1PM
P3vT14v2p2AB+z9ign6WCfMgfsH+sNtRltMulgv61Nht8WvYBLLBPu70mrP2
6APj48/wD8imnr9h3vgOfkNfWH9yr4M974lewznWqRFec3TgAOsudnCi543c
0H1sAN3d0LbQynqN/LC1yZZ9J+sa4/S1TpELIieELIl3iAewIeY0K+i0kNlv
WftLYjP8FncFwRTmhBzBLvCJPQO6g68nFgan8I/4e2Iy7B9+/lnbrH0bcqvH
j+gpecZetpsFlfhD1+ARX4NdkNPhN3Spl/3x/u6PsfFh4NuNXgt04m9jUT+v
63HW40nW2brPGGl9JCdxQsx9/aK7iUvHenUsuo8wIMr+RffQRkX5ddb+fmDU
L8y6V/ZP3sv3IJ+OslNRfnqXKC/IupNGrr1R0X2UkVF+lZWHGhz1m7LOMZAn
a85ajo7332bx9n7UP8zKQxwd9TlZ2DMm6t9l5SpOivo3WbmWmVFfvijHMDbK
77NyFVOj3rjo7sr4KH/MyrWcEvWfsnIq6NtO1g9sFL9P/DnGdrzIut3J/ol1
5N0c69sUY8Uw2xD2iB8BW/ErLUMOyxb/7yHqOxXdOW1YJEfyiJOi/DUrXzIx
6r9k5ScmRP3nrNwS/mi81/XkeP9DVu5nVtRXKrLbt6J8Neu88dCo35J17jQu
6v/NyuW8H+UbRXdt0GlianT8DvS2KLf3KG2L7gdchCyL8oAPI/uinNmfUf8j
KzdGHmGLor3tCjHHRVl50jbxrnVRniNH2b0o/3U39ll0V2Vj/FZR/LhafPtr
UX5jI2yzKN58LNpvWpT7mR31fYvyjndhD0V3YYZG+UJWHHVT1A8oOoduGn0O
KbKrQVE+kHVH4fKoP5SVY1s52vxp3t6Jcs2i89pro2xSdMZ5v/mAhyeiPKTo
PA857WlZ3RzlQUVnuvfgWz3Hs6P+l+Xzh/01cjsH31V0Z3vdIjmSA1oHXS06
z2yGPhedSa4Y3/1UdNd7pZr6pc/22EXRf4HIWf1QlPdZPtqsV7SnWYhsaspV
r40+FJ2PtajJVsljslalpvVqG/WeRfmuz6K8P+tMAlv8ssgeefdF0ftWUW5Z
lFtk/RcX6cCqXHquqZ87sY2iHCS52R5F+VnWfJHXfZVo+7PbrFV055P80xdZ
8kJWM9H9ovzpV0VzJtfVruiZOnm4r4tycejLc1k6c3bUb8+658I5OLk58nLY
xJG2C+zmoiLb4Rzgkyz9/KXIHzH3j4t0FP08C9lnnYuyUb24KL+9ON6dV3Qm
fiu6VpQDfjvqFxSdPyfk5Dbkpc8vyk1fFmXXohz0lVFeUZQLfjfK+Vnnu29F
eXjROfeCqDcvykkz78+y5s59g+FFZzunF9nzdM9pY9vd9ehm0Rk5etrZunps
lMcUnYFhW2sU2deysUZXZeV6r8NnFp1VPY0fLLqLcwc2V3S+Dg5sX4QFD2bZ
HnZ3b9RrRbn2z6O8LwtHsBt8BLaD/JLlg+95JMv/LBc8zLI9TiuSOzLHH+xm
n8BZwVNZ5xjY65NZNnsJ/qPoftNrUc7Iuod3XNTfzDovOzPql2Xdr5xTpHPo
G2v7d9ZY+JXnjdnXZK03fH7DvIvin9uydA59e7Po3AQfSx/nmmd04Z0sfXim
aM0Yl3w6eVVyqsj1mSzZsuaHed2PKPJN5MPR2Zvt80+N+spF9zLWClmtUdOd
TvLy3AXhXB7b6mW7WyrKW4rudIDtdxXhO+cR/YrOJF7P8nH4t7OifmfR//ga
MNeicxt04XbrA/nvZ4ty4EtHeWvRWqBH3axLrP+N1gHWamm3IR7ZoCgmYR6P
ey455vFE0T7w8Sy+4ZlY5p6ieAY7u8G2Ni3a3F30/4Zl4tvrbFMvZ+EEGIHd
zLftrF4UfxB7YNPziuz6yqg/V3T/Fl/bocjfYjcv23bAiheL8OKKaD+76F4u
dvCKbQG9e8m6B96+aX14JQu/we7pUX+76NxiXpbNY+/g0oIibGoYc5nrdZmb
hRngBfEOvpWYB9w4Nws73svy+/h83n1Q9L5FlAuLzlrAW3wQPg3Zf2r5YwfP
WCffQ9+KzoeezVp71r1L0ZkHa12ryZ6x5e2K9A/d+zLLd+A3wAF8PX5+B+Rp
DMJPtPc9ZmyIvQR2tG1RLEUcxbveRXtN4g6wEH8FnjSuCVPQ2dY1yeeNaNe2
pn3p1vG+TU17kU2KYl/mSGxCHEAMAI41qgnL4KuFedu8CIPBX7BxVeMasQn+
CF+0WVEMBPatUjQ3vm1XEx/HGIebGYvx8eglOkkcjeyQG7w3NP/YKLERdvo/
vbPVVw==
"]],
Polygon3DBox[CompressedData["
1:eJwtlldskFUcxb97LyPEgjEKCkZQChjxAcOI6IMPChjUGIZAcSQKaoyRIQ7c
A2ccEcUiS3ZZtpSpQFtAhoBly6jspVhAECigUNTfyenDyXfO/d99/+O7qd+g
HgNjlmUFoBbomLIsB9KWxhtClq1BfwKmYpufudOn6HnQKWAJ/SagS+ibwGz0
GPQ5bFWgEP4xGIktB2zA3gp9EN4CnIGfBEXwB8B27M+gTzP2cXAAvRu9Clsf
sBb+GZiNrQxMh0ewGNtZdA78AKhAr9Se2G9u8l73oG+GnwK5wXvoBL+OPtfC
B7BWc3FwDXoQeiX2j8As9C9gNPwDcIb5ysFS+Htgus4GlsDf1nraKyiDDwPT
4OtBCfwd3Sf8Z7AM/j6YAd8IvoR/DvJkZ/4Z8HFgPvoyeh17+kLnRzcE6+Ad
kt9mBbiMfXjy2GLsK+AfgpnwraAU/i4ogJeDZvAjoDu8G/ib8QfRvwbv6QT6
FXRf5huHXgAfmsx/BAvhr4JvtRY4Sv+X0E/CvwFH0EOS33KY/ENz09ZV9y+f
QrcHt8NvAXPhLyfzJuAH+OtgQrAP6G1fA+OD3/h3+BawPfMc+5n7eb0Btl5g
OXobegm8bvDeDtHWP3iPndFNeO8HaRsavbfnaDuReY/z4JW0XY9uDeagu4CG
8DrgPPxGsJS+/6DPwnfSvwv6N9CYucuT72IIWAx/A0yE/wTqw98EkxRr4FT0
nrQXnXkL36boXfC2YCZ6JHo93+Os1wD+FpgsX5DP0J6P/j7Yp++Gt2APg2lX
oO/Tl7am2B6SP6P3RvNmGo+tsc4Avx/sh++Ojk21HU72GfmK9rQPfrXuP/hO
N9O3An0bvA2oSp5Tc90HrmIvd6BHB9/ZXt1/cmzL589Ex5BiR2dqA78A7pJ/
ap+KNb7HOPslcBG+irZtwTGay/xPy5+Cz/yCzg/2ojvojWpiWrGsmBgVnQMU
+43Q56NjWrGsmD0XHcOKXcXMs8lj1LcTqGYPjyp+a97jKfk+aIetPTieHAPy
fZ1BsbUcbAqOsUXYeum8jI3Bb9sPDERPxlYVHbOKVeWMK5VLadscPMdOzRV9
12rT2CeSc7fmWJR8h7q71bQdgzdPzoX52Ack+4DevqdyaHSOUm5SDsuDl9FW
G14n+KyPJJ9VZy6Ar+HbIDhHqe9qUD94zCX5YnIufowxf0XvSXtRDPwLvxPk
ZI4xxaLGqK9iciE4ig7qS9sk9AiwDD1GMQR/WOfJvOaf0TlKuUk5Sb6yOLo2
yWdK4X30vipltE2Cl0Rz1aiV8L7KUdivQH+F7p38Njtom4VeEW1TjarWWuh6
wTVItWNtdG5WDTkZnSOVG5Wzxup+ks+imqpYbAn2B8ekalNrcDK4Rm2GFzPm
fOYzf4eeCjoGrzkCviPaF+dpTdaPtZzre9I+im+LzPnqj5rckR/8futr7mJP
9NvrTjait0b7bmdwa/Kcmkv/BFvRc6Jz3UVQL3kNza01lHsOR+c65aB26NqM
r4utkc6MbRqohFeA8dir0YXB/xCno3OkcqNyYgW6GH1vcE5VbCknKhcqxjRX
UfS/huasxF4QXVvkM/2T/zn0r9ESHEJPia7dylHynfnRcSwfmhj95npr1RT5
wtzoXCOfGJx8Bu1dNaYIPS35rhQD+TUxrNhV/OXz7a78Bs8DF6Jrvmq9/hlU
y3uCwcE1XbW2R3Jf1dyLyTVNtaw3+Brejbbemed8Mbnmq9bv1ptq7uizykda
cfddaSvFVpQ51xyPjh3lnF2qLdG5uUwxr1oWHeuqmRvQhdH/Vvqn+w89PLoW
KodvQi+I/jfRGyn33pP876Qc/D/au3qk
"]]},
Annotation[#, "Charting`Private`Tag$3144#1"]& ]],
Lighting -> {{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
Opacity[0.7],
EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[
GraphicsGroup3DBox[
TagBox[{
Polygon3DBox[CompressedData["
1:eJxNm3f819MXx7/4vO99W9lb/LJbhFQK0VIipaGlkjYaKFRGZFY2LZXslRJ+
hOyyCdnZe++9fq/n97y+D78/zuPez/t73/eee+4553XuOe9vnYGjDhu5elVV
Va2iqmoNtbukqqqrRLeK+ujZn5Wqqj9E2+l3e9F+6m/p9hBRa9GeosaiA0S7
i/YQdRS1EO0j2ltUW+9sIzpFdL6okZ79JqoraiY6SNTc77T3M947Db5Ep6p/
htq1RJPUn6S2FJ0OP2ovVDtHdLSor+gIUQfRtlpre9GB6jf1vH+J+oiGi8aK
NtTfT1B7qKilaH/zUk9UXzRA1EV0mGhzjd1M1LsSMkJWQ9X/oIgx/UX9PFdn
0RDR4aKeleDh9BS/4a+Txw0W9fC4QaLu/r2zxh4i6qp+HfYg2s0ygq8Gli9t
Q+YWD0l0WiXOZ9dKjO/sPXE+ozRHJ9EbReynnvoHew3Oso3ofNEE0UTRExp3
otqzRC+of4todZ/B8ZWQG2dwnH+fJBrhc1hWRJ/3X1V/uegf9Z9Xe4zak9mH
1j40hYxHiY4UDazEHsZ4Xs5+tH/D00iPbav3jhC9q/578K5+P9Gz6r8lWiU6
1mcywPvaWGufp7aVz5MzY+8dUsh7V1HnFO81UvtiEf1TU5xJO9FGKXRmrPc8
2Oe8hcZeoPZK9ET9aWpniy5X/wjRZPUnF2FrZ6p/ptp1RGcgX7XrFSHn8fCl
+W82r+N9Hpvq91S1s0R7FrEX9nS22g099gTzMtS63RCdSSHHQeYVOR7l3x8W
IR/O42yfFWf4lJ4/KbpUlPV+Eg1SfwPR+kWMHai2oahBEXqzUwo5ouvYMPZ3
FfLVsz1Fd6l/g+hG0Z2i6/37H70/T+2tnInGNRbdov5i0bWi60TXwLOeX6H2
ZssYe79d7y4SbS+63eN45zH9vlf0ayV80gG2gcbW8Rq/1dq6sI3GXlIJPpaJ
+mitfURLiphzkehu9f8rmo8tiB4RPSqaqWd1RJep/1/v7ybRjno23fzcK+ql
+ZqLLk7x7grRc6IHRQ+JlrOG6B63PTVub3ytqEWKcdehY6L6ootSrPeYaKl+
P6D2GeajLzpStInGrC1aKwVPsy27evrbzqIZPoOZ1quLc8hqD+9jlt/ppveb
peCrt9r9sQ31n/Te7hN9VsQZLqmEj59gP4/fxw/jz2t8Fj7sA9FLopWcgd7d
tQi7/UL0ZiXs9/1KrPOSW+z7ANHn6r/hca+JnjAv+IM29gmf+m+viz4Rverf
t+nvZ6f4vaPajimwbAe1B6XQW/w7mASOLdCzfVOscVERY8GPrTgDtXOtR/gR
fMpHopdFr3AeGvO0aLH9bSuP5W/fSdaPmz94f8o6ir+uwSJacALcwqbAkNNS
+CN80R/W570qId8OHofvBwP2dQt2bOd9guPsGxw/2GNaeK/sGXtGN9+xfJ+2
Xq1yi3/9vRL4Daa21jwtU+hyXfPRzOe6zHoNBu9g2db3es2tNws4k/9b402f
52s+M7BquGUOHtYzXuHTwS4wpIt/48vwP5wjsQyxAFg0wrIDY/Hjp9tPHe53
8PH4QLAXv4h/HG98v060VwrfhF/6FJ+t/uwUeIifPqcSvhO/eJbXGOy55mnc
paJh5g3fXBMXDPG4g6xzvbxPdLKu6IYinnM2D9kfgx1gIFgILoBXjYxZ4NXJ
3gtzgwdgFNhzrMYck4In8GCM1z7ev8FYsPaUSmDc+cYmsG6S56qy7z/Jekkc
09d62s+/PynCh59gng41rrLeaV7jKK8/2uszf00ccbrH4XfwWfghfNbN/j3L
z/BbY7TWaNF/RCPBatG2oq9FX4pqi7qDT+AYcYeon2izIuwXDCF2HCz+pqew
U2QKroKnWxdh39j5dPWPE+1QRMwJT+A9vuso+69Jlhdy20j2/XQObO4haita
U3QxOJrCl+xSBK7jf3upPQifXUQswf6JIYgl2DPYT3w0yuffU88PFK0r6irq
IPq+Ejj1i20KvMK+wOEmKbCY3zMtPzAYHACjwCrwppv9/KwisG27IrAMHAR/
wadrNWZaCowFIxf6TMAjcP5pYyLrjrcszxUdpmftRd+h/2rbidY2hi8UXV0J
XsB+8LxpinVvN7/MXRM70N5RCT+KP3258m/cg64S9wxwnAZ+gFl9jB+9jV9g
F74Xf4OP72U//3kRfou9gp2MwVeBw4cbi+EJ3KYPJk8TLa0EthMfrPDfWhrD
0WvuLOj2wWr3sk4u8NzwMke/p6C/6l+mdy4X/e25znLsAM7jg/GX4DzYj4/G
1670Xu8wHw9XIj6YnCJe2EJ0o8Z/VQl9BWtXWXbg1od+H2yuwV5a4ut2ere/
6GPLDNzCR7M2PrsGj5mzBp9pP+NZEXjMO8RVxDbwi54tN+/we2GKmIo7X1GE
L2L/yAP/CW5fYuzev4z9LjcfzF+D8+dqzDkpZM2dCJ/TEb8kqoj+LsKX4cda
F3EnBGN6q9+oCGz7Se19ov3BH9Ewx5PNbWeXmDd8O2d1G2cp+lbPOqvd23oO
RjIfmHiJ7Z/1wG7u120rgeVgBvgDVsEXePKReQTDuhXBK3co4sgeKXTm6CL4
BpMHFKFL2H4br8H8uxfRJ04Yxzt6dwSy1vM7RD/o2Si1LUQ/VsJe8VvYbCe1
TW2n+Dfu4OjyIWqb2Ked6jPjvLqo3U+0kWW8mjHjVrV7FHF/xD+u4/m+qcS9
gjEQ9wswlPe+8bPv1b9HVFc0VTTYPm6Y9jCUu4V+Py66zPI5VG0z+8aPzQO8
fCV6q4i7Fjhay7xgg8iziTG+uzEfmyb2x+b6q79vEXcNdIA7w8WV0AVwBn3g
zMEM8GJcirsf2DvM7+HfsHt8es1dbnP7evYAtuBjORdw7FL1r8X3ivYpAsc6
WofBii6Wcw+fBXjR3b5lqs8UbORuMlvtWMsQv4x/5i7DmdfxWsyxhecB38A5
MBL+eM4z4kPufc+rf0ARv4kVwTHwbEolfDi4wt2tZRF98IX4Hr+Dz5llXuAB
Hw/G8F4/2+kUz9nYewFjdyvi/c29R/jknMHymhwQfTC7sWXFu+jjjpbtrp4H
PzVD7fGinUQnFpHzwlawV/xAXdtyB591F8t9unWsvc+aexl+Ahwc7bO6zDJu
4f6x7iPnntZPeJ5QxF0aWYKJ2NoFln1Tj3m3iLsu+vejaITXQ67Id4bP+gqf
N7mXN4vwJavUjpYuHieaWIQciVnW8t2QewdxzX6WD3d/7Ag/0cvzT/f57Oc+
69bz+W7lvSAH8H1v98F2fMSaPquDfV5t3Qf78C0Heo+Mbee9M0dny5zcEX4P
/8x7bT1PE8/P+A4e/5314VDzgM428RhipOaecxv3sdmtzTPPf1Z7stc70Pyt
bT1qY11q7/nX9fl0Mv/k1a5OcV95TzS0CP2+UDSkiDt7O58x/LA+POE/OLPR
1pMOfg4/+A5yR/iqpn53bcuzu2V4VRHYgN9r4+fwCf89zRs41bcIHEUHR3kt
dLmXz7Sl+8SfpxSBKbtUAlfo/2YcwUb+sJx7Wg6n+nkTn0sPn3tb9zmvc4qw
bez6CvMA1qwnmdVKgV34ddrb7FuwC/zLue6/XYn8BvJcaowiLwVOnVeEbn+p
/q9FYPavxg7OArzAp2KHl9oeR5oHsH6Ex+NvP88R94LT4HUfy+Boy6SF5/nR
/op7BT65sfdInxwUfh+fP97n+5P6G6eI8WruV+f7fJHfiZYhOIBNXmHfRR8/
f0IR/oozauk+tt/aegu/P6g9qYgY73i/g3+rzp0Xgd3VeeIicLs6j15ErIQd
YMPfWd+2tK7CQxfrCXsaVwSecSYTfC69rTeNfA4TfRbsm/3vYx1BV4h7VhhL
wJHvisAmZF6dH7VskCV6w32NfCe5TmKT6hihiDiB+cdYtgOtK+ATsf9Ax//w
g37sZllzj8a2HlH7cBE4/7JbsP7KImI15Elsjw1jv4zn90Lb5WTPV53HLSKe
GeLxS607F1l/thYvW/ne195yxkdd6DkZj48bk8Jf40fIAZCz53zxg9g4unmt
5Tm3CPvn+fVF4FB9z3ed+cTu5xVh+8QR11rOPJvj55d5rn88hnsf/oH2Go8n
dptfRPxGzEiMgh194/4P1g30Hju61/2rPT+4cqn5vsbzL9LerkxxV/9Zv+9U
e7lxk7XnW4fB6RnGWfYJ9oGFt1sP7y/iXe6Q3OHJN3OnXyiakYJfYnNidHI1
i/wua/GcfPvuppNSPGPORR6zvfvs5VmvQ8xCTDXL8kF/Z7s/08/nW38esW5h
o1dar56xHJHhLL8LXpRa/6Yi7ml/FJED6mi9wveR111iveV8p7lPnPpcEXKH
T8ZxP+R+BnFP5M54n8fw7sOei3dfKcIGlppvcgdXec5na8ZZLgst7/stH87j
Ps/JHW6y73Hckbkvc49/yL+52xPr7pEifufex32V+zx3FnL0e/nc8XGbmN/7
rFfkLogLiZ1Xqn2piBzct0XcBU50jgP+wRHiH2pP2NaT1kNim9eL+E3/cY+h
/1oR8dOJ9hOMmWxZPeI9EksNTzE39wnqZGd5ztf8G51/3HOSk+H+8ov5utu8
3eP+fMu/+j5fCT24x88f8LnznBoIcgMXlnv+f4wh5AfxRegN+oP/v8F6VF2v
LCJfif4jM3KF5GY481c8/1LrAD6wJp9ILnFFEfW/1Yt/fSXjl1g3sIVbPOZk
91f6XF5yn+c1v1mXezK2dmSK/MAaKe7w3M2LFPe1hZ4ffQbnqUOB9aupvUB0
Zgpf8bTt6EXPz1p/FVHfgn/yOaunyBVgc9jeYs/9nOf/vYj6B7WP9XyunCk5
0+NT6EC1HqW4P3PW5FTRjz+LqAGTS37COoD+jPS4cZb/20X4UXwFMSLnjB96
13aE/FaY/3vNGzJeM8V+nreOVJ+Xxz7v8fD2qvW8QRn3XmSIz3vH586dH57g
5yu1z+S41zLHX5YVdZyqFLUcdPB76y1359+KuNNWx0pF2CN4BH7j97Br7JD4
hZiUeBrsQub4eDAC+6ykGMc8xF41/uMnz4n+/mAdRmcWmP+V1uEaHbvVOgmG
1PYab/s54xdbN/BjxFDkcImjhnpfdf33Z6w/7Jt6JHtHX8gxoTOc/zjrALmv
tXxvIt7DFxHTEseuL7q/EvEsY8jFoMucB2exaYpxjKGOgB6TY8QGTk5hE4zZ
5P9i4lqeB9mv65wCeAvubusz4WzW8/6/tpzfLwI/wI5f/Ly2beJP6yrrYxvw
QOy9jtck74Qdknt6ixx2jtiL+hR1Pep7G+jZkznWJV4hbuHOSc15ruj6FLV8
6jXUbYgziMeIy3o5d0WudYj6g1LcxagTUC8gvz0lRZ2KehW1HGo61EeIiaiP
UHcA48F66rYPGGvI0VKDJJ/T3LY7U3RDitw+tRJqJuDXUGMQNSRqSeTX8f3Y
CLYyKUWuu5n9Pfvj75wVvojaODXvrsYucr3kOMjP3uT3m3nP5C+RwSDzy365
B4y1XKhbEhOTO2YPz3pP+xtLyeMONd8/23fiC+HjFst8vM+Bez+8IjtqfjU1
QFq+CblZ/TnWaXwmMsEnd7JceZ9cPrUAagL4dzCcOAHboI7QxHzBX2/zC9/7
+R1yvMwxz3vmrNgDz8kB8y0N+WhsnHdaeo7m1o8lXvNwr0tuh7oSdTjitC7e
/1uWO3VIcvh9U9RVWaOP14RX9OHWyr/fMFH35Gzmpzgr8n3k/agzEadvadnR
8ptaKbH7Vn5ey3aKnYOvm1k/eYYNY+Pw0ct8Ue+kBkotdD2PqeX1DvP6O1uf
unmv7Jlc1tpeizm5P1KfQ2/A9i28Pt8rUWffxvxubZ63sKwZMzVFPRJdpB58
nmii50IXN7YOYcPUUo7y2YPD2B/1yw62Qe4nfbw/9rnEZ/uYdQedQJfREWxv
VgpbxLaWGSPhAz8BX+gg9okeYt/UF9HFQywPfAln+4rlil/h2ZG2n6+9B74B
IB+JLVGvoK7xivV/gveMP3vKPo19UX/l7G5M4XewG3wEfmiC94OedLM+Ypfo
5A6aY6sy8LOr+puW8f1EN/W3LiPvjB8+P4cvHql28zJq/Hupv2UZvvZOzblZ
GXXsnjniIWolS/X8P2XUZx5Qv04ZdZUetg/0eWuNP0bPr9Cz26iFpcind9Oz
bcrAsyPV9siBOV1tB9hldz2rXUbO6dEU8RRxFfaPH8EfEOvi3/Enr9s3cnb4
aWJE6u7oAuOJPfDHi425nGN13d5+ouY7DuyV2thztsGab17QX/SLbwj4ngif
2tZnzfcT+NmG1teh9oFg5gLvizWJ/alNnuF50dlbrc98h8jcdS1DxoJDnCl3
E3jCD1Pv4hsSsIF4G59LW3PvQRbDLRtiQORC3AdmHG39ph3u/g62f/RsnG0B
H9zXPneU5wGniDfBIuTKnqmj4wvmWj7YOXMhf3QfHcWXExcwN/EVOAFGVPyb
PjgBbhFr8E3DLbb1sSkwGDw61zLFv66wLLAnfO14/50YYqzHE29wv15kHeE+
NNy2gs1Qr8fe8DXYH3EgdfaFlivxIncZ5ucMifWopVFTAxeQKbK6wXv61jEm
tT2+43nVZ8sZEyNMtH3z7Qx1N76T4XuZHW3X+BTOhFgZXvE7+J/NPAffhfD9
DN/8UGfsa9nzTQN1Ic6U2Hm5Y1Pqs/DLHZbaLPXWzc3/PMuAuit1a3imLvmx
x57l8fA7wTy38rpnWxfQCWSAb5rrMwMviEmILS702nd6nclei7vLHOvYbNsC
/DNfdQxbxJ7hcap1h/HEkfMsD/bBmqzN78t9Jif5DMFzcB0ZI2u+r+Fcp/s5
mFqNrZXQjxnWs9qO19Eh8uXoP77jRp9fS2PCXPPBHtAB9oRds3dwGkxd4DNi
3iuth4O8Frz0tyxvsw7NtDwbWJbXWfbEtazLb775aeA1Gcu6fHeG38IvXGrZ
IItJ3h9n0sP6hhymeB+dfFb8vbv3ia9k33O8J2TOuXGGd3kc5zXNutDKe7zS
+0RuxN981wjft1mn+ntPDXxm7GMX/z7bsmjlsbxzjtfpbt2YYdkN8dyswffa
p3tP7S2jKT4rYhDiBXIP4D7+u+bbSVp8PX4M342famB+4A1/RwyB/wPbwXhi
H+4TK1PcKW5U/+UUud7H1X8pRW74JvVfS5EP5vuaV1PUAR5V//kUee6H1X82
RW77Qb7DSZHzPtJ+k3h/T+HeZynyuMs05oUUedxOxi18Br6VOIB7Cd+TgD3E
LHzXiD/ju2xiHGIdvitZaJwgbgIHwSRwlr/181jiP/w4Ppy5BnjuVj4jYpV7
xc97KXKcH/ls23mONp4HLCF2qf6uLgVeIktil4k+I+Ig/Hdbz9vX6xAjgoVg
CXiAzwcfODtwmhhulHjYoozvuvjG5rEUcddSYqcU9f7r1b8ix7cas9U+kQJr
uNehu9jnq9wTU9zTsZ2/ve/OmvuiHN8qkqsgZiJeOixHHoZ8zD0af0IO7LtZ
7fY58hnYCjZzoe2v2g5T+A3m5pwmex/Enz/miKWIo7jTH57j25Hv1d6fIj96
WBkxFvEV8kOO4BY+jBiF2A+fAMYSx3YpQ0bIh7jp8+LfvBRtzXeCn/p+jV8E
/4iN8P3gK7WPH3LEfK9bZsgOXNtW8x+fI48LbvDsE9spuMtc+Bbmhr8hxI85
vq+daR6JJb7KEXcScyLXrv7GF7+HDjeyryAWGGqcaejfDyKDMr4L4o6CH+NO
0kLPRuT4ju0h0fZlfOdzu57tn6P+tVJt2xz5ll+xjRzfc/ym/qIc9Zo7cvym
v0ztwR7zeQr7x/Y/Uf+6HHWM17GDHDnhj9W/1vMQ896QI+7dTbx8lyJf/kUK
f4GvQDcPyaGfi9W2yFG/I3f1d4qc3BL0MUeN4iW1DXPUZt9XOz1HHu03tQ1y
5F5qaa0FOWqNf6rdJkcd5WW1VTnqZNTrf06R62Ifn6bYy4vYco766Z1qZ+Wo
0/2udrccOTTyc1+myNH10Fq/eJ511P8hRR6Lu8KkHPnT/np+YBm5qTuw+zK+
OR6jv7cvIx4kBuxQRty8GB7KuAvvqTHtyshjNlG/YxlxzwFq9yjj7tm7jHcY
30v9lmV8Rz9Y4/cqI3/UTG2TMmKKPmpbl5EHbK8xp+boDyhjXubkvSE53uU+
9HCKO1Ej9b9Oof93oxcpcsBrlaFP6Ak8fpuDz8PL2AP891S/cY5c10BsKMcd
elAZ9k9ub48cMkI+o9VvVcb9kTvzKTn2+HaO8yM/OSgHZoAXt6hfP0csc5Xa
XbK/ZcyBQ2DQCvaUo5aZ1D6Qo85a5PCh+M83cvyN5+9gyzn+tyPnwC0waxXz
5agvonefWvd49oifv6m2zFHfXTMH/oF9PHvIz+uq/TjHdwHw9Zh5q+ADc9SD
qQfumEMOyPvZHDJfH9+e/X8qOfAYLH4hx994jp7el0NXd5GcnsvxrdYG3I9z
1FNfz7EeazXV86E5cppviF7MUeetpXZ5jtrqujmwGVyuxznnqJ0i748s8504
8xzfPsxTu3OO7w7m59gz+71GbaMc3zus0lodc9RJl6u/d45697vYd446ytU5
1mOtX9U2z5FTfUbjD8jx3cWcHPdn7s7PoUc5vnlYoX7r7O9ac/gpfNTV+v1a
jhrq+tp7nxy1wNXUnpsjrsbuv7Dtg71f58AXfNLn9kvs70PvEf/0mX0U+/vS
e8Smx1qHv1G7JEW94Z8Uvgm/tLHG9M1RP4avbc3bjnreO0feGl0YbX2Ym0PW
yHlYjlw3eSxqA+SOqWcdp+eHOOewSQ49QAfG57DPD+yr+pXhrzqrv1EZddHT
1O9bRm4aftctg2dssbd91ON6flCOb2bwJX3sW/CvJ+fwjexp5zL2dbr6R5RR
2+Dv+FDGDFfbNEetg32cmcMXnZHDh+I/wd5OZfifiTn8Hb4OrDg0B14MyJFn
Yb8noQ9l1BDqleFnyQ9zzjuVcda36/cmZfy/Xq8cfrni+TYsY06wa/cy8OtA
fEAZ+fvvU/h9fD64ukYZ2LpZDhvDvsC0X3LgGjr7s/WWHBIxHPFPffXXtv9H
T1crQ1c/ABdy1G2QcVmGnHmWy3iO7v9j/ceG1izDjvZW+0eOmg0ya2S5gef4
a3z1hBx+GZ9cOwdegpXY30+2QWyoqgw7Io74O0cs8bZ4+yv7+9EceoPOjMsR
h2EjddlTirrUOXo+tIxYbB+1d6Woq4O3q5eBuT+lwG+w+2hspYy6E/rLuXKm
g8vIr5Fb649tlVGLOy9HvEWsRTxSKSMmIa6cmiO2HKFnk3PEhdvlWIP5sS3q
QdgXuHRwGdg0Tf1RxiZ4f9SxZL8ce4D/4TliL+KuY9UeVca32rw3yO8eozH7
lVH7Zd+7+l3+L4E7G9/VgP/1rQNH5dB7dB75rVeGDE/MERMTD9fJMS9zDtOz
rmXkM2kbut8sh11hU9jTAOP7ETnsAVtANiPLkM+UHHv4wPEz8kJWx+bAYPLX
ZyO3MnIP5FCHea3/AdMhp6c=
"]],
Polygon3DBox[CompressedData["
1:eJwtlnnQV1Mcxn+9/e793tSb0or2kjFNGZXCKIRK1gxmzKiUUokMUyFmhBaE
0fKGaaGYQskgSTWGJkXRnrRqeVNvadGuVD6P5/fHM/d5zvnee773nO9yGvZ6
8t6BRblcbhbIg0ZZLncscrn1iFKwB74kzeX+hndOcrnq6O3ge/jroBP2R9Eb
mV8GGqOfQW+Cl4G9vPsb+n1sHwKT4BPBCeZKwMXwumAKc+PBSuw3o1+CXwCW
ozeiX4Sn4Fd4NxCM90bPgO+DV4FXBQfhV+LDo/Ce4Hf0VmxGynewGr0F/TK8
ErgZ2yL0c/ATIMnso3xbhG0D+DZwI3PTQRPmu6Mz5j6WPzw3oYfBs8T/WgIm
J/7nM/By4Fn4UVAfvgEUwaeCj+DlwVD4cdZswfcboT9JvMZu+CqeFdEdQQ+w
QGfAWDvtKfZD0bvg/4JL4GtBA/gEcCnzPdAVsF+J/gO8gy5Fj2K9kzyvwOYU
44+BO+CPhM+yInPfgMsYS3ieK6w9P7y2fFgI6mfe6+W8UyHznmmvmoEN+kb4
rC7S+cJrgjHwsfIHXhuMSxxTZdhXRg+HdwM/FHzQ2rtBV+Z28ryK5/Wst465
u+D/MHYhWItehX4FXjnxtxVjii2tcR3+PYGug93b2h/4OlBN+5L4LL7VtxOf
SVudHchhX4ZuBz8FjrL2wcS+3J63L/KpNt8fwrM7+h5QE30gzG8CNdCvFXxv
Dhqij4T3TjlTC90S3QHeFbTPHHOKtRmgvf4V1IcfAj/j1w7FSOKY+gleNbwX
I0A9eHXe/yBxjjXW/oXjYDZYz/urw7bKoWbwTuAkvC64AX4aNIEfBo/zrbmF
eJ7Au4vBeO0Zvi5VvsPPMDYwsY/1sB+n/GfuPPo0c1+g8/qWYhb9VTj2n0Ln
4F+DxvAhhXzcnjjedqaO3W2JY1cxnDE/M+zrEdUgxqajE50laMN873AslYCT
4RxRbhzD/iz2c9BN0YME+N28M4jxKcx/jp4dri2HVAMz74n2Io9NS3SvcK4s
ZP5d+LzCu3UUp8xvSZ0Lqknl0R9i0yVxzB1j7nzqf+2X+CybhHNVZ1oR+08V
L1qTbxYrXrDvK1vwWfgbere/agx8ls4vbxudzTXh2NUZ9eL9Palr8Tl0PvMe
6N9rJM6ltowVp84p7UUbxvYk3pMliq1wbilH++r7mfdW7ywAfRirpKf+Gd6a
+YcTjz0WzkHlXlXVMPi1mWujap5qQ//wnGpEa9X+cG0rBYOVS9i3wPd2oAt8
GGNnE9e4EfCejO1FT0QPyPzP+teS1L700z+k9mlFFHyGv6Eaxfyh8N4OBrei
X0C3yjsndRbKG52FzuQBMAq8lXrNgdiPVj1WbQKvwvtkzhXlzHD0m6r/6H3o
+QWf5etM7O/H9ulwrqjmKHc286yXOIcWKdbCvVE9rBS+gvkK8lU1VLU+3IvU
Q/+Er2G+GN4JfIeOcC9Vz1oMLw73QtXMhcqdcO6o564J56xytRY4jp4Mbkt8
J9gF/4X5QN+iGoz/x1PHonpKWTjHldvqSf/nr/JG9ZzntMR9UHpr6tyWze6C
zUH4WOVv3jW1I9+fk7o2quc1RzcM18YzqlnopalrgXzskPnOorvKaFAH/WPq
XC6Hngu/OtxbBjCWZq7xqu2qgYfDZ6SzUQ4ot2qEY0U51hT7WuFeNgnMg+9P
fddoBd4L1wTVgjHY/wXfmDrXVAN2pK5xOwv9fJl6UbhX6s6yP9yj1JtUg1Ub
D6S+B6hGam/0D/Jde3Q2vKdbC/un2JEPWlsx1I21ng/nknJme6HG6q6jO08R
fFr4rqeYORHuOeo16nmq/SPDuaR4vhz7XfD7EveYcuip4VjTnSWn3hO+uyhG
q6GrZN4r3bnuZO7BcC3VnfAcfEo4ltQjzqt3hGNbMRa82zl8V9Oa6jVfhmu5
es5/IXtqwg==
"]]},
Annotation[#, "Charting`Private`Tag$3144#2"]& ]],
Lighting -> {{"Ambient",
RGBColor[
0.19699838300000003`, 0.252204821, 0.33320940200000004`]}, {
"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 0, 2}]}}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
Opacity[0.7],
EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[
GraphicsGroup3DBox[
TagBox[{
Polygon3DBox[CompressedData["
1:eJxNm3X8VsUSxn+A8Z7dtbu7W+xubBTjYl8FCxQpA4O2Ca8oEkqoqFio2Khg
IyEmYgF2Byg2eufL87wf/GM+u2ffPbuzszPzzM6ed53TzmvRrnFDQ8M3izQ0
NIlyTGpouKrW0HBl0LVBlwRdGvRgtD8TdFHU96oaGjpE2T2oR9DR0X5MUM+o
dwzqFHRcPHcLuiLqvYM6B50f1Mu/83x1UJegi4MG+Df69vGclwVtFmPcxvxB
E6L+SNADUb89eNg3aJ+g/vHczfxc9y++bgy6vCYerq+JP+b4X9CxMc7xQf8N
utxztIyya9CFUb/JMkAWo4IGuu1E1pk09kNRDouyn3k+KZ67Bw217Gi7w+8N
qonPh+P34VGeEny/HeUn5u+Cmua9v6bfRwStGH0HR3mn37/KMhsSdI3nuKum
PkNMp8Y7vYJODuptXj6I8o2gMVG/ryaemePeoFv8fEL83iNJNlOCt4OCXor6
tCiPCHol6isn7cMzQU+ZV8YcVYnHh4P+qcTTI0Gnsf9JzxODngwaF/RE0D2e
/7Gg0UF3Bz0d1Dr6n5k09+Pue3o8X+m5b4zxuwY1r7R/J5jnGfH8TtBY1hvl
+0E7BJ0dv79XiZ+XPR58vBD0qOc/A51P6jM1+h5aqe84y4t1Mu7t1oXX4vcW
QZOi/mqUh1da38woPwyaEPV5UX4TdEDQc+xbjP+133nKa30j6Hnz8npN/Z43
f/d67kvinRMq9X09yqODJte0H+M81qox9nh4D/oY+QdNYfwoj63U3jLK/wS9
ip5G+RZ9g96M+nGV5t81xtkFPYnni5Br0KqVdPE6282tNdkS9vp70DdB3wb9
6PHQ5/PinXODZkd9zxijddTfRc5RvhflF0HbII8ofw06K9o/iPKroCbR3jjo
h2j7NeiXoLuDtk6a67egX4K+dP/zo71j0OLRZ/mgRYMWC1o9qb5c0Nzo92nQ
Z0Etov3IoM+jPsf88ttSSWPOC2pficefa/JV+Ax8xw9BH3mdwxg/aJGgFP3/
jLa/gmqV5PKH5dMvfm8X9FPU+0R5btC1QecF/RNty0T/xkFNgk5Fh83n35Yp
PLaN9lmW87Luu4jfuy7GGZE0H79/Zz6+N7/zXTLW80njlkpz94/n9kHPBT0e
lKM9sx7kE/Ul3a+hkn+8oSa/h+/ubbng9/Gl+NuZUT4ZtFb0X8+yZ0/WDlq6
0lpfsLxWDlqlUp15NwtajX0LWiLo+ujXyTp4ofWw/ht8bRG0RtCaQZtW+p33
e1k30dH/xvN07+9pUZ9R075fHONdELRitHUyLxsFrW9+V/B4NybZwQ1BlwRt
XMlXgxHgW7Ogw5L0Ez6WKKFH6KrXvE4lzBxj3MTH8z6Y1NQyYs6rgs4P2qBa
iGFgBRiLXGnbuxLugnMfxnidk2Taw3bJO2OTMAk8Ym3YBPq4VaU9gadtg9b1
3E9k4Qn4C86DJ+AKmEw7eAO+gmNgMZjcx/2QNfvCPiG/J9LCvV3FMsVvgCmn
JK0HzBlmHSI2AEvBWPBxoOcb5GdwCR94j+cDx+q4RwnmgaUjPC4YA+6BOew9
fmpkTRgClrxYk7/H1+JjV0jqg66g2z0dC8AHPh5fD36eagwd7DnuNH93uB94
8rLn6Of11TH1Pq8BerK2EPeeMF/gGbHH6Y5rpjm2aW28fjtpjHF+H57AoYdY
X/w2MslvwV93Yz64B949WxNuPeX3h/uZ8ZDZmNpC/H7a/cDdO5KewXgw9yxj
49nGx3crYe32lfB2vPkB9x+2fPZP8vv4+7Mr+Wn8++NRHx10sjERzHnN/IFn
E83HJD/Dx2Q/D4l3+gftVgljwTTmBufuJMZI2tc3PO7a+CFkG31vDrom6LBK
GD0rqFnQQfH7obbfW4KurRRXDEPng44MGh7UN+iooKeDngo6M2hc0JNBrdDz
oH5BxwQNifEmGb/AfzB/mvdvonUFTJtTCf/AOvAP7CEmBFvAZnwX2ESMCC7g
w/BlI/H5QSdWwlX8GX4N/wZugB+zvU7WCNaBf/wGVoEl4Oin+KagNkHtKsUE
YBu4DY6ANzyDHWAJfP3oZzB0j0qYBl+MX8fSOe63XyVdxUaI7x6z/aFDxITE
XGAtWAaO7Rn0GHGf8RIewU94qWMpfIBtYC24tKTxgPnAtTrWzXe/xWOcxYIa
VcI8MA4MJH4AP5vYz4Mfm5jw8/h94hLiCGII4ot+jjHgo2bfCj6BofCA33vO
GAp/PFeV/ORmngMcnR59niUeqMQ/bacVYVt9Pav7PeYHi+pxDeVy5ps4ADwF
c8CeNcwTuEZMtJXXie21d8yBzO6LPp0r4R5Y/aLxGsyvkvCrscde2gRurOW2
dfwMH2AIWHKpMXJj8wuO1bF0ffe7wzoxyuX+1o9vo7y4Upz8YlCHSrq1Jr6o
UgxP3+3d/zJ8dNCW5umpqI8LuiXo5qA/kUUSBtd5pb6VeQX/tgk6itjCcw0K
6hW0ayVsBp+IdbBJZIiebm2dwGYfi36PBh0Y9H3Qd0E7BXUxv/jeP9DLoF2C
egbtXCn2XSXGudrrAfOb/ktGTc0f/ok+2O+dHhf5gP3EAMQDY6O8rVJccFEl
nAaj/4ry50r2RBtn5L414fY+rt9A30r+EJ/E+QW/9FGUD3tdjH1hpfmwyZeT
xkTPiL02DypJNtaxks/hPc4XA9CJoIMr4SJnyRft+w79V9shbkef5/1L1n1j
zOFJ+o/MiflvYt2V/DBnL86lrxgfOBOBEU9E2aOSH94JHUk6/4AHnHHAGvat
pfkczH4HHe9nzkdTjSEn+L1P7Ivxc6wJP/mmfSN1/CKyxHfXz1TUeY9zKu++
bT+JH8cPd6tUx5+Pj/KKSv783qDrK8mTteLT3/G6wBnOUOjSGa6jU6dbr1g3
eDDD6wIj8OHPuj/nmb1CHjskYTL6CY69X5Pun+X6Z8YScAVbAh9m1sQX5yLO
RJ9V4vsc835utfB8Qv07l+e5/lwlPtpb3m09JraHvYMj+HvaGaN3JR6JGWrB
7xeWSVu/z1yjrWPsBb4Mn7ZSJd+DXWFT9wdd4OfzXW9quXa3rDinY1/P2rbQ
eeLu5yvlmC7yXnXzXpzkedlrzl0dkvwlORJyAdgT8cZl7nOK6+gAMUZX14eb
B8Yc5vGnW9e6uk4M3cnrutJ1zinEHT2rhWfqntYBYpNe3sezXEeGxE69XX/G
MpzpPWL/OKePdB3ZTqyEE8xJbNPDsnrFMuW8gj32c/sWxKCVfBa2f43Xjp+5
1uslb9PH6xpYKaZi7a09PmvBD/c3n+96vAn2w6wHLBuU9A6+m71oZx1gHuY7
zPPDx8HeqwHmh/abXT8ixmkedGCS7Aean8s8DjzDL3w3N7/0OdLrZv1HmUfW
jq8+3OdBzoXYH3Z4vOU92LJlfUO8xt6u72ZduMnypA+y2NXrPLTIVtjPp9ze
1bxNt/0O8pjgAb57L4853Hyyt+zxieZ/hOfq6z7v2MZvrWSnPdznGOvmMK/9
MssQOb9VyQ7r8r/FcuvqOnIDw8kPcjbAlrApcGiy612jfZJ5bl9TPE/+Cr/+
gd9/2L53tPf0nkp4NDGJV3wL/u3lSr6GNmz6oUp4/HYlfd6wkk5Tx5bQY/QZ
3zDd9e2C1i3CwWbma6x5A0PIjYEjxCQPVsJx7A+bxB+3ch19Bh+RKT4TbAR7
wJmWru/o8jHXWd/jXiPyf8LjEB89UikG+MTt7Av5sQeCPqxpznHm4UzrCX5g
QiVfzb6jh9g/OtnGdfzAV5Wwp6P1hP74BPbnee8RbYyFzz8g6YyH3F+qFLeh
n+jpS/V6pTwyWI9cX7Fskf1E7wU8cqZCn8Fw8qrgODJHJ/DF6yfp5PXWF/SG
mIaYhVwtMQW/v+x9x+7Qc2yNsytnQ86yGyed+Tnvg/Efei84y+Jr8DOcZ2e4
TixA/nSqYwHypMQD6OMH1qv7rFudvXfYw8nWI/TpAo/FXJxV3/e76HMbzvZJ
sSNnRErOicsmxcTUG0W9Iek8P79SuSCXbJ7RvUY+8zMmPFEHyzh7/u2xt/e6
iJ/Hep2c2Q+Od7+shK+cI8j5Ef/va8zlGTsgLmzmcrbrjP2N5+JcSS4UXZrp
Psh2vOeaYH6+tQ5/63enWTYz3X+W6xO8xlmuw8uX1k/Kr1zP5rOR5UeOHbn+
bXl9bV7gG/sjf0OeghzFfK8B/vHZ2BJ5gLlBvwXtXimO5pzW4DZ+w9ZmRf/J
SfH97/6N9tnRNtV5B87/5yTlA5q4L/a4p8dlTHIAv/jd1Xy+4JxHXEs8QSzB
GYZzF+c9bKOFf0d+88w/Y/zqccA0njmndHEfZM660SX0hL1q6/2aaz54Fx7/
MJ/vuT/ndUrep05M2NbnrfWSzhusifiNnDi68LXl/1xtoe7C595Jc9VjvUXM
A/M2sczYx++tG+sk8cMZal2f7+62vjeyXfAOOZQvzWcjr7Gx5V6PhRq7ju/E
h+Kn7026L5li/0ZcO9v6hm4tyIEnnY3RsZrPO9SXcR3fTlnzOWhpn11uT3p3
CZ+rv/D7vMt42XX6k8Ob53GKx8Qfr2/8AO/W8/mL5+K5FvP4jLOE56POeLcl
5QiRC3nCc7yOJc0P2Lhhks/43Dxh+6P8Lnxtl5SbIC/RNElH0U/2fK8iPWav
lkvaL9Y8yu8y9poef9Oku0zsbqOkvDM5Z3LY3F+QY2Bfd0zaZ2yIc81aljGy
Xsx+Ef8IHv7o39EN4i8wu5nb1nb7n9abNtZr9Als3MB9Trfuo5fYC2d86ujn
IUn+EV94T5KuTHHMtnPS+eRXv8P5lHMVORdi1N2j3CQpv7xb0lmUc+jmSffZ
5H1HWS7IhHvVzd2+bdLdGGOTx9g+KX8BVpOzA7uJj7gLnGz7XdR2xVmEszPn
EfZqW48DrzuYN/wZ+8qeckfW1HtKXoI4/mrLY2vLBL45R0/1GvfzOlnXPraf
m6K8PykHspN/ox283d1yIG7ibpHYiTML+WFimz5FMtnDsj7YtkKsTdxJzEmc
QbzBe+hU2yIcXj4J18H0u7xP7BH8rmqe4QmchUdyvcTm+HniROIYxuYscJDb
kf2BXnst9PSnLEzHv4ITxFvcaXDHwP3CgjmDZtjesB3sd4htjriU/Og1SXd/
I6zzlfuN9HtgVz0W4G6EHBR3ReS0yb2Tg+eegPsCsJuc34Codwl6NCmvyJ3i
cOsA9kJOlLwf+T9iIfL5YDK5V3Kw5GPR9XbW4fq3C+SKWCP3BNwtcTfCHQk8
3WZ7hHf2nD3l3nik21gvdwjcY6yU5KPhHyxAHvhrfNIo87iM+V3Cz/h4dBr8
HWz5cbblbgf85u6H+zdkw/cSrANc4rfLbUPwylqJ+3jmzEx+kjzl+0GvJ9nz
fdbHXSw7MJkcKXkn8r3kfbnL4g6Se0DuOvnWhW9cyIGRhyQfyTmdvDFzkDu+
xO/R71i/x33h08glKX9O/pE4mXtlvmE43nPc6HfJY5DLvdi6gfzglf1mXvYf
/zU6ST7kXeGX3C95ae7lyHnjY9ETfDu5ae7sWM/4pPs3dI1cD+dMeOKujr1H
t7lLQ+717zO4C+ttWznCdsId1TtJd1bMgW53Nh/wD1/w0d98MRd3Ep/ZJpDF
T45bGBMb5B4LXby5pjs59I+7r6PcnzGwpWv87glFZ+9mXveFXjv8Me7XjpGa
e3zy7495v7EX8Ar8Zc/J7y9u20LGS3n/V7H84IU7Qvi5zmuuvPfoGbqAfo7x
fi9h/e7gfUNvGLe314dcO1pO6B12/qjtnrML9oovu9wywPbfS7J5dPYK7w/v
sO5seTNf5fnf9X6z1wcUYSWY+XP4tgOzYqHP47d9izDgomhrVmTXS0a9S3aO
o8jmaT8/2v6Xhdntov2wIt+Jb97f/vnC+H2fonj9gqjvXXROY7wDzMNNUV6a
5f8vy8JWMLZr1A8uwolLon5QEXa1Kjpnoq/YOPJARudE24FF/v7YKHtnYVV/
68Lf3l9kjK/j+c0k/4hNc4/ewfaKz+MZO+ZOiHsN9Jv7SO5L+c4LH9nXdoM+
kpfCPvBPQ70X3OGsajtGp7iTx6fyPRbjwBv+pv69AyXv4EvxkUvZHzAGfBAn
cV/D/T+81b+hwI+xbvAD/7yUdbq9189a4QGfgp7hb/A711vHwC/wE18yNMmf
PGA/zp0wsRl+GZ+8o5+p40NfS/Kp+FB0A5zFj+PfiQfxtR/X+9bEaxvLCt0f
7bnwIXzfB1ag+/i7FrZx/AU5v0G2ffYI39rTPmSufcoM8wMm94v9P7zo3on4
iLMJMRJzX21e2Au+IeDbCe5W+HZirO0W++XbhL72DcRU3DVx57Tge4qkMyBn
PvxAY+8PciLmJPbkewi+i+AekLWxRvwqd1d8K8O91armeYafmYPf3/S+cZ/K
vSL3idxpcn/JPeZ8xxXT7QtOtI3Xv6OAf749ecDrYS3QePsDYjK+N+C7A75L
wh8uuJesKbfGnQ9zMzb+hlwb7eTriW0HhmxftS6ik/jLLb3f6AM6jnzBE3Bq
qvWLb0vgi+9JkT3fhSB/dIR3iR/xBYxNbIi8HrFudPFc3FuCO3wj0SpJLsgE
OXH3Tuw12Gvq4zW9a1lcaf/5ptfXyvvytvl+zes4xeN/YLlM91gDPf9My5vx
kPls68NQ7+UU7y06hW6xztfcxvidLbsBfmeqdWm69bmP18CYs7yXXby3r1pG
m3j/kBH7OdnvDLVOzLGOsFf03d26g7zQn2HWeXh73Xwh/2nWj02858ivg3V2
S8c971j2zP2G5dXK6xjqvUbviHu6eg2TzB/v1r9zedIyre9tF8sEPosxFxvC
161kP44NwD8yvtMyfcn7/ZMxEmwgXgYXwVRi3nHeN2x4vH0fcTFxKT6XWBN/
19r84cvwV/i2c73/yJOYFT+Ljyucg5Pyt5+Fz/krKXfzUdR/S8qDcladZBkc
Ef2XzzrDfRNl46wz1ndRLpqVY54UZZOsHOR51lV0Fn+64F40yW+C/cRo4Dx4
P8JrQMbYAHE9mAfeDbXs8e3kbsjhEGfPtc+iDR/JeQA/yfdq7BvfRBMDnuo5
iVmIXU72fp9iHSB+xS/jk4kzsDVsjjgOvLzZeENsCf58Eev7OymfRVxDfFP/
/ooYC3/2VfRpyMoNT4lysaxcbLusHMJGXge+dkEeKdoWycqvk7fcJyvv1xAy
fyYrT5Gjfk3Wd2ZPZt3zc16YGPWns+6k50S5VlbO/fzo/13StwNLR/3bpDvw
ZP+Ob1+AoTWdN7AX8jXkav6KMX5Jwsr94t0fk7596BT1a7Owacmof5P0PcW0
aNs9K6fCuhb1Hu0Qfe7LsscBUT836/vLWVH+mnSX/knU/0jKi4+xzbGHu0b/
G7LO+ktFvVNWTrFj1B/P+iaRHE/HrO9O2Ldutlv0Dv0jRsK3gHnoMj6qwbqJ
TwPb77H9goHY1xu2I+Ic7BJ58A77dp6/O5zi9+6yb2BszodXxO+XZ8Xz3MFx
98Q91ybRNjPrXmFX9qgoH/xG1M/OssG3ojwz6x5kw/h9SFYeLUe5YlHuaFns
LysHQwzbpiiuOSrqFxblQsi93JGVfyEmvTMrj3JsVoxLHmKLKNfPur9rHeUa
RfkZ9vysrH2fEeUqWfmPL6P9/ixfip6+Yl19NcrVsu6TTqNedGfXij0puutZ
McsG0P9Nom2NrBzevlE2KrrbPD3qaxbd9Zwc9ZWK7pJWyPIp+JM+UZ5V9P1T
X9ZUlFsmdjvH8XPPon706VXUjz7do35q0bei/Yv0hlzSdVlxObHwx/jdou9o
9siK3Ynbu0TbkVm5ruMYr+je5+t4vtVz/SdLvsj2qvi9ddEenRptqxblgg6P
+idJ34E2Z6+L/yeRZavY6aCody7KP3TDXoq+fWgZ7csU5QbnxXMb7931WWcY
zi83Zdknttk96rdn5emY84yieQegw0U5tkFRdijKdWFn7Yts7dIi/uDthZhj
TfuTjaN8P+vO7DXONVnx0fLsVVZ+coWoH5KVt2Ts0VnjvxPl+Kw7OGQ8MEvO
6OycJL0lL5ucm928CJ+wi52K5IJMJsNn1j3z5llYteC7HMqsO7RDivaVPf0T
35x1n/t21v6xd5tm+SD8z+9gQda98PykPWO/Pozy5azvmH6NcrOse7t/knQd
PWettaL1NsrSe3SevrPdf/Es/Ua394uycdGd8wtRPyDrHvtFfEbW/Tb7cIz9
Hnt1dNZ+vZllG9jFbkX3XvhzeF+5iP9fsnwNfoZ1r1L8f5MoP8i642SvFi/a
r/WLzrecbUuU72b9b2O5rPWzdvb8Pe87Mq6K5LxllBtm5SOfy1ob63o+yv2z
/N+ErLMx5+Jns2wee8f/7ZblA7+P8h58StJ7TYrenZflm/BLnPUXKzrv47em
W/+R3yJFMkR+ixbJEGwcaR3rUWTb1PGpFxT51S2zsAfc2S4Ls8FrMHN32yN5
2geycrXgD74VDAIHmhZhwcrodda9x0nRtnFRrpUz/Ub2S1vF759mffv1e9Yz
9e9jvD2KvknbIto+zvoW58RouyorXwXecibEro/IsgdsgTPGjs5BX501N/N+
Gs/bFX33TbywfVHMcGMRHoPFP4BrRd8TbpsV0xDP/JbFBzwcg78pypmTI+mQ
5Wewv52LbBC82qAIs5DrepbtXtE+P+uOET39O+uuphcyLsqXH4VfLDo/0ca9
Be09smLNu+x75tj/EBP9kxUXgbHkzsDZ46JsWZQTbxFlz6z8/jZFeRxyONcW
+Rfuf8Dbze1bVs/CJPBo66w4mBh4mSjbZt3PfxRjbVv0H0D2eevi792KdBe9
3SzqmxbdHeGbwVf08w9klvV9AFj6QxaeMvZWReNvlGVL2BF9P3d/4rXdbOPN
o2yadXfySJRDjV/k9ckfsu/o6Q1FurpDVoxOfD4mK/Yi7no46kOK4qUbszAA
//xn1HfM+lbgwaxzF2euh7LyXJzZxkZ9cNE3wf2KZIo8782SBXLg977uMxfd
y/oW4Ywo1ym6v4LHi8wnv3/tPuz/yUX3KJ2z1ska986aj7nuztJ7zpHEfayH
tbTIwmkwGtn0t3yQ2ZeW23JFOAqGjsiKCYgHbsuKFYgTiJuuKIqdhmdhMPiL
PJj7VcdTVxbFVPgY/Au+BbztXYS5O2WdizgTDY3y4qI7rVH4pKI7M+I4YgXi
hJvxu0V3WsQUxDHEFf2j3rUon8X+fOs9GoZfte3fkoXZ4PX/AZNjTWU=
"]],
Polygon3DBox[CompressedData["
1:eJwtlnuQT2Ucxo/7nvOewtpYLLXKkpS7tdb9Flp3IqSm5NKkpoZGtnRD0QUZ
le6TWdVQpGlqEiMRxp3uU02jTagpte7XPs88vz+eOc/zft/Led/zfZ/vyb/j
vuH3Vo6iqAxUBRdDFD0JeidRdCiOomM8fwd94X3AT8Sagy3wr8BVaRT1RJ+H
X02/zvATYCy6HLQgPhrdmFgBqI5ugl5H7E6wAR7ALHgtnv+AmaCYvqtpS+jf
DV0BPw6qoSuhR8GfB0fhHcHN8P1gO/wKMBo+BlQwTw/0GfjPWVF0BH0UVEWf
RO8jVge8g+4HdsFHgPr06YDOZb1N6Gfgg0Bv9OXoV+HX06ey3h10SfwO9Yh/
gV4AHwhO034SvRNeAs6jT6N3w4eCs+hT6F3wwSCCnwV74SNBdfg5cAA+Dkxl
/pogH56tM2H8seC9FoIOxF5Cr2BvL4M6ic+4JtiD7qr3B3Xo2wR0hy8L5m3A
APgk0JRxd2lNnQ99Outb0/YteiOYg+4CioidSMwXaj7lAuiqvYMFqXNEubES
nZ96Ts2lNW7V96Ltbr0Puob60rYePRmMh+ek5vnE28FD6r3NBzPhSzUHseag
PXqwzp/YMu0XHqU+h7+Z4yLPMzoL+HDQjVgt0AjeErSFr9b+GDsDTEAXow/r
ezL2MuV26twv4fkXuhO4JfY3ehi+lPZr6dsNfIBejN4Gv5/4++hF6D2J+7wC
/4i264jlgUnot9ClWd5DPfgqsD1zfiuDz1RcbU+jb0OXwAeAOfDXaasLb5F4
rflgTZbX1LtoTo3XO/2re544l5XzU4gvD84t3ZHZ6NvBesavIB7DaxAfT2xR
bG/Yjf4wtkfE8DywFv4QyCG+JMvnOYj2uYx/Q/ulvSUYBi8L5rlgMBhHnwa0
rWH8U/A34T1on4p+Ef4AbQ8y31yQldpz5DXKoUfQa4PPXmuM1F0FbeENwSj4
a6AdPA/8CYpTc92JHGJD0Pvg78a+28PRvRLf8SfkD+iDsdvmyIvQreB9wB/y
gdS8o/Yjnto7dScnwh8L/jZltBUod2jrh96k/epsU3/L/sqZ4DbxNmCM/BT0
TTzmUWI3oRczdqLuL3w6be0Te6b6zkZ3TzymNboAXANfRXxP8L3oBMbCpwV/
s0GZO9BKfcFW4m+DKbTPAIWJ73gXeBviR2LfkSro/4K9WB48LfWZ6Cz0DZul
XlNrac33lDvyi8R3+AflbrDXlYJGypXUtUM51TDYo+XNyrmmxPYGe1URaJ7a
8+X1yp++6Ozgs16hGoWuHbwXnUF99JfoZ9FDQAP0ZvRz8GGx785QdL3Ed+hz
5UNwrm5AN5IXBN8F1bwLwR4o71PNWafzoO9O+u4ADem/Jbh2jQDT0QuD75bW
0F3TGPXVndNYram1NEdl4ucSv6tq0iHldrCXqWZUJX4p8dzaQ+3UHirvlIdX
QV9IvDftuUIx8Cl8AvhFuQkGxK5Zl+TV4BN4f1AObx1cu+ShPZmvWXDuKkcq
oc8krpWqgb/qbgfXPtW4g/AbgmudauBh5WpwrdOd+1Fem/FK/WMMTJ3jym3l
cFP4d+Ae9MbY77Y/uPbpHbWXA8G1V3uqBv8++F9CHq1amJ24FqomXhn8D6Da
/7E8JHVNUi1SjmejdwTXtmLQOPU7aG15oLx3HvrGxB4s75qf8S55mP51vg7O
Tf3zqLZ9EzyXatww+j8e7DXylLrKP55J8D9RL3Ru8F3VHcvO1PNamXgp8SXB
3iZPK0R/hl6eZf/bnNnXrMyck4mXJ66NqhF56CLaf4v9T7U12MPl3fonOkWf
bfKY2Dkxi/4vBHuRPLVz6n8q/UvJAzXX8eB/O835Px5ZRUQ=
"]]},
Annotation[#, "Charting`Private`Tag$3144#3"]& ]],
Lighting -> {{"Ambient",
RGBColor[0.1830429875, 0.21424763749999998`, 0.0962851875]}, {
"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 0, 2}]}}]}, {
RGBColor[0.922526, 0.385626, 0.209179],
Opacity[0.7],
EdgeForm[None],
Specularity[
GrayLevel[1], 6],
StyleBox[
GraphicsGroup3DBox[
TagBox[
Polygon3DBox[CompressedData["
1:eJxNmHnYTmUQh9/SJu9TQhIJRSTSLiJKKhUh2aVIKkWL9o2kUGnhz0pK2rVR
Kjslpe2jVRFpX0SLpNTc17nPdfpjrnHOzDNzz3Pec56fr8GgEd2Hb18qlR7b
rlSqFH5zuVTaOZVKO4XNiH8/EDYl7Pa4nhR2c9gNYffHvafCnjH+YNiz+qlh
L4Q9HDYtbFbYI2HTw54z/lDY83ryni5nNem32PUztWmuX+QaYnPsz7rZYY+F
PR42IdhGhd0UNtc4c8zTw7tQDmq9FPao6+cbZ44FevJelJ28JTIx02t64p+E
LQt7M2xt2PthFV6/EvZq2Ovm0vMt7zHH2+WMdZ7rFjrrcuPE3jEO47t6GJda
jz14Q/+yvRe5lyv0sH8qE/0/lIkaH+mpscr4chmfdK8/8x68q2WCZaW12Y8P
9NT93Fzy1pj7XljteDa7hlUJ+8J7zL13XFc29m1cf+y+rrcHtb/Sw/6dcWb6
Xg/7T/aGcYO96fODceb4UU/e19ZjD/5x/c/aatf/7Rpiv8vBuk1h68K+DPtV
Dy/v0TflbI4/9fBulYNaG8vZb4X1W4wzx1968n6RnbxtMjHTv3rie8R+bRe2
fcr6r3C/KqWM6bewUspy6blDyu4xB+/6ZhnZ979k5P3/wzl2SVkcRp7PFhnp
udE9oPcm94DnutU9K6fMs6/VZIRr95TNAFfVlHnqVTcOI/tS4Tx7xvWOfpf2
Shk3XClltdmb3VLmqVvTXPJqmVvZudf7/Or4G4RxaFivsN5h9WViX+vag9r7
6mE/KuyAsMZhDcxlvoZhNVLG20hf09yasjfWw1XPevTbzxrsQRPjvBNNU/bO
wNvCNTA2C9tHxuZ6GA8xDtehemofKRMsB1mP9YeH7S/7EXryDrQ/vfkG8C3g
W9bSGWBsZR6MbeU4OKy19+hzjB7eo13HmmPNZab2csN7fNhhcnXQw3WCnjna
WI9+Hb3HMzlRD+NJenp2khWuU/Rwnaqn3mn6tnLt61539h683eWD62RrU/f0
sHbO0S3sOPO6uK6de81vjd/TGdZgpjOdAfa+8sHVyxno01vPHP2Mw9tfD+PZ
YV3tP0hW+gwwDstZenj7WI9+l7j+HK2b60d7f0TY+XKwbojcPcPO08N7gXHm
uFAP78Vy0P/csB6uH2acOS7SkzdYdvIulYmZLtMTzzUEZ3RP94/9ulIm3unL
zaXnVd5jjmtkhXFc2BgZrzZO7FrjMF6nh3Gk9diDK/T0uzFl2oh3BS2D9uDc
RN+8IGuuk9AZU2XnGo0z07we/i74TaB7ZhlDf3DWoyHQSTPsMcV6XE83zho0
zWzXoIf4NxqJ8xbtsFC+Ob7bue6ZXy4001y/k7y/vM/PuW6B8yzyOtdDS8qF
FlnqPIvNm2l8sbzz7YFW4Pz9QPbXrZXriZXlQve8Iy865C353vZ6gbO9K9P7
Xi+xxgrnZN2bMlWYl+ukCr9xxJeVC230odfoDXQJOoLzmXM6P/s3yYKm+Mwa
n7oG7tXGYOJMX2NP1q+Te415MK01r8L4WtlXWXe5fVY533pr5TppfbnQOj/I
gcb4tlxopu9k+sm8ebLmGu9nY3CgHza4F1/b42PrfSP7BtfAutE1fPea+Rta
5z5tlO+3/+0d2gANQC10xx/lQj9tLhfaaItMnPt/2wP98K9zbjUPjm3m5Zpp
mzNvsS73OH9z7YDn+/yjtbdq6AT0EUzoCrQIdcnlm55rI3QGM6Ff0DG5BmI9
c3KPOelNLvoEVmqznn1hD5gHHcFZvL/7gsZAJ+TaomEq9BMzwFXTOD2quYYe
exmjB2d6Lbl5NnXkrmUeLLXNq2K8tvNUt+6O9qnhftW1Vq6T6qZC9zSSAx1S
3/X7eZ3rIfL4TvG+8f7D0sQYv7Pf/a0wZz17VLVePfn4PuWa5UDX8z0em7Lv
MWs419EMfN85A/jec4Zztp7kXqM3DrNuC9fk2uhwWdEYR9qnlTUaee8IuVua
18R4S3kPsW6u25qlQqsRyzVT61RooFwT4Y+TCV3RNhXaqEMqdE+ug/Ad7dHG
us1d10bejq5vas9WWif3JddJ6AR0BOdz/1RoKfLQN2iKLqnQUqfKipboKh9n
ene5OLPPdKbu5sHRw7yOxnvI29m6x9qns7P2slauk3qlQusMkAON0TcVmqmf
TGibgT6PdtaG4xxjcKAfBjlnH3ucYr0+sg9yDaznuoZn2d66zDHEWK6ZhsiH
7si1D36YdfmNokX42wt/dxmdCg2UayI82o0zlzOe//vTA41yuTMQH5EKTXaB
8w/zerC5l6VC04w0hgbiPUE3oZ+ulOlqr3NtRB79R8kwxvvMgx7iPURr3Goe
OuQ869FvfMreU/Lu9PpG966Fe3m2e8Dzmhx2R9j1Ket1i/16yzfU+C3G73If
b7PueHvd47/vK2e/m6E+m4kp+1sSvHdba5zrR7ufo30uA32GY5z3Xtc+Uc56
0nu49yZ6f5w1x+jvdpbxzg8P2g59g94ZL+tYmSa4j5Oca7hst8s1QY5R1p/s
XvwH9BSx6g==
"]],
Annotation[#, "Charting`Private`Tag$3144#4"]& ]],
Lighting -> {{"Ambient",
RGBColor[0.30756835, 0.18676585, 0.147065275]}, {"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{0, 2, 2}]}, {"Directional",
GrayLevel[0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}, {}, {}, {}}, {{
GrayLevel[0],
Line3DBox[{274, 1, 264, 209, 16, 601, 31, 46, 60, 73, 86, 845}],
Line3DBox[{495, 2, 231, 274}],
Line3DBox[{4, 3, 495}],
Line3DBox[{4, 5, 6, 653}],
Line3DBox[{8, 7, 846}],
Line3DBox[{8, 499, 9, 599, 10, 11, 444, 778}],
Line3DBox[{13, 12, 1013}],
Line3DBox[{13, 14, 232, 271, 15, 275, 211, 30, 504, 45, 59, 72, 85,
99, 455, 781}],
Line3DBox[{457, 100, 114, 127, 140, 154, 606, 168, 228, 280, 183,
272, 237, 184, 533, 185, 186, 187, 188, 1051}],
Line3DBox[{126, 113, 468, 964}],
Line3DBox[{126, 139, 153, 167, 531, 182, 238, 273, 197, 281, 230,
196, 195, 194, 671}],
Line3DBox[{670, 189, 190, 534, 191, 609, 192, 193, 470, 1042}],
Line3DBox[{457, 782}]}, {
GrayLevel[0],
Line3DBox[{1405, 1064, 1387, 1274, 1079, 1663, 1094, 1109, 1123,
1136, 1149, 1285, 1942}],
Line3DBox[{1565, 1065, 1328, 1405}],
Line3DBox[{1067, 1066, 1565}],
Line3DBox[{1067, 1068, 1069, 1713}],
Line3DBox[{1071, 1070, 1936}],
Line3DBox[{1071, 1569, 1072, 1661, 1073, 1074, 1530, 1874}],
Line3DBox[{1076, 1075, 2111}],
Line3DBox[{1076, 1077, 1329, 1399, 1078, 1406, 1276, 1093, 1574,
1108, 1122, 1135, 1148, 1162, 1331, 1759}],
Line3DBox[{1415, 1163, 1320, 1177, 1190, 1203, 1217, 1669, 1231,
1325, 1416, 1246, 1403, 1345, 1247, 1605, 1248, 1249, 1250, 1251,
2147}],
Line3DBox[{1322, 1176, 1432, 1318, 1946}],
Line3DBox[{1202, 1189, 1322}],
Line3DBox[{1202, 1216, 1230, 1603, 1245, 1346, 1404, 1260, 1417,
1327, 1259, 1258, 1257, 1728}],
Line3DBox[{1727, 1252, 1253, 1606, 1254, 1672, 1255, 1256, 1539,
2142}],
Line3DBox[{1754, 1303, 1415}]}, {
GrayLevel[0],
Line3DBox[{2506, 2160, 2483, 2369, 2175, 2739, 2190, 2205, 2219,
2232, 2245, 2379, 3005}],
Line3DBox[{2644, 2161, 2423, 2506}],
Line3DBox[{2163, 2162, 2644}],
Line3DBox[{2163, 2164, 2165, 2785}],
Line3DBox[{2167, 2166, 3000}],
Line3DBox[{2167, 2648, 2168, 2737, 2169, 2170, 2599, 2926}],
Line3DBox[{2172, 2171, 3169}],
Line3DBox[{2172, 2173, 2424, 2499, 2174, 2507, 2371, 2189, 2653,
2204, 2218, 2231, 2244, 2258, 2427, 2828}],
Line3DBox[{2516, 2259, 2414, 2273, 2286, 2299, 2313, 2745, 2327,
2420, 2517, 2342, 2504, 2439, 2343, 2684, 2344, 2345, 2346, 2347,
3213}],
Line3DBox[{2415, 2272, 2533, 2412, 3007}],
Line3DBox[{2298, 2285, 2415}],
Line3DBox[{2298, 2312, 2326, 2682, 2341, 2440, 2505, 2356, 2518,
2422, 2355, 2354, 2353, 2799}],
Line3DBox[{2798, 2348, 2349, 2685, 2350, 2748, 2351, 2352, 2613,
3206}],
Line3DBox[{2824, 2398, 2516}]}, {
GrayLevel[0],
Line3DBox[{3473, 3228, 3469, 3454, 3243, 3258, 3273, 3288, 3303,
3318, 3333, 3348, 3363, 3378, 3393, 3408, 3423, 3458, 3475, 3438,
3471, 3463, 3439, 3440, 3441, 3442, 3443, 3444, 3445, 3446, 3447,
3448, 3449, 3450, 3451, 3460, 3476, 3452, 3472, 3464, 3437, 3422,
3407, 3392, 3377, 3362, 3347, 3332, 3317, 3302, 3287, 3272, 3257,
3456, 3474, 3242, 3470, 3462, 3241, 3240, 3239, 3238, 3237, 3236,
3235, 3234, 3233, 3232, 3231, 3230, 3229, 3461,
3473}]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}}}, VertexNormals -> CompressedData["
1:eJx0XHk4ldvbJkMyT4WQVDI2GEvKEyJJmSpFmYdE5iEhGQqRqVTKEJJIFJVC
VihJYZuKTG0ybdnSHMW33nef/jnf+Z1/znXd17qe9ax7PcP9rP1K2sHL3HkR
ExPTRR4mJhb8/14kfP6tPxXuhL2+Ob2wH/ndihh43EaDg0Cxdwqgwmq1U5v5
emxQtqsQ62GMS3GPhp0PokKnpUCsUKAzOhxpWjjdSoMvlecWpMOooPQkL8R2
mwfa7Gb5Sf81Da7p6cVrxFLheNgFXu5lXkhSQ/gA63MaDFQLDRheooL1UvGs
0WpH1MNkcbG9igZVhiktkRIU0Nhb9bPsiBmq36FwX/EnHVRVE6+tBgpckOI3
z1H1Rot9j3SnfaHDU7WvAfVHKaDfkC7b8dAHJbSdfShMp4NeloN5WQQF5LZe
it9z1wOpKMd6N9HocL9TjqM0gQI8Gy/vW8vijDLdEgoPTtDBkFNN52ZQHZh9
FL95wu+ptnK3sZNR0TSk8XW752H8wY/QZyutB2sUGh+fIvCwA2oP3mH8lXGl
w9V9UzU3Xrw4aYjxqzXFSOREHVyU4ty7KGGqJqRBRscA422iESwhflTYvtVg
U9ir/aiF/cWjjHYaCLG/eH0E43s+T/Ab/7JFsh7B6+5g/OZUGnM1vpdgmfcF
j5ErGmnsjKvH/L9+et5k5Ukq7Fd+IcO/zgdZm2QNqrXQ4EJGZrw65nmgn633
ZUQASikwDvn6jAYmq+PR6mwqBL2TVJvQ8kKc9DmNzw/wvm6vbJxprTDw4V6k
VMJhlE93G4M/dJCl/f7jrIp58/faI8RxAh1QzjTl+kYHUfvb+ce8KGC068XB
D28CUWtU/3qZKTpI5KduEI2nAH3j9BmXBG+kanspJhrz6bhdfbfQRQpsrBm9
Rfd2QeuylNZajdNBMYHpahjmDccI87n0Lm2emNzB3ZifxT9P/vTFeNZOyRP0
pSM14rWtusYYP7wojdaCcf9FKcXTP7/U1DE/Hyd4/ulWLLIG85ylP8Dht+dz
zZGgj836GOeFyXVsvlRoD3M7drF8Hwoa4lqe3EGDRyX7P/Z6U8E7mndncIkt
sq7Ovre3kwYnrE37f2H8TZh/ov0WN1QRG8ClhvHNfA7PJjD/t95upx808EeO
fV8yUjD/2T5Bb+TOUOFTrrFeATUM2Zaqu3Q00EDad1j4/G0q+C/1uNB27yRq
37LrxdU7NFgs+FCW62orpGypQDJ3/ZCpzRJzk0XTYFrBqpKuSIEeWYsuo6BI
NHjz1Kl+zPNVvz8uX05hPu9LvKuhhaI6rpe+Czhuu7q28X6+QoFnF3ioZY6+
iHvWXyp/DN/XQHeOQiYF7mv19jj+cUEzFreNpTG+461JizbmzWKk8+6no+Pa
/RAnvxfz8yz3V+pqjOvsnKXlK07XTBRekTXBuMXdtb6NGL8glRq30uV3DbM3
t8wujDsYe9K3Yp6dQ27ySoZ9r2mQExrdgfG1XQ8nEjBvN3jFcoYSzNFirQMr
z2DeUo0fyvh4UqH5YGBwxc0jCD4cOULtokHGxnVPrDyoEC9tWv9bwQ1Vzobe
UXtLAztaESvHcSrs7TjN9ig5EH3/uZyz6A0NNOeuS5iEUIGHI+N1vG404gxT
HudspoGcYavChUoqZKzfogXScajgfLqoWB4NhloipWI3UaB85a4XR0YSkBn7
ebMWXB/4c0fM6zIo8MVOny3cNwJVTDTyT4zSYeFWofKl2xSgbdi/P0vdD7Ge
KxhdOUKHDsE7K6IKKPBTYfD8mIILmj6QG/QE42l+ay/0BNaBmtrWZv/WWW2d
0A89ZpiHoPoLuy9jfKbJLyXSY7ZmfT/s2EfkexZP/VvM50ZKLdWexopEbT+k
EXGrUrJl4zHM55L+2KgTL2drNq0vAD2MJwXXLFP2osIitkXn/M7uRZP6wSWu
mLfUo3w8E+5UWHK7v4G+6xA68HHIKAbztmY/rULXlQpMX6WLeRpdkOjKpRnR
72iw5EHjkjF7Ksyd94xSrg1Efxa9nRrsx3a+PggFZyoY1C9W8NWMQ4eWyZxf
0UsDXb+rPbcwn7LL727fWZ+OVBzb+ouu04BW2+VKOU2B1YK5r4IvpqFJ7vfd
QjivQ88dVil/TYEbVeOFujxRSCfraLjNe8ybWGN/Ry0FRO6nIU9ZXzRfsF1P
eogOT0oFnmthfhz2mfmbafDB81+G6ZYED7vPdJ0LqAMluYC7ea5c6O6LSS4b
jO9SGc1Swvy0aESWP6jnRRMfQsKIvNY6bFFUjnFJ3aCXVm5/ajTsulO2Y/zs
tXe/hXG8qSZtThF5rY9Urx54thLHT99mw8FKN9zX5t4OVKaYo2LVhbbP3ZgH
kZkdgQ5U2HHGxqwr3h71Kh0WuIH5aaoW2V21nwoKcgoidHk/5Dd4if/FCA2K
rETObNKhgtX+6yKX78Wh6cUcn3Z/pkFIbMroB3MqjLrG7oxkL0BIyGrLO2zn
7Yl17wa3tcHcekm0SuIqCvij+826hQ42NjpHPi5pg5qDoX2K6hEoQGIwk6ub
Dj1qrs2K3RQ4vvGDs8SsB9quKDazYpAOhX9Wuz7D/BwWamUC8TVQpmg2ZY3P
a2Iv+FXOrw6QNHvM/aOrEHcYaPtjPCss4KVccB0c0dLbZxYkjB4Lq+3einGX
HidOEYxL0r/t36E5V3Oq3/wzgT8rNF9nhfOOKt998le1BnIZrgm9inkbUq7+
sO0oFXb+uFE9VaGHSiGMZbKHBr+c7pb8tKHCgqFr6ugmC2TWL/hnYpAG4+uT
/et3U4F3zWX1hwYuaLTSSErvIw0mRJYtdxCnQv0Hhyu506fRlUKDXy2ck+C8
UXPwidd7mPsu2i4ZkYc+a26t7zk+CdvT1r5Ve/QGhLyeUj78qUALaQ8FBuqn
QMaE53aCWjvYKvz2nBpNRRR1iY1SxXRYZnxCaXh7G7A+lMmI/+KPpNf0JF+m
0EF3T+tupQkKLGiLBtK17dC1m9XGXX102CZ/P6vvZB1kb9vbESyrCY+eTYIS
5oHlfFeiq38dmFJOP0v+posGOPT3HsX46YHtK9hDcL5nHI+9qSaIGoMFhhUw
vvFg7d0gzOdV/16HtFUzNfdntT00/z+f8JfP9zlVJJ+5lkmXOB7pQbx9KMln
unEpyaelgPWir5ss4LyiAMmnZkUqyefm7LiTpQYuIFC897/4hL98PoizJvmM
ND/nhPkE+YQAkk+B2Lpugs8Kk1l+zCekG7YLEXyuuctaTPCZauozTR1NheH5
amWCT5HOWZLPe5F/FDZ88YeD+nUpBJ/zvZUknxkbVQu2gB00WV4m+exOLyH5
NOjhiYlT0ESN24ZIPlvyKSSfi+anLQO/64Jk9laST5vDDD63BzQ/69oiCK1X
+Uk+L+5g8PkmIiX8mMqMtkgPg8+uLb1kXgunilb9fqUPIUmWZF6nyu8k89pW
z3R3Y4o5uKb8+a+8hv+R1/A/8hr+5rXY1VAyr92N5MJwXkN5piaZ1wL1b8i8
nklrrZKQuApPA32+E3ktJqVG5nUe792n69UjIFL6BZnXkuxeZF4vUXVb4Jr1
AIFwWTKvzbPWkHnd86KxNEpsDTIEczKvOabW75PHeb1x3LRMznUV9B59uoXI
a75HjLxelHF+cbe/MIycYOQ1Tx0jrx8VUZTW6M9pn3jAyOt/9RH420ek3vGT
fYR9hYQ1ddchqJAZIfvIo6oxso98L0cOwo0ucEBSgOwjgxINZB85JrtLWbU2
EHyYOsg+kqh6l+wjVbbdTH6acaCtJkH2kUnhGrKPPBmwZjaoT4dVY+wDRB8Z
2H6M7CPFV05nn7qYBgv3lpF9RF5zJdlHOrbteryXJwq0636dIvqIw1wL2UcG
JzW+HZX1hdgDe8g+MhUkSPaR1IHKEp6VfGilmRHZR7bURJN9ZJbT+oxfMBf0
d9HIPsJ6ndFHRsaPbLSs4AWOnFCyj+Q4MfqIl7BzhLPzH+0MT0Yf+Zeegf+h
Z+Cvnpk3VSD1jNlasWAWRTeIPH+C1DPBlmaLCD0TvM/x0MPkQGjdWMD1H3oG
/uoZ76L3pJ5xOsFRvVU6DkSLy0k94+d5ntQzDx3oFodHEoBlTw6pZ/KYaaSe
0b8ryHvKNwL2cbeRemadZBmpZ3ZUwYXL6n7wQa2C1DOPGx6Qemaw0vNYq4IL
KISWkXqm+wBDz5xadzXPeGC25pcRQ88UUBh6pnOa1STNeVa7+QtDz2ydZ+iZ
ml1BTxLesULZohFSz0i8Y+iZQ4dVVz8sm9U+HczQM//S4fBXh+vsOUTq8B7n
Bl+bElvI35P/Xzoc/urwIDsnUof3eSroWBr4Q5P7D1KH70v3JnW4qKN4RhE1
DHZpKpI6PCd6lNTh63guj7feOwn6A3tIHS75i53U2+X6pw5hvQ2yvyJJvT1V
sMyV0Nse0sEW92ihoLXrJ0Nv/1Yk9XZO47qeWkdf8Kux+C+9DX/19sAwQ2+f
NVs4pG08XhO8n6G3f15l6O2BhGvHT2tOaydkMPT2UApDb4fv7bX+6f9bu1WL
obeRLkNva19ImeOO+q69XZSht5nfhZPzYxDnhevnXu2HRonn5Pxor/KcnB+X
b9x28tAvW9DPDPyv+RH+x/wIf+dHT6Hr5PzIlfF4fWNEALQcMyXnxyp6Ajk/
jtY69I9oeYHHzXlyfgxLaCLnxzCJQw6rEw5DkChjfozymSPnx7nspfrCHCcg
x/4qOT8a+yeT8+P+z14Pvr8JhISeInJ+PFh1hpwfBbmWp/smeMMG7VPk/JjM
vImcH7U5rnVOeLtA2vAGcn4cP8WYHzWvD9VLrnxTY+LNmB/1vjLmx61rPpd2
SI1o36xkzI/7uRnz48pVWR6LPn/R7hVkzI9FRxnz48NybmvvvZ+1pQIY8+O/
3kPg73tI6aJ28j3kgklHK3OPDUxKLPuv9xD4H+8h8Pc9JIZLn3wP4RP//oBj
mRfo0JeR7yH9VwXJ9xDPVRe/TVQ7AruhGfkesv17Evke8ku5y6LhiBmsrpQl
30NeKyeR7yEPPP2trqt6A7+l7X+9h8D/eA+Bv+8hj08z3kMen6PulmVxhqev
48n3kN3sjPeQUuev7dv1a2us2hjvIecEGO8hT+NG9Az2DGqfecV4DxEPZ7yH
3NHnM3dfPKW9i6eRfA/Rf8R4D0mPcpAbujylfb2K8R4iPmL76IhlK5yiLOW5
9u4i2u62c/0Q6zSsajDx+SxIgT3GTM+Y791ABiE806c/0yGmPZz+8SkFAsLz
e9PyXdFGia+DxrgvvDeS4VmG7V8P/P30rcRSKN1kaELYN/D7Y1PeSQElj+9x
b2sM0A6DpbL5uP9e5WW2JXDP2FrFbTUG8GtYnMQXuOu9iX2vqCb6s9y7ARIJ
81PEvluO55D7rq04vKCd7wpXeFXeE/uqX2DsG27l3DQothSVlTP2/de54O+5
qIscGjbguHK/5tafZWyFVrjxi67Feeq9wSRqHcafCvHVTc3vR6bnB2LlMG57
+WzMb8znb09O/5KTMzXnn6+Gndh+u5DFfQm8b/7B1LvuQZ9qosWGBYl9H587
uWg31xDYcdVPbdochZIyho/88aDBWABL3+A9XP/rdEZvfXdHlJ/sneYf6PBm
Y+K5M48pIC7hPMq6+Rjqm6m8tnuYDseOfH16LX0IDm8t/WQ+n4fuBbp4H1pE
g9BI1pSWDe3A8lXZd3tqEYr+Lan6LBfHiZ4mTQTrwBJjQy0tuhQs9IQnq2J/
aoQFtcKbKRDbKCwrtcgObWisz83A/f0AepE/2UYBFynnwVzVA4inITmfFeN1
W9RJO/FejjUibCtR2KcTpJ1nulKkHYeWVbMfme3Ak6mPtNPPYmX58AUFuLqm
8wy3OIFatUCII5UOL24LkP4nzXyx3T+fB7QgeS/Cf6Hk/mNp/q3w+zqH+O32
TLAOWjuoyjwNw0nHE9Mwz7etvuUEGC1G2UJpC0Q88+pEkHyCWcldjc1RIOgz
RfJpyepM3mMtpyFXtLEVxC5e+l/3CH/vUTqFcY+FBkp8OeEz2j2VjHvMeaLy
bA7j86Kto52P6NpC3w0MCPxVAn/3H2zn5me10RoOK1S62Y/zOq4zTg2M9Xys
SvULt+g1Ymw7yfVlKT9+D9EokM0/rujeXYja7xYue9lGB96GtZmtOE5UHv/Q
/yIhDi/WG58DvL7HaVHcPNbhmmzO1yYTpRC3vD9FGuOjQqeNqrB9Y0NuR8Wz
fKiuiC171//3B/76M7icEYeWnZ71IT6ftK/KMOLw8oZL7gTPAy5XvhW0Z6JC
nz6S59HwveR91ff72LtvcUL88b9PEvc14MVE+tPKy2V3M0MKulu8SX8qIl6S
ceJ8zulCkuoBaGC6SMaJK1tYgHNnM6xl+bo+uzwPxfnZ8KiJTsNhRdmGoqoW
OF7vk/aV/S5SbzuztnWBDhePU/zOsLWAscMlkbdHCxFnldbb5QLTYHjVOdC/
ngJdh59o+Y/bINauC5tmsT9VEguasfi8v3bcy21jPohCVGwFpvB5NTN0ernw
ed2tDzuZr/pUM756xV3ivLzPGfFz5JE6X7zuYnjpyYifm7bhJJ9Hg3jbvqXz
wf0AVpJPitaUXzXW7WsmEwP0a4Xhm8j9cQ1Crz4P+fAax//jpArNHdHCqFJ4
6S9inmIe5Vi7TLoFtsn+6lVtuAw+/V/kz4vgPjX5a1ECtv9h4+iBE6t+1fz0
Zj9E9MHoJ39I/zNo+VyDzAfhzbIjpP8XbzL8/9l78vQxsU/aheoM/9+OMR87
h+0ks/iNPhZlRuw5r10JO9xX4u89eEQBA3Ohqmk/ZzSWou7ujuvD4jOpulPY
jrdOVYyYvSCcq5YN0ib0zI6J4341FLDVPux9+YUDhBmOLL+J62ToPjkyDg0P
uzWo84ujhp69ZByGbbhA2iksHNzDd0gQPXkvR9oJdH2Y7oJx1o+lUvfVedGr
vcfsCD05USz+MAqfK771ndshtgNoVK/K8xM+17/4QX/5oTKd3pD3igIlr0Im
5JYcQg475+cHcPyI1DF4TjzzYdgxWhge8DF4XqAeIuMh1PUSlTJuAxXbTpHx
8G7oI3lf217/cZ17JozCwsvJ+1orQgkk4lBalIOaUZ4Hn0cQLxGHq8oUozix
/68sXedoZvSaPInb1QTPoQkbHD9g/0/dDW3o/2gJ1Azh5few/3cOxHwTw+vz
PnG9KpCd1rZIilL6j/Xo7/oFE8b6u5cO58eoTtcMRjHWt75ZW6OsPwQ7aKpn
A/tS0BUWi8OLdtCg8mt2tdq9IeClP7x9THoPOD34oC7+awI2ii0j14dl6x0M
6kuB6M9byPVu7RJpgVuH4Ak6eCthryZ6Hp7Af3k3nn+nJUj+r6z/wGTMdgBG
VJ6Q/J8oZJxXLPv5iqf2dO1GHsZ5P/k5aNZj/dwUJWjvuekcoq5ttuXDOrnr
brVIuimeiwt5PVZ+SEFDujUf+T7RYUTEYcNqSQqwFuy7n9p/CdHeNT2dw7qR
27n5mK9SHVhR+jNkNjkj/eZ+i7lirEM+LfQSfU081TT77nd3mPFnIvsat1Yc
2deopekh/JuPQW3jPbKv8V7sje3Ec+LPH25J1wTe1vB+3HyEmLu3+ztYpeB5
58SeH3GqOqzI4rlfCDHvNL7zSpHBeXF6z2P90HAW5KhyR5jQ7Qny4wIsea2g
MOygzaVyBlUWWixzwPWtJKo5lyOgFT6y9Ik3uZ5HklvsjIdZcH51QNTunBbY
fHmNvrdAInqVtHz7Ulx/enMVRl9+okD0tks5RR3nEfdY7bWxd3RYqWJPb2zF
fTNz6KhnzRXE8TLO+00/HRxdctcb2lDg+PrU2OYVmWiddRav1Ec6fGErLn/X
SwHLYI/0XP8TKHhfieSZATr8OmesZ4z7pkVqmMCDYm8UGFryIA3H/4/0ZV4q
OC94Os+zLZU5hoyft70awTjd0Gkg3A/zI2MmUML/Q5vtxkYxH0IP8+ucGca8
GYLSIdoDUVglt6TVCuN5G3M+LsX89J4tVzI5JAz92Xb5BD+Xz67eIyzcBptU
Xi3OU7WCxBS1VfQ3mP8r75qmpyggovFt6HelKXRKnzZS7qNDr+nHRZcGKMDp
f+ltyd59cP2+RqkR9n/rl+OphN7I7T8cuC21COzfnFIn9Eb7URrZ737X5Bvh
fgcXK1LIfvcWLX1B1P9PM3QxXP+hODBQlqj/YomIvK/DM34r+FTOQHW/Inlf
hvHz5H2d+p1R0eB6Hg6nJJP3FS0mScb/pbjvGs57NWH3KCP+zzWPSYJ9Cyw5
vNo1qyEV1X+cnT8tPA1pJj0XzeYp8Ong8+GGZz5I/ehYdn8PHWx5sibvUynQ
YWdXorfZFbE2xR0n7hGtPWak3UGBvfX1XfXVzmhr5pk+CtafiiIXCvp7KGA1
Xqez9KAdulN4hW0K81C9o/74KI6H479r367Ss0ZHWV/wGuH7+rpy3I3IizO6
pnZnNZ1hRHWvOZEXBmIlpD/hliZnJ5/5wPTXK6Q/Hk0MfxbNRz3V2ewKd1bH
k/50zqSR+4qprsnnPGgHWz9kkvuGjHuQfn4R75CsrnYGveJzpJ+HX79ceNpE
AXfngWYXDQfoMD1Nm8X+hD5h1BlP5z/yPtJ7UM5RRp0RflDpS/Tfn2kn4ruP
FoKapcQbov8KDCqQeTHA0v/YRyAR4vaykXkhu9d3BcFzctd49NWGVMjMil0g
eD7y2VVNAMfbl9V68wUruFGz1o52It4uflyaTswjx8IyO0/KcyEu8SOhRP8V
u3jny9tmKtBzdktnF3uikYRvWuOXaPCTr9jbbpQKj3llD7NbBCEdFmF5i7M0
ONpoiFyYh6DgUfecq7oiWFW0uij602Bzmqiyrnsd6D4UCDF1k0Q2y1q7n2D7
PgWBU7dw3dhv7xsmGb8RHYnJS7TAeNy4ok0q7i/K31fyD6cpoMy3PIIbMJ64
ON+rwuA97NNpvh0VWQu5m0/Np6lOwopOwaRp6yE4odnTlfykCr6/54otnp2A
grQSagMLBWrMf2hne6egyFM78mRn6cD8/TzZl7X6Dvwa93MG7RlNsi9Pqrpq
nC3Dc3fFk4PGAa5woeOF2HZcD7PlVngT+16ZFU/B+yK4ZbhA7Lv3cMB5Yl/f
gW15KU+q0MHXdWeIfR9Vy5L5G/pHNiRU1Qq5KG0l8xfxtpP5u/XTPYsTVaZo
b6o3mb/DcSNk/ppYCg4u7N2HpvYokPm7ZfAVWZc8nXk6Ev1PQEj+OFmXaiyB
rEu5XxSka4u9wWHLJbIutR4XIeuSZO1pESGZY0Ax6iDr0oBrClkn+YNnMjM7
zsO5pWEZ/1En4W+dTBW5vIGok0t1zls8X5EJ0Vke/ESdDD6oqBV0Deu94wGP
KPNxUFog4/5glA4+kc/JfiSw9OAnqQ8pMDvXQvajt4WuZD+auuQdiPsRPEjs
IvvR241Pybha98FKK7TYE14fFNhKxNURpftkXOVzLHJktgiCVRwrybiKPMeo
q1dnZ1jEJr7XpAgrk3X1tOt2sq6Krlcxelclim6wcZB1lbk7l6yrd9l3cW3f
KYyoAY5kXa0MRp2NON7Kq5hGVsRfqCk4aRhojnHh6ApzQbzeXn6OzWR+pma9
VmwjsX7z8zMW2zFe0rvy8DfruZrUblVx4j3qKa3I46t/HZjb3fvlKDdWU9nq
HuOI8TUFK/2asT9bv9xwP/mRCe0I4Mgm+qO9fA79EKJApVxOl1JhAmKqKm+s
wLromWiE6Cqs5yV5Em0UIlNR2OMOLXF8X/+KW/gbtw58F5XOaQyD+5r3ohfc
ChHL2MfHgecmwO0ss2gXrj/jwu7l5aY5sLpXjEkE3++RAAMyH38JN5vobVFE
Entek/mY8aSzzB6fK97yhGGXoySyyrj8nnjn+VjgaJJ6uA5qVosaFCVtRhxR
29YZ3MZ1fk2tbol3Haxk3RMy5LkFrf11SyUer9+mv7c04hgFDrBXm0eJRiMp
6YxDZ6bo0Cxs4rA4jAJ1fcvWW6rEoIIPRh8naXRIykuZoXlQ4Pb3iBDJxAS0
eIfs10YcV/Qkhq6YDs6K2Kj5Vnv2A0NXVD9g8GyQXKbGf3NM+4U/g+dZab8l
THj9p14xEZnj3HBc/vByAn++7DTpT/gBdCtYNBqe/f5F+rPcM+iH0ToKmBkK
H1BaHgP59txcfjgOK7uKLswutELv0of64ifOgffPvlUKc3R4/LNWvlalA7r9
PrwOKKtDyYl3mdIU6FCxXJKsY7x771Rx75QEl743ZB2riz5G8rYFzZc9i98M
Kw7tInl7oy/6VB7zHBh/TDPi3R7or+nnJuLnj/x+Mh4Oum74oVGYALOXZcl4
2Fj2LUMphQJKrb0sv9OSQe7+wuJCrPdGOlYvvMX8X9/e7/t5EQe643OoJw7b
8V9dd68F50XevoSRMRUx9OPH6CZPIp43yk5b2FJBrGw08XV/Gtr/IN4wqJ8G
2/Yud/6YQYWu827d25bnokl3TprlPRowfeEeef+bCj23jn78+uw6ip7zsaP7
0GBV03PzkTgqqOf/vrBVJQnOfhPd2VNHgxZp2xh/RIURFHvbfTgFFoRCeZdl
08Bfy0Ko6RPW295rV17kvwi5FJBICKPBTa1PvC4479Y88bma+7uuJn3jU74D
2M+DWSuDqjEuedJX/yd1oqbz5rUJIh8f8j6PWevcBgNlfw65HIgDGW9p4a9N
dNgb2eOipNAGIkpbLt76mABGPbR09g46TK9OHJjlbYOvhZl1za4XYKpfqGkF
rrciYupkHLKFzp21VomBScXlZBweKtp8+dMBCvwyWvzLfFEsfK5MeDo9TYdw
JwbPmbz93IuFOMC+7CDJc+ZXpXuHQ+tA3anU73uzIip49uDgCuIerccH+Wop
cPFwRv4aFXuw7ahzId61SkxsKkemqNC6nTNU+PMaJNpdccQ1ggZjevZ7r92l
gtdMRMOIsCv68niJhUcRDfo2zZJzqLh1p8Kxnz+1d39hzKHyyoPkPBh5XFrn
0QsHxFrWTs6DAePGsQQ/6zTQdfMDcejapMBSgp95eRcRNjUqJO7TGN2c6YhW
G2lYBM3RIHX1qOeHhvewxD4kM+d5JDKcWLE7CCbBcPUihzTlfmAOW0/9/j4f
Ba/bfOS2z0cQND1df6C6Dc7xdjle2O6Pctd/7eZFuL+8XFhGC8dxGHHSYCZ5
FTIqKlv3p3AatB59P7gf92su9Qo3NqHPNSu4qQeUsf8CLWVJA8eo0LtoWcLb
7+sg3+Du6k3dNOAc83qGHKngzc30tiRZC9SuB5p19tGgqaCg69Z+Kght3H+/
wWoPOJ7dvWNqhPbvc8Hfc419ppLnknX3Dcp9HgkrxUXJc1ESy8lzmdXpPv/2
Ph/ucI6Q5/qxILt5VL0TDobYX5nA/WjFfFp/gRUdjL4yzhXw7UyWb/IqWPjM
OBf1G+NcslIPpM4Oz2jXBzDOtV23f3I5ztPSoeaIVSKOcHitoUXdOB2cCx+Q
c/fhP0zrg3fzwhcON3LudspcY128fAgEuzmLZtVV4NIPtH7UgQYp5yx3vJAe
hm1RujeLug+Bu+N77qybE7DYf+3qWKwbh4w71KaHTFGMrKFxM9aNLi2OAytw
v2BvOfTgSqE1sMj5pIXgutFjNfnE/RkF/D/vUy3mdIGrzTtudWJ8Ztke0v5g
a9xm5p5DaIVdO2nf4ED95zlaM4R8NqhKC8kCHc2rjlZi03D4JXu7bnkrbLq3
TOBLWQ60+F2srMH1UO+gbrKRVStsqwt+yPL1CnQtfJKdwTrf25BxrtAfu3K2
aqigZyGMc/XM7ni8CvMg4PZAaOMZLnTTmuMd8buAXFm7zHsc5/eHbu8Q0hVE
Q2NPDYj37Z68AtKfmtXJmy6FZKExzzDSn+92mpQcbKcsiT0k7Tk/2qKSskmH
+D0iejOJs6KAou8UfmB+lETi0413KqSTsM5ne8IWUGuP9qSlvmYnvktk3WLw
vJoKyWMqccrWzmjb0YVflrk0aFiziHy3GSqdt7PmZoaIJc3ku82plYNkXg/x
sQbqq9ijyy33yLxe2qPr/P5KG8QfUfo9NhGJTjfmyHyop4Ns5ZCcEh8Vknzj
0f51vsh98beZp4KTUH1/vihI5j3Uvj7s9GBPGpoef3SuMGsStq5W1STisP/i
p0Pv8ZyeryY7SMTh0o/7Ms+YtQGrt9mhNk4XdLdaZehACx1ymaK0JWLrwOem
gv2i/SbohLReQimOz9Tq2ztGQ+rg7UX516sesKHkitSHq4h3+6Mr/S8F10Ft
rrN81pahmkXvVuzZjPFYLd7UblcqCEuVLc5lU4NEd2aOde9oEBX63lH+OBWO
dSVYJM+thfwlQjsr39Dgg0BcNosNFaRTUuaGbuvheE3LiXtPA5WBd9cGDKmg
0OfXWSVnCY296ckydNq/eYD/wQP85cG6m/Mz2/Bb6ClEHYKRN+EN9eHtUwVT
sDomgKw/gv4JQte2+4N5KJWsP1cyTUl+rscVj/bhOL8spEjyM3ho1om4l6L2
nI/fJiLBZslq8l6OvvEgeZPYavrIz9IErulKkrxNsxeTvP3wl1nQLWSDrxoX
SN5+ujB4s9D38r6gPaTd8JbBWzJokfHz0XFCbb21MxTpMM8S8fNZ4h4Zb4ac
Np5utfbw+NUVMt42TjLqP315mrPHpzUw9+QRWf9jnb6S52UxeSUiEHkT9bV1
FxPnvZfodaXcrR38+FXaq39EAss7lXqDfDzPDh/ZSOgQP/uifP+yOvgoKMRF
6BCWmCxZ0TwKBG9jn3fROQ5UA9thE6zDq+/d1NDCTfeFogm1+YUL1J64I+SH
8dS0HokHgq1QvCvdNY4vGnQ9Ix/Gc05DyYGK9yZFeF7O0624NeMBuctebrMc
ocPOn2fSFIspsOJ0vKlF+1FwGFlStBzjLi8jmv8UUmAi/Fhz6HtnSFKdX3EU
47ocw6T9ILbdXrF80ShwIJ60H2w94tjMQwV/v+tdxSNpaCTmZmq4wCSoG2ct
jn//Hjb3ZMxnr72Frp+XYNopMwnlUxePCChToTLX9Fm4aDlaMy+wbM8QDS5X
XMyZ7msB/nsRb2JdY+Hxci6R+zzTMM80tjP0TQtUrZK2tHgYBQmnvD6b8E7D
2Caz2eF8Cli0XK1+ftkNWq/tfvoZ+4l6JTuZsf8+4o0OdQZuQHEtCY/BeEZY
Balzspv4t2urJCH5NSz/pXPQX50zO3hIW7uPCiv1t58P3xuH7mudY0tKoEFe
7liWzmwrsFSMpMs8CkKfJHbqiP3G93i8tEeqrRUW3zY6Rd0Xjs4mPb6cN491
iFNzYKJHK1h6UPZJcoWi9bNnRMTY8NxttefMqkAqBExwendLOKAVGf1xAxQa
LJJw8OoIoELpVPPiGWZX9G1v507eNhosr5CbvI1xvys+j1VOHkNfWBtb1mCc
6X/8N+0twRntRIHJO0PrUiZ90CbW5Y436JiHD6JX+VzxnLL8VtK250Fo79dI
PW2MB1lk/QnG9r+ayR5rZfVHyQdEwtWwfT95bXoYxp0UTU3WTvoj/T6VDRsw
/jYmKPiULwUe2wwK5iWFo5e3y19mYp2vp6SSrYjrdt/xO7/3dH2peRhyI4bo
Cyo6R3KI3zePmfGZ3v35q2Zf+2pd4v1zQ7z/FqYgKkQJe4l+vhaJ7mbyfP7Y
SgMWt+YC8bN4rmQ+Y2tMO4P0jb1uPMN5t6bBL6kT13ObTVKlwWtY0ZVbr8uJ
/oLi1EReYnxt6IPT22TZkKdE0wrid4Qo+xU/Z7D9OP+Bz0tcz6DbDdvE12P7
AAoK2ZE4Ds9w8mdFX0TPrr+cedFAAzEpjnVtWK9u2lzt4XlXECVSuGUJvSrd
pmgrt6kNhC+diKA3p6JZy3crcih0eKH3I+4x1ucmHHsmRIyk0W4v+iyhz5cb
buCZsa6DsIfDPNwdGigp1IjTGM8LGZFZvz9hvPL94NLYTg1Y0jdI4vQELVK3
ux5qOI51OzC1bCV1e6hVryzh55Ylsjczoy9CpLndF8LPHzzneAk/wyDI626p
ILgclZcj/DRRlCPPO5P8Q5/D9QzYvDYmzxvzvWUrwbN3vY0I5hmydM98Inhu
kvaqJ3heXOG3ey/tDAhq3bpO8GxUdugP8d2FovXzra+l2WDyapUUwee/4gH+
xsNNc4dwIh5K2gWIeABffVojEQ8s4/0lxH2VdoV5JkiygmtjQRlxX0NmjHio
bTH2aJz+pU2jM+JBkePXAhGHDe6L3HAcgvHPxDAiDg3vypDxv1r94XHNk8fg
vU09Gf8Sj79lE/E8FZt9eevzILj8rUaXiOcuMUYcvvX/KKc49EVb4jAjDv+V
X/A3v/6Vj/A3H9u19qwg8khlbTrzpUkfOMruYEfkUcnWEnVjFwoIXHwU3H89
EE3diL5sjXF+dd+1P/D8GyuAFX5FGEr87Cdnj+fTp/nvTkpjf/qRZJHF2h81
G110Rgl/vgYEqtzA/izdtNyuL/sE8o2dKlmC/ek9eB/x4LlGrTOhIy0tCjmp
F/MJTdJhk+J8aTPm81yy+PX2p6zIim3iC8En2yGj/WzYvsEtnUzfU/M1/Ss7
PxJ8frZT1ibec37r2/B3zccheZWoY8R7TiTHtilLbOdrp8wNxXAeVOdmrr2H
+L5OeYOTAY4rXrZfKTsVl6HnazXVie/H/LnRZn/XOtDxpKe+tlVGTl/OrqNi
vGTmVeWMQh2UexoVKGjowQEjrT6+O9MwUi/83u8cFST7s8f1GtPhlsxAW9RT
HM+rF5scwXHYyvlhz+qnUTAXZw95OA7reg3vv7hIgQ2JHuu4B2JhAqVwFOG5
eH9/48wD7CcWHk8nETuYLHdoI+Jw+J5OZz/mLUb3qYHTsxAwzxSivsX3FXWy
Uet7AAWOePdd4dGOAG5lupo4jkOjBItHMXh9y4siQ68TXnD+7udZDcxzyrqG
sRCMGxcsO7Yp2h+E3rXXKGM86lOmtuJRCrhfELRQXhcMKQd11IjvQ7YOn1+6
gNdvvpLPl7/UCeS3OKh/xfvunqwfrsb4d9G8SPOeo3CnmM9MHNvZ9A4Ks3H8
OC0PPMuR7AtjG3ZpZGM7cR3tM4caqKDJeWf3RPVtJLmvtDTqPA34Z1t+Enhd
Gl0A48CRp32bwDeF5Dzbmk6BC6zUzzk5cUjDLGicHfPT7Gq18tjZWjD6HF9D
9zCDiHKh/J6yaei2rN39aYACYu9qnzs+SUYB32NPS/bTIWF1nNY4axvsS1YI
uU1LQWPtqVnVb+mQufhl570pCgi+M7qYr5OCEh92SrL34nm5gXG/IpsTU1U0
9BDXwhbyflPmVcP8cDy4xfrIVR5RBmsXazUiHooaH3joqAyBc+kS+zfyj2Bx
Gpfm2rW4Xml2uRO44tasIYyjSmrjJgLvtWmUJfzxRUf9imkpIHdYLofwR1Kf
z5zw3/a9qIfLk2TY4WkaTvgfvOSjMuFn6Bczjxs6KXDq9j41wk8r9/emPzMp
0DQ8Sfv4Ig5qdgVKO+A4L5p9ukSrigKiPGNqEeqJ6HuZlNQGrPP1ip3L87FO
ULUKbdktlICWeDTllX6gwyP17Sdz8FzAuuuzVfBwIspsUdtpgOespbnV6kRc
sQahQAHtCLSsNF2diKuJsr5XRJ4mZqv2XkyLAk8REV4iT02dW39twfuOXg1/
Fq6eCIqLbaWJfdW4fyqcxnrM43RzTuS5eJAMqRhMx/tOv1XhnH5IARuJ53E1
j8/DitvhMa/wel/xsn4ij2ZyOPfvaExHlh77Oog86mo4nvc5hAqx4xdCG+QT
YTNFUZ7rNQ3KXg7UWjG1Q0Ga/eG7BSkQ+1HHkvk+HQY+WenfsG8Dg70HLxbx
XIArNdvdrjfRYQsnXwzR13xO34iZak6FJANPMaKvpUixRS8XaQP/Uds74Wap
MHWRxV++iw5w/NEawk7ua62q6zwX0IZaey/CzpjVxt3EvlpcF8ovF6Qg9loV
D2Jfyat2lrUy7SA5ll8ttjEZXXE/GFteguvhmIH+1NJ2YO7Zo845mIxmxq8t
/nyXDgKFdM+NX2ohIVNq+K3fLiTx5ak4d+k05CQ1HCDstKdRpVZtTIbbsxYx
hJ2ExHuTk9hO2PmkYO7BZAj0UN9C2NnDL/dgA7Zz2M5iqilgFyj3a60i7Kx6
WplF8HZUcfFpzBvSiNiqRPA2sMjRbtCdAn5C8XveXfZHHRKPf+Xhuv09kZnr
LK7nMhfc1x5QCUKwP/TkWYz/KjNbNYTX95VVLC6J8EGdLs0atzE+r/ehStyH
ChHOTNUL7DYovuhpqUwnDfZXfTa/7kuF9FkOw6X6+5GNQu8yxQ7cd5yaWvM9
qeCYkf681NsNSamObqzoosFm1bZoCX8qMF9U3bwQehZUl1QtZOF6ci6g9oYA
1qvbtn1YPGSaBqo1Wn4Ps2hwi+9MJ2EnVc+Qp9DbDd4tf7eOsPOvfeHvvmyZ
XzmJc/FJyvbYqATB86+O5LlqMyqtCB6W2LgsGbrsD3HPnWYJHvKzLZmJ87KM
l/TeiPCBQ0hXizjvhS0yDxyxnZM8QrXprYHIKVB+QwLGv8bFH+3C6+WWZ2uU
f/BBETqJrMUYV76u25bhTQG2FxHXz+SHIT7fXqcRnEdO/FKBQylUUCruMzNs
SkHM3Y35ek+wbvkWs+uEFxWCtVmzPus4g19w+1IVfK4t1kqrpvA865tBqX9i
7AnS4RFiCniezeeeo63H52XZ9v3i6yxLqEqas/LH560UmdlQjf30W6G27F1N
EKwLfJAdhv3ZtUxxVd0EFSxU1/Lqmaeh1KJHs7yRNDh24Pu1sQ1D8DNqoK50
MAEFm39fsduCBqPhl/II3GNpxtIHgwngt3WfGIGfyb7T+mnXEJjxHXy590kY
GHEtnvumQ4Px88NXnFSHIOoXpJTzHQPbxAGbdjManB5ayCfWZ9vIKck/CUPH
BR+Lfsfr+4M3N1dsGYK0+6vOZTocB8EK9avVxjRYorEPoqKoUKaZcOv2YCLW
Qw3iPC/wfHrN4wTBW97OZ1WYN3jco3qD4G3i8wAHca7+knxmA/M06BHU5OLD
59qhmpgszDQE+3ctrCpTuQiG4CSyxo8G0TSBGBhvAw2FXfFLWFLg0GqFxKwK
fF+TpvnbMb5+ip13MUsKco5qciLwCfWsMS3Jdhj9YCnvXHYe3dApXSGN8+5g
6+e+PPZ26JbLGJp7noQ8RSJXWZTTITopZxexntaTYOBddh6aQizUifWxGuXD
xPqjPF47558nQduTw9LE+vGd1uR5LXbatRcNJqKQ8DbyvDlNd8j432BW14fj
H1VsW0HG/2YxpRgiX5qu0zRwviCfJyrzRL5M5vjrNOD4kWLJy9DYGgk85fvL
buB8LN4w/edwDp5/qU8vCo6fQ3xbHT/14zlR+d59f76TVAiVGfii534OFLov
Jp1ppoH+zRIST9ig07TD/Rx6diGexIWueNFY8Vy5dJ2OtaRfMrpg875sdz0N
2sbXKzb+wnyWdBd/d05Gl43+2K55QAc/x5k4Nk8KRNdWqGZon0RLqbGtu3Ac
yvC8cdLEdSNIJbEiYyQKjLx+J1zHcTt/K2PfhFA79KZbrIxKT0SmnRsqfe/R
Ibtda7wP17F5d94jJs7x6Nmr0g+GuI4F7voi/46vHd4tfl7y5mcibNFWvMdW
RofU3qBgwHkxXyqfMjcSjV7SBD9NtNOgvuaZiyL259dkROvTkyfhuZ70nB72
x3LR0wpRnC+cx93OmzYGQOrr3uXpGBczqlpy52sbPCsJpqpeSoaUbUlC/fhc
m1PP7zhwmQodr85fGnt8BJXUcZ1cU0UDE6YdqVtHW+HTS1f1mdU66OR222Mx
f+hg8y3hcAzWdZFsf/Lrhwa0rc4nRhPvcurOyiLOGBc7J5PizTGj3Vay8xnx
u1VUVl7sqykqXMuiPw1SNYN+y4pHQRE0eBOhcGL8Aa5j2TGsIz6u6P0LfeZX
wziulruK30AU2JrKLOAqY4/Epo1rw3A/5ciy6Wt2xfXh0NyOow7KqN0igknt
HQ0EdwvUoyNUyNh6/aaRhg76bPAo7cF7Guy9zK+f5dAGH2vu95mXm8PJEoNv
X1/RoYPpBlvCUwpkr5X03f7EDt6MnIq1wfZpKq5vfzsOQcLthO9/7tgj47vv
ZuY24DmF/f3IBtzf97ZrV+pou0C4R7FWHfaz859zZXRPEudCN/85l8deBg/R
60rFssVmaq6dY/BwPLH+KsHn/ErO7d6S28Gk9bovwefWKQaf9esmdhiLDdbs
Oc3gc2TPzxZBcQoszVHa++XgemRStKbi8E86rONkmyO+Wx4JauGJF3xWs6z5
7BHie4Azv/u7nMuwDrepXxzxwBX5v6g33IH1yS3ldzFaNRQwO7aubATZI4Nv
O4xK8HljIxTB/1QdJHJ45v3qV0QBSczNnMRcoP8681IfBe5Nu0koxS2F4Hf9
KqkDdKDo07hjbNrgxt2OHb8oD5HSxjazwiI6vLt7f7AS+2Nl1L5t2zJWlH4o
PI/Q+RlFTNeHbCgwEHNgPkuqFFXdaZp9NUgHR5U38WrBdfA6pVb5hrYQbFi4
3q9F/E6nlzkaFlIHN09kah58KIxyqMLRazH+hdXtXmdoHchz7rss2CaF4jZ8
WxDDeORb3VMpeD2txfxx0EPsp8yn1zLE32sEnOquxOtbZpfFWP5cAQNj2TPL
MX5f6/MJoeRm8Fwl2Su1LR/xBAq07RCfBhEZN9OzW1phRHZt3g25e2h3sGmh
/zc6hDxx3lwx0wz2IrUW3mMliLbrbroZD77HVrH9nHUU0F/tdvt6uC3KNz2n
qkj8rtTuo9+BebALbQ1aSOIAZb1cRMx3o077mr7h8yYM9Dw8c04QLgjXtalh
vLZrgL//ZB3kjym8ZLYVQJ9KYhyI7/SaDT+tP4Xxli8NJ4M3CSKbMptu4vuK
xZ0TQwasLcC0W7+EtzoNjns4nCgSm4bYtk7rq3jf71Y9izzWztXYPpXqIOJh
za87p+/gudJYRz+6PowPKexObyL+Dkit6I9EBl4/UffQkTuDCXU7F9YR63fL
qv5ir8TxU7hRKO6GE1Lbv2CqjeP8/L0/evzYf6mlv44sFhOANZGXN27D61Oa
vrl8xPYjQu/6KPXww1Ehu3Di+8YND/88EMHx5lDw5MfmVnsw27NOohzz861+
jW3sEwps3rKd236fA1jbd29pwDhdlREPfrlkPCDpf+Lhd+OTWsJ+7Qtu3b2v
+ZGbj2AoYf/1WZmy4xivvDz0XIydB1Wd1VtB/I5zOeFRRyTxvWXVi8e6J3gR
m/33g7oYN18hteshtRl2msQd9xJPR763DQIk8L1r7QImARw/B4vMtvKaC8DG
DSlhxN/rsRoz+L8f00zwDzr/8N91OSWqH9/7pYwn+31LjwCf3OgCL/ZfLt2v
PRr7b/ltWj1ikRDa83zvJ+JdutiZce+vDGeIe0cJ/9w7/8rT/k7XmuGdVXn2
jG0umN6p9nKXmAaT7zeq5+OG4CTL958N7KdB+7Bwe7cwDa4wJVzzfjEEt9fa
7ls/fg74rnWPrBufAKerHGe2YT1zwDgrUibeC7FduLnk9j4aXNq4QcbJug6+
eoXsNIrxQf6Lage23Z4GvSec63fifKdva1rmEyuPGnRW+HNjf9ZFvv+tOdsC
u9gXvJcrxyIPExX+D1zTcOL2Ui8r1xYwW6ibs0pNRG6zN7uvCU9D0oYxWybZ
Nnj5uvvhwTdr4ZHqrzumnXRI117zRGZxGwRGf08UqtoEs26BdpXduE7+UzcS
y8i6AWv/qRuSdYz8Uhci8wsK/smv5QKhXqoSIxClxPTjpIg/rAqeGvblHgdU
EeuvaVsHMlcalNp9fGF5ErumKD7Xg4uFL2+F1YFC68i7znQ1cKzMURTE5xpn
ZvB2J82G4A3JXGXwpjl67MZASgsUcQ2+PDoUB+/3FlzdITgNqosj56OPtkDD
Wy/Oy6WJMAt2TTH4vEwhty26ie/YD8vJXW7kRD2rDiYTeb1u0P8EvKZCiK+X
+MygHfravZ+V/QoNgtbSBQ79psLV115yXKssodH+G7oSRIOW1+ENrDi/Diau
WWDLdQLJ5b1ZRH4ZHVd2TC/H9VZjQ85+Vxd4Yv3ynjiu22+1Tlan3MV6I23n
9TcUZyjiS6VFY9xv/LSsZn8/7rOhFoXdbShTivn2x14aZG75fWd2bRukLRd/
VxSzFoWdnDthhu8lazZZaYFOgU/itXdHo43Rvcspdtx9dBhqm1KrekOFHKTR
67nOCVq6RPJ+J9Pg5/Xzdss4hkC6eL6hxNMWud8rj8dSCeLp5gaiOF9+fZfP
1X+sAVGhGsuJfBGcOLvjd9UQCDZwur/hq0OzjuPiP+InwI7V8UNjMwXK5+8l
Drabo8bpI/uI76ASm7jOLtCoEFO98Ran/irIf39S5UgUDXzYVe5cL6XCiF7h
zjPFdujJAy1Lkds0WPVJ8Fok5p99/nTsU8Eh7f0RU3eJ/rhoWfDXJIxLzKXH
rIn9qX3t0lY1Ah/+p86sP6lD1Bl05J86E/9Cv+THZiq8uO6SeeKPI4oPaunf
+xPPKWyvs4N63kPk3HTewcQQJGcaFrVebRKa2EvczUUHIJ8tqdZuZTYavaaS
Eqb5EeKvhaiLY13dJ8XVluh8Gp3nfrgn/hEdRKeirzFH10HHvAmroaEqEuGT
f/umEPt5pLq7AdeTd5I7NDgffqp5LCutug77qTeUycp6jIp1U9/RvStl4WSE
28yzbhp8WXh2TNqBCmJXDsiKJarDIZ4lKe/7abDa0GKcxxzPiZzByU9O7gR3
5tsC28dp0JX6mv2OPBWu777PdczRDnR18tn5FmH/u/vfnLr6Hp613GQxu3oa
eujfmcqsJmH/I8FFnHd7QWBno6iyXBbIF8Hyhq6P8Dz9xJWgJx1w8mzseCVL
Amz9dmT1Sy869Fwo+KYdju99YNE5YwMJ6Eq57MVCfB++JXVsDT5XRGGVpnAQ
TXvHQzVx4u9ZdrF7BBD1OU1SfsqCkweU2E6uJOpz8unFG6MwfsJuV778IV54
9fjqfqI+r7Q3st3SSoF6t4OUsxdN0Um7MFtHHCe25nnPTbsoYLUpY/lGWz3k
kv3ybRLWD+GdctJmGK95HfiH30YPYjdbvyLwpz+Pdx6iUKCaJZcduHXRcedp
9m3YjnO8dfQFjI89HZxR4tWFOrndSuoYVyzem3X+VjOo1k1vz7K6js6JTV+r
x3U4gf3qnoWyZohedmGrSVkeUhTZd1Bt+TSMNV2svIj7r1Gf/XFXlsuAZhVH
j+H+u+c1Az/+h8TRjX9ww4GoXSr12J/IYyoSp2wg9VavMQuhY1kY9jNPkfZB
6h/7rr3dDcTfU7yNPvLnqxEb+tTDdo3QUXskik3C8qiAXK8vlqUcQabCekrS
5TQYSKQ4mydR4G6x7wnlRQ4IJXKuYpqgQz3roQ8PL1IggNbVlrjeESlLerka
jNMhbfzLrmHdLujR3HZxTX0qGnDa07BrHR0cEnXjh3CfWl3wk4dJ067GR/r1
WXW8r62YK4+KBxUe7JFeps1cWtPEozNs9ZYGZfMxOWHX2+DPzFSyQ9ZxYF7V
Txevx3Xsn3xv3vGAyHdo+ifff2TC3s3Y/9GzonEuRoehNG6pkgn2/1FtOJXw
U21UK+vRJkc4US7lQPipfK1c+mcdFb55RNjZ1TmCrdSA3SY8Jx6Puf++WLcF
uMvt3D6kpiA/SoNo/LJpEB93Z45pagYXZj0NRCtE5wf5Wbfiuu1GZ+Drt5E4
zA0wcJvgtIMR0AKCBq9ZPINSQHOHncVTbKemj3Ffv7eHEPeF6v+5L/t/6lVA
4HqiXqH6f+pVyxLOi7K439GfNxusvL8J6ZklSRH9ruOYEFPuojoY/e1l78jv
jXZd2LrFu2QaoKWkh4VChU1+zyI+XNoH+pcr06LSaBDGHdBA1OfpPo6C2Uhj
2H0+ZTdRn4X562uUtNqBS3rqGfuuWjAJod3daUOHmi+M+q/pQ9Z/uLaSUf83
KFVP3sbxs+qaWfHJuEVQPbxsA6HrvOVgmDMXz1Prx0TqQp3haWZhxMlRXIeh
xv0bxmmq12TZ6c6Q6HQ2xwrj5zZRVQ9lUUBzIJxJaNQZ2k8ZuP/CuNWKFKNc
yVZI7Ri4VvstAp7eXlCYWYL7rIHVmOYdCkj+SHuZmOAKm9XSNvzAfeqnwgJF
Zq4FmpZuX2lbHoGKM796iHNPwydJhh1LCmkHvfjHjvjHzT3szEOgg7uUNY8j
eC1o9zv74zk6ooLrUysVukIzRNnDzdFv3V3bUjBvGrxtz7dYtsI+D5n4ssv+
aAOv0I049mnYSGNX9mqvhZrApn3KUi4QYlX5Tukurldb+1QlMylw41TfNp9O
J5TG1pi7Zgyfa/Icm1MBBZ763RfNfOKMXKlC32tH6FB6ev3RUIzfurzutumA
M3Kqf5lWg/EUusSUlxbW1SFWFuJOAUhkrf9962Ks926sO/Oybgj2uMttC+ut
BZnnV77rx01AaQ4DL/8jS+Bo9WsGnm41yJaK7+tdnl5YsMvPGqdlMyuJ/sVe
mJNk96sV+rbffKu/AEing9Kx+zcd+E2XFpbkUSCwM3UH4nBB8x/nsnTwvXhF
1ey6hO04rFHmjdJsr7lAN/xF3Hux5WePhpZmMN5ydcXLpkxYpjKXooF1rzB6
vted+Pe7xLlgwoYHmRrFqhH1uTOv3Hzd2VoYaIg9G+Poi0JW5V17UTYNb7ft
L72C7Vd4v+imZM1pu8VVDxH2J++d9sjG+MmhucqfEk3aQUKcNwicXZjH6H1t
K3wxd2SXV7NB0ace+/Qs0MFzeLrAC/tT0D69aS48C101Kennw/4MVFaNEPPI
2MFh87MazJDPb1FF2HmeMnT/Dq5v2qzZia/L7EHh9KKlX3F9iOHfe6ua+Hec
nA73CS6wgaVxQypRJz3z7w/L4/s1HKs3YldxhrZ710tW4fstFLDeHY/vkVu5
wlV3zBkEIt6fr8b32BSn0e1zYBi+FYWvn1cqRrlTIrqeXhOgZ92a+Wb/EBSP
Vdxf7xYApx8+ZHmpSYMbWu/zHx0agmMso7uuR9ija8/ePF2/iQZ11PMX9om3
Q8f2daFHv0SjtyPhoX136dA2OyzenI31YcVYkc6UExIVORqX8IAG/nFFdY5i
Q2DM1OXCrOQJKqJ2Pg8dcd/f8Si3s5oKJ16PT63rd0CaEq3XTXJp8FW+1YDz
GhWO+watVr3iAGaym8bvPaJBqGpdT2kuFdb7irVPitqD6ljghQJcVykxxrYG
T6ig1VN1n+OrHfDyHJNny/3f3xtcuT/3cuVxKjw+23uufPlKRCmpp6I3uJ6s
uf9VWJwCz655jqf46ID59KcNxPvDyBbr7UtSKfCHs8zLXM0Bfbj/ZDIX34uR
6pf0H25UsPJQq1W/sBbFOd1feI31THm7cw0P1jMeHbW2Xsrq6NLil8ZTWM9c
7xik082okH2k0tJw5050Y+Em6z6sZ7ge597b5TsM0Vf1/bYwXwd33p7yeqcJ
EDK22pZNzNGUt+F2ggKwx//nr0343o+Y8V8Yeoz1nt6DW05Sjujumd+bd2Bd
/cdg9fLB+xRI5qwKW2bthDh+HxGewfhHjXkHYn1v04clq6UcoUuqAIj1qQ9V
utZg+wrNN09WtP4fXdcdj+X3hsssmRmlSLKTVRKKu4xC9t6ylZFQSQMNI7Ii
ERllRiIr1fOaRdaLjBR5hXitUsgov3O+///+vT7ncz/nXOeeZz3sJK6YXF/8
3kjnKV8peZTnOL0Luf4ljh3CjBKiDuJz5swegRgPpn/9WSiGnaT8ti8C4xvc
g3e2X6uHiN0HGu3sd5EuDv7iwfc9x1QsV01R/tzQOf3+1lZOUg/zHRpxhKf6
3D2bmzoKczypTQOb4uC11klg3UIFFSLhZwvqT0SEvQ/nNg6Q4zb0xPfyaF2N
Ux+j7zaFXQtiecRKOpfAXCiN8O+d67plCqMg2pH/9JR3EIk74zSrowEVPM5T
W+JD68GIjWfmbac1KVrkyDcqykvtuM7JlSE8JOMRab75KGnOg2o1g/DQ2G8+
xy93gLrn6h2VtQiS0/fwkgXOeeCT9qXxu9cBwneHn6w7VAHv11zDP/Mo740X
7GGcawfb+EMh+4bKgHankcgG/TwMWlZmamiNQk5s80fO7yGwt0/uErM6FUi5
ltoZqP8wlzEtkc8KSXcKnuD+S8Rtm/6E6rjuXflCO+vEYLIk0I8dn1soahD+
gNeLVOT+rO/nILF99T6LeSCpu5y1uTwKVj3X7byjI0kh7NEiSYJUaBQVpcV8
Bu1LEWjdFEcaTIm+i/ms1/O/ie+HTu7e1Dj1fgspTJpchvfZdRz73uyuIEM5
87WSj14uYARtvZNIH6S4DDcAxbVme2swjHGFzUORXTiufVwM+ccvUg+Hb+4x
yHzpC8oNlizyxch//pgjPKhkKHst99EsoYF0fvjZubrAOXhRwOO4JaUbKuir
Lp0Q/ECqGEjpYqDOghpTtYzZrXq4WPk8rkn6KFg7crAMIf4/aqZczd/WCU/M
VTUmf1wGrrehloDqcelY63LNVjLs8/MX2XdJn+RTJKk/i/Irx9srL4xHKPDk
8W2fV8FqYJUskxh3lwpimXln01LJYL5dky7vqgvpTNXIUhDyhxHpeiKRqF5Y
Wrvqtcn2DCnQgH9ABNUL3raHRm20kD/htzjdom9Ien3KrSpoDvkBFhHy0Ucj
kPg5wrm9L4QUnNSzcgzVEYE3D2n/Tv0MJifaakdjMkn7/vC20w7OIPn8snwp
XXBneO/re5zupPoNgyWZxjnQUCwOrrlRD2+Y2r4FhnKQzqhGnNqC+Ne4fPQt
D9KHucZsowDBMeLM/JUMXEec4aT1SPWkwN1ddLpjTEIQ84hL+y3KPzkWHVI4
XClQTHf3e5miHLze+qZiBeU/Yu5Wsg6W+N6Kkf6z0RNgo6utJD1GBd6CPfpD
yqhuOvGa9cS6OfAJKGXwL1Phg+eFJa6vI7BfqbSxnhQAtUaTT1plp6Fux4mx
rcbDwCvb7vlsTwr82+lGCpecgZvC7lShY73Quujt//BkIkiszB44Kj0HtHbh
PCfRvJy053MPuKgPYwJDx/G82L46dE0a1YNXbTmyXviJwdhHDrVeNL9Pyp2a
mtB4eTLNY75r/FCllZNSwfXgtHhK1LlaMvw8H+b9K+AM7Lt0WckZ5Z8fHqQe
iXLuhA36wfZtR88BV3xeWTe2L7lYN7xuTBN9bl3AfYZYkBH/b934mR17eHky
GXT3haZ+nHQGTs7Dil/xe4kmCi9z/nbCrMTdwYn3u4Fm/NY9epRX1L7f6lc/
ToaiZ2U/p301SJ/Z1TsMh+Yg569YV2VGO4Q/2poWnV1KenKdQSSJZR5ubjhd
V1geBYcem7Mc21Pg19CRO/wNU9BgNnjgPtbPEtaM95TTJKn2wJlRxIOvQePe
PV/IcP+3/0P23BMk34dDFtnDczDESx5b7SCDYudBj0iNY/BZQHfGC7U/8YU4
guWfbAt9smN7Cmmp7U8llv/XyEQ71qUDZvj685x2RsFXY2OJNZTPZ6/mTwXw
jMJw+tEDw3M+pDsFPDrVrlTYtVaha4P0TcqJIvilcD9Jj1eyahvi597u3brs
yD9PSXgaVpjtAjkFkiT2zw6aoUl/UX+kIpRlM4yOkZJZnGJwf8KYHyTicS1q
2j4+RjkNBk9dh/G4HB88Mj/0sB3sLxS9FNv8jDRUyKZkiOoI7ZK+QyFNZOh6
2XBCV8CGVFD0lbacMgcsxcuCBa/a4Xr97EDJ/nRo02onZaB6c2ArbehW5N90
+RTD9xaww0Zmw3m8vjoYl+tYhfwV364nHy382AAY3Hzw+q1w+eKWDwiXtJYS
0GRlh6sfjtfi++b9yhU2dG/JcPe+kbTpNieIV5zSGkD6cyvlr34SiQxewnd5
++kc4aoh9WMwwgMtz+sw4Xfe+jhPr4azk4KGznvg7z56zmiO5Y8VlZW95GIn
hWT5vsXyX3bzX/i1rQO6M7al9xYkkHYNHo57ierc1kzWUzPPkZ7cVbp2kSkD
NmmuVHeicS3orLBmB7dD8df7ISdG8qHKMto8GrXv+TS38TmhHTjHrdYSRJ6Q
WI9e4b+E2k+nlFSmDrTDqAPvxBaGhzAhIi7wFeWH8aaDMYuOHcBUfUPKceEu
ibX74XcRbqTnQ5nxWD/rztZZRWWXQiAUSWL9HF2obLz2qx0OFudmRTA/IFXt
idTKQPW1m6u8UGk9GcbvqLdfaLeH1fjjJC7Eg4JdsXBcTDtYrbvxfD79FKRe
DX9bR9899WPt0l+8nj/6JyNig5G08yf1MH6P4jlH2sde+Q4YrR+57hMUB638
l3sjdswD81M9FcNUCujURR6FzWdIeb3iwtKvqEDPsZxxFdmjzcez42NfnEmT
v+m+TSB7zFb0+ort90HoT7f0q9Oq6Qp1wdh+I4YZnj9G9den9fre0EOupBaF
wLgfKM83EPCLXGamQKfTzn9rb86SIs6/bJTlmobTE99DqnaOwMlO/9275GJI
pV9L9QTypuHU7efujLk9YKaxdOPXuwjSLs1Jz1r/OejeFJZzw7QL8t2LLm+X
dCBtfxv7cb59Duz0JAiaxHrwPGfy+6+LHmkzKYjrOPJX7EIbJE5kL2JltOz1
PhvEybm/LNhepo4rCL53R3WZDa1Rh8ABGONUdFUcpEKvef+eT3YUSCrNlZ98
dhSab7ob54xQ4e30XXVbFF+O1hlNTpkagrrw5kAcX465XBRcQeP6uRjs4fHu
LATr9dTIoHHFf7b7R0LjmjaIL7E8GgM+E34FvGhco99yx2a2DsBzsQz3IskM
SM+5SeF6Ogt2Tg/zXyx2gZ+f4r5dQRdgNnfnWF3lHBg3dIbXvScD27ekE90X
LUBRJMHGDdlj3eFbfxnReG+wzBXnnNEDkvTlb4DGm8ZiFIzHS77lfZjFZEM1
75o1Ox7vL/+WfWnIXsoory9W/fykyt3DvROv8+dKyZPvoXnsM471TfFaJnqo
R7XwPD5c0NzL/rETBAXzNUs/60DUj/L50n9z0EP1/ReF2s/r3PUWohknVEqN
/rtPFLp/hGWDjQyZF6k2gQOyJD6Pl5/aVubgQhXzebzfdxO8w1sbGomfI5lO
uD7q/fUgHcd94yslxRs31Ei3dp3MwnF/SietzPkHBSz1TryaUTMhxc2fnasI
psL+xyXf1w53gFFe6RPn6DgSX8jt5ACkt0U3Nl3Bdjol12GrMpJP0p9NMMF2
+sDuuAH2by3XWcqRfwNb5+D//Nv6Vn42cfoO+NrJZP3yaQIsJ04Z8CP72k6f
GozjF3yRjPwRcIZU58d7FMevWBNPweMojxK0u1BlH+NKEr4+3obzKHrVuwY4
H2O+O1AuXLYFSi2LynE+xvtBkiBVkoHxxIWoM1tcwPbUH+0XKB/TS6cvy8fv
sBntHDi5i40Um3l9GfvDF6rBm/c1kOG58zdeOn17UlWsegw93pcRk69/wN0F
5/drSc/7G8NNugH6mr450KUdtjdW6YJUGxfqp3dWwKctyCnXNQffbY86c6+Q
YS+vl/7jIB14ar6TXDA4B00hbIyOL8iwfzKF0e2oK8httE5Eof5/q1zh9ydR
4IfjyMhFY0cSsV9sOT6TClcCjr4LQPK/PP/Z+HHUitSUFapyAMlf1BrZhPuz
socSkRBoTNrWOiOA+3NIVKeLFX1XqFdI1/e6Dmnix/GqQvTd52sBivmtFLAa
bv9FTrWGjB/rJ7wfovoogycXz+8TZlfpk+omwNjbs4Tnt8IlxmYz0wB8Gtgv
W7wvgzSUd2MnJ7KLoMZ3wo9Cu4ES+eOHgsBViKoXWxjMmoMWsiAXgeI+O02K
1y8PDZD+/tDdCMV9u1Ozd3C+mir7qU9N8APIl+RW43z1E4tnQXU1qn9fscmN
ldVDof0LaYbwKVCLPKgcsXkMBNxyDCuVb5Hiz8cflF2ZBJk2iaufCsjAz6kk
ebTelSTCu2eXN6q7F9rWOHOQPhvfb6Sb2byJdE6U8TzWZ0t92ldxCD//+0vC
d4sVopqHXQrbxVpdoUw5wktzPOIOMdKQNP6uUnC9r8tiH9mZi/Qtmex1pd4V
nCcv/u5F8t+yySi036mHvYtcIQMWxyC2ZHKuCdn1Xm8W78MDHZBucePEifvB
oPfvcYAl6zzwR4gO+09T4IxF+1G1Hn3SLTbOQJZbVEj3bWpeZR2FiltqzLmR
XmCdWkrz6RwVzhY1GeD8/JygzUmUn5O8VlRtcH7+lonhP/lvDGwPqt8PJv2O
Sf5PvpZsyzcsf/dfDY2Wj/pgHCEWgOW7TTWJpjKMguapuw68J12BwSjzZ7Iv
FaiL2Qa/0zvgixqLp1f0bVDU+03zjmMebJ/f3lwxSIHSi6mLh1ONSH7eA6vm
MVSw7WeqzsPvvwn2MDVsbVTV/ZNtjvmsevC0ohXhtkfzDh0WpQNeUxcGzBuw
SfOZx9aB8r753aYtMiSRxsvvo8rmITZRskAjjwwrwS78aq9cwenx74PvEJ9O
U2pnOg9+g4OeXEsFdSTYfnJFLEtnCmS1DldhfdhQeFuK9IH05ljJHqwP9+uM
G6SSu2Ht4ynfTwevk9L/xu6JfTwH6UfaYvJR/sO8XYKC8h9S1N6kZpz/PD3F
nlu/0gkWN5OnFNZFSBJjSTWaKC81e8z/KBG/Nyhqdvffn0HVazkrW7A+PNep
+Ir9bXjo/i37lJdVlXqencL4X56kP22o3mFKkvYsu+0CfGnCngEozvr39FfJ
I7+h3c2RXMmxDZxN9h7E57fpIxlqpbPrIa/NKNE8zBMOdxlXluTPo/px78b1
TDIkKmc82OHjCqYqtAslKP7+fqrBifXzjbzj+fr+P0SZOt8h/N2pYkFu7Lcp
g3oD4QOy8D6wfgD77b0l73KwflbZ9Z+8jvSfzjLjB9ZPIa/SMDwuCWEGCZHo
QeKVXvXW//T826Jv6Mt2yFrbIRrB9xgOb90m34j4iZMiH8N53Z43D9SMtzmR
Asd59XBex6hMarz3lgJ6ZCnf112OpBv0O5l6s6jw++BCgS8a7xHnNgfrcywk
2bS7NP+9VynZWWL2pBYqTgg5XmuxhhaBruVrNfOQQJ9xAPcnlnQpPTtzRTWd
a5D5v3VIoZAIHHcm5h7k7tBuVPXxeOn4n51KR4vhuFZw6BhD6mcd0mSx6n9x
bWnfbgHc/93Bz05H8z0mvfebOYL7XyzVerwYydlY/B7xqWkTWHFX78Nylqa3
LIbEkiFHfhPvS25HeBr8yXN1cg7gu//QV/wOWNwfeeluesjqPaaD91u3bJI3
y7GrBxM/+926oUFwwKP5L9uzecjsnz23NZ0Mws3f7bnWXeBca5msGJp3yb6Y
xKdIn4XGZyZ7G11B6Mc3lVeI/xC1ezMzDqNwtFcmYCn7Noyu7y+1OkgFA7cI
uSnNUZA8ND/5QTqEdJx3+UmVBhXMOGVb1lZR/WivUzB/wJHEmKJJcyuQChcO
a3OSI7rBwPDM/MOuqyTXLMu4usw56Hj6W+fnQwp0COTLXFW3gTMOKfd5aqig
PN3/NewFBcgy9eV7485ALNX51Y1CKqiETj533jQKDF3HmPf3OpF+935k6Q2g
wulTymJv0fzm/bFaZx46A+lnq3dWovl1uGz4gsikwKoQpLD7OZEK7zPPz5VT
QS52PJd55yiI1Swb3nPwBQPGqaePXaggRPIZyH6D8oR7s0IyG44kjgSK04Vs
lCdcn7693WIUBJKyvX3pb4HvaElppiIVgo7H+JxQG4UDLi3+cPEG9Ie2mpw+
RQUac6aUrVKj8P5gw6HV4UC4nLCgyWWO+knelnjiEYpH+6o7/3XYwa25S82x
1VQoePukDPeT0ijzEPUTHhTemsX9FLgxf/YKQYFNCv/mVfkcAZQmbiqicXXS
6EVExZGhdvEwX4mhFTASxv0DSB/M59h5+mPIUHHq8C2pWkeYrd7cxj41B1HK
rBMyEWTwz+zfubvCA36Zk6jzCHerZdWgu0yGTVvVNPM0fEGx34z90Mwc/P1c
VjNiSgZOdxEvj7kL8OmqSVnFjzlIXk8TOSdBhuCILu+I927wQkry4KWlOXhB
/3j9Msrnn8ptAqkyPSi74VO9A+XzhUXeI6dj0bgS1do1Fz1hg2Pkk1MtFfLy
tgp1hlLAoXzm4pFcH7j4Svv84RYqxL5vM6y8QoFLGl55s70e8N6r5OrtDqQP
obq2Epco8CGkOvuDtBP4/4nYOkhG8lP+ta0HUODjWQYl3p9WEH6KnsDv0ZVd
7D0yiPDgF7H+xknGkFR99301wq0opvv3XKQAp/Mvdhrm08Bt9FP/HsK9k6SJ
UIRvE6tbH+bQgB/ifMO6XfgeqDV9RSIZdgXoXA/ntII/iT7sOojnvHzGDcYk
Mli4vb6u5eoEE2mMm48hPNQ62LYVzUsWo2hcjJkn6Fv6tL5D+PN3W19LhZBB
bGsM+69mf/B8QKu9QJ2DXaQiOQLxLHfh5iGu7kB4HrjlSB7iOWyDp4bEQoZ0
EN2xwOYHXY2JnjSrc2BSoSDGnkcBGS7xtYxzluD5529P0wsqjJqzLDLfp4DG
+gWjrtcBkHlIiHvwLRVed9xNfRxMAadtJD/Rd/4QaCJG8/ADFRLVSoSyEJ8s
N5QHnQu9YCCjZeQm4jPkpPkY4U+BB5ycO+bdnEHHlanOsxvVZddTmE0RrlTp
dfKwkjX85X3BVYHw4e5ZdhLCeXXfWYruMIZao637LiA86upiwBnE/19mfwnx
bG34JrU4vAXh/y7oO2xCPNdt1r6llKcG2Q+2i2Yhnrty2KskU8hA/4/LNo9s
AUXUtj8vkF+67FPf8yKNDC+b8sxmFZ1gTu3oJ3mEOwUQoxoI783iKNdi8Iao
9/k7j+L9Kesb0dsR/8e7agL0LS6DqWOeczPivyC97dmIHRnaJkcFElVCodPo
zzG9+TkQ3iOedry9E3wUPvIE/b4B/DaPS8aQf+b9+qaw5CXyPy+oB/rf+kLp
Pjom83wqNDoduHcliQL0QU374oeCwXOgUZPnDRVqTQN23wmiQL4v57Vyjitw
48oxzcF2KtyQa0ni9EN1nKnQct3IefBfOfThYg8VVB/MZzf4UkD/UWByQb8z
HF/Y1m3zkQoRRw4VXr1Aga/HWkIi3axgceDbzUnU3rVjb9RDJOdL2L2slnFD
qNx0eVYW4R4N4XNPEP/qA+NDflanwO1obPEtxHO+jB0Vv8+WN3fIM/7FcUjl
VDi2gHieEDFyKED+/7J3ylNjczPgP2+2woN469Jstt3+lAwvjq94dTI7Qseu
p1ZHUBzfYqCrY19IhqdlEyJeP7zgFYubnhmKC9+3mLDx5CP9jA2qqfl1BfYP
7aYPQ3isXNr56qtkYGCMfzhhFQ5tOnyVPNPIL126Fu3v1QlP8uX+tSjdg8o/
AgoX6OaB3HxnyTWeAou26aUmvyMgUr/1qxlBhQZ6TYbXiB9mGv5uLeMbMLx4
TFEY8RNQlQZznhQQUuJ9N13oCwH6dw/69VOB4BZosPKmAMOt6RFlDmfgVz+9
L7GPCnsLuGTjziO7jhPc5CVlAYx5TFfEe6nAm7wgF4h4LuaJTonp0QN6+eo3
M4hPmS0mpAXEs8jX5DRXUQ3YuujGt4z4DKmJVt6O+BR8PTInYHMMiOPeBscQ
7i3kuIWcRYb2Yae5xHtGkFuclhuBeCPL8Rm2PSOD5UWO0cHtdsB80INDGvEj
X3MqbewVGVZND9mGSZ2Ddu6VJnyuScnx8fO5FjLkE78s/ASDoLh6MPfHyBxM
c+15lECQwZrH+JHGejRk3LdbbEf1OMeiw4aMUydsvSeZzr2WDhWBW51MaebB
czf71f3If+5v03/VWJ4ApmlO7tpIDy8wrzP/OEOBu3lLwvWPQ+Cx9fUNk2Fk
v7HkE/EuFGhSL7d4G30e9qR8PaP8hQpbmlKS3iA+P7APXCuwNwFh0v11S8Tn
h+W2MX80LxM1R5rqlLRAqvO7/gM0L7H+AWCJeNM8yRNYz3YctkQGv7NBfP4Q
NgksRfp5iaVvb4GBAjydZrK9inhzZ1UoOZRDBkVK7fvH7Nqgty/nIhfijbfQ
X9C/jAw9Te18bRZmIMa0l9BG9aN8R8ejkGYyyBxvvnNQ1AVyrp1g0UI8XNlc
/WZwjgwCfey9p/5chFPlLdSFz3PA5nLyjKxkFzTRhhZUONyDCyyNqZ+75yCn
MuyK6BgZDFgo+hfcC0Gvm9n4GMJDCG2l28rIHxqUZRX0P4C9tS0vZ39TYbyg
50+GLqojej20yxVvQFLFzbagaTQuRvFTgnYUuH1r5gKP0lnIcp2/yk6hwtZ/
x4nDXhQ4lLmz7unGacgJ0Uu0QPq5bBIWeQ/podLjrW0GDifAeXeW5QGkh1lT
Eu++Ij2UOO1o7++iAIcWR08WIt7GtuV4uSPeOp9te/a+Qxq8bC+mPUO8yfBp
ifqgPO3W4AsvWRFl6F+9u70Z33M3d5hdryTDVFgJ13D+SWg+t/NvMdKr/r1i
sXt6yHDwBUvgXjZzqJjqGRr8iuLIl5exdCxdcID1nvHtkLPAdOmX90j/HIh/
u1lumNYF36/4S9eeuAWdO350ODXMwZ9GibZtl3sAHv7a8ysnB7pGYyaUA+bg
0Wle/sv7h2G31pXhwvRK0Oov2ZTKNQNXjj/98ndyBB6Mv//9riYOuNtm6K5I
TEN3/rVLXIjnU8cc3ms/9AMaQoAIW0Z5+N9zuectKLBV5rwQg6ktOHptsmoa
Q35Vhfm2LLJ3NUGP7ad9VIDu7MN3mweoEPPsYv9uxOffEK5Uxno5uGnzOugS
4rNCmJ71PuIzqmlC7S6NGFTuPq35BfHJzlIwooj41FnyDHO7LADaU/U/WxCf
5C8H3C1R/l+U1DzkJ5dF7JXrGsf5/12bvAAnhJumBA+b1xQQ2aEb4Rg31R2j
80N4bv7Sc478cuLfDtISPpd1Xj5jTzTCd/TYZR1oqidUuUVpMb4zasmRQLid
aHjxmuFHQvcFvTRehwkdPa526Eo9jBobTNkIzxEL7izT+Bxv3zeqqkVQPUSS
eU66tXKRhi6Hq+N3WgLLbc9XetSDt4qGm+7PCSKZ519UL8Kl9Vx4C1F7mZT+
/oeOnHBaSEQV7w/eKHonwIJwrd1sxkKyL1R1qRoreJ/o9WPjL4NFZGCTe3iw
+JAeaKvlCzDjdwOoYYcmnpDBx/ZA2tEYWZLeLcU5fF6iPWdUUQfF5epEh/n2
x4JwfZebaAmKFy4alRIrKC+iUdwez8W0Fx6fzPVXR3H2q7iDlgVep4psjBW4
/4K42ab5A/PWvcx68QzCa+kyFj61VRPHaHJTMX5BvELY5796s6qYVNhA8DVT
d2F89N5yND7/tukE6R6HWRdxuG+PCebzrcXg01yE72KWb5LJpxAfXyRsw++l
XE0YYf2EcAYh39g25SVCOGpWHq/DR7f7uyUE1MNYfL3G/Uv9RJhmAq873vdJ
K9PA570zHwQU/KjaBtFxm9vxvKxktsR5onkxWNnmtwYvCIX2kCH8/xEm9hi6
3Yi3J55vRjbFG0NJ1dsrIoi3IQGps3vwOZPB7N1/tgL8ix3OtUW8SYtoS6gg
3vTcmnx1OuRBbMGGjPOZ2p0ekcmINyuGxh23uWXhUsrWYEPEW/+c1mUz1B8V
obkIxo0qwkxVeTN+599gY8rbDuHDdOH/wiLqiE+7JisxP33XSjw98P8sJiz4
1s1aCVodE0OMb0oTTb6MzxMa97UU0PcTLpNv6zFvjLHBXZEI/5jDXt1zdZyQ
Ck3ZiXFRwZeTGE+zj1JgFl4iOrULdmA8Vv1bS9WlemilHrjTWjJItNFpcuP3
DEOWR/7h++zmQ8Wyrz79Uf1dTaj+977Bo9PZZIT/k+H9dSW6i1jyKbqF+ed5
w1KthPzVwzcZCfVgAXJeaQLtiDebS6INahlkGOSe8q5X1oG4VTouCuItwODb
wxMPyXCNvuxTXeZxcDzy8Vw34u3eS9+10ftk8F6e+rZ9+ggs/ZHL8kC8HTgu
rW2CvttuHJT5mJUgJt4lcGPezL8r3bBCuPqLL9TqsSZC1+fpZ8zPZf+0R44I
V4g/7HTuMpm4umMyFuNt7o3H8H8rSjZF3E48M0icfmv7338rGPpVT59HeAR7
6KZkgwnC+6woO8bfMmdYYL/x+eC5sPPbfhFOl05PYHynoqa/D6rH1RK16Zxa
hogirs3e+D4L6ygx+gfhVuvExl2WEdV7Lw454v2RPtZnMS5IDlfTUEgEwyDR
WuIQgOX8HI7+zYH3rdx3u5gbrRPhlRyXMc/0gzZONijfeB0pYvSJ1wYyCoQy
HuDzaUsCXwsekYElJ7xv93tD0DAMOmeLePtbL78p7gEZiGR1y9s/NeHlFSZ3
ZsRb7fbLH74kkCH1mVfCbyYA5h/U51EIn2Fs9TBE3322uCOfobqOkBTzlMV8
NmzdGoz1c3boTel8YzOR4/dzE8YT1pvuWOP3n5NSfzZKdxORa4zduP9KXgfB
HuE/ynX4LkR+JjaUNEr+ez+qdZMDbr9ZqvGGme44obzo2YPxAB3+GhWEdx9d
ifdUmSdUyZXDWP5OB/4RfF/GdYzPM07uK2GbNfTffZlhl3H+3whPTtqc9q/c
k1gqrL6H+VzmK3sjguSs/L7mz332C7HdJIfA61cCe576fUPt9zv07V0ifhIy
xw5K4HUSv4S/ynqIt3CDDBUdPzu4kad7ww3xxlrxS3EpmQyst3ar/FA2AbvS
HKPPCC9lpJ8MRPZ7pyHrwl4mHaDjGVszQbwt+Y62JMWjuHyK9qVitBpwLod4
VCG8IkeiRA/1x983UYQnqoGw6/mkjcfV9yi2HfPM0n7SOJ+nlXDUJw5gXPrM
QjHW54/fa8jJ693EffFxDozbTz2/jHEfqQKWBavPRBjLMCfG9zNGHDqNcOOR
4H+yod8If/1Njhj/27VRLovPrXE/nx+4O0Vs2aFqiXmIWa6lbCAeutPnBFvm
p4gS/28CmDfZ5PbLeB0pdqjzRFz3MLHnt6s+5sdo1+NyzPOFVAWBLzfaiC8W
ShG4vQ1b5hv8DsOb35PnH78ZJJYqTk1h/fzAe8etD7WvjO0xiVweJz4/38j+
j2fLQJaoJPze5s6EUF17+DP2VOYA4ufoNs3PpxGfcvWJWcdKTIFhgGnNEuEh
Pxxj5ZF+HtWRdHKc04UXSaFZWQjf+nFIWBjVd9Fio5Q3PzTg6L+9/ZMIt2q5
9VAH9ccjvbk7TqGJcEoscsM8bL/wJUMXv4/Req66U6iNEHd8a4LxwL4nanhe
EjnbmijQQ8zcbdfD+OflW1VYzr1br6+PaAwSLmsRrhh39GUsPI5wTqdm37JA
CuEkbNmA8cbrs2MS2J8IDq8+kB8n2rN7kzHPWk/kXm1BuDsRyfT75RjBRHJp
x/yciaN8XED8CNMo2m1IDxH2uS9TMJ+0R4wnl/D7yeMPVRWDewh9uSJ/jDNT
n/Qu43cwngj8sbzVT7z5TOeJ8b8L+S2Y558cY6/87n4mWiXcMzDPyu+btrsg
fvh6dHIV5uxgWrV05xDiZ1ik7Fw3ws9JdrGq6JrB0h4qLxnhgTFkRmosGZg2
3Tx+q0YftN6L8P9AuGp4Y0J6DBmucso5eT0/CZ4O+pz8+H9/H3RUy93aYdA+
PXprShhw8WYV+wvPg3tOh6ftnRZgvN94RpctH67KbDzSMp4HBXJPmpA9BdbW
tf2EY9SBa0RoOWCECu93ZhceQvXFqkwBmTwsCq0xNI9eovriT5llNj3KW8QV
fnTYhywQh9/wAb4H9JTV9QxbCMorcrcEWp2SJznufPRmrQDlOcYLLEYIV3NV
N2yZlIezLCumKwgfHnb+79yX/jLdirPGjOqhlen/zn3J0cUKhyC8uz1No2OZ
QpD07N7j+0pD5lsztreiei23/ZuNqRvoaTfy/3cuxffUNkGUD0zkJjsMf1km
1l7/TcTn3IZNcn7ql5DhCOOav3WlNQha+RlXoDrFucZ+NBLp7fj0uOm6mj3E
XlY1v4/4JMeJ299H+Il3k2a7DKyg8l+tFMZtG5208HpIl7M8eTHlJMy+dqfD
6yEnW9dbjiPcfEde8WtvdbCBfOnLCB8L+fA+7i0FXHk0l3dR4mG4adegZSYV
mpcUvjGOtoLrpxHZ34eSYCl4TO+K0jxwCkiITaSguq+UPzvlYxYE6/a733lJ
hbfO0gdTUD14YHXs7M37NtBSnjIyiOpBZmXF/TscKBDNFPcxfJcJuBmo6vd9
pYLQr319PzwoUGgvHX6wRBeC7c9fv/SJCg8LuXL/PSfD4+7YjTRFOTj4IXul
HvFgayx+CuctNKOLvm/eJxK+u42rsZ//3fKQmTafDGn84mas3vsh61/KvnKU
D4icGz/4tJEMC4lfnLPzAei8Dz/C7/4xMDT8O4vz7dWkc3vlMwkr8ewT/+WN
F5NOaM2ToSt7xyubHkOwUlVgpPkyB0Guf4tu4PZXomRXy58RF90yQnA+s+PW
fhp6U1TvuKtpHnR0A/aVn6T1duTPP95Of4r97TxjypU7rwmGqLA9OJ+MGjNW
to3rhq7k4q4injtQvJxja5MxB19+uW9Zwe/zD6UlxNzuIux+PWTC9+yeWe1x
Ft0yAEWHov2l3udC6PBHvpaMWYiTVH7uz0YBWrZElaSffiBvfPJd/PZpSD5W
NcqnTYHWlt4MOQ4LKHTITfs7S4UTuW/v9ZqhOtG7LsFKVg8inI9cJI8je0nT
5nTA/8PSm459ncwHoakCN/H97ic8YY9LU8kwlzfZyGhKJTY7WX+/geKU4vTm
2HOoHj8y8ljYjJETOHxZJAxRHeTyuEZxK4prz0geAaHRHODaffTxOmr/8Cqf
gS0a198znbvTvZ8TfLR2dZjnX3pyjTjPGexkfdjMEU+85PUexbh7sycPzj/t
3ty/UUaqIrpzzptg3Ez7XkUQwmm/dh0gtjYStsJPc/7LM9OjM1IR3rNbNePD
qR7i7u33VzHP2/uSGPsR3hhgAFIfJ4iMgF+ncN5oald7BZDdXdWY2OfNREvy
j6oMxPVRQ2zSjPbxejiff5ebjqoFrw1DT50uQvmV+ZcTBShfrfa58Ob8032k
lBjbZJyv0gyylfBeq4et65yfrcO2wU0/9r69CC8v029XR37gST9Rzv+hQDW4
8t0qrrO2trGP1aDvJtZMXhxLWVE1ne/+g89P6qh8aBhHuPKvFGP524vEwOF0
D3zvY09+zVe2cjKobfTm3/Y3hm0K9V7bkf6bH535Jo7yisW8dsd9XtqkMwkp
yj6I5xFztxhqGhneHT913Uh8P+Qdc/U8iHB9rywlNhQf/UZrNm6vsQHt+NHQ
48g/pG3jU/qK8rdtv1mPDh+TBP79JxVoEK5cnLeK66y6O4ecLG0KiPLFpinM
v+H2/JwQ1M+03yVqxPdl4q5o/E5cvyQESW7vRnG2TYeSFcknDm3zeUVaSM5+
fqtuNWSPL05NyLw8cQY2Tr7Vz8PrCQpuZ3F83Cu28XtL5nsisMZFF8e7yEsW
h3A8zRbyvdpzppHou1NmgXEi1CBcAcUXrTCxnzS3tYEzIkNiAsn3cau+dArF
l0TTSMNcIx1okMkSxu8KDp1+/Y8TtT+9UlxyfdEO4kgqXd9R+5SyOG99vD7M
veSWrXIKdB9J8/sgv2cwrhWjj/zPzfhxPpc0dTjq53tkBPkfiUKdtQOorp+t
NzrE8IQNDlQ6lHWhul7nlvMo1mdXJgf/N++fEkTkv9eYnzLJGg3sTyiHz+me
Fn5BMFme0/ovn9/qKXEdv9smcezimtlrgi+oNgbr7bqS+dtMhM/IRBoZ9X8g
Zm3K1LDe7i/T1J5GOM8mn3zmlBFC4sD4XewHXpnItD1D/HeOtIQeHtwg1Mye
3MHnrgtEPJITUXsR7W3KGXyyJD6fkidYzsph4FNEelgguhHncnBZVTa93R2f
iza9XvoGEB4x/nd2KO8HIbO5YC/GjWuUF/kryKDN0xgfdU4HIpinEue+zcGb
TW/kdiO9uh9+bO8jKhscfrXNRB/pVZYcg/FfpD9JhTY83F2CwJhx8NA/hHf4
X9y9/IwMDg9csrSn7cBjrG+HOJp3nxfkPJxPto0fuSKn30x4BDfb4vnVYKk6
4oTmkS3g2LDWmCZ0nIp+R4PmsWW1SXGligL6zcVZDMkpsGb8STI4mwoNm6U3
OSM5W9TOTm4ophJK9lM3Mc8efi/o/PE96EcFF9gZc4gdvZ6zmOf9jlf9Y/B6
S0Vjy3G+l4RKg/Ms5se1uMWyCeF59Hb3v/E0EVIfGGaxf5DofD5sjHheERFZ
ueM5QiQL0zUqF+J3y48fqbhaD3RfovWi45hJjznsQ4QR/ifhlf4eVI+Hscne
OsDFDm8efmarQDw0zIV9cEDyxYKrApo5soiOoqFM3E+DYrl+fC+P+0bxjzWz
Z8SuKIIf41n1OjvvIFwn9tEba9VqQkGrUgP3/wHVkq0U4Zr0qQ9O0LUQWskO
hXg9IVw7yIEH9bOSwbvnihSFoHWu/oPzB+ZHJh9s0PyymOb+3MJPT2K3tduF
/c/m6zyahsifB0+eHt/w5ITFmxIrUaifPh19OfjetEPxa1FewZ+E6rj2L3ye
6m7CelgvGu+1h/I/XqvtIynYCOoLIdyE1erW7WUKRLmM5L8hMkHg0lWa5Iso
rwhI2HBF/RwtsON0yckhHp+bd8PjKmrxnMHrBr9/RnWcny8lsnc+JeFxmZJy
jJMRHsMvWMS4WkvY2T1IxfPi/3JsGfvtlPcfSsKJHkJd6gjgeQk0jbi9E9Xv
7Lr+Lu/e7YJSMYlDA6j/NcNBK9dQfWTyiiVkPcMGqmfr/uH66FOwhK4Gsven
TTfU609pgmxfUGcAsvfV2kf1GZtaYO6EyAHZI8akVpePbXJOKN/OvCqrIzkC
exX2l8TeSYRfx1I03R9Nw7sfWuW4rjxM3xmgV5ZGjMpZkPG4lntFwvA9/Qd6
Z9lKrxvBNYHrW/H9heBGmfK7qH0fg7JsvcBvwitUnR2P9+N8Odknkwx1JGbW
2/OOkPDhkUI5qq//LBn3YbvYMu9m6uT8jjgWyWOD7YLOcFnIAdmFWm9ds95W
LWhwjeOhRXbhdVy58o8Piu/52+s7pgXBfJrZ4R5en1zPZu/A62N6TacpOkuE
V0bEI8wb212jKfunZEhQZldxBEeIkdoyfwB9d8U1u0cbzXtBWx35zAsa0jXL
XTtxHEzmOXCJq4wMhhuVyvTfzeHadf0T5iju5AlOyxWieLQ4IXkzQ94WspX8
qtfQeAdqmb9PviBDzNrGue0SZyDre8Dja6i9U0LQdBSal3IRPtGn5lZw5fHZ
q5VoXugkWkcxnxRLgw9ezPeJLaI5HZjPzkfETBdeV/xjO9V7jwZa+M61/ve/
pDULkhDSw3f1T34kBKyp5p4P7ZTA/PwelFJF7bUtJ889KqKofrU7IYP9WBsv
mVEJ4W8nn/XrN/YRMnLmDhg/H9z+xADh/9oN29x5yETNDojGdrHer6k4iPwb
zfkXuaYZQqRkS51svA94SUXh918UN5vTOWmkPXhBM/n8lb2o/1vC+d7TI7/H
8PlI2ddJdojKl/IRQLhRny1XI/6/8HmBGoZXNCSt5s/ZOL5/iLC0rqsig0Zx
OchrWMCMFS8Rj3i7aqL93R3pJyU/7uadJE3IYK1Mt0P66dAuHC0g1AYucqWp
F5iOk2pXcy9mHJmHS4nj3z7MUsDfzTA57Wgi2H+ePBEVTIUcpTV+FzSun7RP
h5XnpojnIXTtsui77w1bmLFeyWTbjVZmvyMc3c47Yb1a7lDn34T0ahfJuLhO
/ySM+jmNsyG90k1zAmcUN5+1c99ii7ABtuCaBlzfZWS+VXZE/bxgISTE26gO
VfkezE6on3bvv32QqyaD10/FbZ83H4Huiy+TbqNxmVbrBjP2keGssbpk6H1U
dwyJt136Ogd7jCvoG7hRnuydbRYaYg17v/z2KutDeuKi0ZVe2wUPqQJlz7MC
wOahcP95Yg4uvJhc5dH6CHYuPl+OuSYDh2Pp2TsWc3Dvc5Uzu/EQzJ6Z5rC+
mwNMLueFE87OgMSioKiJPAUYJp1SXIqcIW2F85bmGhUeZZCMgi9QgPFm/Pmv
kjtg1aVIcArlq7XdMjk4/zSr/SZuUZNCxF2K+Yb1MG+GNRTzJsTcNfTmfSPx
xOagPebNWlmgbAHVrT2iI583ndOCw/6LyRyIN6VSNYej+j2QJDPmm+PUAJ4d
nEdUBObgw2q41FfzDzBw5VeJXnwtVPzuzDzONA81O6efUvD68OHaZ8bHNpPu
l6aP4fjO/K7AcQz5ByWPr3sOZpvAfTX5bfnITu3+Sm+3RvYr9vfqju2WVlDC
uN4mg3ALq/2KUQgvMtCvfVxiBxbCNkfEEW48ZGivUkaBM6Jl7q8P3oQuoiT8
bz4V9j2N1zZ5heqFALOi60qRsBlYwmaeUOGX8xTfg0HkT3JffZrOi4S3Q2GT
ufeoYB3e/+3e6Ahc5xHY/jooD+S95h6nC09D3tYOOx0jCvzbUNSZCM6FxYVP
E6aojnO/z7vj6tAIHJNqk36x/ya4kgQCI+SmYd/S93fWSD91PxSbrvJ+Uq3I
OSGM7U75yZ+AGhSPKrjbQ8klYiTrDa/n15HdXRP5oMiA7M4q3US0lnEniP/j
rDiB9NBX7NGOOmRf5rzHxWp941VNmneQsH2VistKPkF4lM1Co+GRCcLT/Wwf
zoteD0vGvkQ4V3PTUNX4EnF1XlcF4wskr5DTYxQomD35c2AjFnR17Kaeh1Hh
bl3aaPhiIzhf/2vyXrIEhNMLLRhvzsOxqm33NnVQ4MNclzPh8Qyc9v05XxNB
BT525ueaXU3w/V1LrLDyGVLO4f3iuyPmQcvqw7VKZKcrAq4TzzJzoFDnL/PL
QCqktX4r+epGga8KctHqKrqgGxp4p30Q1dcNm9t+ITyP7mqdgdVJsPlzpK8W
4dm+7nJLqP/u1+vKLkVRiLum5p14vaKTtnKZC/H52dIycDnoF3EmaqEE779s
mP01+pJHBrO0dy53km3gsFKqUSXKu4ylNG6LFJKBJ4Fxv/lpB9Bmi4t2Q/ht
b9q/gosdwJaedoO99wL89jtYWMU8D5Y9ZdaPLDqg98ZkBjdcBfvX4h3GPChv
Yc0Y1yxoh5GPB1ScS+VIxYMPkukE50GtvJT/pTcFTn6hPxVXdBwaZGViz/RR
Iep38mqGJwWsFvnKmtM1wTykVvRVPxqXko8WzzkKaNAHtlxY0ICG7oyMavze
QtOsqAuSw2d3+HlOpgIMLf+iwfvswauibEe9KPBnYaAy0+cQTD/xmzNFcjS3
Edv8isjQrRDv/6DhJPDcf5eK39/W5z4qHFRMhltHUhoqAw2h3HvMZQnFo82X
J0asUJyq7f+asP+BPojQhR25j/Bu78a8SlTfNVfQ5RW+EgTWwLFduL7TKNwV
dR/ZaXhnq2TFFln4spZRjPMTj9lGaXkUBxujFB6rrmtB5dmj6qxITvq1EutR
hPPrCo7YhmmTmI4yvVhC/nA44VHLNyTn9Q7d9fePf6qON/WQsb0/8vCR5EXz
yz56sv+v2DviZUnWMM7fTk8yLJ9GOPfoM1YfwSni0qQfHY7LdU9XWZpzyJCW
NFOuvqQPYf5WwpuQvd+afcv2tYAMcs/Ic80zplCy7qnih3gwfHRDch7Ne4fV
16RCdiuQ43Z/p4vwxb1xhSGIn8OSH5ofHTWAkJpvGYuo/z56rVy8KA46Sr62
9S02h7efVSN0kT3uY7aLNnpMhreFhTp/LtuC85/u2X/ou6T4yFH+LDJkVjnn
fNVzgMQqge/p+H31NcuDCmYjUMQfX/RkoBbe7rQQTkV+oKHjLbvuEzIM9wfV
+Dwzgks7cq6ZofbsAlNl0wjvrzAaH3E2A5qIHA9A+P1OPpcdqL5WmTG/L75r
H9hdZ/mO6+vFP4vk+6j/YtTPPs7i5lBvbMq0gPq/d5N0/qgpBfY9bokp4rgL
A0f+DjwZp4J016w0qwMF7B7YugpHJEEg173nFUNUOEBXz+VtTYHB895XTgo8
BsPW+/RPhqlw/8fb+3LSFIiu/iz62i8MWhTnpTP+UWGbxr4FZnYK7F5kO2zv
mwSWfAz6B9inoWm38UcSPwWSW0NSamgzoXZ7+a9xumlwqX1l7IfmUf26kbKN
8HZY8RJIx/WyyGcVOy+Eb+oLTywU3wsHe2a6MC5wapd6IqqXZS1u3cnz1YGs
1MCJDDRf/lzH77Ch+W2Ztx/NlTeC2bMerTEIj6r/lt2O7MiJ90mQxk5zsAx5
MQXIjgoWF7a3nEX+5+r9XrFAYzhXZJI5hfDzFd7VL1F7ixDpMzsidYHOxoPF
GOFv5nqnM1E+eYObp+eQtg44XNHOaEL55F6e7wP8CKcv2XLZr1QTeu6l0u1G
9lg7Vyy2iOzxCl1MjVWXJjQEGRR/Rrjiqe+vbyA92Z5XfNbOwAy419JPr6J5
PHCjfmc8wtnvF297Xm8JEddWpJcRvpbGFxNziwKB1zbHlMmkAGdkrNWBJiow
DUyEfj1BgSNDpMd8ZyPhWaFb3thPKmzmeiKjLkOBnUW7T0N9HHCZBroq/UX4
AYPVcRTfr5Cj+0PfhUGhyGDpNhTfAxzr/x10pUCf9winwlIE3Cguid//mQqf
dgnt9XKiQFNpFmMMfxwsGKtuBH2hQnFdpdp9PgoI31bbKc4SCmzOr14zM03D
l/Vxt0+Iz0XJ0pSqueOQYmuqM4J4O838LWkL8m9HD9OGPT2mADGmh1p3I/xP
cXa+KvIzf/gn+69p6sARJWHhZKSfrs6Xnt9B877s2EnuXaUh7d5nM4XrrF8h
z3jknncCA72AgmH1ObhsUt7PuXkezn7fdaDuPAUSO0PjV8j2EFLsVc2A5kXu
kzhVBvnJpHQB+7hMG1jhsQ4rQ/xHf+wb6nehwI+U3zVSHi7AyxjtswONS9zf
kDB0pAAEGLsqZZiCO7RXuyI9j5Tof4jXDe6qfNm1Z3gzqa+x8iX2by5KjKlq
CE/de/oHobJGOInzluL850KjyCePy/Ww+drTJD+OVeKmmkAW3n+s0ngjg/9v
vly+Q/in6G8i35Pxv/+bt4hGqNeh9lf923OXfL4SmwuPe+D9tYx/eoEdvvXw
pe2cvp69GjCx+w3h/wex3mpJK1wfgeagzCuCmrdAinRShHnPNLAevBx2Csnf
8/GNsrqnIcTkjfvhPG3PQsG7ruv1YMfysidnfA9s+vWiAd9T9qNnuOiM8u2Z
L3HxTJ+cSZHWVWqpyA//Kx+Zn8D3uFMLFCKHNpO+Hgu0w+tsZ+nrpAywPab4
io0K/iG6lCwncL1fvr5XKIW2Ha73LT70tzlCes30V61p/zx+P04o+znK/3On
lVe6zoB8bMviBzS/Bdscf5Yiv6TRsI2d0cUWjN15X84g3Pti8mWHRQr8fE55
oUNNgVqyxivJKyjPv3aK7Y4l4s15iI4ocoL1yWFnt2fzcLLP68JnVH+93k4X
Z2VvDzpcnPVKSI7IW0fenF8jYMrlmbmt5hrcMtrvSxGaBmd/9o84P3fOrkyu
emMPomodFbiOoPlzJCjbsRNk7gvxjbz1gPt6U90L9PPwhja64DKy6/eCdTXW
oXYQMKR9YAjplYKy/9NfSJ9f0V3apiBuBZHFf/1CUJwtuvDrYwyyl5OrvNPP
fB1BRINDNRH5z12Ln4PGUNy8/MRhLYtgIj1VyvA3QrzZ3vIvlEbz/kd9lLR1
Ew2paXSAhP/nJZAuUiGD181usXYKuS8T1revOGI9afPe6bkH4QfZw/e/vviT
0IBRGryfxb/3mcBbJMfwiMSXC5v6CMWWsRisP4+28PuH8nQBt3XDtlBuPdLB
4catqaiOyKWNmZ5xpoCks5CforM1eF+7zlGO9N+MZLj/MBqviktzQ5OkNKqf
66yZkb30v8udF0J4A2tTX72cMOxWGU3cgXCu1m66IbEO8JnVo5PMlCQFiyUX
nOWdB1Kwgogy8p/2x1g8m7RtIMLd3f0xsvfLkiYkvB/aGvTsLtPFOaLA8ZMF
HpdYwPVmvL95PINGL//KEhH+4Uw43l9j6rW5HYv3r69r167L/SPoLx/5hu1u
JmF8Uh7l256TVI/crcEwEbir96X0NCSG2j4zx+d/Kj8HM2b+JLgTpxex/h9W
tkjD+7YFE/1WS+4rxIyA03Zsp9tOr+hLITze/XZ50+g/4mhcw2Xcn43BLfSc
LSjvVRPe/1csFDhT5vS7U5D/tPdPuo3qrytBRZ9EBx/Cm8ibR5jfzEG+c6b+
+UPd0MPJPSCs+gzSftYZPcmagzMsugwM4l1gYms/urejAmb7Ba01KubgTyyt
gXggfsegXO666CLxMC06F3/3pUcQ9zGES0z1b+01XSbyfVZmcT+Vg6zyAvRQ
3lKxp2uALgF+NjvJXvwxB2qDiZH+Op2w6s2V79CTCJKrfRsvkd66sUzqyjzo
ACNu5IYS7sHyt42NVg5kv+uH7YKeUqBe5qt8kmsAVLA8XLYvo4KXQ3zwRiHy
/++ch8JmgoBnhidzuZgK+hYUqY0aCrgs0ZDtGAJhIJw93BnVQZ8Y+tjuRZOB
ReZ6xY5PLnA4e8XIDtV3XBQ/lkv3yLAutUPx89VzULPs3KWEcBM9/fDvCL/z
IfbRsyAfuDla91MU4f/vfQ9OcSFuWRTvgq7o7yFv+ADH0ANd/WYqGFKKvpje
xHq7t8UwIQCi9C2XOhE+2Df/xRrVm1MsjsnHmS+D5MIFcTp83n587IsWwhdL
m63iuQMhFew98LqQuH6metwNCkgd+1K/xfIq7JR/NiPVSgX7zPmz5AAKNHrs
Pte9cgL+MQy71OL9vnwll/0IL9cz0JyVVIcv7666HOimQpVsJ8EdSQbr0Skr
s/N3IDHKTswFyZ80PvBveyAFDh8wFxCluwVXyjPtD3dSoUv6cAaNPwVypJr5
nK9rADWgonEGyclmKd014keBioVvP93va0DTheYjtCgu0/R+8565Q4bwjh2a
CvkRYHFEZrIAy8+JXFV0IsNNMf9Y8+fJIBRS/bJ+Bvm91zNLWii+C0jLhlj5
aQDdzgf/tn2kwlAms7zJFsQP12rRxOpT8Ncwaiv5NQeRdnXuZShu8nd5Llxt
PgEXNmk6cCH/VkIM/9yF7H2fYxXdvhh5EDHbMOFH9k73auCvEfK32zzWE6ed
llQbxuTYDZG/3aCPOG6N/7dIk5pLx70NFqNYuxyQ3jr57tvyHOlzqSxHyaHu
JUKq9OY7vB6ry9f4D9u1kZsC9VDUD+KK0dQwtuu2tz/2CiM/cHL1TZ/t5t+q
gaJO+/B/M6tUS6X3onybbsjtOKumJpyVdzykh/JtrZo1owBs7zOSvqEWE8QN
OxUKXj+syg1xwueFeAxdrRMCxwiNFH027Aceq8R7lCD5az89vxADA6pMU19Z
8b0eNl/R2c4HZMjIOZrZcO4kkKyet9OiOjrVy98cn5+5KOTuIu3wheij83yO
5Vi3LNFT8P1WicnUVdl0wkp4AvC+v44bWdARyekNTjL56ngSpkypz7YjOYzc
e79WJ5CB9ozLFh09TZCOvaoVh/DmkHEZvD8bT6fzzzDpMyFxSPwVlm+hrkBr
inDHEoOp3bS9xBfuFlbsB1LMMgrn0Hdpd6mqUMw6iDjTxFrsJ8PleS+/jCPD
z++ffa7xaYAlz+WiXiSf1mJHoFEg/p+pifqOAz3EKmeYKJaT9ttJEu8rmZ2r
sM50JhO0S7n6GO+MiLZZxO/0zmaTHu34SIzU7buJ5Rf8sF1OQnbnw7P1VW6i
P1wPsnHIR3a3dMeN80wI8vM1wvStr6/A9k2VjvQfqGBRnRN/AdnL4+C7h3e/
VIOnbS92/EN2JL5nuaEa+YGsuws3r1tfg/u37I9sQfqcqnSKkeMqBdRv5tjE
r4WA0QPBXot2VOdqnhKYRXax6RjlyZ0oDXDhsK5dRfaymbpcXIvsyGHyiPi/
enUQfw9i+L7DHqXbjXRI/11NM7kuPwgDl5q5Ivyutfk+zYYFhK/FX1DVatQA
Hd34hHSEb9ldS9vtSwETrTWLp3/UgUHgg6UVshepISO3s0j/D7kcU2/4rgj2
Yl8NqMguyLtPhzzC51Qrr2lSRhaIUUqIP9bbhw/l/ORRfN/VaFbbE0gLC0uy
w/g/Jrwsu0IvoPbJsuAbpDpOMLGFrWH9nN66ZyEU4Tk0RY/PRU0T4WGsThjn
lnCRCcbn08p1lT4vTqia2vSS8b22GtoVvkvJZLhoPTv56vxJaPTlCZnF5xiX
yDz4/4D9tJH9s7QUIvEHx3/7CPvu3d2O3/+8vxIsfYVUrKrH5X0f6yfLxJkw
vF9Js8rlxpnWT1xZ2TT3X/uemQ9YD3neqF5mY/5CvD4e+hLj1RHTp2eQnKPn
CwOe8bQSB2XL+rA++B2v6tVH7RWbfmqHR3QRjxn5AOuPg89EhTHCf7o84QoQ
+UgETc/vwrhKlOUEju/lb6u0ZlN7iG9xHmFYTs5hsj8btQOCi/6cfiD1AlZJ
7zLT1lEcoar6NaK8fWJLpHybiCRcNha7b4b8z6+sByHjxa1gc1u/qO3ZG9AO
p//rsHUe7N98y2UqIoOlkIB/oJ8YCBft3iaB6r7PZ5hDZb3qgcOb9eTLBQHQ
DBaTrkDfba26qHguoB58uKS8NO5wgHYJU6wHwr3PZz8vPYvib4OB6ptaQdCO
Gndtw/2fe1XE8YEMlZuvJ0R9PEwS9v+xsYMyB+nhLJEur8jApZz7btKZn6T2
7IWsDcqf24LsJMtQvRy7EWp77PA98Gcw7XpBoUIEz9m9u/RRHeT0sInJLBYs
Lara8qaokJq5l7PDjAI3NVvky/fFQFjyTeHmMSrcDuqVSFkdAdWTAXz07rFw
4YaEdTbK8z14flmzozraOpA9JzQ2DuLHvP92bJkGgdvTo24qqA6iTT1seCMO
tvcPTKn8pkLz9gLVOnwe++Qt1lKNMMgMF3Tdj/Rf/cK1p7fdUHzv8jwbp3sX
onfMux4dRPovHcZqhurWdrJ89I1zEaASXHMlAfG/5/SWKDdUN60yCNpkTdyF
LxK6DPGoTswDEbE0lG87yJpqJm2PgXeV147zonz70JGK7e+QPhz4H13nHY/1
9/9/QlZlREZKdjQoJOs62aNEZlZI9ohsISOphOwoM1sZlZHqekVm1oUWpVxm
LnuFiN85V+/374/P7f315/N23V5er3Oer+c4r3Me9yt58hdCN/HbmbvG0XcW
u1KHrAsOMH46pj1eVBMAQg7Xgoah/ZSSeHjc7BBgwvk7cP68B3Qq2IwMhaeA
NrE7XWiUAET8nwXkZClj/nIUVncGYd31S/vGHPSTqr6BkJeBJ4CYUlKSLLzP
vhppgxxoFzqUtzi4+xCwj1hxdoX2zSmO6wn+sI4Sle89YhsPzFz8NT6RYD0m
c3WgFcaxp36cbx70egJvx5KCgTbYd1ixM8dBO4v4ZbM0Nm+gdHsXzW9o/9hm
P9AO7SeT7FuvnHUHu5Ma1X9AO1PY/L65hwSgshnE7qlmA66+yHfTRfsYi37d
vQDf3/HHFl+d/C+CNYqvIfPQrs8YUmL1mABGzNt4ipTdQDLPiJI67Pel6ev8
AlC/+Sl1tFplHK+wdrISxYfFQ7V6aF9HU+Hnnu9+K/iMG1LFyH7A5sllXmhf
IXwWfCe5imek71xH9WQEm5cMyl91oU3V3xx78GyGseT9n/gTr0/qojpzSxa4
P23AG7TWyqP39PBGfDjaF7eRSDF8laYTn3Ou+hF6Tz2u+NujvLB9IGctSagH
P6/2Joy8zzM0vQjti1Nz+roYY9WHP/K52BXZh7+PvE6H4+Mts109ifcCxLQD
tktwfD4oC4R2Q7tR3QNHqlV3IHPK+9A3aM+s5bSQuEEEdfV8NHvLAsDdcPq1
dphHBqtcWmmlCKAZ2/sjNDEJrEZHN9nBuuWXznIM2l80P+nfyy0wgw999jwM
jYNz9KGOA+g7js+Km7jXBj7PM54O9Uem41p96DvaTfW1rxaRXfiT81LdaByK
p3hK0T5kutQz1nfxffjMRWPyPuRdC50FaF/o2FNbJyfRRnye4eHjaHxe6p0s
WYDPy+Yfp3ojsh0fdD8tjzwOYQ1JYbJdQAJ/4EDx7wegJpHd8yP7HGA9v/27
+FoHeO2XHcvGFg/zN2XH4ok50HqrKsqzpR2ciuQKF88OA0+6vX09FebAl1c5
V+KPd4CKApJEU7wnlm7U+nb8FIw/h3rqjrk3AH/ncpeRWkFAXWxXkAv/r/y6
y0salwbA27kj2OeqGAjb8ZPqLeofZc+dzdkB6+dfRl/Pno0FEq8SUp9yTYFf
GlQTb9eGQGuaDRWt2z1Q4crqs8U7BX5MWTxC569botYE4yfW8J7dr6nQOPDU
P7KIhe8ppZ2+y7KSBKiZ6FMYgvZ7SyoX4xeGwFTwot7T53fBaqAy3wPBKTAf
nr9b0oYAeFPqe38T4gE2/+0kcWYWGAeGKOjCPmV9uks5sOcB6GfSOfebGtaH
YfKf78UTwJljdrpUY3fAkRAue0ZYt4x7qFH7wPvp/0pz5fPoMD6tCBtA83st
4OIGC6xX0+NTN4FtFNg3XDbW/+H/1glMm+DxC4LXGdJruXbUZRJvnHwqGV1H
yKHow2AIAZwN4DbGrsF4e3wlUhPGgYsbq00TugRwMqTbWJoiEfiQUpY352bB
nMb4nsnNIfCNR32hUT0GtDLRVBkdmAJvuq9X7ob+/D5Z9XTNS19w4zQDuzr0
2+9ig1ToO/5pV659BidG8VfEOVvJ+yt+jZ8PXx4CsU4HJi56RQOrwlszVfxT
oC5+qFg6gAC0rwi8PJgcB8o22M1X4f04sGy2OcG4odSFS4jfcxtkiWsMmCIO
1wWGWZSXV40D3ZL9G/FLj9oIyA+/U3meQHn2tvK9TDdOAv4toCTvxxYzIO6i
d2sAQaUpMutvhEHE3qPaT6Fdcyb3cBjMd/XXGx/Z8x4D5kJjh7qgnWrm292j
wgSQr/GoSpffBrQnHNo1/msWiFfdPfSqkAjm+J5c6+5SALcsTLVMKkggoObT
hh6sx57LlRcG9VmAkM7zjtWwHpt+qk+jBPOOt6R73Rj+EmDxGFLcDeero9lT
KuJwF/BYmMyrvG+IBTiozFtyzQHHHRGKOAciUOOKolNadQR+luPxkTAf0dzI
eisD806q/4unGuesgLidgU74NxLQfPt27QccZ4k/qxeFWndi8bQ7ltH3gvAb
ZhJo/dBkauUVpQk1Fv5tfAatH84Ze9qi8y/urEcid+yhwF570j9Efl4plCBT
C+2j0e8zrXIosGeXdBxQnxJAf41yGsbzvWNy9w5/tQHvmnLDUTyfGKXpoYa/
by5Q403lmsKnpH5cQHGmyaQyLDaZAAru/TikUGYNjCTE58SgPwtbHJNiQvVe
ZVNvzOQ43unK5H30+2b7CJwFrNt/h4xGfTG+BAIIzxm/w98/7f21dNaOCLiE
627JV1sD4bDPnV0wz/pxxmjeLicAzm2aBt7naiAoPOcP4oiVnHpSdRJeP9j2
29Nf1mv47UvX1FD8X+8W21UN/SGmq1ZMZ3QWv572g4DWhT7Tv3KcsiICOvEs
y3ZWTbBtf/Dg+R+wnqestEL6jedXWr+oJ33Ep1U0eaLvhoZXXoLaG7AO7O6a
tTomiOWdy9jaKp4Dm1ZjRJ5qArDdm77DtNQTXI53TKuF9c9YLvEspSMRFP88
K5/EZwDiBoIZWeA8Wmd5OxbCOu3uy8MFhsyMoCudYWYv0qe99LPL6y0B1MUE
xF37xQU6K3NM7IfhOARW5jvA53IKEak9SfLHm36NNkHzZSVDu/5mnAAuHV2U
69I9BpqpgvDHYT1gURVSj/LjUuoViwNKt/CurNLkfY/fvCePD+B6QJf3n641
YzVgLGUbukmYBXIRV0Qy0PmON0e2KgJS8b7BYldQPV8TZt9+X6sXUAg27GPN
sAeyVFfdXEpgPXnsjv8E+t49+2AtN68C/+XYrTLkbwYKrzW4Xn4CWQbe4xzZ
N0HBLiOej5MzYPRmdwMXJRGc2NPRTJnmAYr37+3N2D8FVsqrDDFl2B/Fxg9f
nRMA+lkdq2yLJKA06XErANaBxUvTm7I/NIETXwD9rnESeHE2em4axj0JRR+P
sakZ3EqpzotZ+B49FHEz4YX9kcuw16fbrqO4pXs17GGwrnve3zxZA+OGnGGN
fabBCC4q/+6xMei3ifZXHdB5nDscNx8ckojBO6YHfEPjyaidgLOCfpKlwXvT
g+4g9lPQZBWtVwfn5D7mLSKAwW+0JzNv2YA7JCrzUjhfd9YciERYN0aVFN3J
l1QHLfcMvTvg/D5zKOtQhfPu/Wq6nXBEFcy8Xo8Y7ycBV4fVzT0wPuzokrP/
Os4AJsyfS4/B+HB3dNfEU1g/Z8qlRw7uOQcYfn0O0IP+47gVyPzsBQHkPpRt
WT+tDVzmDx7/A+1hbrnaxysIYNYjq3/XFTVAd1IxBfHs1hRKF/woh4HEfbbe
wztzwctg04MbbiSg/vPFg3dORKCpUqIgPSYLzjV7Jcx+IYES87X77tAucX4j
hP2tPFgtb60Qgvf5UkSzITuwAdAfZM2+eoaEvxrZkYL2qx++PjSTxvweYFwc
vMKOEZg/g6nThsEcyOjkJUpeagX50QbaWob3sSdCh2IPOs0BiVb5QEmbH2D/
q30sjbqRQO88+3nZkSlw1P/FcQ8dImDtl482/yMFKKoCq09PwfdaXfVCKZzH
jPTtqCfM0zi6+CVGYTiPybN8ByxewzjM9L3pFkkPpIuUSyzB98K8qjZQu44A
DMqk2kou6IP7uBs1cnB8uk47SW3mEED8ksMLnnUboMA49TIE1pOvvtSuzcN+
1rdoyXlvyEGQ2EPrmAD7WR6J5fd6z2E/fptTItXKCoxtNuWLwvFkXht+XpVH
AMM3iz7hJC6DE9kcVYfgdXYldqUZwfjQl40/4M1PjR35JlCC1v8Tdl78fhJ9
n61imS2bocKUqS1m0XfY/psdFTerCODR0onvv3nNAG3Z2dzv8D5bhsoFmaF9
j1TjgFmHJejduRU3A+1eYp4xIpXQb18yn9obZg2c7UPXveD9xM8ZF5Kg/VK5
Cdc3bmugQKL+YArtTzq0VWYsiUBcEn/Bq/AMUDGjlH4wRALDFikfYuE8HlNo
mx7V/IHfXyaHQ+cLrCbjZlEd2G/NFagcG4lvuiBD3k+VVNAzpHC9AeiSss4H
dS/ghs/OjiKd20LDXEN0DvT6WN50tnED/oSlpyraj1Ea/EWBLoUA+JWOgVEB
KnDJNJAb7WsKCQ8yaIXjUJb82bZ0cAdW4Sd9HcVP4+2wAJ8aAjDp/3L9jsVF
MPZBueMhfF7JUyUL2bUEEFo9ljNcfBEcXmOR8YJ2/ujo/CMhHYApb+rLm2IP
jK1iTOzKyTmg1OF/0n2VCBLMwcIPo2Sg720y3u5PAlt54RQR8D6DCobXNIWn
8VfSHj9Bz2sRO/bTB15fs8Sc5lCSJLDPM3e4Dq9/WmWHzwQczyMC25f1xSjB
qZJV70twPLvmdpc9+UQALT97dyzJqYACqs/O1j/g+7X4bYoT9r9BWt34Y0x7
wL3Vl3yo/+218N3ziqMHOI0r7Z94YAxwUoes3T7NgqC8WR+ZDTg+v1i+7d9z
EBjtaLS1GpgF0/joRzOtPeDbBO1mb64ncN1H+VHlzSy49qbNlMenB/QMt+ko
JpwEeyJmnlxsg/VG3Yulae8P4MysRWrdRiJYFau0StebBZtOWgfS9/aB7fEd
WLSzDshKEWPLjIZ9t3IRfUHZIDBNaGJclkwCH+I66oZNpoGS3+snt0b6wfH4
US/edFewpH2CokNlBnhYPVbZPkkE7NLz/XTd1sBliuXQoU1Yb7R9k5raTwQX
g7wDFeUNwSODJyfbGabAgcqMrUBYz/w2Zr1O/WIvqN19enEKvqfO07TamAcR
pHjQfWCKWsGViL7ZsIPxeU1zPz4j7AMIbcM1atztBSZuy3RG36bBLjmNO0vQ
DztbtuNNl3dgLIExiiiPHHfo4P/YAfujGyvPJ57eBGfDM6KFU2EftD07lzJC
BLKS4qX8u+6CQ0ksQ/ejSOBK/c6tczxE4HB7uqdr3wsQ0/PePX+aBFhsxHeb
BRGB+welIuGZElCiy8ysg5FAHFeSFNr/dod+MpzNsBunISbfgfa/zb4qOG+R
TgDnB+lOBx8TxfKjY/Tvwnxxy6+ofP9WHrhDbSixNOCCPQt4Ysm8Pgdk3xfl
OtcSAUU8UHrs9hRsCUSIUSbD+/TJVGWaJQJK06jX7OdLwL5Sl2ty3rBfrmad
mYL5wr9B6fS96XPg5mJwdBPMF2GOn32kSwmggy7L5n2rFUiyasSUYH6h0+fS
bdvugn12qG3rWVugV+TExrNrDvBtYPJC7ztBLM1V7eVMc+xh/PI5Rt45cOS7
RF+RCxHweKUMFIyLA/Y8S+LzzzC+ue1YvwnjvPnU/WCbShMwNUrfxAbjvDfX
tY3t7WZwI5DSinWyCcTqmIS83J4Feu4irGi/tND8L6ak+WT8x0wl8n7paPc7
J9F+6Qu4ohvsH3LwcYvYFKorHHxcttF+6fxnDirZWhV4ujqtn6h+kA8PGEHr
Hh7X5uWT1+rx88yPv6N1D/bWUTMzxKU64KJHdfAbvvG3UAiKn8fee6/XCTcA
PsV24SF1K+DlKEgt+RT2R9LXb0QENQDLnPCqfUfpAIvU13UetA4slGSkB+fR
KZkiiDmlEPdOsTESxSXudtoiU2i3UfxaOc24ged3vXcc2beY9dUqYF0aThDl
sKrSwm5ETCqgunR8yPUdcxqM/76S7nq8jADwPSdWw3m3MuuRvv2iG1Q/Pxt9
X9UWrK5Jl1ZSzIEYYY40AsxTM3fxAodFLcDpVgFuBuj/i95NvXhYn9iOrKfY
7rYC5aSWY3Qwv0jfE2OQcyMCxjJfvnsbliDTPfpC6ScS2N4zGxoK/UH9+fvd
WZY2QP1AdPhOWN9i0peH0fpqWRbXY7MiGszMNuYqGs9w97jdtxAf3JLukAGe
AtPXDbuP1kVjrZbVEY8gue2AisXDP3hW+tCDyG76Yf0EDxwHnPhgN8PQHN54
9oYr2vclSae2X+hmAxhooXI63CwJCsS67iB9Y58pt3218Pc1o7ZM/IY/ceM5
66+RvnFhbLW6uysRXLmqlmEnLAqGVmoxSehXBzxLjiOOG7+ldndmugFIXtTT
Qfvbr2rrykqGNID70X9+LCpzgusD8ad2o+8ObPzMh98QQOlbNiV9Ow9Mej1e
twXmcetfdFfQuusM882Vb1g8XiRdtQb521nw4zA6B21WwBwkWPAQLyjCdQbZ
Paw9aW5AO4+3v7fHk0L8yJBdMPLDr68ng/PR710V/Nn8a/A0Zy7uQ+NWQK0n
sQntGdwCFb6TnfhcDcEZpJe7/1bKjBx83/lamNKeec7hubsdvsTCederzBFg
hHVjbWDvcsS73SCy6YUFOpfE+rzN4Jd6A+hIqS14tmIFHv2u0WJ4MgdeZvm9
1Nwmgj1z0YaEdw/BlFNmxaonCdBGN8wWbhJBHpu8k3FdNlD0Tvuy/xqsA58W
jmARsI+o0Omq5pfEFnuscP1w/D9ThtxiLCaA+pRicasJG8CgPWUSDeOAyqdP
g4GwT+kbbLnz9iUORO09qZEK+5Tkn1kUDoOwHpgFbUQub9CRahVv/n0WrFyK
rp5ZHAKJj/aW0u/0AY7lW1IeglOAuqt1Ce039h3IOTV1iQrLbCpPR3m5aGh2
XG2RCL4fJl04kZAIPuKUvHODSIDa8ObVsxQE8OeuffHnkzZA3JTvOGFjFiwz
bGrr+xDBQJmxOaOYFagXMHru0EMCWVdCDWJgfXuIrQ6Xn2ANNBsrx2NgfVvB
YFPhYU0E008UDT4F6wKto1veq99J4ETw3cb98L1upGJ4dmgnPZbbXteA9mux
p4iS0HdhA4FDFfHMFNjHd1g26uMGtyVlRKCdEq/v1L6LhM/36KlA9ms7wp82
Qv/vj0sLUro2jn/NZKOJ+rviyrcWPSI9oOVh5M/7ko7AudtcUOzDLOgXFrE/
APvo45kfT7RfNAXGqd9mk2AfPWpPXcs3SQTnF5sDh6ZjgGJJfH98BAnEbNNn
p/6C9QbTKw0ibQGItfEVvAjnMb78SrACrCe9lnd9S/XmAQmXGQto4XttP+Fb
dl+uCyQu7fIoDeMHxPR0MQ3OOTA2iafldiYCHQ5uwrG75sDAm/Xoc1iHKzVV
XNaG98/xJT4XY2LEps26XiMuvCPb070kaJ+/fcJYbXMV/8ZUbQqtY6ztd9mP
1j1e7z5GWjy2ji8L1P2C7HVf+8PROVySMn/8hwvL+M9fRnPQ947vCvZStxyG
QKn0HNPtCkvwO6eD8DRgCpgkRj5LQ+fgfOhNDL5RYF12QjfR+3ImwvKDP/ou
JkrJ73GNEku/O1yN3i+R20HijkNDQLIxrORNUDBgS3vX80V8CrALBl9H5/EL
1emUFrQ38YWpQ+Tz+HE2K0t9MI93hOzH1YEQsFkiedQW5vFPcTWtVi1EoOVB
e/ddWwjw/3MwcOdD6G8p6eo5pZ0A16paZp9jj9E8dAr7cmgO2C65xSZOdIHa
p+0/DLWNwPmBJZvc3TBfXN0rbIMnAuvg3WkJsZ6AbU/xTpkcEhj/evxwO6xD
EuyYuv4s2wDbynvKF2EdUvm5rw7tFy0Vl5zfrLgM+Ad61WPgfHl7f9/76Esz
mOt5xX+qvAl4eAxK7aOeA9e/7iqclekB186ceLAdfgLcPTkZudwzC84nMpNQ
nxiwHdhmwEeLhRnyLqM+EZeRx26VTQBzT/uPXqa5DIwZkjWqYb+QqXeCDp1P
Oc8qm/a9hwY7+CqYfK5w4w99f0keERjPVLU0z8mBffvDiJbPSOCU9sNgtL/u
i/Dva5qrl4EW+wHKtzCP7Ok3vL+eSACcU8/0tViswJ087LMNyl/YH+1r8H4E
dH51Wt3cgdWv9Gqi+7E2GfvABevbpK/js7JXrYFGY8igD6xvXZ0d+Y7DPHVc
5WCaGukSUAqNV7CH12cvqPkRDuM84+/yEc9BS+Acw6vGD+N8zEsm62veRKBb
6WGEdzADRT7vXv6G7/sb1ndjfk+JwJ7O6GpxjSkwqtg5HfWEBFrvOAk1rhOB
TObBmpTJNBAbm+oq4QvryRYp10U4/kcvejR3ql4C5SLBoZJw/HV+qUZaw7ol
Tv9QE/cjC2BkXM/8A/7fZcOvjTXwuUJvE/dSlHzGE8S/vUXv9T16qq0PKA/W
CqUa/VjC54SzViA/fzHH4LYLrWN7CnvWJv3BC/UUlKD1pd/mt915oH3869Wn
O+2X8BNNDuzI/mKKUQr1QUFPL2xHaq/hd9Z//4Dyy/euw6Ryv3bA/Fqadis/
AGse/cW2fWYOPNmtf1IM/v5dpP0HbettfMa5jiQUf3bck70hTkMAjtPCuYZ/
msC9PXVnTYJhv8Zvea+FEfZ9Fhajs8ccgc8LDzPd37OAjbGTR8emG7xWGFj5
89kOdFWH2v2mgfdTtAmQXsRA6ljJh4VxvAbN0Xfo+uDmchKKe64hblQSR37i
cykdnyL7PkLOMhe0/876ZGXqvIj3/hh5FD3X/7UO/H/9kczFdk2nEwFf8fGL
Y6U4rCUskbqjlgT7dBspDzjvpETRypYQK2AV1PwOzfvQ06XzL2E9ueX2IvD5
og14yNnjMQfj2EXa3wtoX1akbMTv6xus2MyjzE10n87NbTu64Xy97BARCEpY
w787/mkCzRe/bLiWsek70PnqOQvP4mPsZldrcsLDObCYcqOIp4gAYrNEGaWj
+IGSb9uLCpgHjaav4Z8iTk3In+TuQDngO3j39Sb8v49T+P6g8xH1HcLdaQy7
sVSdb0Pk/dIs5w51QLv69dRQjlFWLJXm4hP03q1SmE+xovVJNZ62Used4KzY
5A50vvUkhxP/Uj4ByFa0ah9pswRfNqVrV1Ed3jNqoV9CAJkVAkoZqZqgXUN0
wBbaOatSvkrA+uczIwWFJraBb7jKaoTOGfW77mNG31NKsi64o3PK2jrbSciv
6BRieND3hYpaIXpD/3S8Zd89OmRXVsBZIt0bCZYhrp3bhfiwlkEeFG/5TkcX
1UE7BdtAtpjLS7zhzzY9tB4bOpHtKA3z+OjWcmZxci9+zzzdZ7TOML85+D0H
1rHSOe8dnQ/sAHUGIvaPYd3yfib7QCms64xrlGLPxSzjafnpTqH1HPPbnjUT
aW2g7gqXG6VeIlYqu62weXEOGB2c3uKCz0thZr2U3SwAhBWVGFzh89anqzLz
6RPBTwr6zN9iGmDn49P1kj9J4LzuuaE0TSJ4GZlSF39GD+DZpub1Z0lgvopy
xQGd+753pNShmAFwfmH5egHWye/AEiYE44zVibg57OMR0HvjQM9l9L674y73
X24AQ1JNWM2lK1iUUcYNGrS/ceL7CB18Xuvoobz1VGpMsOmIL6rf2n9MebdX
E8A1lQp6414LwCT08lMl7Oszwnlc71wkgoe1ygcuvVUCbVE9m6yjJHDyT/TV
5+ZIh/ACpWcYDnzawW9AN0yCeTvCoR6Oj9T++bcrHMP49I0tO1T3Uv3+NGAO
x790evzcxoto/C7J9CY0X+d+aJ+jgfN+jnSv9GvQLG7lyu8pxNP81huQ6Ih4
QwzWNV939uD3bbs8Rn3ll6zLu0qgv13osOk07tsJrgORN0egvxlJBRpovCaA
vXLNW2KMxkDwQOrJFVgPF/aWdN7tbQe9H7n7cEdvYr/uXcDq5OfAdscrLhcY
t6VMo/R66TnAlRt+zCowbmNlExxIJ7B4LQpnwUELKI1bKNdg3RWff/sg4vUY
WdJTG579hX9hSFuA5r3Y/xJnAxy3G/rlChfFtIDDrGdfFRy33cb7I5vqCIAt
1zkhTlwHuDs+iRFD65BCuVUKVQRwew9r2eLGURDacHfvFLSrXXy2U6Ac+ttE
mr+2yGEgycbBjUfnJtL0Mp0IBCA+HHdUekQeRDmX75AfmgUuy5weK40E8Cuw
nk9T9hR41bD4oo04C7RczOJk6HtAxbHqaJZaXSBus9fS48ssmGJmfMU/TwAN
Ho+Diks0AKmsNGf06yzIlxB2m3zUA+6dDOFsueMAiEo11nnvZoESnsGI0aQH
HDvYzFvzwApMjpwYS+yE77XmxFXTqj5Q9Rw3weF9B5z1vdei6Anr/CCJ2K6s
XrA3t/1FzO9gsJAnEaaQMQv8vt09V499BdNS+2gVvbIB+/iLCVzPNEhTVY7p
P/YFiP64YNAZnAUaHsefqHg0A1z6b/F1ixLB/QvDRRQx1uC61W6ldcopsOag
XNG4C/bdBmG5R2RdwJqdoJEu2xRoy7hheNiTCCoZTScoGVnAM4prlXywPjko
1vLIDNYth63UGLJ3sYHC7nznQmifr9m7vgz7phLKu2UF8/rAt1Qo9BX0k3vs
HE0esE5wlWWr4CzgBpujMpVj0B+Mgj6EV0G/XXNbnciopsK0Xl8LRXHj8dmh
Gg0iETTjlIIztSJBc8B7Pds7JHDvdcHkrNFH4LPMdF3xSRLQ13S6lCE6C851
tXUJyRNB8rnG+2HrxmCvTMbZuV8k0CkRxoLypvIJroMmdXfwVFfUP6H3YsZC
phD13aFSeS2n8ltx09n15L6b6gI+fhvGpWXmBPthF3ZsnN61OwXGpbmFNU1b
6G/5ZjImA58uAufAY6dPIb9SbCyx/dMM6L6W6b8sycQWty6G7vKbA67zRuun
Yb8cx1pWP6qlDwQfGUyehv1yyvmBUHM7IjAsFrULCDsL70Ngdxu0b/QFR4y+
gu/XVjmDYtgJsPt4qj81vP47R5ZbnrBvUn/alaT3SAnQy45tecG+6cGC8JVW
2C9IvvlKwR5oBJ7KTVFLwn6Bb0BZ2GCjB+Y3H9fK957gU/S6yGzVLJgVKVd+
D+fxCueei+fo9wA73XuOtTC+KR98Y5bzhACYh0fSOdxtgJuj+AcmGD/rWC53
aR+Ede+np86aAvUAyzs4+6mSBOIutr66aTIElBNt/L75twD5Y6VXRIkkcPrg
gmiOAxFk0M1rHR4yBj2mXNnnB2CcfGzfvgb7iO+iu5yEH5wE21PK7MIwD1Ls
0WBC56kdwpk5688m4llZnl0lf9d7yB3qC+1cAfoas85Z+DcXpjtQflGiYmRP
hvbrIqIsWh5P8f5ioeWo/r81L6v+AX0HlOW7vvP3W/wfquc2KG9mKFxhRd8T
pw5blyUsfcM/abKdQ98TDYkyV/PQOsCLBgOBxnWcKOH1AcRzVztqvo7Oz/qI
JmaqjtTgRSX47iB/iKtix6NzuCNzuNM3hCiw0L56UXTedvjtjjb7BwTAIqje
pp96EnswtiuzE/rJ556RI77QHsk8+P3BHVoQEbXvcTu01/KMpGTD8Rc4Vq0Y
+8QGrId9Ku+E488d7BZ1FOaXbS89UqH/ZXD4COXBizC/CIq+OXgf3n994gN2
A31qbCf2NQrdf/hr3wq0b0Tuovu4oT81pn2q/BeqWxKdIr8swbol3U3pY/75
Bfxj4WP3UZ+VLnqIbRH6s+k+7tbPHjaA/rd8VSLSAd42i0TfGcUzuD8wSZPw
Vb/8O1C9Gud2Lnk3WuccU2fYwzWJH/SgzUZ1Wl/k0cOIVy7BlMtGnF/At498
6Ufr1WYb+nfUQxvApZPvNI5Y84HQUuEupCPE3JlljH6vmdr2PSyvH2dOOk3m
m6fqGsq/vd0ATj+VUB4UUAcDmmV0JfD3jfmXEkuDGwBz9ZNbJi3MwI5Vg8zX
vpRB7dCQRAChXa231sMuY1yCPmpqMB99jXh4N5OtE4z+dpJ38vLCZAKNtcpF
58BLtp94uTUi8BPOVH649hTwBtz1cHEigZD8+0n10D+fN4zZLu1VAYfumGWj
fVOUHCHMSMdA+6Xj3YUnsfjYn/mFyA8V3jyucIV2hvKnozu3U/Evs64fRna2
4ipjpK/Y+PJY/BX1fPywDTeZL2xlUHMK7Zu124sTjkmuwtNWzTeiOGYWpP+G
Fc6jDO+XkYHTnfgR3wJuVA/s3vGbQzidACSc+nQFy+Zx7p9q8uLhvFz3OWPv
lEIAH9iXFizzaME2224WtB/VSCX27FeYv8Z2b8wIJqqBF2m+bXkwf+UaTj+Y
vdoABn8K5G/stQX5B0+k3UP1Bk8irolyGHyJlr6TCbLBsJSO8Iw7fE/dw+5c
heNvSv8jElCrYfqkJ3RP4fi3KDMtDpQSAD6aMkDqlg2Id1WKFoNxoHSt5eCm
FRH8Llowf8B/GiTvk+tR+UECJO9XHeuI22tkUmdoKgg84wPF+2F/ZOFBmFKF
z3tD1vTddjY1NlbUo4bqvSN9pqMB0H6A0ebUbWNqjPubuQk6F+bUH8TID/N7
0z3Rq9ciLIF6vFBqK4x7Empvnp1/QQCv6vZeL/h6CfgH9XvTwuc9yMhYFbFA
BP0ESbrd+DhQFhLk2hhMAl1l57rujBKByKUel99Lt8BPL4lu7igSsCx62YjB
/7stb1E0G0KFNdrvbUfrSGkRVEIUK0Sg+npf+TF8AiCQXoTMBZIAfbCD/8c/
RBCBj/tzeLYAfBM7mFHoCvPIodO+JB4CKL18rFzL9zLg7syd41qbBboVycWF
sJ4Ry3aKyhKB43bRcp4fvtf2F6sMluD7LvU2JieE8RIw2vALTUPrrj8q53Rg
3lz8oPeYQv0y+DRb6lEM86bi1xMZurDfLHvgLTNffRlMuraspcPxTJCpXjgG
/VbjauyZPWbWIHiKsiEF+u3gsy8PFGB/kRqN47rtaAYiv71hVekngajmYGk5
GyLQfqEFDEla4KXUlxCf7yRQlHdgXRe+X4wn3ohIEpmxu48ORLCjOjxnVhDp
+33gCNt31oMFw1YnxFC/817oB3YniwDoPW88Ct99GWhwGiz3jkP/TFuK3YnW
u3iu5spnTuH5qxKJKD6o/7zU4YL2vSTJp8XR2wC1B2nPSNCfi3Ta7Fjh780V
XZVbNsbxpzX3e6Hfay7u54+4D+OSbMv5JfNL4LRg6Qekw+9Df0pI+0YXMP9p
zMO1ogq+Jl96y8Y2B0o55cLkrxBBSwXFZoyOGTh1VOBU2Dc4XwGOWkemYL8v
EThsfeQeSIn8KqEXTgKf/DQfxOwYBhpuBb6v9+cDx4eN8ivOsK7Wm/bsQXlH
NvHOZVpqrPZS9XWUL3adli1We04AvwWt90bVWIEGmUDmI9DfQq+GU5CQnvN3
gxrNen6AW/Q4pQjnhZbjUgs6p0Z1n3hqc00AHD8cK1CNzgl+9qmWsoV5VsSx
YIndBPTfrWE5OkgCqpu2h7fOd4OnY99uZt60BUKRqyMCtHMgorDpzFuOLhB3
O5y7YNsYu5A7pmnDPQc+5igXCOURgFbeAvdN0cugy+3xQSk4/vs1Sm5GZBNA
c9B2p/b+y0CzR8iwEtq/84tXHSoggIiRH5ZhbJfBtyFN4hx8f7kkUqTRfCnu
HulkiNzEPzQuG0XjL7RYzqtxcAhEtnyMqGGIAd8X76SsPJ6CeX3ghBb8/cP9
a+7neCixknO+Xmh9TE8F+KN+kIb75PY7uR3YTw4iNYqHriEkSZGSIeAv9NN1
RcgPaPVUWRhemAJD+V4fZoeHgLPqZctb/kHAS9oi6ezxKZDC/3Ou8ccQKBC0
q8GVBgPOSAtzRYkpQLqg0aCn1wnofWm/KM17YEsyUyynhOfAUhln2/n3RCBt
cCpK4po36Ngrrng6jQSGgx72GPYSQcf3r9Q9i4Ggm9/Brz6RBMprzBKKZbpA
pV758D4ffeyC9YeVa5xzoORUrbZCVCe4JZlrnavmhJmVF+6nEID9rFBxsebj
LtBDna+fq2QI3h49tHOQZQ6sHeN/TelDBE7Xc76+VjUDB177eGX0kMAFCtw+
tD7T6VYgMVkxiy/IKOJE4xkZEUyih/YbhAW2qZ1/8BGK7A3IrnBh4MvKajM4
rcP4xP5pMzho1BKvujoLTPMM2flgnNn3rLDbpPEBeO5RGXLMmwQePO688jCP
CI5ZxG/HpfMBwy+PNB2fwTgQ1nqqzIsI9OUZWXrlLEAsH/YzAPZNDSHn+xhh
PPn+uFDNmMEKbBTzCX6C8SR+Rq0b8YsxT5W1j3rz+FscjfEov9OtcpiIEQng
0ANnYgJXMBbWb6n4ahDWJ1ovzuhBf04Iow2hExcCwanZu3KgP99ZjpY5Cuu3
KUEanPKkObjv5qJRCOs37a9PtZHe49M3Fr5qP2kxW7olR+QnV0czKdA+dm1S
7Dst3C88w4EV8j52qs9r6bnQXmZpWZHzgBarYOiKROc4Mp+xul6C/qwv4HpX
bd9lcFr3liFah/yU0+uGOFwdt8svyDTRY6FN6r9RPo2T7/S4ngn7d8/01DjV
4xjNhWZ3r2oSEAKGoSnw/vE0cY84YPwkvtJbQPuHMwZSjVxg/TBre3agUM8a
rHD8Oa4P44xIncbiK4tuwKJCrZuUdQV8uGzBq7ZzDgTdDlxrgvfpKMdYEfuZ
Cdt1+aI8GjfPjZtM6P4lHztfV3pAjS32Ukej+3/zuMZZq5IAWr/2RGTaWYMn
ngw+V2HcEJOJEsiF/W9GebbsrIQVEI8428IN+x2K5MLNORciUCLwPF7sswQH
KCWyw2C9x6nclrXoTQQ+Wc2m0efNwLAzg0Yh9LfazGLGnBIiUEnkFK+vVwdB
Q5wTLmUkwP+kPnMZ+o+mvd3DzftpYI8B5bKrFwnc39jdfRr2WWVmpdcbRa0A
Te73KBo4DknOJt5LcB7TNjoxcYIFiGizaRWC85jLUSuO1i09/cSAYFQfXvb+
uWb0vOsxaW3N0P4WO+lnX7mI72R4LIXshrVm2ag+jEz41V2r+Qfvs8s7C/m5
F08jHsX5PiHPx8qTlFj7yaSryF54Xaaz8UQ7CJp9rzb+4jbGpjmz00oV1kWZ
kZzoXO0CMaPzbcQYvsBukXyu1kCEbg3pJEsnEA52ZC7gK6hYAbpOcru08fy1
DrBscyMvd1cIFh2RzDZ0cg5sSYZc/kpHADsv2TNQ6dgBO+eLes9+z4II+5sc
O+B1sJRy8YS1TXyBMRcjqocvi5x6eftyN/hl90xE5cMVoHpsSGCCZg68ol5n
rUXnOlmlY0ZYt/HBAa1v0POG9P1sR/w4r5cvvlxc+YU/Hv6oAt2PeV9gr5R7
Oxjv8Y7dxt/ClPcbr4kqzQHjxmAamY12UP+Tke+yWDhGGdhKe0d2DvolxRMB
pJNA6WhpazuO3xMz3oOet/AYx25k730z582+bxJvHFn+Gdn3E92jONE6W6TQ
t47OBTyD2WdZ9H/l2v/qtbLPt4g4TDTi0lP/6rV2X/2r15rj2xdz5WwHbuvS
X73WQ//otZI6jPZ8VunDGf+j16qy/lev9dg19jwK2QFcx5+/eq31V//qtW6l
sLE/DSTidAX+6rXShf7Va60v7dldeHwMV1HwV6/1SO5fvdb0raOU09WjOP43
f/Vav8b91WttljlSsHxyEBeQ/1evNUP6r15rYJ3+5d1xfbjJ43/1WiMn/+q1
5phrJp69/Rn3ceCvXuu7hb96raZDyfMmSV9xFSJ/9VrnJF6T9VrtmOYHImct
MXrzLLJea3lQGVmv9UA6KdbhnBGmoz1C1msV3e4h67Wah/KMGNadx6z8DpP1
WvnnGsh6rR91K2Yry9SxSLuzZL1WpomiLDRuMW+1N0qevcOVhzprk8+Jg+4m
tM8cz89WFNLyHrdavPMYsldme2ai86oMN3hvmrD14dg/+JDPq3JqXr2B7AMV
zkh/GLezOpmsP1yoTSuIdHj0us5VyweP4FK375P1hytZghzQedsEs3MR7xIm
cfm+LOZonEU1hzeR/nA4tc+elyuTuF9nxg+i8RnIJ1Qh/WHX5Efgfu93XI2a
wDk0PjszKt6hfcVTUVR3zcs6cB1Pn5DP51q95ItE+sMn5Bc22ksHcLse6Eyh
+eIVjTyPxvn061cH8mbGcLylPx6j69Sk40bvJhPA6nD1vifnLmEHZPilkf6w
LbcKWX84jfVjt0G5IdYuS0vWH34mR5mO9Ie5uYU/esyew+ik2bKR/rDFHn9+
pD/svcJk7Deviu0W9SXrD7vaR3ug8fwUTfv+a0s97lg3P1k3e/Mf3ezBnNeH
aN604mi9/upmHwZqvmg9p2vTQa7uZC/ueMkDsm62cXmlODo3YRfVinSzcbqT
H8jnJjbLMA30+0qnRAG982O4mt+q5O8mhMuXepButqhrUbOexhxOqH5wEF1f
YYWYRIDjgD8m6/82YBYn7KXWj8bBOP7PCNLT1kwQC84+8gN32P8lWU/bi28P
QOMsWJO/w7fXA5cpF3EPjbMZVfo99H1k8hHzCBXLN5yUvP1bMg/uXN3rETKX
rSFrf+UCLmYrRBhdPz4+4TLS017/8ej+c09L7IUqbwDS0xazJukjPe3JDduR
dTkDTHfn4fNIT1tfQHsd6Wmvvvwh1kevjXHgUteRnvbzFo52pKd9WbV57Wu0
Mta/aUbW0w4aclNCfih1nTHuWjAe18Tzlaz3fvTIS3e0v5TP322f4JsmnCCv
NHl/6fNei8fou8B1jrrbd10IOK36rP/Se8f9q/fe+4/eOweTnsUjnXFcm/Nf
vfdjtlZWSIcqrXX9mhXLEq6XmYqs985eMHwG6b0fPbyj58TXQVyw5Gd39B1w
/fXirnVoL/Qsbs2nGsKfHSq2QuN5gd6uBem9R8wkdbTO9uOKtM6TdRLY90rl
Ib13qw7LNj6dTRxl8nYA8mcxwfdqSO+9VGcPvpPLHLOV38ol670zJ3cjvXdX
6yH39GY9jM071xXpveeGfWZAeu9a8tTsw/Nq2GnjPDuk9/4okXsa6b37Nt3S
uMAIsAgWhxKk9652//ZV5J/OUoIOJ+dqcLtSwsncgU9bf7kDISf1KtWz63EM
/3AHNt8et0C6r3KWRzeE1dtxPr9HyNwBZ0X7OHTugPfJK7Ok3Z9xO8DOd2g9
ISTmL3dAvsaAou3GGC465C93wDXEax7Zf7ReRNwBXMSCNZk7oPjE2ajWtwEM
C5xJkJ4YwH3EiTMjnZ/OHsVAlE8nRScdDLbX8IApSQWNj90MUw7iDigf/DS2
atmDI6zWkLkD0VGWrog74DdwO+zOGRPM+EuxKOIOJL+4mYu4A1/uh5xvltPG
JgQdORF34DinfyniDjzmmNjPlHMGO8Vm4Ii4Ax9Er64g7kD/1nTUKEkGc39O
kYu4A4v/cC5k7DvctCMqcHn/cC4Y1v5yLuisqMvFn9biHv3DuVD5h3Px/l4I
DsXhzpa/nIutXt9gtA4T67UnlsWoB/foVjmZc5Fj+pdz4TBM2Q9yiTjWF//J
ucD9y7mQea5In+gN4zMlWxqVzmeckEbeXsS5qCj+NVAKf88ofnlAq5kRq92Q
GED1Z651dD/iXJh8vanEhivD8eb2D6B1jERLoynuJwTAnpfJez5eH2OS4ApG
nIsBP8ZLiHOhGqnsskkDsGhB9yLEuSiKqGFFnAvahItd/l1SWKesbR/iXEwn
nwhHnAtFhzM1xfsksKiBLTLngiP9qS96j3Ijy40OLmbjDoafIfNWDP+MuyLe
ClNPscmO68W4mH6N2+T1q394K5x01wjjNS9wH//hraT9w1t5Qz/IrPymAXfr
v3kruH95K8kjf3kr3Y/vq9nwz+I6nP7yVsKkRDnRPlu5ekw5ooMNXBBaIO+z
VZC8FVvl2AD6O8Y3gg+N49ZmRZMQb+WMpRo14q2o2vSqfnm0F1OWJ5J5K4pG
99Z3Qfup9lq3c17P8d1txb/Rvi+a0ZYZxFt5xFeU/0ZWB2O6tsCDeCv85TyU
iLeSmbHD0DZGApSRqFYQb2XVZUIK8VZupUa+r8ngw6oT58i8Fddzf3krhzq6
ilboD2EpRn95K2/0/vKAArgnb7EIyWEXLaL/iweE/csD4lQwSUE8IN7+Kxgn
kzHG8HDg23/wgLB/eUB0xZmvEA8o149w7K1SBNZSNtWJeEADmfHdiAfkk7Oi
sJSfj31RnB1DPKAd78TWfcW+g9GKQabSjGrsM38NPeIBFdaP3UY8oB09VmGl
dfex/JdaiogHhJObvYF4QC7LBcLdqdewPYlOLxEP6LrnsyLEA/KlElKcMrDA
ZLTiTBAPSIVVKBLxgMqXCvmm3RWxE64/mhAPaH/0Xx5QycDdq/wNJ7A40b88
IClfzV2IB0QjmjqF7RDBKFhc1REP6Ox8EZkHFKr3ikfRnxdjfvOXBzTywLka
cakMj48O3WDWwoY1y7wRl4p96xqZS3Xd9MfHPhMjbKL94H9xqbB/uVQbXXVk
LpWNttGE2poPRuzuInOphDZ0yFwqc4HVZy+sYrDFpz1kLlVZTK074lJVBw65
ezqUYGb2rgaIS2Xk8ssScalGqHS+P/2cgtGEej1EXCpuy7QviEv1pHxv36PT
IdjIeA4RcamiHsyRuVTKyRP6tLJO2NHSIDKXakNssQ5xqVQbS9Ox7bNYmZtn
CuJSnfp07zbiUtEkXUNcKixNVsUUcammJNwaEZdqqHTzZOyVU9jjDipNxKV6
fVvGHXGpykQj2BY6j2Mjfh4PEZfKpuIvB+2nVr1UTMwFLOp5BpmD9sOLi8xB
k5eb273IaomdPGBL5qB9stYic9DKWbpuhB9zxlT5N8kctOoPzoWIgxat06Pu
zReIub/rKkQctG5PJjIH7UyW0R31zXvYuyRlMgeN6nwHjwTsg4DLfTu2jQxM
18jfGnHQZPzV7iIOWpZuyOOmFwnYhxu6loiDVlZpR484aCF2lypfZ4ZifOdp
dhh+J4HPrz1UEQfNy4Lzdv29q5ijq4gV4qCJDN9IQhy0WgmL4OJLBhhNt/af
/+CgYf+fg7aWjEMcNKsb3MPdTGewW3VMLYiDdrFPn8xBk7fsaPquewpTcP/L
QTMU1CXz+JbZfvY4GRthy88vkHl89U7vyTy+soduz1t22WBybEVkHt+FRV0y
j+9qRarrlXlXTKbD9b94fNi/PL4XhEIyj8+edb541DQKs+U4Sebx6SZ/uYl4
fJGfJc8SZGMwhT4FMo9vscZyBfH4gjWsNAyWb2OBfxKHEI9PTj2DFvH4OGeI
Kef0Q7AzAudkEI/vdsw7FcTjGzd3FZko8cA+LIyIIx6fmng9mcf3SJA+VoHF
FpMgDPH9B48P+5fHF1Q0LIl4fGWHmV2L+3Sw7g6vV4jHdx7njUff2a9M/L4a
KqyK7cr6RebxDXLzKiAe36S8oRbJTAEbOed4HvH4/ocjif3LkeRUXR9AHEn6
ce2HY6cvYyLZGl/+gyOJ/cuR1KlTi0QcSZ35P7Z6Jn7Y8vG0K4gjSSCZZCCO
5GL50qEkxTDsQCMRhziSC9fnKxFH0qPMiCZoOQQL2H2iDHEkDZST7yFeZN8I
x3r84A2s5IygOuJF9j+9zIN4kVNOuLVKlgCs2qdEFfEi914TTEO8yHNaScbv
h65izvIbLYgXSdWc+BjxIh2kzePyPtti8vN5PYgXWdZ5rhTxIp1H9yNeJEb3
7iiZFykSzxKDeJGrW/XZbWN62JsxyWnEiyxqVJlHvEiJ+0fUQ001MN0MtyeI
F7ml0v4T8SJdqj4hXiT2sVBeEfEiV1NMyPzTjqY4u4K9pljHK0cy//St024y
//SHxqOj0naXsWRjVjL/9MlIuS3in2a5xwinG7lgVCFu7xH/FNB/fI74p5px
N/gXWr0whuItMv9UJwAIIP7p+Oqaw55efyzeZYcs4p+27xm/i/inFDVvF34x
XcPUKws8Ef9UkkmGzD+l+MSU/8j5IqYbukXmn9pG7SHzT/sTbl4nvPLG1nYI
kfmnPZKxZP6pZk7jnECzF8Z16yiZf7rzxDNhxD9V8NjhZ17iip0J//Yd8U9f
8bGOIP7p6dZI5xl7W4zh5ncy/9R65tluxD89VPVSTVrWDOOgXN+L+KdevOMs
iH+6ZmiK+KdYboMDH9ID4eF85ov4p1WfzDDuXC1MIefD4H/wT7F/+adOq3pk
ni/H8tGA23qm2D1eMzLPN7J6D5nnu8nlpyj91gabSfrTjni++HR6Ms/3TPnd
CuEqR+xCZTWZ54tvZyXzfKfzMYfHqh5YxVXL/+L5Yv/yfAX9ssk8X6rQnrch
LfZY1+cTZJ5vzIMMMs8XM4p+KPdMB6Ppd/svni/2L8+XrYWOzPMVCw/hly1w
x77aaJJ5vt78nWSeb0vOGmH6oyMmvfafPF/sX57vVZNtMs/XyDDrJuuCKcbq
spPM802M/ETm+Qq7v2BQS9bHNM3ukXm+LiF/eb7qni8DmHadxfa/nP8vni/2
L89X7QK3E+K5yEj9LPs6uIq7vhAfj/Q8t6QpKHTLCWDttuLU62ozbM+wqx7i
uTD/6MXfgHXdNt/zze+HhnEKB/e2o++/ac354YgXI2KiWpdqaI+JHPLhQ7yY
zv2177WODAGX6QAv28gkjCrT5Q7SJ3eOOvsOcUDS1lUPLixew05hJ6oQByS5
3Z+IOCChlgzuB1hMMEcuvwzEATnR+TYdcXMOPbE+ciRWBbOsClxD3Jyt2Rwy
N+eYnd8RhR/CmOf5v9wcbXdejUuRbWB1oS5Ti6kIW/jxMxLxd8LYaW2e23eC
Edo8Voa0WxitXnEd4vVMfMy3QetCOjqvpq99bsGZMD0l8x38fhuxofU3gWbj
zCKPRlzrcN9F8noFMc8H8R126rbwcd/UwqqkN48gvsMp/8hTiAvQQ20oMD2i
hpnovSRzAYo1ZmyRvnqvushb58PLuGMhEntRfb536Z0a0j+fTuN6zGv7C3fZ
/0EauX9JuNmNOBqTrpHWjV76WN2LSXfE0Qi5/sV6FM4XdfvDW8lxK7hH7bE+
SA8wwPI0QHwEuk23qvnsedyNewpCaD/Dx4qf51HfesOxGXFncJ3v6Mncmf/h
1GD/cmr+h2+C+5dvwnYlYidaH1ArXpr39srG2RNMydyZ/+HUYP9yav6HO4P7
lzvjL+kohzg16hQ5HrZ9etgHcIIOcWoS9lPHIu7Mn8pIxJ3BXVHg4EX9ncPa
ETKn5kLlTZfjNvZY1f1lMqfmf7gzuH+5M//DqcH+5dQ4b5jWI47S0I+j74wj
FnG/FTcUkS5x1CvLSMSpiZgZIRxvKcAsjn9iQ5waflbVJsRRulNy9ONwoxR2
FMs/j/Y/lOquhyGO0smHRo4ritN4o9/dpajfOXmA1w3xU7bWH0Z6lRTjpxo0
t1DflPL4uhvi0ST+yWISlSLhRjvnZxCPZm6XNwvi11x0MjyV8IAH407Si0D8
Gm0bfxnEo8miikg2jGDBMEtHMo8msMA8BvFruipshIxo92K+ew+JIX6NZNWC
3EfYT7m9+FMW/VsTm/O0P7Ab1jm2Gh17EVeoOtPAcI+bGOYRncOHuEIduEIw
hBFAxZqiwcl0Y8w3dedZ/+FZ0PDTV/bdMAGUqn3k97zogD3Uj7pUOQj7pkEj
gyjRHtDwfW2FRz8YuxdQNI3vg31NpXks0t8bNgkdEB54gE3fu30a6e91ZuyJ
QTrnj0QqlMzv5mNUn75zIp1zsUD9cqQ3/snmjUHB5XdY/xIvH9IbJ7wzCkP6
23ka8o8+ioVj4MsTKaS/HbJUMol0vPstLNbwgYVYveBcKtLxrqlq34f00k3L
cOW4J7bYGv/qPaSXPqu786KnHhFEejw6qH3kKiZL/Ub09CQJ+H1QP4K4TuJ8
TdXXE80x45usY4jr1BKkVIV4BMTx55xy03yYhlIZmUdg9xDX9xh9d/vyo9yS
QhpzPydb5QfnJav2L1dFpObUTtMcJsy+4y9X5Xj01NsEOC9c5vvOZXMcxd5S
uK9Kw3mJmjNIuV4A+527Z4wGVVSwa82KMT/h+Csz7PE/h+rervYAjSsiWMvs
xWNv4HUOKN+RR1wqX+ol/4cfcrD3fsdNEZfKl+a4Ed1wO7BvvGk6IpmMxXBd
0UYcK4yD2Iq4V/waz9v3E+Ox1BDFfsS9Et1tSuZtJcTVVoqpXMKkiZJk3laG
+CtdxNt6V/Iz8oSuKcZnWCqO7Lu7X6uj/MvxbX/PSpo6Fm4XSIPyb6ZFPJk7
Mz5wOzlKUQPzyxYnc2fy/+GhLD8/9FNdvRXX/A8PZS6xhsy1KRCLlW26oI19
Kcgic21UE6/8QFwGB8r93H4TxhjfJKUk4jIkWAYJIW7LL+6J5BeO2tiqPlcl
4rbQ8snJIO4PC0fyvnEKZuwadSyZ+0Pdyht7BMar4dtjYaKUShiJYZfSD8R3
+BEo090A63naO3YKe3Wx1alrUXuhP1969prSgUQAtyo5pg8ZW2MDO8P5S2Cc
uYB9LKBT6QE4o/e7+pV9sI0Tpq1ahFlApGvTr5HrBTKSPHH+uonYxQ/LQYKl
s8BCNNCccfQTMH2WtKbjXovJFerup6+bAVd4gk4teQ+BvbfU2aomcrHKneFx
Qi4wr+15f3oH7EOd87jF/4jZYx5E/hHuaRI47PjpMOKIMWWe/BjFbYCZUQvo
Io6YyyFGgQDob+6/FN7kXzqKWTL73kqE/sZ0Mag+4Bo6N+phfJnEj/nL1imp
Q7+Ssagjc4J4FcadIlcsMQMKBTInSFDxLx+tp/DAjU9uKhiNXSGZj6a4pfIa
8Y9s9isJk7BV3EAcngOta/0PBwH7l4Ow3X/9FuIgbK9Gi4UlqmPVfMfbEQdB
8Vr0VgN7D4gaEdl1J9QMOyO54PYfHATsXw5CbXIDJYfmBzAVOp6pYJeKUQk/
cEQcBKHfNXcRz0uAozJEV0IHE3sm5od4XidL/vIOHOhneL2PcGCqPn95By9j
7bQQj+C3ZfuSTvxbbBzHmoF4BL/uvcUhzo7g9iCeOjUNk9tncBhxdrJu3qfu
h/4Wb2Y3wJ2iiO3wyH+gCP3k+B58wUNYn5RE4aul1s9izpn7GomwPhnI7tfP
+0MAkWEZvxW2LmG3A8P27ByYBeuNlnxdfj2A60Gyc9wv6CfTsQ8/t86Ci998
aJ/T9oFB/pOX9qelYD/VLAVto2fBA1trVc4LRJBxQDabbdIMe9xh7/n1Jwlw
4g6epoDPdaaby3pEWgD7aRKGycP5fR9LeYZkRgR0Mj9ybjy6gFHMFDLcGSYB
vbxLgeh83B6savdE7Q7wOlggC+1rOhLwnPv8GwK4+Izhdj+1KuaSGXe4D/q5
XmdpzqcfBHBu+gXxtb4hVnji4/eD32eBjFp2ePuRHnDmLQeXBI8Tpqj75PlD
GLdVgk4LTm/1gG/pbofvHYrEHCnfZNBWzYLshFn2aIuP4DDfMuuKdzE2cjTh
ph+Mz04++DlK6IeEt+YpxRa82IpllEQSnJdbIofJPJ3lfRS+L/HZWN54LjXi
6ayu/uXCMLOthHTKN+OW7v7lwvyq5uVGXBg+h8ZVJnpNzOD7KAfS//zzgXUd
8bbMGPIGs5SssS3VOC3E23LwFP75q5QA9oOFPuspS2xE5c1BxGMy3WH3+20N
jGPsjsMLyiZYac6FdsQlmTdwjNsN83WCktALT5wUaKh+0ol4iHPs+3dtlhDA
HM+BqSPep7DRqG9eOvA6CnrLHxC/L0PUEidbfg6LPiwZgvh9nprKNw8IdIBs
nilRPP0Z4HbsVwLimOy0bCIijgmXd9l8unwSNvi2WAVxTHofBJE5PswPXzDO
ZJljAcJNZI6PFL5JB3F8VPee8izUUMPYu652IY5PuOrjNcRBA0dt96i4a4Ga
o1UyiINmIHYyCfG8fnFo98k/UsHoFTMkEc9L4fvz2+hcickQ7rSZGiVgxPLG
UJ2j/MNztBjWh7WpafNU0hZYU9OHBsS1iWHRMUPj73d6liLhcyNunOmRFRp/
GaoTe0VgfVK62OaUensd94i3bydaj722otpAU0cAh3lkrnKEXMBErJYEEA9o
OsTQG/Fo2FqsfW0CP+PoR63NyRwuB9YyW2ivkuXKEbxJwh0a5+xB5wuUlPTY
1OF8tbV1pUiyH8fsC3LuqMBxTtpzoGCubgCojDOwFNY8xy7RS6gFr02DtqQU
5dWQH4Bh0XAPw0wBxkvzwHi8ZwpEzTQP3hL9AZR53HdM0mRh7XG24tRzU0Dq
lKFauxIRSBX25nr/tMN8NXkdixZJYIyrTpftDBH81B55q/jeEvP5FX66eYkE
hOol0xoQX56R873WkAhW3MVxjAHm96Jb6V8+orh6TN/YfIYLC606ZIXOTScb
7ceh89RKRC5xDkMWLEPgF80eaLdIu2aDuCF03CWs4zcKsPDg8lHEDdmt8zke
8TUsF/SqGxxLsWkXLUfE19jvd5DMW5nInG/kddbEXu1cJvNWzrc9jgh+Ceed
5PNn/so5TEK8ldIEjjPvYl3LQ4o28O7j8BrjaX1gSby6jbhOzas7J1R7msDk
GGZ1Us4aUDngJRCnQ+0opRfidOTsZ2x5mp2PvTjLzoo4He8Nr5A5OMstxXso
bptju6ve/BcHB/uXgyN+4S9nZ8P56FtiQjNur8Nfzs7w82/ciLPjF6C99PK8
OoY/WkXm7BD+4ZflPrIcMK5Lw134b34Z7l9+mTxe/jo6j5+VFkdiP/oc98p5
P5lfVnOB/gLilzFIxyB+Gc5UQJfML9stcnUc8cuKs7fXIl2GcKZtr96h8/hV
PFTBiF+WSAJpGgm7wA2v3mB0vlvsZ9ApxDHMfTD4szSVEUt57jOAzu36qn47
jrhmE0ba/MX8zNjor0NsiGv2RKuzvLGQAPCh9tq4V5LYoxMKQa+hf8qLMQ8i
3lM0LtLtkbEpJl1vGox4Txpx2v+vvTuPxur7H0CfORkzNSoyVRQiEc42ZAgZ
o8isUihjZCpkKJmnzGMDQqZCyY4MlfCUKCSeDPGYM2W+Zz8+37V+39+937vu
965171/9Za29zjrPsc8e3vucfd4vsnPUO9vZpxOvAitmK8jOUS9L/zhyMTgf
83Dv6J+pEaUJbUP9MfaFiRdyMVw7VcxlzzZgE1tre9A6+mYXhaUWXt43HR/G
wjmKaa2nb0HvWRRss/80PSIAFUG7sJI/2vB3AJsQcjHSxMZckIsR/W3qvNj4
WXjNQ1AMuRipBrQayMXAqsrWg1mMIe2ewDrkYuTw3nZ5hZ9fSV0s0tNrqWYl
L2sWzRfjtxOtkDvT4Nv6bKErqaZm26VqVK40Z8eG3BkjVk5ezn3D2JkXul+R
L1PyM9UfuS1v12UP6iURsT83r35E66MtjZN3kduSyq6jpOU6i13+sVqGxg1q
8LUDuZNUt95+ZhlUh3QjaerInXSY2MIX9bYbrEq18vBS5UGVKYnvwbQTwDRG
d/k56o/KO3RXZ/bDHN3bl9nw/ugLsBlxPB5ecJ3Zca1gByR9fuveisfDg6P9
JsgDOmv5uqbqWADUXKAPRR6Qx+PXssgDyg5a7PORuQdXArQikQfkuWq0E3lA
qx0l38ee3IOdOUljyAP6yiIdgtwcEffZQ90bkZA3ongQuTliy6eKkcNSVePK
WNagCqlGvAKRw3LMT2fJs5AApKypdq156sKgxjt2yGH5+tDUEjksivqzyRzx
2lBLY1YdOSxv/S+5IFcFqI687lxXh5euz8sgV8X0wTf9S/h4SKsvdaBJ6Cx0
jcmplsfPP1UxVoKcjgtbGkyqXYLhpEz+HuR0SDwRikKOA8ukq/cBJn+oNDcV
ihyHqqd5e5FTY+Wo8D2gQAH6HOkhOzUTpzfdmfH6afGFTCnYK73pzjRzGBYc
mG8FfutKIrs7nKGco2gG8nGmDRQ0k8+1AhnOw9G7gDdcWsn7gXycXDOJ3DvP
CICbx84ma0Yfityqy0F5zIguzavIwbkeVHR3IE0FMrnpCSAHR9mkSxM5OFUl
bplhv0/Bxq7LacjB+V/eDfyXd1M48JPsTcR+3GcO5aTgPOemNxH56ckp64NE
fNxttdFwdIV+S0kiHyjHQHGvrjDKe7+zVcBxRfgoLMzbTc577yiyoIEcn63r
zD32peKgxOpDJnJ8YgwJVsgfkVnbVdHlpAFLRfV/In/k8pmPDkF4/bdmKpzW
5NCBO6nfsZ3Ey3d4e1gjr+rYZ4qRjSwDOBXJQ/aqBv9knUPOy5mBCvGkp3pQ
lJXDFTkvPNunDIPwddzR3OZjSzoGsMO1Z/cwfp4XXnG2MUpEEGptEup3xxN+
k71/gwKfjw7zx3VMHSOC7cFaT58n+kLOs09VJvH1aR0to4Ih3v4fnH9xe1Tu
JBy7L8ymh7f/0wGb+Y0/+7NO/fklDQ+n/CDnN066VwhR/mSr5zOBNxKC4Y5d
h4pR/mTvagOeHffwdauDRIrsTASkruLjvvSWBDSGJ7m+ZOHtn/mqZyZ9BFyV
KuoWxdePKotuUTv9iUC5OrXgh60/7CB8b7F5TwLEIK+1zjgi8ODT+ioyfQem
dbqLGVWTwC2Szi6tHCLgyJaE5e+DYZuXAMgvJQFBG2lzBXx9mlr3zPVMRSw8
fUDgNkclCajXHKKg8sbrgSrRvYk7EBYVnlPDWkigZ0ky0TyECBIkV1OjGgLh
w9mL3w80kEDjHaZq5N1cGQYuJdtD4bMjA83Iu/moF7WI3BOaDagjuXAXinC5
JiD3hG+1tFnCjQg+rkZn+TSHwbEjfeai+Djc0moqB/D+6Lf/nPCYsgaMklBl
RV6J15eH15Xw+8599EvlDUsNKB7JYo3ikP0avWxo305iyCjwvT2Jxdd8qEf7
dlK/UjxE+xVtImloukTnMG3w4R05n4NG8V3kHoYZVbx0nrKCldeNFJB7aPx6
VxvyR7g/Cn6w/k4B/lypLkHz2g1Tn2DkSpiPfpGLbNgGaq2PkV2Ji6cmQpFX
KJRXfvjOM0pwgr12Nxr/ua1ehaF9HVz8jKsSL3ghNi9Dj/Z1/C8nBf7LSQlQ
u3EUuSrazhkZVJ/MIe/5ny+Qq2L7srPyFV4/Ows9L4nfsYRC9iVC7/H6ESMQ
qUbx+tHeMiLmcMgSXp+zTEa+4W6VuWDklVxJcKWbP3UHpuhNSCKv5NqlDq7H
s/3g2wvanS+qfeCj9ejGfr4xcMTbRb+Ynwgahry6nart4Or7pWviNGOA3nfT
odCx9A9JOsYPPZuJZIfizJLaiRSqFmBwXyrQwvwE0KBe50P+iMHHbD/kibQr
N/VpkJLg1TKuMuSJbIj65CE/Iu9E7tIc3W14iyBNXX50DHT3FD5Enohh90vh
dnNz6Emz9RXyRIp4N32Nd41WFanTHdhI86avUVsmpY6++75xK4ddyHcGc38u
RE3epz2kwIVcGEJTjGo1toIpTg8/R3HOXr0+P+RLfhj6Mm4HrGAOHfsa8iU5
V5uoruLnH3j0cZWKYRkbvhudgfYv+d3VdUI+yBIL1e6WdQrwzWyxFvkgTnua
XND3aMyCA7IC85TgcMDdMfQ9V1i+h1YC/rtDirdzJRjF4J0UYixqJ/zBGkTk
3dgb+DOIXLkIp7bpOSDvZjT5IwnlW+CZvshheloD0pnPkj2jLx0mGchLsmo1
NhHbaQQn6jfGkJfkw6uag9wTaWmLFeGDxtDB/a0rck/Sk58WIifFgHej6aK/
Gey3TzqEnBSJ8M+MyFVh456Pm3l9BS6MNnQhV0Xh7Hayw9L+xnKguNocRqa0
kR0WLjvDTuSnZFYVyOU7WcFCrSPyyE+pao5OSsPbZ7DnUuD4Wx6ocprQcR2/
75cuWF5DPo7XXn6/KSslmC34guzjmFxcWDCwQs/zv79aCjsLO5N/PLb5QQKu
YknOyB3b+Kai2hh0Grwn/SlA7pjkpKQXcnDGzMKY7nbZgIhjZYrIwVntmLNG
eZLpqHf0mpjoQpEPFcIo/vQYkOdCPgsL94xFqNMitmFxyhb135WyJ9KDaP+e
wMty34QNrFi1jRftx5t1Xd6LnC+7Gbmu7G9vYNuVCzLI+SrQvTeBHBaByBN9
KjYmkLtenBU5LHEGU13Ik6qZ9XV3KVGBpycnqZAndTSr1ODOeXwdlPrZTbLU
Gt4Tf+6EHJyAvBEq5JVMz7uMrQj5w8e81TrIK1FLD1jOwcc3l3iJ5ZOclnCW
VUEkAR/fJBvaqveJorwHu/JF7pZCBqrZl/vx8fBnT4ZCYARybW45bY8uhq0f
cyWvFJCAheKHcuTxEVgf25jLa8HartMByOPj6a3fjvys+ZtrXvw39WGF2M4s
5Ge9kvs91GRLBM3sjw1y9xvA0fZkBSn8+LA2zxP2n/D1jqhFjVxXIHSmf/lr
exwJpNr8fJPwmQh+d1/5rdLnB+uN5KTc8eBbfYZQqImf52PCCReWYl2YuWwv
HIKf537FR/tEfN0qzvPsrYucOmQP8tlRjPJ6UWeAJPx4i2wzoZ0FajDi6L5Q
Q/x4ASWNCuR5mdu3zdHf04KXjQSZkeeVoHK73gi//ms08WVF7rrwYL0IlyR+
HovHGeXxLQSgTD1Uzrc3CY68XBRj/TEJHhkXKCFH42UChc7w8kN4QLjgA3I0
/LID01Eee52Hjh0JR4rh5NpaKspjz76w6SyoKlNPd+gQsKA/m87CjHSnJXIZ
Mo86FuG9AHPaYSFE/i5GYH4M7ausvXH17DBXB3ZwVzYLKv9P+SuucPglobzc
36RF9owvtWPij/tvo/2NlKtM6ciJYN0dkv/0aitmmEJfi8qVfzw6gd7LvJBa
ipBN68Hau/rI72XmheYuof2upGeq8sz23zGSfncheT+YNudCP34efeEyau22
NMzayEsBted+s4Ag5E34qNxJHdl7ClpcCcxH3sRjtUdjyLmg32VZq3dGBcLo
FlXkXMxaUbig/Zw+JdLrYV6DmOTIa2ayaz940Qd5HLtkck1En32rAZOCZI/D
Pj55K3I0HGPShwSsVGFa7tln6LvFoyfEKQh4OdU0GL5spwohC2Uzcjr6X206
IOcb24TCDIYxGctNB8T5GA1XFNr3ONMuKx42jWmospKdEeGUtOPIGTGpcObv
pJqrOSmdxYuckXQT7YPIGVm8mxHurqICL12SlkTOCJXLpmOSsb7NTOrTAvan
bNMxiQ9y3XnhRh3YcYo+IJuXAYYwib1H7kmd/LqzXTYBJPBJvbM8pQDfuqZ2
ueHjvLKg1WV9fH755uMtfpxzoUbqBxsl8lMoa37OIm8lr+gF1YEISfhLvFgf
eSut2yIbUD5/hqeaV8/dioKS54JXUD7/LfYVFDLW+HrtvfG2c0UPoEtUYSny
XwT/3X+B//JfonmnNx2Z0Egjydy78JeMKtmRmQyPrUB+zXGVLj0jxyDI46Bx
EPk1qb+fU7DfJALHX9K1/NR34PA+a1Pk11w6Gr0HOTUWA877zsSeghenT5Cd
mu387q3I2Ul91nE6lvMm3Pdb1Q49Z+N+d1sBOTud6TP1W897w0M9zyeRs2Oq
nJyKHJyTN++FOPmegllPLjciB4dqV+8l5OxQPrV0+SysDGNoHWyQs1M0P072
faS0J4KUGD1gb7QD2fd5lP3jJnKFPv2qOlfmdR0Ks+bNIlfoiFdVD3KCYEIy
coLgEbtFshPk8trsCvJ9/Ko/IN8HDqcMXEK+T2WiDC1yi3awSc7+9LaDGaNn
PyO3qGiyi+wc9e7Z4GbsuggbJ7boI+fo23N/FuQTiRpXDLdvXIe9VIq6yCe6
X+bFMo3yb8Of9DFXCdgO2pgy1O/OasTnon3aCQ+5Xn998hIjxGgLoX50iI3r
Tnc0AXi5SfFSfTsFmWb19hTh7XmQM7cU7cN8LiehlBTah+XPVwah/lJ47A4d
+o7mc7ycWeel5pqlgGby90TG8i93P8b7xVq5C/1bW1UoO+NhR4+ez+fGzlHH
EUBb5zM16q8qsHN/aLUNXs5xbNbHE+XXWn4qOE0/UvNZcY0GxRvXYmLtu5MI
IDG7vjSYRxX2VJfqpODtv0nrWT+KG3/sPN7j/nW15t0p0jYUN2Ij7wM+phGA
iJR7WI3WKVi3MlTAjh8/cGUmD3kcN04L1vS4CkGJwyXbkMdR7njh3Vs1Arid
bdZ+qjkN6tjEZ01OTgJD+aak3hB8XDVeAUZvgqF10IXOW3g9W/RF3kNegzAW
aChsEw1nc1JVkNcQFLsiexJvP72nl2Ilk4JgRHj2jDzeTrQHXV4V4O2z+FXF
wyOFp2ByyGQmP94+NTbWL07i91GyPZnSf+k2/GWkK8KJn98+Mrvvqi8RyFGN
uFIM+ELFQ87YAN4+Xe320Grg7c1R6luXFrcLvHzsfDg76i/HqBr18HI/pu0x
VBkeMMby+0PUzh/UCWQt4OudBIGsseIPN+DM/bVSeny9oxk4wLeA/25V/5u+
U/tsISGD5+EZ/Pjh70piFcjD8izvfJTsAJOHzh8Xxct/tvhfEsTbVdpov40l
sxM08ZXVN8DblWL3TDLyRxgDonfSdRwHBzqNKXcS8bj61h/SYGEzaPStlm95
Wg3t2ZWpLOnxdTd8hyE3RCL3/Z/ttpGQ5MCthdwQOdELwsiF7PHqEDhVFwUN
xJ1tkQv5JP6MLPI7ztc35yex4es79QcSyO9Q+7TpsMRslSRSCApDNZFNh0WX
QtsPuRu1XRK56V7i0FJjPBa5GyOnGSpr8XFMRvhrHkehHPRczycW43Egg6XT
DkknIvC8XJ7bYBsM7yu2Nx7GxyVroj7Z/aFPcvoWseIHBW5IkN2fiM9nhZGT
EhCxk2KbYSRsmocNyEm5N8iwF7kqcpkXluWPh8OIzD09yFWpHBrLQ44Jl0W+
YaxWKPyeIWuNvscv53lvyupABKRz7Nd3z4XA+onK6gb8OjW//IqexuMED4E8
ywN996CS3uQhI3zej60y3Ifydr58B7qb7qxitEyZQ+g54VKrkyXyYma5uF8Y
hW6HdsLx4ciLOTSuMijugMfb17QXx+l54P4USV7ky9SU6sUhx2RHS/z+jV9h
UHC3myZyTMYfdP8swOttf1WGnn+AALw4zD90EblavHYsZVfrQMHN9u4jL3nh
kuwOY+TOcHm91EROSkT9FUo1DT4o1u55GzkpQelMp5E7Y3ok1W7egRsIKp2X
Qe6MeYym6spXAhC8NVu/OGYIUth+S4n3TYKGEjcbFCek6XqINbB/wt5f7SL7
HWy7d9qh76ocSJ+Q94HpPk9OQ+XCAZuuh0x/imuZXjsm17Xpelxe9E1ALhWj
7G5Ns74mjA3a06P4hP3Ypiey+8Be7qS0OmzgH0/kf/kj2L/8kb1PXoijPO22
Xo3uXZ7zWGa3YT6arwfojpM9iJWrKarUQ/egoR0T2YOojDMyRn5E15jJrPen
RPiVQkAD+REBFf5kP6VHAbPJVLoGH0+Okv2UvQ6LZG/F+JEVr/XN8/Do9e9k
b6XSzHM78lwYzHn4kzjc4KN4fmrkudzvK/+K/Je9T4IfJ3x2hpQKN3O7/8/O
C/yX8xLV1cOK8mMoPp+0rqBtxRTtgh+QvcJ+JRNUb4HHOzzj1j9jIquBjqj8
6KvK/cN4ebtTUeUXWI5RLmuxovF/1Nr7HMrnKTv/2ajmxTTmlWjkheoh6MCu
vcjRiAp+8mmZEA33q8+KIUdDTsYwaQjl2Tt7kiLC9QpUNxt/m4H/v/LXIoZD
HhHAlid8eqEOzrDn/eyuBXy8rctdqslPJAD5OQXgJHIBdkzKJtbi9WCynJLt
g/9fXfvjc30j3KDiMe006g8kYOAbnIMck5AN3szc5UQouqzuhByTdIfUG8gx
OX+CgYuDIxoeYStoR46Jp2zK3etNzYBfQTpKJdMfsvzWzUSOid6Zk9TIMXkz
NJheHu0MAhTMG5FjwljPcRC5JBFy+5xuaEbAbe0N+cglkfh6aBy5JD/aqKV4
roVB2rFjTsgloVV2FhW5XgdSv2MfX5Tww7HDH8uRe+KmQ8pE/sibwCbmrLJQ
mPMob+4B/xj4rsr8C63HJRvcrp9wWsGc9imuo3XZ4pfXz9D35n3mAe4RI3+w
uGk6sm/yuNDNnNa+DjTFx7yeO3cYerWtrEG8vPmApl4U3u98s/jctiuIwdSN
J4eRe2K3ddPlqR+pu1uiMoz1LWy6PIszRZh0BgGst1zVebwSCFu9KiWch/+z
b2gokmqLXBI9d1lXEftR7J5KE9kl6W0+Q0IuiVeGkgF0iYBKwmx3kEty6YLd
I1/8eEEmSt4wnjGsrUE0FB3v5l0/GISPP0zhB+8GlgvBPWw3mEvR9T9N9pzA
2xu1W6xi3Nd6zFmyrBm1w9/fvtflJBPAXJF9S+BwMIw9foRiCeVhCKVlPICP
PxQbX+LC64/AV8us8Z/w40V0rzKgfJiP7PSLOGmGsIhF7xqyN5SpRkOBtx+J
odCFXxPusFPFLP8M3n5ubPRGlOPlBZKZngndLpDLw4lrCO8varecZGPW+8EG
rWjMu4RweBjotavsHQOmBygdleb7gZtw5Xh21n1YsHx18uSBMdDmLEqD8v7l
Z7YeOFAxhP3xfVKK7qNj/6a70XpS40cL7xhWGbXpbtSyFQUgd2MqMuhkXL4l
/HWEdgblN+aYaqZEfoeyymqWb6cVnDITDEJ+h0EArwzKE9V/SCnN5eg6tgE0
76B4nsUM+3HDsw68F0ym15+iAh82pnzQvoXJPGVD+otEoDKvmP5d2gxO0D2b
zsTX6T7Xx/JituLzL/PbucFt3oBvb+gwndoU2Jd4PosTn1/eJOXneo1YQem6
hKBH+HwUkXHd3hhfh261VDuywWgNGQSb7oTg61CDexrUyElp2PPuaGOjOUw4
qCGHnBRbxhk+5K3wNu2QH9wmC5PpfLWRtxLdykH2VhRVPaced5nCqzX8tshb
id0v+30imQj6/UYzcy4KAy1bSYbmShI4tZAvvYHHvS6Lfr0OGibQfheJIwOP
e+2o/kyGo+9SY8teRomuYyTWjRm0PlL6cpPnHF4PDkOfpyv5qIEWy1AKei8W
WyL4Zhxf70RlZDD676cAHH4s3iZ4ufRjjkN78f8r/IuARqnRMShgpS3zHP+/
LI4Zi6C8cIzXX2yrK2/CYjxFn6D3toWHXqmHXyAC+7phWW46NhixbZcM708S
6PPs3DuBz9delWHqXW37YdqkuCMRnx+zM8rrUT461mXq3FIGR+xy45VG1H+f
smeRfZB8n9RkyuGb2HW3MLIPIn5KdgJ5IhbD81qBy7vgBdFAA+SJuIl5kX2Q
z8wuIT+lgrFkuU0fRPzPFG3NMAHw1CdNPrhwBDoa3atGngjbtSxB5IOUi76O
ofV7gCkki5N9kBF+8VPfsU9gvvbSUI6+CiRpLh5HnsiWwQveyAd5wJnTdiun
GDvyxZ7sg9yZj6YIPv0ZZDvXc91Puwyrczu2XsufBMV9BSbIWym0/x3pndCB
2QfOkb2VcDGFrdJVnaA1vzcpLyUQPojidW8bnQCWfUvqs3fqwLV0vm1jAsrw
wxaqnV/z8PY29PY4g3cdsJKibPRlq60ZfNtejvLytb+RuYDyhBvcI5Z+j3tS
kxAYSc4TvtWmQ1oNHwdgkXNz2JU94NbP6qPheL8omXvzB7khOcVVb3+bDtRI
Ud0VRm5IPc8+c+SMvLx16dJPq8Ga+QSz7cgZ8RotMOHKI4Bpk5/DXd6CcMZk
gz4Sn3fS7m66D1BSBLkPMLhw032wudkgWoS8D5+DFRzMWpBOmsEJeR/2VYql
U+UEUNJ8IafHVxOqyUk3zSEPgurMbTO8Xzuw6g4YiDPA8ENNFFLoOcCK8opg
z1tQYWmhk9cTBjgOj1dTpk6BvgHOo6V4fYaMa0aFm1KB6Iip0+g9Y5NspwJy
czhrG/kPPlOBO19/W0fvm2ju+VxpKSaAhYVn9xw/qsAdyhIcgXj5w59i/eVb
fgIdBYXjWuIZsOq8vQyDEwnwLGrcUM3Hr+fcE/kHo5bQrq7CyQr/f1uObzoO
SwEDyHGAUv84Dte9WiWQm6NZTk18dJQfJA0wbCA3R0W4LNAXvy+HBs8yJVS3
1wgx/uxD+5n1oZQeeu6RtpxYHbswXLO8JC7EjvLYqGxbojqDzy+u2F3Keggo
/pxaMSqeBBfPFV93+k0E5UUaH1O9YyBn3qP8Ch8SwDqem5Tg9TZ6dVko7Plp
MD9QvAONhzYOf34gt+WJhemfUglV6Ej6dQO5LTv3KzIhj2CbV5qSGA0VOOzF
poTaLfM5fyYV/D7ytUJt/WNm8JKQcvgw/n+5C9m5b8PLg3LsjlytM4MiRNpz
aB+dgOfNfReqCeBCaWmrzYguLAeeBsgrEanc9EqmvUWRVwJF//FKNLM33QpN
SqZFdcFx7NY/bsX6rlvRZk8JQH2l1z3rOC/0CrC9ooDXM89l7q5Spj5wlum9
q1x9NLw2fdP78dIY4DYuYQoFRAB+hDBqnteDJANdB945fD0Y0kXOH85Nx8rl
XolBTF6KnD98ZsDCoxVvz0/uCpg711FB85WSoyx4exazZc5j6SGCLD3rP2ks
z+Dn68PtJG8S2HDfdA3epZNdA8iYv+kaJNVs+i87q84i/wUAwU3/pd5u0xH4
vdMhkzQZjy3+4whkpm3di/KDeRF7X+rzX8buSpwk5wf7uUWb7AtsMeMVON2R
hR3jriP7AjrfX3ShvGHaWyk5Xhc4YSGnVwXJ35ubcWxBfm7Zjjuel9WLsaRo
ZbI7YOT7Jg99xxp1RajwkJ431mfOro/OcyTem+wR7D/rsKawWItlrWWTPYL0
59s/oudaxpzLcuUX72Fbum5BNA+ahd8xR05B2eS1Gua93zFaMWqyU+DnZmXI
gZd3t9KwbASlY3suNTKg/GPPt7ycQPnMH0gX7K2mpgfRR07Won0Rg+JeKYGo
nQtf9KC6+w7zUytNQ/dXccJEDrkGLUoPYoqPbIU0h7RXkWvw4Hg2E4dfHRDa
YRhTxikA1RS+5qD9VBk7P71GTsHbR7p3m7gZoOqa60/kFPyu4z+wDx/HRGio
K7awrGHC/EovYvByU16fE/kN3UD6qGLmImUKPK8mb1/ANAHSr91ZLHEkAstJ
wWRWBTaozDZDzYmvTxPuhGTt7SWCHTnvh++xBUO6ILMYoTASeFSxHmc7QATK
Zy7v0RYIheCJotIz5G4ALfgulwDGlWNXFGf04KfpyZOJePtsyH/IGlXdCqLG
RJ+EONvCqk952qqsU8D4u+0OlKdF5NXCjICcKBzY76MW/JUETFS4H7jj8ybT
9qmcd5ZScO2r/x0v9Pw8SH8jxLcF3L1J0oFV1iDgrTPxAR8+njdt+g47VY+W
jjOsYIr/+A5jpiSy8/LYi6otOV4CmsifIzsvfgrMqoWd+LzmMXPgsYwy5GM9
bIQ8lx1sVEJVOz6BjMdf7z1INoLb3prmILflN8k3FvkspdqdOXsfOsOw8gvt
yGcx+nns3Ve3L+CQzno431osHN/t+SJNdxJ8YhW5V3uoFzQedlflxrLh98TI
i/Lu46DqvUOL15d+kHr2mXfgC08oc7pmUvPEGEh38Xy6fowIfJUDwZMWS/h9
Y9QfeSstcvIbyCdi9EpMy/HZB+MNPtognyhl8sAW9F1VnpTMIMdzdtjWeHIG
eSsqZSolKG+ShVVXRNuFSUzoICU7igNN3a+27cLnr30HNFsqNSwhRZj27gW8
PYzmtrC4ZaL5fRUz2G4NpQax62V43Luc5RZnj58n7XoAfdYuGsB5xfYY2V+w
HqgyxuNnD58eg8ujdMA5vv0IyktfXbe9lOBeB7SUfgZZdlMCQbFIEX0Ub1Nv
+kd+R+cmiiaogP4//pGqX4HhFTyeOcMlr9XIYAa3PthWhfyI4oVBEzm8Hf54
F+E322EOX9G7UpuhPOTEW8YCJXg7f0plIO1nCYO5+VTd8Plojl7h0wheniQr
VX6IzxJaDx1jMcHLmZ90y3MxEoFY5d6mvdpOMOp8jWQFxxiI2n5/1E2dCD51
hWrqFBpATcPgHXaTJED18JACyvPc368TYtNkBgO7sspRnmdxOeGQyd/94GR7
60kP2hvQ6NvFEkd8PcU34+YezkcE4lPZKh9zLeAfKZ3g3zRjgP2072URtF/i
8alqhpJdkLdo6242PE47sVoscATlxb09KvtL5wjMt26tqMav88HJsQ2GBgLo
c5Iw7p07Cak7GuMbifh8FLJ1j8U0AcTl01WsFWrB/h3FHN97JsGbkWev+s59
Au+iT/K93mMDnygu7XdrmQTpPL8PL+d8Brmu84rijAHQlLro8e3USXDr4fLL
tOPfgNlsJPZYNgcWUvs/2JY0AZpKaoyMnYhAKu9Sv53eThh7u0A+F4+rw7uk
T6L8zINpgfVBoqzw6ouDZ/XxdjW8U+TD1f5+oC6fvveMjy+0LX715avoGDjC
Oa+H7cbbc+zTQvqwaHg/P1uw79EY0NIxSpG+RgQep36kmx45AB8uXr1ajNfD
0sFNR2wxp11mpxIJow7cdMSy2k5fQV4VtQLjfYlcBVgtzMaNvKrG0E0vI4yG
7GVA13+8jAf/+BTpzmSfAn7+x6dIL7EtFsTbLWSn7+BmJ2Gul189R+ujkD1u
HCivCN1Jve6XsV2YpbHmU/R8+AnrphOxNfQatbHBMMYqsOlEPDis9AR5c/US
NGKV/eoQ8MvPMQyTwNF/3BwG2mjk5sC+f9yclIPJBXwUeHxo/p4xUtcSPlF9
UF2+Mgl8FdX1kH/RX+v+81ayJbwYpT6A/Au66KWFkZNtYCE/qduE9TJUlp5c
ubR1CuxNFoP2eL0tchBnTnnug8aVqlKR6PnhP97E0B6yNwFV//EmmJjY72WN
EsFx85hEz9fhUFU7pAO7QwLz+ym4KPG48W7amfiikKvgfdNXbga8vTHufU/2
PlqGROXGzKlAQ92m9zH+o/I5cluWOA2/gAcGsElwVB3t6yuhpOBHzsJt94GN
r9Xn4IXPVItZTPg6yEeoeRWvN4N9dXoG2yjBxeprcmQP/R/XY7CL7HpA7X9c
D1/ulae/x/pB8opQcfkEhKSG5V6nXhIwO73pQHU1kx0oOOSw6UCprIbkT+L9
0f4NhcH9SitYZnriC3puE82luh6EX+cAnH5un30BHE92keLDf7elW1x/QLUO
MFBV09T8toBcibNLyGEp1x1s9Gwigt8tUx+vJt6CST+Pb8wnk0Cm7ejHyUtE
ML7S/THtiAWcTqDcuNRDAsc/PKgXxeNAD3DvfkSkFlz/U+EN8PIaeTY5X7x8
8pDHesY7Hdi95ch2Jry8lp6joPoKEeTMCHwQkz0Lv9Bkmz3A2wNn+FvNA/g6
l7lLjFv9ngFknzwYkIXHkzpUa/ZVeHm7utgB0RFFyLmDblEBL//R8fYV8gsy
fyi4L0vNYifP3ipFz8EspJtyUR6wys6M4x78a5j/vAA5D5jNt0234hov2a2A
z7o23YrOiAVB5FzIDlJ7L/+xgowqBQrIubCey21EDsJa/jYKQvwapuRt/QSd
583loaE3eHnTnaRSvXO0IJSBhQvFOVZ2m/4F0y+yfwFXHDf9iy83un1j8d89
taXotLvgXtga12x7A/9d6+zsp974fC3bgVGUnzOBGx+med3w+VpI63b8WbR/
5oF3EOeAGVxmX92D8m3KMCuVNOHj/HcvCoOABXOoqDTtRImP84+uhoaj+cvr
vcu3sROzmGunKge6ztfy94u24eU95xJXt3uOYMeu7HmFymntoRx6nhNxJJCl
/9ESFrJW24Laod/OopIb5PjQEcxtpQcjd7+0o3jv7i0xi3a8P3oOVF10HTaB
NS+b2azx/qgYPYa1LhHB8mCqc7hOErz+o6lD250E4LqIxDM8PiEKvFOrOWsK
a111OArweWotcRbex8d5u8oHHJEt5vBDSlRdG/I4DLZtOZxNALVLh6TrKK0h
7ZFHoTfx+ZTmxjRVGHrO3NwjUFVIAVoudZ5HHpPs1QDlPTZE4C8aDiikjCEt
QYBVDu8XJyo7fzDHEIAzw/2VWS9z6DZ4qyEHX6ecXJ51R3nS9lwwO9exdQIb
13lfhuqB5iJBwgGvZ01RR9o9Ldaws2v5/F28nu17E59vxdvDnb7StbytNjC0
wexXB94eGE8zyz57SAC3aJOt3GSt4RvuxHBe/DrfXyDVXcGvM9Qkw3aPHw0Y
7XiYhd5/2WV9HZe8QQQ3se/BW7PNoWdr/h+vTyQgnnWQd96KCKb2SWJtxYYw
r7Xy8Ap+/Y5zV+vo8fXvmniQlO6oFfQpqo5FbpGmqb0Tur9l4QLC+6fnMCtM
n+xuNGmo7UTPtQQoz88IZM1jKZJ9JWjcZrxtf5DPpQFw/Og/7xH/ArbkGx9t
sZ8CunkG/L5Z9SChus3+t+kr4MSmxm50aQr0CnT+vC7RD8K/zDun3xqDF405
mKMHS2EPb03nqGQzkOm+2kAd7APY1+UvpZzC2/OnGB00XwhHhsvo9P7ColtP
VaHfnSoXmkGOxlOxWx2Xvk9jLTV5ZEej4GGY9B68HOuJkDFrWcCcQ5/yoPLU
k3F6J0ZGAX2phIRa5AuoPHbq3M6Yn0A10qqTYi8BbPHwPnyD+RLMbtl6T+rP
JGgLGrv0gZIAToe6hA7W2MDCizf5fPD5gpcl9KuAaRtgweotRS5aQ91KM0pd
2v/e7+jZOveeE+13clf+4JQ1hOmdczdA11lsQLVahtqh/LtSmrBeTDdPeBDN
d9e9WDyQx5H1hKv0cvIfTJU9aQCNPztsO0aRl+FTJdWeOMAG6Ok2HqL10apx
vzPKj6173Gl1Y4kNJMrPL6J66y+YaUbfq9LGpIyWwhCsrI6f/L1qW5P4nn48
/pmQE/P63aAC+6dIPCivcqBV+PRh1B+PFZeGiNDCZwpb6drx/oiPb5Iovy7p
HbCSIZ2GDDVqt1F+Xa9fjkXIHWBrXkHuABT5cYcDuQOuyu9MLxMIgJNfk3e8
SxYqpGq6IV9gsUTsLnIErCzv8FBW6kCuqO3myBHoCmC6jLyA6fuWV+A9W2h7
sNYKeQGd2UVFic/bQcn37/H8PvegYRS2X8J5EsT/sXVC+fn5ttJamjJvh7av
tDJQfv4n2waC0qvw9b7U1MWHtCbQcXY5FT23sY5U3IXyodV4Ht2gfn0X82Rc
70D10HyQZ/I8Hv/kx2kN9+U11UR89j+O1ilBtqLPy/DyupkMmiMMgzX98j+H
kDexUVyfekAfH28rukopj6pB//pPtcdGSODpqGPZNjyeTw58w7DDaSuc7mZy
QN+lHu7XpqfH53de4b2n45OoQYhSqxtah958O3OrFL+eL5JOhvtaqUC0cEIq
Gud5/ojkl+Hz7IuA40ImpUaw6QBvIwU+DnglC5H88vuBrpJRMvdhDyhWURzL
rTcGxg79skM+RX/9zhdntxlBiy3RosinOLhlzBp5IlLzj1kK/OewxFP+Eiiu
E6YV9a4tIIDKW04W774LwJJ+eytWfBxgeiCxfiGsD8h/2Emsj4iB9EPhU1s6
x8BzQJnGo0wEkVqBUe2v9WHD63mGjhkSuHnW5dc+vD3spVqb+/xCDZ7oL1UP
wduDuexPIZR/Yw9fXNyL3XTQXdl6EeXfcJqww1DeeP3Uy3r6GccAx724YpQ3
/rSCsThyN7ZLiLZJfKWFK7nilcjdIDXMxVIEfACT29N2PXGIBH10+soOZ6aA
hybrlcGk92C73/jMQd1YkFJxyBp5KFoK20uQR+ChfW3qTX462BEgeQt5BLT7
i92QX/BL/cmvoc7z0HccHEN+gcHwDlGU561yOHzY9XMUFjLZG4vaQytLnhHa
d9SmEWJ+pjQMo7tWS3buJhaZRNB7manX1RG5FcmYF98qHfk5CS81F/ruu2ed
mcBwJwFbOPCe7N8NLNQ4oHxlpvuMvl7oe4LR7jhD9mIYyt78Rt99P8zQ1oL5
OZiAAcctVL4rTrMYOTLhWzKRI4PpR/qTHZn4TkZ15OVlnjFtjrtQhnlR6ewk
5/WK7LdEvkxI9iFWGP4Z29DUI/syQlI0gSv48VytefOk+ncYfbXDLGpvJMnY
W8jB8dWuqWitXsH2snucRw7O02emV3ag/P8UbqUL8SRsxf1EEvp+YfwgfUGB
bx0wOzdSKdXHCvcF0PCivPRf3I11au7g88XzM/t3CR+Dsx3XdJCLFxfc2I1c
G5Hu4suSzJTwTmg52bVRMpl8ppdMAOw5/T86V6cxpkHi+/t4+dLhod3D6h+B
yLmCLY+9boNBpedT8sfxeCC08FR9HAH4Gpc+Z/K3BmGsv2lQ3nt7n2xKPeTj
sGumNSuXYW+uut1G/VTJP/0Pcjd0vZoZL03rw7Q0QHY37ErlM3Pw//d5o+BG
btdSzdnY0wLIO/jxmEd7dz7e/ssP1+Y18EHzytgNe7z977k/W+nwpgdI2NS0
Ld7IhOKaRewcn8aB/PZjvLN4XPRnJdpghpcTjpkRnpLwcUbNgW4HchxuJ9FE
OzDGYuerrpIdB7b+JCfkOJRR+LYo5Wdgm3+ngPbpUBrkOMw/fYYcB8y6h7X4
/8JxwP7lOLwYHeRF+2arv/YUxsx+x6qY2ifRvtmh5dgXN/B+lBmhdlfqJh0U
WuwsRc7CrVPfAPIff/yUS6gXOAQHp4/Wo/W7taiT2AoeB6qcm2muEJOAL7sI
Qfx4HMiSee8jyi9NKyVjIu7iBr3O9p1E+aVpDqY0o+/3967PjBwXWsAcGJnz
0LiROfhMeR9eb3kjje8iRNXhHHfDkB1eb41Oz0KR30GReQD5HbD8dZoH8jue
FyfKufcSgJEqjWt/oiLs4ZcxQX5HaJTtMSj0CXSFxtyi8DWE1jI9mpJfJoEi
B9125HfEpiyfev7BGY7rMwojv6P2EmO9rWEHONYfcvxMURw0/vpttPzQJChi
0GSutvsBXlzUrkqKS4RC97XvrfGPA3GuvJ+HZInAjGr29OVpI1h7x7d0fIEE
mj6qKSOXB9h/iz5OswMqR3vOK+Hx4eP07ULIBzmQBfedZWaGk8t+XsgHsd0a
V3P6dit40MxT+Hv+FHT6ktmI8rGfN31rgvJLc2RPPP3NNY3drqdKQPP1Nd/z
c/fxens5N7iH9nMXVmDAZYyeH75LUS7wrSaCjtdTQOTKZcgiGdMcnI3HY6on
rxDx31X67X3cY4c5rLA5zf8I/90XzZqrcchjYpm8+0bcCuouN7GI4uXT+wQE
VnOIYFZ8oYxTkxPO7fYI+VSK38f2eV/PPUSg3SvNfEHuEoy/KljCyDAG0vfe
Mj11hggsfBw5+RI0oSEpZP/ZMRJwmc7vs1ruB5SddBnnGp3hueKgu4T9Y6Bd
vmmh6RARzNPJ8i3fs4QKWf2ENYoxkNZi8hz5NbOfcqwLH+2GBplOr5BfUxYh
OFj7ggCGZa9EGh46DacvR3Yjn0jnbabe6xICqNftL/q2eAg2BjfsuYjHFfc8
Q3XfvScAG3/KQmgiDTW30M/wEifBWrja2YBlAni786LZmRINuCshMNmjexLs
nTlgz+X6CRypG+jKeWwN4xN6A1PfT4IFumBfAYZ2EN5nwnS3NQA+4IdrsWGT
4Lc9343Exi5QI6p66mpbJvTrSDS6ojIB+KKcKFEeqrD9H2Ksb7DBpS0edVfw
/ntzhUI3F6/nT6yFrmzvtkLFk483hPB6thhoU+cdxNeVSx58jRwhMJB4Ldgi
BF9H+LyT49/fArjfdnxcsXABFQFNBRyHpgD7qZQn0z/7QQovYVDZzQfKtC3d
0Tg6BuSfRh+ixtvDQobW1f41CnBBMl0LfS8mTf+t6d46EUyMFAp7mSTDs6Er
2zpdSOBMnXsaytt/xoKl+PWeR9CbQukEytuvonHkl5BlP/D/dWb0iEEQPGPW
YB3jOwZcGcSpUB71dPqxU+frE+HpgrFQlEfdhKNV/gcej1GkC2u0JDjAHUCa
GbkS6m73d8ddJYKuL4Y3ls1PQvF6bnMmfF38PNLgJid+H8e3rdUsepjBD7vU
znzAj9/hIBzeVEYAVnUBhi7nLeCu1rPJu/D7WHOynV2nnACmvGRs33WbQ8fF
aVvkU+RZX5NGPleFXLHQDrufmKvHC1sUL6mUmNSsWBCBDWWElbSANDyfcY/l
VB/ebnOHnyKvhCnmD0van0KofvyaN/JKfvTbuWzD60EhtuDlcZksqPCndXH/
dbweDkeKzOLHe71rY9h+NQ4ef70S9NuDBF4xNbGbjBGBgPjdykjGMHjfoS75
WAAJ3KfczDvt4/F98oz9MBYTspl3ui8Jm3+O91/exudaxq9GsXHul59Q/9V7
8HbjJT5/da7erLa5agX7R9b3of2E+/rX01tQHuYzcXa71OewEffuORSHV/nr
nED5V4OKz1Y4S1ECENvpi+L56qkYSpRH12qb7dAXz2XMj9/3Bzq+wGZPkzp+
vF0uuxTzEB1gxDg80L6j2CAzxbvnieA2jYj6cL0iZFw1fM0+SAKGLr+E+q8Q
wZbh51u4r1vB8A8CKT74/XK4fv0rynvfay2UZrzNAp50ceFFee/dGM/To3zp
Te9txWprVeHMUNYIypdeRRd7uBxv582eL+MGHc3gI9EvCnvxdv6/8smDf+WT
PxdYlI7ysfcIeJvc1zaB62515HzskDB0glu4FUjVJmpROgkDuxtPT5zYNQX+
+BfdR25ICpF/QWDyMXw4lx6D3BDRIpesqN/4+HNYh4WiPBKWtWevM/uSwLVP
I5ci8XnN4ODXVi8danBfNSkCzWtSdhQMyF+o2MoVeoCDAlzhJbqR80iHCdgh
p6lg4vR1dicrqJy5SkBO02qf4hh6H53Au+v18EkqoH7YwAE9N7t2qJPo+ZkA
Wr72U1M8uAIsgyW8RvsmwVtp81ruVgL4VMAJ/E2vw/23TDR88PVIjx3h61mq
NjCZP+BsU2sOXxtwZgwxTIHyEfoE5D0xGrN++n6zCcolVroj74ntWOrI3GIj
CM8j1V0ubITp3j9SkGuwvFPLYWPyNRCnsmkyjroLNuZM3KSapsDr4xGpyCvp
MKh6FXjFBJKmjViRV5Jg1C6H2qfixFWRPGwDY9Sv6UDt0yb/QhnySkiX34RI
97ECq+S8IOSVTGHpwRfwuOvxk6vVUd7i4Dob78R3PO7C5mSZ7tvg8QOokt5l
fhFMRLoxbaDnLZ+cT7c41oGcXZ4DDuw2MEWysy0cL2cP0Js7ulYLCMlqBZN5
JvDelafgWdEUONuDHcz9TAQma9lRMhle8OtHn6HQWBI4xFVJdlgEb5Pu0ZlY
ws5marLD0paSy9RziQiG1w++2clsDsfzXu9x7SGBXvddI6J5ePvkKlH+zV8B
j5waHNuLj58ick2f6JuJgDc1cRiulUHio5ui1V4kkP3rGlNnFxEEVqSohL0u
gY4N263E8H7tGMhH06zeANR/xRvO62QDOs+b/tl3p8CVRLb0MPRe+NJrpyRT
NdjyZzWHCv/dcRFOHVH8Op+MzJJyqgzhAdOHTxLx61y+RCEtgfcjHq9eS5Nw
RchwjJvuNxr3lJgkTXqIgDC0/8rlIH/o6X6wLywcHz+1EpeRX9bgX5FKOK0P
c8SDR5Bf1p/YUIbi8+t3Vx7YpW8DIYpFOig+T34vYXQ2igD29J7wpdI1h1Mi
sXv78HjVWP8L08+iNhBmTIz/yWcDnw15CjBTTIFBIdof32bfAm4TZQ37pLfw
2uK+PMaT+DplqWr/mVwCaI4cOmexYAX3lt1YeojeI48GbUfPGz9K8RS56I9i
vJQdD9E4k86WFYJ8B+4bWi+adC2h2g2pg8h3OHp3uQn5NQ3fHQv9mKwhxT75
WeTXpPYx3UZOhN+b4ELeF9awLpf7N3IiVL5IJ0bhcUhrvOJh+XIrmOgkuf0b
Pj68131b1I0fv6QUMJ/VtRtefJYqoobyWLodn3hfRAAn3FsHiGuWsG665lYD
Pv5bluRULnQTwMnfNiKlXpeh7p+Uljo83tvOHB6A/BqeWu+RO2dMIDyicRz5
NfqX3Y8iX8MwRCZDZfQCXNupcwb5GoE+1a/58N/1fBRtU/vUHHY/Vk+uwn/3
vg5HdQMev01UPjx2k9MCLkoWFlLhcYiWfgUten7VcPhre+/6LMbPK7oL1Y/5
nlEr5DJY+t7trdryC1t2BGR/p9bt1yjKA1+r2uenmr6KLSs6/ULl3WDYFuUH
fqnlN3HZkB6EWH7bQPF50z/+yJFNfwTa/+OPuB0wDUUORcBJP7a1qCTIr1RP
cc2VBAh/Im1U8HGpinEpVKqYGpyTd1VE67IHjGX26DlVjiXdnvPJMxinR88+
9LuPLeLF8vH5otB8UXXUixForzZh6LsS/3ITslvB87DwFwfBFCr1XCa7FZPu
uR+Rc2G0y8u3/pAFfLT/2j3kXJim3mp/n0kAFtb20bVC1jDsU8LXJ/h9f/aJ
yr0QP//OF29vPtGnBGYvqnjQ+XstPI6h9+l/dvYJnGigB0tlTmS3iyqm1Y8d
v1/9Cn8aFpKM4VO/aLUU/H4p9hYxI7fIaUin6OMFc9g0pE3ON7hNq6MEOTup
x2tVpDLHsLdHtfvR/0XXGZ6KXKfGc9YTC3h7mwdHltBzZk+h5HHkQH3QePZw
i6o1TAoockEOFMXDpONMjwhgcS59e8AxazgqTz2G8ui6Bf9SRP7I7lxPnzsP
qEFe6dF76Prr3j5oU75BBFMKzKElcWbwYHBkrDM+T+n2UpUjh6hhD7PFMuc5
OK6oyY4comVRyTvf8ggA+xDSqd9uBVXPxL5xxPtXXxnwQc/lhHOlWW/yUIEX
bguG6Pq/z3uNHX/5EYwNny+ebPYCziY0NZ1Hp8CeSN43lO0tQPl7ak7+5Yvg
1+SjT7f3TYGb7FltQ/h1njXtj04QXMOyPlGyo3m/bXCXvCAfvv4dNoq+/8YK
ej4cTdPA54uQ3+fPtD1rAYrersN95pdBaN7ByUSeKfBL7qty6/k20GdmkkYI
tITPIg7vDqGdAmEvzrKgfOZmuyODr/VSgkADNTV0ndOsUVqvQ5oBjZBU8zue
YLAYa/L1PZgChrvXjjRt+QicqF4OhU75A5mr3KayMvh8QXOCHs07Gk0zG0o0
o1j963ayu3FrwMADtU/u+DV3R+sZjP66I7l9usSVdjPj5eL32VlK91EC/3pi
LCrfe7ieF7k/ZbZBecvTf7Cd593eo3Kflqj6n2hf8fvorpT6LUA45JwoqocI
g24F1E9hBk90Re8s9nyEdQf5PLWSZF+MhEloGbpbQy69VLIvxvKg4SryTazh
9bBZrUuQa9ZZB/km38zv772u3wZyTuyf8XG1gppXzqVN4PUj8q5S4z3rp389
l/WbcHeLu/QVX1+oRir/z3LHXS7xqPz/6+Pj6fjV/mf5UfXZuP+782ytElT5
t/NUy5DPo5/+89/OzxRzmVwuWzL8b8cfPLqfXH5LwOrffrejnUQ+f42+lur/
LN++fzv5eO0m5387zw0TUXI5Qe7+vx3PbL/1/5d6+1vPf+v5bz3/ree/9fy3
nv/W8996/lvPf+v5bz3/ree/9fy3nv/W8996/lvPf+v5bz3/P6/n/7Z+DjGf
UP+f5SlyLXH/f5z/P5X/p/P/t8f/t9dfLOj8b8f30jL+vzr+P9XDf3v+//b6
/9t+95+u5/8A4n5d5w==
"]], {}}, Axes -> True, AxesLabel -> {
FormBox["\"Re(\[Lambda])\"", TraditionalForm],
FormBox["\"Im(\[Lambda])\"", TraditionalForm], None},
AxesOrigin -> {Automatic, Automatic, Automatic}, AxesStyle ->
Directive[16], BoxRatios -> {1, 1, 1}, DisplayFunction -> Identity,
FaceGrids -> None, FaceGridsStyle -> Automatic,
ImageSize -> {576., 598.9288918489954},
Method -> {"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"RotationControl" -> "Globe"},
PlotRange -> {{-1, 3}, {-1, 1}, {-1.1181909283178173`,
1.4957108590940091`}}, PlotRangePadding -> {
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]}, SphericalRegion -> True,
Ticks -> {Automatic, Automatic, Automatic}, ViewAngle ->
0.5011114127587017,
ViewPoint -> {0.05831781582142124, -3.3792150045348204`,
0.16584627063809235`},
ViewVertical -> {-0.0008457144052505187, 0.049004764110589946`,
0.9987981867532653}],
FormBox[
FormBox[
TemplateBox[{
TagBox[
FrameBox[
StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["3", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["4", Smaller, StripOnInput -> False]], "Placeholder"]},
"SwatchLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[
InsetBox[
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All},
ImagePadding -> 0, {DefaultBaseStyle -> {"Graphics3D",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
Specularity[
GrayLevel[1], 3],
RGBColor[0.880722, 0.611041, 0.142051],
Lighting -> {{"Ambient",
RGBColor[
0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}},
Opacity[0.7]]}, Lighting -> {{"Ambient",
RGBColor[
0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}, ImageSize -> {12, 12}, BoxStyle ->
Directive[
Opacity[0.3],
GrayLevel[0]]}], Center, Center,
ImageScaled[{1, 1}]], AspectRatio -> Full,
ImageSize -> {12, 12}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.16666666666666669`] ->
Baseline)], #}, {
GraphicsBox[
InsetBox[
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All},
ImagePadding -> 0, {DefaultBaseStyle -> {"Graphics3D",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
Specularity[
GrayLevel[1], 3],
RGBColor[0.368417, 0.506779, 0.709798],
Lighting -> {{"Ambient",
RGBColor[
0.19699838300000003`, 0.252204821,
0.33320940200000004`]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 0, 2}]}},
Opacity[0.7]]}, Lighting -> {{"Ambient",
RGBColor[
0.19699838300000003`, 0.252204821,
0.33320940200000004`]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 0, 2}]}}, ImageSize -> {12, 12}, BoxStyle ->
Directive[
Opacity[0.3],
GrayLevel[0]]}], Center, Center,
ImageScaled[{1, 1}]], AspectRatio -> Full,
ImageSize -> {12, 12}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.16666666666666669`] ->
Baseline)], #2}, {
GraphicsBox[
InsetBox[
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All},
ImagePadding -> 0, {DefaultBaseStyle -> {"Graphics3D",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
Specularity[
GrayLevel[1], 3],
RGBColor[0.560181, 0.691569, 0.194885],
Lighting -> {{"Ambient",
RGBColor[
0.1830429875, 0.21424763749999998`, 0.0962851875]}, {
"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 0, 2}]}},
Opacity[0.7]]}, Lighting -> {{"Ambient",
RGBColor[
0.1830429875, 0.21424763749999998`, 0.0962851875]}, {
"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 0, 2}]}}, ImageSize -> {12, 12}, BoxStyle ->
Directive[
Opacity[0.3],
GrayLevel[0]]}], Center, Center,
ImageScaled[{1, 1}]], AspectRatio -> Full,
ImageSize -> {12, 12}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.16666666666666669`] ->
Baseline)], #3}, {
GraphicsBox[
InsetBox[
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All},
ImagePadding -> 0, {DefaultBaseStyle -> {"Graphics3D",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
Specularity[
GrayLevel[1], 6],
RGBColor[0.922526, 0.385626, 0.209179],
Lighting -> {{"Ambient",
RGBColor[0.30756835, 0.18676585, 0.147065275]}, {
"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{0, 2, 2}]}, {"Directional",
GrayLevel[0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{2, 0, 2}]}},
Opacity[0.7]]}, Lighting -> {{"Ambient",
RGBColor[0.30756835, 0.18676585, 0.147065275]}, {
"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{0, 2, 2}]}, {"Directional",
GrayLevel[0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{2, 0, 2}]}}, ImageSize -> {12, 12}, BoxStyle ->
Directive[
Opacity[0.3],
GrayLevel[0]]}], Center, Center,
ImageScaled[{1, 1}]], AspectRatio -> Full,
ImageSize -> {12, 12}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.16666666666666669`] ->
Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.3}}, "Rows" -> {{0.5}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"SwatchLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Specularity", "[",
RowBox[{
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.6666666666666667], FrameTicks ->
None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "1", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[1], Editable -> False, Selectable -> False],
",", "3"}], "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"Lighting", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"Ambient\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.20067051333333336`, 0.14943112333333333`,
0.06032302333333334], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.30100577`", ",", "0.22414668499999998`", ",",
"0.090484535`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535],
Editable -> False, Selectable -> False]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.17614440000000003`, 0.12220819999999999`,
0.028410200000000007`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2642166`", ",", "0.18331229999999998`", ",",
"0.04261530000000001`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2642166, 0.18331229999999998`,
0.04261530000000001];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.17614440000000003`, 0.12220819999999999`,
0.028410200000000007`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2642166`", ",", "0.18331229999999998`", ",",
"0.04261530000000001`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2642166, 0.18331229999999998`,
0.04261530000000001];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.17614440000000003`, 0.12220819999999999`,
0.028410200000000007`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2642166`", ",", "0.18331229999999998`", ",",
"0.04261530000000001`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2642166, 0.18331229999999998`,
0.04261530000000001];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "0", ",", "2"}], "}"}], "]"}]}],
"}"}]}], "}"}]}], ",",
RowBox[{"Opacity", "[", "0.7`", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Specularity", "[",
RowBox[{
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.6666666666666667], FrameTicks ->
None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "1", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[1], Editable -> False, Selectable -> False],
",", "3"}], "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"Lighting", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"Ambient\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.19699838300000003`, 0.252204821, 0.33320940200000004`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.13133225533333337`, 0.16813654733333336`,
0.22213960133333338`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.19699838300000003`", ",", "0.252204821`", ",",
"0.33320940200000004`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.19699838300000003`, 0.252204821,
0.33320940200000004`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.19699838300000003`, 0.252204821, 0.33320940200000004`],
Editable -> False, Selectable -> False]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.10315676000000001`, 0.14189812000000002`,
0.19874344000000005`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.15473514000000002`", ",",
"0.21284718000000002`", ",", "0.29811516000000005`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`], Editable -> False, Selectable ->
False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.10315676000000001`, 0.14189812000000002`,
0.19874344000000005`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.15473514000000002`", ",",
"0.21284718000000002`", ",", "0.29811516000000005`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`], Editable -> False, Selectable ->
False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.10315676000000001`, 0.14189812000000002`,
0.19874344000000005`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.15473514000000002`", ",",
"0.21284718000000002`", ",", "0.29811516000000005`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`], Editable -> False, Selectable ->
False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "0", ",", "2"}], "}"}], "]"}]}],
"}"}]}], "}"}]}], ",",
RowBox[{"Opacity", "[", "0.7`", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Specularity", "[",
RowBox[{
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.6666666666666667], FrameTicks ->
None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "1", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[1], Editable -> False, Selectable -> False],
",", "3"}], "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"Lighting", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"Ambient\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.1830429875, 0.21424763749999998`, 0.0962851875],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.12202865833333335`, 0.14283175833333334`, 0.064190125],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.1830429875`", ",", "0.21424763749999998`", ",",
"0.0962851875`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.1830429875, 0.21424763749999998`,
0.0962851875];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.1830429875, 0.21424763749999998`, 0.0962851875],
Editable -> False, Selectable -> False]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.09336350000000002, 0.11526149999999999`,
0.032480833333333334`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.14004525`", ",", "0.17289224999999997`", ",",
"0.048721249999999994`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.14004525, 0.17289224999999997`,
0.048721249999999994`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.09336350000000002, 0.11526149999999999`,
0.032480833333333334`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.14004525`", ",", "0.17289224999999997`", ",",
"0.048721249999999994`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.14004525, 0.17289224999999997`,
0.048721249999999994`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.09336350000000002, 0.11526149999999999`,
0.032480833333333334`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.14004525`", ",", "0.17289224999999997`", ",",
"0.048721249999999994`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.14004525, 0.17289224999999997`,
0.048721249999999994`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "0", ",", "2"}], "}"}], "]"}]}],
"}"}]}], "}"}]}], ",",
RowBox[{"Opacity", "[", "0.7`", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Specularity", "[",
RowBox[{
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.6666666666666667], FrameTicks ->
None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "1", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[1], Editable -> False, Selectable -> False],
",", "6"}], "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.922526, 0.385626, 0.209179],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.6150173333333333, 0.25708400000000003`,
0.13945266666666667`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.922526, 0.385626, 0.209179];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.922526, 0.385626, 0.209179], Editable -> False,
Selectable -> False], ",",
RowBox[{"Lighting", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"Ambient\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.30756835, 0.18676585, 0.147065275],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.20504556666666668`, 0.12451056666666668`,
0.09804351666666666], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.30756835`", ",", "0.18676585`", ",",
"0.147065275`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.30756835, 0.18676585, 0.147065275];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.30756835, 0.18676585, 0.147065275], Editable ->
False, Selectable -> False]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.2306315, 0.0964065, 0.05229475],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.15375433333333333`, 0.06427100000000001,
0.03486316666666667], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2306315`", ",", "0.0964065`", ",",
"0.05229475`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2306315, 0.0964065, 0.05229475];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.2306315, 0.0964065, 0.05229475], Editable ->
False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.3],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.2], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"GrayLevel", "[", "0.3`", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.3];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.3], Editable -> False, Selectable -> False],
",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.2306315, 0.0964065, 0.05229475],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.15375433333333333`, 0.06427100000000001,
0.03486316666666667], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2306315`", ",", "0.0964065`", ",",
"0.05229475`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2306315, 0.0964065, 0.05229475];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.2306315, 0.0964065, 0.05229475], Editable ->
False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "0", ",", "2"}], "}"}], "]"}]}],
"}"}]}], "}"}]}], ",",
RowBox[{"Opacity", "[", "0.7`", "]"}]}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All}, ImagePadding ->
0]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",",
RowBox[{"LegendMarkerSize", "\[Rule]", "12"}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.800339914592054*^9, 3.800340014670586*^9,
3.800340211888435*^9, 3.8003472677605867`*^9},
CellLabel->"Out[30]=",ExpressionUUID->"52c1128b-4a6c-4506-aaea-9ac6e983aaa2"]
}, Open ]]
}, Closed]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Archetypes", "Section",
CellChangeTimes->{{3.8003507012615557`*^9,
3.800350705391283*^9}},ExpressionUUID->"59823bf3-0206-4a75-bf96-\
0b1d632d400c"],
Cell[CellGroupData[{
Cell["RHF", "Subsection",
CellChangeTimes->{{3.800350720891529*^9,
3.800350721372995*^9}},ExpressionUUID->"c76fd690-4dfa-4319-a555-\
3596b82a35e7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"rH\[Lambda]", "[",
RowBox[{"1", ",", "R"}], "]"}], "//", "FullSimplify"}], "//",
"MatrixForm"}]], "Input",
CellChangeTimes->{{3.800351561760757*^9, 3.800351587477044*^9}},
CellLabel->"In[50]:=",ExpressionUUID->"8bb941d9-e032-4bc9-bcc2-4dc7ec2bd917"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox["1", "R"], "0", "0",
FractionBox["1",
RowBox[{"3", " ", "R"}]]},
{"0",
FractionBox[
RowBox[{"1", "+", "R"}],
SuperscriptBox["R", "2"]],
FractionBox["1",
RowBox[{"3", " ", "R"}]], "0"},
{"0",
FractionBox["1",
RowBox[{"3", " ", "R"}]],
FractionBox[
RowBox[{"1", "+", "R"}],
SuperscriptBox["R", "2"]], "0"},
{
FractionBox["1",
RowBox[{"3", " ", "R"}]], "0", "0",
FractionBox[
RowBox[{"50", "+",
RowBox[{"29", " ", "R"}]}],
RowBox[{"25", " ",
SuperscriptBox["R", "2"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{{3.800351575187879*^9, 3.800351589379211*^9}},
CellLabel->
"Out[50]//MatrixForm=",ExpressionUUID->"f9762a34-954d-4245-ab9a-\
3ce085a18dda"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"rH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "//", "FullSimplify"}], "//",
"MatrixForm"}]], "Input",
CellChangeTimes->{{3.8003514243875523`*^9, 3.800351459357768*^9}},
CellLabel->"In[48]:=",ExpressionUUID->"13e29727-2f9c-4348-a8dc-a50537d40d25"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox[
RowBox[{"2", "-", "\[Lambda]"}], "R"], "0", "0",
FractionBox["\[Lambda]",
RowBox[{"3", " ", "R"}]]},
{"0",
FractionBox[
RowBox[{"3", "+",
RowBox[{"8", " ", "R"}], "-",
RowBox[{"5", " ", "R", " ", "\[Lambda]"}]}],
RowBox[{"3", " ",
SuperscriptBox["R", "2"]}]],
FractionBox["\[Lambda]",
RowBox[{"3", " ", "R"}]], "0"},
{"0",
FractionBox["\[Lambda]",
RowBox[{"3", " ", "R"}]],
FractionBox[
RowBox[{"3", "+",
RowBox[{"8", " ", "R"}], "-",
RowBox[{"5", " ", "R", " ", "\[Lambda]"}]}],
RowBox[{"3", " ",
SuperscriptBox["R", "2"]}]], "0"},
{
FractionBox["\[Lambda]",
RowBox[{"3", " ", "R"}]], "0", "0",
FractionBox[
RowBox[{"150", "+",
RowBox[{"250", " ", "R"}], "-",
RowBox[{"163", " ", "R", " ", "\[Lambda]"}]}],
RowBox[{"75", " ",
SuperscriptBox["R", "2"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.800351459798152*^9},
CellLabel->
"Out[48]//MatrixForm=",ExpressionUUID->"8ec44973-3399-49a8-a558-\
9af354264350"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
FractionBox["29", "25"], "+",
FractionBox["163", "75"]}], "\[Equal]",
FractionBox["250", "75"]}]], "Input",
CellChangeTimes->{{3.8003518689175797`*^9, 3.800351871571878*^9}, {
3.800351901579871*^9, 3.800351929662875*^9}},
CellLabel->"In[53]:=",ExpressionUUID->"0bc60b54-bb45-4263-a752-83a294c462e6"],
Cell[BoxData["True"], "Output",
CellChangeTimes->{
3.800351875640552*^9, {3.80035191753452*^9, 3.8003519303375797`*^9}},
CellLabel->"Out[53]=",ExpressionUUID->"c22639b8-5fe8-4ea4-9f75-85162efc62d3"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"\[Gamma]", "=",
FractionBox["163",
RowBox[{"75", "R"}]]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Delta]", "=",
FractionBox["1",
RowBox[{"3", "R"}]]}], ";"}]}], "Input",
CellChangeTimes->{{3.800351935033564*^9, 3.800351950725281*^9}, {
3.800351981526742*^9, 3.800352003718802*^9}},
CellLabel->"In[54]:=",ExpressionUUID->"4e6e5662-9064-45a5-ab12-0cd860a459b8"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\[Gamma]", "//", "N"}], ",",
RowBox[{"\[Delta]", "//", "N"}]}], "}"}]], "Input",
CellChangeTimes->{{3.800352030071599*^9, 3.800352051368526*^9}},
CellLabel->"In[57]:=",ExpressionUUID->"0ffb6086-5540-46f3-b60e-7ab8283006ed"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
FractionBox["2.1733333333333333`", "R"], ",",
FractionBox["0.3333333333333333`", "R"]}], "}"}]], "Output",
CellChangeTimes->{{3.80035203402886*^9, 3.800352051961257*^9}},
CellLabel->"Out[57]=",ExpressionUUID->"45a01882-55b5-4884-821e-a19409cab185"]
}, Open ]],
Cell["\<\
Abs[\[Gamma]] > Abs[\[Delta]] but not Abs[\[Gamma]] >> Abs[\[Delta]]: this is \
a symetric ripple archetype, this agree with the Plot of the coefficients \
part.\
\>", "Text",
CellChangeTimes->{{3.800352055095591*^9,
3.8003521550249233`*^9}},ExpressionUUID->"93b865e9-a921-4b90-bd9c-\
19b5c5e8f975"]
}, Open ]],
Cell[CellGroupData[{
Cell["UHF", "Subsection",
CellChangeTimes->{{3.800352169843026*^9,
3.80035217133442*^9}},ExpressionUUID->"875612af-fea9-475f-917d-\
3d926b1629f2"],
Cell[BoxData[
RowBox[{"Clear", "[",
RowBox[{"\[Gamma]", ",", "\[Delta]"}], "]"}]], "Input",
CellChangeTimes->{{3.8003522482913017`*^9, 3.8003522617324963`*^9}},
CellLabel->"In[62]:=",ExpressionUUID->"4282ffbc-f897-4182-8f0c-bdec158908a7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"1", ",", "R"}], "]"}], "//", "FullSimplify"}], "//",
"MatrixForm"}]], "Input",
CellChangeTimes->{{3.800352185397801*^9, 3.800352185791136*^9}},
CellLabel->"In[59]:=",ExpressionUUID->"8f5c2fe3-94cf-48d1-98a9-b7eaaa519048"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox[
RowBox[{
RowBox[{"-", "225"}], "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"75", "+",
RowBox[{"59", " ", "R"}]}], ")"}]}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]], "0", "0",
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]},
{"0",
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "45"}], "+",
RowBox[{"60", " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]},
{"0",
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "45"}], "+",
RowBox[{"60", " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]},
{
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{{3.800352181073542*^9, 3.8003521865121202`*^9}},
CellLabel->
"Out[59]//MatrixForm=",ExpressionUUID->"426660d9-e9a1-4552-b3c9-\
a127749fc87d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"uH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "//", "FullSimplify"}], "//",
"MatrixForm"}]], "Input",
CellChangeTimes->{{3.800352201390511*^9, 3.800352201698962*^9}},
CellLabel->"In[60]:=",ExpressionUUID->"71f64d67-0982-4c21-a781-e915b01a7af0"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox[
RowBox[{
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"75", "-",
RowBox[{"59", " ", "R", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+", "\[Lambda]"}], ")"}]}]}], ")"}]}], "-",
RowBox[{"225", " ", "\[Lambda]"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]], "0", "0",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]},
{"0",
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "60"}], " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+", "\[Lambda]"}], ")"}]}], "+",
RowBox[{"45", " ", "\[Lambda]"}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]]}],
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]},
{"0",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
RowBox[{"-",
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "60"}], " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+", "\[Lambda]"}], ")"}]}], "+",
RowBox[{"45", " ", "\[Lambda]"}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]]}],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]},
{
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
RowBox[{"16875", " ", "\[Lambda]"}], "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"1875", "+",
RowBox[{"8550", " ", "R"}], "+",
RowBox[{"900", " ", "\[Lambda]"}], "-",
RowBox[{"7039", " ", "R", " ", "\[Lambda]"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.800352202376692*^9},
CellLabel->
"Out[60]//MatrixForm=",ExpressionUUID->"5a2e8a73-5d78-4d3b-9487-\
9fd4fab9c91e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Beta]", "=",
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]}]], "Input",
CellChangeTimes->{{3.800352232832694*^9, 3.800352245340536*^9}, {
3.800352343460321*^9, 3.800352343738543*^9}},
CellLabel->"In[63]:=",ExpressionUUID->"bc9e12a2-4bf5-459c-8b02-103dd4ed5b19"],
Cell[BoxData[
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]], "Output",
CellChangeTimes->{3.800352348927875*^9},
CellLabel->"Out[63]=",ExpressionUUID->"1d728b97-9eed-40e5-8812-9f2494f8e682"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{
RowBox[{"16875", " ", "\[Lambda]"}], "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"1875", "+",
RowBox[{"8550", " ", "R"}], "+",
RowBox[{"900", " ", "\[Lambda]"}], "-",
RowBox[{"7039", " ", "R", " ", "\[Lambda]"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]], "//", "Expand"}]], "Input",
CellChangeTimes->{{3.80035253192638*^9, 3.80035257801448*^9}},
CellLabel->"In[66]:=",ExpressionUUID->"08a80101-b01d-47b5-b3d0-e8c691604134"],
Cell[BoxData[
RowBox[{
FractionBox["25",
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["57",
RowBox[{"14", " ", "R"}]], "+",
FractionBox[
RowBox[{"225", " ", "\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]], "+",
FractionBox[
RowBox[{"3", " ", "\[Lambda]"}],
RowBox[{"7", " ",
SuperscriptBox["R", "2"]}]], "-",
FractionBox[
RowBox[{"7039", " ", "\[Lambda]"}],
RowBox[{"2100", " ", "R"}]]}]], "Output",
CellChangeTimes->{{3.800352536180687*^9, 3.800352578346717*^9}},
CellLabel->"Out[66]=",ExpressionUUID->"592b6f93-bf51-43e2-837b-69eff1bc45e5"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"\[Beta]", "+", "\[Gamma]", "-",
RowBox[{"\[Lambda]", " ", "\[Gamma]"}]}], "=",
RowBox[{
FractionBox["25",
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["57",
RowBox[{"14", " ", "R"}]], "+",
FractionBox[
RowBox[{"225", " ", "\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]], "+",
FractionBox[
RowBox[{"3", " ", "\[Lambda]"}],
RowBox[{"7", " ",
SuperscriptBox["R", "2"]}]], "-",
FractionBox[
RowBox[{"7039", " ", "\[Lambda]"}],
RowBox[{"2100", " ", "R"}]]}]}]], "Input",
CellChangeTimes->{{3.800352309626172*^9, 3.800352319837036*^9},
3.8003526160573893`*^9},ExpressionUUID->"485e6698-0874-458c-be2c-\
b684804f00ab"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
FractionBox["25",
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["57",
RowBox[{"14", " ", "R"}]], "-",
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]}], "//", "FullSimplify"}], "//",
"Expand"}]], "Input",
CellChangeTimes->{{3.80035265705797*^9, 3.80035267180803*^9}},
CellLabel->"In[68]:=",ExpressionUUID->"7b329505-d845-4fe4-935b-edaae7501a25"],
Cell[BoxData[
RowBox[{
RowBox[{"\[Gamma]", "[", "R_", "]"}], ":=",
RowBox[{
RowBox[{"-",
FractionBox["225",
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]}], "-",
FractionBox["3",
RowBox[{"7", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["7039",
RowBox[{"2100", " ", "R"}]]}]}]], "Input",
CellChangeTimes->{{3.8003526852670193`*^9, 3.800352688516603*^9}, {
3.8003528206689377`*^9, 3.800352827232439*^9}},
CellLabel->"In[72]:=",ExpressionUUID->"6ff45040-3f77-4ba2-8daf-5928e0161c88"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]], "//", "Expand"}]], "Input",
CellChangeTimes->{{3.8003527211884327`*^9, 3.800352722968658*^9}},
CellLabel->"In[69]:=",ExpressionUUID->"6784c224-d7e8-4585-98c7-26400ab199d4"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox["75",
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]}], "-",
FractionBox["3",
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["1",
RowBox[{"28", " ", "R"}]]}]], "Output",
CellChangeTimes->{3.800352723348968*^9},
CellLabel->"Out[69]=",ExpressionUUID->"1cb766fe-bf56-4437-97e8-20b651f95239"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"\[Delta]", "[", "R_", "]"}], ":=",
RowBox[{
RowBox[{"-",
FractionBox["75",
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]}], "-",
FractionBox["3",
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["1",
RowBox[{"28", " ", "R"}]]}]}]], "Input",
CellChangeTimes->{{3.800352698524639*^9, 3.800352737123376*^9}, {
3.800352830417364*^9, 3.800352835662073*^9}},
CellLabel->"In[73]:=",ExpressionUUID->"e8bff279-0c1a-456d-8a37-145123dca0bb"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Gamma]", "[", "R", "]"}], ",",
RowBox[{"\[Delta]", "[", "R", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",", "0.5", ",", "500"}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "\"\<Expressions\>\""}]}],
"]"}]], "Input",
CellChangeTimes->{{3.8003528119460382`*^9, 3.800352880012958*^9}, {
3.8003529333689137`*^9, 3.800352934201359*^9}},
CellLabel->"In[75]:=",ExpressionUUID->"2029250c-8fdc-451c-8889-f050acc3b510"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwBwQE+/iFib1JlAgAAABsAAAACAAAAkWLpMVFPzr/x9YZuCengv1h8vQan
I86/CN3ZnJ6C4L9AJJyM3JnNv2BX8aN4ht6/DnRZmEeGzL+AEwgf8qbZv6oT
1K8dX8q/MErRJEZc0L+eZ8NyOBrKvwAGQBwUe86/kbuyNVPVyb+A6PE/N0LM
v3hjkbuIS8m/oEJXHTDex79Hs07H8zfIv4AKVNQmmL6/5FLJ3skQxr8AMwlD
0W+APx2Svg12wsG/EPlsQ/Gazj8U4IvtuXfBv6j7RHI4PNA/Ci5Zzf0swb/Q
QCPoyCjRP/fJ84yFl8C/GAfpEWz70j+hA1IYKtm+v4Aluu4rh9Y/COMmFWgt
ur9AAX5Q/zvdP/V+wdTvl7m/eB5xAqQJ3j/iGlyUdwK5vwg2gWdX1d4/u1KR
E4fXt78wA0xxfDPgP27C+xGmgbW/bO7+rMW54T/VodAO5NWwv9Qud8p/muQ/
wj1rzmtAsL9IOvMSnPLkP12zCxznVa+/oPjneNtJ5T8QI3YaBgCtv2BjgiTK
9eU/dwJLF0RUqL8AhA8MlEPnP4iC6SGA+Z2/hL8BaTm46T/MPFqWWg6Vv1SE
huOfweo/vT/iUg==
"]],
LineBox[CompressedData["
1:eJwBoQNe/CFib1JlAgAAADkAAAACAAAA5sGsVUnt9D9UhIbjn8HqP/oBZlAG
rvY/SZtMMo1F6D9k0VcTFf74P5+P88QxTOU/ZoNLjD0m+z85d32E9sziP1Jl
Tx4dff0/enZumVVi4D/VKVVmFqz/P2cwa61gxdw/IY+1Y+MEAUBvz3kK+/PY
P9zcw/83LgJA9/opx4es1T/jG9N2mUMDQIr8CG1r/dI/33JqelZwBEBUbL13
dnHQPye7AlkgiQVA0bYCYDi8zD/zVh6jZpwGQKH6lBBWKsk/swrCeQjHB0Cq
PqDQ+8jFP7+vZiu33QhA2IF1hWIJwz/AbJNpwQsKQPqNtvXAccA/RX1DE0g0
C0BD5ClZHXu8PxZ/9JfbSAxAoTC51oXmuD/cmC2pynQNQE+r0+yfhbU/7qNn
lcaMDkAGMsz+CciyP4QCJe0+nw9Ayx51tMFusD+HPLVoiWQQQCNu79Kfbaw/
cnBYyHnvEEAwVtPwM9SoP1ewP+4XhhFAAZxEZVxwpT/iaKeBvBISQC7+9f0e
saI/L8vQSp+cEkAJDw/BFlegP3Y5PtovMhNAz+RUQZE+nD9jICzXxr0TQGA+
VYYMppg/SxNemgtVFEBBff49OESVP/WvUZOO6RRAG62vAsJlkj9FxcX5F3QV
QMa7QRgsEpA/j+Z9Jk8KFkDoqLHLQMKLP3+AtsCMlhZAL4pGHyc1iD8xxLCQ
CCAXQD35aV3eKoU/3hPvJjK1F0BnB2+Xk0yCPzHcrSpiQBhAHEwxAMXyfz/u
D8Sqz0IYQIaylmlo338/rEPaKj1FGEBGy+aNF8x/PyarBisYShhAs8fi6pil
fz8cel8rzlMYQMHCezAnWX8/CBgRLDpnGEAoTrTJa8J+P95TdC0SjhhApDVW
DGWdfT+ch4qtf5AYQCjwNWJyi30/WbugLe2SGEAJWNyXinl9P9QizS3IlxhA
8qgqiNtVfT/K8SUufqEYQLIaasX+Dn0/tY/XLuq0GEDBukoERYN8P3LD7a5X
txhAAxgXSf1xfD8w9wMvxbkYQKjAKAbAYHw/ql4wL6C+GED/r8PPZD58P6At
iS9WyBhAz2VE8Cr6ez9eYZ+vw8oYQH6FjEY26Xs/G5W1LzHNGEC1msziS9h7
P5b84S8M0hhA8QJW1JW2ez9UMPivedQYQKtqOR3KpXs/EWQOMOfWGEDN7EiT
CJV7P86XJLBU2RhAf+9aMFGEez+MyzowwtsYQDKTSe6jc3s/tHWdlQ==
"]]},
Annotation[#, "Charting`Private`Tag$25304#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVlnc8lt8bx59FGpL9JF8hCllpGeU6yAiV7PE8dyWUSJJKoaSyQvaKUNIg
JETUMZNKGYUou+y9R/ye31/n9X5d9znX/flc17leR8z2grE9hUQiOZBJpP+v
PxVJTbJW72Bixs9l7UAnPu//vPgMoxwW/PI36a/twB8838/8e1oOlyuLshQb
27Goa6NC1FQ57CX/l+ye1I6/W/57XBpUAWldDye5d7djVZnjwZuLKsFUoIES
bvsbc9TOMz7zV8PgSUXlzQ1tOI1Hb0X+22fwzRvlNBhrwSvsTOUqoS8wXWzg
/6aiBVsuXXSzcfgCMu0a2y7EteD1vQ/++v/7AvV7S0reabZgt/yxr507vwIR
ouD5KaEZi2Z+Pnb4UB383vVSZK9lEx49ekl0KaUBLA1NGrjZvuPg3aOf+D80
wNqCsrKE7kYsTXe8rDjUAFHLa9iI0kZs10V8st/bCNtLApbDvRrxz0v67nU1
jbA+uWvtk7kGXBkn9vHJ5HfY/aQnSGK+Hid0f7tgdKgZBPyfvN8kWoeVq/WF
nBybQcXxdpsirQ7/yKiqvBvaDAYcdF1S/Te86XLx5uKWZvil9H7Y7PQ3fHfN
0wrJ8y2g6ZEjZBz8FbvK3hBciv4JXvfEP64Z+4J1rsjiJ31t4HLJOPrcVA3m
vLaGTXPdL0i/RjtkVVODv3t267fL/oL+APUTQck12PZWXJOA2y844tunnGtY
g72DaaP+y7/gSoeLLOeLjzjv0S/hc9ztYDsgXR7rWo3Dz+gcjP2vE8INrahM
mSo83b/75B/5TtB4aXesdU0Vtjwndns36oRQykGR0D+VWOT88sdvtp0Q/Mxo
JDa1Eme65ZpyPOuEA4QH507hSvzRW8T5mlIX2GcKD7NvqcCrkbMJNrrdIFp6
YtHpYBnujsm8stW6G4KZJ6uKRcpwZbytcY9zNwTIp0siUhkOSv661imiG8h7
c+BPRSnmy0j3uP67G+Tok/KxR0qxTLm5efylHujt+yec9P09Nh8v4G5O7oWR
BXucEFKMVaacRxJyeyF8OmqbEKMYC8+K1xBVvQD2ly+OyhTjrqVQn7+DvaBa
qxoQWfMWO685Mzaz9w9cuKq1tnTdW+wrIljL9+UPaCfpZUglFuIsw6sBxvN/
Qco3wiFhLh+nE793Na/tg8LuUypmDfk4yVWrzWZLH/jEXWkyeJmPg6O45O3V
+6Bx3fOpwdP5+Nyvp41X7/SBzLtyj7+NeXi7c4tI0qZ+qPsS6u/7/jVOuqeS
3yc1AIuXynMHi1/hqKRkwlmVxXtagi8mvcLB2WwcEwYDMDtZaSt98xW+3lhv
vegyAMYLqp9ltF5hyy3nSJz5A6DaqCrtXJvD8ivBQEljEH505s8e/ZGNgz8t
dXlZDUE7F0elQHAmLuEWMn5+bgi25/DVathk4mFL5fIfnkNQp/vgX5FMJjbo
c38k/3AI1rlozdz/lIHX0UZtO7uHIDaLeriKMwMHHOzs0XIehrfBGjLjqc/x
nZzKP+tujoDrkyRZtJKO8+a6zfaHjYCRNv/snqZ03KtO/nA6dQT0/r5UdsxK
x1q1B9NLKkZg2OT1w9AT6ZgyWODgwjEKQ1efaJdXPsE+25731YePgnjc7WfX
EtKwZ0zIQFzaGESateVmuD7CMifcedTejEGG7L83vEce4dYdNmq/a8ZgPEtD
oUj6EVYukgoRGxuDme0bm972pOLFkVP0H8LjIOVW3RxinYoLNv0rZp4Zh63B
py9tMUnB8ua7qReWxyHMX/nJtdZE7Pc2XbCUbQLauQWfyKUm4t8iQrLcXBPg
8HhIUPtsIg7uI5m9FpuAOVm1wgdzD/Cgx9f0OZ0J2PDVqvaH0AOc/sBR3yd8
AmQarETH3eLx1q7k8PDtk2DKrWYWZB+DSUeGNmgpTMKhV6/tQ1VjcHfhvoDp
/ZNA9Bjfb+GKwelhtTcsDk+CGu+s+8HiaCyPlpz+c56ElawdKQf5o7F6srnO
81eTcCVZ2vTtj0jMYHIulR6YgmcaLQG/74Zj9RrLK27aU5B28oFVm204Ft2b
NrHt6BTYKSjk8qBw3LtBrd/vxBQclXgQJrsUhp1Kzv4w9J2C5QpVVap7GL6+
pTK7pXoKXpkevdfREYrjfl63GzeehlaybMyi8D2s6idTwmBMg+4zHV79jiDc
ptTKW2M/DUJVGm4cj4KwSLBKRarHNAjaVnd+lQrCaerzYiYPpyHaMp7HRS0Q
5zy+3JE/MA1Gjq2nzN39cc15V2tPnxnYEukowq14B58TEs3tC5yB5mzf6t6V
23hD9be1ppEzsNHldj/319vYSFShSDZ9BjQ43eSvnL+NmxpGBNs/z4CuIZue
eY4v7t7v9AMJzoKhLaVzSvsWXiQ7GLFnzUJa09uCZCtvrFxz8Z7Om1noV2xx
/bPBG18O8/7gVzoLeRNGugWlXnhcJPrAmsZZULI4nToj7YX71CqlOOZngUND
s7qe4om/XxYnr9OcgwOvPVJVaz1w9kD7K86mOXDQOx4z9t4dD+cMDh/pmIN9
5Cczo7fcsYzH7I7Q/jlQzAgbJLTdcTr7xocbl+bAtiQ0KaT2Ek7cdjCIS3Qe
6D9uP+XuccNBzAe23OfmoXE6QJlP/CK2q7fg5V+Zh+mVgfc3mpywbIpafj77
Avhq7kxz8nLC0y5bLcy5FkDJcdPqrLgTvrOhLyFWdAFyvNNk/1w8h9N0r4gL
aS2Azq9AG5qgI+59F7Vra8ACFCroBFz3dsD2L+qPSfMsQu7LzbPTeaew/LX8
iRqhRTCy9ufucz6FZ3XjI89tW4SWsdc8NpKnsN+fk80ZexZBtZAcWhV7EqeL
jhPyFosgHL9GT5jtBP4bs9Fld+IifCwbM77Zbo0dbhsEH9y+BGl9+yW7wASP
RkSui1dYghQNh/gnFcb4yqO2gGnlJZjvOrXHTs8Y3y1zupthsATCxdbCNabH
cdrqvRubLy6Bx+UbVPbJo7jL84vrTPES1OVYakW36eKz9/jGjKqWwFKMf6GF
pIvHExjnM78usfwMPvt7hw4mvR12PN21BHrXpw4Lex7CIvMbTtezL8PZa0c5
RPZpYIb7EbOXx5dh07sf2Zpze3Hv7ehGDptl8Dn5nUP46h7sHPn7uJ3dMrhe
RiubF5WwZ+75o1uuLkPdid/N59cq4oTxEN3AxGVIOXJ1sjheAjc7f1Wx71sG
UoQ1V+qbHnVj+2Mi/3n/A59bfuw0xh6w87pA/Xn3H5TeWgzgcdkLVyLv90eF
/oOT3/ZvHfXeBwll33I3pPyDsD6XWaFYZej+z0h3ufwfKKoUb83OPgCXmoxc
2zhWQG/e75eDuib4jbiaxXKzWDrB93mBJsTRwlVNhFbAiLf5+KicFpQo1dM+
71wBKT+T2TubDwHt/vH4t0dXQPlaezjvH22I0jUuj49agbPrlbIEjx2GdMLt
qVnSCuSktg6pFR6GwssRwdzpKyAqKGTjKaoPvx43mAe+WYE6re7i46P6IEEy
GfJoZZ2/1f323ZuGkFdowmcpugqF/o8SD187Bj+kzRwEMlcha++C0aCjMaTf
+rkjJH8VFCUEAn9EGYPHT+YAFa/CAT/9ThNsDMKBDs4T9avQ6jJM5eQ1Adv+
q25f5lYh0Ufvhl++CXiYHIEyMRIqtL+0eKDPFE7d5Erx2k5Consu6+StNwP9
jHqS8k4S4nm66vVJwQyEqeblWXtIqN/T7GLTFTPAuYR2oi4Jsev6v7hJMgd2
HleDq+dJyFRlQPElxQLGDiplKrmRkPCdkm12YhbQ4ji9YfQKK26kmVAJFvCi
zOOrnQ8JMYrqw+94WsCRi7eOG0eS0J0rgUPcYxYQVRdhIVdEQtOtf3v7P1iC
97JpYf87Elqs2tTi02kJDlKCm9PKSegAEfH984Il7Pd50Cr0hYTMIzZKee+0
glaFNCZHBwnRdkcWMu5Zgdj9/NM9NDIy+tThFHDQGiw/ShYErCWjgsbiTkVj
awglx3DIbyQjidcM21gHa1i+dOWlhyAZ9RdauKeEWkOL5f45Thky+vjYkZzT
Zg1h4kVBysfIyLTlR8rOczZQbSP9+7cJGWlyz3kPX7eBlah4hduWZCRUKpvt
ds8GnNdc/157iox+HTOpqsuwAd1hVZHT7mQU9i4nsWOA9X1+yauQeDJCVckB
aTYM2DsmS9v9kIzeZmvlDJ9lgLNUknnLIzIatbxRSLrCgNYE7yXxTDLSOSU0
G3KfAQU31bUL35ORlMnhet1SBowUZsUyK1h6LVNeLnxmgMSkyCDlIxkJxES5
Xm9mQITdauiRejLi8zsuNjjCgPOHS1u6e8jIb7O/YTCdCWm+ijsD+slonCPW
B4szobU4xVtuhIxeFFpcq5Rlgp78LXGPWTKq5A8S1kZMkODVdOZcS0HKQnrl
MvZM+PWrYnW/PAUVKvi6NKQzoWVzyt0QJQqy++x+9vNLJnw391rfs4+CdosV
vEvJY8KXuj2CoUBB7tXz3l1lTHhX+US+14iCDI26rcpbmfCW7JunYkZBi+8D
9j7pZEKBOqF634qCNoTWOzr8ZUJWoYCOqi0FqfP4N96ZYMLDTH9m2CUKCtzV
aKnMTkDCwOmeP1dZ+x2jn/OtJyBmO3JU86KgZa3E/fVcBISmzLv/vUNBJWH5
s0N0AoJ+f19UC6SgkXjvRP3/CPATeuUTHkJB/WGzZ4PECLgZ5Rh8IIaVT97V
JkuaAK96bZ6IBAoKitKdipAjwGOjeFzfQwqi3boRbbWLANeA1scRTynIw6K1
JUSZgJNeBsX9hRSktjbaIU6bAEbRDg31dxSUOy1zIlKPAMtZanVkGQUldH2j
uxkQYORa0qD+iYIKGnaltRkRYPgyzjLqKwX9jQ7rcDAhQG/QvX2ggYJsf2tm
N5kRoGEnNxjVRkE6oYZtdtYEqKeudR3soKDxOy8e3mYQoNr+ZwZ6Wfrp5yr9
CQL2bSn3jO6nIBMuzZsXTxKgZPmQPDRMQaUacWQNWwLko6/7owlW/i2+3rOn
Cda7zJwzZoaCBASqJCLsCRA35NqsscLSc7njrddZAkQChx7GUKio9ETB+i+O
BAh9qJYYZqeiyrN/DShOBAhQ015orKeiP+6ZGVudCeBBPoqxXFREOzpvLXGe
gI3ejIJhXiriFjofuMmFgHVvlQ9o0qlope6UQy+L2ef4ymOFqWhvbpdoygUC
KHsmdEdEqei/osw+LVcCVlxrazUlqYiXW3ngG4sXXz43iZOmouSALJNDFwmY
Hbz7c0SOiki0CdNUFk/usD2hpURFy6MxQn0sHrVT/xO3j4r4skbr+d0IGEwV
chpVpaLRjStP5Vj8t312XAuoaF+hb408i3u2NF6J16Ki1LhJ280sVr/Wdc5Q
j4petaORftZ5CU1jxKohFcUr0s48/H/+3SvGucepKC7wyxpVFhuHb9C1N6ci
Ho0a9hLW/2aNCqnRbahoPKMmQYLF6wylFT6foKLhkoOLl1h6HZ7v33bDjooa
Hu+zecHyo5xdR3CXIxU9cjozVc3yT8TOdH3veSqqjZWc/8Ly93qZ7WqMGxWZ
lzo+LGL53yRycerwVZb/snVCoedY9fa62bfsydLvEp+qz6pX6M+QtmwfVj2W
XjiMnWHp35f4zfYuFZ0vvZ/k5UDAo4nCNx9DqUgy/aDccVY/rBytzvCMpKI8
C+ZQ3CkCrDN/JMvHUVFw6MqfmhOs+p6Z9I9KpaLyxRcW/TYEuFSSvHTTqehF
97FdTVYEfBLjcl18QUWxTS82ZFkQ4Ptrp+XJPCryjFwTJMzq73YVVUPeIio6
YTB/7zWr/1Vj9dCHd1R0as2NY3uPsup33F5KtpqK9mwKa15g3Z9T1Q/n535S
0bnib6v3DhJQIvFy+EU7FUX4v5a4oUoA3be4k9lDRR/qLnsy9hNQd6DlY8Uw
FcXwfXJtVyQA5XLH31+lIl9+gcPL4gQkcomGaNJoyOzAjVrTrQTMO8vfmuGg
oaMfTToTthCQs8PA0YaHhh6GD1mN8xIgmnRHZYckDbWs3yZdRWXNh8UIuVZp
GlrbY50dusqahxapYiHyNPR3SxOn7hITwnjer53aT0McTKmpO5NMIAXM/Xyv
T0OTvp2ZKqx51+F27rq5Kw0lJDicfVbIin/vTS1yp6G2i55xn14zQXzviRrh
azSUJ+XR05HFBLs5E3rPLRoSVvVQ701jQr/nwYILkTQkyqMiaxHGhIk7myYD
Cmgo6fURxxU7JlBjCxyLl2moN++hAic7a57PK4aLkNlQOPXV8+pVBuhYZRTe
YmND7gMXgzwWGBCwJWWN3kY29DfsePu7YQZsSAl88n0rK+4vbvOzgQH8zxld
I5psSE/gnd+ZJAbsKKZYiQayIeX12cNXZRkQI73T7XwIG6K2X+o7KskA9jiT
e2/D2ZCi/XflrSIM6HVPe2eawIZ6NA7tyORiQIq8jnhgBhuiNRttuzZpA0KP
AocmatnQKyeB4tECG+AM3HSjgocdBc9uyilWs4Epc5HHDons6AdvkauosjW8
Xld+jaN6DSo1VdVr67IAnO2w881vDpT4TOWj5HMzKHWOdCxbvw7x9VntkjQ2
AW1vLV69PevRh8TrauZSx0Hg5nRsm94GBE6bGc5RR+FXnNzzT+6c6KrZQrB6
tz6MPj4T/SF4IzrcpjJBqdKFOxTJEfVkLnRjobMgiE0b/A/knw2024TaHl+l
pTE0wc3V8uO1sU2ouuhSB0kagUUOjAr6cSPOoM23zggdgO6zT2+V8PCgaMms
M6qPlUHhc51+ciIP2r9/D1PxMeu9q6LeqqDEiwLkN6ZXVCvBaVHZ5g/veNE9
/v7rMxcVwYCXSFhvxof4w8vYL1+VhZns45GhA3yobed0xkiOFGhXVS0IuvMj
g6+TnepJknD/r/f2Y+sE0KLJfA5fnjjc9CkoDY4RQL4JBlXi5qKwqzInjENU
EJXJLfs/eiAM7bxj25XyBZFus4Tmrgo67Pr1UsYW0ZGyFVnp1GN+GOWqfPFN
k442PvlsaxPDD5larTIHtemoiFJvzQzkh+0Z7Dvp+nSkaaQT6nGBH4Svn9j5
1YSOzGO8b68/wA8cdG5Z1TOs/YkpeclNfNBu4i7HE0pHfEzKNltuPkj0D3p5
M4yObEaVwg3Z+MCqOEVuJIKOAoORivoCL3wXr5X7GEtHQ49GJPd38cKnCUn5
G6l0JF07sXjjFS/k32+WH8yjI67IxL+2JrzgVjGSZfGGjgSeL8+/1+UFxTmq
QlURHY1cVKOIH+CFF4SiQsp7Osov7u9fluCFFLlABfOPdCRXFxrFNscDxKnk
7IpPdPQv4eRQ3BAPbInOV9hVS0f6Epfpuzt5IGa5S2FDAx39Tj/0x7OGB0wV
57OvfWf5cXPaS+Y9D3DbbVTsa6Kj6sa61o5cHvgaK5Fj+pOOIht+Lj54ygPB
n1UVy9voSGyW+yeRyAP/A0qAiqc=
"]]},
Annotation[#, "Charting`Private`Tag$25304#2"]& ]}}, {}}, {
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None}, DisplayFunction -> Identity, DisplayFunction -> Identity,
Ticks -> {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , Automatic},
AxesOrigin -> {-0.6931471805599453, 0},
FrameTicks -> {{Automatic, Automatic}, {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}}, GridLines -> {None, None},
DisplayFunction -> Identity, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"ClippingRange" -> {{{-0.6931470395853477,
6.214607957447594}, {-11.081898426642045`,
1.4494697535923777`}}, {{-0.6931470395853477,
6.214607957447594}, {-0.5284468802198586, 0.8361358112198425}}}},
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0},
CoordinatesToolOptions -> {"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )}, DisplayFunction :> Identity,
Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None}, PlotRange -> NCache[{{-0.6931471805599453,
Log[500]}, {-0.5284468802198586,
0.8361358112198425}}, {{-0.6931471805599453,
6.214608098422191}, {-0.5284468802198586, 0.8361358112198425}}],
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
RowBox[{"\[Gamma]", "(", "R", ")"}],
RowBox[{"\[Delta]", "(", "R", ")"}]}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.80035288101691*^9, 3.80035293534479*^9},
CellLabel->"Out[75]=",ExpressionUUID->"4eb170f5-d433-4288-9b07-40aafc5a2875"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["RMP2 vs UMP2", "Section",
CellChangeTimes->{{3.801298380918355*^9,
3.801298386731122*^9}},ExpressionUUID->"61d15e14-b615-4a5e-a7aa-\
404c7a205325"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1"}], "}"}], ",",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "2"}], "}"}]}], "]"}], "//",
"Normal"}], ",",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "2"}], "}"}]}], "]"}], "//",
"Normal"}]}], "}"}], "/.",
RowBox[{"\[Lambda]", "\[Rule]", "1"}]}], "//", "N"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8012987196471*^9, 3.801298761927176*^9}, {
3.801298797453186*^9, 3.801298816216124*^9}, {3.8012988591058817`*^9,
3.8012989022162857`*^9}, {3.801298948984644*^9, 3.80129896620984*^9}},
CellLabel->"In[46]:=",ExpressionUUID->"0632fbf3-63f8-4f59-b1c2-cc8175161631"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.9666666666666667`", ",", "0.7196501647534014`"}],
"}"}]], "Output",
CellChangeTimes->{{3.801298733652265*^9, 3.8012987630749187`*^9}, {
3.8012988030235767`*^9, 3.801298816857155*^9}, {3.801298860249403*^9,
3.801298902503824*^9}, 3.8012989668939447`*^9},
CellLabel->"Out[46]=",ExpressionUUID->"bcdc10a9-e507-43a5-b844-de88de15ef94"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", "=", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], ",",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]Exa", "[", "R", "]"}], "//", "Sort"}], "//",
"First"}]}], "}"}]}], "]"}], "/.",
RowBox[{"\[Lambda]", "\[Rule]", "1"}]}], "//", "N"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{
"0.1", ",", "0.2", ",", "0.5", ",", "1", ",", "2", ",", "3", ",", "4",
",", "5", ",", "10", ",", "20", ",", "50", ",", "100", ",", "1000"}],
"}"}]}], "}"}]}], "]"}], "//", "TableForm"}]], "Input",
CellChangeTimes->{{3.80129897831118*^9, 3.801299046859041*^9}, {
3.801299106332135*^9, 3.801299114371539*^9}, {3.8012992319514713`*^9,
3.8012992980147123`*^9}, {3.8012997645870533`*^9, 3.8012998212488203`*^9}, {
3.8012999384597692`*^9, 3.801299947384201*^9}, {3.801300928878345*^9,
3.801300935626519*^9}, {3.801300968361435*^9, 3.801300969250929*^9}},
CellLabel->"In[81]:=",ExpressionUUID->"a40aea77-09bf-4f3d-8423-e1fbee28c678"],
Cell[BoxData[
TagBox[GridBox[{
{"0.1`", "9.947916666666666`", "1.8573291695641391`*^9",
"9.783873673369605`"},
{"0.2`", "4.950980392156862`", "8624.770843960783`", "4.794237153970371`"},
{"0.5`", "1.9583333333333341`", "82.98013605442179`",
"1.8206007678316867`"},
{"1.`", "0.9666666666666667`", "0.7196501647534014`",
"0.8527810650564627`"},
{"2.`", "0.47619047619047616`", "0.48426362121997235`",
"0.39195879564793706`"},
{"3.`", "0.3148148148148148`", "0.307839737457483`",
"0.24789752605668114`"},
{"4.`", "0.23484848484848486`", "0.22083401517803167`",
"0.17921030845840952`"},
{"5.`", "0.18717948717948718`", "0.17082161458333334`",
"0.13947082623844892`"},
{"10.`", "0.0927536231884058`", "0.07848446053225978`",
"0.06452512332066093`"},
{"20.`", "0.04612403100775194`", "0.03725205918396411`",
"0.030271992056942764`"},
{"50.`", "0.01838187702265372`", "0.014391086302880527`",
"0.011363693524354176`"},
{"100.`", "0.009178981937602627`", "0.007107942498862338`",
"0.005487412426784082`"},
{"1000.`", "0.0009167914794474954`", "0.0007027977070304175`",
"0.0005156862475241831`"}
},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[2.0999999999999996`]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}],
Function[BoxForm`e$,
TableForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{{3.801298979109148*^9, 3.80129904792072*^9}, {
3.801299108636004*^9, 3.801299114977067*^9}, 3.801299234609192*^9, {
3.8012992913305683`*^9, 3.801299298440815*^9}, 3.801299785612088*^9,
3.8012998222389307`*^9, {3.801299939929058*^9, 3.801299948787512*^9},
3.801300938036461*^9, 3.801300971087762*^9},
CellLabel->
"Out[81]//TableForm=",ExpressionUUID->"f925ac81-a3d5-4607-88a5-\
0cd301f4683b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", "=", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}],
"\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], ")"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]Exa", "[", "R", "]"}], "//", "Sort"}], "//",
"First"}], ")"}]}], ",",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}],
"\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], ")"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]Exa", "[", "R", "]"}], "//", "Sort"}], "//",
"First"}], ")"}]}]}], "}"}]}], "]"}], "/.",
RowBox[{"\[Lambda]", "\[Rule]", "1"}]}], "//", "N"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{
"0.1", ",", "0.2", ",", "0.5", ",", "1", ",", "2", ",", "3", ",", "4",
",", "5", ",", "10", ",", "20", ",", "50", ",", "100", ",", "1000"}],
"}"}]}], "}"}]}], "]"}], "//", "TableForm"}]], "Input",
CellChangeTimes->{{3.8013000192792587`*^9, 3.801300119049024*^9}, {
3.801300995912702*^9, 3.801301015710926*^9}},
CellLabel->"In[82]:=",ExpressionUUID->"4cf7877f-11f3-41fd-a130-dbea82457812"],
Cell[BoxData[
TagBox[GridBox[{
{"0.1`", "0.16404299329706143`", "1.8573291597802656`*^9"},
{"0.2`", "0.15674323818649033`", "8619.976606806813`"},
{"0.5`", "0.13773256550164728`", "81.15953528659011`"},
{"1.`", "0.113885601610204`",
RowBox[{"-", "0.1331309003030613`"}]},
{"2.`", "0.08423168054253913`", "0.0923048255720353`"},
{"3.`", "0.06691728875813367`", "0.059942211400801845`"},
{"4.`", "0.05563817639007534`", "0.04162370671962215`"},
{"5.`", "0.04770866094103827`", "0.031350788344884424`"},
{"10.`", "0.028228499867744866`", "0.013959337211598848`"},
{"20.`", "0.015852038950809173`", "0.006980067127021349`"},
{"50.`", "0.007018183498299546`", "0.0030273927785263513`"},
{"100.`", "0.0036915695108185455`", "0.0016205300720782561`"},
{"1000.`", "0.0004011052319233123`", "0.0001871114595062344`"}
},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[2.0999999999999996`]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}],
Function[BoxForm`e$,
TableForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{{3.801300043124114*^9, 3.801300120603881*^9},
3.801301017997078*^9},
CellLabel->
"Out[82]//TableForm=",ExpressionUUID->"16b61230-bb39-4a13-824d-\
1eb4ab314813"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", "=", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}],
"\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], ")"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]Exa", "[", "R", "]"}], "//", "Sort"}], "//",
"First"}], ")"}]}], ",",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}],
"\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], ")"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]Exa", "[", "R", "]"}], "//", "Sort"}], "//",
"First"}], ")"}]}]}], "}"}]}], "]"}], "/.",
RowBox[{"\[Lambda]", "\[Rule]", "1"}]}], "//", "N"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{
"0.1", ",", "0.2", ",", "0.5", ",", "1", ",", "2", ",", "3", ",", "4",
",", "5", ",", "10", ",", "20", ",", "50", ",", "100", ",", "1000"}],
"}"}]}], "}"}]}], "]"}], "//", "TableForm"}]], "Input",
CellChangeTimes->{{3.801300169363579*^9, 3.801300172532477*^9}, {
3.801301000656721*^9, 3.801301001526135*^9}, 3.801301032947589*^9},
CellLabel->"In[83]:=",ExpressionUUID->"918f4460-f93f-4d2b-a390-b503d533efbf"],
Cell[BoxData[
TagBox[GridBox[{
{"0.1`", "1.0167666712361143`", "1.8983576766935787`*^8"},
{"0.2`", "1.0326940935862305`", "1798.9871103514636`"},
{"0.5`", "1.0756522615695066`", "45.57843626159189`"},
{"1.`", "1.1335461190178555`", "0.8438861910070122`"},
{"2.`", "1.2148993248213702`", "1.2354962475569622`"},
{"3.`", "1.2699393165498278`", "1.2418023784033092`"},
{"4.`", "1.31046303568518`", "1.2322617882736473`"},
{"5.`", "1.342069106692408`", "1.2247838432625684`"},
{"10.`", "1.4374807581143532`", "1.2163395665627357`"},
{"20.`", "1.5236536439686852`", "1.2305783879003265`"},
{"50.`", "1.6175970412488228`", "1.2664092244337788`"},
{"100.`", "1.6727341092132932`", "1.2953177100683089`"},
{"1000.`", "1.777808665344527`", "1.3628397313377254`"}
},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[2.0999999999999996`]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}],
Function[BoxForm`e$,
TableForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.801300174934111*^9, 3.801301035067793*^9},
CellLabel->
"Out[83]//TableForm=",ExpressionUUID->"f4eeca3e-e5eb-4563-97bf-\
4998dc8f13dc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", "=", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}],
"\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], ")"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]Exa", "[", "R", "]"}], "//", "Sort"}], "//",
"First"}], ")"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]Exa", "[", "R", "]"}], "//", "Sort"}], "//",
"First"}], ")"}]}], ",",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}],
"\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], ")"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]Exa", "[", "R", "]"}], "//", "Sort"}], "//",
"First"}], ")"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]Exa", "[", "R", "]"}], "//", "Sort"}], "//",
"First"}], ")"}]}]}], "}"}]}], "]"}], "/.",
RowBox[{"\[Lambda]", "\[Rule]", "1"}]}], "//", "N"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{
"0.1", ",", "0.2", ",", "0.5", ",", "1", ",", "2", ",", "3", ",", "4",
",", "5", ",", "10", ",", "20", ",", "50", ",", "100", ",", "1000"}],
"}"}]}], "}"}]}], "]"}], "//", "TableForm"}]], "Input",
CellChangeTimes->{{3.801300370838561*^9, 3.801300410876075*^9}, {
3.8013010043619757`*^9, 3.801301004803896*^9}, 3.801301058195932*^9},
CellLabel->"In[84]:=",ExpressionUUID->"f08e6844-e706-404f-ab6f-2c01558c9a38"],
Cell[BoxData[
TagBox[GridBox[{
{"0.1`", "0.01676667123611423`", "1.8983576666935787`*^8"},
{"0.2`", "0.032694093586230426`", "1797.9871103514636`"},
{"0.5`", "0.07565226156950658`", "44.5784362615919`"},
{"1.`", "0.13354611901785557`",
RowBox[{"-", "0.1561138089929878`"}]},
{"2.`", "0.2148993248213703`", "0.2354962475569621`"},
{"3.`", "0.2699393165498279`", "0.24180237840330931`"},
{"4.`", "0.3104630356851802`", "0.23226178827364738`"},
{"5.`", "0.3420691066924079`", "0.22478384326256848`"},
{"10.`", "0.43748075811435305`", "0.21633956656273562`"},
{"20.`", "0.5236536439686852`", "0.2305783879003264`"},
{"50.`", "0.6175970412488228`", "0.2664092244337789`"},
{"100.`", "0.6727341092132934`", "0.2953177100683088`"},
{"1000.`", "0.7778086653445271`", "0.36283973133772546`"}
},
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[2.0999999999999996`]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}],
Function[BoxForm`e$,
TableForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.8013004126222258`*^9, 3.801301061749943*^9},
CellLabel->
"Out[84]//TableForm=",ExpressionUUID->"80353c03-1457-4ac5-a68b-\
24caed61dc7c"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Complete basis", "Section",
CellChangeTimes->{{3.801298400104567*^9,
3.8012984037339478`*^9}},ExpressionUUID->"566e0bb1-44f3-4fd6-93fd-\
55680abf1c6e"],
Cell[CellGroupData[{
Cell["RHF", "Subsection",
CellChangeTimes->{{3.8013011928001127`*^9,
3.801301193151882*^9}},ExpressionUUID->"93f596ca-102d-43a3-8d75-\
118c93bdc137"],
Cell["\<\
We can restrict the basis to the CSF/Legendre polynomia for the RHF case.\
\>", "Text",
CellChangeTimes->{{3.801388789039886*^9,
3.801388842117548*^9}},ExpressionUUID->"5fa7476b-b686-4068-b6d6-\
52d0dc6a6b2d"],
Cell[BoxData[{
RowBox[{
RowBox[{"HRMPn", "[",
RowBox[{"R_", ",", "n_"}], "]"}], ":=",
RowBox[{"DiagonalMatrix", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"l",
RowBox[{"(",
RowBox[{"l", "+", "1"}], ")"}]}],
SuperscriptBox["R", "2"]], "+",
RowBox[{"2",
RowBox[{"(",
RowBox[{
FractionBox["2", "R"], "-",
FractionBox["1",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "l"}], "+", "1"}], ")"}], "R"}]]}], ")"}]}]}],
",",
RowBox[{"{",
RowBox[{"l", ",", "0", ",",
RowBox[{"n", "-", "1"}]}], "}"}]}], "]"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"rHn", "[",
RowBox[{"R_", ",", "n_"}], "]"}], ":=",
RowBox[{"Table", "[", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"KroneckerDelta", "[",
RowBox[{"i", ",", "j"}], "]"}],
FractionBox[
RowBox[{"i",
RowBox[{"(",
RowBox[{"i", "+", "1"}], ")"}]}],
SuperscriptBox["R", "2"]]}], "+",
RowBox[{"TEIr", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "0"}], "}"}], ",", "R"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",",
RowBox[{"n", "-", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "0", ",",
RowBox[{"n", "-", "1"}]}], "}"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"rHn\[Lambda]", "[",
RowBox[{"\[Lambda]_", ",", "R_", ",", "n_"}], "]"}], ":=",
RowBox[{
RowBox[{"HRMPn", "[",
RowBox[{"R", ",", "n"}], "]"}], "+",
RowBox[{"\[Lambda]",
RowBox[{"(",
RowBox[{
RowBox[{"rHn", "[",
RowBox[{"R", ",", "n"}], "]"}], "-",
RowBox[{"HRMPn", "[",
RowBox[{"R", ",", "n"}], "]"}]}], ")"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMPn", "[",
RowBox[{"\[Lambda]_", ",", "R_", ",", "n_"}], "]"}], ":=",
RowBox[{"Eigenvalues", "[",
RowBox[{"rHn\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R", ",", "n"}], "]"}], "]"}]}],
";"}]}], "Input",
InitializationCell->True,
CellChangeTimes->{{3.801388844170588*^9, 3.801388877652143*^9}, {
3.801389261690991*^9, 3.8013892768587112`*^9}, {3.803116056875842*^9,
3.803116073867989*^9}, {3.803182832686949*^9, 3.803182855221147*^9}, {
3.803183910251527*^9, 3.8031839298858337`*^9}, {3.8038756326824627`*^9,
3.8038756331854973`*^9}},
CellLabel->"In[30]:=",ExpressionUUID->"0a685f80-721a-4011-a569-ced015f9b3ad"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"R", "=", "10"}], ",",
RowBox[{"n", "=", "5"}]}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"\[Epsilon]RMPn", "[",
RowBox[{"\[Lambda]", ",", "R", ",", "n"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E_\\\\text{RHF}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.801392690483585*^9, 3.801392703171526*^9}, {
3.8013927610358543`*^9, 3.801392761431881*^9}, {3.801393215166847*^9,
3.801393223053501*^9}, {3.8013933337020397`*^9, 3.801393334826684*^9}, {
3.80139394143071*^9, 3.801393941793914*^9}, {3.8031161240728197`*^9,
3.8031161245472107`*^9}},
CellLabel->"In[44]:=",ExpressionUUID->"044116cc-b052-42c0-88bd-54b853590352"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", RowBox[{\\\"-\\\", \
\\\"1\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 44, 1,
22576300929827622511, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.801392703778575*^9, 3.801392761730618*^9, 3.801392824665118*^9, {
3.801393216265276*^9, 3.801393223417552*^9}, 3.8013933356525373`*^9,
3.8013939421144753`*^9, 3.8031161248822727`*^9},
CellLabel->
"During evaluation of \
In[44]:=",ExpressionUUID->"7940c05a-b7b4-40ed-9913-e903c53d53dc"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", RowBox[{\\\"-\\\", \
\\\"1\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 44, 2,
22576300929827622511, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.801392703778575*^9, 3.801392761730618*^9, 3.801392824665118*^9, {
3.801393216265276*^9, 3.801393223417552*^9}, 3.8013933356525373`*^9,
3.8013939421144753`*^9, 3.8031161253443832`*^9},
CellLabel->
"During evaluation of \
In[44]:=",ExpressionUUID->"bd5f7b18-4aa2-461d-bda6-016edacd5c79"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"1\\\"}], \
\\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 44, 3,
22576300929827622511, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.801392703778575*^9, 3.801392761730618*^9, 3.801392824665118*^9, {
3.801393216265276*^9, 3.801393223417552*^9}, 3.8013933356525373`*^9,
3.8013939421144753`*^9, 3.803116125850185*^9},
CellLabel->
"During evaluation of \
In[44]:=",ExpressionUUID->"4dc2a87a-d8a9-40b7-9df6-f8f3ae29c494"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"ClebschGordan\\\", \
\\\"::\\\", \\\"phy\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 44, 4, 22576300929827622511, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.801392703778575*^9, 3.801392761730618*^9, 3.801392824665118*^9, {
3.801393216265276*^9, 3.801393223417552*^9}, 3.8013933356525373`*^9,
3.8013939421144753`*^9, 3.8031161264275513`*^9},
CellLabel->
"During evaluation of \
In[44]:=",ExpressionUUID->"87fce9c0-e979-40a7-835f-74ad4a38d182"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8ARtgEkznTdPxT7GiY7
/AfAhtxyOV1y3T/ERqVcdvgHwB/l3Ujsb90/Jt65yezwB8BY95pVCmvdP+oM
46PZ4QfAdXaCJkZh3T9wajVYs8MHwMmVj6S8Td0/fiXawGaHB8ClL8gFpSbd
P5qbI5LNDgfAhuTX+2LY3D+f34hvUQkGwPhsJ7VaLtw/FtBTTykVBcDuqK3N
II/bP8hQU0TLJQTAIRY5FY/y2j9IKSV0IyIDwOXWY9UnSNo/Oq5cps8vAsC1
/vxQjajZP/qKZhMyKQHAzY5Wo+j62D/196SVXicAwEmWn7+vT9g/xCKSNL5t
/r+V5Nr0Pq/XPzsFf7MrZPy/+ie63GcA1z+UQDc3QX36v99z3IpLXNY/Y5xY
5eqf+L+zqFFhgLrVP8+nHgkBmva/+6N8f9UJ1T8eDLAxv7b0vxqhLLLUY9Q/
CiDmz+mq8r+tXGETfq7TP2xUhZioqPC/uKuqmOb60j9gw9/LHpLtv/Y+JRja
UdI/Ij3+UcWB6b/qPg9emZjRP6los+G7tuW/t6L2wbDp0D9q87Fci5rhv3nq
YiW1KdA/Ln4FWQYj27/1FNlyztTOPxN51AuWm9O/mHoEDyNqzT/XZGwqr+PG
v25p6BHD2cs/d3oqjsmVrr+TA/bjMVzKP6qPOECkMK0/zK8Zaq7dyD+OaYHW
YILHP2mO2K+cM8c/DfRMO6xR0z/vFr/DmZnFP+B0xjR2hNs/+etWkbbMwz/u
uU3Cd8jhPzoc7hBN88E/poehYGSJ5T/a8PfdhCHAPyX2qxN4m+k/fJODRkIJ
vD/esh+9O2jtP9dtyPG5uLc/VZfgiOuQ8D9h/+4U4f2yP56ljL1MlvI/xoaJ
aacwqj8EW23tBXn0P2eyYESSK5s/zmCpp1KE9j9qBUl+N1hov7UNGl33bPg/
lq0hU+CFoL8mmiHoB0z6P6peNXhPwK+/+naE/atT/D8s66iyIFO4v+v6Gw6o
OP4/GHULRv8qwL+gZ4fUGyMAQPr7V/pcj8S/kEHMjBklAUCPJF6g1OnIvw5v
q0LDFQJA87UaqVABzb++RLi9thoDQBaC5kE9vNC//W1fNlYOBEApvWMi6tTS
vwEH0pkr/QRAyrCmd5jl1L82SHLCSgAGQCkOQTvHJde/+tys6BXyBkBGLlQr
p0HZv0RsyJBN9gZAlWO8ahZL2b+N++M4hfoGQJ7RZtGFVNm/IBobifQCB0Du
VksUZWfZv0dXiSnTEwdAuu/TbiWN2b+U0WVqkDUHQGgNB2ut2Nm/LsYe7Ap5
B0DX0s0i2m/av3hVOpRCfQdA6WV6ME552r/B5FU8eoEHQBpKwWPCgtq/VAON
jOmJB0BZKus6q5Xav3tA+yzImgdAUtVMqn672r/IutdthbwHQDc+TYIsB9u/
EkrzFb3AB0CQe7jjohDbv1zZDr70xAdApvn1aRka27/v90UOZM0HQNO1tuQG
Ldu/FjW0rkLeB0CstPmR41Lbv2DEz1Z64gdATkqhGFtc27+pU+v+seYHQKXX
ucPSZdu/PHIiTyHvB0AWug2Hwnjbv4YBPvdY8wdAOBExnzqC27/QkFmfkPcH
QM1klduyi9u/GiB1R8j7B0Cnxi48K5Xbv2OvkO///wdAR1HxwKOe2781z36B
"]]}, Annotation[#, "Charting`Private`Tag$6390#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8B7aYs910rtPxT7GiY7
/AfAf5uVEixI7T/ERqVcdvgHwF4k9+SARe0/Jt65yezwB8DaM7uBKkDtP+oM
46PZ4QfAf6Yjm3017T9wajVYs8MHwFhXV0wjIO0/fiXawGaHB8AaMC+fbPXs
P5qbI5LNDgfAWiZYu/af7D+f34hvUQkGwB5buVOA5us/FtBTTykVBcDXkKNP
GjnrP8hQU0TLJQTAo3TDR92O6j9IKSV0IyIDwMMlfYzj1ek/Oq5cps8vAsBm
RktJ7SjpP/qKZhMyKQHA083AlhFt6D/196SVXicAwKywBpQmtOc/xCKSNL5t
/r8tTBh1KAfnPzsFf7MrZPy/PuKVPe9K5j+UQDc3QX36vzkzIp2FmuU/Y5xY
5eqf+L9oA2Tj0ezkP8+nHgkBmva/aIYcqFsv5D8eDLAxv7b0v6IhiGl7feM/
CiDmz+mq8r9VJNCkRLviP2xUhZioqPC/o+l+qu764T9gw9/LHpLtv53XAI3M
ReE/Ij3+UcWB6b8X3awOFn/gP6los+G7tuW/lI+tdkmG3z9q87Fci5rhv5ya
VVW66N0/Ln4FWQYj27/T4P3takvcPxN51AuWm9O/uCQTDnzC2j/XZGwqr+PG
vzumQLeWD9k/d3oqjsmVrr+XvKgMlHDXP6qPOECkMK0/MP2ghPbQ1T+OaYHW
YILHP7634ClABNQ/DfRMO6xR0z9pPtxtdU3SP+B0xjR2hNs/NnrkBylp0D/u
uU3Cd8jhP1/64oTMDM0/poehYGSJ5T+rc5WhRH/JPyX2qxN4m+k/cLP0Huyh
xT/esh+9O2jtP//G0Z9lDcI/VZfgiOuQ8D+RLYy/fT69P56ljL1MlvI/6eVU
TzEatj8EW23tBXn0P307xn8Naa8/zmCpp1KE9j9XjbMPWZShP7UNGl33bPg/
RjYtXWqOgD8mmiHoB0z6Pzpyi/60fJO/+naE/atT/D9BhTeqEYSpv+v6Gw6o
OP4/5OelihhftL+gZ4fUGyMAQIgDxdNA0by/kEHMjBklAUCPGBnjFqDCvw5v
q0LDFQJAaWvU1P6axr++RLi9thoDQP8D9tLY9cq//W1fNlYOBECRrKi5Pw7P
vwEH0pkr/QRAsYVyi/SL0b82SHLCSgAGQGTPk892v9O/+tys6BXyBkAY9dQ2
hc/Vv0RsyJBN9gZActQugr/Y1b+N++M4hfoGQBY7cfL54dW/IBobifQCB0B0
pFNBb/TVv0dXiSnTEwdAJ+kOllsZ1r+U0WVqkDUHQEaTlwc7Y9a/LsYe7Ap5
B0AEzRtwFPfWv3hVOpRCfQdAnpY4LVMA17/B5FU8eoEHQLzTfQySCde/VAON
jOmJB0DMvC0xEBzXv3tA+yzImgdAi0bbEA5B17/IutdthbwHQIhoXBcQi9e/
EkrzFb3AB0Bjl0ntUJTXv1zZDr70xAdANzAW5JGd17/v90UOZM0HQIdL/TMU
sNe/FjW0rkLeB0C+0tNaGtXXv2DEz1Z64gdAGJyMNVze17+pU+v+seYHQDyF
hTCe59e/PHIiTyHvB0CaFOmGIvrXv4YBPvdY8wdAfYgs4mQD2L/QkFmfkPcH
QMe3YV2nDNi/GiB1R8j7B0AiK3X46RXYv2OvkO///wdAlXVTsywf2L/com3C
"]]}, Annotation[#, "Charting`Private`Tag$6390#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8ADc3YYK6PyPxT7GiY7
/AfAWXfPUkih8j/ERqVcdvgHwEvbMY1ln/I/Jt65yezwB8CyOhMCoJvyP+oM
46PZ4QfAHuZL7BSU8j9wajVYs8MHwCXMsML+hPI/fiXawGaHB8C/XC140mby
P5qbI5LNDgfA/ENsDXoq8j+f34hvUQkGwBlRtWijp/E/FtBTTykVBcCoVRpW
ei3xP8hQU0TLJQTAyLqHW7m18D9IKSV0IyIDwNSkpwzWM/A/Oq5cps8vAsCd
RsbARXXvP/qKZhMyKQHAIXepsaJu7j/196SVXicAwJYV8eLcbO0/xCKSNL5t
/r+0rIvTf3zsPzsFf7MrZPy/s9ORofl36z+UQDc3QX36v5CJSbDlhOo/Y5xY
5eqf+L9IBToEwpbpP8+nHgkBmva/cObVFpeU6D8eDLAxv7b0vwkMfmXxo+c/
CiDmz+mq8r9BkgwCap/mP2xUhZioqPC/W3tUAAug5T9gw9/LHpLtv65190lM
suQ/Ij3+UcWB6b8diNCl97DjP6los+G7tuW/K585J1jB4j9q87Fci5rhv0EC
gw9fvuE/Ln4FWQYj27+2lqK31MDgPxN51AuWm9O/7obH6Nqp3z/XZGwqr+PG
v0k2z12Aq90/d3oqjsmVrr+mjCllx8/bP6qPOECkMK0/T9Jc5qf92T+OaYHW
YILHPx/J5kudA9g/DfRMO6xR0z9KJ5JRZyrWP+B0xjR2hNs/N0Tts+gn1D/u
uU3Cd8jhPwI6D+TyLNI/poehYGSJ5T/ifRygs1LQPyX2qxN4m+k//+aQG6uf
zD/esh+9O2jtP8W1jrmj4Mg/VZfgiOuQ8D+vbeZjdjvFP56ljL1MlvI/MAj7
QLZWwT8EW23tBXn0P8OI5DFFmrs/zmCpp1KE9j/JMDfUJza0P7UNGl33bPg/
sYSm6ugdqz8mmiHoB0z6P91rgAQTk5w/+naE/atT/D8Gy+GONqs5P+v6Gw6o
OP4/YtRrQ+7Kmr+gZ4fUGyMAQNhs7mSdt6y/kEHMjBklAUA4kSfUPiO2vw5v
q0LDFQJAA/P5x6mQvb++RLi9thoDQOnk1dFk38K//W1fNlYOBEA0L4sV1rrG
vwEH0pkr/QRAKVRFwaiIyr82SHLCSgAGQD09BrQJrc6/+tys6BXyBkADY7+b
NUbRv0RsyJBN9gZA5o4vItxO0b+N++M4hfoGQEbxnK+CV9G/IBobifQCB0B6
yNfez2jRv0dXiSnTEwdA8Um3imqL0b+U0WVqkDUHQOchP/ig0NG/LsYe7Ap5
B0D+j004EVvSv3hVOpRCfQdAjjutWbhj0r/B5FU8eoEHQJ7oxH1fbNK/VAON
jOmJB0Cg76LNrX3Sv3tA+yzImgdAWgvUiEqg0r/IutdthbwHQO4Li1OE5dK/
EkrzFb3AB0CQcqCSK+7Sv1zZDr70xAdAZ1ig0tL20r/v90UOZM0HQDc481Qh
CNO/FjW0rkLeB0AWFPlfvirTv2DEz1Z64gdADON0o2Uz07+pU+v+seYHQDVK
B+cMPNO/PHIiTyHvB0BxdAluW03Tv4YBPvdY8wdAVHZGsQJW07/QkFmfkPcH
QACNNPSpXtO/GiB1R8j7B0Cuyro2UWfTv2OvkO///wdAkG/AePhv078WFXaV
"]]}, Annotation[#, "Charting`Private`Tag$6390#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8BzqBoDpd/0PxT7GiY7
/AfADhlp9Y3d9D/ERqVcdvgHwCBR3Oh22/Q/Jt65yezwB8CitDLTSNf0P+oM
46PZ4QfA2HirtezO9D9wajVYs8MHwEwmLrI0vvQ/fiXawGaHB8CrYY2MxZz0
P5qbI5LNDgfAtJgM4OpZ9D+f34hvUQkGwJZrNO0HyfM/FtBTTykVBcCWlMCV
1kHzP8hQU0TLJQTAuXD+tGS98j9IKSV0IyIDwMQEfJjXLfI/Oq5cps8vAsCz
HNfb/qfxP/qKZhMyKQHApxr8XhgX8T/196SVXicAwExbDqsCifA/xCKSNL5t
/r91JtQgpgTwPzsFf7MrZPy/ogqR9avq7j+UQDc3QX36v48tIqWL3+0/Y5xY
5eqf+L8+FopAKNrsP8+nHgkBmva/3+Iz/Sm/6z8eDLAxv7b0v4fpbaDDt+o/
CiDmz+mq8r/pF86nEZvpP2xUhZioqPC/pld7g4iE6D9gw9/LHpLtv8oTaAu/
gec/Ij3+UcWB6b89ee4GSmrmP6los+G7tuW/U+a+gcNm5T9q87Fci5rhv2h2
1VYuT+Q/Ln4FWQYj279Xf/ykjT7jPxN51AuWm9O/MPnAchFC4j/XZGwqr+PG
v2jnvDqCMuE/d3oqjsmVrr93KiPuGzfgP6qPOECkMK0/mD+pYUqF3j+OaYHW
YILHP2xogrkCd9w/DfRMO6xR0z8QQWbCHI/aP+B0xjR2hNs/VtFT0r+A2D/u
uU3Cd8jhPwfjzwcsfdY/poehYGSJ5T8phuhHSpzUPyX2qxN4m+k/HGv1khyS
0j/esh+9O2jtP5IubK4IqtA/VZfgiOuQ8D/p4tyWdpfNP56ljL1MlvI/LDRt
32iNyT8EW23tBXn0P31xaG2s0cU/zmCpp1KE9j/6VEKJGdjBP7UNGl33bPg/
6MKKTa97vD8mmiHoB0z6P/cXsq1strU/+naE/atT/D9TJlgp5Y+tP+v6Gw6o
OP4/N4pj3yRzoT+gZ4fUGyMAQGFyJtPqf4Q/kEHMjBklAUDdak6NF3WJvw5v
q0LDFQJAgo5KE/e3oL++RLi9thoDQNtpgIaetKu//W1fNlYOBEDFs/kEJ+uy
vwEH0pkr/QRAWJsa1UHbt782SHLCSgAGQCjc67AkNL2/+tys6BXyBkDEGF13
HRnBv0RsyJBN9gZAu3sQVUUkwb+N++M4hfoGQEToEU1tL8G/IBobifQCB0Bb
juOMvUXBv0dXiSnTEwdAZSHjUV9ywb+U0WVqkDUHQPMoiyCoy8G/LsYe7Ap5
B0BbZ4QuUH7Cv3hVOpRCfQdAMmGJunuJwr/B5FU8eoEHQLaE/2anlMK/VAON
jOmJB0DU+OIh/6rCv3tA+yzImgdAQornI7DXwr/IutdthbwHQIcfg3oYMcO/
EkrzFb3AB0ApY+IfRjzDv1zZDr70xAdAzowP6HNHw7/v90UOZM0HQHpFXOHP
XcO/FjW0rkLeB0CfOWZ7iYrDv2DEz1Z64gdAM2reOriVw7+pU+v+seYHQHHK
Kx7noMO/PHIiTyHvB0D+gcJQRbfDv4YBPvdY8wdAAiBJoHTCw7/QkFmfkPcH
QLd8HxSkzcO/GiB1R8j7B0CdUWOs09jDv2OvkO///wdA5PsxaQPkw79fkXKF
"]]}, Annotation[#, "Charting`Private`Tag$6390#4"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.285821, 0.56, 0.450773],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwtlGs01GkcgF3GvLqYtqS2URMjStdtIyJ+b6V0RMWkRlk5uVu2slKIklvT
Tsw6qKgtoSTLNoNt1PT/5xZHmhkVSbmTcRsGMyLa9pw+POf5+Hx7DE+cdPHR
UFNTc/rG//Yq4sm/fkVkwV2PBIcxJSyepptYf0FkpNXXzYtHlVC5J9c9bBKR
9Un2bR+HlWDSKqwdHEFk8FGp7el+JfTP78pu7kCkMK1p4fUOJZwKNGcLKhBp
78XQ7hUrIdr4PembiEjN5JXbYguUkJFplFJPQyR3iaq23EcJt9sun3SeQyUT
rEIqfn85AUskrAOmelpkV0zV+d9sJqDmIMuuzphCxsdJFOxH47DX1DjUiKlJ
Lu+5XM1dNg5Whe73xJs0yATt+q553DGYuuKr+7OpOtnwJOtUt0IBE6qcNI/V
aiRVgleS7gqoZKaYPQueJSYZ+2L7JaNgrXVBsM77C+ESZLKHu20UUrGFxY6o
KYI4cn9VbMEIeN1k9/TfniRUvdEaV5gjIL7PmKOeoSQ+EeknfOlyYMz/ZzNR
Ok7cnQmhRFCGYa5Br1iWryAWJjkmrn83CEGH4q/n5Y0QkRccmOH8AfCsaKtj
pAwRH3+91lyS1Q9Mm1nnqhgZkX2xpcAlUgYP/AUdT0p7iMUHGAtWBfZB4Ngj
9z8yOohoqfLPDXafYGO0lhvVqIUQF5lLtU16QTf8zbz0zNeElvt+jnBFDzR5
B60t6qomxtyOiTM1uuFsxNqk2rRCQsQur1wz2wn5yZY456e/IaIX6Js0OyEp
IKbR89ILsGdMbH482Q46447WBc6vwb9dfX4YtR3aQ6vNwuJaoLFGHPV5QSsM
C53Kz9Z0QGjO57qqjR/gXmKWpzenB1qaye7BC+/BWPlQ91ymDBJ/kCx3ff4O
WvkrRdb+QxCMOs2MzJrA9Vr75QHeCLAM5O6fybfwVy5X5JiugFcB8Zy2HW+A
cix4SCt8HEz69ufLhhrgleeD+y5xSnAWecRtTZZCiQ79F1XQJDANyy8dPiIB
kwzDPuQ4Ba2G0uh9vq9gKixu5iHrC6SI7/hxtV/CwJQ+Lc9yFrKmczbcGKiF
O36Jb/SN1LBewLBVg/AF8Ha85C4zVsdbskMO9edVAe3kw50Vehr4/GxSsqq+
Ap7ZPRaV0jUxJSHA1ubjc5gJPr71MI2CE8I86rVXkKCOGm6sm6FgKWlQkN7z
FLbuDSl3UKPi0JHRxG1eQpj6UNCnp6Bifw2bVOctpWAXVMNzUlLxOcMGxS7j
Urg63WUZP0XFRzdkN1gsLQUDuj5nXANhNvyou2q6BOyPcExf6yKcu90qllZR
AqlSn0CeOcL5lyourmWVwMZqxuDccISdjE5TIkKL4ZyrVerOKISPJcety/Qt
hufdrtsjYhCe4+cjErGL4ZDmVa6Mg3ChbSMD2RRDJJ5eX5OB8PDsmap8rWKo
KWsKjn+KsMGCsrnm1wSwyGFMT0QiLLBMuxrEEYB7M+3ZeOW3/tvzp3IjBSBX
7aZ51yMsk9ax9D0FsMS8uHBnK8JttxRRS00F4FkpPhzRifAuHeGwm74AHrAG
Zh/1Iqx7c2/ZLR0BbA9hHjCUI5y1ZvVxUwUfEtRtVewxhOnyNRanu/kg4bnd
5qkQdvF18ytr5APd4Ix9zTTC//IXySm1fPj+Lxy8u6j+4BM+/Ad92GG8
"]]},
Annotation[#, "Charting`Private`Tag$6390#5"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.03519887363604365],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIlIIaxWZDYzATYDFA+A4VqSNVLqpmkupNUe4nRS4ld
AKjmAn0=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJfIGYCYgOtlcIXnqg4OE9oFkr7peggMfUKZ0aTqkM4
p1i7sbySwxkQ4FFzeOAa7zjLUMkhISRIfcFKBD8exO/UgPO9T7Dbzp6q6XBH
U3bN/2BFON99zdHlDDPk4fzUNCBwk3EA2++i4SC/a8G+VD0piH06aqh8HgT/
19vXBywfq8L5HvtrZS2Wq0LMt5BymDGBv8qsW9VhR7BVxP/jkg6nDjutzdyn
6tAX0e3PGCDp8KZ4q+jv06oOVfd/3DLWloSYx6zmYAwCmyUcfC9OjPnnrObw
HwTkJRz+fit9MCdQzeFNW2630W9xhwtXw97oV6tB3NUjDqHPaDq0iNeyZrrx
OtT/tio490LTwQRsHo+DP8g8Zi0HmY1i85kUeKDmQvkLuCF8ey2H7V4bLOb8
5HLYoJe3mDFGy8H/iecl02Auhy3mPw6ldGk5HOze12SSzOnwB+TeZG2HmWAA
5IPcNxHBB9t3GMFfr/qked5b3HyZeXGapwV04ebD+BD/cTtMaW+Nulyj47D8
1vLHhoe5If4y1oHSPA4tLEf7Db9rO7yofZx9PofXQXb5Cw+9++pQ8yQdzGz2
Bk17qOEgUjmp5OwTSYi9kZoO6p9UXs7ylIK4/6Omw3ohHb50OWkHc7B6LQcD
kPHFMnD/hry9/HGGoxycfxqcThTgfHD8v1CEh+/Kby8rzjxQgqYXdTgf4m8E
H+w+R1VI/F/G5IPT5xIVOB+cfrhx8/fk17yd2aoINx/GTwel9zAliDpnJYcP
i9YrnPVQcuCPDbhvJK7sUAlKj9ZKDmtB4aCnDMlPggg+2NkrFeB8iD8F4fyS
5SUb/vXzwM2DpCduuH2w+NsLck+qIjx+YXxY/IP5pUoOTaD03MYJNw+WXsD5
jV0Fzk+JvePG/APBf5Gl/W36XFW4fhbOLvnkdWpw82F8mP1SoPR2QRXuvo2g
9P9HBe5+WPkE8x+MD/M/evkFAFuQG5I=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIdIIaxWaBsBiifAY3NCJVnRmMTo54YcXraNZjdRk+7
cIkDALmJAos=
"], CompressedData["
1:eJxdlFFIU2EUx6/Okos5yJDlfHBdGmXW3b3djYoovopKJAqKsh4SSs3sIaEm
lKwokx4s2Eth0pDIh8ti5oRCemhUIhhuWWggo3JQxCQGITUWZbbvjv/5oAPf
w49xz/mf/zlna053HG61SZJUlH9H8684/447Rt9Jdi9b4lGzkoH9pj/6N7iC
rb47I58t9rLRhujW0K8y1nLywz7bPYOZSfOzPlbG1mXKY1qtweI8bgt+eSvW
7W2W2WK2MxUaMVi348qy9psy5eu3QmZPtuRetXQJtn5fENwwUbrj/l4ffZ8+
V5ftS/goPxj1/U8rf082+UiftiG86u0PoX891zcv+gOjf7BVPuwift4RyPRX
KpTv8lwuaWxXqN73h8OuRL1CetrO5OOY4HB2/lI8pbBkdeDUZrePGTymFeoX
DD/AsxULu6aWCw4e8a/tmzLY/si4Kc0q5Dfyg1Ef84I++A/9mDf6A6N/sJXv
q7PQz0eDRSo22ts+OQu+RwzW4yp1x2ec7PXY7qH2g4LNdL26pOvEg3Mxe2ha
I64eaKqdfKBRPgfXd0GjemDoAUPvCa7vqkb9lB8avtOa1qjf6yXjQb1RJz/A
8Mua32ON/B1Rzw8WBQRbem2CU9wQl4f4j7XfKs2jxxKwifKDUT+X+fZi2x6V
9F3jehwe0l8i99Y0qx7qD4z+wdhXMPYZ+bDvqId7gB7cCxj3dIDfW6dK94Z8
uEf4AYZf4IvczzcafQ+/kR+M+pgX9GGe0I95oz8w+gd3cf/qqgr7FNXYEN+n
nVXs57Nk7+J7wdhHMPYV7P5yYyDxSDDuDYx7QL3//z//AckFQOg=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
JjHitLALAM7SAnU=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4rrfVgXnbpg7uK05upxhhoTDTBCQtHCouv/j
lvFqCYfiraK/T8dZOBiDwGYJh+tCnxzPH0Pw/34rfTCn0BLO/w8C6y3h5s0A
mXfT0kG4clLJWRcJhw16eYsZ31g6rBXS4UuPE3f4siEge9Z3S4cY1QiZczai
DmdAwMYKzvc5wW4729QKbh4uPtg8O0k4/4FrvOOsi5h8mPlgOkcWbj+MD3Mf
mN8jDXH/S0sIbSntcKRtefipR5YO6WlA8EwK7j+we+dIwf1vAgqPYCmHJ4kL
r5nkWzq4g9xrIQUJv2sWcP6Xnbe6/pYi+J9A7lG3gJhjL+UAix+YeTC+84Rm
obRfig6nDjutzZSzgPCllCD63S0cwjnF2o3llSDmnEfwwfFpZ4kqvx8af8xK
Dh9A+tmh4XlP0aEErN4KIn9YEeJeVysH5WuPghnWIPjg8HVE8Pfm17ydKaoA
8e80TD7YvVqKDhJTr3BmLLKC+J9DycG+6dHxGbuh9l1Wcthi/uNQihc0vu4o
OdyQrkk0YrVyWPntZcWZB0oOy1946P1faAnnT5/AX2W22gKunstNtZTJygJu
nsZb3n0GL83h/AnBJSrT1yP4MQqOH5NzcPPB+iXN4PbB+OD0EKbkkBJ7x425
w8zhw6L1Cmc9lBxWgNz30cyhEpSfrJUcXmRpf5v+1wwaHgg+ON+tVIDzwfEi
Lwjnlywv2fCvnwdu3navDRZzfnLD7Vt+a/ljw8PccPdA0i+Cf7B7X5NJMqdD
j9crFpOFZg5N4rWsmW2ccPPA9s/khIRXljmcD46fRwj+LVD4m1rA9T8HuW+v
Bdx8GB9mPzi9+VnA3XegVtYi/Yk53P2w9AzzH4wP8z96+QQAjSwZ1w==
"]]}, {
Thickness[0.03519887363604365]}, StripOnInput -> False]}, {
ImageSize -> {42.61373349937733, 24.508064757160646`},
ImageSize -> {28.409155666251557`, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {29., 17.}, PlotRange -> {{0., 28.41}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {-0.4315575966077358, 1.434397244340441}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
TagBox[
FrameBox[
StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["3", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["4", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["5", Smaller, StripOnInput -> False]], "Placeholder"]},
"LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.285821, 0.56, 0.450773],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.285821, 0.56, 0.450773],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #5}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.9, 0.36, 0.054],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.9, 0.36, 0.054];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable ->
False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.365248, 0.427802, 0.758297],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.2434986666666667, 0.28520133333333336`,
0.5055313333333333], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.365248, 0.427802, 0.758297];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.365248, 0.427802, 0.758297], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.945109, 0.593901, 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6300726666666667, 0.395934, 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.945109`", ",", "0.593901`", ",", "0.`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.945109, 0.593901, 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.945109, 0.593901, 0.], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.645957, 0.253192, 0.685109],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.430638, 0.16879466666666665`, 0.45673933333333333`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.645957`", ",", "0.253192`", ",", "0.685109`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.645957, 0.253192, 0.685109];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.645957, 0.253192, 0.685109], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.285821, 0.56, 0.450773],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.19054733333333335`, 0.3733333333333334,
0.30051533333333336`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.285821`", ",", "0.56`", ",", "0.450773`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.285821, 0.56, 0.450773];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.285821, 0.56, 0.450773], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm], ",",
TagBox[#5, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.801392711440703*^9, 3.801392763036476*^9, 3.801392825892982*^9, {
3.8013932176407757`*^9, 3.801393224653185*^9}, 3.801393337558785*^9,
3.801393944356008*^9, 3.803116130927299*^9},
CellLabel->"Out[44]=",ExpressionUUID->"7d983109-7364-405f-92e5-1b8ccd1bf9ee"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{
RowBox[{"rHn\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "20", ",", "5"}], "]"}], "//", "N"}], ",",
"\[Epsilon]"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.8013932659639072`*^9, 3.801393283928433*^9}, {
3.801393899430642*^9, 3.801393914820016*^9}, {3.801393958857519*^9,
3.801393979345606*^9}, {3.803115670423841*^9, 3.8031156708449507`*^9}, {
3.803118965586927*^9, 3.803118980847437*^9}},
CellLabel->"In[49]:=",ExpressionUUID->"de60fc66-4d0e-4b01-8e5c-8d41c70264c7"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", RowBox[{\\\"-\\\", \
\\\"1\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 49, 13,
22576737602214712238, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.801393292211431*^9, {3.801393900318907*^9, 3.8013939152297697`*^9}, {
3.801393961018279*^9, 3.801393979652046*^9}, 3.803115551464966*^9,
3.803115676157612*^9, {3.803118966378538*^9, 3.803118981273139*^9},
3.803183003076955*^9},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"b0ea24e1-def0-47cf-b838-b7a0fc7e00b6"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", RowBox[{\\\"-\\\", \
\\\"1\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 49, 14,
22576737602214712238, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.801393292211431*^9, {3.801393900318907*^9, 3.8013939152297697`*^9}, {
3.801393961018279*^9, 3.801393979652046*^9}, 3.803115551464966*^9,
3.803115676157612*^9, {3.803118966378538*^9, 3.803118981273139*^9},
3.803183003522256*^9},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"596bf8cc-7717-4778-9008-12d681ebd026"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"1\\\"}], \
\\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 49, 15,
22576737602214712238, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.801393292211431*^9, {3.801393900318907*^9, 3.8013939152297697`*^9}, {
3.801393961018279*^9, 3.801393979652046*^9}, 3.803115551464966*^9,
3.803115676157612*^9, {3.803118966378538*^9, 3.803118981273139*^9},
3.803183004081748*^9},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"6a8d687b-6bd6-4b6b-b307-c7e540e81b09"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"ClebschGordan\\\", \
\\\"::\\\", \\\"phy\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 49, 16, 22576737602214712238, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.801393292211431*^9, {3.801393900318907*^9, 3.8013939152297697`*^9}, {
3.801393961018279*^9, 3.801393979652046*^9}, 3.803115551464966*^9,
3.803115676157612*^9, {3.803118966378538*^9, 3.803118981273139*^9},
3.8031830044995728`*^9},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"bc8ace42-d1af-4e54-9707-85f5b1f8a17b"],
Cell[BoxData[
TemplateBox[{
"NSolve", "precw",
"\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{RowBox[{RowBox[{\\\"0.00017250251984126988`\\\", \\\"\[VeryThinSpace]\
\\\"}], \\\"-\\\", RowBox[{\\\"0.005136306679894181`\\\", \\\" \\\", \\\"\
\[Epsilon]\\\"}], \\\"+\\\", RowBox[{\\\"0.059282272486772494`\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.3338215608465609`\\\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\
\\\", \\\"3\\\"]}], \\\"+\\\", RowBox[{\\\"0.9212698412698413`\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"4\\\"]}], \\\"-\\\", \
RowBox[{\\\"1.`\\\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \
\\\"5\\\"]}], \\\"-\\\", RowBox[{\\\"0.0005001552299166868`\\\", \\\" \\\", \
\\\"\[Lambda]\\\"}], \\\"+\\\", RowBox[{\\\"0.011970620184012196`\\\", \\\" \
\\\", \\\"\[Epsilon]\\\", \\\" \\\", \\\"\[Lambda]\\\"}], \\\"-\\\", RowBox[{\
\\\"0.10391239360703208`\\\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \
\\\"2\\\"], \\\" \\\", \\\"\[Lambda]\\\"}], \\\"+\\\", \
RowBox[{\\\"0.39069507387224245`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"], \\\" \\\", \
\\\"\[Lambda]\\\"}], \\\"-\\\", RowBox[{\\\"0.5394890842931176`\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"4\\\"], \\\" \\\", \\\"\[Lambda]\
\\\"}], \\\"+\\\", RowBox[{\\\"0.0005687696448465091`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.010267880591148637`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \\\
\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"+\\\", \
RowBox[{\\\"0.05962375561124792`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"], \\\" \\\", SuperscriptBox[\\\"\
\[Lambda]\\\", \\\"2\\\"]}], \\\"-\\\", RowBox[{\\\"0.1123091077194997`\\\", \
\\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"], \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.00031560994595962065`\\\", \\\" \\\", SuperscriptBox[\\\"\
\[Lambda]\\\", \\\"3\\\"]}], \\\"+\\\", \
RowBox[{\\\"0.0038248197135020996`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.011151760407902802`\\\", \\\" \\\", SuperscriptBox[\\\"\
\[Epsilon]\\\", \\\"2\\\"], \\\" \\\", SuperscriptBox[\\\"\[Lambda]\\\", \
\\\"3\\\"]}], \\\"+\\\", RowBox[{\\\"0.00008485273234601809`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"4\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.0005186237680972388`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"4\\\"]}], \\\"-\\\", \
RowBox[{\\\"8.741516042573934`*^-6\\\", \\\" \\\", SuperscriptBox[\\\"\
\[Lambda]\\\", \\\"5\\\"]}]}], \\\",\\\", RowBox[{RowBox[{\\\"-\\\", \
\\\"0.005136306679894181`\\\"}], \\\"+\\\", \
RowBox[{\\\"0.11856454497354499`\\\", \\\" \\\", \\\"\[Epsilon]\\\"}], \
\\\"-\\\", RowBox[{\\\"1.0014646825396827`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"\
\[LeftSkeleton]\\\", \\\"14\\\", \\\"\[RightSkeleton]\\\"}], \\\"+\\\", \
RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"-\
\\\", RowBox[{\\\"0.022303520815805604`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \
\\\" \\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.0005186237680972388`\\\", \\\" \\\", SuperscriptBox[\\\"\
\[Lambda]\\\", \\\"4\\\"]}]}]}], \\\"}\\\"}]\\)) is less than \
WorkingPrecision (\\!\\(\\*RowBox[{\\\"30\\\"}]\\)).\"", 2, 51, 17,
22576737602214712238, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.801393292211431*^9, {3.801393900318907*^9, 3.8013939152297697`*^9}, {
3.801393961018279*^9, 3.801393979652046*^9}, 3.803115551464966*^9,
3.803115676157612*^9, {3.803118966378538*^9, 3.803118981273139*^9},
3.803183004911385*^9},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"9c0d067a-3b9d-4c85-b599-0e5b39b03ef1"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], CompressedData["
1:eJxTTMoPSmVmYGAQAWJGIGYC4st3f+xKOfPb/mTDy4Wzlvzdj8a3r/eff8r9
+Gf7eguTizuif+xH49sH3jc0lzr72V5ewq2sxPPTfjS+fdWj6JwrCt/sl4sW
SRRdvrEfjW/PHlFhZhH8xv7ltSDF9vIv+9H49ntMV7PLsX2x/7D7X73dt8v7
0fj2an6973lmfrT/7nPFvND/3H40vr2OnkQz07LL9pwKGyUcAh/uR+Pbq+0r
27EqpNz+6N6fqlFcL/aj8e3LTiXv8ZQ9ZC94U25BxKwn+9H49gDAEqNY
"]]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-4, 4}, {-4, 4}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{
3.8013932939579983`*^9, {3.801393901874902*^9, 3.801393916504356*^9}, {
3.801393962306031*^9, 3.801393980910924*^9}, 3.803115553895935*^9,
3.803115678531164*^9, {3.803118968871187*^9, 3.803118983532702*^9},
3.803183005841505*^9},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"132345e5-b8de-44f3-8827-dc7b1a649e34"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"PlotRcv", "[", "n_", "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{"HMP", ",", "H"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"HMP", "[", "R_", "]"}], ":=", " ",
RowBox[{"HRMPn", "[",
RowBox[{"R", ",", "n"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"H", "[", "R_", "]"}], ":=",
RowBox[{"rHn", "[",
RowBox[{"R", ",", "n"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"H\[Lambda]", "[",
RowBox[{"R_", ",", "\[Lambda]_"}], "]"}], ":=",
RowBox[{
RowBox[{"HMP", "[", "R", "]"}], "+",
RowBox[{"\[Lambda]",
RowBox[{"(",
RowBox[{
RowBox[{"H", "[", "R", "]"}], "-",
RowBox[{"HMP", "[", "R", "]"}]}], ")"}]}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"ListR", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"Rcv", "[",
RowBox[{"H\[Lambda]", ",", "R"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"logspace", "[",
RowBox[{"0", ",", "3", ",", "100"}], "]"}]}], "}"}]}], "]"}]}],
";", "\[IndentingNewLine]",
RowBox[{"ListLogLinearPlot", "[", "ListR", "]"}]}]}],
"\[IndentingNewLine]", "]"}]}]], "Input",
CellChangeTimes->{{3.80318301278955*^9, 3.8031830151190987`*^9}, {
3.803186451793786*^9, 3.8031864663897467`*^9}, {3.8031865388666*^9,
3.803186571583144*^9}, {3.803186604106305*^9, 3.803186606545961*^9}, {
3.803186644036261*^9, 3.8031868002170763`*^9}, 3.803187192946789*^9, {
3.803187544648868*^9, 3.803187577967966*^9}, {3.803187638963188*^9,
3.803187642109646*^9}, {3.803187701319284*^9, 3.803187707372258*^9},
3.803187784218337*^9, {3.803187825841313*^9, 3.803187828909544*^9},
3.803187903428293*^9, {3.803187948047488*^9, 3.803188018671924*^9}, {
3.8031880766353607`*^9, 3.803188083526642*^9}, {3.803189377932851*^9,
3.803189431637781*^9}, {3.803189466628723*^9, 3.8031894671156473`*^9}, {
3.803189502544142*^9, 3.803189519753605*^9}},
CellLabel->"In[45]:=",ExpressionUUID->"6d7a4316-2c80-4771-8862-68b30d4db3da"],
Cell[BoxData[
RowBox[{
RowBox[{"logspace", "[",
RowBox[{"a_", ",", "b_", ",", "n_"}], "]"}], ":=",
RowBox[{"10.0", "^",
RowBox[{"Range", "[",
RowBox[{"a", ",", "b", ",",
RowBox[{
RowBox[{"(",
RowBox[{"b", "-", "a"}], ")"}], "/",
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}]}]}], "]"}]}]}]], "Input",
CellLabel->"In[40]:=",ExpressionUUID->"3e443d05-9a6c-4216-a9c1-f5f84c47a28b"],
Cell[BoxData[
RowBox[{
RowBox[{"Rcv", "[",
RowBox[{"H_", ",", "R_"}], "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "\[Epsilon]", ",", "\[Lambda]EP"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{
RowBox[{"H", "[",
RowBox[{"R", ",", "\[Lambda]"}], "]"}], "//", "N"}], ",",
"\[Epsilon]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]",
"0"}], ",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]",
"0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}], ";",
"\[IndentingNewLine]",
RowBox[{"Return", "[",
RowBox[{
RowBox[{
RowBox[{"\[Lambda]EP", "//", "Abs"}], "//", "Sort"}], "//", "First"}],
"]"}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input",
CellChangeTimes->{{3.803187834494131*^9, 3.803187932850692*^9}, {
3.803188025280284*^9, 3.803188035686943*^9}},
CellLabel->"In[39]:=",ExpressionUUID->"12425906-d272-4c01-8978-5fa95816e4d7"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"PlotRcv", "[", "2", "]"}]], "Input",
CellChangeTimes->{{3.80318943766405*^9, 3.8031894450509*^9}, {
3.803197310183666*^9, 3.80319731093556*^9}, {3.803197422743416*^9,
3.8031974485278378`*^9}},
CellLabel->"In[49]:=",ExpressionUUID->"c270935e-bf41-4889-92b0-890cbeb91ffb"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", RowBox[{\\\"-\\\", \
\\\"1\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 49, 41,
22576772428179912543, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.803189446110682*^9, 3.803189472352929*^9},
3.803189523181827*^9, 3.803197311808399*^9, {3.8031974235197897`*^9,
3.803197448906414*^9}},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"0d0c57e7-d224-4f62-8cbe-26fd1f219bf6"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", RowBox[{\\\"-\\\", \
\\\"1\\\"}]}], \\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 49, 42,
22576772428179912543, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.803189446110682*^9, 3.803189472352929*^9},
3.803189523181827*^9, 3.803197311808399*^9, {3.8031974235197897`*^9,
3.8031974493395767`*^9}},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"1d06285b-ef7f-497d-b871-df258f4b080c"],
Cell[BoxData[
TemplateBox[{
"ClebschGordan", "phy",
"\"\\!\\(\\*RowBox[{\\\"ThreeJSymbol\\\", \\\"[\\\", RowBox[{RowBox[{\\\"{\
\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\",\\\", \
RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\"}\\\"}], \\\
\",\\\", RowBox[{\\\"{\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"1\\\"}], \
\\\"}\\\"}]}], \\\"]\\\"}]\\) is not physical.\"", 2, 49, 43,
22576772428179912543, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.803189446110682*^9, 3.803189472352929*^9},
3.803189523181827*^9, 3.803197311808399*^9, {3.8031974235197897`*^9,
3.803197449835347*^9}},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"1a3a04e5-c8d8-4a98-8958-77cb2fe3d7e9"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"ClebschGordan\\\", \
\\\"::\\\", \\\"phy\\\"}], \\\"MessageName\\\"]\\) will be suppressed during \
this calculation.\"", 2, 49, 44, 22576772428179912543, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.803189446110682*^9, 3.803189472352929*^9},
3.803189523181827*^9, 3.803197311808399*^9, {3.8031974235197897`*^9,
3.803197450283433*^9}},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"3105f5d9-c9e6-4409-b594-d4b752a32bd3"],
Cell[BoxData[
TemplateBox[{
"NSolve", "precw",
"\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{RowBox[{RowBox[{\\\"10.666666666666668`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"7.333333333333334`\\\", \\\
\" \\\", \\\"\[Epsilon]$160221\\\"}], \\\"+\\\", RowBox[{\\\"1.`\\\", \\\" \\\
\", SuperscriptBox[\\\"\[Epsilon]$160221\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"9.680000000000001`\\\", \\\" \\\", \\\"\[Lambda]$160221\\\"}], \\\
\"+\\\", RowBox[{\\\"3.173333333333334`\\\", \\\" \\\", \\\"\[Epsilon]$160221\
\\\", \\\" \\\", \\\"\[Lambda]$160221\\\"}], \\\"+\\\", \
RowBox[{\\\"2.0622222222222226`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]$160221\\\", \\\"2\\\"]}]}], \\\",\\\", \
RowBox[{RowBox[{\\\"-\\\", \\\"7.333333333333334`\\\"}], \\\"+\\\", \
RowBox[{\\\"2.`\\\", \\\" \\\", \\\"\[Epsilon]$160221\\\"}], \\\"+\\\", \
RowBox[{\\\"3.173333333333334`\\\", \\\" \\\", \
\\\"\[Lambda]$160221\\\"}]}]}], \\\"}\\\"}]\\)) is less than WorkingPrecision \
(\\!\\(\\*RowBox[{\\\"30\\\"}]\\)).\"", 2, 49, 45, 22576772428179912543,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.803189446110682*^9, 3.803189472352929*^9},
3.803189523181827*^9, 3.803197311808399*^9, {3.8031974235197897`*^9,
3.803197450702577*^9}},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"74ddf5be-6561-47fc-8806-899e1173baf5"],
Cell[BoxData[
TemplateBox[{
"NSolve", "precw",
"\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{RowBox[{RowBox[{\\\"9.042850007277302`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"6.713382521946072`\\\", \\\
\" \\\", \\\"\[Epsilon]$160318\\\"}], \\\"+\\\", RowBox[{\\\"1.`\\\", \\\" \\\
\", SuperscriptBox[\\\"\[Epsilon]$160318\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"8.30193400168395`\\\", \\\" \\\", \\\"\[Lambda]$160318\\\"}], \
\\\"+\\\", RowBox[{\\\"2.959461287442751`\\\", \\\" \\\", \
\\\"\[Epsilon]$160318\\\", \\\" \\\", \\\"\[Lambda]$160318\\\"}], \\\"+\\\", \
RowBox[{\\\"1.7936157209540065`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]$160318\\\", \\\"2\\\"]}]}], \\\",\\\", \
RowBox[{RowBox[{\\\"-\\\", \\\"6.713382521946072`\\\"}], \\\"+\\\", \
RowBox[{\\\"2.`\\\", \\\" \\\", \\\"\[Epsilon]$160318\\\"}], \\\"+\\\", \
RowBox[{\\\"2.959461287442751`\\\", \\\" \\\", \
\\\"\[Lambda]$160318\\\"}]}]}], \\\"}\\\"}]\\)) is less than WorkingPrecision \
(\\!\\(\\*RowBox[{\\\"30\\\"}]\\)).\"", 2, 49, 46, 22576772428179912543,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.803189446110682*^9, 3.803189472352929*^9},
3.803189523181827*^9, 3.803197311808399*^9, {3.8031974235197897`*^9,
3.803197451084194*^9}},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"3818b43e-06ea-45c9-b17e-b9fcc60b36eb"],
Cell[BoxData[
TemplateBox[{
"NSolve", "precw",
"\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{RowBox[{RowBox[{\\\"7.6748217489944635`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"6.151588002404102`\\\", \\\
\" \\\", \\\"\[Epsilon]$160405\\\"}], \\\"+\\\", RowBox[{\\\"1.`\\\", \\\" \\\
\", SuperscriptBox[\\\"\[Epsilon]$160405\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"7.1255048049346845`\\\", \\\" \\\", \\\"\[Lambda]$160405\\\"}], \
\\\"+\\\", RowBox[{\\\"2.760003501640432`\\\", \\\" \\\", \
\\\"\[Epsilon]$160405\\\", \\\" \\\", \\\"\[Lambda]$160405\\\"}], \\\"+\\\", \
RowBox[{\\\"1.5599954843793231`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]$160405\\\", \\\"2\\\"]}]}], \\\",\\\", \
RowBox[{RowBox[{\\\"-\\\", \\\"6.151588002404102`\\\"}], \\\"+\\\", \
RowBox[{\\\"2.`\\\", \\\" \\\", \\\"\[Epsilon]$160405\\\"}], \\\"+\\\", \
RowBox[{\\\"2.760003501640432`\\\", \\\" \\\", \
\\\"\[Lambda]$160405\\\"}]}]}], \\\"}\\\"}]\\)) is less than WorkingPrecision \
(\\!\\(\\*RowBox[{\\\"30\\\"}]\\)).\"", 2, 49, 47, 22576772428179912543,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.803189446110682*^9, 3.803189472352929*^9},
3.803189523181827*^9, 3.803197311808399*^9, {3.8031974235197897`*^9,
3.803197451598008*^9}},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"09d26c5f-a751-471a-aa1f-d470df8184a5"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"NSolve\\\", \\\"::\\\", \
\\\"precw\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \
calculation.\"", 2, 49, 48, 22576772428179912543, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.803189446110682*^9, 3.803189472352929*^9},
3.803189523181827*^9, 3.803197311808399*^9, {3.8031974235197897`*^9,
3.803197452050694*^9}},
CellLabel->
"During evaluation of \
In[49]:=",ExpressionUUID->"b9021d77-882f-4879-a669-ca24b904c179"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668],
AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJw1kwk0lWkYx69ry+5e173XUklaxUnaF89zLLk03FJNxZzsRRtOi4a0hzRi
SMh0GnXbRIjKlizTEDNKZUnFUZIM3u9esi9j9M53zne+857vXZ7n9/+9s7wC
XHzZLBbLZ/L97/v/4zZ4QvFOmTz612d6VL/PhrQ5lxYJ+9noPTUuhaiuuOJN
K9gYX6rMsaiugvgr4e93nZOj/2tBXpyY+XMLC0er360c31wPkfsDtxTasuj8
JvDruvSgzm8CFj22/Opt3QK8NZlX7riNg9fU+lbocq0pueYxBua1z/7yEbaB
uEU8+/SRUfi+XzvEB6u8Nf1tBCr/lEoSYzogL1d885eXw3Bpav9OWC85K7nF
HQb3oulhVUrdECwfoRXtOQRmU+cRcHYJ5nkXDcJooyRtvJiB2HSvclfjQXq+
FG4Ijmnkxg3A89cF/KRhGYxPl9QVqg/QevogxIjHqY7ph4Sal6ctln8Dv3b+
gJ1BP4xM1dcPhoVVVin3v4Hn8/aeqqABKP8y7G/j8A0qpuodBJW75oYlnX1g
/seoq0/GEHwY1Q9Lieuj9Q9D9OsHN3djHwwXcyvGOkbg5oEZguLeXvCY6mcM
kjlkNaT3QkX+fMtEk3EwSiP//OrfS3lOQGzdmJK3aS84uF4TCxez8Ow9D3lf
qYz2y0JnDcM4caEMsralKX52ksMkUmHTEimj/cth39LQpXU7ZMDf+rAwey8b
b6Hnk34zGVRO8WAjOZZkqqEog1CXkqDj5+XxrmQ89HOzlPJRwLCKBIONhVJo
FVfP23BbAbfkLUk3uiKlvBQxTbrwb7NQKYic6j8Inini4d6iLxt3Sik/JdSr
lI372kjhvmNrfNtHJbyaXXZ6w0Ip5amMj9WWz/3IlQJP1OWQzZqGp5Z65amP
MZTvNFz2hs3K6mAgxG5gImyGCvrMjEx+UMdQ3ioYXnagYbScgVZr9iPHtaqY
OpYvOZrDUP6qKDLa68+RMGCPGvsErmr4E+cNk5PA0DzU8GmzZJNzJAMZ64TG
bcHqmHr0csOLUIbmo4GXn17umR/IgM6a2Y1ZCRoY0+OmtcGXoXlp4oK59hnz
3SbrW2l+MSxHEyH8xJyHmxjqpxY2li7ObBMx0LJsla1jrRaejXr7QzoyNE9t
PHQysVhuFQM39IzDLgRrY0Gs++F3FgzNVxvNXnMjFpsy8GPSvMYgJQ4WqHre
GDRhaN4c7O/ao7JoJgMqAjPL7QkcjLIRHC/XY+D7/eWgWZOmTR6PgaKEJRet
TLiYMrxZU0GboT5wsWFkDztVjYEA3sqvJjlcPGqgevu8MkP94GLTOfuPefIM
GMevs1Wz1kGxyjrZAhZDfdHBq1qWNVlDBOo4NtekL3Uw5pTFmpO9hPrDw0CD
hwcLuglExoqGG9x5OGg31257B6E+8bD1tuGQyycCa7Wctxb38LAknOUkaSbU
L10cvbh2z/omAiR6c5YkTBfPiPqbLesJ9U0X7U1sE3e/InBdfYfaBXU+utxr
rH9fQ6h/fLTt1LeMqSaw9cLOXUEpfOx8IokOqSTURz4emWWklfKMwDRVn9Jt
CwUIgjDj7jJC/RSg9vKQwP0lBAoj/Q2t8gXobhvyTlhMqK9C5OemhnYVEtiv
HBBsIhJiwpwVKZ/zCfVXiLr7rHPk8ggYhR96pdogRK9mXz+rR4T6rIfBSj0R
ybmT/BRCzKS+ehigwFPk5BDqtx5+WR3Qfz2bQMSZE5ENfXrYw4uPd8oi1Hd9
rOyqW6KVSWA1+9ynJ2f00dHJyr49g1D/J8eD8Ttr0wl0n4yyknANUOIQN/PF
PULvgwEefLRK1JxG4PeJmOSoVAN02WiVPnaXwL+M6gs6
"]]}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668],
AbsoluteThickness[1.6]}, {}}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.009166666666666668],
AbsoluteThickness[1.6]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{-0.29082129429742515`, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-0.29082129429742515`, 6.907755278982137}, {
0, 2.4700470380476367`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->FrontEndValueCache[{
Charting`ScaledTicks[{Log, Exp}], Automatic}, {{{0.,
FormBox["1", TraditionalForm], {0.01, 0.}}, {1.6094379124341003`,
FormBox["5", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
FormBox["10", TraditionalForm], {0.01, 0.}}, {3.912023005428146,
FormBox["50", TraditionalForm], {0.01, 0.}}, {4.605170185988092,
FormBox["100", TraditionalForm], {0.01, 0.}}, {6.214608098422191,
FormBox["500", TraditionalForm], {0.01, 0.}}, {6.907755278982137,
FormBox["1000", TraditionalForm], {0.01, 0.}}, {-0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.5108256237659907,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.35667494393873245`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.2231435513142097,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.10536051565782628`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.0986122886681098`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.3862943611198906`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.791759469228055,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.9459101490553132`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.0794415416798357`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.1972245773362196`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.4011973816621555`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.6888794541139363`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.0943445622221,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.248495242049359,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.382026634673881,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.499809670330265,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.298317366548036,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.703782474656201,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.991464547107982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.396929655216146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.551080335043404,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.684611727667927,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.802394763324311,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
7.600902459542082,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.006367567650246,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.294049640102028,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.517193191416238,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.699514748210191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.85366542803745,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}},
Automatic}]]], "Output",
CellChangeTimes->{{3.803189449581337*^9, 3.8031894757897778`*^9},
3.8031895266426764`*^9, 3.8031973214761066`*^9, {3.8031974369838257`*^9,
3.8031974524785433`*^9}},
CellLabel->"Out[49]=",ExpressionUUID->"2b80e58f-428c-4563-b503-1558690ae93e"]
}, Open ]]
}, Closed]],
Cell["UHF", "Subsection",
CellChangeTimes->{{3.803875792099679*^9,
3.803875792360742*^9}},ExpressionUUID->"bccf1217-df55-4d3f-a67f-\
f220fd9b7c14"]
}, Closed]],
Cell[CellGroupData[{
Cell["\[OpenCurlyDoubleQuote]Final\[CloseCurlyDoubleQuote] results", "Section",
CellChangeTimes->{{3.801210099461481*^9,
3.8012101123251123`*^9}},ExpressionUUID->"173cbd31-c127-462a-9060-\
7967130c2bb1"],
Cell[CellGroupData[{
Cell["RHF", "Subsection",
CellChangeTimes->{{3.801210454651154*^9,
3.8012104550781*^9}},ExpressionUUID->"e3f42931-0815-408b-ac8f-320ff914f89c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E_\\\\text{RHF}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.801211576232717*^9, 3.801211576653942*^9}},
CellLabel->
"In[139]:=",ExpressionUUID->"009622ee-4830-442a-b200-65a7f8cf4413"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{}, {},
TagBox[{
RGBColor[0.9, 0.36, 0.054],
AbsoluteThickness[1.6],
Opacity[1.],
CapForm["Butt"],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8BCyrWfqqoMQBT7GiY7
/AfAYqe8bieoDEDERqVcdvgHwIKEwz2kpQxAJt65yezwB8DEPtHbnaAMQOoM
46PZ4QfARrPsF5GWDEBwajVYs8MHwEqcI5B3ggxAfiXawGaHB8BUbpGARFoM
QJqbI5LNDgfAZhJtYd4JDECf34hvUQkGwBWVsJ+LWwtAFtBTTykVBcC5iuI0
xrgKQMhQU0TLJQTAheCMLTIZCkBIKSV0IyIDwNpww6IXbAlAOq5cps8vAsAm
dOhuisoIQPqKZhMyKQHA/LGZt3YbCED196SVXicAwPhPw2OUbwdAxCKSNL5t
/r/sYNtmP88GQDsFf7MrZPy/aax/5mMhBkCUQDc3QX36v9xqEr0VfwVAY5xY
5eqf+L92iR33+N8EQM+nHgkBmva/muK0rVUzBEAeDLAxv7b0v7SuOrs/kgNA
CiDmz+mq8r9YtUxFo+MCQGxUhZioqPC/JBzXMjg4AkBgw9/LHpLtv+X1T3da
mAFAIj3+UcWB6b8wClU49uoAQKlos+G7tuW/cZFIUB9JAEBq87Fci5rhv3im
kMmDM/8/Ln4FWQYj279d6oC5K9v9PxN51AuWm9O/LRROV+6Z/D/XZGwqr+PG
vxGzM+6jPfs/d3oqjsmVrr/iN/YydPj5P6qPOECkMK0/AX2pPqe5+D+OaYHW
YILHPzQ3dUPNX/c/DfRMO6xR0z9S1x32DR32P+B0xjR2hNs/hezeoUG/9D/u
uU3Cd8jhPwbCkBTYZ/M/poehYGSJ5T9zfR81iSfyPyX2qxN4m+k/9K3GTi3M
8D/esh+9O2jtP8GIlSzYD+8/VZfgiOuQ8D85Nn9JG5TsP56ljL1MlvI/2M2Z
WETi6T8EW23tBXn0P1AxbsOiXuc/zmCpp1KE9j/tfnMg56TkP7UNGl33bPg/
ZJgy2WAZ4j8mmiHoB0z6P/Bkpj9ANd8/+naE/atT/D9lbUmxisvZP+v6Gw6o
OP4/jQ1g2j++1D+gZ4fUGyMAQAAEsc+Bic4/kEHMjBklAUBV7ycimsnDPw5v
q0LDFQJAKhQMxw+Fsz++RLi9thoDQFUpgyUpz4G//W1fNlYOBEDAf54yL4e2
vwEH0pkr/QRAtUrAaCY3xb82SHLCSgAGQHXWtreOAdC/+tys6BXyBkDg75mD
HwvVv0RsyJBN9gZAwJbXrp0h1b+N++M4hfoGQJo9FdobONW/IBobifQCB0BV
i5AwGGXVv0dXiSnTEwdA0CaH3RC/1b+U0WVqkDUHQMBddDcCc9a/LsYe7Ap5
B0Cgy07r5NrXv3hVOpRCfQdAgHKMFmPx17/B5FU8eoEHQFoZykHhB9i/VAON
jOmJB0AVZ0WY3TTYv3tA+yzImgdAkAI8RdaO2L/IutdthbwHQIA5KZ/HQtm/
EkrzFb3AB0Bg4GbKRVnZv1zZDr70xAdAQIek9cNv2b/v90UOZM0HQPrUH0zA
nNm/FjW0rkLeB0B1cBb5uPbZv2DEz1Z64gdAVRdUJDcN2r+pU+v+seYHQDC+
kU+1I9q/PHIiTyHvB0DqCw2msVDav4YBPvdY8wdAyrJK0S9n2r/QkFmfkPcH
QKpZiPytfdq/GiB1R8j7B0CKAMYnLJTav2OvkO///wdAZacDU6qq2r91Nlis
"]]}, Annotation[#, "Charting`Private`Tag$96245#1"]& ],
TagBox[{
RGBColor[0.365248, 0.427802, 0.758297],
AbsoluteThickness[1.6],
Opacity[1.],
CapForm["Butt"],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8AGrR1NVVUSQBT7GiY7
/AfA39Ji6HJTEkDERqVcdvgHwLf4p4OQURJAJt65yezwB8BoRDK6y00SQOoM
46PZ4QfAyttGJ0JGEkBwajVYs8MHwI0KcAEvNxJAfiXawGaHB8AUaMK1CBkS
QJqbI5LNDgfAIiNnHrzcEUCf34hvUQkGwCTFGQ3+WRFAFtBTTykVBcBgPf/8
6d8QQMhQU0TLJQTAuf1+9zpoEEBIKSV0IyIDwPLTzx7OzA9AOq5cps8vAsDl
WAdRetoOQPqKZhMyKQHApTURvtzTDUD196SVXicAwKCiT0AJ0gxAxCKSNL5t
/r8NvPPEieELQDsFf7MrZPy/SC1qhMDcCkCUQDc3QX36v/VKRkZL6QlAY5xY
5eqf+L/c+FYdoPoIQM+nHgkBmva/kv45L6v3B0AeDLAxv7b0v7mwgkMKBgdA
CiDmz+mq8r+wup2SHwAGQGxUhZioqPC/4FTt9v7+BEBgw9/LHpLtv4Kbol0y
DwRAIj3+UcWB6b/zOSr/GwsDQKlos+G7tuW/1YQXo1kYAkBq87Fci5rhv4Un
14FNEQFALn4FWQYj279wWst1Cw8AQBN51AuWm9O/mnNK2Do8/j/XZGwqr+PG
v/DhojrLMfw/d3oqjsmVrr8pqcahA0r6P6qPOECkMK0/2JBTM9Br+D+OaYHW
YILHPyQohToJZfY/DfRMO6xR0z9SGIJG6oD0P+B0xjR2hNs/HbgjyDd08j/u
uU3Cd8jhP154LnQZcfA/poehYGSJ5T8FIwlKRiHtPyX2qxN4m+k/hbT+ljIP
6T/esh+9O2jtP833iu1uQuU/VZfgiOuQ8D8AfOmY04jhP56ljL1MlvI/3b4i
XyL82j8EW23tBXn0P0Xpn589cdM/zmCpp1KE9j9ApF9tFYjGP7UNGl33bPg/
APRoB78LrT8mmiHoB0z6PwCaiFlS1q6/+naE/atT/D8qDXlBtfLHv+v6Gw6o
OP4/VZYa40qN07+gZ4fUGyMAQKrn5U6Jw9u/kEHMjBklAUCVW4aIu+nhvw5v
q0LDFQJAjREDYGKs5b++RLi9thoDQE1oNkwwwOm//W1fNlYOBEBKDdMuro7t
vwEH0pkr/QRArbhO3gGl8L82SHLCSgAGQBU7jy9Aq/K/+tys6BXyBkCgZAR8
1o70v0RsyJBN9gZAMoM7zEWX9L+N++M4hfoGQMWhchy1n/S/IBobifQCB0Dq
3uC8k7D0v0dXiSnTEwdAOFm9/VDS9L+U0WVqkDUHQNJNdn/LFfW/LsYe7Ap5
B0AFN+iCwJz1v3hVOpRCfQdAmlUf0y+l9b/B5FU8eoEHQC10ViOfrfW/VAON
jOmJB0BSscTDfb71v3tA+yzImgdAoCuhBDvg9b/IutdthbwHQDogWoa1I/a/
EkrzFb3AB0DQPpHWJCz2v1zZDr70xAdAYl3IJpQ09r/v90UOZM0HQIiaNsdy
Rfa/FjW0rkLeB0DVFBMIMGf2v2DEz1Z64gdAajNKWJ9v9r+pU+v+seYHQP1R
gagOePa/PHIiTyHvB0Aij+9I7Yj2v4YBPvdY8wdAta0mmVyR9r/QkFmfkPcH
QErMXenLmfa/GiB1R8j7B0Dg6pQ5O6L2v2OvkO///wdAcAnMiaqq9r+HaFrD
"]]}, Annotation[#, "Charting`Private`Tag$96245#2"]& ],
TagBox[{
RGBColor[0.945109, 0.593901, 0.],
AbsoluteThickness[1.6],
Opacity[1.],
CapForm["Butt"],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8CCa6+O4lUDQBT7GiY7
/AfAnQ2J8yRUA0DERqVcdvgHwC3vOFdnUgNAJt65yezwB8BVBxob7E4DQOoM
46PZ4QfAXaLXlPVHA0BwajVYs8MHwFvA8E8IOgNAfiXawGaHB8BP8RTiLB4D
QJqbI5LNDgfAYJ57YXLmAkCf34hvUQkGwJeKrtSLbQJAFtBTTykVBcCogFso
kfwBQMhQU0TLJQTAL4DXO7aNAUBIKSV0IyIDwAjrTjZZFQFAOq5cps8vAsDn
m/MF56QAQPqKZhMyKQHAvD3nh+cqAED196SVXicAwD5Gkrj0Zf8/xCKSNL5t
/r+Cx+DP64X+PzsFf7MrZPy/QQodWJ+S/T+UQDc3QX36v9sl61gcr/w/Y5xY
5eqf+L8acQQKrs/7P8+nHgkBmva/inodWsPc+j8eDLAxv7b0v8aDM2WV+fk/
CiDmz+mq8r86Dm9hsQL5P2xUhZioqPC/6nF/h5YP+D9gw9/LHpLtv48remEg
LPc/Ij3+UcWB6b8+N2+cfzT2P6los+G7tuW/BzA0cGBM9T9q87Fci5rhv2Nm
zdmaT/Q/Ln4FWQYj27+JXVs+9lXzPxN51AuWm9O/jfI/GYdr8j/XZGwqr+PG
v5E6VNtea/E/d3oqjsmVrr8SZLupAHrwP6qPOECkMK0/BD3SytMV7z+OaYHW
YILHP9T/Yat1CO0/DfRMO6xR0z9KBWe6rhbrP+B0xjR2hNs/poHS3ijx6D/u
uU3Cd8jhPy6SDQQpyeY/poehYGSJ5T9GHzCUd7jkPyX2qxN4m+k/Ht0wGGVo
4j/esh+9O2jtPzzJH6X+KeA/VZfgiOuQ8D9lYXp1/LvbP56ljL1MlvI/NN/P
3p981j8EW23tBXn0P1HPTIkSTdE/zmCpp1KE9j/u3f/TIqTGP7UNGl33bPg/
QV0frq59tT8mmiHoB0z6P8DAuCzDyIm/+naE/atT/D+5tq/vF4a/v+v6Gw6o
OP4/Ete4kF2bzb+gZ4fUGyMAQORhf/xIm9a/kEHMjBklAUB/EDOx24Xevw5v
q0LDFQJAPyDnbhAM47++RLi9thoDQDDJb3MAPOe//W1fNlYOBEBjc77myTTr
vwEH0pkr/QRAQO7Chb8l7782SHLCSgAGQIwLouK+u/G/+tys6BXyBkBe6qj0
5cPzv0RsyJBN9gZAf+j6rgDN87+N++M4hfoGQEQWNawb1vO/IBobifQCB0Ak
94NuUujzv0dXiSnTEwdAm6GFDMMM9L+U0WVqkDUHQBgamn6wVfS/LsYe7Ap5
B0Bs0/fJuuf0v3hVOpRCfQdAvTu7ed3w9L/B5FU8eoEHQGzl22UA+vS/VAON
jOmJB0D363DyRgz1v3tA+yzImgdACduX19Yw9b/IutdthbwHQC4D5qcBevW/
EkrzFb3AB0DYUuYGKIP1v1zZDr70xAdAnB9Jn06M9b/v90UOZM0HQJLWfXuc
nvW/FjW0rkLeB0BAH6PcOsP1v2DEz1Z64gdAdH21AWPM9b+pU+v+seYHQEEy
vl6L1fW/PHIiTyHvB0A81v+/3Of1v4YBPvdY8wdAy83fwwXx9b/QkFmfkPcH
QFUsBP8u+vW/GiB1R8j7B0BN4kBxWAP2v2OvkO///wdAHAtqGoIM9r99wW2X
"]]}, Annotation[#, "Charting`Private`Tag$96245#3"]& ],
TagBox[{
RGBColor[0.645957, 0.253192, 0.685109],
AbsoluteThickness[1.6],
Opacity[1.],
CapForm["Butt"],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8BZ/uzG9gkWQBT7GiY7
/AfAZd2zLtgHFkDERqVcdvgHwLecD5e5BRZAJt65yezwB8DXcIZpfAEWQOoM
46PZ4QfAvGN2FQL5FUBwajVYs8MHwItVh4kN6BVAfiXawGaHB8CyPrDjJMYV
QJqbI5LNDgfAZ+tyalWCFUCf34hvUQkGwLDLqdlW7xRAFtBTTykVBcCwU5GU
IWYUQMhQU0TLJQTABTrRIKnfE0BIKSV0IyIDwJi6d1XZTRNAOq5cps8vAsDO
RHVb08USQPqKZhMyKQHAbqYvpHsyEkD196SVXicAwFfJ8nTnoRFAxCKSNL5t
/r9G6wAmHhsRQDsFf7MrZPy/vey3Vg2JEECUQDc3QX36v6IkOGXJABBAY5xY
5eqf+L9d58rxmfYOQM+nHgkBmva/KEZugS7VDUAeDLAxv7b0v1h+bitjxwxA
CiDmz+mq8r+3laQUQqMLQGxUhZioqPC/mwZwy9WECkBgw9/LHpLtv82lIaAV
eglAIj3+UcWB6b/Iux78OVkIQKlos+G7tuW/fTSPAxxMB0Bq87Fci5rhvzcu
3ncgKQZALn4FWQYj27+tjTLRLQwFQBN51AuWm9O/ffc25x4DBEDXZGwqr+PG
v5knbMG75AJAd3oqjsmVrr9BQFMNctoBQKqPOECkMK0/k9YWBZ7WAECOaYHW
YILHP2nyq7TKfP8/DfRMO6xR0z/sSKa3inX9P+B0xjR2hNs/mKN+n8hH+z/u
uU3Cd8jhP2zA7kt2Kvk/poehYGSJ5T+N0aGyeTj3PyX2qxN4m+k/5wn3Dswl
9T/esh+9O2jtP7Pdi1ZFQfM/VZfgiOuQ8D8TAMlevnLxP56ljL1MlvI/qGwh
jlkb7z8EW23tBXn0PyuFip1It+s/zmCpp1KE9j8cBftwLjjoP7UNGl33bPg/
3YVuc+Ai5T8mmiHoB0z6P/bhGwN+SeI/+naE/atT/D/UBHABP8TeP+v6Gw6o
OP4/QWZtpV6q2T+gZ4fUGyMAQIg+Ym9pcNQ/kEHMjBklAUAhAMybbyDPPw5v
q0LDFQJAsBpYxlhnxj++RLi9thoDQGfrtEzWjLo//W1fNlYOBEDDqan8KgOk
PwEH0pkr/QRA7OGPiXZUl782SHLCSgAGQClcI8akq7a/+tys6BXyBkApeAnl
7g7Dv0RsyJBN9gZAavPH9Ckxw7+N++M4hfoGQGrxRO1iU8O/IBobifQCB0DX
wmqfzpfDv0dXiSnTEwdA+h+XOI0gxL+U0WVqkDUHQMa9ZrqoMcW/LsYe7Ap5
B0B4tl+EZFLHv3hVOpRCfQdAMOCS6F90x7/B5FU8eoEHQMP+22lZlse/VAON
jOmJB0DbotDJRtrHv3tA+yzImgdAI9vSKQtiyL/IutdthbwHQLL71Lk7ccm/
EkrzFb3AB0Ck6iCkGZPJv1zZDr70xAdAyvBYw/W0yb/v90UOZM0HQGoRUKao
+Mm/FjW0rkLeB0DbfF8m+X/Kv2DEz1Z64gdAePca4Mihyr+pU+v+seYHQD69
I9qWw8q/PHIiTyHvB0DRdbOULQfLv4YBPvdY8wdAlyUCWPYoy7/QkFmfkPcH
QHidLWG9Ssu/GiB1R8j7B0D2WZaxgmzLv2OvkO///wdAsn+bSkaOy7/O8lpf
"]]}, Annotation[#, "Charting`Private`Tag$96245#4"]& ]}, {}},
AspectRatio -> 1, Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0}, DisplayFunction -> Identity,
Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.03519887363604365],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {
1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0,
1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJfIGYCYgOtlcIXnqg4OE9oFkr7peggMfUKZ0aTqkM4
p1i7sbySwxkQ4FFzeOAa7zjLUMkhISRIfcFKBD8exO/UgPO9T7Dbzp6q6XBH
U3bN/2BFON99zdHlDDPk4fzUNCBwk3EA2++i4SC/a8G+VD0piH06aqh8HgT/
19vXBywfq8L5HvtrZS2Wq0LMt5BymDGBv8qsW9VhR7BVxP/jkg6nDjutzdyn
6tAX0e3PGCDp8KZ4q+jv06oOVfd/3DLWloSYx6zmYAwCmyUcfC9OjPnnrObw
HwTkJRz+fit9MCdQzeFNW2630W9xhwtXw97oV6tB3NUjDqHPaDq0iNeyZrrx
OtT/tio490LTwQRsHo+DP8g8Zi0HmY1i85kUeKDmQvkLuCF8ey2H7V4bLOb8
5HLYoJe3mDFGy8H/iecl02Auhy3mPw6ldGk5HOze12SSzOnwB+TeZG2HmWAA
5IPcNxHBB9t3GMFfr/qked5b3HyZeXGapwV04ebD+BD/cTtMaW+Nulyj47D8
1vLHhoe5If4y1oHSPA4tLEf7Db9rO7yofZx9PofXQXb5Cw+9++pQ8yQdzGz2
Bk17qOEgUjmp5OwTSYi9kZoO6p9UXs7ylIK4/6Omw3ohHb50OWkHc7B6LQcD
kPHFMnD/hry9/HGGoxycfxqcThTgfHD8v1CEh+/Kby8rzjxQgqYXdTgf4m8E
H+w+R1VI/F/G5IPT5xIVOB+cfrhx8/fk17yd2aoINx/GTwel9zAliDpnJYcP
i9YrnPVQcuCPDbhvJK7sUAlKj9ZKDmtB4aCnDMlPggg+2NkrFeB8iD8F4fyS
5SUb/vXzwM2DpCduuH2w+NsLck+qIjx+YXxY/IP5pUoOTaD03MYJNw+WXsD5
jV0Fzk+JvePG/APBf5Gl/W36XFW4fhbOLvnkdWpw82F8mP1SoPR2QRXuvo2g
9P9HBe5+WPkE8x+MD/M/evkFAFuQG5I=
"]],
FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {
1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxdlFFIU2EUx6/Okos5yJDlfHBdGmXW3b3djYoovopKJAqKsh4SSs3sIaEm
lKwokx4s2Eth0pDIh8ti5oRCemhUIhhuWWggo3JQxCQGITUWZbbvjv/5oAPf
w49xz/mf/zlna053HG61SZJUlH9H8684/447Rt9Jdi9b4lGzkoH9pj/6N7iC
rb47I58t9rLRhujW0K8y1nLywz7bPYOZSfOzPlbG1mXKY1qtweI8bgt+eSvW
7W2W2WK2MxUaMVi348qy9psy5eu3QmZPtuRetXQJtn5fENwwUbrj/l4ffZ8+
V5ftS/goPxj1/U8rf082+UiftiG86u0PoX891zcv+gOjf7BVPuwift4RyPRX
KpTv8lwuaWxXqN73h8OuRL1CetrO5OOY4HB2/lI8pbBkdeDUZrePGTymFeoX
DD/AsxULu6aWCw4e8a/tmzLY/si4Kc0q5Dfyg1Ef84I++A/9mDf6A6N/sJXv
q7PQz0eDRSo22ts+OQu+RwzW4yp1x2ec7PXY7qH2g4LNdL26pOvEg3Mxe2ha
I64eaKqdfKBRPgfXd0GjemDoAUPvCa7vqkb9lB8avtOa1qjf6yXjQb1RJz/A
8Mua32ON/B1Rzw8WBQRbem2CU9wQl4f4j7XfKs2jxxKwifKDUT+X+fZi2x6V
9F3jehwe0l8i99Y0qx7qD4z+wdhXMPYZ+bDvqId7gB7cCxj3dIDfW6dK94Z8
uEf4AYZf4IvczzcafQ+/kR+M+pgX9GGe0I95oz8w+gd3cf/qqgr7FNXYEN+n
nVXs57Nk7+J7wdhHMPYV7P5yYyDxSDDuDYx7QL3//z//AckFQOg=
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4rrfVgXnbpg7uK05upxhhoTDTBCQtHCouv/j
lvFqCYfiraK/T8dZOBiDwGYJh+tCnxzPH0Pw/34rfTCn0BLO/w8C6y3h5s0A
mXfT0kG4clLJWRcJhw16eYsZ31g6rBXS4UuPE3f4siEge9Z3S4cY1QiZczai
DmdAwMYKzvc5wW4729QKbh4uPtg8O0k4/4FrvOOsi5h8mPlgOkcWbj+MD3Mf
mN8jDXH/S0sIbSntcKRtefipR5YO6WlA8EwK7j+we+dIwf1vAgqPYCmHJ4kL
r5nkWzq4g9xrIQUJv2sWcP6Xnbe6/pYi+J9A7lG3gJhjL+UAix+YeTC+84Rm
obRfig6nDjutzZSzgPCllCD63S0cwjnF2o3llSDmnEfwwfFpZ4kqvx8af8xK
Dh9A+tmh4XlP0aEErN4KIn9YEeJeVysH5WuPghnWIPjg8HVE8Pfm17ydKaoA
8e80TD7YvVqKDhJTr3BmLLKC+J9DycG+6dHxGbuh9l1Wcthi/uNQihc0vu4o
OdyQrkk0YrVyWPntZcWZB0oOy1946P1faAnnT5/AX2W22gKunstNtZTJygJu
nsZb3n0GL83h/AnBJSrT1yP4MQqOH5NzcPPB+iXN4PbB+OD0EKbkkBJ7x425
w8zhw6L1Cmc9lBxWgNz30cyhEpSfrJUcXmRpf5v+1wwaHgg+ON+tVIDzwfEi
Lwjnlywv2fCvnwdu3navDRZzfnLD7Vt+a/ljw8PccPdA0i+Cf7B7X5NJMqdD
j9crFpOFZg5N4rWsmW2ccPPA9s/khIRXljmcD46fRwj+LVD4m1rA9T8HuW+v
Bdx8GB9mPzi9+VnA3XegVtYi/Yk53P2w9AzzH4wP8z96+QQAjSwZ1w==
"]]}, {{
Thickness[0.03519887363604365]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {42.61373349937733, 24.508064757160646`},
ImageSize -> {28.409155666251557`, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {29., 17.}, PlotRange -> {{0., 28.41}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {{
Thickness[0.10504201680672269`]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImagePadding -> All,
LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {-1.4166665442176871`, 5.5097304422521}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}],
FormBox[
FormBox[
TemplateBox[{
RowBox[{
"Singly", " ", "excited", " ", "state", " ", "singlet", " ",
"antisymmetric"}],
RowBox[{
"Singly", " ", "excited", " ", "state", " ", "triplet", " ",
"antisymmetric"}],
RowBox[{"Ground", " ", "state", " ", "singlet", " ", "symmetric"}],
RowBox[{
"Doubly", " ", "excited", " ", "state", " ", "singlet", " ",
"symmetric"}]}, "LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.9, 0.36, 0.054],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.9, 0.36, 0.054];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable ->
False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.365248, 0.427802, 0.758297],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.2434986666666667, 0.28520133333333336`,
0.5055313333333333], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.365248, 0.427802, 0.758297];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.365248, 0.427802, 0.758297], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.945109, 0.593901, 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6300726666666667, 0.395934, 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.945109`", ",", "0.593901`", ",", "0.`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.945109, 0.593901, 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.945109, 0.593901, 0.], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.645957, 0.253192, 0.685109],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.430638, 0.16879466666666665`, 0.45673933333333333`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.645957`", ",", "0.253192`", ",", "0.685109`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.645957, 0.253192, 0.685109];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.645957, 0.253192, 0.685109], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.801211645970536*^9},
CellLabel->
"Out[140]=",ExpressionUUID->"87967132-abd8-45b4-8f0f-ab2ec6c465a7"]
}, Open ]],
Cell[BoxData[
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "a"}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E_\\\\text{RHF}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"a", ",", "0.1", ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.801210483962216*^9, 3.8012104932455072`*^9}, {
3.801211026991571*^9, 3.801211027427289*^9}},
CellLabel->
"In[124]:=",ExpressionUUID->"742eca25-68e9-4ce6-96e0-a12b7d8f3b28"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`a$$ = 0.1, Typeset`show$$ = True,
Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
"\"untitled\"", Typeset`specs$$ = {{
Hold[$CellContext`a$$], 0.1, 5}}, Typeset`size$$ = {377., {157., 161.}},
Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm, "Variables" :> {$CellContext`a$$ = 0.1},
"ControllerVariables" :> {},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :>
With[{$CellContext`R = $CellContext`a$$},
Plot[
Evaluate[
$CellContext`\[Epsilon]RMP[$CellContext`\[Lambda], \
$CellContext`R]], {$CellContext`\[Lambda], -3, 3}, FrameStyle ->
Directive[Thick, 18], PlotTheme -> "Scientific", PlotLegends ->
Automatic, FrameLabel -> {
MaTeX`MaTeX["\\lambda", Magnification -> 1.5],
MaTeX`MaTeX["E_\\text{RHF}", Magnification -> 1.5]}, AspectRatio ->
1]], "Specifications" :> {{$CellContext`a$$, 0.1, 5}},
"Options" :> {}, "DefaultOptions" :> {}],
ImageSizeCache->{419., {207.021484375, 211.978515625}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Input",
CellChangeTimes->{{3.8012111387497787`*^9, 3.801211207571199*^9}},
CellLabel->
"In[126]:=",ExpressionUUID->"83860d6a-5544-4b4b-b21c-6de5cb50c0a8"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"rH\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "2"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{
3.800075353492262*^9, {3.800075384742434*^9, 3.8000753928634853`*^9}, {
3.800075477990193*^9, 3.800075488034968*^9}, {3.80007553412252*^9,
3.80007557313133*^9}, 3.800075630282379*^9, {3.8000785359721327`*^9,
3.800078550363659*^9}, {3.800079878860845*^9, 3.800079879068116*^9}, {
3.800079913573428*^9, 3.800079932229224*^9}, 3.800080497085393*^9, {
3.800080577175806*^9, 3.800080592742565*^9}, {3.8001120586218023`*^9,
3.80011205888498*^9}, {3.80011214840434*^9, 3.800112172686603*^9},
3.800157110714922*^9, 3.800157352192288*^9, {3.800159556196183*^9,
3.800159556698868*^9}, {3.801211548346614*^9, 3.8012115629489822`*^9}, {
3.8012119434146748`*^9, 3.8012119437605457`*^9}},
CellLabel->
"In[141]:=",ExpressionUUID->"f5f79e48-2029-49bb-aa63-97469a79ad25"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
"\[Epsilon]", "\[Rule]",
"1.5833333333333333333333333335335840699986123421940041218778`29.\
397940008672037"}], ",",
RowBox[{"\[Lambda]", "\[Rule]", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"\[Epsilon]", "\[Rule]",
"1.5833333333333333333333333335335840699986123421940041218778`29.\
397940008672037"}], ",",
RowBox[{"\[Lambda]", "\[Rule]", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.4166666666666666666666666726589269223261691071005704937612`28.\
774759733332708", "-",
RowBox[{
"0.4308202184276645645698423057201801098487085208884055529663`28.\
76102696707218", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"1.74999999999999999999999999085792893533`28.784762272906125", "+",
RowBox[{
"0.6462303276414968468547634584671512897886638628086842989379`28.\
742603532773224", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.4166666666666666666666666726589269223261691071005704937612`28.\
774759733332708", "-",
RowBox[{
"0.4308202184276645645698423057201801098487085208884055529663`28.\
76102696707218", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"1.74999999999999999999999999085792893533`28.784762272906125", "+",
RowBox[{
"0.6462303276414968468547634584671512897886638628086842989379`28.\
742603532773224", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.4166666666666666666666666726589269223261691071005704937612`28.\
774759733332708", "+",
RowBox[{
"0.4308202184276645645698423057201801098487085208884055529663`28.\
76102696707218", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"1.74999999999999999999999999085792893533`28.784762272906125", "-",
RowBox[{
"0.6462303276414968468547634584671512897886638628086842989379`28.\
742603532773224", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.4166666666666666666666666726589269223261691071005704937612`28.\
774759733332708", "+",
RowBox[{
"0.4308202184276645645698423057201801098487085208884055529663`28.\
76102696707218", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"1.74999999999999999999999999085792893533`28.784762272906125", "-",
RowBox[{
"0.6462303276414968468547634584671512897886638628086842989379`28.\
742603532773224", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.3907002472992320708056748666031395400356262695589836123778`29.\
222232409482263", "-",
RowBox[{
"0.6776324352466484446179877651584253408083219996955954634667`29.\
397940008672037", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"1.5033190160093713393205778992372467453500220198851677249959`29.\
397940008672037", "+",
RowBox[{
"0.8541585318235064427957828972373437195313618307852516094028`29.\
218913175720193", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"0.3907002472992320708056748666031395400356262695589836123778`29.\
222232409482263", "+",
RowBox[{
"0.6776324352466484446179877651584253408083219996955954634667`29.\
397940008672037", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"1.5033190160093713393205778992372467453500220198851677249959`29.\
397940008672037", "-",
RowBox[{
"0.8541585318235064427957828972373437195313618307852516094028`29.\
218913175720193", " ", "\[ImaginaryI]"}]}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"\[Epsilon]", "\[Rule]",
"0.1795217666049233347744686569633052750660580662597706409634`29.\
397940008672037"}], ",",
RowBox[{
"\[Lambda]", "\[Rule]",
"1.4038115667284099985588646763690435024501776767108728354592`29.\
397940008672037"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"\[Epsilon]", "\[Rule]",
"0.1795217666049233347744686569633052750660580662597706409634`29.\
397940008672037"}], ",",
RowBox[{
"\[Lambda]", "\[Rule]",
"1.4038115667284099985588646763690435024501776767108728354592`29.\
397940008672037"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"-", "1.8253550999382566681078019902946684892122151308568822134202`29.\
397940008672037"}]}], ",",
RowBox[{
"\[Lambda]", "\[Rule]",
"3.408688433271590001441135323628001823663926460750634125739`29.\
397940008672037"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"-", "1.8253550999382566681078019902946684892122151308568822134202`29.\
397940008672037"}]}], ",",
RowBox[{
"\[Lambda]", "\[Rule]",
"3.408688433271590001441135323628001823663926460750634125739`29.\
397940008672037"}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{
3.800157111485978*^9, 3.800159557622061*^9, {3.8012115573209352`*^9,
3.801211563576037*^9}, 3.8012119465090513`*^9},
CellLabel->
"Out[143]=",ExpressionUUID->"d40f3b9f-7718-4422-abfb-1dfad4cda647"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{0., 0.}}, {{0.,
0.}}, {{1.75, 0.6462303276414968}}, {{1.75, 0.6462303276414968}}, {{
1.75, -0.6462303276414968}}, {{1.75, -0.6462303276414968}}, {{
1.5033190160093712`, 0.8541585318235064}}, {{
1.5033190160093712`, -0.8541585318235064}}, {{1.40381156672841, 0.}}, {{
1.40381156672841, 0.}}, {{3.40868843327159, 0.}}, {{3.40868843327159,
0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.8000799242414637`*^9, 3.800079932735375*^9},
3.800080497627037*^9, {3.800080578049032*^9, 3.800080593176303*^9},
3.8001120600105143`*^9, {3.800112149697216*^9, 3.800112173030253*^9},
3.800157112282282*^9, 3.8001595578133802`*^9, {3.801211558982279*^9,
3.801211564228888*^9}, 3.801211948338863*^9},
CellLabel->
"During evaluation of \
In[141]:=",ExpressionUUID->"2963daed-1d26-459e-8eef-fd5129978aa8"]
}, Open ]],
Cell["\<\
There are 12 singularities as expected, but we can\[CloseCurlyQuote]t give \
them a physical signification for the moment. Let\[CloseCurlyQuote]s try to \
do this for this simple case\
\>", "Text",
CellChangeTimes->{{3.8001585199504757`*^9,
3.800158580192855*^9}},ExpressionUUID->"8ffbe039-ac2d-4132-a285-\
44b8607294f9"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158278610743*^9, 3.800158290872142*^9},
3.800158341741818*^9, {3.800158433517392*^9, 3.8001584377174377`*^9}},
CellLabel->"In[57]:=",ExpressionUUID->"0fdcd118-4a43-49bd-af81-abcef7338c6f"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"1.5033190160093715`", "\[VeryThinSpace]", "-",
RowBox[{"0.8541585318235065`", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"1.5033190160093715`", "\[VeryThinSpace]", "+",
RowBox[{"0.8541585318235065`", " ", "\[ImaginaryI]"}]}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{3.8001582338106213`*^9, 3.8001582919267*^9,
3.8001583424528513`*^9, 3.800158439888423*^9},
CellLabel->"Out[57]=",ExpressionUUID->"78bc2235-21da-41e0-b1d1-6794aef9930e"]
}, Open ]],
Cell[TextData[{
"There is a pair of complex conjugate branch point between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],ExpressionUUID->
"1d24276f-1f84-4c87-b75f-2c313e449a83"],
"and ",
Cell[BoxData[
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"], TraditionalForm]],ExpressionUUID->
"a2fa7471-0bb1-4059-a0b5-06c5a4d68603"]
}], "Text",
CellChangeTimes->{{3.800158583613742*^9,
3.800158635398328*^9}},ExpressionUUID->"5cf747c9-154e-4de0-ba9f-\
92dc5a3b5d61"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.8001584637379913`*^9, 3.800158464134795*^9}},
CellLabel->"In[59]:=",ExpressionUUID->"5be0e74b-5200-495d-87c4-8c0c909fd56a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]", "3.4086884332715903`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]", "1.40381156672841`"}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{3.8001584644905357`*^9},
CellLabel->"Out[59]=",ExpressionUUID->"e3925dfe-9a82-498f-918d-9774446931b1"]
}, Open ]],
Cell[TextData[{
"There are 2 CI between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],ExpressionUUID->
"3dd36ecf-29e6-41e7-8aff-5ae10fc6c662"],
"and the ",
Cell[BoxData[
FormBox[
SubscriptBox["sp", "z"], TraditionalForm]],ExpressionUUID->
"d74ce85f-39c0-4bc9-b709-f1329abc955d"],
" triplet (x2 degen)"
}], "Text",
CellChangeTimes->{{3.800158662872758*^9, 3.800158703136058*^9}, {
3.800158955325688*^9, 3.8001589561925917`*^9}, {3.800159692397304*^9,
3.800159701502852*^9},
3.8001597753064337`*^9},ExpressionUUID->"f50d593e-2775-4983-87b0-\
e971be4244f0"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "1"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158369960648*^9, 3.800158370393867*^9}, {
3.800158408929471*^9, 3.800158409337016*^9}, {3.800158446099082*^9,
3.80015845077838*^9}, {3.8012114754822483`*^9, 3.801211475852717*^9}},
CellLabel->
"In[127]:=",ExpressionUUID->"0456c932-e80f-4a41-b367-8f73a952075c"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800158371081614*^9, 3.800158409644907*^9,
3.8001584513624277`*^9, 3.801211478913052*^9},
CellLabel->
"Out[127]=",ExpressionUUID->"27e7db5d-752f-455b-a620-71987a7da8ba"]
}, Open ]],
Cell[TextData[{
"The ",
Cell[BoxData[
FormBox[
SubscriptBox["sp", "z"], TraditionalForm]],ExpressionUUID->
"f75a4262-8f09-470c-bff1-caabf7140b82"],
" singlet is never degenerate with the ground state"
}], "Text",
CellChangeTimes->{{3.80015883203883*^9, 3.800158852480497*^9}, {
3.800158963935526*^9, 3.800158964785277*^9}, {3.8001597693529873`*^9,
3.800159771491109*^9}},ExpressionUUID->"8a160cc4-6695-4197-8963-\
95c5f328042c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.80015887242031*^9, 3.8001588727346163`*^9}},
CellLabel->"In[60]:=",ExpressionUUID->"9c39bbdc-5856-4cf6-85e7-a5993f2e190b"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"1.75`", "\[VeryThinSpace]", "-",
RowBox[{"0.6462303276414967`", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"1.75`", "\[VeryThinSpace]", "+",
RowBox[{"0.6462303276414967`", " ", "\[ImaginaryI]"}]}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{3.800158873572803*^9},
CellLabel->"Out[60]=",ExpressionUUID->"45ae0504-7e6c-4a2a-85bb-458db9c7c39c"]
}, Open ]],
Cell[TextData[{
"There is a pair of complex conjugate branch point between ",
Cell[BoxData[
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"], TraditionalForm]],ExpressionUUID->
"b4420d49-5a73-436a-8908-88d0c50f1629"],
" and ",
Cell[BoxData[
FormBox[
SubscriptBox["sp", "z"], TraditionalForm]],ExpressionUUID->
"bc5ea049-af43-4bd5-93d8-0006b9bf469e"],
" singlet (x2 degen)"
}], "Text",
CellChangeTimes->{{3.800158583613742*^9, 3.800158635398328*^9}, {
3.800159734007469*^9, 3.8001597393953323`*^9}, {3.800159781544524*^9,
3.800159796125751*^9}, {3.8012115008133373`*^9,
3.80121151150954*^9}},ExpressionUUID->"3c3f1e40-312a-41df-988e-\
17cd32481248"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158879878248*^9, 3.80015888237202*^9}},
CellLabel->"In[61]:=",ExpressionUUID->"e1c85c2f-0fde-4663-9816-5b814acea2dc"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800158882705681*^9},
CellLabel->"Out[61]=",ExpressionUUID->"060a47a4-b836-4aa4-8f54-c396dc1bb879"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158986206258*^9, 3.800158995955509*^9}},
CellLabel->"In[63]:=",ExpressionUUID->"60d2b83f-887d-4838-9bbf-f94bbb2c8d29"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]", "0.`"}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.800158989306931*^9, 3.8001589970199614`*^9}},
CellLabel->"Out[63]=",ExpressionUUID->"3670b37e-e7eb-452c-b850-3078959b7b3c"]
}, Open ]],
Cell[TextData[{
"This is the avoided crossing between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],ExpressionUUID->
"dbeb0ff0-ea2d-46bb-97c4-ad4c8491eec1"],
"and ",
Cell[BoxData[
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"], TraditionalForm]],ExpressionUUID->
"61514107-d59e-4ef9-a5a6-4f1f0e24df82"],
" which dictates the convergence properties for the RHF reference."
}], "Text",
CellChangeTimes->{{3.801211965076249*^9,
3.801212004220677*^9}},ExpressionUUID->"796e0419-001c-4efc-a560-\
d5e6aa37e8da"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]RMP", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]], "Input",
CellChangeTimes->{{3.800161479443656*^9, 3.800161509105171*^9}},
CellLabel->
"In[153]:=",ExpressionUUID->"7f020f91-e91a-41f7-bdb8-0d7780d79000"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{"88", "+",
FractionBox["132", "R"], "-",
FractionBox[
RowBox[{"25", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "9"}], "-",
RowBox[{"12", " ", "R"}], "-",
RowBox[{"4", " ",
SuperscriptBox["R", "2"]}]}]]}], "R"]}], ")"}]}], "2561"]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{"88", "+",
FractionBox["132", "R"], "+",
FractionBox[
RowBox[{"25", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "9"}], "-",
RowBox[{"12", " ", "R"}], "-",
RowBox[{"4", " ",
SuperscriptBox["R", "2"]}]}]]}], "R"]}], ")"}]}], "2561"]}],
"}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.80016147340481*^9, 3.8001614904991503`*^9},
3.800161598810849*^9},
CellLabel->
"Out[153]=",ExpressionUUID->"a42d465f-7a69-49e2-a8f2-459ad2f72d97"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Abs", "[",
FractionBox[
RowBox[{"25", " ",
RowBox[{"(",
RowBox[{"88", "+",
FractionBox["132", "R"], "+",
FractionBox[
RowBox[{"25", " ",
SqrtBox[
RowBox[{
RowBox[{"-", "9"}], "-",
RowBox[{"12", " ", "R"}], "-",
RowBox[{"4", " ",
SuperscriptBox["R", "2"]}]}]]}], "R"]}], ")"}]}], "2561"],
"]"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",", "1", ",", "1000"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0.96", ",", "1.06"}], "}"}]}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<R\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<R_\\\\text{CV}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800161877836241*^9, 3.800161888048267*^9}, {
3.801212218374299*^9, 3.801212226162795*^9}, {3.801212295159203*^9,
3.801212326126049*^9}, {3.8012123983542356`*^9, 3.801212438033284*^9}},
CellLabel->
"In[149]:=",ExpressionUUID->"69cfd6a7-8b65-437b-8a0a-5079e060b8b4"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{}, {},
TagBox[{
RGBColor[0.9, 0.36, 0.054],
AbsoluteThickness[1.6],
Opacity[1.],
CapForm["Butt"],
LineBox[CompressedData["
1:eJwVznlQDFAcB/BElDa7djfVPkIm1TYNHTSbqfdTkVyp2Eols2QrR4cwmqyl
Jmz2oGNFNIYaqlGSXFNjy7GuCk3lGFam6fbe5FgyhueP73znM99/vvNl6VHJ
lhYWFj4s/7txoHAwxt8afrgnaFu/UyyrPrVU3GENrhOtcQITxVsmeQQM/LaB
oRFP6cO7FFeFGxyvC20hQ3jok7qc4qz+9zKzGwfsDb7Lrh+l2KdMKSmLsgOZ
osNyXRrFQUGuI2GpM6Bvb7PmuJRi/DvSI0rPhUdzcyNoCMV9VkdSR5N4wEPb
c8R+FD8teOO5dJgH2y793bXVjeJawf5GL+VMiD3hUxGNKPZzKqr25PCB1IRl
6mZSrDBmdstL+CByobf8bChuyys2RooFEHvxQXLkJIqv3fJ3D74pADKFv+DN
d4KLzM7rTWuEkKHY96RjiGDn+oJP+b1CaA68IOGZCN7Jr6+Wy+yhdeM3w+0e
ghuUcwJ+mu2htkyZ866D4Aq5rb82bxY0nQ8U5D4h+NjmwInXIge4MnurjaKN
YG/z4q/SOgdYsSJdmNpC8BFOZZxJ4ghCO7pp9V2Cn3klFjh0OsLVg940pYng
e49L5m1KcIJ0n5cBoTcI3m2ro539ThC84Zy8qJ5gUXx7wUSOCHDcFL3NNbYv
UKvEUxEs7xoenaghWBxzafoZawSll7kJ48yDqjsqK1sExc+TO4eYZeP9KhMX
wRd1mbGXOdYQVFjqhKDL4/GPJubQJFpo6YVgmj4vLJt59rlo9dtoBFknPSrH
qwl+255qt0qKwH1tfuMws95Sqb4ZiwCH1hn7mPlptWpdIoLtvml/XzFbS6w0
K+UIfhpdqm4wf+1u0jTkIAjbJerex1w//cWMeYcQhMicvfcw7wn6rFEfRnC7
4YFuB/NgJVebks/+uI8lxjB/yE7ROmsQCBYmLZIwl19RcE/qELRVutV5M8e9
L9b+Oo1gcEmur5i5K8Sg7dIjOHa0JRwxnz7Qww0+i6DmftU7AXNEzZi2rhyB
ns/L4jBzPk7mzalAENxs5lgxP+WLdKqLCKTT4mv/XCX4H1gxdKo=
"]]},
Annotation[#, "Charting`Private`Tag$101282#1"]& ],
TagBox[{
RGBColor[0.365248, 0.427802, 0.758297],
AbsoluteThickness[1.6],
Opacity[1.],
CapForm["Butt"],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQXfO1eM3N1012DGDwwT4250EBS/RGexh/2kUlJ+bo
g3D+jcMs/PdFL8H5Liv/hyy+dwvOz5zaVb1070M4n2nb1rr0zGdw/unZT97G
HH0F56c9NO4/UPcezu+08njPJfgJzv+e9sPnvNUXON/v8I7DXpO/wfm2TNUf
7h/+AeebvnD+kvvyF5wv9k9GcLPtXzi//9v3x4JZ/+H8yv6Pzyc/YnCA8fXL
szxnczHB+YYBT1rXyzHD+eqOz/zkvVjg/Ezll59mJ7LC+QtkS5RLJrDB+dHZ
TftP7GSH85NWTTTTOs8B58cxalo9/80J5y/zPCixUYQbzi96eifpuzoPnG80
s8FyZhAvnG9np/raPZMPzrf/HagZNJ0fzn/E2pj5Jl4Azj/VdlPb7BWCv0a4
bItugyCcbyI5eZU2jxCcX3ei8Fr6VAT/cPOUE4FawnD+uu3mGk5bEfzJ3+X8
HniLwPlyG9oettxA8LOFNqxKTxKF8zc1yFr9+I7gz0/nNu9vFoPz26Nsf12W
EkfEx3eDz2HrEfxGnqWRDywl4PzTurFt4hcQ/N3HpyqExkjC+bncEz5ceIrg
S0Wfa/tVJYWQV+7t0mKThvNlZgf33gpG8E8JSU3oWojgAwBO2feB
"]]},
Annotation[#, "Charting`Private`Tag$101282#2"]& ]}, {}}, AspectRatio ->
1, Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0., 0.96},
CoordinatesToolOptions :> {"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )}, DisplayFunction -> Identity,
Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.0419639110365086],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxllG1IU2EUx6dOU9uc3W3XzW3urjm3u4WZikFvHgmzDFLMDysss5qjQCUy
SDMKX5KakZjkC2L5QksqtA+SC7Uiqg9qFIKEfVDSsIVipsggbe25z/UZ1IGH
8Xvuztv/nHt1p0tybEECgSDAdw77TqDvfBZ/oW0pwSAMu6U9U2yGUWR14bBz
z1DOvQIzrAwv9dsnRNAXX9wVkGeGl47hyuQZMTTVS8pTLH5urK05Pj7IEm7r
1LvW7Cx0TzpndlSJIcHcI/3YbQLTr1h3a5gY+gyzVe0LRlA/o+8HTgeDEd2z
KmhBdkwI0+n5aa2faBClRWQ2s0J876L55wIc5yYNKs7fkyoraygdO0vDzBH3
qXWtJ5V58WDYFiGHC87Svj8SAczfKHIkquR8f0JITkImh32laVdH8kIIFyJ7
GEqY+1mOhI14d6yOrIAEinAts8kwmkvBRn6rwar+sCYh9XH1nxND7sL4UnMH
zecXwWukU1AUYU7nVT9LuXgKsHH1iHAd4wq4jfL/FMEr5N+lxHmrKehFehaZ
CDcjncpMOM8bCuR1mT+EKya+HwpSuPmycGXKM5m0WQrZk6qKggYW542Vknly
fRyS4rpEZihH/38sA3X7SXYkwQxPqW0R9nY5zJ23rDbtNYPr6C6rd44mrOV0
UhFe9/osVQPfCjomkrNYwvMX++W/HUbC3P5kGHC8WiXO36bHc7krI8ztQxlF
eGMeeE/0kPHkrVMwwOtYqOHnGg15aE5qFdjR9TsNmedQScVCyyWGzF9yInsq
0elnLq7bz6hc76KfB5F/ug7vUZwcz8GlI/EXO3uZsdCt//EBVKeVxvrLdFCD
+mik+feA4feDhp5V9+VRhsF9eRR4r69Ewf76KqowXM/veTREoroz9LjPChU8
Qn71vH5JGphF+m+P5eNoeTbgegYYiHF+Pxh/LY4w57dsJMz17WX5vY+BanFW
b6PBgvVRKuE5VH59r7Dw+7YF6xxiwfXt9jMXJj+SsADZ9WDi/+/36S/Q2/hm
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJlIGYC4oz8D60nRfQd7Esca0/f4XOYOoG/yuy1noP/
E89LppP5HdaqPmmed1bXwcQYCDbzOLBwdskn9+k4MICAA7fD8V07etkMtOH8
V8VbRX+vVofzjUD6glUd+iO6/RkDhOD8qvs/bhlnS8L5/LEB943YFRzMbPYG
TUtUd3Ce0CyUZqXksEUvbzFjjRac/x8E7HXg/IBb0jWJQnoOD1zjHWc1KsL5
5Ye3uc48qwDnH+je12TCLO9gCjJ/IYKfmgYEy/Qc3NccXc6QoeCw1aHp0fEd
eg5rhXT40vkUHWbMBIKfeg7hnGLtxvZKDhLz4jRPF+hC3LEf6h55HQfla4+C
Gf4oOTxJXHjN5LwWnP88S/vbdFtNOP/UYae1mfvUHapB/p+t5FD726rgXIca
xP/PFR1qPm0IyK5Scei28dyVtknBYW9+zduZqcoOb9pyu41my8L5UaoRMuf2
SMD590H+/yjgILf8hYeevZqDHSg+Y9jh4Qfjn78a9kb/tzac73OC3XZ2qK5D
GjgcOBxEe7xesUzRg8cfevoAAEy/3FA=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0,
1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {
1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGJjIGYC4uKtor9Pxxk5GIOAspIDjF9+eJvrzLVKDtLz
4jRPJxg6/AeB+Zj8DXp5ixl1EPzrQp8cz38zwMn/8630wZyP+nDzYXyY/RtB
5vkYOOzNr3k7U1TJIVrB8WNyjYGD8rVHwQw8Sg6L7+/jmzPZwKHbxnNX2iNF
h78g/RsNHNzXHF3OEKHosAQkn2zkkJ4GBGxCDtMn8FeZrTZy8H/iecl0Mh/E
PceMHM6eAQIeHgf1t7z7DF4aOYCUp6lxOICEz8QYw/n1v60KznUYO8hsFJvP
tIDH4UCtrEX6EmOIf/7zORSu6b6d8cHY4WD3viaTZCGHFS889P43mjp8WLRe
4ewJBYdGlqP9httNIe49pOggAwq/C6YQ93IoOZSAwvufKdy/fhcnxvxzNoOH
B4wPCy+1J83zznqZwsOzx+sVi4miKWp8vDFxEK6cVHJ2iZKDBsh/K00cZoLA
SiWHF1na36bPRfDB/ixD8MHhGWgCtw/Gh7kHrO6kCdy9MaD4+WPisOLby4oz
AkoOW8x/HEqRMoXHD4xfCjJvLoIfzinWbpyv6GACMlfY1GGtkA5fup6ig9cJ
dtvZrKYQe14qODxJXHjNJB4avocFHHj9109JnWHokApyd5uiw9edt7r+TjWE
hPcMRWj6MITE/zIE/z1IfgeCvxLk3g+KDv3BJSrT1xvC3f8cFD53DeH+Q88f
AP2Ve/k=
"]]}, {{
Thickness[0.0419639110365086]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {35.75016687422167, 24.508064757160646`},
ImageSize -> {23.833444582814447`, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {24., 17.},
PlotRange -> {{0., 23.830000000000002`}, {0., 16.34}}, AspectRatio ->
Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.09523809523809523],
StyleBox[{
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {
1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}}}, CompressedData["
1:eJxllG1IU2EUx6dOU9uc3W3XzW3urjm3u4WZikFvHgmzDFLMDysss5qjQCUy
SDMKX5KakZjkC2L5QksqtA+SC7Uiqg9qFIKEfVDSsIVipsggbe25z/UZ1IGH
8Xvuztv/nHt1p0tybEECgSDAdw77TqDvfBZ/oW0pwSAMu6U9U2yGUWR14bBz
z1DOvQIzrAwv9dsnRNAXX9wVkGeGl47hyuQZMTTVS8pTLH5urK05Pj7IEm7r
1LvW7Cx0TzpndlSJIcHcI/3YbQLTr1h3a5gY+gyzVe0LRlA/o+8HTgeDEd2z
KmhBdkwI0+n5aa2faBClRWQ2s0J876L55wIc5yYNKs7fkyoraygdO0vDzBH3
qXWtJ5V58WDYFiGHC87Svj8SAczfKHIkquR8f0JITkImh32laVdH8kIIFyJ7
GEqY+1mOhI14d6yOrIAEinAts8kwmkvBRn6rwar+sCYh9XH1nxND7sL4UnMH
zecXwWukU1AUYU7nVT9LuXgKsHH1iHAd4wq4jfL/FMEr5N+lxHmrKehFehaZ
CDcjncpMOM8bCuR1mT+EKya+HwpSuPmycGXKM5m0WQrZk6qKggYW542Vknly
fRyS4rpEZihH/38sA3X7SXYkwQxPqW0R9nY5zJ23rDbtNYPr6C6rd44mrOV0
UhFe9/osVQPfCjomkrNYwvMX++W/HUbC3P5kGHC8WiXO36bHc7krI8ztQxlF
eGMeeE/0kPHkrVMwwOtYqOHnGg15aE5qFdjR9TsNmedQScVCyyWGzF9yInsq
0elnLq7bz6hc76KfB5F/ug7vUZwcz8GlI/EXO3uZsdCt//EBVKeVxvrLdFCD
+mik+feA4feDhp5V9+VRhsF9eRR4r69Ewf76KqowXM/veTREoroz9LjPChU8
Qn71vH5JGphF+m+P5eNoeTbgegYYiHF+Pxh/LY4w57dsJMz17WX5vY+BanFW
b6PBgvVRKuE5VH59r7Dw+7YF6xxiwfXt9jMXJj+SsADZ9WDi/+/36S/Q2/hm
"]]}, {{
Thickness[0.09523809523809523]}, StripOnInput -> False},
StripOnInput -> False]}, {
ImageSize -> {15.756732254047321`, 24.508064757160646`},
ImageSize -> {10.504488169364882`, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {11., 17.}, PlotRange -> {{0., 10.5}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18], FrameTicks -> {{Automatic, Automatic}, {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}}, GridLines -> {{}, {0}},
GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImagePadding -> All,
LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange -> {{0., 6.9077551380075395`}, {0.96, 1.06}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {0, 0}}, Ticks -> {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , Automatic}],
FormBox[
FormBox[
TemplateBox[{
RowBox[{"Radius", " ", "of", " ", "convergence", " ", "RHF"}], "1"},
"LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.9, 0.36, 0.054],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.9, 0.36, 0.054];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable ->
False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.365248, 0.427802, 0.758297],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.2434986666666667, 0.28520133333333336`,
0.5055313333333333], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.365248, 0.427802, 0.758297];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.365248, 0.427802, 0.758297], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.801212476353136*^9},
CellLabel->
"Out[150]=",ExpressionUUID->"811160a3-d85f-4f0c-b484-e072bfa2a624"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["UHF", "Subsection",
CellChangeTimes->{{3.801212563990121*^9,
3.801212564197338*^9}},ExpressionUUID->"1ea37c31-d94a-4415-aefe-\
7732066d4f30"],
Cell[TextData[{
"For ",
Cell[BoxData[
FormBox[
RowBox[{"R", ">",
FractionBox["3", "2"]}], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"043d0840-f71c-406f-a82c-b79288fb01ea"],
" a broken symmetry solution is possible. By allowing the singly excited \
triplet state to mix with the ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],ExpressionUUID->
"0afa2d61-5355-4cd5-a854-5757641f3c61"],
"and ",
Cell[BoxData[
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"], TraditionalForm]],ExpressionUUID->
"379915ed-ca68-4d21-aa4b-0302132d600a"],
" states one can get a solution with a lower energy than in the RHF \
formalism."
}], "Text",
CellChangeTimes->{{3.801212689223534*^9, 3.801212790150127*^9}, {
3.8012128316539593`*^9,
3.8012128782196817`*^9}},ExpressionUUID->"0a285b6f-a9b7-4fcd-b386-\
eb36fcd898d1"],
Cell[TextData[{
"This is the sharp avoided crossing between ",
Cell[BoxData[
FormBox[
RowBox[{
SuperscriptBox["s", "2"], " "}], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"a28bde3e-b153-4d04-8f01-3263839f9409"],
"and ",
Cell[BoxData[
FormBox[
SubscriptBox["sp", "z"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"8a59b559-7114-4c2f-b3a8-48a568d3654a"],
" that dictates the convergence properties. Just after ",
Cell[BoxData[
FormBox[
RowBox[{"R", "=",
FractionBox["3", "2"]}], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"8c81b35e-a1a3-4399-b9dd-4d3b3fddc166"],
" the CI become a sharp avoided crossing which try to model the symmetry \
breaking of the real E(\[Lambda]) function."
}], "Text",
CellChangeTimes->{{3.801213888212162*^9, 3.801213934887389*^9}, {
3.801213982149816*^9, 3.80121398721357*^9}, {3.8012140178470497`*^9,
3.801214076311545*^9}},ExpressionUUID->"9b99270a-56e8-498e-851b-\
963722ee6767"]
}, Closed]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["RHF vs UHF: the Epstein-Nesbet expansion", "Title",
CellChangeTimes->{{3.8001047496796093`*^9,
3.8001047661192636`*^9}},ExpressionUUID->"543a2e05-43c1-430d-b0d2-\
6caad7fe4ca3"],
Cell[CellGroupData[{
Cell["Energies on the real axis", "Section",
CellChangeTimes->{{3.800104788782443*^9, 3.800104789856779*^9},
3.800105549376504*^9},ExpressionUUID->"4133c8fd-f5a2-42de-a1e6-\
56f435fecf5e"],
Cell[CellGroupData[{
Cell["RHF", "Subsection",
CellChangeTimes->{{3.8000051404799757`*^9,
3.8000051434665403`*^9}},ExpressionUUID->"d0af0821-37d8-4bba-80f1-\
8624d4c75f06"],
Cell["We define the adiabatic connection Hamiltonian as", "Text",
CellChangeTimes->{{3.800005777443572*^9,
3.800005825433264*^9}},ExpressionUUID->"579f66a3-0e96-4244-8bdb-\
04cddec8356c"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"HREN\[Lambda]", "[",
RowBox[{"\[Lambda]_", ",", "R_"}], "]"}], ":=",
RowBox[{
RowBox[{"DiagonalMatrix", "[",
RowBox[{"Diagonal", "[",
RowBox[{"rH", "[", "R", "]"}], "]"}], "]"}], "+",
RowBox[{"\[Lambda]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"rH", "[", "R", "]"}], "-",
RowBox[{"DiagonalMatrix", "[",
RowBox[{"Diagonal", "[",
RowBox[{"rH", "[", "R", "]"}], "]"}], "]"}]}], ")"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]_", ",", "R_"}], "]"}], ":=",
RowBox[{"Eigenvalues", "[",
RowBox[{"HREN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}]}], ";"}]}], "Input",
InitializationCell->True,
CellChangeTimes->{{3.800005845720145*^9, 3.800005863070434*^9}, {
3.800008325211321*^9, 3.8000083292042847`*^9}, {3.800075430687092*^9,
3.800075439968359*^9}, {3.8001048544791183`*^9, 3.80010486881457*^9}, {
3.80010493098575*^9, 3.800104944780465*^9}, {3.800105127304884*^9,
3.800105140236706*^9}, {3.800182218307827*^9, 3.8001822408646717`*^9}, {
3.800182438330201*^9, 3.8001824597607393`*^9}},
CellLabel->"In[34]:=",ExpressionUUID->"1cd8adee-e904-4d7e-9c8d-53799ac4602e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "5"}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E_\\\\text{RHF}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800005924706459*^9, 3.800005929948352*^9}, {
3.800005982530142*^9, 3.800005983014323*^9}, {3.800006131382762*^9,
3.800006149454649*^9}, {3.800006192806897*^9, 3.800006196955217*^9}, {
3.8000067027873077`*^9, 3.800006706963251*^9}, {3.800105152145863*^9,
3.800105154124999*^9}, {3.8011966685166693`*^9, 3.8011966688081303`*^9}},
CellLabel->"In[58]:=",ExpressionUUID->"3abcdc6a-4612-47b2-b219-22fd5de22f39"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAY6+Q7///B8Bvdcu59SjcPxT7GiY7
/AfAiVk3LPMm3D/ERqVcdvgHwKM9o57wJNw/Jt65yezwB8DYBXuD6yDcP+oM
46PZ4QfAQJYqTeEY3D9wajVYs8MHwBC3ieDMCNw/fiXawGaHB8Cy+EcHpOjb
P5qbI5LNDgfA83vEVFKo2z+f34hvUQkGwBh++uzcHNs/FtBTTykVBcACqVVk
pZraP8hQU0TLJQTApe3dxPsa2j9IKSV0IyIDwOktoyKAkNk/Oq5cps8vAsDz
lo1fQg/ZP/qKZhMyKQHAnfu0mTKD2D/196SVXicAwAF6Cb2w+dc/xCKSNL5t
/r8qIYO/bHnXPzsFf7MrZPy/9MM5v1bu1j+UQDc3QX36v4SPFZ5+bNY/Y5xY
5eqf+L/MdB5mNO3VP8+nHgkBmva/tlVkKxhj1T8eDLAxv7b0v2Vfz8854tQ/
CiDmz+mq8r+0ZHdxiVbUP2xUhZioqPC/voNM/GbN0z9gw9/LHpLtv4vLRmaC
TdM/Ij3+UcWB6b/6Dn7Ny8LSP6los+G7tuW/LnvaE1NB0j9q87Fci5rhvwTj
c1cItdE/Ln4FWQYj27+TZDqESyvRPxN51AuWm9O/5w4mkMyq0D/XZGwqr+PG
v9u0Tpl7H9A/d3oqjsmVrr8qBzkD0TrPP6qPOECkMK0/ENgupsY7zj+OaYHW
YILHPzegnkMYJ80/DfRMO6xR0z/quVif5STMP+B0xjR2hNs/38qM9Q4Nyz/u
uU3Cd8jhP0YPGx5U+sk/poehYGSJ5T83pfMEFfrIPyX2qxN4m+k/ajJG5jHk
xz/esh+9O2jtPygR44XK4MY/VZfgiOuQ8D9YI9r3fuLFP56ljL1MlvI/yyxL
ZI/OxD8EW23tBXn0P8iHBo8bzcM/zmCpp1KE9j8G2ju0A7bCP7UNGl33bPg/
0H27l2exwT8mmiHoB0z6PwtVlU3nscA/+naE/atT/D8SR9L7hTm/P+v6Gw6o
OP4/IYcO2TQ0vT+gZ4fUGyMAQLW1PqubA7s/kEHMjBklAUAtSyMiOt24Pw5v
q0LDFQJAuYOcFdDbtj++RLi9thoDQMqqCf4dr7Q//W1fNlYOBEDvdAtjY6ey
PwEH0pkr/QRA+KXBbOCpsD82SHLCSgAGQAuL19YqAq0/+tys6BXyBkBSEFXN
g/qoP0RsyJBN9gZAN/FWRIXoqD+N++M4hfoGQCPSWLuG1qg/IBobifQCB0Dz
k1ypibKoP0dXiSnTEwdAkBdkhY9qqD+U0WVqkDUHQNEecz2b2qc/LsYe7Ap5
B0BPLZGtsrqmP3hVOpRCfQdANw6TJLSopj/B5FU8eoEHQCPvlJu1lqY/VAON
jOmJB0DzsJiJuHKmP3tA+yzImgdAkDSgZb4qpj/IutdthbwHQNE7rx3KmqU/
EkrzFb3AB0C5HLGUy4ilP1zZDr70xAdAnf2yC812pT/v90UOZM0HQG6/tvnP
UqU/FjW0rkLeB0ALQ77V1QqlP2DEz1Z64gdA8yPATNf4pD+pU+v+seYHQN4E
wsPY5qQ/PHIiTyHvB0CuxsWx28KkP4YBPvdY8wdAk6fHKN2wpD/QkFmfkPcH
QHuIyZ/enqQ/GiB1R8j7B0BjacsW4IykP2OvkO///wdAS0rNjeF6pD/evWXQ
"]]}, Annotation[#, "Charting`Private`Tag$10196#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwtlGs0lHkcgGcw84+Y3SW2ZrYRotRW7LptU35/1saRtoTSSXFEF0aqdY/K
rlZqtHOEalT2Mu6WVONEeN+YmJLruMQ7O7JWJ7lkmYydQduesx+e83x+vjwW
odF7w3VoNNquD/znI5XCt+/fI3Knd1vmcJIYVmjZNrwFRJ61Pal5d1kM0h0F
QXHziKxY9tExgzwx2Chrnk5MI3J5yx785SMxvDEc+W1gGJHPvu6ZSdOK4VSE
Y+D9JkR6baf2r08ugHPWg+TRdES62o1ZRKcUgijPKquNhUg7M0b1wvliyB+6
FO2rzyQRI0BVRJWDWaffbltTBkn11X92L+4uyPb4ebRa65G7pbdEgbH3wMvW
OsbKUpd0bUq38sx/AFsrggo7tuiQK82VW1zF1aC5fNTkC1s6eVKAPVN6HsI7
tTjn8DoaqcyaqknT1ILUMsuhIWqJ4M2hu9naOuAxzt/fGLZAfBy5qWpiHQHZ
2NnZLUVDRHCHRIXXSThyK3D0Tf48MeDXZsDLfQwdRVx9umiOYGS5XfiutBG4
hnftiWoVUXwu0tmuvAkM1rzqGCudIfRjOCphkxT4/hdvFBdPE3OOp5W9vU8g
pGmolZs1SRwsTDbI720Gy+1Lvk9Sx4gUc9Y2w/EWKDl+f/hR9SixwjOgcnFS
BhGzVUFXRMPEiXjL9deYz2DzOcYBphVF+MTktBuyW8EksWd5bp6cEJs3VBtw
nkN/GH9D5UgzUSfni8vt2yA+acPVpzkVhJdTl7zbsR1Kf3LBYrvfITScsvvD
oQOunkjtC/m+BW63S54+WdsJRiofXrmvHKSPX3CGCjrhZUyzQ1waBd41Daee
2XfBVM2uxnjZMJhdj1ese9QFhem/hIRljMJqn+UnPHndYD1XZpKQNwZpjNB5
l+ZuUN4zr+cdnwTr3GvFE55yCLj+8tK4cBoMjW5EG7fI4U6BoN4ndwb8LwV/
ZeDbA3oHoyYZiSroHaSvlXb1QHtISdHetDmQ2B/7ZM+hXpAYsQ+p+fPQFVxk
fmeoF2xEFq+RjwYcYmo9Dgf3gSYubbHMbwFUAiF/eqwPxjUcVrHLEvyd7Cbx
iOyHn4+l93CsaNjntIQWqe4HodtzwSprOp7auRCqm/oCWNFl7k2mOrh1cfWr
Q/QBaPB4WF/N1sXMBzr8y4IBWIwKdtrH0sMpbo3GiaxBoKPumxsX9TBP4t85
kDkITl5nGr1pTBy4qVRouJICjaL8tekME1cmD56m36TAgy8T7ppj4iyscXfL
oyBTO+JyUcPEsXrsFam3KVjD5mSodBDmCQ5U036lwHN/hq3cBOHmvBea96UU
ZHeFRwgdEVbW9v2wVEfB5mbuhEEiwqx/unO0LylICNia7Z6C8GzdzFHeCAWP
/wrYlpSKcM8FY5ezoxT462YKxjIQFi3bO6gZo+As1n4uEyFss7KLq5mhQFbb
H3WxDmFX546ieT0FGHvPmtaTCFtppxJckAKCBlgNKinCTILlnaCvgLfqb1hh
bQg/3/HthNpIAWaODyrclQgH7muzU5spIETasS/pzw897Em68yoFlPiNL1W9
QpirNJTHcRSw7Yzlbou3CI+E+8TOmSvgR7qrOnD2Q68tf4eTpQI6hQfyhWqE
SyavfBq3VgHsNbGeMi3Cgqqy1xIbBfz/Lxwd21rzbr0C/gU8tVyj
"]]},
Annotation[#, "Charting`Private`Tag$10196#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw113k0Vd0bB/Cb6RalqIQKJUMiJdOb8lwi9JKMqYRSiZDKLETmmcwNVKaL
zEOEfY2dk0ypZB6KXuJVma/Sb//W+v3+OOuszz9n7XP2832effZcvml4lYVC
oUzj679368KY2T9/qAyJw9F8Xa9yYNuqoLjKLyqD+rx/Sbc1B5pOZpq7LmOH
decRfTkgPlRFTn+nMlxNXMPRSg5Mbfz8vHeUyjhZeU4iT4kOTnYKZqWNVEbC
cwrDo5QOPmJ9jGvBVEZMf/H4XG4upD4UjWvjpjIcPTddPpuSD2nDITcNNnAw
/CvehqtZFwFfp5H+/u3sDLa6Q7EBxiVAnDHSaBVjY9xzF/dnPVoG2vvFnEX3
sjI4eK6VCJysgKMF5lkdsiyMU5RFd3fpl8AMu7ZVbv86hpFI/8Bu5WpYWMpI
sJCgMLJkCnWlFWugaW+cfJ3DGqrWE5ev21QHKuy+pQeu/EJZ+Rc/9bEyIJ6m
pKTmzUQvrYraN84wwPqR2fhU2jJaHvH7YNZeDx3ZQhvWpS6i87r3Ei7WNYDQ
xqLDqGIefd2lMmmQ0gicIhMdk7k/EUPbgUG51wT2xoHJOTnfkWQR15lD55vB
qnG4VShuBrV4qsiE7GqBvcfXDJr9JpHXgY7bM2MtQL9eOvqqYhwRmWk2LyJf
g91csXl46ihini922nmEgBTFHyo2YaOonTvEylWBAMLj0M4TnqOo6nt1a4cS
AWKUwl7muVEkNHh4s88xAkY25pvaCYyiSV8ZCUKTABPxrDM6ySNIvmjUl8eM
AL8S+VBu6WFU2qE/dNOLgCHlUq0WrmEkyHWqIcmbgGPoMIfPtyH07FXccq0v
AYutB+/P5A6hu3FdpuwBBNiPS3q/3T+EXieqlftGEGDGv/tWmMQg6ojvebfn
MQEHfdjPcYj2o0W7qb95awkQrO5M+oetH2lX27wcqSOAffHhxzcTfWgpQijs
BYOAAQc54+jcPiTG+GKm3kRA2EVLfX65PqQ/EBxo1krA12NVmlJqvUhq15Sk
Yi8B6av2cqcte1Am9wxn4RwBEUrKtw6p9aA+p31U7QUC3O6wFvGK9qBvmntO
Di8ScPpbikzPxEdknrA/ZD2TgN99LZJWjh8R6VC9pkkh4Xy1iPBt7w/o4YoM
eWMjCVs93nMlPuxGZfzF9y+IkrD8Z4Vn1rMbpRVK63/aR8JQkDC/9vlu1Dqw
/R9DcRJy4u32Mfm70eg1Xm+1/SSoFlGOWyS+Q3dqebewyZJg+1XaUTy2C+kc
sGXsPkrCaUdDZ1+nLvTY7XCrqwoJ8gtunp/0u5DHzKXotmMkrLE0BoVxd6Hi
HBFwBhLihc6l/RveiZZjLQWzNEjwyeN86rCpA+mOOlWkniZBp8rkhfDbdnRp
FhHt+iRse51e1RXWjjL9n/tRDEigjym+U1jfjvisMsbMjUh4L2DNusbShmLy
tNRXzpIgFfLqatTyG/Tknsh9ZEVCzxV7qcLPLWhgbaDG04mEusEzShVZLeiG
d4mx4S0SskwVNGptW5BrcEajxG0SnLXXLrbONiMXzmnRt3dI2CIdE/t1tQnx
VTT0Ml3x+uZKl4W3NaII+yrv2bskHLJPZpfoaUCmOw3lMrxJ4B+/y3swtQFN
1vwqMfUhYeKjpvQxkQZ0rorCV+5Lgn91j6WZdD2SV3AxOOtPggvrUuSe0DpU
B5ECh4NJ0FhA2bKb69AfdSmtBmzeryH1xxNqUdeFaCWDEBIK3ggunHtag1ga
0i2uh+Lnx6qax1VVo7CzHyq9wkkou091TYdqFJCROsPE9nfpjC5orkK3PZXH
3CJIED53ufFN10skaH6A40YkCWYiQVKsUxXosf5jacVoEsR59TV4nCoQ/xVC
9zn2PCu/hfBiOXp374IkdwwJsV/psSos5eietOSWQew3BW3LdwRLUatSd5Jl
HAnJ6Ym8/uklqPdgTkg19rU4S+kY8RKUXbx0eOsDElhdf1jmyxWjTs3K/Fps
N0+pKDKhANEd2Y8uxeN6+vf7x8KsF2hp8aiPagJez+VK4cTKfDQbfjr6PvYH
HY3iy725KIG6bQc1kYT8Wk6m9hQdef/SjdTEDjjcpS67moOKd93u8MM+ImDx
fnVXNur9nlExh80ZuW/3mEwWcizSubA/iYQxyrerhGomulW2vtUcO/Yft6V4
q+eojSHAVYt93VyV5nXrGVL7zts/iU3rZAu95P8UrZQ6u2xLxvm5Kapgrp2G
jMI+rrfGjjxb1CJp9xjtXolcF4x9DI6bLYQ/RM3lu5pysL+Jv5msf5GCzgZY
nyGwU7nPekV1JKFyOc2scWydxc8bL/xIQLtSspopKTivg05PJLbGo8xUxwIB
7Ozm37Lz8nGoUizI6hC26YuweoZpDHKX/9Svgc0pJZsl+CMCibYZiJzFvr6i
TZbKh6JrLGMyNtgtxOVpXfdAVD7nweaCLZp8d/PEKz8U1LYx4x42S4f01bU1
LxRLRm8Mw651sMo7FOSMOGSZx2Oxf/BLfm4WtEO5hprKidid+ULDxoamiCXJ
fjUZm+3S3yIhJ1Thsr1DcAo2/eAzt43Vl2H1jNZAEnaK++OF7g9O0NO5uvIA
e7DXtvDpaXcYCYwaicTeq6Joe/O1LzTsYI8JxD5y2i9WKP0+vFexWe+F/cHH
xjHQPBiYZXU6jthuhXp/T/OHg73RDmNLbMGRI5JGH6Igbt5H4jS2xfpIlkHt
WCj0Z286il0oQrm1ReIBZMzX7BfDpvx1Z/gEewKk6FWZbcI2MJjQc/ucCM8e
bTGYw/vxzPZcTW59Mpz71cfbg62RCik8Po9AJPrIXBJ2QkkJVdP8CYxI/+Jx
wb4zzqtybHc6PCzMZ+pjN/0OpN9cfQpb089I/cH1Mx2KrEKnnsFWRtStbuzt
fCs7nvc+h+OSp+5nYl87aB/0sTITCny/cJzAjqrOPP49Kws0jYQ8uLErTw7P
b0jMBnbF8IoeXM/rLQ2tjzvToYP/zQNr7NxoZVrGoRfweu/IoBXOC1tTWg1V
vgCsNms+3YZtuczx1w2lQuDy5mtvxnkLK5riF0grgocypldFsFUFqnhGMksg
ql8jvgLn90bpdEesRClwhy7mm/w333oiUSfopTC1gVPuZywJP/2CObPzyyDd
ke2+KHbWlAmrY2kFXFF6rGuD+0d3QGi9sEIlnBJ++v5HFP7ewrW+XRWVMPYo
+60H9nmjfb/kq18CNa2O2x/3o801P+dXGdWgZlk+eQf3L/fI6InQ9jqQPCzp
PhhEQqZEY4bKGQRrm8fVAPtd/eLlmS4EI/bvA54EksC3WnAzx44Bphdn3E0C
SHCS5ZvmcqwHqtY6mUw/EsSSv3x559wIvwMPXXnrhfN5da0xr7wRBg9xbufA
NpTjfx6w2AgrbUWnjnuScO/t35cU3ZvAty5VK8OdhD5K6WCKVzO8e9n9xNgF
74+t30cr/9fQwHPBDxxJCGldV/6l7jW8ZjZ8vOSA+6+M/4Prq68hllzg9rfH
9frD/4yTMwFs8g1SNXYkWHkEvPG9hufGr1tiO2xIOBwaXPfkVCtofqL3XLfE
8y0nMmuAtwO4Tmiv3MPzsZ2TO9BKvwNMv35SvqRHAmEfZf0lvANs9L67gC6u
92StLa4snVCof2F6QYcEI3PtNm+vTqiwnv98ShO/7xcdrUiHLhjJ4+lMwPN6
07yuSr5BN4iFp12owPN/S5+ctdvtbvi540DpUTE8fxn84eoPuuH26vS7Gnx+
EIz40vfpfTcIUbSdqkVIkNx315Pd7D20yTNPPhQkQd04r8rC4gM0LVEi5jeR
4Fq2QZnnRg/YeU30cOPzzYhzi7xrQD84zQerylbi8xLBLpiT0Q+bBRWf/lVO
wKddmn96m/pBk5NVQb2UgM6mRvI4+wC0vVNb0CskgLGt3oI9aAAiH+j81s8m
IK3sVUh88CAkF7Ya/kkkwGK+aKAkbBgojhMntrkQ8G+VXoMbMQq7FvwZltIE
ZAU/tboSOg4ZR2ty1RJeg9hi3lb3h5PAnL2fLj/UAkMlwrUq12fAeOsjZ3Jf
C5gkjYR8i/kOy3Q3rvVXmuFJZkStbuJP6P15WehbSBOwXXCYYfeYhza7FMXP
ZY3QbkXPNgxYhDXbqXxdogHKNwleXLJfBn+FS9YyE/UgnrrnH6ouEwLbvlfe
YqsHpmvA7zyjX7Cp/5JLOxcDvjF3cucor0GItA3vfbU6SLcJfr9TlEKrl9me
FKNaAzFqbyMExNbR3MqzE2m0auC+mafeuJ2FlkqEbom3egl1Gi9rKwRZaXLs
f0S4TCrgt4Oloik3G2393SPmHrZlsI76LuXAbzZarEC9j2ZgCShq3244ReGg
GVVr6eW7FAFzIP+f7T85aB/9c/rmuF+Ahj0Ro7fIQcv14x4r+J0PkauflQOZ
HLQWzqt02+l8EBHcGTrPQqU5hFx1HyLzQets6P7urVRa1q5jO5sD8iG+66pd
jAKVxuX3V0wQMw8OtghNc3pQaULm67b2j+eCu8nReHVvKk01r9Uk6n0u1H8x
OebpR6XZaDmYqzXmgjFrZMRkKJXWtfqiPCs9F7xoq9JEKpVWfODaQ8cLuUBU
9zgE1lBpHzw89OY66cB7am57LYNKm9WK73+G6GDey10330SljXGZyxoW0GF2
SZP7ShuVNqh7VbIonA58CmUF6kNUGorxsbY9SQerpg5TzzEqTdZhz94dCnSg
G31bK56g0q7zmGQ3idLh2O29+ntmqbQ9tGF24XV0CFqnumQ2R6UJjDsMt87m
QGfMubSYJSptMui3r/tQDgiKuGgRq1TaBo7cr/vacuB//6u0//+v/gf42mxw
"]]}, Annotation[#, "Charting`Private`Tag$10196#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw113k0VWsbAHCZTrkl8yfJnClSknINz86QIalIpYSIEFHJGF0yk5BKKUPl
GCOZoniPUIYydLbZEZkylWSe+t671vf9sddev7X/eZ+93mcSt3UztWdmYmKa
xM+/b7v82J9//lBodFfu2+IvGcC3IiStvkqhPfw6yq6cw4Caw+mWnosUWuk3
x1jtLAZI95XVT05TaIYRHkV26QwY3zz4vGuAQuPcsUhQnzLA3Xn/mcJqCi0E
Bl0VYhgQsLOb5hBGoYUKKsppujHgcZJk/GdOCi3rRVqZ+14GpHwNdzuxiZ12
WnpauzGnFwRazI7J8bPRvKQeBvoq9ULdcTPdxp2stM5ii1qhkh4wkNvpISnB
QitpNlTj39cDf+dZUpuVmGlD9PQw/7JuWI504FWW20AbjMrdnaDaDXMLL+5b
yTDRYsJL47lKu6BGIl6l0nUdhdO6BBUOdYE6263CXRdX0Qv/IrW8952QQBw4
cMh/GSVJRmnxm3SC3ZMzw+Mpi8jPTkLdjdEBzRkimzY8nkeNipI9LvYdILL5
1V5UMouCa/UKZhbagUNspHksewYl5ufqJQW3g8vJkMTMzGk06Mfwv/2fdrCp
/tooEj+F7j/Qu3u6pA0kNNdP1AaOob8r/SalzNogy7Fw4G3JMOIL5J2pWSPB
+XeBZdTjAeRHjZzakkPCI9Vf6pciB1CcccqN/iwS6nz2bNfxHUBJPWy0wkwS
djLldy1bDCBHe6NkSyoJ/ZtzTzlvG0AsCcbxpWkkmEtTjxsm9qM+v5nh+EQS
Al+rRHAqfEUiLm9LBkNJ6DtYqP/hr6/I2aSypjmEBA20lz1gog/JzD/KehdM
wnzj7ttT2X2oLNJ3OTGIBJdhWf9Pcn0oIVy78VwACWcEd1yNlGGg2Aivdxye
JOwOYLNgl+xB/iI/bvE4kCBU3vLwO2sPonvmG+6yJ4FtPqm9YaQb3dxC9ute
JKHXVfnk3exuNPzb3cfXloTI89bHBJW7UYu9qN1PKxJGNcr05A91oW96V+KY
zpCQuuKibGLdgdI/uYjVGJEQfeDg1T2HOlDk9hPPFgxJ8LrO8opHsgMxF3xh
VsA2mXik2DHSjowimi481CdhrfuDrM2VdsS7I5TqrUvC2XIx0Wv+bUj+tHGV
vRYJvD7kXw+S6Cj5I8fQlDIJi3+WuH/60pHsqnGAEnZfqKigwVk6irfv3Htt
LwmZCc5Sy4J0FCZ2dnRZiQStV0yaVg++IK25rqfbFElwGlW4Ih3Xiswq82qj
ZfB5rph63HJvRXKJRkS/NAkqc16+ncdakfp55T4V7HXm6tBIzlaU8sc0dECK
hAQRi5QfUS1oNbIw0UCChIAcjjTXLc3IdDDbyGQHCYZl5i9FPzUhfcvbh4qE
SeD7mFrWGtmE0uO57bdjZ31T/bJ/YxOakoxTmRIigdxmx7LO/BntCUCsKYIk
yIe/tY9ZbECZvGZD6nwkdFx0kc8f/IAiSQ99q80kVDKOHyihfkDa/JF+M3+R
QD21X7fC6QPS5OKuCcP2MFg/3/izFlWYTN0r5iCBSyE2bnSlBk0tblAT2YTP
97twUZSvGhU8ZR+VZCdhj0sim0zHe2R8uDy6no0EweGbPLsfv0e35y4au2OP
tOspaIi9R0cWvglVsZIQVN5hfUahCp0vk11zYyHhBsvCHfGISiRYJLyNZQMJ
unMoQ2lrJfJWNgkqZyKBZzS8SvN+BdpK3c5xHTuvQWjOIu0dmp+J9xz9Q4eR
OC3L+LJypJy5WM9Yp0PRbYpnKpSj4g0CSsnYQTda7ubVlqFKgY9F1tiiFrbV
Da1v0ET6Z4mRNTqcEQuVZxkvQXK5CXeZsKV5julyu5egCfFbf+pX6TDLImgl
Ol+MYu4VxyVgx41mxakzF6NSzeYditgNeZ8XrwsVIp43S12XV+iQmPqAJyj1
NYrSuHtBC9sh3lohVvo1kvIb3cyDzeL5yzpXuQBxFYQ1v1umg5evfEz9/Tz0
/En/RjFskx/T7fnUl+hmZ63D6hI+j22p6IPSXMTEqdHXhd1mqFtg25WNFI9b
CCVi51ZwLBuMZ6GyNo2v3tjBe1u1lVYyUYqefOVZ7H3brMgV4QwU1RPbII7N
cUdqxzdFKqL5aS2yY39jmrCv00pHaMmKmFrE8X33WkiweY7irp8Sq8B2tNQi
/K4+Qx09Fm+o2EQLa8SFoDS0siR7OQ67z01yv6VBCmri9BZ3xr5z+tUHWeen
yOm08M4z2BqgeWYuKgnxL5E6+tgT0g1jVS8foU9xBf4HsB9znvaLaX6InpbT
vshiG84Pbj736z5ypnDpbMdeZLgny/AmoHT23CZO7IzaNaVZlXgkfCj1Bgv2
qZeRVbRTseid2sKBpQUcn7wSVehXNHJwLeefxnZcMqgvVIlANaYznN+xP9TZ
Thp7h6AdZ6mSA9iSiTe3jrwNRCpTvWY92MzNCvbr635IyS0ppR27wtUmZ0+o
B7qhMcJOx/4lKDtYK+SMnmXTIlqwW3JFvp40PYW8NirKNmOzXjgiFq6jBR+e
Knxrws7a/cxrc7kt+Oag0n+/P/J+Okdvc4foy8OZrdiMLqf8NBNvoHA/KSax
JdRVndw+3gKBun5GJ/Y+k8A4kdTbsKUkX7wPuy3g0pUQyzDwW2IJHML2yj96
ZFIwCg5ld6xMYAv175M1a4uB/C7J+Flsq413mBkGcZAa36+zjp0vxnSVS+Ye
ULtYuTfh/8ekdv2rDtt92PUydIkP+8SJkaNegw+AynZuTRz7mZPFu+yqRGhs
uyG8B1v3MTziDngCjtGGucew779+TdGzTIZwzWHhC9jXh3nUNXakgvxqdOZ1
7Jq1kCy3lTT4wfKW6wn2ZASyiRh/Bj9+b58qwOYXWPrP867n0AVaQ3XYDrtd
QttL00Gc76rEMnZMebrmNJUK5vInnfjwfS09/HV204MMmHvztEEJe6O1qZ2m
RxbE6q/3OGFn3z1IvNjzEhK0f6tOYLPWpLyjqOSB/ifCnBvnl/Uiu9rlA/lw
jb+z8iB25KtxwW0pr0Be8+D1KGytbWXc/emvYc8I7RyB8/Vy4WRznEwhuG91
bHb/N7+PisXoZBUCy7G+6GfYM4FhHBm5RZApfGFoE64H1HFzliuFJaD3JuHP
KDY9OKJKdH8pmNbEv5XA9YVJtOJWa0kphIbcRVbYZ82kVlXK34AHa3ByN/bW
dzOzK7RyOP1iY8EArlfed+6ORDRVgp1685gCro/pMtUv1I8jWGycZr2J/aVq
3naqFUH4Dh+7T9gCK3lumc40ME53GXNnJsFdSWDyrytV4PHKdms9rrc7E4eG
vnhUwxJX4/ViXL817Nerc4qrIULdKkmQQoKpsuDz4PlqWJmMZPLH/ufTkQuq
3jXwZpY/yHAjCd1MhYxHfrUQ4+Vz6hfuBzFOge02QR9BoHH/sN8WEsIbNxQP
VX6EhPbA8nHsIMWge44rH0HJzTH5LCfu57+Cjrt71MG8WlCs5lYSbHyCG245
1MOEuTwvFzcJeyPCKpONGqHtEuffo7h/kZl3qL08zXBNGeTO4f7YxMEZYnOs
GYz7PTdNYNe5xNgNRTWDruLEuJ8ICVaJ+lyezC0gllucnypKgpmlwWd/vxYQ
lhjbNy+O4x0y1L/j2gqUgO6KFtyft8waq+eeoIN9DK83gfs/V7eyndc1Oqx/
PGq8js1HE4zSvkcHaHfRqMDzglD0UHcnSYcxM+SqpUKCrNRNXzY8x8SpOTCb
HCBB+2ROmZVVGwh0frNO0yTBs2jTQe7LHaAjMK3GdwTPcx4fVDyDe4BmkcLO
6oTnpTo2ocwXPTB92KBtHbtTWO9PV00PtDVdiFp2JqGlprpek60X4py1c2Zd
SKDxVVmxhfbC3kitjN/uJKQUvQ1PCGPArpv+q9t9cPyzr3pfR36FReHp29yR
JPwoO/req24AnLvSai/n4X4flmZzMWIYqKohLctL+D7M5/B6J43B8rk080Dz
Nuh7LVqh7jgFJkb3J1Rft4H5w/7widhpWA2QSX3I0w7J6dEVxg9mIKq7QED6
n3ZgPec6xeYzC/HJDzjkx9uhySYrwzR4HhZFrhy7YdMBxVuEzi+4LMKBMuXZ
4NYOkH4s/p1ivAwqU+P1ttqdsOwZvJZjtgpXHZQvF1V2wsTyds7Mg+vQFm44
8LdKF6ReCiO3SzIRYRtF/lko6oLYQ5+it+3cQDx2UPsnSqUbON1ytKv5mYnW
AVqaZ243VOq+qSgRYiGy458zzij1wJqrteopTlZizqPdRDO7BzZQvjzatcZK
JGzZd9hIshdUDa69N2JiJ+zs4+L3ZPTCcm/ud/4ZduKpTox8hQQDdF3qYo/O
sxPvb6fVD0sx4M7K4MGQZXYi5XWJO6cMA8SEtkfMMlOIsWft7da7GKB/OkKO
zkshbFv8mFlUGJDQau8cu59CdEj20o30GLD7g8gkhw+F8JC9rdN/iQHe5n8n
aPtTiLt9cj2bnBlQNWSu4RtIIThyzH33uTDgJMud6LEICuGfoNgc6s4AP2JF
oe4xhQiM8fyi6MOAuvIO15B3FOKdlIqGfyQDeIx+81fQKMRyg7tRRjQDLLs4
K2drKMTNLwvWrXif+7mgx3nxM4U4l92euvMeAwT2F+Vp91GI/sDrPk1JDLCp
aT7l+41CmEqnVC3ifTDLbGK9YIRCNBQsckmmMkDjmsQx8Z8U4vdlmVqvFwwI
3aC1cOY3hTj5cE7uGZUBLbEWKbELFELo+eD9T5kMEBK7oV+3QiFUeX9sXMhm
wP/2VeL/++p/AQbCmz8=
"]]},
Annotation[#, "Charting`Private`Tag$10196#4"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.03519887363604365],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIlIIaxWZDYzATYDFA+A4VqSNVLqpmkupNUe4nRS4ld
AKjmAn0=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJfIGYCYgOtlcIXnqg4OE9oFkr7peggMfUKZ0aTqkM4
p1i7sbySwxkQ4FFzeOAa7zjLUMkhISRIfcFKBD8exO/UgPO9T7Dbzp6q6XBH
U3bN/2BFON99zdHlDDPk4fzUNCBwk3EA2++i4SC/a8G+VD0piH06aqh8HgT/
19vXBywfq8L5HvtrZS2Wq0LMt5BymDGBv8qsW9VhR7BVxP/jkg6nDjutzdyn
6tAX0e3PGCDp8KZ4q+jv06oOVfd/3DLWloSYx6zmYAwCmyUcfC9OjPnnrObw
HwTkJRz+fit9MCdQzeFNW2630W9xhwtXw97oV6tB3NUjDqHPaDq0iNeyZrrx
OtT/tio490LTwQRsHo+DP8g8Zi0HmY1i85kUeKDmQvkLuCF8ey2H7V4bLOb8
5HLYoJe3mDFGy8H/iecl02Auhy3mPw6ldGk5HOze12SSzOnwB+TeZG2HmWAA
5IPcNxHBB9t3GMFfr/qked5b3HyZeXGapwV04ebD+BD/cTtMaW+Nulyj47D8
1vLHhoe5If4y1oHSPA4tLEf7Db9rO7yofZx9PofXQXb5Cw+9++pQ8yQdzGz2
Bk17qOEgUjmp5OwTSYi9kZoO6p9UXs7ylIK4/6Omw3ohHb50OWkHc7B6LQcD
kPHFMnD/hry9/HGGoxycfxqcThTgfHD8v1CEh+/Kby8rzjxQgqYXdTgf4m8E
H+w+R1VI/F/G5IPT5xIVOB+cfrhx8/fk17yd2aoINx/GTwel9zAliDpnJYcP
i9YrnPVQcuCPDbhvJK7sUAlKj9ZKDmtB4aCnDMlPggg+2NkrFeB8iD8F4fyS
5SUb/vXzwM2DpCduuH2w+NsLck+qIjx+YXxY/IP5pUoOTaD03MYJNw+WXsD5
jV0Fzk+JvePG/APBf5Gl/W36XFW4fhbOLvnkdWpw82F8mP1SoPR2QRXuvo2g
9P9HBe5+WPkE8x+MD/M/evkFAFuQG5I=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIdIIaxWaBsBiifAY3NCJVnRmMTo54YcXraNZjdRk+7
cIkDALmJAos=
"], CompressedData["
1:eJxdlFFIU2EUx6/Okos5yJDlfHBdGmXW3b3djYoovopKJAqKsh4SSs3sIaEm
lKwokx4s2Eth0pDIh8ti5oRCemhUIhhuWWggo3JQxCQGITUWZbbvjv/5oAPf
w49xz/mf/zlna053HG61SZJUlH9H8684/447Rt9Jdi9b4lGzkoH9pj/6N7iC
rb47I58t9rLRhujW0K8y1nLywz7bPYOZSfOzPlbG1mXKY1qtweI8bgt+eSvW
7W2W2WK2MxUaMVi348qy9psy5eu3QmZPtuRetXQJtn5fENwwUbrj/l4ffZ8+
V5ftS/goPxj1/U8rf082+UiftiG86u0PoX891zcv+gOjf7BVPuwift4RyPRX
KpTv8lwuaWxXqN73h8OuRL1CetrO5OOY4HB2/lI8pbBkdeDUZrePGTymFeoX
DD/AsxULu6aWCw4e8a/tmzLY/si4Kc0q5Dfyg1Ef84I++A/9mDf6A6N/sJXv
q7PQz0eDRSo22ts+OQu+RwzW4yp1x2ec7PXY7qH2g4LNdL26pOvEg3Mxe2ha
I64eaKqdfKBRPgfXd0GjemDoAUPvCa7vqkb9lB8avtOa1qjf6yXjQb1RJz/A
8Mua32ON/B1Rzw8WBQRbem2CU9wQl4f4j7XfKs2jxxKwifKDUT+X+fZi2x6V
9F3jehwe0l8i99Y0qx7qD4z+wdhXMPYZ+bDvqId7gB7cCxj3dIDfW6dK94Z8
uEf4AYZf4IvczzcafQ+/kR+M+pgX9GGe0I95oz8w+gd3cf/qqgr7FNXYEN+n
nVXs57Nk7+J7wdhHMPYV7P5yYyDxSDDuDYx7QL3//z//AckFQOg=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
JjHitLALAM7SAnU=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4rrfVgXnbpg7uK05upxhhoTDTBCQtHCouv/j
lvFqCYfiraK/T8dZOBiDwGYJh+tCnxzPH0Pw/34rfTCn0BLO/w8C6y3h5s0A
mXfT0kG4clLJWRcJhw16eYsZ31g6rBXS4UuPE3f4siEge9Z3S4cY1QiZczai
DmdAwMYKzvc5wW4729QKbh4uPtg8O0k4/4FrvOOsi5h8mPlgOkcWbj+MD3Mf
mN8jDXH/S0sIbSntcKRtefipR5YO6WlA8EwK7j+we+dIwf1vAgqPYCmHJ4kL
r5nkWzq4g9xrIQUJv2sWcP6Xnbe6/pYi+J9A7lG3gJhjL+UAix+YeTC+84Rm
obRfig6nDjutzZSzgPCllCD63S0cwjnF2o3llSDmnEfwwfFpZ4kqvx8af8xK
Dh9A+tmh4XlP0aEErN4KIn9YEeJeVysH5WuPghnWIPjg8HVE8Pfm17ydKaoA
8e80TD7YvVqKDhJTr3BmLLKC+J9DycG+6dHxGbuh9l1Wcthi/uNQihc0vu4o
OdyQrkk0YrVyWPntZcWZB0oOy1946P1faAnnT5/AX2W22gKunstNtZTJygJu
nsZb3n0GL83h/AnBJSrT1yP4MQqOH5NzcPPB+iXN4PbB+OD0EKbkkBJ7x425
w8zhw6L1Cmc9lBxWgNz30cyhEpSfrJUcXmRpf5v+1wwaHgg+ON+tVIDzwfEi
Lwjnlywv2fCvnwdu3navDRZzfnLD7Vt+a/ljw8PccPdA0i+Cf7B7X5NJMqdD
j9crFpOFZg5N4rWsmW2ccPPA9s/khIRXljmcD46fRwj+LVD4m1rA9T8HuW+v
Bdx8GB9mPzi9+VnA3XegVtYi/Yk53P2w9AzzH4wP8z96+QQAjSwZ1w==
"]]}, {
Thickness[0.03519887363604365]}, StripOnInput -> False]}, {
ImageSize -> {42.61373349937733, 24.508064757160646`},
ImageSize -> {28.409155666251557`, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {29., 17.}, PlotRange -> {{0., 28.41}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {0., 0.46369207191102396`}}, PlotRangeClipping ->
True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
TagBox[
FrameBox[
StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["3", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["4", Smaller, StripOnInput -> False]], "Placeholder"]},
"LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.9, 0.36, 0.054],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.9, 0.36, 0.054];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable ->
False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.365248, 0.427802, 0.758297],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.2434986666666667, 0.28520133333333336`,
0.5055313333333333], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.365248, 0.427802, 0.758297];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.365248, 0.427802, 0.758297], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.945109, 0.593901, 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6300726666666667, 0.395934, 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.945109`", ",", "0.593901`", ",", "0.`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.945109, 0.593901, 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.945109, 0.593901, 0.], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.645957, 0.253192, 0.685109],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.430638, 0.16879466666666665`, 0.45673933333333333`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.645957`", ",", "0.253192`", ",", "0.685109`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.645957, 0.253192, 0.685109];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.645957, 0.253192, 0.685109], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.800005950325206*^9, 3.800005985011455*^9, {3.80000612800945*^9,
3.8000061523615637`*^9}, {3.800006198247397*^9, 3.8000062013184023`*^9},
3.8000063003046427`*^9, 3.800105162005806*^9, 3.800182353061603*^9, {
3.800182443795586*^9, 3.800182463182864*^9}, 3.801196669941258*^9},
CellLabel->"Out[58]=",ExpressionUUID->"5b8155f3-d509-488d-91a7-6e266e7a429c"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["UHF", "Subsection",
CellChangeTimes->{{3.8000051404799757`*^9, 3.8000051434665403`*^9}, {
3.80010518466262*^9,
3.800105185109056*^9}},ExpressionUUID->"fcede236-1735-45e3-b270-\
28ffe0fb3e4a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"HUEN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}]], "Input",
CellChangeTimes->{{3.800953772734395*^9, 3.8009537747109213`*^9}},
CellLabel->
"In[399]:=",ExpressionUUID->"92a26b6e-bf59-4a18-af5e-f498abf70a4d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-", "225"}], "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"75", "+",
RowBox[{"59", " ", "R"}]}], ")"}]}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]], ",", "0", ",", "0", ",",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "45"}], "+",
RowBox[{"60", " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]], ",",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]], ",",
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]], ",",
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "45"}], "+",
RowBox[{"60", " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]], ",",
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]], ",",
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]], ",",
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]], ",",
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.800953775017927*^9},
CellLabel->
"Out[399]=",ExpressionUUID->"5677527c-a7af-4b6f-8f73-0a43e7c31df2"]
}, Open ]],
Cell["We define the adiabatic connection Hamiltonian as", "Text",
CellChangeTimes->{{3.800005777443572*^9,
3.800005825433264*^9}},ExpressionUUID->"397ba0ba-91e4-4f5a-8f0d-\
0257e5c848ce"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"HUEN\[Lambda]", "[",
RowBox[{"\[Lambda]_", ",", "R_"}], "]"}], ":=",
RowBox[{
RowBox[{"DiagonalMatrix", "[",
RowBox[{"Diagonal", "[",
RowBox[{"uH", "[", "R", "]"}], "]"}], "]"}], "+",
RowBox[{"\[Lambda]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"uH", "[", "R", "]"}], "-",
RowBox[{"DiagonalMatrix", "[",
RowBox[{"Diagonal", "[",
RowBox[{"uH", "[", "R", "]"}], "]"}], "]"}]}], ")"}]}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]_", ",", "R_"}], "]"}], ":=",
RowBox[{"Eigenvalues", "[",
RowBox[{"HUEN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}]}], ";"}]}], "Input",
InitializationCell->True,
CellChangeTimes->{{3.800005845720145*^9, 3.800005863070434*^9}, {
3.800008325211321*^9, 3.8000083292042847`*^9}, {3.800075430687092*^9,
3.800075439968359*^9}, {3.8001048544791183`*^9, 3.80010486881457*^9}, {
3.80010493098575*^9, 3.800104944780465*^9}, {3.800105127304884*^9,
3.800105140236706*^9}, {3.800105188661474*^9, 3.8001052010845547`*^9}, {
3.800105297296947*^9, 3.8001052977026653`*^9}, {3.800182251458778*^9,
3.800182276321644*^9}, {3.800253732251046*^9, 3.800253733977017*^9}},
CellLabel->"In[36]:=",ExpressionUUID->"2d0a6b71-a35b-4eee-a7ef-a569c933f14a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "10"}], "}"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",",
RowBox[{"-", "3"}], ",", "3"}], "}"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"MaTeX", "[",
RowBox[{"\"\<\\\\lambda\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}], ",",
RowBox[{"MaTeX", "[",
RowBox[{"\"\<E_\\\\text{UHF}\>\"", ",",
RowBox[{"Magnification", "\[Rule]", "1.5"}]}], "]"}]}], "}"}]}],
",",
RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800005924706459*^9, 3.800005929948352*^9}, {
3.800005982530142*^9, 3.800005983014323*^9}, {3.800006131382762*^9,
3.800006149454649*^9}, {3.800006192806897*^9, 3.800006196955217*^9}, {
3.8000067027873077`*^9, 3.800006706963251*^9}, {3.800105152145863*^9,
3.800105154124999*^9}, {3.800105208150182*^9, 3.800105208804578*^9}, {
3.800105279412592*^9, 3.800105311489644*^9}, {3.8001070014826927`*^9,
3.800107116313456*^9}, {3.8001092382339067`*^9, 3.800109317034787*^9}, {
3.800165904582329*^9, 3.800165905386918*^9}, {3.8009537031612577`*^9,
3.800953728384329*^9}, {3.800953908086216*^9, 3.800953919343266*^9}, {
3.801202030124833*^9, 3.801202075259122*^9}, {3.801202107592867*^9,
3.801202181134972*^9}, {3.801202276991171*^9, 3.801202277661742*^9}},
CellLabel->
"In[106]:=",ExpressionUUID->"a7e12bcd-a521-4201-8574-d9deecc0896c"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwt1Hs0lHkcBnC3md/JZrYSp8ZZYRqZZpeN0oXd748jWpncculEzdao1o50
dBGVNie5Z9am7OikXcqttG6ltvG+83vFdFuJE2qbQtKQWIRGse+es3885zmf
P59/HtsdsUFRRgYGBhI2//XOa4rh2VlESzpcVCUbGFg4zbd3+4holYJ3NJN1
o/eliENTiHb01a2LZW2vvXn37QiiP1ddqHdlPTC3t6irG9Gtv8+pvePDwL7o
VeE1DKJD9r4o7/VmIEn4lN6ViuhITmb+kvUMKAsEuQ95iN7r0rP/nAcDhS/S
YgPncOkt+TbzhtcyYPko2F9kwaEXhjfmaZwZ0AQEe90XmtDeYaeMm8QMbBAJ
DwjsjGnP7Z2h4qUMrKuMuNziZETzSM4vC75gQJ+xy9xZZEgXfdVR970FA+8n
i/O2LTOgqzrd6XYzdo9d7sqGmBkqR4tq73IZcOMcrxHLPlKuQzuy7WcJnMGr
V3sc01NXQwUBnCkCO8+H9w0UTlHnZw2n0T8EWkqs5xgqJ6jNVfsy43QErOf+
sYK6Pk49V3lxtvcQMLV53aIrH6Uc20plNU8JyDen5JeWjlBTy8RXxG0EpMyL
+9a5Q1Rux4LnwgcE7L6ZCbxzQke9z8kYS20kULanpvvP632UQ9HusR9VBKLH
qiIyld2UPdXeeaOOgGMSZwtX8IxS8qWXl1USME9o/+xsQRulfRQQubiEQIdM
vvxabxP1Nqf1Q1whgfjE5afv5lVS98puHN+UT6A8Zw0u/voq2BrfHpL8TOD0
DyeeSJObAUcFeNSlEzAb93O7EtgGTna+SReSCbw80LTy0MlnoOtvuzicSODd
TQmJ13QDf+hIhWw/gcupv0ll6X3Al6QXbpUTEE5UmB8u0EFfnX3CLRkBbfUS
ldueIUhKELkXRBIIOfcybVAxAoqjvv2FoQQuXMpS+Z0dBXnadPxcfwImW2OG
OAnjsGh4/qjeh8Bf0rKSoJMTkL2tPjAQE6gz40dOyqfgsUOjUrSWgL3S9g3y
08Np53f3hc4E9IdOfqoI/giW60t70pcTGNRb8UrXzIC8urknVkDg4u7UdiuB
Ac50iNeorAgoPB5kLRYa4qVar7NOCwnwYis8GQsjnPkuXiIwI9DgVa+6zjfG
DchtIIlD4FPMdtdQngluOLJzX8SMGgzR41/Fn0zwaqdybeSkGlw3xBFfAy5O
HPzJuXlYDfq/r7yxGOXiLCNVbPUbNXjJNQrJBBePvIpqzWWdPd27JkXPxUHN
PJf9rG34VunjRggvypJOuLD2CUsXtZkjXGxhcqyuXw1nWqOiFasQvu2wMaP+
tRocm6zfmiYgPLipq7jhlRoOh6w743kMYf8VydxC1upXIe6JJxCuMhfvOc56
s3F2li4d4fjOo2LM+gie/lKjRNh4h021ulcNmlsdMSm3EbY6uJtq7FHDAt8x
CxWNcFLYPNtLrCO6eA3jjQh3r72ZnMJ6eHI9T/YQ4ZIZU29v1parais9tQi7
pFU+aO5Wg7SxJTSxB+G86DDHUtZlwYMzVa8R/uBnoEhj7R5n5287jDA1Pyj4
O9anDL+dDB9D2HZcXyti/UixpVAxiXDKkyJLU9Z8m4M+mmmE++v9Dg+8VMP/
/4U3Frzvusf6XxYYZG4=
"]]},
Annotation[#, "Charting`Private`Tag$18528#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwt2Xc8lt//B3D7FiVUQp8kKiMlZZXxvitZIVlRkrTLqoxSFNkyQ6hk732J
Uhwis+ydbLfNTVYZfc/9e/z+uh/Px/nnXOe8z7ner+vea2Gjd4OBjo4uk56O
jvZ7LTto9t8/UqmgGe/6mbBY2L7Kf0BhjVTK8mC6kO1NLFSoJpo6rJBKoxx7
9BpiYuFA76eaKSqpdMCyWdQ4IxYmNg/Fdw2QSot/x+nfLo8F27syxkQ5qdTQ
eSTCbS4WXPZ3l970IpUOcnU9j9aOg6g3wiE/OEil6ooT8bbM8fC+z9vm/CaW
UlMm+6CtIQnA06h/TmwHc+nK7ZJdpfRJUK2rr1K3n6l0XSWNyeZWMqiL7bcT
FmIsPbn5yo+R0RQ4kWWa1CDJUOqmx/ZyVjMN/vre3HZUjL609Or2PeuV6bC4
nBBmJkJXekkpbOmtbCZUCIVIl1htIGat034tXlmgwPyMOHh9DclEq9NLzWRD
KFlO7qTzX8Q8nv7yfFQOXHtrPDLxfgXx3b1C91UmFxqSBTbRRy0hnh8qwN2Z
CwKbc6RQwQKapHhsfL+VB2yClIbxtHlk6sAy8WI5D3restb1x82jjLqqoPA/
eZDJd7CyI2oe2Xe4bSSv5oHuNtsv33zxeMMJ4ap/eRDO8jcl9u48Yvpbo7RE
IkBoeoubifg80mn4vLidlwCFIhnpmtQ5pPyxX0hRjoDNcsaSpbFzKEPrntze
4wT0Ek7ihZFzyJ+uI4ZJgQC3TCSY6DOHtGf5r1YqE1Ado7HF9c4cmt1t/5+M
KgEGXpcp8mJziK493OOzAQGWBh4RKSlUFD+98ErTloDYjaJj4rFUdMnPtLX1
PgHtKdT69EgqenGFuuvyQwLI65eYs32p6Kygcs4tBwK2Jx198MGSigJKfZ9c
f0pA8XLf2a9HqOiMbYvAHy8C5mN3jJ4Wo6Kn74uoV30IENE66/ZtLxX5ckz6
VvsSEBxT8LGam4pOyaFNgf4E1IXwn40en0WLUTENdK8I+E/WfqPw/ixq+B2R
aveOAE/ffunPFrNoMpX74cdoAqi9Z++V6M+iC322LX/eE1DhJdRZITOLEswj
ztnHEWDV1ZDb9GcGHe/q/6uTTEDJU/Ebk64zKMcnKM0vhwDz8r46gZBpFDmv
k7G/jAA1pZUbv1ynUZJQxZfDXwk4XMhJ9/b+NNKoujguXU7AWtpJab7z0+hW
WHOM/DcCIkLi327jnEbLjy507q4hoPHqLSvWgCkk+4HdzqKRgMKfz0hVzlNo
MGGjVrmJgGjDiFgPqyl0ypDzMW8zXn+NmjYG7SlEr3NtpryFAFapg8rr7FNI
4lV3/Wo7ASfpZjnmfSaReM8YLPQQIOpESs15PIm4xvSCUn4RwLmw57TNnUkU
eLgn+GIvrodRXccp9UmkyrulrLCPAKeGvD4KaRLdjux1uTBIQF60Q85Pjwmk
F+SwLjVKQCRvoGaU/QTK2dugW4H9PCR52PjGBIrypXwyGCNAx7OTt11lAslK
KlFsxgmYsDrh2sg4gbJ7jA2CJnG9Km2c/+Y6ju4HTf9wmcXPz6UkEflgHLGq
sDlPY7tQnrBYXRtHWz5+bblIJaA78E/R9jPjSFOf21dqjoBXgwvC11nHke8u
nvCGeQKYvCcXGQLHUOymqJGmRTxfU/HG9mdjKFrv/vZDS3i/pO6kpdmOoWUJ
yiEv7C/dFDM9vTGU8KROUn6ZAPtDg1WxO/D45u52/xUCKM2dkeS3o4hhruQb
2yoBock77bb7jyL4M3bWCPvUUyOdMedR5MM48DsGO3p/K0PQlVH0Jcvuw7E1
Ai48arjXJzSKBKyM9c6t4/O0u1LJJZWC2Bcy71z9R4DDPBOvXhQFvflqcCMG
e1/V6fn9fhRkwDue1Yv93LYs6YclBc0sesiY0OWDfPmXrbuPUNCuILKeKn0+
pN4mBj4XjKAZp+tFDIz50Grxfs/ZpBG0xUqaTRGb7rLf5e6wEfQucjTXDtvo
/LWuFbsR9DEmjHsYm+HEtiaZYyMoYunwxc9M+XCR/WFpdvYwEnjxe1KbJR88
mK9sKL8fRudLHlQ6Y+f801SsDxhGNaWMuzKxWRaEPk5ZDaOAvsLjbKR8yOtp
zhaTGEYukaeflWCzZR19H58yhNRbKLGcm/JBJkXg19GIIXQnUmBSHts8jm3X
V68h1CkeUW2OXRA+GN5/cwjRKy6fyca2eBYSsHv/EJKyzLJVY8uHIt1559ex
g8hcWy/pBns+3P2da+oXNYDsZXpDrm7Jh0jZOYVbvgPI3+aFnAt29eMju047
DaDd34rDo7D302V3/TUZQJQOEe9m7P7NGUZ3+QaQEEusFnDkg+GBJF2NiH5E
/ipEv2VrPrjfGZHc792P+GJNU/dj52Xs20r/qB/5KRXuVMbmPBb/4+OFflQ8
ZKhhjV0HMZqiO/vR57bbXN+xXfOkfTgk+pDJxX2Fzpz50CtPqFWy96FA8fes
r7AVkRSLy2QvmnA1EUvBXqo7/GI6rRcpqgd0N2Fbjog6fxfrRbueRW8S5soH
Y97d931FfqGtRcv0xdiHXZhNWIR/oikBZ7Vm7nzgL2p8Pcb0E/GUbagNYDMv
vWmvpXSjb7M2YlTsHqujBoFp3Sjw5aGgLdvywffylXO8R7sRxy9YUMUeVfx0
RvxkF/p544l2PnbzI3f3zcJdyMm1xqkMuyT/XPkMUxeidvW+rMcOl6CQiepO
JFiiYD6GrfLfNkVF3U4k9SGmhn97PsSsWh7VudKB7mnxtDphv5STv3/kZAdi
sLt00xPb8SFjDrdwB9LoDuoPxtaZjDzUQWlHvXvd/FOw17srRc2t25FUh3F9
K/bFIsE9D5zb0BnBP5xiO/Jh2+NW9vA3LSiiXSCtDHvl3x+uWacWpF3voFaH
3eu5h1f9Ygu6HSVc34qdEnp331/eFqT5jy9iFFs5h07JLLwZndHPE9rMkw93
RiWsDwQ3oYLbX4+ex9ax1rN7ZtuEvGQWHUywpRcdnTrPNaGnbCjpKvYGQ7mn
L0cTWq6NqLmPHSpg8n7GrxG9+9y6JxjbJZ0t1mpLA3pzOEH0O7bGJ8PMPd/r
UWNWiHQL9vaqmE9NvvVIqHHmUDd26qBsswxrPTpXZDw+it3Kd41xg+EHYnpc
7MGwMx/EvT/fCFipRTHvWO9KYy+GsTwgF9YiWe3bxiewS+PPu8zb1yLmkjwZ
MrYhGg03+l2Dai+aFp/Ffr60rVpgphptvDrJaIHdcd1SPHuoEsULWzj5YZf8
0pUrSKpEiUIkjiDsJCMZleI7lShNs+lVKLad+sblutlvSLmT3eEdNqdEUPDo
agWazwwIz8LW+E2s7NlejgaX2vXqsY9YRjCLdHxFNtodHM3YvCNPuQ9HfUVh
774Wt2FT2s9IKAp+RSFPPRZ6sN2KOq4YS5Sh2k2DlRPY9ozL/nt9SlDY4bck
Jl5cX4soWXJrCVqLZF1mweYe9S5TCitGobf+dm3CzqrlXzSJ/YLCVAOdtmJT
gpVNQz4VIQaXyyL82PkvSA4xUIQa7NqI/7Dd7BsDs759Qm2iXNJ7sPeYWJTX
Nn1EnyWoW/dhGwt6ijNOFKAiPXbZQ9gHuM+pcNkWoBvj5lclsRcYec32LH1A
LTrZz6Wwg0dTgxUYPqDYazpvZLBrs36sPOQn0H46mZNK2BEx4dxuMXnontHc
ZsC+GXJFIuhAHjoU3/ydjM3oMHcl42gu+vd+p5gKtqOTeEBNWBZykZAw0MTW
maG2ZydlIgtht6KztPlYFO4JL8xApZJhO7Sx2zRUci260hDnPF3aOeyMYra/
6hOpyCbQfEgX212q6ZTkagrK4/Lj0sM+xmfWuvpfMpJV0dYywGbz37d78FAS
UhybMDbEHqSbvFGtnIiCjK9cNKI935jjcqh5POo83qFgjH3bVJn85H4cks3s
22WCTW5k8rnqFovy56qpNPfaCMuYqr9HKE318SVs/ws5laJ336HIo30SptiK
oGS86PcG3cozb6N58kDteFlmJNoY//7gMnYUx4UnAQ2v0ZTTfmYzbI2loc2X
5sJQ8Pi9lzSv/LKNFtkWiqrexrJewU7+ti65IB2CWn5VPabZKNO3rNQoCD3p
7OujmU1cMol/7iUyfTNxwpw2/z/qNYS0DwrcOe5Lc2W1xZTWIw+ksLengWbh
iKdbKZ9d0QPrik1XsRkaJG5sbDxBeRFx8jQXW5mnH/G0Q3O7HE1pnuMVHfrG
fxfpXDhlT3NjhkCfgZ4RavdjekEz09Wzgt6nlUG4t9iD5tTDcY6biyygwNDa
mebIR+8WW9psQaxnx12af3XdyY7VeQQByvlnaRZSkL1jU/UMrCU0hGg+puMa
LBDzAlzkW6dp821zuWXtYeoFLJ0GWTQ7ZmufneL1A5Frtddo5u8/JqrfFgCj
26U5aDZj9Wf4pR4M62zBmbT1yRaku88p8goEVftP0kx3/GHfaeYw8EgVrKOt
9/nzFG3HoXBwWtXVoDnujsmXtLIIcB62+ULbL5UoiORyeQt8/g9dafsZlpdH
OmMaDRXshi20/X84wq2guDsG0t4L8NNcse6RarMaC0dOWXjS6mXKB5n7TMSB
yb7OdFp97eD5szO+Kx6OlB+qvEA7L4ctPdsLE0ElwrqLVp8BRYlK1KQkePHB
oJlWv4WqfQubwpPhhylnqT426xW9a0p2qVDdsPb4PHZaoDw54Ugm9F7Xv6VF
24+K919I0llw4eR/Y7TzdWWF5fg9uWz4Th93SQPbN2eCl+99DpyJaeRXxVbm
+8TVn5gHcodE/yhj3yOmGoJFCLAVUdv6f+dbWzDgdCrOLa+Xdypgz7t6sSVn
4HMw/5tODjtpwpDRmigAckHckcPYLe4+ZXtkCuFxTnj3Qdp67yl+1lRQCHK9
Iw5i2Bf1961JF30EuzuOnrT7aOuX+YXV0iK4ftObjnafPfIPpPjUl8ALh1Zj
BuxEkfIEBV0EGsov9/3D92dz2ZLFdBMC93jOwVVsntUsm5S7pfBhr+HRRWxb
SZ4pdusyENn95sAo9v6I4eFmu3IoHqToV2Mr3tgoT/9QDiNHOeUqsPWO8sa7
L5WDVrAqeyntffL97FXZRxXAcT3esxC7m474FfnkG4imBlYlYgfccW03d6sC
1yG2G8+wvevoPwyXVMHAG/NUJ9p9f8jt1e3VKvgp39Nnj+0456Zra1cNI6Gb
hS2xzR+71z67WQOMAZ/pjLGlfLxKojXrYFDjH/shbIlJ0jshrzpgn828J4J9
QNv7SVJ5HZyb9PmyF5ufy0c+S/E7tH5wl+LBZoj0zSs+/AOU94bd3KC9X1P8
k3q4G0Du4vBUHXY9G4eH+bkGCN3RafQNu9oy4NqwXwNEBtbmlGCbRahxOjA0
gv/4BelcbH1T9R/OTxrB4+5nxzBsxWENNX+rJmgoYem5iL1lQUsh43wLaN7T
sOnE/QZn99Frjg9aINv02Uw99vZSXr9Tr1ogiE/6wjds/pfD3Z2tLUBn9mw4
F1t031MnZuNW4K9Sm/DBPmWQ/snMrA1Ut+q4yGCfORE8IPasDV6zabqJY6sL
Om5afN8G5dZ7rPZgn5s6ZeI30AYbW6KWWLFN3btXCq+3g3+xZ0s37qcc8jfJ
c93rgI7zy96PsR9HzV7p8euA/g9SQ5bYT5+3eSVndMCRSPa95tgvtGI7lGY6
IH2hUFUVO2hY3vHu/U7gfvP8GBd2+vbbBeWOXfDK5bNpLO4H++0qpR3cfwKJ
qsmVSus/q5n5UxJ+gnoZZEdgd/535l9XxU/ov3tTzBu7saK8Rom5BywW6XNv
YpduLzNj9uyB4IpTTELY7/M/e4d6/YKDoRVWwbj/jWJdtapM/gUlPpJJLtjh
pif0V6rwOHHwwz3sAKZPu01Ze6E7VMXwDLaLQUGesE8v3LJPDlnC/bXZQk5P
nm8fPFzbiNPFvqhOLRtO64OW38bcCtiGbyWTeer6IMjk/Pn92AeEOuSLmfuB
Iiuu+Af39wK1hox7Vfvh9IZdYTQ2B79+xFhlP4xykOv7cJ6Y+aT91bF6AGAn
s4UsLX9sqrJ70jEA5xL83+/CNjUmizyjDMCV2/vi6LBrl46+9GQahCdiTAs1
m/F5PsZrFEYeBL2M6o8m2KaZg+N5HweBhav9iBXOP6/WLr0tqBqETm5XWx3s
2rNtOkXtg5DyU+euJLb8RBVRtjAISctkHyrOT9tEMp0bjwzBq97bZjbYtTGO
XDMpQ6As/SbdDOcteiq1fK5wCFTk7Q4qYMvDXYfFyiFoftl+YSd20i/Tn2vD
QzAqYJFXz4rzDf+pRPa9w/C5YV3vOLZ86ObjYpHDMKzzwmQd58Mkr1jz6z4j
cH3LTgt5nC/Nc62yMyJHQGMT4wkmbP6fxzcWUkfATdDPrQHn0YDDzW88akeA
ka748nVshzaGjiR2Cuyd3MHsxZAPqsLXtcf9KZAQFEHOwnmYTvvIW6loCjRE
NovbYhc5rE08zqLAxtyha1LYh2tDvdkaKCCz0zE/F+dpnvvfyg9yjsIleteQ
1A2c70sOnLAOGYXPiTDyEOf1mLF574K4UXAZfOMghn2RG3Vs5I2CILOmeC/O
9/U3LtgHtoxCbL30lAp2wWbvnJztY6BBWXlO+kuA58XxA7/Dx+CR/uD65WUC
yO4f7BWSx2B4/oEoE/bfTNeKF4VjoPzUQTl1iQBren6L7Z1jELn2dDd1kQCj
FM13MnzjwGFjfdx2gYD9S+nbHr0ZhxNBT3Vl5wjg/XZeKD1tHBz+xrxupBLA
Frp8pPfTOFRKNRB3sKlSp3VUOsfhsso904hZAr5YdXtz7pgAAbpaptFpAgxG
WDdSAiZgMMdSU3WCALX8rM097ybAy1J2+/dxAk68MNi1NXMC1pKP2eliC+6N
kbevm4DTcvIU2vecSVO5hydZJ4Fpt+duLQoBbq03xrpcJ0H/zZoIdYAA+3j2
5c3Bk+CXIXj5MvbtB7nM5JhJqPJbHK7uJ0CHc10oqWQS6hkrfkb1EcCnFXr5
weokpCfuo4r9IiCn/Gszm/0U5PuI8cx1EBAfcntAyX0KJiR53U9ih1/loNq+
mgJL1eeMQe0EPP1nsqUjdwqY/VJERNrw8yjMqcXPTIGgfEW0UjMBvXl7ihVu
T8OvFbIa63cCfsg/EBdynAbdLHdVxTq8PiUVr1k9p2GvQqacdS0Bb2rvPGiL
n4aBwI8jddUEGA8SIjZ907BTvVPS+hsBTVzqIXFGM3B6O/1XrRICSl9H/fO+
MQOPFt4NmxXj+e+etrSxmwE237Wf1l8ICBALUVMMmYGzzyTPeBcRoHmyZ63t
xwwkPU+eiikgoMLW9tamM7Nw7+enU3eyCCCWvrbO6s+Ca5Woo3EmAXFPd5xq
t5iFKd2LzmcyCHD1Lvov/vks5BaP0fOlEaAcw9Ss+GUW0ulsmZMSCei5pSXw
kY8K1DD2bSZvCTB83e89GUSFq3HKL4944/moEVvoI6lwzoG6udSTgOpljxCe
WCr4aV1S0/bA+2988O3JXCooN31ZMXcjQIDPIft1ExV61uY+Wz0lYCyKvf00
9xwk3mcxFLQlwClaVvjtqzkQ8fx0iWREQHTiy2Kt8HnoPsD1rvw/AuxEteI6
3s2DO9V9ln4XARrp7F4WifPQFZQoCHwELOT46j7KnwcG23nRgh0EnP3iPRTf
PA98AVd5XnMQsNLsvmmV4zd0sdY+PEBHwHk6Z8NUr98gyX7hiu9gHjBdsppm
frwAXQ9Ydv9IyIN689RkPfcl2MeaLr2LJw8+bOG/vGy5Ainy0Up93rlwIGrv
GEnrL4QflzvUtpIDfx3c19P11+CzII9n4oUcmPy7iyNFfgOEL5vV1ThlQ8wt
r9ZdwnRk3TuvK933Z0HQye8v+fbTkyOqZ344N2bgc5p+qnwHA/n8nJtKtX86
lKh8LC7gZyQXJG1z9jqYButWV2SNOJjII3eYzBR+pQA9qTny4DoTudyGeBgY
kgyy6g++atKxkG8++WDVL5oEf3syxnbMs5Dbihe5qK0JoGJZHaS9xELmkCuX
X69PAP/VIXmPvyzk1CMfZNhqEkCQf5fPAgOJvCB/IU+4OAHULviItWwjkbmG
Kj4aJCZAaNONu0EyJPJX12T2bPsEOFwpMMX2mERWl9ykd4YnAR4Zngg95Uwi
f9n/4po2ZwKUDRsqOrmSyFa5AdqGbAlgwOj/ctyHRBZlS0y/vhEPT8irEtVR
JLJOVVuwKyUeqos6rDy+kMizMrjbKYgHbs3fO4pLSeR9zMGfPuXEg2kXR8lC
BYmsp+Yii9LiYXb5DMf1HyTyYEt5cU10PPDI5Ged6iWRBR7MMP7yjAfzigYj
p0ESecr3u8PA83hI1Z/cyKWQyN3Gs+UjTvGg+EDo3N5ZEnntpsb0tHU8eNIr
Lxv/JpHLP8TXzN2Oh8Ygk/dBy3i83fv5okU88Avaq1WvkshH5Ni4/5jGw///
f0W+IX/cZc0oHv4HSGhCUQ==
"]]},
Annotation[#, "Charting`Private`Tag$18528#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwt2nk0VV8bB3CzTFFJphLKmEhIGfYJoYRSRJkiEQolRBmKMiVJpvxKQtJA
Ofdm3teYEhmTMkYq8zxdw/u01vsP67OOe9yz7f3s53s3cQcPMycmBgYGefjy
77tjbuz42ho7bZjlVpOfEon46cJSGsvstKIQ/ulr4Cr9TGufBXbarKrQ5gCw
VHfhx5EJdlpb8o3TN8BD3P3POvrYaZcpxUMhYE9XVcv8SnaaiL+VeBQ4cOd3
2vk77DSZizF//wOnPJKMq1/PTpvfkbpUBX7SE+5xnIONdjkQe4nvIZFA4wlT
2c2stE8dO9RvgWuPndCr28lC22ZPuk2ADWV3ektKMNPCQq6XXVMmkTX72I7T
25hp9yU7hwLAnr+obbHCzLSIjEeCgeDEp4b7Vjcy00K/Ir+b4EEh96VvzMw0
ERc9wyhwKGd+cMwvJtq9j0G7/gOXDxN3F7OZaHSXPXwV4ANvrLO+KDLRVKIm
H/PtJdHrNj4lijwT7YRb3PlN4O0rVYUp0ky0DYlHlQTAbEcV6p3EmGizVQKf
RMDNf1em6euZaFsXDbdIg113PjkoM8ZIOx3lJKwNTknt6wx+xUjL9rb+ehG8
FHl+k7IsIy2NPvKpFfwm1KNabicjDR07IvYN7BDo5yspzkjz9HXx+QH+5BX5
g1+IkWZNzO76+e9+lm+eza9jpDltIovHwful5vaW/mGgtY/MOHCpkMivPOyk
YTYDTZ9Rc1oPPDuf8dBWmoG2nv8wewX4dPj7xFRJBprVDpmBajBN8FPydzEG
2vNMm6qP4Oj94/9ZCDLQ3C92xTSBJQL2Z5lwMNBONb082gdOW3508cbXNXyj
zd+DUZVEpzjGcrVs1/DCHq0remAJuU1kocUaPucwWWkIHjuiXqBquoZ7WxME
jcGh0TdpCsQatpasqzcHv+Pd0rRVYg17LF12cQavFyCmVn6t4pyyV45R4CqJ
OJWyi6v43ZNTj76CTb7eHUp0WsXOih7dP8DfIiLSvGxW8aA4j3QfeGQimHun
8SoObl6tHQZvwh4DUbtW8b383GOMajC+Z4zjrYZX8IHvqr4KYIb4dTMzLivY
rIU4FwmONGDJabBfwWwfTF1j1f6tlzW7bMsVXCwj5psAlnGYrztjuIK/iuzK
TAebKg0+q5BewUFntE8Wgx9/rjwRO7iMAyMerBsDa7AG5cufW8bTOnRxq33w
+sG7HLHWy3h/tuhTO7DAh1S7mZPLWEguTPo8eCK8iKv0EDjhzJEr4CzuOUcT
6WW8uN/7713wRv6L/F5DdKz8wiapCvxH4sxVqicdHxtR2qKuTqKvzK51whfo
+Hd8RBICVw74iQedpWMl1CthAH6clVBvYEbHZF2NmQX4hFzzzo69dLzKryF+
FVy25/BX+twSFn1jfIcExxP79h28sYTF5ktnDuwnEXPNeFfd1SXcyCUYpQu+
bJQdanFpCfecP7TrKPi4hVCzm90SPp1w4Z4NeL073T3h4BJmbeT9EQwOT8Tp
w6xL+J6baspH8PUxg/UJMYvY+myb+bkDJBq+wkDZfmcRL7DNe14Cn14sOPMy
aBH3Gjck+4H3s8i9oHkuYo5Kjs13wXNC3HrDZov4b8h7kgr2PNR4jdiyiPki
pt9ya5DIMdXy19CTBazMTw+oAseSv7VaEhfw/JfkmCZw2WefhOJ7C5i+lZ3a
DRZeiTeIDlrAl79z6y2CG22aXijYLWDZITEHRU0SaYsdueS5bQGzHpFqeQIW
SteYn02dx2shCnwPtEikX/TJtDt+Hofd7d/xDOzdbJVdEz2PXx1PMc8HNzL5
WSVeBzNJcLeCbzuSxerW81jx5JU2AW0SzexQCA4Qmcd6hhPC6eAvz7dxMKbM
YdUtBylNiET2ozRG77g5bMgtETEAnlJ2XBqMnMNi5a8C58H8Zc+HPwfM4dSp
zY1bCRJZtio1JNnMYW2m5s3u4J8Mug+UxOewyUzIDd6DJLqi/yvqmdAc7mX1
S9gBZom+EyqwEe7nO/91P1h6y+ery0xz+BKjWuM5sLuCuWXtwCz2e+KbWwKe
s3Leap89i9+FLN/y1iHRnSccAi1ps1jpyIvD0WDBXy/X6yfPYiHjLdoZYA3P
iTX5yFlsHq1JaQUH3772c95tFrseUx3ep0sizvyo5/cUZ3HRZa0Jdj0SbePO
24OpM5gT16Q2HyLRpQGZzntvZrDhl6XJaXBZydPb9lkzuK2s5uFmfRLZXHzw
gzFhBtf7ydRbgVMbfML0rs7g+cssgoNgoftaHR/3zmAhSuomXkMSuVyg3kqR
n8HuJnotquCCg4q73SRnsC5/8LQ12HJq+y3uTTPYXP/b6VfghBMsCqZT0/gq
o9KQ6WEYb4G64Na8aZzRP6b/8giJzo3pymdmT2OWQ9cp38BkTUnb1bRp3Pyi
5BGbEaw33zdyW2Knsdz0bJsjOO7b/VYrj2ncUC69Z8dREvE+spTpUYD7K+8R
KjMmke2VpubcndPYc9j92zT4jdGRG8Fbp7HCB1kFOROoh8sazeI807jROu9J
EjjaRuz6uZEp7Hzl8eB1UxjP7YNf/uZM4Wrtm+xOx0nUmbqurjd9CvtE5zBn
gF8Lyde0p0xhMeZGsh98bJNnSXXkFK4fcSWczOB52Zayn7pO4cnd/gZeJ6C+
j/LctJKbwr9qQ6NyzWG+XlC6cUxiChsNLEvQwdWDZn4GwlM4UuDmfwYWML69
iZdUOaewy2CeYT/4TYv4mQ1Dk7jl+1rrTkuYD0WqKh9fTOIZt3Nt30+TiHuf
pSLt6ST2N804oHaGRN35/nLvkyexEfdacRz45mu8PTNiEn9KapAwtYb+Ie0w
T8iFSdzY+mqyzYZEJ+/YDKrLTuIifFhT7Cz0MyzBfYrikzh3/fLxGPB8cHqn
lNAk1im5+GEVnOL/u5mfYxLvMMvo73cgUe9FLzzxZwLrfjE6i8/BfD8ZlpSd
PYFdotuCsAuJnq4W7ZV7OoHLZevvaV2Aeps90fAyeQIvRk9vKAUTK2dYcyMn
sJvoaADNFeZHlvJlivsEnpbFph3uJCqd7zGqUJrAxiNxuy28YP0+3fxbV3YC
N8ps3zoKlj5qdLNafAJnOpHvwy6T6H4ataB24wSuEdm4WnyFRHVxwkaP/45j
YVkVGS0fEomqXV197zWOQzfIXY8PgHoS2atS7DCO+1Js7xtch/2k28it7MQ4
Li2vC1wGV92R+FalOo6vcRFDboEkutjx5W3T4hhOG1tSORsC6+m6nNNwyBjm
6ioqz7oD9aayp25b3Cg2DSRE0x6SyEBrwakrZBTrPnDfnJFAot3v+RhSvUax
wgU1jZxEEi3nHFQROj6KJ3NnGEqTSZQU9yx1E98oTomSFVr+D+rfWeeL62JG
sCVFm6cri0QHGcbXT0UMY8mc3xNsRTC/tFaPV4f8xdEKs+2PBkj0wiW/r5j6
C0sI6RULH6Ag1+m31lEpffhqqBFLRBwFJatNajhH9mE/l3OxDQ8oqPaakoiu
fx9WWc95fNNDCtrJkNuxZNWHTynWuqYkUlAv9ysLV6E+nO1s1fk4lYLMpbKO
HU7qxcaMbBlBWRQU8k4lYv2uHtzzp+99UiEFdavnG9Rw9eADb9XuVBRRkCbe
wxY43I1Fl2rPDxdT0Fzd7lujOd2YBxebHSijIPdfMjc+y3ZjLbWfFZ8rKMhS
cKtXpHQXzhOoVq6so6DdgaxWbJI/8EstS8mJTgoSLmpM/MPyAz/QnHL600VB
rHOPvn4a/I5/9D3HPd0U1HlR+eS9nO+YPvibUtdLQZE2dqaCyt9xBvet1KQB
CvqtWXhI7mAHvsvZWMc6QkFpdHdlE7t2bJPET8ouUVD0PnUvpYPtuBbLFTDT
Kcj3CnPeRsl2/PngsfJOsMlwskL74Ffc/aS6N2qFgla+18jYX/qK15Ee+t0M
VHS6aLvY5Rtt+MfrvcQJdiradK2VK+FRC/6+h4n030RFC2uLG8b9W3CRYi67
Hj8Vdd8WEzQ83YK/RWtIcm+moux41x1Lgi14b+ZAbpIAFWnnMWjZJjTj8Vtm
G54JUdGF37suSd1vwvumWm5fF6Mik0tm3kGeTdhdmGGr8nYqUpn19f9m2oTv
hB+9MgheZaq8Hbm+CTvK+9saSVBR/DarJ2NRjVgk47ME204qCnzJ+fQizxfc
0FPAjOSo6HCh+Wuxzw1YuneTSy+Y/0NaYVNkAyYkWsKC5anoxU+1ZtV1DfiU
+tRwyS4qahVyZF5lqsd9N/ktpRSpSC682Clm4RNe5N5rW7yXitrPucvl9tdg
uczUD8MaVFTWdWwfNasGP3d9Wn5Gk4qyLFT1Si/UYJz38eEnsLfhqk3deDXe
2vm8LkOLivh2xd7/Ta/C0QOFzkYI3t90/oIYfyW2/e+RylkdKlJyT2KVbq/A
+VU3CsrAgr+ub9ydUoHpz502iehS0eDXQ7s0t1dgD55k40bwzaJ2O8td5Tiu
aKFh1yEquso8f1c8ogxb2J3pf21ARXqz+LkibxmeLPpYtQDe+Du8XOthKeZC
Xf46hlT05pPwrNXTEtzlc/VcM3jwvrZ1XGERll4Ukxs4TEXkLXafNFSEtSqc
X+88Ar/vauO9N9WFeNzMjeU8WMzKofJTUwEO244U+sGW22/LMQ9RcZyot/MX
IyqS2miqt8GTii9kjIexH6WiGWZBW7E5Ctb84u6rDb7/+8V9DSYKPrAs2pIN
/vSmfuGKcD6OjT3p5mFMRUlpCRtvpr3DK53tYo/B5+PsdsVKvcNLrU1ZdWBm
n0m7V8pvsciRKXlJEyry9ZeL+fjwDW7jitxQBTYZm/iam/Uai3sNPPkDlnJ4
L5bw/hXmsN/CzW1KRW2H9d46dOTg6ad/bpiCX5VyLhkOvcDxkddueYBD9zTp
KNKzcb507fkY8F4h21a66HNssi2qphbMeXfH1p8KWbjfd15nAPyTYdipVjsT
r93e8N8q+P4f3/l4+2d4SlV/SPEYFblYaxMBXumYpm3bpQ8mGlkizt58ipcb
tr2xBnd7SKpaGz7BYpWP/oSC757Kq5Fx/Q9zzJ02SwRrIi3L2ahHWNakNjkb
PCz16W/562T8sm+wrACcsv5UQMyXRFx2paj8A/jwXD/3mcmH+OwVg/Q28EKX
52PpTfF4mB5n/xP8vHpFcUYlDse3pi+Pgi1eR5bTLGJxrecNnwUwp5xilvBk
NJ4ck21gPA7vf9HwY75KBP4hlMfMCa6pdRg56heGk5wFt2wASyZd5x0sDsGy
S27rtoCZvuxyWl0NwKKPyXYRcOlF+5dKt71xbt1yqBh4UlCmv1rYFZdkmvJJ
gBtfbes5aWaBt9ILrkmCWc4abQ/X1UaleofK//nF7nRf7iIH2FcZf//7+WS/
/2Zb2jxR4Sh9aDu4q+NC7lMTP3QkXqd+K1hCQ+2Cx4cgpFU6cFcIvNck5P62
tFuoWHVqFz+4LdD5Upj1HTTgHZDDA/bNNTYaEYxCHqn32djAwr17ZU60xaA1
H/2DKzAetuvuMnUZ3kfUa69OT4NztzN48Uk/QPIVX83+gBn2X+nRZX2IJAU7
ZDvBx48PGvv2JyCWkQ89DeD0C1YlOeVJqPpUgTcNrJeCkjcEpiKWF7MaaeCH
796xH7J+jMx4PC/FgK/82qihuTUNrbIZBAeAq1bCXnjQnyKDaXcdM/BIBLaP
GEpHaVljUxrgzQKLW551PENTHsq3doDP73a//fV9Jnq55K47BfMxpihTayIr
Cy0VPLrSDn6v3zPDkfAcDd9evlUMXmdn5qjl/QIRfnWHgsE599SJDKXXqESK
9fgyrB+Wqicl7CpvEO+Fqx5tYLsFtv1u+3IRPdFG8zU4Mm9IUOhJHtrfbvjT
EqwtVLihN/Mden4r3TEN1qtb/siX+9L5qOxB/9Klf+vbeHuM7ot8ZDwqpKMJ
ngq5w/n8FYlqONX6mqEeZA2ZM1/KpyIvBU6XCagnLaER5WKq71F4cn0oCWYQ
Kw1qor5HGsc1T/iCT5/YsaxSVIAGj7GzLUI94i2ZmqHTipDBgbmPI1DP/O7e
G4xoKEPG96SYE6AeZkpXZmgcw2gHH6flIXBz+ZzDaBNGvw6+cpjWpyIB+huP
bFcaukiaphiBPRUFRrgulSPSc9+jET0q2pk0MNDsXYkeBvpKTx6E9em0WvmS
Uomq48SXo8BmyoLPQucqke19v6id4ODPRmfV/KqQs/7tHycJKvrOkN+VHFCN
VteVHcnQhr/PhZCv9jc/IGWKDoUN9pfwOkbKQNkHtLl99NbDA1B/FW4+cKF/
QAybDmtKgn0nbx7z9K5FG+rM3DT2U5H9tdBPQec/IrvQnDrbfVS0J+JO2eMj
dahKVb7HC/av1uy7WZ0bv6BTtzJwHeyHDZzrw+xNvyBRO1t3dXCte4zjQNQX
9N2Za32GLMz3JAM+H6ZG9FurcY+fDBWdsDasvxHQiLalibHxS8HzDhw2uHux
CdlJvdAUFqcinpmjGq+Ot6Dx7TzfHGG/5/uu7Oh7uQUpb/RqSoN+gJ8mGKXz
oAU5Gho+7YR+QTh64Pu31hZ0tiu/5hj0EzI7rvuzWrYikTbn/fJ8VKRz8mWh
rW0bMlZyMnzBQUU+JIf6Brd25Kj2JboB+pde7xoVn9Af6FxWXv0A9FOdtazC
2Rk/0CnbS8F9Pyjom+ihtY6qH+jB6zNE13cKaqyq/KjF2okyCleHmr5REI2/
3Jb1didKUdBmymuloCdkcXj8nS6UrhQ8jT5TkO1MXue7yB70vP/zKgn931ih
cYVvbR/a487ZIgv9Zdadp/bnIn4hx2H9XmVD6DfnXm7ye/QX7Y+0ePR8AvJv
9XGJlzl/EX/GjwTncchj8fNK3YV/kYVzioDMGPTne3RN9L79RQWkeH7OMIlK
Ln4P59s8hJr3pbVSByHP/Fq3mh0zhOppQt5jnZB/Wp3+dIQMI/NLPmpLH0l0
9RnXPPf9YWRxb4NkSy3krctvWYm0YXSKOiL++gPkQ74ViayyYeQ2WOxyrhry
79F4m8v0YcTT5ZXSSyNRXmVFM+fVEVQyn+m/qQDy1juxUg2XUVS6ci8n+DmJ
6tUvy0n4jiJ/twvyEdCvl5RVJa67PYoUPGcUH2SS6NGnC5fbno2i1lbzLy+f
QV7+mS/t0TOKsgxH88afkKhpg2FcusUY2vPbYa0yiUS0xJS1cKcxtO9byY9f
kBfyto66e3iPoerCnzYc4BjZOAPNuDF0lTXF0hzyxpGDnctt9fB6vKLHGAf5
xdPTmePQOEpIOxr5IopE+XMVreMnxpFgw7z4YCSJ0q9v1vnqMI6OX9dy3gEO
CS8SfRY8ji4e6l/IDCeRdhpLs2bJOBKt3iJdGgZ52PnotgKhCSR7Oq3lQDCJ
zBN7w4djJ9DleI1dLpCvYgzyeRiTJ5CADU9l3VXIm/NhcQJPJ9Bnr8BNe8AH
LOVTD76dQM2p+i0M3iTaJuSTm9g0ga60r14gIc/9SeH6qrtxEjFU8L51uUgi
caPu01bCk2gkOVV2EPLgaXpezyWJSSTcXC7mBP58xuJvsvIkmk0QuersRqK3
ok+Xx80mkWLuR/MbkC/9H6tJpj6YROH5n4OGnOD5TTiy3z6aRDzia0s3wCOr
P3Z9eDaJ9DrPUjaCbe1C1KbyJxH7n4RvCPKs7vbPhw1bJ9G1xm2e2ZB3udPP
es7wT6HeHh8y145Eh8xUZjm2TqEffNtdzcGBTOz+YjunkGhlyM5lW5ivDq9u
HVGdQvPh29KOgtsk5xPSzKfQvkK3w4uQxx9nRpceTZhC62+7vgmEPO8tczS9
/b8pxMvRZagOPvyS645D5hQ6oH0udcqKRDN5kcf8yCn0ainT6QLYqCS8/1nz
FNJqE9O1syTRQnMoB339NDI7VHzM1YJEDeZ6Y2EC0+jvwVb/3eBn35hb+LZN
o90GnzWnzWG+d99MlVKYRgLGf4MDwRl/gxXNjKaRbZpA+6OTJDrOcMP8xZ1p
pF5opT5hRiKpW5oHVO7B9ZrzPKXgZdblbThhGikdULaLBGdzBfxpzZxG4WrL
l6XAqwLXAhiqptGrEEL53HES5ShcfXqKYQa9flj8dcaURCxnLo6yXptBYgJ7
e84ak0jEyGL73pAZZLt+S7g6WFkDnbCPmEFSj5biecH2IhsKi5JnUK5pbVvZ
URKV/iBDPYpm0KQ/tUkc7GO9LNJBn0EiKfR3C0dIdPfoLxM2llnUsjrO2wbO
0GwI2cs9i+R9lsregltE037fFZ1FtBkHXnewUpduvo7WLPITqLIdOEyivzZR
R14FziK+p0yjPw1JxGDifaPj9izq4Q1drgQLatvksd2bRa+v/DHNBOtvUxQ4
+2QWOQ/txy7g9O7mvs20WSTypzBnyoBE1nbC14IY59BD0debNoIb7F88Nwud
Q65lzk/8D0G9kgw6MBs1h5gr1104B1YdPFmf+GAOdfQLW5uAU90YpjvT51CT
xViJBNjN55S2c/kcejkoaluvR6J10axtAatz6KTgXK0sWOf9WaZMv3l0a0t0
w7IOieau7XtoEDyPFJgYNwyDX2jyyAzdmUfc4WNeHWC+igJjxcR51JOxOYYK
7vnMm1xImUdy5KT0ZfD1n6WKDVPzKLDI7vnYQRJReIRt5t0XUPuVASk6QaJB
ef0nV7wXUISnJcsoWPDI5b7xgAU05v51vht8/fYnpz+RC6goUmV7JVhvzf9S
R/YCoq16eUWDmyd+BBUPLKCCOb1xCfBYy3/pQdaLqPD62H5bRKLtUx8H6I6L
aO8BndtmYDO+OSk/t0XUcz+pXx9MOWry0tN/EVH4ahoVwderV/PPJsH1X2Fe
TGDO93bVuq2LiOfYu7wcbZjPKeJ/2I8uoYH8nRZs4OSdvn5SJ5fQ8XiFfLoW
rPe3n9cdsl5CnX7DYpPg6Q++sjfdlxCVi0umE0ybrXddjl5COWq+4+/AZ477
j07ULyH++EnCERy7rmWqw5SOvue93NWgSSLmeJlbC6foqFelxbAa7CMWuGmL
PR0x8x72KgHbqMmqnPSkI53oysEcsNy5oKsNsXTUreh/NhxcjeUXKpro6MlC
481D4CWf0JWXJ5ZR1Wa3wQ8a8HxtNaPozDJq7LrYT/v3+fxeju4Wh2Vky7n0
pxC8f/xuGd1rGT1J9+F5BfZzTgwyil1G6QVBRbHguVM5jMOfl1EBr1TyGfCU
eiOrnP4KKrMf4Js/QCKmxI1zpcYrsD+wsk2CN86eHDxuvoLemUkyDYP3vO2o
uXZuBXGT8rw9/84XZPvvfLy5gqS7dAM+gMeE5jgu4BV0wyo8Lvnf+cWSyPps
9VUkYC16TQesWXPnaDexivoa7D9pgmPuT0fyH15FO0o8JPaBlWTq2EOsVtFf
xopBebCPuT/jaf9VRP/FizeDGfK+zXCVrKKYtROZQ/tJJOD08IcHWkM+s69Z
ksHOSozCWQZriP/qhEg8uIDubtlpuobco+vU74HPxOm1GdqvIV4WuVth4DQ8
3SAesoZqpJ9aXQbLC5tVtFSsoetbvNmM/113vtMqIslAcNk8kGMDrwtwqZOU
ZiDa3r1ZZAR7xhyukJdnIG6uGNSvqJMIUbjyNPYyEFbuP0Jmwd1MsVFndBmI
GMYOsV9g0cdJOo8cGQi6+ahsNTip9UWecAYDMfUnyiQcHHvwc7TQTkbieNmn
AiGwftmzvZ0yjIT58Ei+AHj5QMD3x7sYiedRnW83gV1U5GR2qDASJhMCVB4w
IR1euVuXkdjwO7WHETzBrbeke5aRMA6XIIf2kcj0W7Hzpf8YCXe9d8Zl4PUe
L3UqNzMRdeP9me5gp/REvnYhJmJynzmHK7ik7Vb30FYmItfhoIcz+IKmtf9G
KSZigRqo4wCu4uB5d1aNiZjP02SzBPtnXBJnOMVEvMYmDHrgwY49DFpJTMRH
qaGXW8FlegWlVGFmwkzU0qJdjUSOfSkaYduYidkCVec28LrAG4UnJJiJXHvy
WgvY7L0OZUKWmTijEfPsC3hQtv6V3H5mgu3abc5a8Hren48en2ImVr9K7CgE
23Zw+d+OZya+yegGpIJXLtqpWaxnISTfsF9w/nfeqT4atWEjC/Gg0azbCVzD
FND3eTMLYVPVfvIcOCYxIVp3KwuxJzny0FnwtvL6n0q7WIiqB96qZ8Da/Jr3
uI6wELqrDiam4KAiwT+0MBZCbZ2ajTqYkb05WX6Fhbg1sELlAbOFewuoM7IS
MxWCp7jBnBxbHuixshJi1acXOP+dp3JZR9vwsBLvek211/07T+UdDLy3lZU4
cKW3nQlssmXJcVqLlbgnm0ssqML+IC2xuziQlej5MNDXD1YzvFxxhIGNOH/g
jkIZOEKZa3wDCxvBNlEqUQruFM0Q6WBnIzaalwuWgG9Otnk787IRlXfl2YvA
DSn7pUO3sREuNwNGKWDnUYboUk02gr54ree16r/Pq++ZK11jI4xLE08+Bi91
vvqzeYqNUH3zwCEErOdeG2s8x0ZkjKa6B4Pv0vvVw5bYCLsZH98g8HZhkYgZ
JnbiV1jKvRtgg1MRsi2b2AkW6eiP18DxTU6usarshLl5kONl8O6abSOc19iJ
GJZluXNgP/MD8To32InCkgZjR3D5gLmmfwg7kbfFxssBfJL5bvTfCHYiiMgp
sgcHEPRdtSnsxJejs+Y24Nqi9othJexEy98PbyzAG49Mby6lsRO2Ttxd/87b
rTvWl81UsRMii0zc/zw+f2j9uXq4nyiL+wmwgCr5Rqebnfhkra9yDGxf9cXC
/yc7gZ5wuZiCX5wYXn07yE6c9QxMNQFrXpYwFR9nJ/TDXNn/ne/fZtSet5xm
Jxpe/9Q6Cm6MtXoSO89O+O5mu2oEFt5+1aCWzk7IB7S+OgL+//+nEAfXGf86
DP4fJAMhpg==
"]]}, Annotation[#, "Charting`Private`Tag$18528#3"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwt13k0lP37B3DZplTK1mPJWpZKyNKCum7SQ7TYl7J9ZYmUsiQVpZQtQvbK
8lgispY1PuOewQxliRIJZSelrFH8Ps75/THnPq9z5twznzPXfb3fI+ngYezE
ysLCsoRfa9dzhVE/VlcpVN2bWsmrCQzgXxaW0fhDofqiMZHn8Qyg/5tlfXWR
Qr0zcTrLNI4BMn2VzG/TFOr/GG6tuTEMmNg0mNH9hUL9p1Q+0DSCAZfd1CxL
aRRqj0O5Td4dBgRI91CdgylU2YuzPHYXGZD8eEfMW24KNU7QWLpfmwGp/SEe
Rhs4qeOmdjH7RhthW5vJ6V0CHNSzkWWcGjGNwDA00WmWZqeudv7UeQyNoLdL
2nuHFBs1IIw7vmOkAdQLrLNbFVmp+u1X/PpiG2ApzJlPedc6asEut95dhxtg
biEzzlaWhRqkMX/Ycqwe6FIxqrUXV5C0++KZ8OR60OC4VbrH8Q8yPdA08F63
HmKJAwe0/JfQu+zMAtc/dDj3xHJ4InURtRSc5HR7SYfWZ2Ib1iXPI0F9ZmXb
eTqIbSrah8pmUXlvtDunNB24JEZax5//Qu/QFofN/TRwN72XmJMzje6HuIcG
pdDAntbfLBYzhW7ZSAXkO9NA6vCKUX3gOMpYYfmdqkiD3POlX6rLhtFZFq1o
dVYadDqkihtkD6ODauyMu+towGITbtMTN4z+9T124y0LDcyNznUveg8j+pyx
pcMqCazqfO1qKsOIg51nNvoPCWc2elELC4fQ/IWhqfULJHAVKKdm5AyiOqtl
psU3EtRyxD4rJw6ioe1L/MWTJNj/xyVCBg+ichv2YS7ssviv8QPOgyhK4KQA
dZwEh1sxkaLSg2jrq921SqMkVBn+8k9I/4r27PzivucrCW4zxdbhyV+QjxGf
SMhHEpL2/9RwCfuClvgDjs51kcDwUxI5ev0Lmhm3mHXAlmYp7F6y+oKEfCym
4QMJA5vyzd2EviDeB36WLJ0kmMlkGx5PHECtc0USj1tJCCxRDeWW70cCdnZ6
6o0k9B0s1W3Y2I9cnOoWKxpI0ET7OAMm+1DTqOOhg9jzzQp3p573oaONju4H
60lwH5bzf7OrDyVUTacCjQRLQdErYbKfkb+WpKcrIkEhgMOKc8cnlLez5Jx8
BQnCVW0JY+yf0OFovWV6OQkc848/NI30ID/H7m222L0XlU0fPu9BvZszeqLL
SAizsTstqNyD7HU/J62+JGFUs/LYbq1upDhVJTZbTELasrvyKbsudIHjoZ92
PgkPDhy8oqTVhbY9vjc6mUeCrxdbEe+OLsTj+KcvDvvUZNLerpEPKC+c58Lk
cxL+9jTI2V/6gDxEHP48ycW/b5WEuKf/e6Q8aCQr/IwEPr/OjfGPO9DtRJFS
//9IWFz9zfPjegcqFZbtVMbuuy8uqHemA8neTXwylk5CTqzbziXBDhRc67jT
HPtIEcth2/h3SDUpif9QGgmuo/KXZKLbkT8iUsRS8Pe5ZOx963I7mtNK1e97
SoLqnO/1j6fb0W1RqfQU7BVW2v0w7nbU6qR+UhI7Vswq9Xt4G9otvSdb4QkJ
AXlc6Rc3t6IZtRp/12QSjleavRB/04LKPWX6VbD5G9Mq28NaEGutzNRKEgm5
X/e/U1vfgiYPBGxJwO4UOse2wvoWWTzzvNKaSEKqbMGWoro3aCnwtkYqtpva
bxGH22+QoitR6oG9avhQteFvM3qVYpPPi707pNopcrEJCVS8YNgnkDAXx+lJ
lDchb6vvbPuxqRlGAb98mtDd1pGpjdhmaDTefIaJlPJvtFTGk3B7no8h9p2B
nP+E1Itidzm67y4cbEC6v/MyOeNIqP1seKAsuwHFBaAfY7EkZJur6dS4NiDJ
woLOZmxvvRWb5h/16Iukl/sj7K3yUdGjy3R0wKjp/S7shUzvlO+1dPRm+8zP
rdh9olZ5c4F0ZBEUn7P4iIT8LVL1bOvpaKN5wjAT+/hM6aI4Pw0JRFxL88JW
ck/kkO0iUeUrjxg7bMHhm7wKySSKv3tJ/AT2yIdj8poSJApXonPJYr89vfvQ
0cE6dHJc3VUA+yWD+1/97DoUuLTowI59p6rLzlK+DpHFwXJDMXgeVF672/2g
Itlhn9lObMP8ND/nEiryDh8524AtluL6yPsgFTmLBv99js2l8IRYmEco9Ni7
AynYH8WdznD4I+Rl9WFzDLYP20KEZGgtqg/VjLiBrTOHniluqUWtEeX7r2Dz
jobUHY6rQdEnRG+6YA98NPpkIFKDHAP8bGyxC5qE56zSXyOHqK4eM+ybrwe5
z8u+RsaZ2rMnsfUL8uWuvqhGKVH1uf9iC6b5aAepVCP2AbdlwB6JPmIdU1mF
3rdrjh/CfnmXcjUNqtADq2Neqth3fNoeFtRXojaxyCTFtfO6JOW+NqhEfv4S
1nuwxa0caE3tFUjjHke1LPZ3/T2fP1pUoPbfx8p2Yr/WnJ0f+VyO6o0nTkph
hynUbJ07V47sq5cCJbAtJe7vZpsoQ7G8t4zFsWV4T+vwXC5D3yYCkBj2LJug
rfj8K+Qdto65ZnJuwHfvzVeofmKzx9r7o0dzozVYX6GyiufFa/ez7/bMOx7y
EsWY9kWtfZ5Cs0a9BfdL9Km9YJM09p/X7P1OsaXo6IKktBx2U8HbRS/hUpRx
5HDP2nkS0+J576SVoNFODnklbOcYO/komRIkmnxbWA1bNUju35T8YnRKsiRL
HZvt6k+7fOViZFqU8pbAbnep8quqKELbCf0YXexUq7uPGEeKkOPNiplT2L7X
d0cy4wpQuuzEAzvsU9+nPxRmv0AyY92x59fO71AuHl+ej0S6A1Q8sd8f1yl2
6H6OCNVp1WDs/BquJb2JXNTZjxLW5idoX7u24nIOKj5iEL02XypCtp3L25+h
M8GJehVr8xexU/Tr3mwk7nuWc20+v7JMOjGOZCFWmd4za/MbPea7EGufgcSq
BRi/sPs8dqhZ66WioHnj0v14/iMsihrk3J6iUsoPmePYmnDYci78MTINg33W
2MncFjciWxNQyPTMhiBs8xdhdVTzKFTy17S5B5trt2K28M8HiGagNfsT+/xv
PWapaiiqHGko3YCf7x2JN7eMVAciZ7nweXXstnyxflNjc/TYxDEsE5v9fwYS
IUePAOEd6kLFzlX4z3dTlQP4zAt/6sX+3O1amH7qGgifd7n3D94/voUnDb4J
hoPkg87hR9jCAypyJu8jIVQ1wucltu36CNbPetHQlO31+D02yyGv/qMccRDo
lJUrhPeZTjIk8QQ8gUqniJYc7LiSEsox6xRod3jG3YLtNcyroSmaBtlcqUMz
2PS/93I9ltPhusSSkRbel84K7vc/lGeBaD7fvkHs5w8PEplKLyAzM3ZOG+9v
dnrqa4pqAVBpuSE+2HaLnIcuHCiEy9d3NudghxVNCAqlFkHk2JIND86DI0KV
PANZJVDPMV4xgZ09YcZ2qbQMuO3vKdXiPOkICq0TVysH57OfCpexWcRrbrWX
lcPufxQ+H8L5c8Zk5x/VqgpIVzinVYG95fWv2WVqFZjM7dpbg/PsWsTDkdCW
Wri5/7ffKM67LFlapoYhgmzC5o0izsN3dfMOU+0IkjKWm65hb1su8Mhxo4L0
+gtvNuE8vay47dvGS3WgMpLcq5mB+0zi0NA7bxqoXHYQqMkiIdI18IP9nUb4
Uc3xUxPneUjzuldDtY3wySVaOxb7zt47j84vN0IAv7LMt7X8/3nH8LI3A8I1
92Y8xf3A3i+o6ZYzE27pnrlMKSBhX2hwbYp+M2h2Wx6aL8J5mBOR3cvbCls1
LoQC7iMtXNz37E+3QkKIRHcONsM98txQeCscHrAu48V9xjZRd+tV1jY4udQs
OIZtYq331v9GGwx8k/JLqsLzPXRcN+JiO3DqCQVtqyVh8+wJjXyjDtC/F/z0
Gu5PW3uUz/l6dkCHe9GTv9j8VMFw7UcdoHNiQOMu7lvCD4Z6PnZ2gGH0Zaso
3M/kdt68zmHZCRH0DRtLmCRom+ZV2tq+B62q/QJ8LSRcfbnhIM+FLnDK5JLW
x31wwLtB9WrQJ/BR31MYgPtnL4NDOCfzEzSbPSuRwX314/Zjq930T6BR6anV
it1GpzEPc/TC+70rq5LfcX7z19ly3O+FsXC+pbfTeP+8rA6JDf4MrP9Z58E8
Pv9sUW9JWD9s5PPQC8F9+nvlSdKX8QUqj/j5pQnRIDs43d4xdBi2ZNJXMgxo
ID2fx3ft8Thcf+7eFh5Cg74S8RqN81PQtugW9r6BBmYJAyGTUdPw1GxuWW89
HVKyHtSciP8FryJp6cEmdGA/e3GKw28W1qmfapV6SocW+9xnxkHzgPZUswlN
0+HVZmGbBfdFuHvJ11OMqAeZZMkxyokl0NMZKE6Pqoelq0F/80z+gObm2OzZ
8XqYXBLhzjm4Au98Tr/4eaQB0lyCO0V2sBCKmtuUHj1pgCitNw+EpNcRYivm
Vt2/G4DbI0+bJsBKvNX/FTFu1Ai1OhU1ZcJsxN+ptqbzJY3w96LdfnNudkLv
Nv9R880MWEd5l7TnLzuxa9o5R96FAfv1PEl9Fk5iI2dzjzmTAUu9+WMCvziJ
q5mLQvelmaDjzog6Oc9JbKInjEvJMiFiefDgvSVOYtTuGA3JMUFCWCR0lpVC
GBhWxv7ewwRdi9BdHXwUIic8sPCiMhNi253cotQoROWhEKoFMEGhQewblx+F
iDDMUFKxYsI1M/VYbX8KcS1W+VD7GSbUDZlpXg+kEPnpYOBhzQRTtogH46EU
wrCkLjzPjgk3iGV5RjKFMPH65r8TPzeMqq6L915TCJ554R2CXkzg1Z8RqKFS
iO1Sd+rKvJlg3c1dO0unEKeypFzNrjLhx8Ixbse3FKJ0cqUjxo8J29ReFmj3
UYgryYX/cN9mgj291fz6VwrxX5T7an4gE3JNJleKRyiESozWtMFdJmh6Sp2W
/EEhPGHHVOh9Jtxfd2TBcoZC/PNK9rdcCBPaoqxSoxYoBH+TCjcjlAnCEj66
jGUKoet6VN4lnAn//3+c2Hzb2IQzggn/B0ONBVw=
"]]},
Annotation[#, "Charting`Private`Tag$18528#4"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0.03434199060955856},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0.03434199060955856},
DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}},
FrameLabel -> {{
FormBox[
GraphicsBox[{
Thickness[0.034013605442176874`],
StyleBox[{
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGJdIAaxQYAJSjNCxZiR+Ax42MSox6UGWZxUc4jRS6r5
pOqlxO+0UEOM+0n1CwDTMQKN
"], CompressedData["
1:eJxdVH1IU1EU33J92Pza5t6b7s0tl+mmiKSVkeCx0swCTSOkpDTTIZL1h5iK
+8evSEWlJD8alhmYkGikiVFaSBhoGgliCpk5QikjKyQqtN13bnfggcvjd+97
v3PO7/3O3XH+UnKWi0QikTrWKcfa5Fi9CT2RtiJPWCdR5w/zsediWk6oGf5S
ebF69y2O4UrD1oAxbw00k7jmD93KEA/LWV+4Mvw4ttnqD2kBqcK4TQtHHrzs
kBT6g3fR9fzX5QIcri9TZlcZISLcESkC7vca4efgSp+lQANjJGxG5G1Ww/3V
pcKxeiOkLE+uNM0rGBbz+XltwEq4cbXi9GSUCV5UD5ZGHFLCq+GDXTmtJjhD
6klTgj2jbSpiwoR5apTYz7oJiuZ+zYSPeuO+m5n2z0HSjLYkQ2mGeNLHNA/9
UPpxRGMGFanbrmG4kZT7Tsuw/smdwaxxHeyLepZ8c95Ez3WQle2IShPqecAP
4oesukhLIEhIpOsZRr300B1gL2tdDsL3Z/UgdCzGh+rN0En6DjOAhfBtCWbf
i7qqgmGO1L+io/UEo76cE+O5wHAJ6T/XiUXeOC3jM5B+atVUH5rPoGb561Kr
E6VJSobFfFMKhj+QfAovhi935Pes1bkzTNKEP9rG8rnFeCQ05chYPcJD7vYm
gwxkrlX6zDwzlPHWzTlxrqhvhpnyyaEnNK9dmmaG6PwY66jNDRrrPYv3Bjtx
A/HHUxPDtrvGgb8WE/o1yg3CzJ2qN/eC0BdDDj5R/0CYdp/lsgpcsL5JHhLt
R9/uUblgn6sc9v9NCieJT9s46Bfn6U90MdH1GAfxfYkjmZW/o0UdPdSwaF3I
nQiR4n/Vqll/RI7sXWoI/L5zqcV1O+YLV+Pzh5zhFuKn/Rr4z4f6OXGXOI8+
DIv11fuyfM/JfBgFlq+CzHOvjvGLPv2kQ1985pBvTYfP9zzzr+iH4z4QQOrt
9EPedi393g91nBPofaBjGOeBzr/Ml/pXoHwa6k8t3gMDPL5n90WeEp6e+9D3
eXp/cFBL+vTicf4XVAyL8/hVwTDeJ15UDx5qyH6YHPNccGJRlwYnFusEDZSL
/pMjT5sG/1+6nPL7wMb79B9NsDS/
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIpIIaxWaBsBiifAY3NCJVnRmMTo55Uc0g1nxbuIcZ8
AJ0vAkM=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJzIGYC4hkzgeCnjgOImrlSwQHGf+Aa7zhLUMlBZl6c
5mkBXYfK+z9uGVsrOehrrRS+8ETX4cOi9QpnPZQcju/a0cu2Qc8hPQ0IwhD8
ld9eVpx5oOQwdQJ/ldlpHQdjELiMyW/h9V8/pRXBb2A52m9ojpvPwtkln5yn
BTcfxofZD3a/pTbcfWtVnzTP49WBu18X5H4VhP9gfJj/YfwdwVYR/4+Loqrf
KOAwHeT+11oOMhvF5jMt4HFYDzLfVwPOf1O8VfT3aVU4H+z+7SoOZ0DARwDO
1/ik8nLWSxE4H2Y/jL83v+btTFGo/86pwN0vMfUKZ8YiVbj/GECgQQ3ufxgf
Fj5PEhdeM9FXhYdfQkiQ+oKTKnA+2N6bynB+t43nrrRPSnD+bU3ZNf+blRzc
1xxdznBDyYE/NuC+kbki3HwYH2a/cOWkkrMiSnD3gc1/qQR3P1gfgzLcfzA+
zP8wvgjInBYROL9dgV31zBZBiLuClR36I7r9GQv4HX69fX3AklkFHt4b9PIW
M+5RcXhR+zj7/BpOqLyaA7cjn9cMTQ4HKVB6vqAO54PjZY0mnA+LX5j+81fD
3ujv1naIUY2QOfeHx0G0x+sVyxQdiP0GAvD8Avb3EyE4HxQcac/EHNDzFwCY
s2h3
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIdIIaxWaBsBiifAY3NCJVnRmMTo54YcXraNZjdRk+7
cIkDALmJAos=
"], CompressedData["
1:eJxdlF9IU2EYxo+ukmEOUmQ5L5qHBplh55vHFUbxFVTiRUFR2UWCpaldpNSC
klW0pIsW2UUxpSGRF4fFzAmFdNGgRCrctNBA1h+lIuaFEFLDMLOdbzzvB73w
XfwY532f5/2zspPth5otiqLkZN6RzMvNvHr78DvFVs1XzNiwjoO9hjf6t3st
X39vytqaW82H66LbQ7/zedOJj/ssPTo3ksZXNpLPN80XxLRyncfNuCX5RSDm
109Z+XL6wmxoSOd+++XVbTeslK9XhJU/2bb4sqlTsvh9QXLd67yd9/d66PvU
mYp0MOGh/GDU9z4tXhpr8JA+bXO46O1PqV/om5P+wPAPFuXDTuLn7b753mKV
8l2aWUxW7VCp3o+Hg85ErUp6Wk5n4qjkcHruYnxW5clSX6Pb5eFVZkyq5BeM
foCnCxd2T6yRfPuwd2NwQuf7I6OGMq1Sv5EfjPqYF/Sh/9CPecMfGP7BIt93
R9bPJ51HCrfYWj47sn2P6LzLmeeKTzn4m5E9A20HJBup2soV5ibun4nZQpOM
uLSvoXzsAaN8dlPfOUb1wNADht7jpr4rjPwUHBy825xi5PfaqtFudsxN/QCj
X2J+jxn1d6jybH+OT7LQa5HcEQl8aL2jEV9dqukYr9doHl1CwFbKD0b9P+Y9
lGmkj/u/vOoJaKRf6Atq5A8M/2DsKxj7jHzYd9TDPUAP7gWMe3J9u96XqNHo
3pAP94h+gNEv8Hmzn+OMvke/kR+M+pgX9GGe0I95wx8Y/sGdZv8qSrL7FGV8
wNynXSX817PkzeX3krGPYOwrWPh/JBn3BsY9oN7//5//AFqbSus=
"]],
FilledCurveBox[CompressedData["
1:eJxTTMoPymNmYGBgBGIVIIaxWZDYzFDMAOUz4GEjqydGLy71uPSSqp5Ut1Fi
JjHitLALAM7SAnU=
"], CompressedData["
1:eJxTTMoPSmVmYGBgBGJvIGYC4rrfVgXnblg4uK05upxhhoTDTBCQtHSouv/j
lvFqCYfiraK/T8dZOhiDwGYJh+tCnxzPH0Pw/3wrfTCn0ArO/w8C663g5s0A
mXfTykG4clLJWRcJhw16eYsZ31g5rBXS4UuPE3f4siEge9Z3K4cY1QiZczai
DmdAwMYazvc5wW4729Qabh4uPtg8O0k4/4FrvOOsi5h8mPlgOkcWbj+MD3Mf
mN8jDXH/SysIbSntcKRtefipR1YO6WlA8EwK7j+we+dIwf1vAgqPYCmH54kL
r5nkWzm4g9xrIQUJv2uWcP6Xnbe6/pYi+J9A7lG3hJhjL+UAix+YeTC+84Rm
obRfig6nDjutzZSzhPCllCD63S0dwjnF2o3llSDmnEfwS0DxaWeFKr8fGn/M
Sg4fQPrZoeF5TxGq3hoif1gR4l5Xawfla4+CGdYg+ODwdUTw9+bXvJ0pqgDx
7zRMPti9WooOElOvcGYssob4n0PJwb7p0fEZu6H2XVZy2GL+41CKFzS+7ig5
3JCuSTRitXZY+e1lxZkHSg7LX3jo/V9oBedPn8BfZbbaEq6ey021lMnKEm6e
+lvefQYvLeD8/uASlenrEfxoBcePyTm4+Rog/ZLmcPtgfHB6CFNySIm948bc
Ye7wYdF6hbMeSg4rQO77aO5QCcpP1koOL7K0v03/aw4NDwQfnO9WKsD54HiR
F4TzS5aXbPjXzwM3b7vXBos5P7nh9i2/tfyx4WFuuHsg6RfBP9i9r8kkmdOh
x+sVi8lCc4cm8VrWzDZOuHlg+2dyQsIrywLOFwfFzyME/xYo/E0t4fqfg9y3
1xJuPowPsx9cfvhZwt23v1bWIv2JBdz9sPQM8x+MD/M/evkEAD5pGh8=
"]]}, {
Thickness[0.034013605442176874`]}, StripOnInput -> False]}, {
ImageSize -> {44.0931407222914, 24.508064757160646`},
ImageSize -> {29.39542714819427, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {30., 17.}, PlotRange -> {{0., 29.4}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}, {
FormBox[
GraphicsBox[{
Thickness[0.10504201680672269`],
StyleBox[{
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {
0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}}, CompressedData["
1:eJxTTMoPSmVmYGBgBGIdIGYC4q1eGyzmVP6wZwCBBSIO6WlA8Oy3vcKuBftS
+UQd/J94XjKd/M++6v6PW8beog4vax9nn1/D6HAGBNZA5S9zOPwHgfsyDrYl
jrWnZXgd7rvGO85aqOCg8Unl5SxOEQcDrZXCF1pUHEQqJ5WcbRF3eNOW220k
LQaRXynuADO/L6Lbn9FAAqLuiIiDMQh8RvDBtIoUnB+hGiFz7o60wwOQfRdF
IbShggPYPw6SDl/2fdya/k3eIQakTkbKwX3N0eUMO+Qg7veByofJOswEgUgJ
qH4Zh7VCOnzp98Qd+kHuuSAN568H0fMQfHlQOOUh+DuCrSL+P5dyAAVj2jEJ
SHi2SUHNl3RQB/nXUwpiTp0URP85Saj7ZCDu2Sbm8ChCfPvFBDUHD5B7K0Qd
GliO9htu14S4+4ywQ/1vq4JzGdoQ900QhIj3aEPscxOA0Gza0PjhcWDh7JJP
ztNy2A6K751cDtsdmh4dl9CC6C/gckgFu1MTEo/2PA4y8+I0T2/QhMYnv0PN
pw0B2b80HcDp5SeCPxvkL0tBOB8cvhVCDh77a2UtnmtA0sFHIYcWXv/1U1rV
HYLfXv4446CwwwbVJ83zfFUh9qbxO1SC4n+3Ejy9gcOzTtJhwYnJS7KXfbGH
pTf09AoAk4wt2w==
"]]}, {
Thickness[0.10504201680672269`]}, StripOnInput -> False]}, {
ImageSize -> {14.286246575342465`, 24.508064757160646`},
ImageSize -> {9.524164383561644, 16.338709838107096`},
BaselinePosition -> Scaled[0.32439307852814453`],
ImageSize -> {10., 17.}, PlotRange -> {{0., 9.52}, {0., 16.34}},
AspectRatio -> Automatic}], TraditionalForm], None}}, FrameStyle ->
Directive[
Thickness[Large], 18],
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {{0}, {0}}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times"},
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-3, 3}, {0.03434199060955856, 0.19961623257131614`}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
TagBox[
FrameBox[
StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["3", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["4", Smaller, StripOnInput -> False]], "Placeholder"]},
"LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.365248, 0.427802, 0.758297],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.945109, 0.593901, 0.],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.645957, 0.253192, 0.685109],
CapForm["Butt"],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.9, 0.36, 0.054],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}],
NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.9, 0.36, 0.054];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable ->
False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.365248, 0.427802, 0.758297],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.2434986666666667, 0.28520133333333336`,
0.5055313333333333], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.365248, 0.427802, 0.758297];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.365248, 0.427802, 0.758297], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.945109, 0.593901, 0.],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6300726666666667, 0.395934, 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.945109`", ",", "0.593901`", ",", "0.`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.945109, 0.593901, 0.];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.945109, 0.593901, 0.], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.645957, 0.253192, 0.685109],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.430638, 0.16879466666666665`, 0.45673933333333333`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.645957`", ",", "0.253192`", ",", "0.685109`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.645957, 0.253192, 0.685109];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.645957, 0.253192, 0.685109], Editable -> False,
Selectable -> False], ",",
RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.800005950325206*^9, 3.800005985011455*^9, {3.80000612800945*^9,
3.8000061523615637`*^9}, {3.800006198247397*^9, 3.8000062013184023`*^9},
3.8000063003046427`*^9, 3.800105162005806*^9, 3.800105210526244*^9, {
3.8001052818794193`*^9, 3.8001053119483843`*^9}, {3.8001070030463953`*^9,
3.8001071045302563`*^9}, 3.800107152659997*^9, {3.80010923870466*^9,
3.800109317606167*^9}, 3.80016591957825*^9, {3.800953705163644*^9,
3.800953729155587*^9}, {3.800953909150161*^9, 3.800953919915872*^9}, {
3.8012020342343693`*^9, 3.8012020757686853`*^9}, {3.801202108618804*^9,
3.801202181595736*^9}, 3.801202278332419*^9},
CellLabel->
"Out[106]=",ExpressionUUID->"83b31b03-439c-425e-b046-7a05a10f6ee1"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Plot of the coefficients", "Section",
CellChangeTimes->{3.800104775691227*^9,
3.800105559312166*^9},ExpressionUUID->"3b0990ee-511f-416b-a4bc-\
f5c7f6117606"],
Cell[CellGroupData[{
Cell["RHF", "Subsection",
CellChangeTimes->{{3.8001656744442244`*^9,
3.800165675003849*^9}},ExpressionUUID->"e2347259-0079-4fdc-aefc-\
303816be8d61"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "5", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"0.1", ",", "0.5", ",", "1"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"0.1", ",", "0.5", ",", "1"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8001656844883623`*^9, 3.800165702550962*^9},
3.800253484115035*^9},
CellLabel->"In[86]:=",ExpressionUUID->"9ae18ff2-6556-4c15-a8c2-953a34805b2d"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{0.9996937375613348, 0.0030626243866518892`}, {1., 0.}, {
1.033340954122847, -0.0018375746319911337`}}],
LineBox[{{2.9666590458771527`, -0.0018375746319911337`}, {3., 0.}, {
4., 0.000015067576246282989`}, {5., 0.}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{0.9984686878066741, 0.0030626243866518892`}, {1., 0.}, {
1.034399397110874, -0.0018375746319911337`}}],
LineBox[{{2.965600602889126, -0.0018375746319911337`}, {3., 0.}, {4.,
0.0003429769902279765}, {5., 0.}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[{{0.9969373756133482, 0.0030626243866518892`}, {1., 0.}, {
1.0357224508459075`, -0.0018375746319911337`}}],
LineBox[{{2.9642775491540925`, -0.0018375746319911337`}, {3., 0.}, {
4., 0.0012250497546607557`}, {5., 0.}}]}}, {{
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], {{{0., 10.}}, {{1., 0.}}, {{
2., -0.055114638447971785`}}, {{3., 0.}}, {{4.,
0.000015067576246282989`}}, {{5., 0.}}}]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], {{{0., 2.}}, {{1., 0.}}, {{
2., -0.05341880341880342}}, {{3., 0.}}, {{4.,
0.0003429769902279765}}, {{5., 0.}}}]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], {{{0., 1.}}, {{1., 0.}}, {{2., -0.051440329218107}}, {{
3., 0.}}, {{4., 0.0012250497546607557`}}, {{5., 0.}}}]}}, {{
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 5.}, {-0.0018375746319911337`,
0.0030626243866518892`}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"0.1`", "0.5`", "1"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.800165689257024*^9, 3.8001657030714273`*^9},
3.8002534850066013`*^9},
CellLabel->"Out[86]=",ExpressionUUID->"2fa60550-77eb-4d31-917f-f9b5e323d219"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "10", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"2", ",", "3", ",", "4"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"2", ",", "3", ",", "4"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800165730918439*^9, 3.800165745926483*^9}},
CellLabel->
"In[258]:=",ExpressionUUID->"4467579c-c5e0-4a28-9f8d-ac1535784066"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{0.9731202037610477, 0.013439898119476167`}, {1., 0.}, {
1.24751203935541, -0.011854024873343397`}}],
LineBox[{{2.75248796064459, -0.011854024873343397`}, {3., 0.}, {4.,
0.003954676997168831}, {5., 0.}, {6., -0.0006531042735448591}, {7.,
0.}, {8., 0.00013482301855117484`}, {9., 0.}, {
10., -0.00003117192264031655}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{0.9596803056415715, 0.013439898119476167`}, {1., 0.}, {
1.2645818351730247`, -0.011854024873343397`}}],
LineBox[{{2.7354181648269753`, -0.011854024873343397`}, {3., 0.}, {4.,
0.0072845452951860925`}, {5., 0.}, {6., -0.0023688037510360602`}, {
7., 0.}, {8., 0.0009628657286664527}, {9., 0.}, {
10., -0.00043834938219726644`}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[{{0.9462404075220954, 0.013439898119476167`}, {1., 0.}, {
1.281651630990639, -0.011854024873343397`}}],
LineBox[{{2.718348369009361, -0.011854024873343397`}, {3., 0.}, {4.,
0.010735522418003797`}, {5., 0.}, {6., -0.005476748504236199}, {7.,
0.}, {8., 0.003492467926892791}, {9., 0.}, {
10., -0.0024943654206968204`}}]}}, {{
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], {{{0., 0.5}}, {{1., 0.}}, {{
2., -0.04789272030651341}}, {{3., 0.}}, {{4.,
0.003954676997168831}}, {{5., 0.}}, {{
6., -0.0006531042735448591}}, {{7., 0.}}, {{8.,
0.00013482301855117484`}}, {{9., 0.}}, {{
10., -0.00003117192264031655}}}]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], {{{0., 0.3333333333333333}}, {{1., 0.}}, {{
2., -0.044802867383512544`}}, {{3., 0.}}, {{4.,
0.0072845452951860925`}}, {{5., 0.}}, {{
6., -0.0023688037510360602`}}, {{7., 0.}}, {{8.,
0.0009628657286664527}}, {{9., 0.}}, {{
10., -0.00043834938219726644`}}}]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], {{{0., 0.25}}, {{1., 0.}}, {{
2., -0.04208754208754209}}, {{3., 0.}}, {{4.,
0.010735522418003797`}}, {{5., 0.}}, {{
6., -0.005476748504236199}}, {{7., 0.}}, {{8.,
0.003492467926892791}}, {{9., 0.}}, {{
10., -0.0024943654206968204`}}}]}}, {{
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.012833333333333334`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 10.}, {-0.011854024873343397`, 0.013439898119476167`}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"2", "3", "4"}, "PointLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.800165739142585*^9, 3.800165746634913*^9}},
CellLabel->
"Out[258]=",ExpressionUUID->"0847812c-dff6-46c2-ac72-fcc62e819bb1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"3", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "20", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"5", ",", "25", ",", "100"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"5", ",", "25", ",", "100"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800165816804508*^9, 3.8001658447079144`*^9}},
CellLabel->
"In[260]:=",ExpressionUUID->"8bc26deb-518f-483b-b041-62d70e373525"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBWIQfUdL99ti7qf2bKGBK3+2bbRnAIMPUBoOHERcA4Fo
yX4Il8MBVVrA4ezbAPas0z1QfSJo8hIOTzwX/21Mb4Hql0GTV3CYGWHw6IpQ
E1S/Epq8ioOSuk2YzLtGqH41NHkNhzeSFts+8jVD9Wuhyes4/NSoE39u0QrV
r4cmb+DgvXv5x//5HVD9hmjyRg4LLUL2Nt3pgeo3RpM3cfB6cqrWPWmiPQDf
WTmz
"]]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{0., 0.04}, {1., 0.}, {2., -0.018518518518518517`}, {3.,
0.}, {4., 0.03572245084590764}, {5., 0.}, {
5.418373127927832, -0.05765938849402236}}],
LineBox[{{6.581626872072168, -0.05765938849402236}, {7., 0.}, {
7.103013104684269, 0.06846580871327398}}],
LineBox[{{8.896986895315731, 0.06846580871327398}, {9., 0.}, {
9.016061855991717, -0.05765938849402236}}],
LineBox[{{10.983938144008283`, -0.05765938849402236}, {11., 0.}, {
11.003295665882616`, 0.06846580871327398}}],
LineBox[{{12.996704334117384`, 0.06846580871327398}, {13., 0.}, {
13.000457804247743`, -0.05765938849402236}}],
LineBox[{{14.999542195752257`, -0.05765938849402236}, {15., 0.}, {
15.00008670919615, 0.06846580871327398}}],
LineBox[{{16.99991329080385, 0.06846580871327398}, {17., 0.}, {
17.000011356583475`, -0.05765938849402236}}],
LineBox[{{18.999988643416525`, -0.05765938849402236}, {19., 0.}, {
19.000002056068045`, 0.06846580871327398}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[{{0., 0.01}, {1., 0.}, {2., -0.006172839506172839}, {3.,
0.}, {4., 0.02116885976053786}, {5., 0.}, {
5.397127617525246, -0.05765938849402236}}],
LineBox[{{6.602872382474754, -0.05765938849402236}, {7., 0.}, {
7.055002358384887, 0.06846580871327398}}],
LineBox[{{8.944997641615114, 0.06846580871327398}, {9., 0.}, {
9.004823997672805, -0.05765938849402236}}],
LineBox[{{10.995176002327195`, -0.05765938849402236}, {11., 0.}, {
11.000556771587474`, 0.06846580871327398}}],
LineBox[{{12.999443228412526`, 0.06846580871327398}, {13., 0.}, {
13.000043504705529`, -0.05765938849402236}}],
LineBox[{{14.999956495294471`, -0.05765938849402236}, {15., 0.}, {
15.000004634939847`, 0.06846580871327398}}],
LineBox[{{16.99999536506015, 0.06846580871327398}, {17., 0.}, {
17.000000341467334`, -0.05765938849402236}}],
LineBox[{{18.999999658532666`, -0.05765938849402236}, {19., 0.}, {
19.000000034774548`, 0.06846580871327398}}]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQIBZM0HgpD2E98GeARU4iLgGAtGS/RAuhwOq
tIDD2bcB7Fmne6D6RNDkJRyeeC7+25jeAtUvgyav4DAzwuDRFaEmqH4lNHkV
ByV1mzCZd41Q/Wpo8hoObyQttn3ka4bq10KT13H4qVEn/tyiFapfD03ewMF7
9/KP//M7oPoN0eSNHBZahOxtutMD1W+MJm/i4PXkVK170kR7ANUuNpU=
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQIBqkXXuD6uW2EN4H+wZUIFDhv7CvS3fJu2H
cDkcUKUFHC6UWfeYeS2C6hNBk5dwiHeZ8I91yUGofhk0eQWHgzdMkle5PIXq
V0KTV3EIYyiZ92s7zwEIXw1NXsNBSfLoNNdjJlBxLTR5HQe7Yq+/y2riofr1
0OQNHGYf+6l9aU0HVNwQTd7IYcOE3HTdq5uh+o3R5E0cBKK/5+U4PXAAAH00
Nvc=
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQIBqkXXuD6ta7CG8D/YMqMDhwctrfzZ4VO6H
cDkcUKUFHNQelSp6rZ0K1SeCJi/h8PBcg9D8qYeg+mXQ5BUcDjZFv5776jNU
vxKavIrDui5Wo73P1Q9A+Gpo8hoOuw77PefYFwcV10KT13H49a2quGDrFKh+
PTR5A4fD+7d8unrzDFTcEE3eyMHOedG0s3NYDkL4xmjyJg5OEu5hF7jsHAEM
rDrT
"]]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 20.}, {-0.05765938849402236, 0.06846580871327398}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"5", "25", "100"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.800165830257352*^9, 3.800165845681493*^9}},
CellLabel->
"Out[260]=",ExpressionUUID->"a28c4daf-3f54-4f9a-97d8-2b1e8d1e699c"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["UHF", "Subsection",
CellChangeTimes->{{3.800165669367613*^9,
3.800165670359085*^9}},ExpressionUUID->"48603b7f-3465-4809-a221-\
f1026896d00c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "20", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"0.1", ",", "0.5", ",", "1"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"0.1", ",", "0.5", ",", "1"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8001094907543383`*^9, 3.800109526125827*^9}, {
3.800109579514345*^9, 3.800109579986498*^9}, 3.800253496652095*^9},
CellLabel->"In[90]:=",ExpressionUUID->"c4ae8476-8ff5-4521-9b44-cde2c45daedb"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{0., -566.6666666666622}, {1., -679.999999999581}, {2.,
1356.6565170833087`}, {3., -339.7970804500349}, {
4., -33896.27098462859}, {5., -3.5184175427242536`*^6}, {
6., -3.50943423095894*^8}, {7., -3.4992501764816315`*^10}, {
8., -3.489229431055671*^12}, {9., -3.4794267944377856`*^14}, {
9.015193793187864, -8.698566986094468*^14}}]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBWIQDQNzn1fOe175zh7C+2C/Pff2ttzbYg5QaQcGFMCB
xhdA44ug8SXQ+DJofAU0vhIaXwWNr4bG10Dja6HxddD4emh8AzS+IRrfCI1v
jMY3gfMBpzsTvw==
"]]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGAQBWIQDQOvK+c9r5z31h7C+2Cf2CX1cwbLLhuotMO5Dhuf
r/XH9kO4HA7PZjvNVhA+sQfCF3AwVgxr233yDFS/iMME09xcphnnoHwJh8RL
S+T90rdD9cs4lF508I/XvgvlKzgIljpo3Dp7HspXcriqcVv6fPljqH4Vh9hN
CU5cKR+gfDUHppN77x5dexGqXsOh3oyhUf8m0wEIX8tBoOL0r197fkLldRy6
74j/Z8vgcYDw9Ry8fUSmLc6RhvINHOpjPV2fqX2Dqjd00PPa7pm+0wBqnpFD
zhnrV4GrNKF8Y4cC85LNXtJWUP0mDm1nyhaeLPR2AAAbtV2s
"]]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQAC9UCDY2ngAwvtgP+vj////7VuhfAYHvxXM
bguMpjpAuBwOT4Xyrh+wKYXKCzhs+PJ8NUfvAyhfxIHlb/nRF9e9DkL4Eg5N
PRL7f7zaAuXLOHxZyJmR561wCMJXcIir5bA3Su6E8pUcNKd8r7E+/hnKV3F4
0sJ4sPFi3GEIX82BUSrxMgfzCShfw+E7q1rpqq1GRyB8LYeQf65pZRpzoXwd
hzYTjscXd7AdhfrWYf8ut+kyWwuhfAMH3Z4ysdMzb0P5hg41zX91eJtdj0H4
Rg6m4p61GUc2QPnGDv+/WlVtVpY6DuGbOMwuEE4PS2g5DgC/3GG6
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQIC5zyvnPa98Zw/hfbDfnnt7W+5tMQeotAMD
CuBA4wug8UXQ+BJofBk0vgIaXwmNr4LGV0Pja6DxtdD4Omh8PTS+ARrfEI1v
hMY3RuObwPkAsPcTwQ==
"]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGAQBWJGIGZiQIDXlfOeV857aw/hfbBP7JL6OYNllw1U2uFc
h43P1/pj+yFcDodns51mKwif2APhCzgYK4a17T55BqpfxGGCaW4u04xzUL6E
Q+KlJfJ+6duh+mUcSi86+Mdr34XyFRwESx00bp09D+UrOVzVuC19vvwxVL+K
Q+ymBCeulA9QvpoD08m9d4+uvQhVr+FQb8bQqH+T6QCEr+UgUHH61689P6Hy
Og7dd8T/s2XwOED4eg7ePiLTFudIQ/kGDvWxnq7P1L5B1Rs66Hlt90zfaQA1
z8gh54z1q8BVmlC+sUOBeclmL2krqH4Th7YzZQtPFno7AAAlcV2u
"]]}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.011000000000000001`],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 20.}, {-8.698566986094468*^14, 1356.6565170833087`}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"0.1`", "0.5`", "1"}, "PointLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.011000000000000001`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.800109494994781*^9, 3.800109528189102*^9},
3.80010958226656*^9, {3.800253718955738*^9, 3.800253741442696*^9}},
CellLabel->"Out[90]=",ExpressionUUID->"1c6e8190-7223-40f3-8949-ab439c131a22"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "40", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"2", ",", "3", ",", "4"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"2", ",", "3", ",", "4"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800109556825058*^9, 3.80010956071819*^9}, {
3.800109591699143*^9, 3.8001096437725487`*^9}, {3.800164857983986*^9,
3.800164858234408*^9}, 3.8002537535705338`*^9},
CellLabel->"In[91]:=",ExpressionUUID->"01d01b7c-1d1b-4a07-a039-89526629b6fb"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{0.9985374746638144, 0.0007176603119155075}, {1., 0.}, {
1.0583131722448809`, -0.001110650994099218}}],
LineBox[{{2.941686827755118, -0.001110650994099218}, {3.,
2.3292585176397447`*^-17}, {
3.145085932961596, -0.001110650994099218}}],
LineBox[CompressedData["
1:eJxTTMoPSmViYGBQAmIQ/XH1vT6txfIOi/Nn5WQYBe1nAAMFh9vbwg3brQKh
fCWHCZY6zTl67lC+igP/BplVaw4ZQvlqDhf++EzbqSgL5Ws4fGMtkTLU57CH
8LUcbpcxlEjelIHydRyKD1R88dJShPL1HOxMTLtyDGF8A4ejBkJti+1h6g0d
ojUE2w3XikL5Rg6eJntW2O3lgfKNHWzOmfQkyDFA+SYO63K+FIlKvbSD8E0d
uq/cuSwRv3sfhG/m8L5WvfdW3BMo39wh6W721ao1b6B8C4eGaq6aGrF3UL6l
Q5bLknstPK+hfCsHi61rZ3ZPfwrlWztcvptkbZV3D8q3cbg9K+bDO5tLUL6t
w4MPP73E5+yH8u0cMmbdv6/5Kw7Kt3d4lxacm8W4BepeBwe2s+niSR/2QfgN
Dg4qW/OvnxQ5CJV3dKg5Z7eV4+V+qLyjQ+lE0xhv/11QeSeH+BnP1/cbb4bK
Ozm077rqVfZnOVTe2cFE79/Dqa3ToPLODv6HDLJVOlOg8i4OFRsz5eti2vYB
AEqHmtI=
"]]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{0.9976739498572004, 0.0007176603119155075}, {1.,
1.3292466145172292`*^-16}, {
1.27542381828411, -0.001110650994099218}}],
LineBox[{{2.7245761817158787`, -0.001110650994099218}, {3.,
1.9631154590505834`*^-16}, {
3.3670605291512636`, -0.001110650994099218}}],
LineBox[{{4.715621858494706, -0.001110650994099218}, {
5., -0.0003495983185812037}, {
5.417473738613991, -0.001110650994099218}}],
LineBox[{{6.637601709830037, -0.001110650994099218}, {
7., -0.0005070669760737973}, {
7.616304275054442, -0.001110650994099218}}],
LineBox[CompressedData["
1:eJxTTMoPSmViYGBQBGIQzZSx9OKXYwoOi/Nn5WQYBe1nAAMlhyQV2Xd/WByh
fBUH+X2Nv3wz/KF8NQem020nv16ygfI1HCTrFty7vMgJytdyWPzTt1ppvwmU
r+MQNXnJsTorYyhfz8HaOMH8apUGlG/gsP/dZ8GSRTJQvqGD7o7Y+Rd7hKF8
I4dO0QcmwrWX7SB8Y4e3h/80eqY8gPJNHDbMue/8MFTQHsI3dWDI0D/9yZoP
yjdzaJljqXduhTiUb+6g8Eqt590MESjfwsFzUljhsRKYvKXD7BR1ldoQmLyV
A7+totPkRGEo39rhvcXjk115AlC+jUNBxu3TRlzcUL6tw10F9Xe/drBC+XYO
5399YHRZ9RfqXnuHHJM5S1eu/ALlOzh4vOXtVbsO9U+Dg4PSwjOPuEJ2QOUd
HQw8+Bl2pN7dB5F3dGBc8Pqd0PrnED6Dk4Nr3i6L7w8+QOWdHOKdTnH9//wJ
Ku/ssMCdRbN68heovLNDzdfINI9OKJ/BxUFjo8ZFiXmf9wEA5viYfA==
"]]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.009166666666666668],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJxTTMoPSmViYGDQBGIQHVtlcC/56Xt7A6/7J7Rb3O0ZwOADlIYDB+54t7Wp
hX77IVwOhzOcdtmKYm42EL6AQ/8VjilhPN5QeRGHWP4VPK/XskL5Eg7qiSIy
X2a6Q/kyDvOeX4prZheG8hUcVsdIaL80dYHylRzKNDnZZXokoHwVh40nXFcv
/uYA5as5pN7YLn6sSxrK13Aonn/L4sktayhfy+GMxZUIVm8ZKF/HIa9mh/UK
XzMoX89BZEFrf7I2TL+Bw+81dby3Qw2hfEMHrpNTK6Omw+w3cpAN2WZn8UMT
yjd2OOXEd8f0nwiUb+Kg9qKNh7NVCco3ddicI6IdcVoAyjdz6BGvOasBN8/c
4V+m8E2nAxxQvoVDZ/nSfQc/8UD5lg5xD+drKckzQPlWDhcmfltrL/prH4Rv
7fD27zPurLwPUL6NQ+ahy2ZBRw9A+bYOx8z5rms3HoPy7Rwm5HkoFnx/awfh
2zuUi2it+O/5AMp3cPjwTCZEWeEXhN/g4HBVIHrLcesPUHlHh9KUdwsvqzNA
0kWDo0P13LOLllR8hco7OeT/er3jiT0jVN7JoeGg+vW/fD+g8s4OVquqD144
A9Pv7JC4myk5IRQm7+Lw8tqZG1El/+wARXm2Dw==
"]]}}, {{
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGDQBGJGIGZiQIC6ec8r56Xft4fwPtgzoAKHTv+ahgcNk/dD
uBwOSf6Mvw7eqrKB8AUcJu1g5fkdVQ+VF3G4xtgftt4pGcqXcPCpVjcw+5QO
5cs4mJn+8D70IhrKV3C4vS3csN0qEMpXcphgqdOco+cO5as48G+QWbXmkCGU
r+Zw4Y/PtJ2KslC+hsM31hIpQ30OqLu1HG6XMZRI3pSB8nUcig9UfPHSUoTy
9RzsTEy7cgxhfAOHowZCbYvtYeoNHaI1BNsN14pC+UYOniZ7Vtjt5YHyjR1s
zpn0JMgxQPkmDutyvhSJSr20g/BNHbqv3LksEb97H4Rv5vC+Vr33VtwTKN/c
Ielu9tWqNW+gfAuHhmqumhqxd1C+pUOWy5J7LTyvoXwrB4uta2d2T38K5Vs7
XL6bZG2Vdw/Kt3G4PSvmwzubS1C+rcODDz+9xOfsh/LtHDJm3b+v+SsOyrd3
eJcWnJvFuAXqXgcHtrPp4kkf9kH4DQ4OKlvzr58UOQiVd3SoOWe3lePlfqi8
o0PpRNMYb/9dUHknh/gZz9f3G2+Gyjs5tO+66lX2ZzlU3tnBRO/fw6mt06Dy
zg7+hwyyVTpToPIuDhUbM+XrYtr2AQA9LbKw
"]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGDQBGJGIGZiQADWP/ve/9532R7C+2AfcXTqO16NxTZQaQel
WcX+aS0F+yFcDodbHwQU53mtgcoLOPiv3f6s72QGVF7EYfKukAjPl2ZQvoRD
oahTqNOZRChfxmFLnwLXtLkOUL6CQ/f1NNf2qAgoX8khSUX23R8WRyhfxUF+
X+Mv3wx/KF/Ngel028mvl2ygfA0HyboF9y4vcoLytRwW//StVtpvAuXrOERN
XnKszsoYytdzsDZOML9apQHlGzjsf/dZsGSRDJRv6KC7I3b+xR5hKN/IoVP0
gYlw7WU7CN/Y4e3hP42eKQ+gfBOHDXPuOz8MFYSGn6kDQ4b+6U/WfFC+mUPL
HEu9cyvEoXxzB4VXaj3vZohA+RYOnpPCCo+VwOQtHWanqKvUhsDkrRz4bRWd
JicKQ/nWDu8tHp/syhOA8m0cCjJunzbi4obybR3uKqi/+7WDFcq3czj/6wOj
y6q/UPfaO+SYzFm6cuUXKN/BweMtb6/adah/GhwclBaeecQVsgMq7+hg4MHP
sCP17j6IvKMD44LX74TWP4fwGZwcXPN2WXx/8AEq7+QQ73SK6//nT1B5Z4cF
7iya1ZO/QOWdHWq+RqZ5dEL5DC4OGhs1LkrM+7wPALsyuOw=
"]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.009166666666666668],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxTTMoPSmVmYGDQBGJGIGZiQICaec8r57mfsYfwPtgzoAIH7ni3tamFfvsh
XA6HM5x22YpibjYQvoBD/xWOKWE83lB5EYdY/hU8r9eyQvkSDuqJIjJfZrpD
+TIO855fimtmF4byFRxWx0hovzR1gfKVHMo0OdlleiSgfBWHjSdcVy/+5gDl
qzmk3tgufqxLGsrXcCief8viyS1rKF/L4YzFlQhWbxkoX8chr2aH9QpfMyhf
z0FkQWt/sjZMv4HD7zV1vLdDDaF8Qweuk1Mro6bD7DdykA3ZZmfxQxPKN3Y4
5cR3x/SfCJRv4qD2oo2Hs1UJyjd12Jwjoh1xWgDKN3PoEa85qwE3z9zhX6bw
TacDHFC+hUNn+dJ9Bz/xQPmWDnEP52spyTNA+VYOFyZ+W2sv+msfhG/t8Pbv
M+6svA9Qvo1D5qHLZkFHD0D5tg7HzPmuazceg/LtHCbkeSgWfH9rB+HbO5SL
aK347/kAyndw+PBMJkRZ4ReE3+DgcFUgestx6w9QeUeH0pR3Cy+rM0DSRYOj
Q/Xcs4uWVHyFyjs55P96veOJPSNU3smh4aD69b98P6Dyzg5Wq6oPXjgD0+/s
kLibKTkhFCbv4vDy2pkbUSX/7ADwirLK
"]]}}, {{
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.009166666666666668],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.009166666666666668],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 40.}, {-0.001110650994099218, 0.0007176603119155075}},
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"2", "3", "4"}, "PointLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.8001096024771748`*^9, 3.8001096511498632`*^9},
3.800164861572789*^9, 3.800253756112166*^9},
CellLabel->"Out[91]=",ExpressionUUID->"07f695c0-468b-4448-aaf8-8e1182a053ff"]
}, Open ]],
Cell[BoxData[
RowBox[{"5", ",", "25", ",", "100"}]], "Input",ExpressionUUID->"6f2ef4a6-63a9-4073-833d-ea7294b487dc"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "100", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{",
RowBox[{"5", ",", "10", ",", "25"}], "}"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"5", ",", "10", ",", "25"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.800336666340765*^9, 3.800336674819626*^9}, {
3.800353570953055*^9, 3.800353611264518*^9}},
CellLabel->"In[82]:=",ExpressionUUID->"023e28d8-3d5a-4abd-b059-fab3ba26fb57"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw90glQlHUYx/GVwmAwNILikiuhVVAEOYSQ/XEvCy7swsKSYGqSSbKIyiEk
LYjCME1IUESDICzhKDggoGaJrDBCupFxK2fKcpgoV8gVQ9k+2zvzzjvPfP7f
d//7vq/pgRh+pAqDwYj893x1XV3mfOk/M8my/vREZvpNWxbjv2OKrv8fOMpM
fXtn6nsNilENttEJja2j7i6KeQP23LLayq4zI9fGoPk6FcuM5tuKWRf9ZjUP
N/aZkhsi7/l4QkdWF7kJuGEGLavzJuRm6GEeP58nHSTfhAftjXrvv6l0C6gb
JsVURw2TM8HLFSbEORmRb8F8Za5O2dAouRU0uotPf8szJN8GK8vlI523npJv
x49JnT8UfaJPboP9FvHqx1QmyG0h2VNm6fa5LvkOmHqY7VlT+5zcDqvhwz4z
37xDbo+Fs61VFh0vyB2QWZex8OS6NrkjVA69tiH68CT5TiR7h8lXHmuRO2H6
Q66neorSnbF2x3bzEb23yD9AxUCyz/f6SndB/VE3+eM7muS7cG/Mfu+4r/L3
XXFoJNlx7zENcha8nmYvS95V7h9IDQvLb2arKVwMuC7Kzpife0buBuMVg6n1
bFVyN6T7Os1vkyqfnzsk1aVzxcdUyN3BX++8q7pujNwDNdPymdK8VcUs9sDd
lm6D7KQRck8kxRpnz15YIvdECSOCddxI+X690PSXqGNA4yW5F/qvTL2RX/kH
uTdMW57v39g9Te6Nk6WxS877+8l9oG+wtUBvlf6P2AdGvI64vqgecjaSRRHr
j2jSfsRsXMq5qM3Maif3hceZwPtfXRkg94XO6pO1klIZOQdXWQFLsnJaL+Zg
ssi5ZPZCI7kffoodm7JevEPuhwJzXeuDIXXk/ojwb2jUNkgn90dt2uHR1uav
yXeja1gWmTN901Xhu2E4Ee742TqJYmZwoaJVYYZHv5BzkS6aaA6yu04egIDC
pmcl7m3kAWBaXtWyKZWSB+KUr6qzjVaXYkYgRNYui+6Cu7Q+EL0TGkZtkz2K
WRqISdFsscjmHvU8XDtYxPti6hH1PORURXOTdv5KPQ+m9Xyn+M191PNwTi1j
IDfmN+r58Eork8xUkYOP+lZe/sLgA+r5qNQtObvynbLnw0H9Y6GM/Tv1QVDV
mmA4L/ZSH4Tq4SxrAYdcHIR90UFdN+S0P2kQYoNTEoXzdH9GMDiqg1n3RQ+p
D0a5WmEC+z7tTxyMfD8X7silbupfrc8sYBm3Ui+APLy/LPliJ/UCFMxxK26r
yagXwJBTPjea0E69AOPlabOSAnpfjBA07SsbCtxC+0UIVO1vnGyXK59/CNrt
/PI9C+h+0hCsMcmWDv3dSH0o1JjnHV50N1MfisbL8uqcsQbqQ9FwgFVotYnW
S0PBHVB9/aNr9D0xhHgZpV11c/PP1AvRm+jZxjpdS70QcW6Jf4aeqKFeCJ3j
8a6nBi5THwZZeqdmSlaZ6z/bWfVx
"]]}, {
Hue[0.9060679774997897, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[{{0.9963601687517281, 0.00028571592015824964`}, {1., 0.}, {
1.807275459850174, -0.00031163425191261976`}}],
LineBox[{{2.192724540149824, -0.00031163425191261976`}, {3.,
4.054306705992559*^-18}, {
3.798942768233984, -0.00031163425191261976`}}],
LineBox[{{4.19545471867846, -0.00031163425191261976`}, {5.,
0.000011180628960647007`}, {
5.836512132152809, -0.00031163425191261976`}}],
LineBox[{{6.159038857397481, -0.00031163425191261976`}, {7.,
0.000021976097128404706`}, {
7.920844403198603, -0.00031163425191261976`}}],
LineBox[CompressedData["
1:eJw1lAlMVFcYhV8BoejQYFhGhJR1GCpi0LJT4bDDDMsswIxFGqOhqUSgJiCE
adOHVBTBAdHUpom0YtgaJLVjXBCGETNgDa0sgYxiUjEOUgsMS6ESti7vn5e8
vNx899x7z/n/+zyPFsnyLBiGyf33/e9rfdsYeUnogRnllT8/PhHUy/z/eOGl
Z+vqAp+J5sY+WK3NiWmYP0DcF6sF15P69BbE/fCbd7JcVBJAfA8aZLdy3dfM
fC9e58Zc1vN8iO9DffsxS9WX5vUDca1ryjF2xZH4fgh0Kl7TxkoUNz6Aw3Nb
09qbf2i58Yd47noy0ZZ9STwIZZq29O4PbGi9YLROKcRfbBlofggmZ+4UiQKc
iYci7cI70n67ZeJhiDyjGxMOuxIPx2l9XcBFCUPnicCi91C/c6Yb8UioRyMs
oj+1JP4ROixU6k7fXcQPYvgTgWDawcyjsFSdUq9NsScejZz6mu/djm7S/oB8
oshQePct54cFdpZl97gcnyceAw+/UdvguQVuzMYgY3CwOV/URf5jMftqfGhx
dQe3HxuLqrpufyftX8TjMLxxoXFtnPJl4zAf4hU2oDHXJx62KlGlx1s+8XgE
TokfPxS8SzwBdvc0JaFGZ+IJqNBP/v5TgS3xRBjylMaoX3cST0RCS2Hn8Ow2
4kmwdngQ2mRLebBJ+KFRk3uud43Ol4xL9/NDgub6yH8yNCtvPk/5e4R4CvLm
tNuvdtB6bAq8Xzze+PqEuX4ijGpmnKqLHYiLYEgwRlRZ2VD+YoT6t03FG6k+
rBj8yLatizx74qm44WITmuS0m3gqWs6eFnqayA+Thveauu6FNVL/sGk4WPko
we+MWZ+OcP2uuq8e2BFPh+rc9Nmnxeb9M3Cyo0zVvG4ifxn4Wazc36Ay11eC
tO9at12voX6DBMVd9+NGzlP9WAkM0oAFjDlwXCfB6LqoqfMpj/KVovZuTvdY
nRvppZCfOhLXtOBE55HCKnJHeIfCg/RSxCzNb/e3Jr+MDMyTRcWcqzvpZZg5
MuCvL3MhvQwdK6jZ+pH6QyfDHt6o0P0Z5c3I8dlajjikxJr0ctze6Lt5SG5J
ejmkd5YflZYvcH50ckTJX7SfCpol/5mYcDVcOa525OYjE+X9aqvS5+Z+ysRh
/g1NYrAnx3WZ2AobqmBS36d8s8Abce989Y2A9FlQtUtWTL7epM/C6qydKT/X
l/RZeJZW2LA8SZzJhrSs/NtKG2/SZ6PKV25x6xfKi83Gsfmemlo1n/TZaPYq
kJauUz0YBfg5+a/XH05z/qDA2NLVlmv+A3RfFdhkB7VCId0/nQLMcn1ghZDq
wygx02USnHcQUH5K7GvteRNk8KH8lHhSnWhUy+j/qlOiwKvHfjNrL+kPYaJy
3LS7PLD3H7OFt2g=
"]]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[{{0.9903084569159696, 0.00028571592015824964`}, {1., 0.}, {
1.326083729336946, -0.00031163425191261976`}}],
LineBox[{{2.6739162706630517`, -0.00031163425191261976`}, {3.,
3.121567360498637*^-18}, {
3.691376629053754, -0.00031163425191261976`}}],
LineBox[CompressedData["
1:eJw1kntIU3EYhteWzhRMc86mHdPUoZa6Nm+ZutfpvGx2mQnaQqgwjDDNtPBC
sbIowwIVWUHSH5I6KkukzJTENCzRMsXEkkBSSaZpzqGTxbrs24HD4eE93/N7
P87xPVmYcYrNYrEi/97/nhu94rvzjCsWsrV6dX54D+v/xQOntujKyIyD1Mrb
sTjx3Mhu8yTegRgnXZ5aNR9vZR+8SBCVT6j8KN+Fi4qn4etaO/L5w2uqqKxF
7k4shEI2MnuZGX1t5UBsmmXae6d5lAcjL4vpveHDJd8evL01v2ou4xGHYmdm
bF9HwCTNi+A1WNNVMGp7fy82h3ksvFdtIZ8Ysdypl4zS5pdgSCj6ndi4Sv3D
oZtmxKZLRvJFoMs1mOM96Ui+SPhfMJScHXAjjkKzwa4mop5DvmgEdcu+CrTP
aH4fHqTMLH3UOlIeA31BRHxpwTbi/egaEZxwMTmTLxbLY3XqTrGR+sSh+NGH
h1KVbZ94nFkOdG77vJVYCnVu04rEhU8+oLZivHHYnfpogMHv9+rHD1uoTwJW
s/imQ7sdKE+A0OvIitaVIZ8M05Y5buUSfW+NDMcN3iLl0ifqkwhuy7cNJ4HZ
yppEVL/zGzr3xZfOT4JO2dp2p5321STBPudgVTWfTX45zIWmDjfFmLWPRo6j
DfnyxVx/ypPh0ePZ/mTAns5Phv0bpeb+um2/FBStDenWmn/RfAp+hLAzFnMC
KE/FK58KQVT9GuWp6O5vCFLE2fxpmCgNaGqqY5E/DT/N/f3ZY7b/VYEDwrq5
vqt6mldAPnwsOjAzlPxKlHHC1iWVLNpPCdX14tbbVQzl6eBZegyyEBfp4/Iq
yej5dISdLrl5rVMs/QOWXfg8
"]],
LineBox[{{57.084251887973565`, 0.00028571592015824964`}, {58.,
6.259461439580674*^-6}, {59., 0.00004052672957553674}, {
60., -0.0001171424139238942}, {
60.73117841677291, -0.00031163425191261976`}}],
LineBox[{{61.163147499884865`, -0.00031163425191261976`}, {62.,
0.000055149971378114226`}, {63., 0.00006909938210024871}, {64.,
0.00016709863727960725`}, {64.4496408543024,
0.00028571592015824964`}}],
LineBox[{{65.2446529206316, 0.00028571592015824964`}, {
66., -0.0001625384628632251}, {67., -0.00021477388657191755`}, {
68., -0.00019168113747794406`}, {
68.49117953143129, -0.00031163425191261976`}}],
LineBox[{{71.45168339084724, 0.00028571592015824964`}, {72.,
0.00016285702073374356`}, {72.56938657322297,
0.00028571592015824964`}}],
LineBox[{{75.48790177583287, -0.00031163425191261976`}, {
76., -0.000045471887266415245`}, {77., -0.00024334401266638513`}, {
77.52578251964206, 0.00028571592015824964`}}],
LineBox[{{79.47067899916952, 0.00028571592015824964`}, {
80., -0.00019932204504325581`}, {81., 0.00002439736642619432}, {
81.33138820734185, -0.00031163425191261976`}}],
LineBox[{{84.9409865206198, 0.00028571592015824964`}, {85.,
0.0002655419217942526}, {85.02295073120746,
0.00028571592015824964`}}],
LineBox[{{94.77817757849795, 0.00028571592015824964`}, {95.,
0.0001227487345523969}, {
95.14470817168518, -0.00031163425191261976`}}],
LineBox[{{97.83319409742595, -0.00031163425191261976`}, {
98., -0.00017768552301513854`}, {98.69070124352909,
0.00028571592015824964`}}],
LineBox[{{69.16413344402102, -0.00031163425191261976`}, {
69.9531574814358, 0.00028571592015824964`}}],
LineBox[{{73.10255846446596, 0.00028571592015824964`}, {
73.76190470904115, -0.00031163425191261976`}}],
LineBox[{{83.34605128475691, -0.00031163425191261976`}, {
83.7711040819075, 0.00028571592015824964`}}],
LineBox[{{87.24037758832016, 0.00028571592015824964`}, {
87.54555728306983, -0.00031163425191261976`}}],
LineBox[{{91.09148264034602, -0.00031163425191261976`}, {
91.32880248919469, 0.00028571592015824964`}}]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxV0nlQlHUcx/EFw2AwMILikishFBRR7pD9cC+HC7tcS4CJSY4ki0AcQtKC
KA5/iIRFNAjCEo6iAwpqlsgKAyQbGbcCCwnLYYJcIYIxpLPfnabfzPPHd16/
9/P89nnW+GA8N2YDg8GIeX0pvL4UGf+tUcmb1cKUTXNMxv8XjplnveeQ9WGj
bFTG7rjUpo4JN2fZvBkRdy13sOpNyDUxbLpJ0SK39Z5s1saQyY1HWwaNyfVx
fmYqtTuvl9wI7HC9tvVlI3IT9JsnXTgvGibfioddTTofvSN3M6jop8fXxo6R
m4NTyEtNdjQg347lq4ValSMT5JZQ7Ss7+R1Hn3wnLC1eHe25+5R8F35K7/mx
9HNdcmtEm6WoJCpOk++GMKLSwvUrbfI9MHY3iVComyG3wXrkmPfCt++T2+Ll
6Y4as+7n5HY4U5/7cvSWJrk9FA9v2Bx3ZJbcARle4dK1Jxrkjpj/hO2hkil3
J2zcs8t0XOdd8o9RLcnw/kFX7s5oOOYqfXJfjXwvHkza7p/ykT/fBYfHM+z3
J6qSM+H5NP+V8AP5+YGs8PCiVpayzAWAy4r4lOm5Z+SuMFzTm1NnKZG7IsfH
cXmnSP7+3CCsrVgqS1QkdwNX3Wlvbf0kuTtuzEsXKs6vy2aBO1ra+vTy08fJ
PZCeYJi/eHGV3APljChmkoH8+3qi+W9+t0T1Bbknhq7NvV109U9yLxi3zURv
6Zsn98LxioRVp+ghcm/o6u0o1lmn3yPwhgGnO3kwtp+chQx+lPpRNTqPgIXL
BZc0zfO6yH3gfiqw/ew1CbkPtNZHNworxOS+uM4MWBVX0X6BL2ZLncoXLzaR
++HnhMk5q5X75H4oNtW2OhRaT+6PKP/GJk29HHJ/1GUfmeho/YZ8H3rHxDEF
83dcZL4P+tOR9l9sEspmBhuKGtUmePwrORs5/OnWIJtb5AEIKGl+Vu7WSR4A
c4vrGtYVIvJAnPBRcrLW6JXNCATfynnFLaSF9gdiYFrVoHO2XzaLAjHLXyzj
Wz+gnoObh0o5X889pp6Dgpo4drrDb9RzYNzAdUzZNkg9B+eUcyWF8b9Tz4Vn
dqVwoYYcXDR0cIpeDj+knour2uWn176X91zYqXzGE7P+oD4IShrTDKeVAeqD
UDuWZxXiSy4IwoG4oN7bUjqfKAgJwZlpvGW6PyMYvkrDee38R9QHo0q5JJXV
TucTBKPIz5k9frmP+jf7zxQzDTuoD4E0cqgy41IP9SEoXmJX31MWUx8Cfd+q
pYnULupDMFWVvSgspu/FCEXzgcqRwO10XoRCyfb28S6p/P2HosvGr8ijmO4n
CoWCUb5o5J8m6sOgbH7B7nlfK/VhaLoirS2YbKQ+DI0HmSWWW2m/KAxsidJb
n96k/xODhxexmjV3tv1CPQ8DaR6dzJN11POQ7Jr2V9iXN6jnQSspxeWE5Ar1
4RDn9Khl5lW6/AuGk/Mt
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxVlHlMVFcUxp8sIgINlmVASFkHUMQghWEVPnYYGGBmgMEgjUtoCimgBoQw
Nh2gomwD0qY2TaUVw9YgqQ6tiiwjBrCGVpZARjEpGAeoYaeghK0m70yavuT9
cfK7373n+859z+5Mjihdm2GY9PfvnvevFvPfc+m0Relpi/YgtloKYv7/wLT4
gqAi1reHLfeBF9qmLb0rCmBrY5y7rvMDp0bDTfHhZNly1YWZQLa2QEZGgEQl
9yFujZpynvqQwVvitvDQ/VWvUMAjbo9Xdk0byxyG+nDERmVqcO2SB3EnbGTd
iuzt0yLugj8dosT8PDfih1Erak+z2dTwI5hJC/6mz9CR+FHUtJzVln6h2d8d
NzumTUPWTYkfA1cpNazfXqf+PHByYXe2+87f3Wz9MV5anY/Ql70i7okCRXNc
5yE92s8LTdOSmEu7KlrPw9TcvRy+mzlxbwiq9gj7jdaI+8D/snLMediKuC+K
+6rdriUw1I8fVhyG+s0TrYn7Qz7qpxX0qTbxALRqSeVtThbEj2P4Ey531kTD
A7FaFl3THW1MPAipNRU/Wp/ZofMB8USOKvv+O9aPDDhQkNxlmbFEPBi2LqP6
XgvLbC0LRvzgYEMmv4P8h2D+9fjQyoYBe54sBKXVna5m3f8QD8XwdlXd5jjl
KwvFEs/eZ0ChmU8Y9KX8Ett3HOJhcJ+OefqYu494OIweKPK81ebEw1HUN/XX
L1n6xCOgSk9RB/5xgHgEwhuz24bndYlHYq/JI+96fcpDFomf6hRpV3s2qb8o
fP0wk+e50Ev+o6BYf3Mu+u0I8WikL3Tvv9FK+8mi4TD5dPurzzXz42NUMWdW
lmtCnA9VuNqvVEeP8o+Bt2vzdJia5iOLAce/efeaoTHxWNy21POONDtIPBaN
V4qd7RbJDyPAB/UdD3zq6P7IBDhe8iTc5bJGHwffPovqLx8ZEY+D9Orslee5
mvPjcb61QNqwtUj+4nE3JuVYrVQz3wQIvm/SvVVB9w0JyO14GDpSTvOTJUAl
dFvGmAnLlQkY3eLXtz03pHyFqLyf2jlWbU16IcQXT4XWL5tRP0Lo+Bv4tkps
SS9E8OrSfte95JcRgXm2IlmwsiG9CHOnBlz7CixJL0LrOip2f6b7oRThsOGo
s80LypsR47PN1Bhe3l7Si/Hbdu+dE2Jt0oshvLf2JL9wmfWjFCNQPNly0XOe
/Cdiwkp1PUNuyq5HIgr75Tr5LzX3KREnObcVEV52LFcmYtdnqIiJ/YjyTYLh
iE3b62+5pE+CtCVhfdHJgfRJ2Jg3WsxMcyJ9El4IsmvXpogzyRAWFH5XoudA
+mSUOom12n+nvGTJOLvUVVEp55A+GQ32WcL8LZoHIwEnNXNm6/Es6w8SjK3e
aLzpOkDfqwQ7ssFuZ2f6/pQSMGs17kXONB8mBXMdi9xyEy7ll4KjTV1vPFWO
lF8KnpVFqOUi+r8qU5Bl32W8k3SE9CcwUTK+eLDQvedfVO7OQQ==
"]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxVkn1Q03UcxyeLh4SIJ0GE4RCYgPIMArKx94YD3ED2BBt4XGTQtDOQLNNQ
nHocSVABLZIDKTlQMg3ijBITEAojRBSUNM8kBSJF0EECwZF3++y6fne/P973
+X1er/f3u7lvy5FnMRkMRtbzd9nz14Tx32Npp4gUBB7nG9IUn/H/Bzs7/Bfv
S5PaDNEC5ZqqxoqeBK4h22DX+4NsXhGP5g5gluUe6n9gQZyVmBg6N2PStIqy
KzZaNmjSZOPRhszGt4LA94ZkHjRfgz3ir0NnK0yJ5wmXO7n7TolWUOZALOwf
yWddv2jI3lg2wmruGHaguS80KlZHIduceOvxY9H49MI+B8r+WK3kdrZ43aL9
QLj0lLZmXzd+H4QXApwe/Sx7kXjB4Jrf+Y4lMfJD0MsJXIypnab+oWgYZgXP
HZghXhhabX2ZbreWE28DPN/Rv/1mtz3lcJzUm5aG6ZjEi4DPBeFvzhWNtB+J
mrgHk1crltN8Ix5mh0XvzbajHIXWfudXbeasicfF1EB52vfBM9SHh92n++r4
MuN5ovHGlLd1082XKfORlln/NMTGkXhAWd6N2isrqI8W6Ll/THdDukR9BJhW
Oc4lrbOguQAcF8XTClsW8YQYXho1PzJJv7dWiAy9W6Bk8hr1iYH5qbvzls4L
hqyNQfFlj95dt93JvwkNkrNNHzbTebWbYJa+5WixownxRVjImWuxFw8Y+mhF
SK3eKZrI9KR5LJzaVjWf6TYjfyzMLkm0VbPG88Uh91lvw7OTT2g/Dn/6mcgn
0r1oHo/z7DzncN0zmsfjQle1j5hn5G/G0F6v+vpyBvE34/FCV5d6wPh/FSOR
Uz7aefgh7YshurI1wlvpT3wJ9jEDZkOOMOh8EsgKdp8tOcqieQIcltr0Qj8b
4icgrF7hfm97KPET8bGq9ZSl4DbdXyKk70YNaPimNN+Coqg7ask5N+JvQU/j
1Woz10jiJ4GxsOPTVX9ZET8JH5Skq/1ZdrQvxXVZavroqJchQ4qCz5zG0nhc
+l6KELNLnX8k0n21S5Hzk6C2mrOe+DKM6P/Obl/tY8iQgVdz2p5VyqU+Mvx6
oiMo3yrMwGuXgdmisd+/NZL8cjCzHq0tVxv9crwembAnoz+C/HKETNb9/mWc
gPxy/LOh/d6OAiH5FQjOFnPWDJmTX4HiET1HNBJAfgViH+ft/2QpnvwKvDbP
Xnc5P478Spg/yVR6sH1pX4nCQR+Bm26O7lsJi8rG4xc3SMmvhKv14PYuLzH5
k2FS4zcbOhZD/ZOx54ev7r6kCaL+yYixzBqsapeTPxll4YX8093Uh5GC+7UW
B+fPKMifgpLKgIPXwmOofwryGNygyjo5+VNwabxP2NdB98FQYezAztkI/wzy
qyCb5dW+Ep9AfhWWf/R5vm4l5XYVFn+5e6zTkU1+NTTf8N/q1mnIrwavINt3
my2dV6vGYeZmUw/xWvKrUXWz1+qQD2g/FQ5fCM6fYOfw/wWuo8As
"]]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}, {
Directive[
PointSize[0.007333333333333334],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 100.}, {-0.00031163425191261976`,
0.00028571592015824964`}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"5", "10", "25"}, "PointLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}, {
DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}]}], "}"}]}],
",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.8003366789859247`*^9, {3.800353598477137*^9, 3.800353623329397*^9}},
CellLabel->"Out[82]=",ExpressionUUID->"b9511137-4c18-472b-a1eb-141f33a303fe"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"N", "[",
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]",
"2", "\[RightDoubleBracket]"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "0.", ",", "n"}], "}"}]}], "]"}], "//",
"Normal"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "0", ",", "500", ",", "1"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"{", "2", "}"}]}], "}"}]}], "]"}], "\[IndentingNewLine]", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Small"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "2", "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8003364982498627`*^9, 3.800336534217531*^9}, {
3.800336588980377*^9, 3.800336589450761*^9}, {3.800336716886891*^9,
3.800336718591433*^9}},
CellLabel->"In[86]:=",ExpressionUUID->"dbe23c91-059c-4b34-a730-981ae080f005"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{}, {{{}, {}, {
Hue[0.67, 0.6, 0.6],
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[{{0.9999999999999999, 7.514748073736528*^-17}, {1., 0.}, {
1.000000000000005, -9.830101724741988*^-17}}],
LineBox[{{2.999999999999994, -9.830101724741988*^-17}, {3.,
2.3292585176397447`*^-17}, {
3.000000000000016, -9.830101724741988*^-17}}],
LineBox[{{157.207370910211, -9.830101724741988*^-17}, {158.,
5.2454438444928065`*^-17}, {158.17566808849583`,
7.514748073736528*^-17}}],
LineBox[CompressedData["
1:eJw11Hlczfkex/FjG2TLnv00dpVKWrTwHobKVhKy5Wi0aTv72jmdlMwInSmi
GcaRLcsoKSpbhzTZo9HCREipaDEqS3Hd+/3c/unxevzO7/v5PL/n8TimfhFe
/l05HI5nFw7nv/8tBV5elcc3YaTdh8LatD3OnP/+5W/C9we15nNsYllXbcKI
M7q0V+d4l/7XHH/s7vd7k9p4K2uuP8bk9c8MidvFGv6wwLC/2ww61jx/nB1T
YWobm8Ba6w9pQnZUmM121np/lJl99eg0i2Gd7w9Oq+fwMYky1lX++Nlu+vEo
+000PwC3bJrGzpk7he3HDcCAmb2SF/3DY40AhHmZT91xNZg1LwBff7hdOfRt
KGttAMbFWwbsPxTCWh+AmMrsS1sXB5I/AEV7byTbeW8kfwAGJTie7FmxgjUn
EMpJ+7c965hH8wMx+vH5O2E275zY/EDsnvjh48e/HMkfiLyKqlkZufPJH4hN
RwftOdDVnfyBWGlY19Xa1Y38gRAOHNs5/fqP5A/EPvOCPXzeHPIHYS+KV++b
M5PuPwjzqpdvtdg9nu4/CDvqLprIE1ousvlB8CvskPr3Hkr+IDzzCbhwzet7
8gdhVFhnlsfxieQPwoktnyorfKmrgmB3xfjfIb/Q5znBEC4/c69CMJr8wfCX
b/9Td30Q3X8wODbH900z6kb3HwwPF++xC/RP2P1og7F7yK38vPnNbD99MKTx
5zpcn31hnR+MmcfOWt663pX8wbh8w9L8Zik1ZzPexVSWJyZyyL8ZOydtvP+u
+CN7H5vxr/PdLg/9/u/fjKOmMTlJQS9YazfD060yqDzNQPM3Y1+RxZWOQ0Vs
v/zNsGxtcTJurWBdtRlPfa1iJs6vYs0JQVjr+f1b9NTcEIR+St5he7qSvv8Q
JAVeetEqKmPNC8GC8+0y3qhi8odg4Pz3zs/PG1jrQ+BgGethsuMIzQ/BSfvT
ut0DUtl+VSG40dfpatz1bNacUDgkNQve2F9izQ2FT2OR0Y+8y+QPxdrXcfHb
9uaRPxTLUvVhJ7zofW0oklaN+lBY+if5Q2FlszDx4Sc93X8o8v8ec257WhzN
D8WbvcP36W0V5A+DuV1T/U2LRPKHgeNbnDNato/8YbhwauFIfXsK+cNgFHIg
pLZiL/nD0Fr2EIMDksgfhrRFRffcU+PJHwb3N9mCRw5auv8w9HWZMevu+CCa
H44rT4tcdVM9yR+O0FsXV052CCd/OAz9K6Y8niEhfzgCOrOWZLRJyR+Om9ui
bzsG0XN9OOpju892SROQPxy9dv1uGJscTP5w5Jot6Tz62pfuPwJ2GTZPfEe7
0/wIHPhitej8WlPyR0D3urK/X6sb+SNwhvNHy8HVXuSPwMvGHR1/eniTPwKp
Z7OcRs1aTv4IGEpUNd8N8SR/BG5vGZzjk+5Kfj7md+naXLLBhbUxH8MLVx0a
fmoqfR98uOYWFvQYVp33v7biY95fbTahwgl0P3w8Tw+PluRasvbkw0meOrqt
zZruiw+BcNWeuB+p+Xy01JQu6bLQgu6Pj95yh9p5DRNZ6/j43X3MILsno+g+
+ahxLNu1sLo36ww+0ttSgu/4F7B98vkYvWrV3CtJHLZvMR/Xo+79vHVDH/Ly
sZhXJ1p0YwDrZj6GCIf9iJ7UHAF8B33iHjhjRH4Bfpqq02507U5+ASRZD1Mf
rf/kyPwChJmu9j5eXscaAtRsLVrvfC6PtacAv98Tuy2Nfcz24wlwMebrh590
taz5Avzw8rdlyUPesNYKsPOZpVVnVQNrnQDrtF92m3q8Zq0XIML9c+xPhhes
MwRonVso+lBXTn4B+uScEjXsucm6WIC1hp8DzXocYV0lwPa4Rxv7/p3F9msW
4KNN01quYwFrjhB/R9o6Lr1bxNpYCG5Ql5aefW+y5gqxZOLqRv3EQvILYXx1
/4MpqwzkF6KvSVWze/QF8guxwS5gRfjkE6x5Qvw5Pvdo3JpfWPOFWPhrkUVW
fQL5hXBNcem/Yckh8guROWbE2PcvjpJfiFEdPHtl1DHyC+H4Jdq8ypx8+UIc
LBMIcr/Tk1+INNWKRZ8nJJNfCHEfVbku+WfWzULsnJLUK2BXGGuOCCndRfnR
ewPJL0JB1mtOhUJNfhEWfMoXnV8YQ34RJjw/t22XTSz5RbCLjl7hwttCfhGi
0iPD4/bT+zwRus7fX/rPIzH5RVhiN/fqsAaap/12fpy5+EKAJ2udCAPCRXcK
1CC/CDOuac7c/ORDfhFWDDm5bPpnHvlFyDCYvxSb+pFfBHmd99TfLtLzKhHM
XspnW/isJb8IK9Pemwp3Lye/GJuUd++Gm7myNhajZFr81Rt/WLPmitGytl01
t3YI+cWYr+y/sKy3LfnF6Ot4rseychfyi7HV6K/ulvNAfjH2lSRf2S2dTX4x
tIfNG1xdZpFfjDrtpQ9dNs4gvxh/eNu4vl03ibVejGW66a+1UYNYZ4hx8VSN
xNT7VS7zixGbc6K2as9A8ovxW2rYqmbzkeQX4/7SMr9Xk8aQX4y2F37a3jmj
yC/ByldFyha34eSX4G72fvPDTnQeV4Iho40OfI7pQb9/EjzpNm/R6WH/svmQ
oP6X7Rm+FvpZzC/BlGNOS9vGvWXNk2D21qUuqbVtrPkSJJvwn5qO+sRa++38
JIdpf9p+ZK2T4J3s5DGlvJW1XoLvR+WVLZjQzDpDAhOTE9o5R6pZ50uQEPnA
2IhfwrpYgpQViqkbmnazrpKg/+gRV5xL/2L7Nktwdd2aYs/OEtYcKZ45LeBf
W1PG2liKxp1tndb1pay5UrSlv9/pf5M+byVFvEWJY7TtPfJLcV5sbXQx/zpr
Tyl6ZGskJ/acY82TYu2Dfc0xiXGs+VL4m60JLbA/TH4p3laWlNhsOkt+KeYO
qn+84WkW+aW4suKp4X4xdYYUGxYcub1xVib5pcie+uLwby6nyS+FbdnKRbVP
UskvxapteR2TdUmsm6VwPb4y13kRnzVHhpMvSwuMN2rIL0NOScomt8m7yC9D
39qeTb4HE8kvw87Zt61mvqKGDKcCC2vcCnXkl+Efs0nnrXjbyS9DguHW2lvt
0eT/1gMGttcGiFhrZehjcSbYyt+btU6Gnwbf+fef9avIL0O/pY+S3vTcTH4Z
nJRrbMv20v75MvhVbE2WjBeQ/9t5IYun2P0TTn4ZMr5fPVi7P4j8Mpis2Znd
e9hG8sth3FW7cDZ3OWtjORyexKk6s+1Zc+Uor8+Lrl9gTX455j/vnnVu3QLy
y5FxOiLuU+wS8svBOyxT9Tf2IL8cN53/3fJh/WLyy3F6TPjszBZ6XyvHiFtW
Oz7ag/xyNDw42ivFMIO1Xg7z4/r7KT4jWWfIv/0+N+7I6dKL/HKMT93lrB4x
nvxyHEvkO3Ntp5Ffjgk67W3fcebklyOw+o8bfv3pOUeB0A6ux0vfieRXwIub
7rn88ljyKyDzuzxQ7zGItZUCHh3j1MmbOhyYX4HSxTYe/e9V5jC/AqtTZxxW
2HDIrwC3NJ6XaN+T/ApsuNP4XWd4b/IrMCYwsN2pnp7rFHjQEL9r0stu5FfA
UOQdWjW0k52foUCrV1ah570W1vkK1MZbt/3aSPOLFbB0r59cvOg0269KgTeX
rz/pNvcJ62YFGpNOFe2PrWbNUUL6sdIu4WMNa2Mltvt4XIppfMWaq8SJJzKr
7eoXrK2UGFHc1/BKSedBiS0luv1Df3jA2lOJirB3l1N6XWXNU+LQ5LPpxdWu
bD++EpGr7yfUZZ5nrVWiYdtj88VDr7HWKeEWFjrcJq+AtV6JxBdLZoabUGco
kW7Zd/lICwP5lTD50Nht/dtc8ishN+/q8vhkBusqJcosHTw11w6yblbih0yF
tN3LnzVHBcsIH63VyUTyqzAzZfsPmYUHya/Cu7q384WnU8mvQnU5ZwbPnxoq
lGoG3i18Tp/3VGHYnC1LP4ftI78KF1c7GUb317Hmq3A9ZFtmv6Fa1loVzE44
P73g4c1ap8IRUVtTp004+b+dP7bnT2YPVeRXQT/v/X37O1ryq2DQ7MlveEhd
rEL3C7lWrxPU5Feh4MuAqc6dUvKr4NO1qe1DBZ3PicT4m+/Mb0/ksTaORP64
zPg/gpxZcyPhJ3Q3vd/gSv5IpLXXxOfN9SF/JByfR73aaeZL/kicfZz7IuUy
NS8StusupF/2W0v+SFif4DZs/n0F+SPxZU6PDTsTl5A/Ek17lo+9ZQLW+kgc
6VH59cyvpqwzIuHVzd16i//35I+ER/fMZ30H2JI/Et7Lfi7w7+NE/kgk5B34
+24/8jRH4pmdvJ/UZxb51UjbNjT7pNtM8qvR2TtnSDd3c/KrUdXrdHbQq3Gs
rdRobHcQtnt3Zw01Bm20Te038rM986sxvUfng9PTB5FfjRo/Xv0ZaxPyq6F8
X+e7JXEE+dXoZthdtChiOPnVeBCocOzsPpj8aoxCjH3DVyPyq5Ez7lTF7Iiv
bF6+GjGbYg2PdDWsi9XotcOs5pD+4QXmV2NwN4/e5TZNrJvVWDZivvXRfa2s
ORpMqr0wz8itnbWxBjtDhkTFHaXnXA2+lq6PdytuYW2lgXbaxMGhuXWsoUF5
lts159KnrD016JWxamr9iiLWPA3qo6odf4k8xvbja5BefcbjYNIt1loNdvzV
Ud3hWMJap0Gghu/bPu0Ra70G90cb3qs+0vMMDcIHbOm27mQx+TWY3NvIx0NW
RH4N+jx+kJbKvcK6SoPhC5tmdT13gnWzBhPqpnx9sFJE/igccg43/hJxjPxR
mJTaMqt88FnyR2H204q1wxzOkT8KGybZ3tEFZ5I/CgHvo7++nph+4T/tw8cH
"]],
LineBox[{{11.706670919267742`, -9.830101724741988*^-17}, {
11.706670919268845`, 7.514748073736528*^-17}}],
LineBox[{{20.880047848190326`, 7.514748073736528*^-17}, {
20.88004784820308, -9.830101724741988*^-17}}],
LineBox[{{30.023622714768678`, -9.830101724741988*^-17}, {
30.0236227149107, 7.514748073736528*^-17}}],
LineBox[{{39.186720694878176`, 7.514748073736528*^-17}, {
39.186720695724865`, -9.830101724741988*^-17}}],
LineBox[{{48.327381331956964`, -9.830101724741988*^-17}, {
48.32738133665666, 7.514748073736528*^-17}}],
LineBox[{{57.455175198158756`, 7.514748073736528*^-17}, {
57.45517522302706, -9.830101724741988*^-17}}],
LineBox[{{66.57430350325161, -9.830101724741988*^-17}, {
66.57430363046944, 7.514748073736528*^-17}}],
LineBox[{{75.68708081553525, 7.514748073736528*^-17}, {
75.68708145027725, -9.830101724741988*^-17}}],
LineBox[{{84.79495971184843, -9.830101724741988*^-17}, {
84.79496281887111, 7.514748073736528*^-17}}],
LineBox[{{93.89894690606395, 7.514748073736528*^-17}, {
93.89896188823539, -9.830101724741988*^-17}}],
LineBox[{{102.99977161694585`, -9.830101724741988*^-17}, {
102.99984299845765`, 7.514748073736528*^-17}}],
LineBox[{{112.13612938260889`, 7.514748073736528*^-17}, {
112.1365972413406, -9.830101724741988*^-17}}],
LineBox[{{121.26396531844671`, -9.830101724741988*^-17}, {
121.266115153064, 7.514748073736528*^-17}}],
LineBox[{{130.3832412949857, 7.514748073736528*^-17}, {
130.3930626097888, -9.830101724741988*^-17}}],
LineBox[{{139.47894573494008`, -9.830101724741988*^-17}, {
139.52359453793892`, 7.514748073736528*^-17}}],
LineBox[{{148.52868018834246`, 7.514748073736528*^-17}, {
148.73082030261767`, -9.830101724741988*^-17}}]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
GeometricTransformationBox[
InsetBox[
BoxData[
FormBox[
StyleBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}],
GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, StripOnInput -> False],
TraditionalForm]], {0., 0.}, Automatic,
Offset[7]], CompressedData["
1:eJxV13k01H3Yx/EpLZJKu4qiXQiJJOmTkpDIHmLsO8PYxzBSVBSR9kXSJkWi
0EaLaFWKJCXJWpK7qO7U03m+132e8zj98z7fuX7f6/Wbjk7yLoHm7mIcDufb
IA7n7x/OYM7//cQcbYs86vl2BaueFZz//4PtptGiJlH6TZbicDEd9LP8VZQO
aymkFQ+V/Nculs4noHZQinWeniu1NNYJ5qlq9npSy0BT47vxrXZ7ajk0XLZR
S9TeQD0TqUuV4v0WGlDPxph8mZzcW2rUc1H9a93eEnlZ6vnoGxoyVU1FnPZe
gIYwTsiUehlqJfDLIr4aLZCnXgjdxRo7/NT+a1XcVR2XcGLFf59Xg/38sYlq
5ydSL4Lh4mtndK9LUqtD5/HiZO50DvViXPD7Gjxxaocuaw0kPX9dI+109QZr
TXwWztv5yrGFeglcGn1fROV+pNaCSCARHT2pm3opfFZnv9ki2UWtDa2i8weS
9n2gXoaaRpdl2gFvqHXQcNChp1vnGfVyNPX8MJp8+Ca1LrwOvn2r8NORegW6
PSz8fQYV0r7AsEeek116brAWAbOLAuuqJpTT+UpEP9YtEu+4SecrEbpbw8HY
tJTO9eC0vy0vRf0SneshsfSFUdiv03S+CosX/n6XsXUvna+C6S1V39nb3eh8
NSIues+IcUhg+4lW497nouOmQ9JpX33Uymm/lGrOoHN9mAzrub9gBDVnDY4X
VSSuqtpN52twcVvj+sTsHXRuAM2AxmFT1OLo3ADSTmMEAfOD6Hwtthyessut
15DO16J8rI9o+2k72s8QRn2WalMXetP+hrAQNkl3TA2gcyP8jnPKEuT607kR
rs0SPtY6Tp/nGCOjaJLeoqOudG4Mj+1j1bOH/vf8dQiy7Bp5ap0xna/DLLG9
trr6inRugp8+juNnmKvSfiY4OqjQ6Un4Stp/PbYlX6y8VaBP5+vhnrj1VFUL
NccUDlESNl1rVtG5KeZbBLYaTtKlczN0Ljr3eGHQYtYwg/+7N+By59LnzbC4
ZlY+t02CdZkZIqy3jln0RYz224BhXs+T7f5Is8YGHLs26dCM+XLk2QDh6/Ub
U85Tl22A3sXfrhltsjRvjirZGVJ55ZNp3hxPp5iJwmKlaN4cscelbIbdGEzz
5jAWF/zT/KhjOZu3gJriB/excXXX2bwFRsfcMr6n18taZIEDZpbWrVnfWZdZ
QOOrybTdQ36y5lgi6dRwO/Nr/TRvCanXB12qlP6heUvkTxw8uEupi+YtcXtl
5ukf7W9p3gov9wQEXHavpHkrfFHjr85WPMv2E1mhzKC6zlziAesyKySlfV1a
JVtD+1tjw77H5l1nn7OGNSpnDzo1R5nORdY4GDSsaHH0E5q3xqbmhbzkaxU0
b4O72u2bT8ZdpXkbGOhbWBU3n6J5G+S0j6tz3hNC+9ugwF0v8KlSNu1vi11q
Ocfqx1yg/W0xbujAm7fZ+eS3xf2x7o8m+uXRvC1+P9pzY5V6Ds1vxHib8TIN
eidofiNWN4TmD+3dR/MbsWnw+5npjltpfiMk1581qeSX0b8fdnh8n3/npEoM
7W+HiY6nml+8TaT97aBt/HV3o0wS+e1ww+zX5hbxHeS3x5KzCt7REgk0b48r
5U9v2gtENG8P+aiDZVWDQ2neHm+XaZ6RbnWleQeUfBv5uYWvRPMOOF1/eF5f
ojXt74C0NLPS9imutL8DLnTLyl4x8CD/Jgy6oT3qyR138m9CBs/ghFqRC81v
gtdVp7JCngPNb0Jhr+fUybvMad4RrWVCbmysHs07Ylp58aH8SdI074jeqHsP
PuWp0v6OuDg92PtjiS7t74SV6U/eJPP0aH8naAhXKFy2phY5QafyzbOBgRU0
74Ti/M3Dthdq0TwXQQ8SWxQi6flyXIy8F2ckUJan53Fhozf/Yd3T3+z74nLB
r7BwPWIvTvtxcWbH6Lb1D2nfTC6aF5g+XV4wnbxczFPT2Tli8gzWTVwo+cXv
FkuYRn5nVHs4tBplTGQt54xk+I+Y6jyK3ocz+ous6grf/bnG7nfGz4Fd3Q3Z
71iLnCEdyll3xfYd2y/TGT11D7LDJb+yLnNGmXp+mlrOD9ZNzugeE/hYU/iT
/v65QKV2n+bCR/2s5Vxw5svzV0t7e1nDBXvzh0QmGneS3wVBRW61FWmNrEUu
GCS9MlJ91G263wWy++K5w0qvsP3KXFCd+9VXQrOadZMLXBTOpTtte8Ga44oh
0+e2IqeWtZwrVu/YKK2Q+5w1XDEjJ//opwKa57ri/ZHhWhmH7pHfFeIW2ROy
/K6yznRFbInxlAf1J+j+v5/37jzdrrOL/K54ZyJ5QFk5h/xuUE7Rbn8oU0B+
N/z2fDdLLOwS+d3QU1V/0G4onXPd0PXS5lTJ9vPkd0PfmIpEDZwkvxv++Bx8
p+J/gN6/G2YeEymtUN9C97thyoXUMx8uccnvjj2jDn0WSm0lvztkS0cX+Cbs
Ir87lDHpeV95KvndcVG2Xl5jSwr53RGWUhTrr76D/O6oU/xjOqAYT353cL6Z
TZZNC6f3745tmgtPxy5xo/s9cF/98/QVevPJ74Exi8X3Gr/mkt8D/uZKCsk3
vcnvgT8rHzRO/ORHfg/MSFLxOHzcl/weiG8surZ1nSf5PVC57+5eTUtn8ntg
XIp2zvB6K3r/noiaezjx7a9VdL8nZF5dfuiv3ruM3e+JPXO+//hxT5v8niit
b1qaX6JPfk+4nRyXcWSwIfk9YV3uMFjNYC35PRE8dvrAwturye+J/Up3Mnjc
FeT3wj5Ub9y/YjG9fy+sarHYqrxnFr1/LyR3XJWOSPlyld3vBZeKX2HuIyaS
3wtvbT2u3DKfSX4vTPMfKDQ9PYf8Xji7+WdjvSN1kxc0b0j9M2E7fZ7jjWCL
C4/rg2TI7w33iB3nU2+Po/fvDY766f0LJMTo/XvDdLnl9DWZDez9iLyxZ8L9
slL9HrZfpjfCki79Mnj7m3WZNxafuqhy//Zg8nvj+l0Vpapaao4PeuMbX6al
ccjvg51znZ/0Vv9g8/DBPzqPBj1z+c/vg5Py8cXpXs2sRT4wW9vo9fJMOd3v
g/2Vyjd+Ha9k+5X5QOXbl2VS3+pZN/ngjaNq/Bz9JtYcX/h/u3x4cya1nC/8
fu5N1shtpO/fF+me15q/8etYc32x5nJ/OHdaNfl9MVb/q867y+WsM32hpbLF
VDo5m+73Rc6S3NQ9Y7LYfk2+uCu57GbC7SLWHD9opfcEfVxyjbWcH2y7KyVW
c6+T3w/27QlJiftKye+HDVmZ/mfNaV7kh3Sbad8ras+T3w+q6kZpz35m0vv3
Q9lz2Us7ziTQ/X74uG/y/kyNSPL7Q0nzc2eVchr5/cFxrC6WCd9Pfn9cOWc0
NbP/APn9IeF7xLetfh/5/fGt7hnGe6ST3x9njCsfG2Ylkd8fhh+Lgl5oiej9
+0Ny+aKlj2Z50f0BuPGm0iBVwYz8AfC7f9V6nlYA+QNQPrp+/qtFoeQPgMdA
oUl+Xxj5A1CVGPdA24vOMwPQuWWI7vIzQeQPgPiuQ+XT93qTPwAliiYDJ9sd
6f0HQjNfvcFRxpDuD8SR36rGl+3lyR+I1PbG0S7f1pI/EBc4R78c22hO/kC8
707+dd7UkvyByLpYuGzaUgvyB6K8RtA6bIIZ+QPxYPP4Yts8A/LzoD9ocE+N
03LWUjxMrrA5PvmcAn0fPBiUVNwZOqml9H9blYdV9/rU/YJn0/vh4V1eQFxo
iQprMx6WRWTJ9PWp0fviISjYJiNhNTWPhy+ttSaDjJTp/fEwIkKrbVXXHNap
PBwylB2n2TCN3icPrdp1u4xaRrDO5yGv74D3Q/c7bJ8yHmRsbPRupHPYvtU8
3I59vG2r00jy8rCO28E3vjuGdQ8PE4InrcZwak4QHMf9lDtyQYL8QXBVSBU5
GwwhfxBCC59lvdj0U5v5g+Avv9Hy9MsO1ghC69bKTTqXSlmbBeHQ45C167e8
Yvtxg3A1/s9319Q21rwgrHx/cMPeCR9Zi4Kw862K6kBTF+vUIDiIfu+RN21n
nRmEQMN/t7iWN7POD8I3vQr+946X5A/CyOJz/K6MKtbVQbAv3+apODSbdVMQ
diS8cJZ8Xsj26wnCD/XP9nLad1hzgvE8WkN7/aNK1lLBkPMa9GW4ZBVruWCY
zNnYnTmngvzBkLp5+Ol8m3LyB0NSuqnHMO4K+YPhpOlhFTDvLGtuMM7PKjmZ
YLedNS8YRrsrlQs7U8gfDIMDy0c7mRwnfzAKZKdM/9p8kvzBmPaLuyQq9hT5
g6H9O06pSYl8ZcE4VhcUVDIsk/zBOCOwMv539l7yByNkpOBl6t5trHuCsXN+
urjHLn/WHD4ODOGXxe3zJD8fdwrbOfWRQvLzseZnGf+yUTz5+Zj97lLiLvUt
5OdDMy7Oajl3M/n5iM2LDkg4TPNcPgbrH659/SKE/HyYaOrdnNRF94n+Pj9B
KeSKhxnrVD7GBPAf3hGC/HwsuhVzoeqnLfn5sJqQs2Hhv1zy85FfrvQ+RN6F
/HxEdFgqHLxK5018KL6P0FW2tSc/H9ZnvsoH77Egfwjcoh49ClA0YC0VgpoF
STfvHlVjLReCL/b9Ar22CeQPgX7UaKO6ERrkD4Gk9qWhG14uJ38ItkrcG6Ky
CuQPwf6avTf2hOmSPwSiE0pdBsuXkj8EHaJr3wc5LyJ/CI5aqht8cpjLOjME
G1IXtotix7HOD8HVc62h8pYfSpg/BFuKz7Y1ZYwlfwgOZvnb9ChNJX8Inqyv
c/kwV5b8IehrdhGNKJ5G/lBYf6iM+rJ2MvlD8ajosNKJZfQ8uVBMkJE48m/8
UPr9F4oGsVXGuZP+YfcjFJ3bd+Q7KmcuZf5QzD+1bH3fjE+suaHQ3bp+eVZb
H2teKPZK897IT/vJWvT3+elaC85r/GCdGore8JxTURHfWGeGYua00ro1s3tY
54dCWvqsaEV2C+uyUKREP5WS4NWwrg7FAatIBafPe1g3hWK0zJQbOrX32L49
objpYFdtNlDDmhP29//Da3i37OpYS4Whe2ffgFpnLWu5MPTlfd3pXkWfVw1D
knKNdpzGY/KH4XKImsTVstuszcIwtCgm9GzGJdbcMNg/3d8Tn5bAmhcGd0U7
vztLTpA/DJ8aa2rU3S6SPwx64zpfOb0pJH8Ybli9KX9STZ0fBqc12Q+clxaQ
PwxFCs0nDi7PJX8YNOqsjdsassgfBpvE0l/zUtNZ94TB4LR1iY4xjzUnHDnv
a+9IOceQPxzFNQfc1s7bRf5wSLYN/+x4LI384dip+0B18QdqhOOcZ0Xr2opU
8ofjteLcy6rcHeQPR0r5ffv7/XHk/9tjxva3efBZi8IxUvmCt6q7JevUcLiO
f/jP60025A/HqPUv0j8O9yF/OJZF2WnU7aP9y8LhUr91b+isIPL/fZ7vuvma
rwPIH478mRvHiw57kT8c0nY7i0ZMciZ/BKQGi4x05SxYS0VAqyFBMFC0hLVc
BF52lsZ1rlEjfwT03w0pvOSwhvwRyM8NTPi5xYT8EeCeCBeMljIlfwSqdP7Z
/H3TOvJHIFc2QLfgC82LIjDlvmryjyUgfwS6np4UP1C+iHVmBJROZz45YDuV
dX7E39/P3cnFg8TJH4FZWbt0hFNmkT8Cp9J4OnIaC8gfgdmpogeOM5TIHwHP
lqN3XUbTOScSfr/kTN87ziF/JMzl8swsrk8nfyTCXa6PzTQdx1o1Eqa/Zgj3
uv3SYv5I1K5TNx39uLGY+SOxMWvRiUh1DvkjIVebxE1bMpz8kXB62D1sIGAE
+SMh6+nZv6yTzlMj8bQradfc92Lkj0R5paVf08QB9vz8SHwzL6wwe/yFdVkk
2pLU+nZ30/3VkVAx7JxXbZzL9muKxMfrtxvE9BpY90SiO/1c5eEtLaw5UQj7
0aiZ8qOVtVQUdtiaXovv/sBaLgpnG8JVdwibWatGYUq1ZPmHKHoeorC5JvXw
xJVPWZtFod6/9/oB8ZusuVE4Pu9iXnWLAduPF4XojU9SOgousxZFoSvxldK6
ibdYp0Zhrb/fZPXSO6wzo5DWbLI4QJo6Pwp5KpIWU5XLyR8F6e/dYps+lZA/
ChFKg5e/ysln3RSFOhUts5hbx1j3RGFlQWRYv7k7a44AKoG2ItWcNPILsPjA
jpUFFcfIL0Bvxyf94Nws8gvQ8pKziOtODQFqY8Y+qnhHnzcTYNKKzev/9d9P
fgGublxWLjM6lTVPgNu+iQWjJopYiwRQPKvz5oqpJetUAbL5fZ8H1API//f5
04e7Kj4TkF+AzFVfnyx5KCK/AOUxGWVdz6irBRhypUS1PUVIfgHu/B6joDMQ
Rn4BbAd/7vteT8/nRGNWVa/Sgzlc1lLRKJtRkHTUS4e1XDRcgg3ln3QZkD8a
Z/pbk0r1bMkfDe13sR92KjqSPxoXX5U0H7hOzY2GhsOVvOsu9uSPhtpZuS6f
Q1bkj8bvFUOddqaZkD8anzMspt+XBuvMaGQPbfxzYbc86/xomIsZqm12n0n+
aJgOKXgrOUaD/NGw3LDtjvvIZeSPRkrpkeePRpGnJxpvNSNGhdkuJb8QZxIn
FuWsXUx+IQZGFE8QM1QivxBN4rlFXh9msFYVortfK7jfcghrCDHOWSNr1NR/
lzC/EAuHDjzNXTiO/EK0unA7L6hJk1+IqK8djpvTppBfCLHyPZXGgZPJL8RT
z0jtgSHjyS/ENMQv6fojQX4himecq9cN/MPuKxMi3m1L+YvUVtbVQognK7Ye
z3x2hfmFGC9mOuKl+mfWPUJsmKKvdnL/N9acGMxtu7JKYm0/a6kY7PSdEJtw
ks7lYvCndlPS2uovrFVjIFowZ7xfSQdrxOBl4dpbOrVvWJvFQDzfRqHTqpI1
NwadsS3a26NPsf14MchruWB6LP0+a1EMku/9avmlXcM6NQaeMTzH/gUvWGfG
4IlM+VfBDzrPj0HAmM1iDjnV5I/BvBEStqbhleSPwchXT89kyd1g3RSDyUaf
lw6+dJZ1Twxmd8z/89SaT/5YHNcJkPodeIr8sZib9WXpy/EXyR8L3Tf19pO0
LpE/Fk5zNR6meheQPxYeX+P+tM/Ju/I/ggLXwg==
"]]}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {}}, {{
Directive[
PointSize[0.007333333333333334],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}, {}}}, {{}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Large,
Method -> {
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange -> {{0, 500.}, {-9.830101724741988*^-17,
7.514748073736528*^-17}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"2"}, "PointLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 7}, {20, 7}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
InsetBox[
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}, {DefaultBaseStyle -> {"Graphics", {
AbsolutePointSize[6]},
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]]}}],
NCache[
Scaled[{
Rational[1, 2],
Rational[1, 2]}],
Scaled[{0.5, 0.5}]], Automatic,
Scaled[1]]}}}, AspectRatio -> Full, ImageSize -> {20, 7},
PlotRangePadding -> None, ImagePadding -> Automatic,
BaselinePosition -> (Scaled[-0.032857142857142835`] ->
Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"PointSize", "[", "0.007333333333333334`", "]"}],
",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
"}"}], ",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"{",
RowBox[{
GraphicsBox[{
EdgeForm[],
DiskBox[{0, 0}]}], ",",
RowBox[{"Offset", "[", "7", "]"}]}], "}"}], "}"}]}], ",",
RowBox[{"Joined", "\[Rule]",
RowBox[{"{", "True", "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.800336507890066*^9, 3.800336548230723*^9},
3.8003366285958357`*^9, 3.800336857854382*^9},
CellLabel->"Out[86]=",ExpressionUUID->"8c62cd7a-0ba8-4628-bbbb-a653fec768a2"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Singularity structure", "Section",
CellChangeTimes->{{3.80010478295885*^9, 3.800104783979518*^9},
3.800105568715931*^9},ExpressionUUID->"d7144ed8-b75e-4584-98e3-\
2404ccf2c65e"],
Cell[CellGroupData[{
Cell["\<\
Can we give a physical signification to all the singularities ?\
\>", "Subsection",
CellChangeTimes->{{3.8001634725245132`*^9,
3.800163498432653*^9}},ExpressionUUID->"99cd382b-a84a-4c98-a1ee-\
a804808bdb4b"],
Cell[CellGroupData[{
Cell["RHF", "Subsubsection",
CellChangeTimes->{{3.800158223312038*^9,
3.800158224232153*^9}},ExpressionUUID->"f81b48d4-6ca9-4e93-880f-\
1d0c41620c11"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"HREN\[Lambda]", "/.",
RowBox[{"R", "\[Rule]", "2"}]}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{
3.800075353492262*^9, {3.800075384742434*^9, 3.8000753928634853`*^9}, {
3.800075477990193*^9, 3.800075488034968*^9}, {3.80007553412252*^9,
3.80007557313133*^9}, 3.800075630282379*^9, {3.8000785359721327`*^9,
3.800078550363659*^9}, {3.800079878860845*^9, 3.800079879068116*^9}, {
3.800079913573428*^9, 3.800079932229224*^9}, 3.800080497085393*^9, {
3.800080577175806*^9, 3.800080592742565*^9}, {3.8001120586218023`*^9,
3.80011205888498*^9}, {3.80011214840434*^9, 3.800112172686603*^9},
3.800157110714922*^9, 3.800157352192288*^9, {3.800159556196183*^9,
3.800159556698868*^9}, {3.800164918210774*^9, 3.800164920321939*^9}},
CellLabel->
"In[202]:=",ExpressionUUID->"56c7956a-d243-4c5a-869d-eeb02e265b74"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"-", "0.2812500000000000000000000000000000000001380745116524112027`28.\
795880017344075"}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"-", "6.1875`28.795880017344075"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"-", "0.2812500000000000000000000000000000000001380745116524112027`28.\
795880017344075"}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"-", "6.1875`28.795880017344075"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"-", "0.2812499999999999999999999999999999999999077566895359840683`29.\
397940008672037"}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]", "6.1875`29.397940008672037"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]",
RowBox[{
"-", "0.2812499999999999999999999999999999999999077566895359840683`29.\
397940008672037"}]}], ",",
RowBox[{"\[Lambda]", "\[Rule]", "6.1875`29.397940008672037"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{
"\[Epsilon]", "\[Rule]",
"0.7899999999999999999999999999999999999999688616567097786021`29.\
397940008672037"}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
RowBox[{
"-", "1.7400000000000000000000000000000000000006835376524439376593`29.\
397940008672037"}], " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
"\[Epsilon]", "\[Rule]",
"0.7899999999999999999999999999999999999999688616567097786021`29.\
397940008672037"}], ",",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{
"1.7400000000000000000000000000000000000006835376524439376593`29.\
397940008672037", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]", "0.75`26.255772306334006"}], ",",
RowBox[{"\[Lambda]", "\[Rule]", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Epsilon]", "\[Rule]", "0.75`26.255772306334006"}], ",",
RowBox[{"\[Lambda]", "\[Rule]", "0"}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.800157111485978*^9, 3.800159557622061*^9,
3.800164922098898*^9},
CellLabel->
"Out[204]=",ExpressionUUID->"d6b8c97a-ba7a-406c-b3c1-3d0c8463e707"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{-6.1875,
0.}}, {{-6.1875, 0.}}, {{6.1875, 0.}}, {{6.1875, 0.}}, {{0., -1.74}}, {{
0., 1.74}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.8000799242414637`*^9, 3.800079932735375*^9},
3.800080497627037*^9, {3.800080578049032*^9, 3.800080593176303*^9},
3.8001120600105143`*^9, {3.800112149697216*^9, 3.800112173030253*^9},
3.800157112282282*^9, 3.8001595578133802`*^9, 3.800164922521927*^9},
CellLabel->
"During evaluation of \
In[202]:=",ExpressionUUID->"64027337-cddd-47e5-bb13-318061d95be7"]
}, Open ]],
Cell["\<\
There are only 8 singularities, but we can\[CloseCurlyQuote]t give them a \
physical signification for the moment. Let\[CloseCurlyQuote]s try to do this \
for this simple case\
\>", "Text",
CellChangeTimes->{{3.8001585199504757`*^9, 3.800158580192855*^9}, {
3.800164966311759*^9,
3.800164979872712*^9}},ExpressionUUID->"a4feeab0-8d6c-47ea-80b7-\
f6f56248271a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158278610743*^9, 3.800158290872142*^9},
3.800158341741818*^9, {3.800158433517392*^9, 3.8001584377174377`*^9}, {
3.8001649945443163`*^9, 3.80016499866991*^9}},
CellLabel->
"In[207]:=",ExpressionUUID->"01047b6f-9a55-438e-91a4-8daad1515403"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"0.`", "\[VeryThinSpace]", "-",
RowBox[{"1.74`", " ", "\[ImaginaryI]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"1.74`", " ", "\[ImaginaryI]"}]}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.8001582338106213`*^9, 3.8001582919267*^9,
3.8001583424528513`*^9, 3.800158439888423*^9, 3.800165000297373*^9},
CellLabel->
"Out[207]=",ExpressionUUID->"2e541eb4-5707-453f-8376-3d00dd22491f"]
}, Open ]],
Cell[TextData[{
"There is a pair of complex conjugate branch point between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"e3e5831b-6afd-4462-a219-412b5462cd22"],
"and ",
Cell[BoxData[
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"7a94a366-a945-4313-a3dc-ad19cee5063a"]
}], "Text",
CellChangeTimes->{{3.800158583613742*^9,
3.800158635398328*^9}},ExpressionUUID->"1a526bd8-e92b-4103-90e0-\
8bff5aa01299"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.8001584637379913`*^9, 3.800158464134795*^9}, {
3.8001650170119867`*^9, 3.800165021248691*^9}},
CellLabel->
"In[208]:=",ExpressionUUID->"b4d6a8d7-ec2c-446a-aa6e-ae310f6d8126"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"-", "6.1875`"}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.8001584644905357`*^9, 3.800165022454939*^9},
CellLabel->
"Out[208]=",ExpressionUUID->"14d635c8-d511-4f8f-ae7e-6c2d05775fee"]
}, Open ]],
Cell[TextData[{
"There is 1 CI between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"2a618ad5-8daf-4e79-8c8c-02a0569bd197"],
"and the ",
Cell[BoxData[
FormBox[
SubscriptBox["sp", "z"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"15be7f6b-d251-4b67-8751-dd47d5a28ef0"],
" triplet "
}], "Text",
CellChangeTimes->{{3.800158662872758*^9, 3.800158703136058*^9}, {
3.800158955325688*^9, 3.8001589561925917`*^9}, {3.800159692397304*^9,
3.800159701502852*^9}, 3.8001597753064337`*^9, {3.800165043826941*^9,
3.800165047640038*^9}, {3.800165124910136*^9,
3.800165126453781*^9}},ExpressionUUID->"f1b935df-0761-4fbc-a20b-\
a88f4391b42a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158369960648*^9, 3.800158370393867*^9}, {
3.800158408929471*^9, 3.800158409337016*^9}, {3.800158446099082*^9,
3.80015845077838*^9}, {3.800165053974371*^9, 3.800165057900592*^9}},
CellLabel->
"In[209]:=",ExpressionUUID->"ecf076fb-eee6-4aa0-9428-b9eefbc60f2e"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]", "6.1875`"}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.800158371081614*^9, 3.800158409644907*^9,
3.8001584513624277`*^9, 3.800165058662621*^9},
CellLabel->
"Out[209]=",ExpressionUUID->"9fd5b233-6547-48b1-8de9-66f3c84c6988"]
}, Open ]],
Cell[TextData[{
"The ",
Cell[BoxData[
FormBox[
SubscriptBox["sp", "z"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"f24a026c-bc43-4a59-a614-f27c1942a7e1"],
" singlet is never degenerate with the ground state"
}], "Text",
CellChangeTimes->{{3.80015883203883*^9, 3.800158852480497*^9}, {
3.800158963935526*^9, 3.800158964785277*^9}, {3.8001597693529873`*^9,
3.800159771491109*^9}},ExpressionUUID->"e2965313-bf9a-4d58-870d-\
802893aeef01"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.8001584637379913`*^9, 3.800158464134795*^9}, {
3.8001650170119867`*^9, 3.800165021248691*^9}, {3.800165154197007*^9,
3.8001651545160427`*^9}},
CellLabel->
"In[210]:=",ExpressionUUID->"b9e3a9ea-a8be-4740-b8ec-993e5e41a7bd"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.8001584644905357`*^9, 3.800165022454939*^9,
3.800165155253106*^9},
CellLabel->
"Out[210]=",ExpressionUUID->"188bc341-2d9c-44b1-9cf8-f3d087c4e9b0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]], "Input",
CellLabel->
"In[235]:=",ExpressionUUID->"8991f457-97ad-4bc5-8018-21c1d5a6e921"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"4", " ", "R"}]}], ")"}]}],
RowBox[{"4", " ",
SuperscriptBox["R", "2"]}]]}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.800165371707858*^9},
CellLabel->
"Out[235]=",ExpressionUUID->"b73d09fe-d126-41f4-91a9-067a5d689713"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158369960648*^9, 3.800158370393867*^9}, {
3.800158408929471*^9, 3.800158409337016*^9}, {3.800158446099082*^9,
3.80015845077838*^9}, {3.800165053974371*^9, 3.800165057900592*^9}, {
3.8001651584125853`*^9, 3.8001651627284737`*^9}},
CellLabel->
"In[211]:=",ExpressionUUID->"9d3c5b74-d114-4ef1-af76-aa0587aa6642"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800158371081614*^9, 3.800158409644907*^9,
3.8001584513624277`*^9, 3.800165058662621*^9, 3.80016516351539*^9},
CellLabel->
"Out[211]=",ExpressionUUID->"3eb7a652-bb30-4c3e-ba15-68a29919b5ae"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]REN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158986206258*^9, 3.800158995955509*^9}, {
3.800165213338801*^9, 3.8001652174732857`*^9}},
CellLabel->
"In[212]:=",ExpressionUUID->"2f059305-4b19-49a5-8ea0-9d942b559ba1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]", "0.`"}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.800158989306931*^9, 3.8001589970199614`*^9},
3.800165218626136*^9},
CellLabel->
"Out[212]=",ExpressionUUID->"a74a908a-6404-4b89-a689-77d51af41ff3"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["UHF", "Subsubsection",
CellChangeTimes->{{3.800160005317541*^9,
3.800160006948435*^9}},ExpressionUUID->"a2a91e79-cf2e-4d60-9f15-\
3349f1c10a38"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"HUEN\[Lambda]", "/.",
RowBox[{"R", "\[Rule]", "2"}]}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{"Sort", "[", "\[Lambda]EP", "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800157386799263*^9, 3.800157392222747*^9}, {
3.800157471442925*^9, 3.800157480658167*^9}, {3.800159847972131*^9,
3.800159857930311*^9}, {3.800159912370352*^9, 3.80015993354918*^9},
3.800160687275172*^9, {3.800160790277131*^9, 3.800160826481682*^9}, {
3.8001626669660482`*^9, 3.800162679309074*^9}, {3.800165453485237*^9,
3.800165455422124*^9}},
CellLabel->
"In[236]:=",ExpressionUUID->"335a7aa7-ff2b-4e95-a126-e6619f67c02a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
"-", "2.53634028311375719209254805354981916951`28.795880017344075"}], ",",
RowBox[{
"-", "2.53634028311375719209254805354981916951`28.795880017344075"}], ",",
RowBox[{
RowBox[{
"-", "1.3291977515622091955940951829232073886321744681037804421883`29.\
397940008672037"}], "-",
RowBox[{
"0.8533321755758888318051099186209447249304587458782203817481`29.\
269698943435223", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
RowBox[{
"-", "1.3291977515622091955940951829232073886321744681037804421883`29.\
397940008672037"}], "+",
RowBox[{
"0.8533321755758888318051099186209447249304587458782203817481`29.\
269698943435223", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"-", "0.4618007402798848957828512725891591857929890152146157351851`29.\
397940008672037"}], ",",
RowBox[{
"-", "0.4618007402798848957828512725891591857929890152146157351851`29.\
397940008672037"}], ",",
RowBox[{
RowBox[{
"-", "0.0383517963910580600283703735404185994473053180255845826881`29.\
389061210396395"}], "-",
RowBox[{
"0.2180850079349081959287852688286415818529345140102973307698`29.\
69897000433602", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
RowBox[{
"-", "0.0383517963910580600283703735404185994473053180255845826881`29.\
389061210396395"}], "+",
RowBox[{
"0.2180850079349081959287852688286415818529345140102973307698`29.\
69897000433602", " ", "\[ImaginaryI]"}]}], ",", "0", ",", "0", ",",
RowBox[{
"1.1038528949817135252977706839461968515351682332116808075616`29.\
38474561709586", "-",
RowBox[{
"0.3963459279469220150185823781280581431593647388255634133203`29.\
397940008672037", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{
"1.1038528949817135252977706839461968515351682332116808075616`29.\
38474561709586", "+",
RowBox[{
"0.3963459279469220150185823781280581431593647388255634133203`29.\
397940008672037", " ", "\[ImaginaryI]"}]}]}], "}"}]], "Output",
CellChangeTimes->{{3.8001608065981483`*^9, 3.800160827149747*^9}, {
3.800162670475374*^9, 3.800162679855598*^9}, 3.80016545648258*^9},
CellLabel->
"Out[240]=",ExpressionUUID->"04014854-6bf2-47b6-bd77-8eae538c3e93"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
1.1038528949817135`, -0.396345927946922}}, {{1.1038528949817135`,
0.396345927946922}}, {{-2.5363402831137574`,
0.}}, {{-2.5363402831137574`,
0.}}, {{-0.03835179639105806, -0.2180850079349082}}, \
{{-0.03835179639105806, 0.2180850079349082}}, {{0., 0.}}, {{0.,
0.}}, {{-1.329197751562209, -0.8533321755758888}}, {{-1.329197751562209,
0.8533321755758888}}, {{-0.4618007402798849,
0.}}, {{-0.4618007402798849, 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-4, 4}, {-4, 4}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{
3.800157393308854*^9, {3.800157472990631*^9, 3.800157481345057*^9},
3.800159861088769*^9, {3.8001599139430513`*^9, 3.800159934501748*^9},
3.800160688193177*^9, {3.800160803367661*^9, 3.800160827460278*^9}, {
3.800162670675768*^9, 3.8001626800603456`*^9}, 3.8001654566921787`*^9},
CellLabel->
"During evaluation of \
In[236]:=",ExpressionUUID->"461698f0-d264-40e1-9390-5b8125edb3bd"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800158278610743*^9, 3.800158290872142*^9},
3.800158341741818*^9, {3.800158433517392*^9, 3.8001584377174377`*^9}, {
3.800160208824222*^9, 3.8001602117761087`*^9}, {3.8001602500627193`*^9,
3.800160250493102*^9}, {3.800160302859713*^9, 3.80016030318882*^9}, {
3.8001654660686483`*^9, 3.800165470137615*^9}},
CellLabel->
"In[242]:=",ExpressionUUID->"8c22c7f5-d97d-4ca7-b08b-aedf5c6f2e05"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.8001582338106213`*^9, 3.8001582919267*^9,
3.8001583424528513`*^9, 3.800158439888423*^9, 3.800160212646006*^9,
3.800160252346768*^9, 3.800160304106626*^9, 3.800165470918271*^9},
CellLabel->
"Out[242]=",ExpressionUUID->"0afb0921-243d-4bda-9c56-aacc15c6180c"]
}, Open ]],
Cell[TextData[{
"There is a pair of complex conjugate branch point between ",
Cell[BoxData[
FormBox[
SuperscriptBox["s", "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"f18b9396-fa36-49f8-8d9e-569cd1a8a026"],
"and ",
Cell[BoxData[
FormBox[
SuperscriptBox[
SubscriptBox["p", "z"], "2"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"ee76a7c3-de7f-4577-b83f-728cf9c78a67"]
}], "Text",
CellChangeTimes->{{3.800158583613742*^9,
3.800158635398328*^9}},ExpressionUUID->"53847370-0e8f-43b1-b8f9-\
e9f320b5557d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800160349800825*^9, 3.800160355551343*^9}, {
3.800165478414103*^9, 3.800165482667574*^9}},
CellLabel->
"In[243]:=",ExpressionUUID->"28276ba2-412e-4137-b3ab-4cf197031cf1"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800160355933103*^9, 3.80016548344136*^9},
CellLabel->
"Out[243]=",ExpressionUUID->"ba210443-fa98-4637-b3c8-4f6f8da67639"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "1",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800160362984331*^9, 3.800160363411745*^9}, {
3.8001654894343367`*^9, 3.8001654946493*^9}},
CellLabel->
"In[244]:=",ExpressionUUID->"334ddd4a-ba7f-4861-a414-4e5458f7eeb6"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"-", "2.536340283113757`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]",
RowBox[{"-", "0.46180074027988494`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", "\[Rule]", "0.`"}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.800160363880258*^9, 3.8001654953621597`*^9},
CellLabel->
"Out[244]=",ExpressionUUID->"5ca1f910-ed3d-498a-a58b-431916b5735a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800160405795185*^9, 3.8001604064545193`*^9}, {
3.8001655054187593`*^9, 3.8001655114658003`*^9}},
CellLabel->
"In[245]:=",ExpressionUUID->"e1590da7-9c25-4b5e-94cf-55ad6b6b246d"],
Cell[BoxData[
TemplateBox[{
"NSolve", "infsolns",
"\"Infinite solution set has dimension at least \
\\!\\(\\*RowBox[{\\\"1\\\"}]\\). Returning intersection of solutions with \\!\
\\(\\*RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"142291\\\", \\\" \\\", \\\"\
\[Lambda]\\\"}], \\\"110500\\\"]}]\\) == 1.\"", 2, 245, 10,
22556906998464431640, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8001604074336033`*^9, 3.800165512170055*^9},
CellLabel->
"During evaluation of \
In[245]:=",ExpressionUUID->"0971d34a-2dfc-4805-b321-a21a97370aa6"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800160407568763*^9, 3.800165512336027*^9},
CellLabel->
"Out[245]=",ExpressionUUID->"bc571d62-5b5a-4a36-bb47-06a2fb1c7cf2"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "2",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800160415162305*^9, 3.8001604193690567`*^9}, {
3.800165517037389*^9, 3.800165522284693*^9}},
CellLabel->
"In[246]:=",ExpressionUUID->"2c552210-b526-436b-be2c-640ab5421247"],
Cell[BoxData[
TemplateBox[{
"NSolve", "infsolns",
"\"Infinite solution set has dimension at least \
\\!\\(\\*RowBox[{\\\"1\\\"}]\\). Returning intersection of solutions with \\!\
\\(\\*RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"142291\\\", \\\" \\\", \\\"\
\[Lambda]\\\"}], \\\"110500\\\"]}]\\) == 1.\"", 2, 246, 11,
22556906998464431640, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8001604197705917`*^9, 3.800165522996707*^9},
CellLabel->
"During evaluation of \
In[246]:=",ExpressionUUID->"98c730f5-574c-4031-a56c-7b10d55feda9"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{3.800160419931347*^9, 3.8001655231618633`*^9},
CellLabel->
"Out[246]=",ExpressionUUID->"a6aecd0f-40f1-4007-8843-3e2c6541da31"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"R", "=", "2"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "3",
"\[RightDoubleBracket]"}], "\[Equal]",
RowBox[{
RowBox[{"\[Epsilon]UEN", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "\[LeftDoubleBracket]", "4",
"\[RightDoubleBracket]"}]}], ",", "\[Lambda]"}], "]"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.800160439337159*^9, 3.800160442524119*^9}, {
3.800165527149547*^9, 3.800165534654707*^9}},
CellLabel->
"In[248]:=",ExpressionUUID->"bac6391f-5c90-40bf-b31b-96513a511b89"],
Cell[BoxData[
TemplateBox[{
"NSolve", "infsolns",
"\"Infinite solution set has dimension at least \
\\!\\(\\*RowBox[{\\\"1\\\"}]\\). Returning intersection of solutions with \\!\
\\(\\*RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"142291\\\", \\\" \\\", \\\"\
\[Lambda]\\\"}], \\\"110500\\\"]}]\\) == 1.\"", 2, 248, 12,
22556906998464431640, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.800165535378358*^9},
CellLabel->
"During evaluation of \
In[248]:=",ExpressionUUID->"9ebe4adc-d996-4d7c-a94c-9e7721f377cf"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{
3.800160443296672*^9, {3.800165530473472*^9, 3.800165535589816*^9}},
CellLabel->
"Out[248]=",ExpressionUUID->"5f48d0fc-f833-44be-b084-34eb830dc39f"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["R dependance", "Subsection",
CellChangeTimes->{{3.80033634818381*^9,
3.8003363496428843`*^9}},ExpressionUUID->"3500dfdb-3b29-467e-aaf5-\
c3676fcd873b"],
Cell[CellGroupData[{
Cell["RHF", "Subsubsection",
CellChangeTimes->{{3.800354176597981*^9,
3.800354176948998*^9}},ExpressionUUID->"73101e70-d86c-456b-b379-\
a8ad4c1c9c2f"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"HREN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "1"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800354198267839*^9, 3.800354200726965*^9}},
CellLabel->"In[94]:=",ExpressionUUID->"c90c31b6-dc92-4440-8c74-2e256971a963"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{-21.75,
0.}}, {{-21.75, 0.}}, {{21.75, 0.}}, {{21.75, 0.}}, {{0., -3.24}}, {{0.,
3.24}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.800354201220645*^9},
CellLabel->
"During evaluation of \
In[94]:=",ExpressionUUID->"89ab21a7-1c1c-428c-a9f7-966aa488341b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"HREN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "2"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800354209528364*^9, 3.800354210447617*^9}},
CellLabel->"In[99]:=",ExpressionUUID->"18489723-5a5f-4c79-af88-2b55464378e9"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{-6.1875,
0.}}, {{-6.1875, 0.}}, {{6.1875, 0.}}, {{6.1875, 0.}}, {{0., -1.74}}, {{
0., 1.74}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.8003542147736473`*^9},
CellLabel->
"During evaluation of \
In[99]:=",ExpressionUUID->"16f245ff-f49f-4824-849c-000293008195"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"HREN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "5"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.8003542192889967`*^9, 3.800354219668283*^9}},
CellLabel->
"In[104]:=",ExpressionUUID->"6beab092-00b7-47e5-8a3c-2d0a642e0727"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{1.35, 0.}}, {{
1.35, 0.}}, {{-1.35, 0.}}, {{-1.35, 0.}}, {{0., -0.84}}, {{0.,
0.84}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.8003542200418787`*^9},
CellLabel->
"During evaluation of \
In[104]:=",ExpressionUUID->"b756acc6-6234-477f-99b3-e938f8a698ce"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["UHF", "Subsubsection",
CellChangeTimes->{{3.800354172388342*^9,
3.800354172679351*^9}},ExpressionUUID->"363c9830-99d2-4619-9537-\
99741119596b"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"HUEN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "1.8"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "5"}], ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800354185375927*^9, 3.800354185972952*^9}, {
3.8009538097190027`*^9, 3.8009538652994537`*^9}},
CellLabel->
"In[435]:=",ExpressionUUID->"25453783-8cf2-4af9-9b1e-f65c10f6b3f8"],
Cell[BoxData[
TemplateBox[{
"NSolve", "precw",
"\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{RowBox[{RowBox[{\\\"0.5387991385275491`\\\", \
\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"2.615218075562611`\\\", \\\
\" \\\", \\\"\[Epsilon]\\\"}], \\\"+\\\", \
RowBox[{\\\"4.6216754224742775`\\\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\
\\\", \\\"2\\\"]}], \\\"-\\\", RowBox[{\\\"3.545679012345679`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"3\\\"]}], \\\"+\\\", RowBox[{\\\"1.`\\\
\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"4\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.05919287712987095`\\\", \\\" \\\", SuperscriptBox[\\\"\[Lambda]\
\\\", \\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"0.15926491954835478`\\\", \\\" \
\\\", \\\"\[Epsilon]\\\", \\\" \\\", SuperscriptBox[\\\"\[Lambda]\\\", \
\\\"2\\\"]}], \\\"-\\\", RowBox[{\\\"0.10148033026272539`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"], \\\" \\\", SuperscriptBox[\\\"\
\[Lambda]\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.004845900787897357`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}], \\\"+\\\", \
RowBox[{\\\"0.008795334167616839`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \\\
\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}], \\\"+\\\", \
RowBox[{\\\"0.00026885241668859366`\\\", \\\" \\\", SuperscriptBox[\\\"\
\[Lambda]\\\", \\\"4\\\"]}]}], \\\",\\\", RowBox[{RowBox[{\\\"-\\\", \
\\\"2.615218075562611`\\\"}], \\\"+\\\", RowBox[{\\\"9.243350844948555`\\\", \
\\\" \\\", \\\"\[Epsilon]\\\"}], \\\"-\\\", RowBox[{\\\"10.637037037037036`\\\
\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \\\"2\\\"]}], \\\"+\\\", \
RowBox[{\\\"4.`\\\", \\\" \\\", SuperscriptBox[\\\"\[Epsilon]\\\", \
\\\"3\\\"]}], \\\"+\\\", RowBox[{\\\"0.15926491954835478`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"-\\\", \
RowBox[{\\\"0.20296066052545078`\\\", \\\" \\\", \\\"\[Epsilon]\\\", \\\" \
\\\", SuperscriptBox[\\\"\[Lambda]\\\", \\\"2\\\"]}], \\\"+\\\", \
RowBox[{\\\"0.008795334167616839`\\\", \\\" \\\", \
SuperscriptBox[\\\"\[Lambda]\\\", \\\"3\\\"]}]}]}], \\\"}\\\"}]\\)) is less \
than WorkingPrecision (\\!\\(\\*RowBox[{\\\"30\\\"}]\\)).\"", 2, 437, 222,
22562004893941124449, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.800953810437016*^9, 3.800953865714594*^9}},
CellLabel->
"During evaluation of \
In[435]:=",ExpressionUUID->"843cb4ce-0c40-4249-a1f1-7312f9c950bb"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
1.1660061204857697`, -0.48625503153729893`}}, {{1.1660061204857697`,
0.48625503153729893`}}, {{-0.09409055243166958, -0.4074360169510847}}, \
{{-0.09409055243166958,
0.4074360169510847}}, {{-1.3128653254485876`, -1.2426885658908096`}}, \
{{-1.3128653254485876`, 1.2426885658908096`}}, {{-5.114391901521238*^-13,
0.}}, {{-5.114391901521238*^-13,
0.}}, {{-1.1858493300915622`, -1.0401382122216216`}}, \
{{-1.1858493300915622`, -1.0401382122216216`}}, {{-1.1858493300915622`,
1.0401382122216216`}}, {{-1.1858493300915622`,
1.0401382122216216`}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-5, 5}, {-5, 5}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{
3.8003541869639*^9, {3.8009538107451477`*^9, 3.800953866036664*^9}},
CellLabel->
"During evaluation of \
In[435]:=",ExpressionUUID->"73da1e44-87ba-477d-b879-40016bb86635"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"HUEN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "2"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800336423651945*^9, 3.8003364248114967`*^9}},
CellLabel->"In[61]:=",ExpressionUUID->"bfce9265-826f-414f-8fbd-e56e2b3ab796"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
1.1038528949817135`, -0.396345927946922}}, {{1.1038528949817135`,
0.396345927946922}}, {{-2.5363402831137574`,
0.}}, {{-2.5363402831137574`,
0.}}, {{-0.03835179639105806, -0.2180850079349082}}, \
{{-0.03835179639105806, 0.2180850079349082}}, {{0., 0.}}, {{0.,
0.}}, {{-1.329197751562209, -0.8533321755758888}}, {{-1.329197751562209,
0.8533321755758888}}, {{-0.4618007402798849,
0.}}, {{-0.4618007402798849, 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.8003364252562647`*^9},
CellLabel->
"During evaluation of \
In[61]:=",ExpressionUUID->"a61703d4-ad7b-4373-844c-c4ddbe2db387"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"HUEN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "5"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Abs", "[", "\[Lambda]EP", "]"}], "//",
"Sort"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800336433215836*^9, 3.800336434231812*^9}, {
3.800353720212675*^9, 3.800353729891651*^9}},
CellLabel->"In[83]:=",ExpressionUUID->"598c186e-8111-4bfb-9b4f-f392b819386c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0", ",", "0", ",",
"0.0849214280099457528302524073706923152750272910734420976398`29.\
397940008672037", ",",
"0.0849214280099457528302524073706923152750272910734420976398`29.\
397940008672037", ",",
"0.6221185822618983358275572245085467595661799735908052052726`29.\
69648799651301", ",",
"0.6221185822618983358275572245085467595661799735908052052726`29.\
69648799651301", ",",
"1.008640373279809118526595755800531307034388511834954202057`29.\
39044812541311", ",",
"1.008640373279809118526595755800531307034388511834954202057`29.\
39044812541311", ",",
"1.0279584253479690985754893388497697258877171561056173823763`29.\
389973385026487", ",",
"1.0279584253479690985754893388497697258877171561056173823763`29.\
389973385026487", ",",
"53.20984412436121353266946024476013251753`28.795880017344075", ",",
"53.20984412436121353266946024476013251753`28.795880017344075"}],
"}"}]], "Output",
CellChangeTimes->{3.800353730724934*^9},
CellLabel->"Out[87]=",ExpressionUUID->"2d7ee757-bc61-405e-946f-2caee431254a"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[
10]], {{{-53.20984412436121, 0.}}, {{-53.20984412436121, 0.}}, {{
1.006281413927322, -0.06894286471029856}}, {{1.006281413927322,
0.06894286471029856}}, {{-1.0253873767014734`, -0.07265846093296364}}, \
{{-1.0253873767014734`, 0.07265846093296364}}, {{
0.010595463860775556`, -0.6220283486635713}}, {{0.010595463860775556`,
0.6220283486635713}}, {{0.08492142800994576, 0.}}, {{
0.08492142800994576, 0.}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.8003364346714697`*^9, 3.800353731074266*^9},
CellLabel->
"During evaluation of \
In[83]:=",ExpressionUUID->"31945ad0-dc58-4036-8f12-5af4e6f68a1a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"HUEN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "8"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800336468405972*^9, 3.800336469191469*^9}},
CellLabel->"In[76]:=",ExpressionUUID->"54327045-010b-4b65-a7d2-4b759cf46ced"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
56.01676976934701, 0.}}, {{56.01676976934701, 0.}}, {{
0.9830712410396364, -0.11235315703378738`}}, {{0.9830712410396364,
0.11235315703378738`}}, {{-0.02115882962055272, -0.9940092594137607}}, \
{{-0.02115882962055272,
0.9940092594137607}}, {{-0.9667494885764667, -0.10694686858490804`}}, \
{{-0.9667494885764667, 0.10694686858490804`}}, {{0., 0.}}, {{0.,
0.}}, {{-0.16970999984372148`, 0.}}, {{-0.16970999984372148`,
0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.800336469634529*^9},
CellLabel->
"During evaluation of \
In[76]:=",ExpressionUUID->"620d824c-4b41-41a3-819a-262ec7d642c1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"HUEN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "10"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.8001056678563128`*^9, 3.800105691251951*^9}, {
3.800105857724594*^9, 3.800105858146487*^9}, {3.800157369877255*^9,
3.800157370678123*^9}, {3.80016562734538*^9, 3.800165627892129*^9}, {
3.800336358000441*^9, 3.80033641561724*^9}},
CellLabel->"In[56]:=",ExpressionUUID->"b8d545c6-81a7-4d3b-b47c-8fc881c530c8"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
36.02673310208241, 0.}}, {{36.02673310208241,
0.}}, {{-0.04362165491327114, -1.1744813538364811`}}, \
{{-0.04362165491327114, 1.1744813538364811`}}, {{
0.9560664465647548, -0.21827785355828083`}}, {{0.9560664465647548,
0.21827785355828083`}}, {{-0.9349033773009706, -0.20277081458770213`}}, \
{{-0.9349033773009706, 0.20277081458770213`}}, {{0., 0.}}, {{0.,
0.}}, {{-0.3516252155981427, 0.}}, {{-0.3516252155981427, 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.80010567877378*^9, 3.80010569179675*^9},
3.800105859360517*^9, 3.800157373990309*^9, 3.800165628501564*^9, {
3.800336407687612*^9, 3.800336416238803*^9}},
CellLabel->
"During evaluation of \
In[56]:=",ExpressionUUID->"c1fc9231-8e0e-46c8-84ca-dbe411513be0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"HUEN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "20"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"D", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], ",", "\[Epsilon]"}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"EP", "=",
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",",
RowBox[{
RowBox[{"dPd\[Epsilon]", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Epsilon]", ",", "\[Lambda]"}], "}"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Lambda]EP", "=",
RowBox[{"\[Lambda]", "/.", "EP"}]}], ",",
RowBox[{"\[Epsilon]EP", "=",
RowBox[{"\[Epsilon]", "/.", "EP"}]}]}], "}"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}], ",",
RowBox[{"Im", "[",
RowBox[{
"\[Lambda]EP", "\[LeftDoubleBracket]", "k",
"\[RightDoubleBracket]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"Length", "[", "\[Lambda]EP", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Green", ",",
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"Disk", "[",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "]"}]}], "}"}]}], ",",
RowBox[{"PlotMarkers", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Medium"}], "}"}]}], ",",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Thick", ",", "18"}], "]"}]}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re[\[Lambda]]\>\"", ",", "\"\<Im[\[Lambda]]\>\""}],
"}"}]}]}], "]"}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.800336450019923*^9, 3.800336450405957*^9}},
CellLabel->"In[71]:=",ExpressionUUID->"23a66bc0-8a2c-424c-816c-2703166f5df4"],
Cell[BoxData[
GraphicsBox[{{}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"], GeometricTransformationBox[InsetBox[
FormBox[
StyleBox[
GraphicsBox[
{EdgeForm[None], DiskBox[{0, 0}]}],
StripOnInput->False,
GraphicsBoxOptions->{DefaultBaseStyle->Directive[
PointSize[0.012833333333333334`],
RGBColor[0.9, 0.36, 0.054],
CapForm["Butt"],
AbsoluteThickness[1.6],
Thickness[Large]]}],
TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{
22.13035022852543, 0.}}, {{22.13035022852543,
0.}}, {{-0.1383806956429578, -1.7246000341922734`}}, \
{{-0.1383806956429578, 1.7246000341922734`}}, {{-1.1422804027780795`,
0.}}, {{-1.1422804027780795`, 0.}}, {{
0.7301924068592255, -0.5959876668908876}}, {{0.7301924068592255,
0.5959876668908876}}, {{-0.7473990011385327, -0.5527658559981459}}, \
{{-0.7473990011385327, 0.5527658559981459}}, {{0., 0.}}, {{0., 0.}}}]}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}, {
{RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], Thickness[
Large], CapForm["Butt"]}, {}}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
BaseStyle->Directive[
Thickness[Large], 18],
DisplayFunction->Identity,
Epilog->{
RGBColor[0, 1, 0],
Opacity[0.5],
DiskBox[{0, 0}]},
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Im[\[Lambda]]\"", TraditionalForm], None}, {
FormBox["\"Re[\[Lambda]]\"", TraditionalForm], None}},
FrameStyle->Automatic,
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->{FontFamily -> "Times"},
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-2, 2}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.800336450833742*^9},
CellLabel->
"During evaluation of \
In[71]:=",ExpressionUUID->"8afa458b-6e51-430e-b48f-bb41132ea304"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Riemann surfaces", "Subsubsection",
CellChangeTimes->{{3.800338173104447*^9, 3.8003381794532557`*^9}, {
3.8003397372737637`*^9,
3.8003397409852657`*^9}},ExpressionUUID->"72e295f6-49e6-4488-9f13-\
f591f507b640"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]_", ",", "\[Epsilon]_"}], "]"}], "=",
RowBox[{"CharacteristicPolynomial", "[",
RowBox[{
RowBox[{"HUEN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "2"}], "]"}], ",", "\[Epsilon]"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"NRJ", " ", "=",
RowBox[{"\[Epsilon]", "/.", " ",
RowBox[{"{",
RowBox[{"ToRules", "[",
RowBox[{"Roots", "[",
RowBox[{
RowBox[{
RowBox[{"P", "[",
RowBox[{"\[Lambda]", ",", "\[Epsilon]"}], "]"}], "\[Equal]", "0"}],
",", "\[Epsilon]"}], "]"}], "]"}], "}"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"Evaluate", "@",
RowBox[{"Abs", "[",
RowBox[{"NRJ", "/.",
RowBox[{"\[Lambda]", "\[Rule]", " ",
RowBox[{"\[Lambda]x", "+",
RowBox[{"\[ImaginaryI]", " ", "\[Lambda]y"}]}]}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]x", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]y", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Re(\[Lambda])\>\"", ",", "\"\<Im(\[Lambda])\>\""}], "}"}]}],
",",
RowBox[{"AxesStyle", "\[Rule]",
RowBox[{"Directive", "[", "16", "]"}]}], ",",
RowBox[{"BoxRatios", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",", " ", "1", ",", " ", "1"}], "}"}]}], ",",
RowBox[{"Exclusions", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"Offset", "\[Rule]", " ", "0.05"}]}], "}"}]}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Opacity", "[", "0.7", "]"}]}]}], "]"}]}], "Input",
CellChangeTimes->{{3.800337857557605*^9, 3.800337883825984*^9}, {
3.800337923599936*^9, 3.800337925887891*^9}},
CellLabel->
"In[117]:=",ExpressionUUID->"4b94524e-d2b4-433b-b4b4-67276a56ea98"],
Cell[BoxData[
TemplateBox[{
Graphics3DBox[{
GraphicsComplex3DBox[CompressedData["
1:eJx0XXc81d//j4aSQhKlVAotZTZEr8yIiFSSpqRNi4qKVNIyoqmhIqtNixyk
UhEpIyPXnpe7bX439573+9f78739cx89Ha/3Oc/z2ue8r6lb3e1dxQcNGhSr
MGjQYP7n1PIVL/v7+xH+HDqr7JbyrC7YfujZjVd7uwk8/H3F0sX5HdB6//D2
6ZYsAncJ3JzTsqQSXAfGNxO4TcUM5qSRlcLxVQTu2lF8FP7QhHg+gQfx3mXq
vqXBIOE/jH9/EB6x9BYxHjCenSfVMsUf41UEzh50xf6SOw3Ph8Bz2n706W/C
41kEvmnh+dAPK2kQN1LOd28pj8Dlszc4en3nYB4I/EiC8/T7P7n4/wT+o2zT
xy+/yd/H/P1KTXqw6UEnwSf+XO/80M3atAM/l8Ctzdd0xtbzCJ4xLimbnLBX
h+QZ44dnKMt3cwgeCDx3hlmt/AeSZ4yPNzGNt75N8ozx7ODST92+JM8Yr5iu
q/NpN8kzxsPTND8NciZ5xvjmk5pSOnw+FYIVuvYascBNiL+RWN+hvpdN8IzH
x89pXlrjSfKM8SuPUIXvSZJnjGuw9/z5eY7kGfP3R6wjK20eyTPGPW7acvd9
bSd4xp+yq+4f+LmdB8zIgyWW61gEftLda1vbCC7BJ8YbMteMWxhB8olx5kOP
MaePkHxi/Ens0/UKm0k+Ma6yZuh6I1uST4yfL86efNmU5BPjbnOd5o8GUm8x
Xh43afMuFZJPjBveKTYz0iD5xHjbugMTTywk+cS4wW/TS9amJJ9Y79rF0ofO
yesg+MS4nRitKsWV5BPj49LkCo/0cAn9xPjkfbM54zTYBJ8YP8ZbWHf0E5Pg
E+O6m0IvRluSfGK873P0TbeFJJ8YP2pWsqN7DsknxisNvVh56iRvGN/an7Nn
WS3BI4FPPuuhWsxkE7xh3FHJY1N+H4fgDeNAv3LWVYrkDa/bqbgpfPUZkjeM
P85QTpRUIHljNRpEtI5qRncj/xzqj+YScvF49/NZfVKGHIJP/Jn9aGdoZh6L
4BPjfiOiKm+6kHxiPLWmFGXVtxG8YdyaZvRFTqmN4A3jHzZWvHK/zSD0EOPD
ncduyY9jEnxivOPgpB8XX5N8YrwpR3tVdCbJ55Pxjl88JPjyefSOqT9IPvH4
jdfmfJlZyaXoYRXy2LNF6YUtVQ+rkL3N0Pd5f3gUPaxCRaqqN//sI/nEuPv7
sFvt/WyKflahz9/a4utCSD6Nlun4VpVUoiLvCG7mVKp+ViFdrtW9eevbKHpY
hfxbNeZ4N7dS9LAKXV2dPNXOn+QT47+Tjzo/uMSk6GcV8lLcsSHpOlU/q1BU
vulpyyiqflah0N9Rp6xeUvWzCqm9VPf0zaDymY9Mo2d+PTqPymc+mvZE+f3M
91Q+85GKTPKhXisqn/nowOuQyf5lVD7zUbzWUosEd3I9GJ/X8PLW72FUPvOR
+NM7J/2Aymc+ut/Hhos9VD7zUU1k7LscbwaFt3zUsXhvlXsAlbd8lNCy/c3Q
K1Te8lFqys7IgntU3vKR9XNNLf1n/+ENRPAGIngDEbyBCN5ABG8ggjcQwRuI
4A1E8AYieAMRvIEI3uB/81YFIuwXRNgviLBfEGG/QLVfY4H9QuH/tl8QYb8g
wn5BhP2CCPsFEfYLIuwXRNgvUO0XP19EfAER8QXu/e/4AiLiC4iILyAivoCI
+AIi4guIiC8gIr6AiPgC1PjyWBBfQER8gf8dX1ggIs8BEXkOiMhzQESeAyLy
HBCR54CIPAdE5DkgIs8BEXkOiMhzQESeA9Q8B8sTkW+DiHwbROTbICLfBhH5
NojIt0FEvg0i8m0QkW+DiHwbROTbICLfBhH5NlDzbfx7IupEEFEngog6EUTU
iSCiTgQRdSKIqBNBRJ0IIupEEFEnAq4TDUP+qROh63/XiSCiTgQRdSJQ60T8
cxH9DRDR3wAR/Q0Q0d8AEf0NENHfABH9DRDR3wAR/Q0Q0d8AEf0NENHfABH9
DcD9jSkD/2+DzBkn1Upf9SIjQ5XIODsaWK81ZVuEcgh8pdqmvsxJHOFz69Dw
tEqp0OmdyH6B3ubdX2gELvw9lDZjmOeZROz3Swn80jxXlZcexHj8HKT83VPv
iB6NmA/GNYfYpQzzIeUIf44Opys3nStlEHIwXnM8Lb9vIZM6HkSMBzyeMn8Q
MX8QMX8QMX/A86fwBpg3Cv8ggn/A/OP9wJ9vfLq2Ws3vJOwC4+FL5PfsrukE
vE8YVxsZWTS2rJ3gF/+el9ezrQecKgke8fhA1g0Vz4kkjsef1Bp8z2Z6JcED
Hv+xNcHy3UZSnzGuNaZoC3stuV4sp/7NV6vSteR6Mb7gpGTIUmsOnj8hZ3ye
WInTdC4xHq9v317NfO9vbGI8liOdkDWVvpJL8Ijl3JkzZnT6bNJ+MC6ZVHD+
41Oy7sXyVd/0dCTWEvMn9Pma98a5FxQIuyDmc6hYJrfFitQT7O/3SVyvAiPS
rvH4kJCNlenmbPi57vj7SWPS0UwbVeUduznI1vRiYKQDHp9B7FuFjOGzGWYk
jufVHSd/7d4kzH8pMd6CtWv2JH3S/2D82e1z4d3zSf4xnrRz1aXcADaxX1j+
coujM8abk3Uaxq3YZ7c1quJ6JANhfbfKS1I2UG4l5olx7SVlVw830Il5YnzB
jsGT0oeRcrD9mbpY1lk9pxNyMN72xZFztYDAEf6cdeKQgbo++VyMl7LpCvfN
W6njQcR4oI7H8xUxH8DzwfPD+9/LW+RXf4ZB4Ng+oqaqMKcm/Ic3EMEbYN4o
+w7UfcfjMZ+YXzx+geyM2MXmZF2A8Vlf557pCyb9IdbToRrXO18fZcHhwqKA
aL5+lsooPlV8y/dvKqetTdf+Rz/hX/2sIuYZ86Q4e+gLBlU/Aesn1j+Me8X9
0un3JuydyBtzwKM9MYlLtUfA9kj0xYT4Ec817367sgm9Jea5LSndbivBG+Gf
b6d4L9Lj50vYPjH+PHfMq80OZD6M8U89BRX+D3lU/wnYf2Ke8fj7svW67s/J
uInHh0XGJRs20Kj+BLA/IeorIW77dMln+jIa1R8C9oeYd5wXiCU8YC7iy6HE
ERARR0BEHAEcRzCO/SjrhtYYb3Uy78Ljg4+5jXy1qJIad4AadzCO4wslXoCI
eAEi4gXgeEHx/4D9P/4/lqP7/fvuq2sInIh3lglTfn073kldL8LrxfqAf2/e
nhfbFDTbqTwgzANeL85bI6Ymz8sbU0nkdXg8b+S0LN49wi8Tea6jgdKQnyw2
df4Izx/Lx/O6WXGHTXfgUPUHYf05dXBCvnt9GrZ3tOzaM8ebQKP4QxZSPup1
SFyb9DMYP1FrcO/4TDKu4X1eZDN8XpMYqYd4/NgtXpojNrEofrUZTTro8GCZ
ZyshH+Mzl/qUtciT+RvG927V5NhOZ1LlgAg5gOX4CtfbJpyviPWCiPUCXi+F
Z/iX51ICf0yvO3fzHI267/DvvtcReIDxonPbSv6TJwDOEyj6CVg/KXoIWA8p
eRHgvIiS/wDOfyh+A2G/gesdvI6xm77Mv6DyHz+PsJ+njAc8npJfwb/5VQVk
DMyHjvzmF57a64Lj4wuELEZPCeXvt+I6ZlqhJo0Yt2CC5arpll0ATeXnO3oI
HMK/K9AsQntQ6OGCscZEXl1D/N6OKxOMHzUxhPw0EnKcpb5vuVZBA+HzMI5W
PVs0boRyJYH/dj32qb+/HU2KXV2zP4dDPBePH1EsW91hSYOaS+kpnO6vSO7x
Xa8WTSa6Pvzi3HCiL0SsC+F1Cfj5hvA8DWvbXHZuboMwaQUx20/PgKO1zRMZ
8OVot6V8nE3IIdZlf/a6jpr8f3DAeNph+QE5oVYDcuC7jkDOxCeb9FNL6VAi
WBecbx02Xc+Y4AGE64Uhidf9rjFZwDpVt2dvaR/Cn7dnZ4v1Pe3E4wg8/UWN
+7X4dpjUW5bwai8b4X0ZJT3RMNO8Essh5H3QGHI86BQPjyf49La9+Ng/gk3o
CZan2m9//pomqT/Yz7hsUXbcMYMGCY1iD9GP54hmceVQlHwjajdY9sYugA6l
Wr1zGIEv0ZzvMmFHehogt58bNPcaneDR+3n8otJXXKArxmyXKmdDcv9hs+G3
6YRdt2+//WJuJ5vKA4jgAag8YHz185Cub8v/wwNgHrB/wPa9pruOsyaRRs1n
EM5nxKLHu6Mb+YQdP3R4MCJkPKFXxH4e0zt1Jlj1P3UK4DoFj8PziWFdPe5t
9x8cYRzvF95fhZlB38d9YhP2hfmw3KavtDaHRs3TEM7ThONByD9KW7555Dd9
8rkYl728+2PZ9//UI4DrEcF6CrEdAZv27eMKNwb2AwjPt8Q8O3qqIYvKM2Ce
sRw8fkcz+9ZJZ0LfCD1Z44gSRp79T50F/9ZZNZgH8HnsfSj/BY0a3wHHdwqf
gPkk8g8h/yWfxOHFsC6qXiGsV5hfjE+aOOTcmnWEHyPkTb55xMmSX2/i9eDx
Kyx2Xas/TOYhGB+09/DnUF0O1Q8jih8m6ujgCbPYQVzSP2N94BRlZVv8188g
7Gcoeov+1dtCAu/r3+yQO/U//hOw//TsuH8/mFcIG7QXhFvG0kG2oeZh1ts2
qhzAcijxCHA8ovh/wP6fEi8AxwtKXAAcFyj+ELA/pOwX4P3CvOD96soNk9iX
307YJ8ZvhOsZzLj+H/8J2H/i/cPx/yd39cfyn2R+gOVFw66h2zN51PFIxHiE
x1P8J8L+s8viivPOEMJ/Itf3LAePdjaR52D9MVu3r8rJia/nPa6SfTteoG1C
P2FlLeP7IxXXv/mEve7Mt3oQ39NK6An2N+P3LYnh+lLr/Sq0YllDxb0SOiXf
q0Kb1e7JXSD6CS8I+05wnV730JgOIY/sfk5yf4l4peMc/V5VILXytuijw6j9
h3yItVTY/yeFKj8fLG3FdeQ7SflY77LlYkYtWEHgCOPGAcV6ir9aqPMHEfMH
PP/9UvEzxT+9AJ8h8fE1kTUw1sn5WpMDKR/nQSOnJNF26f+HTxDBJ2A+KfEX
RMRfwPGX4q8A+yvsF7DfO6D/QDImvJ3Qc2wXepcjjB9uIetujPsZqX/WH9lO
tQvAdoHti+i3j5I8HmH9H78H2O9R6i/A9RfFHwL2hxjHcoJff1B0uMSh2iNg
e6T0GRDuM1D6Awj3ByjxAuF4geeP+eDGa99NqSDjF87DcZ+H0s9BuJ9DiWvo
37hG9P0A9/0ocRlwXKb0SZCIPgnCfRLsF7C9+0/YD3P38ah1E/q3biLiLMJx
Fusxnj/bm/N44jyST8wD7mthOdhPXxxuZ3pj5X9wwDhFPmD5lHoWcD1LWRfg
dVH0EGE9xONxnVUX1VDdEsyj6hXCeoXjL+bneEQ0O/sRmSdgPblSc3LmA082
1d4RtndKHAccxyn2iETYIxJhjwjbI/YnOI6tsjjbUbKEjNeYDw9Lde5vHRLH
+tk8gqUvQdQ1hF9FIvwqovhV7D/Rv/6T8LcI+9sr//pzUP/HnxP+H7D///f8
ug7GDY7/8OBqG5FvYPtIXJA4+qA4ieP+w3ebpZMU5rVR+QER/ADmB+sr1otV
1656si+R+Qb2W5flIzXaEjjUeAo4nv72SVBvffQM0Wb1jdg5tBRmvclrGJHb
QuGtDjalLZ50cgupJ/gTnwtQ+jyA+zyU/Bxwfk7RWxCht4D1Fusb9sNuXxJL
es60U/N2hPN2jGM+iiTPnKsbQvah8KeIfjLC/WRKPxZR+rGEXeD+DKVvgHDf
AK+L6LNFXNOaGMimngsgEecCCJ8LUPpdgPtdlD4G4D4G5TwORJzHAT6Po/RJ
APdJKPqGsL5R9B+J0H+E9R/bEV5fl/iK/YtMyHMfzNObnVN6xLTJvB2v7xXn
JW/DGzJ/wzitQq0jnm/vWN+wHG/aKt8xz0h9wPuiWXTYefQnso7D+SmuBzGO
579Ie9Qng8UMQg+xnB/R57flTWwn+mKYz/3nc5cWnOsg8lfM5+oxtHQx6Q5C
DzDua+F22OBNO8EL1rclWe321e/J8wii//Yy+XrBEzIO4udoTNlxXPkZGY/w
/l+SnGKnO4VF4MT9K+bRtrlaLGLf8eeS71/cW9vJugs/9wGv6uyVJe0U/SxF
VwJHrhu/jkHoA8ZdrK6oyiwm9QHP9/6yXL/lZ1upckCEHKDKwX5R6uXXj+e8
Wgl/gtdncfvHCJY9m8Cxf7qqUHAgYDfpZ/Dn177Wn+rzyfNivD+z+v0fLC0g
/RTG9cL+RNisJPM9zFOA27DtqJuwa2J9c4Nf6vpxqPfoStHpef6toU1kXo31
7myath5jN9mvxvNKYeao/llDPdfjgXTalF3z+PUj1gMcx6NsbdQ5a0g9xPoZ
4V16foN2BzF//HNryW3iTVM4xHzwfrW2qZhO2ETm+fj3Mlviol8Cke8RdvBn
15Ehk7o5hB/H8uUqHXI9ooh+OJGX3W7ZObOii6y78XPH3vc20PEg7xni58xW
VT/7ayVZX+Dn2DSAq9MKsi99VEYdqm7Tocpo4fXicf/JkwHnyVg/sBzp5qpf
SrqE/hB5o/3WaJOYCdR4UYc6Iy5rq+VT87E6tOHZ6jWP57ApdleKpGc1DrYZ
QcZBjGtXStiZjiXjAvZzn2ymSESuYVB4y0AHXk0fai5G+nmMV6hrx1Z1MSh5
aQYqLNqhKdfPpNhFBjq+LzLu4nBS/zE+JjHCSVWevHeC8Y7gew1fphHnaMS5
+YklVU869pLngBh3mG7JKO8meSPOq9f6NlldIOyWwH/Y11+wmcQmeMR4x+DV
oUsTmVR+QAQ/gPnZcHzUg29ddeAi/PnsHYorDgxhUvcF8L7g+eOfL7G8z3p1
hkfVB8D6QOlnAu5n4vwV+4ex02HpGFVyPH7Ob8TI6S+kUfUQYT3E/hDHqfl6
k499HknGKczfqK9p8cm+RD+TWN9ZPRnfIC6pDzjuvBPbOPWYDY2aNyKcN2Je
8M/HfS9IC5xCxmWcn/ybx2YQcXNoR/ng8mXkvQWMR8zus+zj0anjAY+n5P+A
83/KfADPB68L+6W3mTcmSV7k11+qa1UPKjEJvY5dVxPgJI75vC/cl3rI7r5y
WXo8nbAjLP/U+QbdUWZkPoHtIKon23BJGZuKI4xT5CAsh1LfAa7vcF6E/aH/
nY2h75fRqThg/F87YqGsS/p2phZcQm+x3fguf+0RvJS8h4/xxJ1R4RDIJXiY
P+Cfm9B0K9Q1yYJO5AdEfnrQV+/zafL+9m3LxEirRaVIqs7ugMNlst+O9/NB
v6SErwv1Hn4GKg902mU2nvTnGI/x3PNotg/1Hn4GOlNoNEPJh3oPPwMterJy
/Cp/6v3nDDQ1tlD3/GXq/ecMlP/l7gejCOr95wz029lp9ON4LuV+eAas7rmT
mplIfW8uAyy6Lx/e/f/O9wm9ztD1WWtCfa8hAxxvlYpV/qS+15ABo7q3XG5y
o74PkgHH7sTvXTqYep88AzCfLW7ZNWcjnxN9RaPXCcOVv7VQeQbMM2UfAe8j
Je4AjjsU/QGsP5R4B5R4h/UQsB7qFn+W7/RpRlkTP/it4vvDDo5cQksZ2d8m
+h/aatNSJIj79uS5kzRz2fybTMLP4Hr0ga258eq6VopdvEA0ZBkzeVordTyI
GA+U8QTun+hnuCi1lTpPwPOk1MUI18UUf4KwPzHfv/Kr2/NfaHa4wjK/8wxk
6cczerqVATdol/SjFBogHSWmXYhlwtNnO1ws3ZmEHKE9ArbHddLDOWJ72Gjl
yfgCuMJBidGV6vYqJG84b8/yH33tReJ/7BRGCe2U4gcA+wFKvYBwvUDZF0TZ
F4IPzBueB/afbrleE/6MJvtgOD6+m++3J3sOqVcYL5H2Dkn7RfBM6CeuE4k+
pjCffLzqlqHcqEpY+/lkpfRFBvIw8rAa+74TydFnK9uMqYShLapPHj5OI/oA
s2fm26brkHUujguXDejec81p1PkjEfNHIuaP/vf8vyG/25t7VzygU57bCFbD
0tom1DIJnjG+ucU8sT+SCVgP8OepqOSQ56epeUszotZxOM5i+RjHv3fqq3lU
pTgLwgbygBaIuVXSYxHKgOOBt9ZPrWcCc6B+4Of7e+U1S191wjmtlWrqy0h+
sJ8bY/L6Y40SCw6n7vr++0kL1B1XzA6NYaJ9mtNjrXnEvUHi9wrcdevHzmVS
7DEf+UtaHJmzk7Aj4Txz0db4SzMm69KJ9eN4PQPtO3XAh4jrRD+HXvBZu6aS
jHcY9228av1hLtlnxp9NuqfzRjK5lDy5Cmp2apv3jyH5xPnUHCOpQNNCkk+8
vqdyVwfrlDNh+rovtqnOiOjrPonKCFWMocEizwCHk9vThOdW3aheTyngySUa
fB7k9HBRVxqRd5lkuo3Yt5tGxCPmbtmXa93pKDHuQaLtjHbhPPtRyBSTDzIF
DJS9YWnJ5jcdsHOimcpeww5hXtGMZC69M9NQ5IGKMN713RwSef42A5nXKYTd
6OHCmMua106+xu9ZNCP9JVufB1VzoND3qvKMJa+Ic7GQk5LnVxjTIUEYZw9c
Tx7hf7IGxfu52NMS2JB6vn9+7Eby/R6pCCirW8GGgn/lAJZDGQ94PJ4/toNR
wvnj+C7vX/z3uVBeI3guhR8QwQ9gfoQ49Ap4AFMhD5+E/McKn2Ms5F9fuF84
j8D7NU24v5OF8h4L91fiz+p9NPk0pK7p/eiARy9KHdm49tUNGpzX3QOf09KQ
YeigHWfZHehJg7LDVB8afH2cd15zbi+aW8/wjmttRWJ0sX0Kae1QfnjfprEm
fUA3dje6VN+Klu/+WjLxAj+vyz5acn8hD7RUYp6/vVyNKlc/80v2Z8MtnkXp
ivIO8LtjWs3dWY/Sly2/5KHBAfXcpZabhrej7XQHiZ9yzdB7YnG2YRIXio6a
Bg1r7EU8/Q+VMbfa4EV1xPFysQ7IcXt9LO1lGtoVsO78krWdcOH6ni+TjtPg
bigjTKkPoY6ffZ2TBvXBo+2HC1QjaKAcsXt8eUUyqh7kz3vHrEc/7HMfmP+m
Q9COSV19kW9Rv+1bs23Ha+HyqqO97HA6tKwqK88ySUMeiu+Wxy9lwMPemNUm
s/h8KskmyFa/R9LzwpNyrzWh2cv3/FKY2kqVD/lC+eabZQbGv1AYGA9lSwXj
u4fv/bBhXyqhP9eC1AOXLmyFrn9xFC7Ep8y8LlbISEDgfvz3rdwi0Lo/7SQ9
pgWGfVIy9W5/jZpCgxROlFVDXXLxZK09dAj+d13oonBdlPGoQTh+nFC+iUA+
0hTK36lqN/9+yzsi/m7wVrKJfceP7yOHbr6Q9IboZ9Yv9pe8eZwOcle+azjc
ZoPZmYCngUYVaGhVXeZ5GgvuZ7mV1rzsQnXfjMY5VbaAoqyCVk0DD4KD957K
K0wh6i8901Zgd9CpOGD89oaGgrCyVLT3R7Di3uktaGdAO/KwbiXwfQIc3IT4
DKPmovcTnhDnKSalmjvfJ7RQ5wl4nnG5DtEBsTy0pUenrmlEM9jJ11abXeNS
eUCYh4S7dWJWOekgtC+UprDC81QQX09iu48NNUklv1fEUmqj3hEanKEXjJp+
9g3h78f7jzY54ESD6DzHrUeWVBJ+7FjBL88LHQzCD2joTXFZWF2D0pZ6L9D/
xvdHy6O2fKD3En5MR87T/e4ysi7QHv7Dz3pLKTpSsGhbXQ6P8DM77UOyEg1p
SFvhgM9xC7IuuJbTs3HHm2J0dpd3iIkjWRfYyGrCCOffiHv48jr9Jjbhf9UV
fvU7G5cjevagN/NPk+8bc0Pk7COky9GrlnnTFvsyCH/4tWc4S2cLP6/M0589
KZwNgR9psXYvuEQ8bb/2On6cLVkHyd47JuHv+QetOtr+dcpjsh/Ku0FzrV6W
g5DDFJXsMyww36OzVUOsAWaWz9d9+jIfPmStFTdXJvPJhpiB8ZAyZuKsdWdZ
1OcC99/nYt4A8yaMR2iHgDfQovB2VcAbBPxv3oAj5A3f/5gl4A0YFN44At4A
8xbF65en1f0mfn7I622NZHYbwWd/xwCfMFPIJ4U3wLwxhHrSJpSD9QTzntTV
bN5cWwtDPR/lzDpP1r+3xvct8ZerhcOuV+07ua2EHs4V6CFgPTz6rz6DglCf
p/6r/xAr1P9Eob1gedheDmStnDomIg3kMqe5H2/hxyPLMI9nZ2jgYV77YtLE
FOiffCqVE9+J+vcWWVXspcFgGGcXblCEOhkfS8syatAXNTPTdyoMCFm1+73p
3H4Y3nVBx7ykGkWkun1fwrffH/6eL9mn+tAt2qUcxTt/0CXTydsis9shZsI4
5Qv3O1DZH78/N11/oyHxehuiGrgQofHVdHAdG0XmfK64m1KMDMc46nnu4oDp
D/ub6dlt6KnzOzd9iVIUPaVm3+h5bHCZmJJ17UED+h0uPntk3x809p7SwY3j
WeB+Rs96ty8PSpOb9TSSfqKu9LlfbU6yYVfeyuZ1fp1QpM2ZfK3rN9K+kt0y
aAEHkve2dQZt6QHzZ+1R+7fQ0Fnr9L399RwwP9dWZW/Wixx5rY+KdMrhXaiX
oc/2dhgR0GZx80wn2uJ4NDa88TfIntiQl6zFg28rTBcnL+eiPTefHaVfKIbj
XyxoNiUcWHZYNiRcnYEurhuWsim3BLabGr9xMWbz9z9luZc0jficK3an87MJ
A0zuuq7pamiHNUyE1p4shPStFYd2F7DhpsyhGfbx7yDR+uZ9lbMdoG79pmLd
NhqMZ6UZ+TmmQWxoQ/qnI72g+GX8QqYfDTJPros0iX4FTw72mo3Yz0WpnkvX
7rSlwUj9U83BUolw+ZPGYXogG+2cvzvMFWigyTlml+jxEXVt+nXMLqoerV9T
EdO5pxVWrrtvnF77EYwWKb8Oy6hHF2Xi/7yc3gpH057NS/ItgEQtuW8tNdXo
pk/3lHN2bSD+r55AllBPKPIBy6fIgVtCOfcWCeYZIJgn4Hme6K6+93ddrG9D
zPnrAoscwbp+fLUseGfxgvAHsi1DJujp/QcHjG87s+d2YsNjol58Yzbx4rkp
/8EB449srI56OcaD7oy3i48sb0XTT582CFD8Dw7ThPjlMCupI+9ewYg3LhMl
4hrR+hNGh5VCyXtTlUM5f+0dhYDA3hd/+OZzoOQrxArjnWV25CTazlYw+SjA
cT6wS4hnL4oc2JfNzEl/9wW+98YN7EvSAS+782bZRP4Qf1I57ivxvRb5KE7g
fxD2P5/+HY+eCMdn7Wl0Nu3MQ9cZ1t7HderAIOjH1+I1bdAl1FfhJ3rdcfLG
dX6+tm2CzJD/5z+R+0nDT5dyyL751yZb49PJlShr786G8V1tIHVdZ+b6LyWQ
qbvgCY9XiTa+eujtWt8GhvK0kclH4oj66U3n9Vlp8jSI7c+5vceZCcmznwSc
n5ODqkLL4sxWskB5sviBJgU2OG4L8FCc+B2VXEZF0kksmP+tp/RJUC34sv3t
FhUWw60xNI95peR7c/oFXS724g3IcsfLP/N1yP7zOknPs/a7GtCEGDnxjSw6
SGR/HVJ1OoWol5tdnl0b/Y7sSy8WyIHl/1sOYDkLJ/6zLpQkXBdlnuimcJ7Y
j5UJ/Bh0C/3YObvm6zp+Iag6aOk88ZJGuOrmUbV/NB3OJH1UHGabgi6/lF34
27sBDF92hp6rp8NpIR4kwJG+EP8x75p9z+J+2D7dZ//F5mrkfGh6b9RNLvh3
73afk14HFhEZ3GHav+D6h0VrHLsZ8PpIoL1MZip6OkJHL3VtA0R5tmRI9tHB
clPzvvJkfv6/bmrfKcsGtOZO0IWGYa2wQ5Z1v/8Zi4jny0sVV56xJc87ZBJ7
vDTTu1Drg8bFK7QqiXh99avYish5PHQqYdVk8VA2/BljepqznY2+uw3VTL7Z
jOJ839ocukbeK7AorzU70MxElR/aw078v/cH7fXSF6T2MNFSleT1L1RpcPhy
SWOXdySR71mL07vvvWghvwdgwUOvIcfjUPUKu9w1L8j+AL1MUUnLJw6NrCmk
Fy0l8w29HRsdurzjUMfKAz7bf5D5BveMv8Yu/vifju4S6a5k3/uF+rBAu6hY
OAfhjoc820AiumH2ZosqiM2L2xqy4wWsynSzd/NhwIm++sqCyY2wvrA+4kJW
PiwJyZ60z5AJ6/6dPywXzh/zky3gB+KF/EgU6bFhDQsdOX2t1WJ7G0RL9O/8
4cIB6/xIxcm6bKIfm+hoOPRyGQfy5BIaWtBPApcM3Gu83or8XoJzR99vP3yv
BfZIxRT2Tyf6IGj/dv3EemDDq98H6WsrmCAumcOa/4GJQu0nL5oZy0RxzEyL
uxs4YHLQIH5Ydh4YSK3wMpvTgqrzXl0L47TC2e7OoPbuOtgftE0je14pMqW1
y+8dwoTcsIe6/kFM2FH6ViN2XgFasOmF2JRNLGgysF2nc4AOKqa8ntppzyC7
pPpNaSITDt183J9xrx06i+3YT+NiYAit89qFd2xQLJUab6TTA1KFF5ttn8cA
Gm/oeCeLAwmHnc30Pj1A4aWTx6RLVcLaqXVxlo9boKTq1Y4pxi1o/6+g6wv3
82AP84LmordsGDI+cNvQjTXo7soRYr15XIja+OXT5ls0eBIkIff6LQtFBSjT
p/V2gZZfklbqwkowsZr2OMqhHR1gvzv4/UA/OFkm70q41A6sH7t73sRx0Faz
d4NVpDrRH0vdjx87uZCsIqPWk12PflYZm8uM5CINic9F4nUs6K4rT87i0mGR
80UvjUv8fTvdYIu0WeB1OupHw+4idCEu1urgICaa/CPWs+UBAySP665Tb6uB
Cr1xdBUeAyH9F/vXSzJh99z8VUap5ehrQ7KpWh8btL9Nfzp1Hw1SDJfsau5q
AOPUuX2Bp9jgsH3k74J5NLBjwcBzq7cY/n0unDqYP/DcQbLp+w6ObQPn9+fl
pYdz4cqe9exdbizI0FrV1pHDQSduMoYbb+6EBevvRJaO4oHn5cKk150MqDhn
u3za+x4YbCBncNWaBl4Huo/sWsNBN0Zl3XvL6kVj5szJtV9dCZveiEnNim9D
u/IDaD02nej8RqXGEUMrgXFqGzsznomKJ0HJiW4W+v5r9ubYgxw4/4QnW7O3
FVJmzDc4vb4DMYeZ+iiY0KCkjpeXBGT/78GoQUOuSPL11Dh86M6fScjv4ZTl
YTFf0FUV/VOqe+nwmiWfP+77SyT8BCXdIbojJ7eC3zi9UJvXt+Csnf3xp5fy
YMYQG42r4+iEnxk0iLuyeiUDNpYhf6MkBtWPAfZj4JkYOi+BQ7y/9vFZhWZn
D1dYx7bB3MN2SyMedcHIZRrPey1o4GDXP8DPdxX9hJ5jvdCxdc2gLIdKmDi9
w/jICg5xT0Px3MTF4Xx8nN9ar4JjXIT7eW9N9z0/4VoJta69MtZTOUSfz0/R
S3KaDgfkcrv/vxx04q1ADs6HAtV2q2hebUcZ+tt9i3ZyICXAO+xodSvBp2+D
iZsD+X0CyNxH/XfxCDoK3XHt7vsbrfD92OPF1tNL+XXgtDPa11vRzWlVzdsm
k/cQ5JQjjK/xGpDfJnH10UpMGDQ39bVZaKyQv1L0eIF0fL88HdzKVGV8Pl4h
8pnTqq9DWouI++3AKfOLct7bBAePyER5DWqFX8LnBgueC7eEz4VjGh0/RmSg
dB37qek7GDDxt/zWC3PIc2GDZLuAsSo8sN06UnlmKHEPCiU16kkHunfC/Bku
ESuGV8LY8VyPQm+e8Jy9F5ofTZw3Zmw7jCpqv6ZfTr6vecooaD83gAG3nfWv
Vku0oRHCfX+9zemxXj8NFvZIujGMymH+jXvZVfJtiCWfGTXLiAGLKg2/5GQy
kV1frPviex1I0Wa4+UtpLuy22ZDtb5+DBtW4fJq9hYkKekeg5MU0KB52Y3Xq
qhhQmjpvN5vPv/bcIysjxtCgXM1dSen7KzDrqLA1UKOj+c+W0tmyNFitJ8AP
8QZwkBPiQb1/fDf5MyB+gpV6zsZ2uDtTL7otgwUp/k6OtjbtSFw774nbkX6U
U/UrLexiO6R3ZzHuM9ko9o7v5uPKPejAn1Xm21ZUEvdtcss+lLVfZCKTKJn5
tSrkfUidt0dy3vnxkKxl3+34ZzSY+HYmXX1YFoQV3fuRGtyKvBz8P32SJ98v
My7c5bVjBxO8Aiy8xS349nz7UuAMW/KcXZ+bOcSNXx/VZl4cwO9MFOhzwwcB
LjlTbpRpLROUZHWvL9XvQ5Jv9u8sX8HX2yMzZr1nsyDTPnursVQvKv7SMajk
JRsCJkyVamI1optvSj79vN6OmGue1tZ+p4FSUpXx7tAmoL9ceXirIhedUNxu
/m4BOU87wTzRMeE8N+Uan72ly4DSWV4/f0TzkITeed/mKBbEJ723GIl+EPdD
bn8qLdNSYkB3WbdK359qZKwvJu/8mV+v8g4tnj2bBaOWm9XmX64n7uuyFvU5
+L2hwdb3R3qW2RSjp8EfRg2SZUPVusBINycanDmwYVTT9Up0wj1v8vYmDqi2
mhcX+tNA7M70SUGHWuCWw4+fH1148FtqzsZKAxoon9S/XxBA3je40B/jPMif
B0kPDhm+4vPTq+5raynVCzc+v+4s5vOz5LKFi9ckLvFemOxPFGC5uRK23zpU
dqSMfE+oOWf1nkFSHHgu8Wuwxhc6CjJ6s+5VSgfSfbfr8Hw2Dcq+ZauqDWkF
67Cf5k6/25FVq1zvLSMazBp+MtfuNwM8okcoLLXqQNzFcyZDLQseL7A+81c/
vzi8mc3XT9R52OfRX/0sN4p9rjunECpMlqMlm+gIqiIm37nbBo3rBfbytHbA
XqBOaC9NwvFVgvFgJBxPownsrqt3wO6Au0Jgd8Wrdh38as5EytL0/ma1Lpi/
ddtYn8mV8Dnqg/1KLhvZ0XLGmij1wKq62V1hfP23vv8PPzD2l4AfD+ncRff8
2pF9mSAfNk8fbPLhcTuk2m5hrTvdQvRzhlo3mcUS97p5aMy7J6FOcX2Iu94h
+b1tO/Q1W21SKuDnRxJNtsc2d6Hd7pPDko3YMG7z7lIvmY8wcejBlMrkJjTz
pGR58pxW+HjpjPVK1wSYqGb0YHPXH3T1hBrTfSodnIX5zw1B/oNWC/MftQeS
7Zv1HyGtydvUX2v9QUErol/aPmoBD0ktm1XN0XDPZE3k/CvFMHz6tsZl/Lrj
S27SzL7lV9HsDR8vy8+sA5m403l+P1rA5JP/wHwuN+/5Ox9QQyMH5kPxD4D9
g/QpJ5VeaR66Krx3dPBVtqJRLg96SwV6Lhk4oOfouVDPKfYI2B4pcRbhOMur
qfnztz+TWif9xCSpCz1ZOZuT7MSDQKG9nBTYC5ojtJcVN2RCjn+ohVizsNuv
vrLQR5dZNlNn0+BH0YHxDcVlSFbyzDDHVibaf3+XwXA1JhUHjF/QGTUgR23c
1b9yIHmfQM6od5cWOA4mzklhwpPNjsslWLD1zaLw3VZcZCOX3H4lsQtWLs4w
L3UizyWn5A75NCS1G+VKHNn74iYPUoX8awj4R39iBfzHPP/HHqEqX2CPFJ4R
5nl8mkaZZuN9YDl1+y2P/oXy97/QeD6CDokjO3ZLNkbDzLw9nwyDi9F9TsNX
E/6+hy0cMaAn3d0uf/UEmKYCPTkq3XMtdtgT4FVys9/uoMG7mbn7l86kwzKJ
jFeDHVnIa2WJpvFjfl799uzkh0O4ILbh3I2JdUy06LZW2kouBxayIxyUkzgw
LCrE4vITJrzd6Dpu8Y4ueOKn8fjyIjYcDjIf8Ksfdh3861dhQpHArxZ/E/jP
AuMB/4lecwT+c9K5jbd1ItnIW22W5UZ/LjJeoKr9zZJLzUMA5yHZFwMH5rNv
r+bf+aArWrcH5jPT3lOJd7UZnPsDtNIK2+C0fMPh0A/EOTWKOj0nZ2XQD3SD
ce7mJ35+gqSyBvLeq5Ib/+a9aM5pQd6L820TQb6NVgnzbYPsS2eKQtjIZs/D
VS6jmWhte9vYDxUc6BlaP0LhPQ1lVdS+8XwTgz5/nae3LIsBs/98dXDdUgCy
sxTdtb7GIH9Vd7dl7m3Qopt9oPVXNUQt0462zY9BM6ZL/3kbzYC6s3P2+3a2
QPaWZRVff8YgnSJDe5tH/Lpyl39l7Wg26JhoXJxUEoNeTwufLPGUBfQLUjlz
I9vh/d3h+/8Ux6Bfmz6JR/HrKf80z7th/HrK8JD30ZF8OR+22854wa+nQrXW
tzB1elDpu23phbkxoDCqaedQJg+u/nw/Lj6yHalx3kjE5MXAshu2NWYnuaDo
Ud64VZqNUu3WSjfy8ROvxyhsl+aAbt6NbO2uFrRsVc/uK3w87cW2qY33WVA4
H427U1CNcq0zGzr48p+vexmYzq+LB988EiyztQApetDYU/i4s9dKpZHlbfBx
yN37zik06Jq0DX19FQMPGblbv9szYLp/9brFIzgoX/eibw29FRT2rTm4ro4D
084K6qnJgnoKdIX11CBFQd031W6g7kPRwrovdapWootKJQqsvoZOl7HAbc+q
XdoxTBh95ebG4jcsdO2BlpXJ8A6kUpOg7bMM61shipOYjZ5VM5Cz/00V8asM
OKfryi5ybSDyxjbJNQ3bt/P3ZUpwuH5MIsQL86b3o854OLuTdcc4QX8Dlgj7
GyuE54KMN9brHX4ygD1I7/ucPgZkRI5RnsdlCO9x9EBvUkaaNl8P/bLZg+Ud
SmHLaG/j/fUMJKY0NDdSmQYtr18f2nKwjLjf8j1g+FK7KTTqfADPx/dfOTBM
KKdMKCdVeM8nB8sZoikpdp68h7lDl2kTfIIFpkmBY6LmvUdHo3tkRjq1ILWU
cycHLW2F+kQBflqAA8YLnzWMGifbhvIjP9pX2bfD4U2bwvcu4UCZL28JI5iH
Ql7ecnMU60ObvV8V0qa1w/FgQZ1edHagTkcgrNOzM0726LixUcNHuZIE527U
GOa8pMOkErz9BPKPvx2Qj0auF8j/5jXu0SxER/M8wu8ntfFQhcunhrBBHBDT
PphXv+MsAvbdva1fG6DbzrptbkMLhCgsqh1RWAmgazbh0iIGhNxbPmrII/L7
tdTfPz3Y9ZODXDfLXQhO5tfRHtuKPe4S+QDqznzXf3cJ+X6ip6Dfgl4L+y1K
RgYnJR3J71HcL2vac/8ei6ijcq9HlmVc569vzarXXq400Erem7FMjLy/yvsZ
19w6m7y/esW1dvRKhT441//0amo1GyYK8TvffrrmMXvRhJwkmR80NkydYizP
iSHeq0AcdbfUjw4sMODKsYaIk/dataWPJw2Zw4R9vqrvt9bmo0vxX/LGqrBQ
2vjaC7ctyO+jEC8b6OPBT2EfD8//q2D+UCucP2W9gNcrn9wQ4BTbBr7GG3M1
qrgw7dCMyJvEeR8LTdcIGrc3vQsWFLSI2WhVgo8wnk4WxFPA8TR08wG1RcPz
0Qz0KFZfhgGqWkfeuqgw4LGwfzVM0L+COmH/qqtq/JMJyxnQe9Lw461p3dA+
rPp5riUNPGLPhvby9bDv/MixVmJ9YCJrIV7N18NpGlyVvLZn/Phc22pzqAqc
kXLrZ0M6PBz8rLBKrR4lBGX+epHEQ99GMX0uJtLggRB/IsDhqxC/ZLh73uIj
DKJ/uSQlrXbJcvL70FI0Ntz5yc+79y+a2fNjGD//mWHUuXfiPdSW73he6VAT
+haxcFfKUjroNFQaxvs2g4m94aqDXsWo5My0tozTTOizV1WzP9JE7MPQUSUW
cjuZkM+LkXhokQ8xnGvvPt6NRRG3sp9UqLbBwtPnDyb298Onb1v15GJi0cVT
MquXxXHh/sRWh2d/vw+L91zlT0wsfD5Rc7h9egcoBw02qFtTR/izyqDFkz06
yf7AQaZ4B/1FGfyZUBeYJsYE/8WjDlWz2EQdFKwkdez8GS5VDsJyKHUNwnWN
5oGGrPZuBtppcG/SzRkdqL5yx++2jxzwDCobVrDyC+qfqntBbkkr2vV9veYC
4zZwTVlnvyu5GIIjfJpDExiouoAjs3kSDb52tXfFHMlCLJbDoOPvYtA4V62R
DR9aYc/p8PjVX2PwJwq4XD+1bHIrjFq7Oeh90BVQ1JTbue4JQn71EcHVhXRo
XswMidF4A0s8Qis9cmLQMatUN65hKyx5etnxhXcWapk8a8+XnBjYcA+9GJbZ
Cozz538N1nkDo2ZYvVr9LgZ4Oc13ZJe0gk2x64Ww+1cgK1c27kEsgmNeak2D
i+gQ8/Cr/fMjWcA8oufY/zYG2lfc01R+2Ao7hOsVUxlYL+z53+sFvN7irUMb
Wi3ZyMi3xuWHGRumf9Os0O3k52uxYfeCrNlI3E71bfllNlzzNtELHcSFjflT
LsxvZ6CFZW7r12t0QOHHjQ+l+Txfv86pUKvhx9VxYcN2L+XjjW8eDalnwZOC
Me1Pb8aivto5cCikFBm4SMzSjG6BNbLjxnnVJRL3xnc+eLu9is8bBQeMW4Sf
ypYLjEU+bZKFLotL4YpYZqviwxboFtppj8BOUYfQTrcI/fNagX9GQUL/XCH0
54YCf45k7QX+fNBH2x/u1mygbZYSVynuRWtSNS5sKmKDuNe9tyvP18POvl8p
g32YqPNzutmgDeS9CA2Ny+U+6/tBsoimtdqWBrqbVmx9dolfv07xfH0wuR9W
nEjY6szHEzp799NdOXDqpIT2w5/9aGd0i+F7ftwx9fhzTuUsC3Kka4PFPvSj
GubhSH/+eBmJ2+4jH/9ENz4zbnU6MtAk+/OoyJJ8P24pe+zUsyoMJH8/MHba
TAYUdg+q8kvB55sVSAykGHvU6bBl2sqB+d/8lfB3/tCW8Wpg/srCe869OS2Z
i2P4+13G8SqczoWLAbSlfYGNkBVkhsrm1EBWnsy3meuZuP8JCgmFE6Is2uCs
jdQExRS+P6l4b/VwMHkP2cJM67QfP1+6VPzF9vvjRhgrETTRIJCGkk4d+jJ4
LRO44UsOpCc0QYG9Snr83BZobxny8us1JkiNttj143QjrIyKW3mOVYPU9Vc9
vO/MBOuYW1P9vLOgcr+5+QO+HW2r1KnQ4ev5m74zjd5PWmDzRpsP5fx897Bk
RcEiHhO8zjTWGa3koGF78u+p97bD76sBcC2NC1or9NznKjXhT9R8cLxG8gni
Pi3qsZ35tx+I6sq3DvQDfSyClcYmMRB3/Deb6N+dSKmTJuUgT37fF21j0FyN
8V1oq0xqk+akSjhwNO7p0GCijwoLfFwsg/nxbrJ2cWN0GR3ONqnF1I7pgIQa
/YOHjWlgYWQXnfuwGQatbt90UYmB/FLHTR79mb/eYI5NTXwVLJ0z/0CmAgum
/vn2cqcaDTKjXKJuKnGQznt2jhI/L9qYMbF/9R0udd8B7/sRjd8hynYcZKxe
tyRmaAeKrLiV8imdCxa1E+bLK3PQk+MGhpG27WhannnlD76cCap3vqprBMMV
ty+bvthkorNBg3Z6RNKhqlh5l/yIJuJ+ssO6Fd/GHWUC5/5vWRnlJvA8+o4h
vqcJLJ1s7pv5MiHaal7NdOUWmFz+vcspmwGzaGNq55Xx47/6tLeTN7RBMNJZ
k9jeCXrauyefXkaDjmyfl/T0ekJ/vOZekL9jwQTVy9J+Ok71UMlLuOnT0gzq
pyJdmnWZkPv1don+p3BAGkO4x9W+o3lmJq3LVejw69ouXcdHjXCo+tYjnY31
YHFHP/CHGxOe1nPROPN6on8/OynZNFyTSa0XEK4XQk6svrNMkofOpl3+Pkuz
GTnZtKCQ7Vz41HekdEYRF3UE2hXHmDSDWqd42cK1XMiad2zosIdMcJbZ/2Xn
mt8ooNBNrHc7CyKrLyxePhahckfm8EmBLfDEfYPj3LWtsCzmugmPL/9G4o9B
NSub0aOFJXM+ufHrpoapXqrFXPRM7LXL/C3NMDljptQ+R1K+k0A+YPkOj4+/
Na9vhW3Lnxk97CuCbJkFC97U8euLuy/qC7JfoSlS1+m8B22o4+1H/VnTaRAq
GRZMO5WKbko5mRXNZqA90uITZGbSIPGcHXR/fopOLHue7HOxAHSdjuS8e9kC
zVukpA1s2UimtNqmlp9nut6vUbMW58LZmBORXtJNYMXLp498WAbuEbe8NDby
nys7yvPnoUZ4phMesrC6CgJV9iqHrOb7GdOJTmoRjeAzMf3+gsV1KPvJTcu+
rUw4FvLs/XTnNORUPX1z3YMWNLLpXM/wXa2gNaxvWrp+PbiqHFRvftAEn9mV
d2bz80w13VFPJp5phGCjcNdvUZXITHr/sGgHJiQFe+hMWdsEL3dlnWZ9aUJK
u3qbjM4x4b7EuW1nbjXCMSl+aRObj7pvZW7UsGJCgr/AvoK0B+wLWQntq/TE
sEWjj78i7gPQxIeW7b9Ih5pLEv8fh5yRAlzbXRBHPl2alqB3ohEdHPFheh6v
BWwP7d94eH8DSMVr9aU3/YJBo0sSamcxwW9NjEREfAM4PpU+pOxbgJbFvw2M
02LC+sv+a8fMboXnlzJH6nXloWwd77mQwwS5h55RjLJI6GVVOzSOpkPCA4NU
WTkaTExxGcDL/ar+4sg0QoDrKLwZ7G3BgjiZE1KMk7FQMH3O7F4/FrwZuszz
NmoEP52A+bOs8lGphf7CUbZMMFH1a/Ic24SCPbPqrB+2w6orI9bNzaPB1tbX
P+1KnoHf/nOS0YZViIPGa+42oMOyiBZlus5P5PrBpt5JhwUM6+1b3/Pj7JcL
u7OW8/1BZu7GqG+b+mCiq0LYRn78uvP1dqgqvw6puLdETD2oF5S7gi2MbPg8
79A2uetXh7R5C/QUIzlwue/5Bf8YFngXnJqy/vczWJh8vtvBsQqOHUmXS+Y/
d6ujxKHTD17AFM09TvOhFil8ezy3dQ0/v92xNtz610u0KX196sKwZni96u7c
o3l0aChNOWUk1whPC7tLGpWYiDV51NvBZ5kA7/657wHbhPc9Aj8K7vNczx64
zwPsk///Pg/x3iLg9xa5NlsSDeSeI5dAvbOayaVonlHO6JdFLdT3TBF+z9Ra
/9DzW/w8+V73sqv7jsWhecfaXHn8PHm8zSqa700m8R7fNok7S+M2cuBOWJfi
G50eNG3Q6/03k2KQzPAEdxaDB00O0d0HI9vRcLUzypf5eMqdkGydk/x43e+p
M0uajd72h6RY8fENE6yvr/rbb4n0mZLR2YIOSHiciuLjwWP3yRbdZ8H5hIBO
zYJqpNiu1mf2KgbZ2FTSnxkywdF+Asufrz8NITN+tfH1J2nwDa1+vv6cdljq
+62EB49OLX38wSMOPqqfsZ9wiQ2RJ9eCyd5uMF14vGXEkTi4IYl2/LrJgWqT
7qp7/HoBDVNtM/SOg5oRr+rM+PWConC9dGHehNdLOd9E+HwT30/4oFWcEFjc
hpKvjk0UG8+vEwNuqI280UzEbfqIi+PuZDJhyPO84BPBdfgTzYICuXeSTOJ8
uUxwvgx5wvNlt6PHB8Yzbse4O/PrMMXWd6NOSjFhzOaRo89nhxL7r7Hlymuf
FH78FpMdbV7Aj09Hn9t/ZbRD9BBj0yH8OL5eeK69U3CuDReE59oGF9YuKprC
ROsdbJN6TDsQWrFNa8EvDgxNGyHxflobhH0f7PIytBMNP6HW5WNOg1cXhquO
HvYN/epjPX51oRW9DVGIctndBpKWUYN/5rSgxNX1Rf6HOkDDIjCso5Gft9sI
zpHtpwycI6PfwnPksoBa8cijbKI+GkarnqttVgl2Oelquyr/wEtrLf8Fe5jo
rB0w5VRo4Ksh8GPo4oAfg9GSAj+WZTHj5b7HL5CLMO/78unXztPpdOJ8/7rg
fB/khOf7mK/rNMk/np/oaMfByJTNfL+U7cgKkeLXncA4MXB+J5HMNIldQYNv
HeNqt89tIuvazvwXNno02Lh12vA53+lgS5M0GL2VjQoDj50eNYcFQUpGcUXR
NKI/IFbl+yjHmwbbR9h5H7DiIonZRrMLzfuR3tueHflbye/Ni5uls6vPtg8V
moQr5jhWQuqnW0/uNrHRxHtXcu+e7kFn9oczIlZUwveNgvNcfL6Q+7/PcwGf
5+J86+x+89XNd9tgSFhJwbE9DGjzjk57vpyFuOfOdNu1dMAw14zTnku54K8j
yCd7hgzkk7C/XZBPGnikjjjiQuwX0POOl1ebkPOPEcwfioXz79q5eEpr0QtQ
U108bnxxC5glOQe1yZDvZ6X4ra3bkdQO543H5pgZ0eD8r+VOvlLk944y5Vet
CdjWDoH/4gjjR4X3ZO4I7smgrcJ7Msr3td4myH8j3jub7cKy+3GxFXyNPg/c
W1tnAX/vraEkpvvAvbUizm7ahr1R6Emnz3PbXxUoVrqm1ukR+f1CkxIH+upw
sk3QV1+sdT0/FO4Rdq8/q3BN0yg69fwC8PlF6hiL9YcVo4j3xV+v+l4TJEmH
ow+LHxeb3iLep4hkmV8+n9ECSleTEu0PV8KZiPBLiyuYUDYhbX0nPy9KKr+0
/7EqD/3o6lRQEuuFpVOWjg+r5oG1rOBcD9+voAvP9UYcrVl/ZjlxHx8FGNlN
GfmEBa81p54Ovd0Mm5//MTOJ4oJ47oOxI/RpIKctuD+TK7g/g9YJ789MGsag
qe5qRB6XH9rKhnGR7N3gMCMd8u9Mqb2Wuy+jwsfDb9nvD+T7vTH6Kl561eDb
v6lmkhkL+R8ZffW2OtlP2/KyzsnkKRNFJ4VuahrMhCW/LauP5v4h7n2lqD6V
jeDnYxP+fS7ICZ+L+zPy3YnvVg9lw9OuxP74OTTwnnLMQt3uLmIdfHvvsUk1
Snm06kr16xY4JfxeQV/B9woiReH3Cs76l38ULOQf2+kwgZ0CttPE1e9vjX/G
BudZw05I3uiD3IyqqO89bOAyNL8d5nKRclCozZNVPSj96rmOSPT3Xvy3qh35
TMIPzLyyfL17FAfW2p1VLQ9gwj3ZHyt+13aCnMu2klJ1Nuw8JvDzLREDfh60
hX5e8V85CMs5tkXGIGoNC81I6lALjOfXAeseRo8cwoX3Qn2LF/b7sb7h94Uj
Pw7U0WhXqaCOvtP2SOLvfaT3Ny2birVzkKxackHZAjpo7JbLvZDORhcmV61/
xq8DSodOSFTdQp4j1DPjz0zLZqHSb1+P6q+mUfUNsL6d2bzyiEsrA7bUrVs4
wbkHOI9G3n5lRYPvlwT3su7J0Q7vc+tB9EaT+Lf/7++PKAv2Fz0X7i9+b8pA
UNejAGFdPzpy+U9X+3r4bHh01aYfzWjamqWPwnWY8O7wrQVGWwqQ0/EHpapv
Y1DZj5g8Vhl5b7CgtLRswvE4ZMWwcIsTZ8LDVY2GjGQavOZknjP+GYOm/6z/
kmHPAHaX/cyNtEZYca1oaEBBDPp++bayJT8vNTDeNGnJKSZYjMtW+VIWg9T0
IwMVVvPzEg7iKvP1aEzdshgWKxfZhU9bbcSvi3Jn0ELOjOXBgfXOn3r542dv
9Tx0exMbvszN2C/2qAuGJmb1PiyMQduvKEd27eHA20mRt90W9UNGy7Ukcf58
rPKf62v4cMHgDSts56J+VBix7duH/Bh4VXvRRaauHTiJAV5HH3Wh3R9HPZLJ
iwGX5jv3bhzkQdD18gnz5HmIN9P8Vzofv/y+I2Mzvz4qD3aUrjvFRB2nJAOq
+fjVrWaqu66w4WDmHTWDykb02fXWQS8+zmS07U+dwYKasa0mj1No6OuZJLm8
3BiQcp4fuyCLASeDo59Xqiehuc0WIF+eDWpOb9cv0qHD8JB3ru82F0CJh3rX
05QY4M4surXQvQ3GXd+X6TqGDhN9nBMj+gtgU2GK3O5nTNA8aBtxI5+FGsdu
Gxrp2wIPHEsPPPfgEH5js8BvAPYbe/cJ9DNHZUA/YZaEQD/x/k4T+CUYI/RL
u7wP1S1ZWIsufjDRKRzBQ7YTo4PW36fB0X/jNRIXxusx//ol9E7ol/C9mWT/
PRbKVjzk8qBX/HwYC4YYegWtudMM20enIOt7XLRjxtglnEX/yR8A5w9YrsUz
Q8+Y5g6kZGFk3wJc+HOrgJ3Pz6OWz8mt4OdR6Ljx6oE8SsHmYfzRcH48GPvy
s0FxJ4ofs7hx8Cw2iHPkD9qNaYBvnOVpSl9akZJnXUfxGiY4xLoYp7GTYHG/
S8iSpw2oLD8tY9IZOpyoW2WQ9r4a1shczVzxjgHua5cWR9QwIEwYXxIE8QVp
C+MLzpf0SgfuuaFmL8E9t9XCekdVUO/AZGG986r4wOhj+z4R32Ncbb49fWVP
K1wS3rM6JrhnBZeF96wisgX5XqUg34MAYb63tSAuz+0FAxUL37sf82p45vJ4
DkhXeZspzo5Ggybz5trcbkUbNabSDCbRYJnqfOOZh5jC7yXoQs9HP9yUpVIJ
CmWrAyb++IF+X21TfDSYge76K05kTGTA011GA/nJhoKB/AQ9fSXIT3Cfd+Hs
gfuEsG2L4D4h5uFwodjfvBFeWgryRpzf+wjuKwIS3lccJ7ynh+83MoT39Jxt
Zz84vpSN4pqHttIWdiMZ0yHMDUaVYDr2oOu4Ca2Ik9IqOVixHVkN9fmSPoYD
X3grFs+pPIe0/0Qoayo3wkJ2WqIsqwU+/Tykm1YXjCxevPJ7sLUeVhRaLIgq
aQGOasXosMpSWB+RkXFTgglKa+c7B0ymgVnhP/cDYafwfiDuI9xsNcuUX9yO
NIzfzlb7RIPyIV/2WUTWoRdOjd7rn3LQIIvncwr4/vzKjYMXaw+3gNzR58PW
rOWhS6qjnzwzoMHPxQW3rnxhQKCMeeVqmQ70UbpWv62cBVKq5+jhyq1w//cf
H9sRHcjCeJCtFr8eeSE8v74sOL9G+Pwax2OZc3fNdgzmoAPzldNeWrNgtfD+
cJ7g/jDSFd4fPiT8fmxnwfdjIznK92NLh3A8x/swgHXEfJb9RH69T1d4MntQ
LVw9/jDjHp0B2rPaEzkjmTC+QJDPM6IH8nlQDRPk81ddrt3W+8T/FN5X6Vhi
0HLoHhvGqq5svfyKDV1OB2eHh/ahTPX1F1J62ZBZJ+jPu49hLQ8L70Ulzxad
XZRP3s9/ue3dpZ6RHchvfd3T1jIajLRQ7VeQboOiSMecFEkusttNC2JvZ8Gb
0f/ch0dDhffhFwj77ZGCfjtME/bbm4R/r2Gs4O81QIjw7zUsd2GkZLwtIb4n
JIUzN2jtVhp13wHvu8e/fhJshH5yuPB++FHB/XAYLrwfbi20u4XC7+18LLS7
TUxBXvTy8kBeBD+FeVHxIbl9+8eR3zcbGu48c/eS/6Pry+Oh/r7/Q2ghEtpJ
WQqpEC1yVVpUopVKUSqVRKVIpSKFSEq7EkmWlDUVeVmiRMi+zzC2Gfu+5zeZ
Ofe+P30fP/+8HvN05i7Pe86559577mt60Z2vF/ddj8Q8o1rBLpns511IrNhw
jM/PvF1/+USKAxw+18eXhxxmx6N+p64vWnpviPq81q+/wR2/xxvtCesLf/6i
j3rkp/C1U4e8V61R+xGfAc8ANfppV/JMXvLeKm3OOQUS555TWPpx1hFwnlB7
hLOOEDJxbmLKdFACad4No9MHkSxVlME7txp5cM9DT3DXR1rc81CIvx1kGHGZ
Nn9Q/aK3e1Q296GPBtMf1y/4ijK1fXcdEmMhW4n0+LdpLcgh0PaKw7cIJO28
fJHXjBpqSpyAy5bVLYjH9d2jxVPfUtLb7MeVza2kRpWL+Na8av53fCkYX9hf
es/ZX0Kwv6SgeqnDYUEPjBcldDLtxLZ1vWja/+Z5Uv3cPE/IE1jOyZtFIty8
2dC94ejK9R7KZ2aUn5HmELIr2pmCHHpRjjLnfDmSc75M7eeeL8M6K4KzzkKh
3HXWhkWfxZSSa3D7z+VfcjHp7UD6/3tPhIJ7Ipsec9ZHc16MrY+oKu76qI7G
mdeEhMfmNcp1L2deg/Hd+iQuuNozhLL2upZ86WIbyj0f1XNpcw2iL5p99E9I
CJXmVfbDge0n/LKcric9aELdSx6WjqpmUxmaOXtF2XHefsv8E+PYerB4ql2e
dFgI5fIn1EHtMpvPTFFRv82dqJC/SnltdAglqvZxnIBTJ1p6q3yguawXXW+2
Gd4VFUIVN87RkfbsQle3XhU5wNYP2RMqccvZ5cisnFdd9Iz8TpLd2oDSvUEh
qHtFX4/hf+4BOS0P+S73NgS5/LjV+/s/94DElx06cYCNf3l14ZHZf+4Bmdg+
amhhlxOsWVIff4y8x6nK+VWzDhsPmG2yOYQd95rEjAy93pyH9ifYb7Z6EILS
NOa4V8vB7+g0ocFjkrGhb0rQh9yrVyg2DwY7H18wiWSikusm63560NEa60ja
WaMOJBjF2deC5xbuvhbEVbbLRRMvLmChEOaj43rMboS44y4F7w3mjnsp95xX
m3POS8lxz3lhvf3IYeweEHWOew8I1gvWnPN6qpJ7Xu8fJDSVHkTeu7nA4m2F
6+5OZG/sfjeNHYcubNNTSDzTgxa/vJx/064TnVjD0ee948b0merI5Ojz+Knx
GX/jEHh/zsTQnuS/ccjUbveXYnZtCOwo3TAqxnwzO870Ov/f+IdS2cOJf8TO
7V5ufrYMKW3u23i1rp0KuhBZniZF3p8sz5mnqG7uPAX7Nk6cfRsK9m0GufP7
fs78Tklz5/eA95ldGUeyqT2PFSYt+xJMOenPeN8l2YbWqv/PPiElzN0nhM82
p76FhAeGICk1++xM+1ZkEjFfPNY0m2JpHdwikR2MmMKW2ylJ/N48ZFgx4/NT
jxDklnHT5LplK9q3/HwjKzkYPTD/FJGVGIz49/vPq5RuRQ3e+infD2ejZUsv
PBRg4/4qV9va6a1c/cyk2g/dD49/0opWLJvdHmzbhqb+Lz8omMvPgbyVM3Ok
Oyix+KK4qcb9yKHW2WVWUTfq0+PEG1K8Y/EGkhDjxBv5RUUHqf4unMe73e+s
8OXt1eht6LIEGYVu9GjJwGsf9ro+UGt51Xq5bqTIekr3poVQGz2m/758uIza
KsOrXulPfr9Aw+C0m8vdEKpk+Zmt5Wx++Jcfyzn8+xHeHzqoTR/2mNj67/0d
Cu7v7H50vt7TNIaKdogsvXHkJxLUCRgnsqMFyayqP27ZGkS9nXA6O7q6AjVK
aT9XfNmM47Oku6GVzzwHKdauYKGozeReoRTnvg9lxr3v88/9FArup/wTH1IQ
H17dFlaTJUB+B+nLj+OC3dvpyJP7vq8Mzvu+qPfc933B/tT6kyffpHiz17cz
j/e+XERHFflJR8Kd69Gbo3Eq5ww7kM2G+pXlWv8nfkMQv/2zb4Bg3+DphKL1
x9070bUbGcuuDYyifbc2mbYY0FFtIWfeHzGY/DfPAWnUc/IcYN5/yZn3URx3
3i+1aBELFO9Gx86t0RfbN0qtGU1+FTi/G9E/23ZnnML3jyjvmb0/7deT90sc
Uh7Li6BEuHkR2VWHimyGC6jj9rKTTf3aqWrzBudLp9qR1//mZVGQlzV07sv+
JaahKPlu7/eZMRWU50SbZ3kzWlAiNw+5g5OHTEEessL/vp8EwftJrihy8qN+
cvKj0LjnnPyoYtsD9K3+XdTXlYsFNjr3ICcVJcVcvR6k8jJx+tl5Taj/j03w
vPGt6NVrDz618A4k4hTasXhKJwX5ZTV6J39EFXSj4gs66cJnnlI3LefQPq5i
UdNlM+3DFFv+1WcE+myutahL7xILzwPtLyYsoe52INUwzVfnTLNR6KnsKOPM
YGpp5+ikQjpZH02sC7R/GhRCeXyaN+0C2z8wzMVRvXEzjr+yJ1IDofUd/95D
RHAPEeaL09vk91cn9aPyEx7B41g96PDbWzPmH+2mvkms8JdX6UeXTQvsWZk9
7LiXc/4u3xn9pL2VRd3wGNRpYce/S+sl/dGqbsR/et7h3rejyLmTT+bssm7k
vvjLatunISjsye3rU2zKUeqinL7Zki3oLHcc8zjjiNy44/jP/QsK7l/wtZp1
/jJLo3YUvxjeFttOFQy+bhhZSkdaf5asMdVsRVv3uPEY1vajqz97NUZ06f/y
QAEP1p0aIce2MrA+MkbCt31SoKOu02lGpzS6KafLQ4oygX3owfstGSofev69
T4HgPsX3pcO7upgsJFf3kz5drQXFN1WNaL0m8+/FrWN8UhSXz2oBqgTJdFPW
Ej1hvXf7qN/eTovdgtj69b95bhTkubmeD3AX5fXG/lt78Ae6tLIFHdrKyVeB
Zzg3XyXV4sl/z79QfeOdsfOvj3qcfJIV+8bySVAgxckn4eWeNz3knDehidzz
Ju3pjG8e7PkB1gtDPne6jrH9Ibz/zTf426nEtQPI0zrU+eMGOhLY4rvwP/ca
qMhHIXv/3mvw32fVtMGnAWWUycbz/mlGvYvoUvI6HSg+XT1/C90Px4lTVsgs
sBJqQas2rR67d3mpdcffe5dU9wzOvcs3wpz8n8bAsfwfNIub/3NooOTeIhOc
R41k09wi9I51IAGxB/eaBRvRt6JfAdfzW9FKlsjakj0d6MH5CFOz5r/n/tO+
pLK/p7nwzE6h8+x16NI62R8JTBzXOJ9axHpzogOZLXu37fjuVuStXNrtyiqm
DoyvWiBcxNaf9fL6F7a0o4OV9IP2D/JQ92O1p9+ndSLT177F7u9ZyHLDtwM1
ys3UhyPhkX2PO1Duwtbnf/dP7g/eXbT9BTs+Kpg8tn+CpDn7542c/XOUzN0/
L+LmpYAfWMLNS5nAvd99gXO/m4L73W7bBbw2B0RSvoYjBtqiedQfqnNlV2Yz
UihsCqm2akf8Zb7GSz6WUuGGhpEZ8zrRqv+9d4Dg3oFnaFPZk9uh1PB1m+dm
ymXosExndEhgMyptOd+Z+eE9FTbvW+1c6SJKad6mM6veN6Ml3P3DJs7+IRXA
3T8E/T9wLEB101IWlSdzTjGUSfAvnDxVBHmqIu85eWWbT47llVEZBZy8sgvL
i115T3fh/fzso9MZq+b3oOLnly8xSpnIWW5WmcnDKiqg27D5yz5yf/w45/44
gvvjk6ZOO/933PmsI4LY404du3R0999xPzxczBubkEzZHPrSWGLeTknNv/d6
tTId8WncW799sJsST1/aF6vYQk2q/7KlXKYH57HrxnHy2OO5eeyj+jfNG4bq
EevwAfqVZeVoU2PYztPjOzD/Ahz+EfA/0ncsOefSF/x+5gkND+4+l6ejTu77
0M5w3odGxXDfh1bG5T+Uwz8C/v/Jw6QgD9Myqv2a71Wcx4u2nvSY+e5kB/Js
33WnfmMCdcSrvP0FaqaiMrYcd1NvRZKxXr6ndiVRB0ZVhB4HNKP664+HV59s
RcW5tbdmujNxHOR7VfXK873s+U648b/2Qtkkcuwl8k3IhHEXcb9QVHVb+zN2
v2x2PWdEOb+izl+Sez27oAZV7xCufhvbjA7VcvKg1PaP5UFRudw8KHlufldT
x9j8gly588s/7aGgPfNXceZNWIeFc+dNSeaJPje+evTV0ih2ovkP9CHeq/Il
ox3dntB57PSULiQR7dE2GhyMpNckVrPed6Kfk/mjad/a0InuXx+ctuRRy46F
F84Z7kB2PsFj923fDY/dt0Uy6pz7tv/k8yPI59/P3QfW4uwDo2HuPjC8f/63
mp3mxJAWyma6oo/IdPa4r+HsS/CtHduXoGzFOfsS7tx9ifmcfQkkwt2X2MIb
opnPcKW8ZywY7JVhUg9WWlWZdzaj+F7bsXgjlCX9N95A5j2ceONu/s9Fvux2
OC5+tuSRdSE1Eu4oIqHagepqHqldrulEZU43M97GhaBVJ9P5OgM7Ub/SeMG4
ayz0MFlO+rBkLqW4W3D6C/OO/28eUdut5Mjyz43op+1PndCwfHRHwyHKil3+
4vKk+e93d6HPmpUT0mkjlELcaG5OaRdyc3xhHVnRgaZ6fPQSPjdI+W9TaQzR
7UKtv4TH7uE2HKr9ew8XmSzl3MN993qSvG95BB732GDNoGdaLWi2E+d+wXzO
/QL0lXu/YPn/xtsI4m2JF0XDE4obkFtu+ocYpWK0ZIbtwKdZHchQ8Jd6qF8H
2tgs2mBn+wdFv64qlWPHpZFS52vWzevA946vBVmPvGeX436q7c8Hy4/o7RHp
rbaDjeja1QQZyr0Fndt/zPVbfDwq8rsqa9THpOJvSp1e+aXl331dBPu6X/63
Xwj6xVWTJHhaVn5cp1VRjSrYxvx3vwLw4yKrcofDqpGPrN79v/Mu4BPrDXK/
K/ci2ph8E8aZ7r+tLtLZ67Ex+RqMXyuekun3tAs9G8PzME53M6Ge7evkticp
AXCn0eFzGvM7kDtHHrf3olFE/OumNnSXUz7GTZU0P3e+Z8fVnPZgfOv2ndSc
R03oHqf9GEdXOp+nhDJRzF/x8l6Ml2RJTFHvb0AlHB4wbvs6Y06Jez181gH8
RZ/U6E7rOiwH/Nm+XHVavp3wCU9++djwCV+q0SdOvRh3FDguEWVPeAb8a6e7
82/PHswz4DJvOg21NAnPgLuz6p39azsxz4BbXjeylmLHCcAz4NsXsNT3G7Zj
ngF/jiZWK8u1Yp4B9xU60fowuQnzDLi20NrarqtM1N1pNO3M2k6MR19POHLp
RAPmGfAeq6lK3jfrMM+Aj/yKvPK6iYF5BlxC+urJm6FkvIG/Ib28G/mipH2A
X7fZrPakkPAMz4ZCi3TxG9WohJXM1NvXiXHhr9OzZ2ypw3wCTheyeM3aRPgE
/Oi7jdq+Le2YT8AlTJckUUvaMJ+A+z1h6Ad6N2M+AVc7zC84WYCF9RPw9q/S
NTKb6zBvgAsaqR1cpsrAvAG+W7mlYNKxaswb4PHSugIOTBrmDfSrR2lXjM0G
whvgJ85XSR8VIe0DvDdNtdrVtxrrIeCDevafjQrrMW+A3+c56S4lwsS8Aa67
THLDAzPCG+CuKL/8+kAL5g1whe0/1tBXNWHeAOe/qlWV7NqIeQP8xnTJ9B9m
DMwb4LRSqQVOwtWYN8DfHs6mywhUYd4ALykzLvn4vgzzBv2mPRzePteb8Ab4
QQFfntSbhLdFh+cHtAo3UQv5VLcP7iDtBnnZW3tcdNVqMZ/wXBdBSRl5Ej4B
Pyt46+7qqEbMJ+AyN119JXNZmDfATb88c5jHT8e8AW5QyHgSzkvH9gt4QJ3V
03NutZhPwAtY4gKCVDXmE3DbVIZzzrYqzKdmiq/sWcEmatd+jcCZ7qWYT5Df
tltY7OaPQswn9O/D+mrJ7bWET8ADajSVD85hYD4BP9Q68NrDl4H5BLz/auqf
c2WET8CnLxSes9avHj3kfi4UNThTU1ZNXZbboeB4i/AJ8tILU7+/cyd8Ap49
8Gv8+xga5hPwOUJ7ZXL8aJhPwFeqvLFa+oaB+QTcf2KwRfwZOuYT8OWFO+NV
Z5RjPgHf111+1XhqEeYTcId7n6QXOP7GfEI/Psx9S4nNZ2A+Ac8dvZwlfpPw
Cbiv6syK68tqMZ+Am+RXvmrQq8N8Ar5hz8b5jslEPwFvG7/j7BFrwic8g36+
stm2ivAJuGKW1oaDloRPwKVi7ISfLqJh3gAX9fQNVF9WiXkDPOz0Qb3x70ow
b4B3+/7YGnEnH/MGuHmPQYpBZBbmDdo191ra+O2RhZg3wK/30BRi2kswb4C3
dn2dEfC8HPMG+D6dg4e22VZi3gDX4n0rvse9CvMG+PSHzncNZWi43YBH2l4T
LT9Fw7zBM+yXYfSp/EbMG+ASFulOyxfWY94An3mU7+rUfcR+Af+uHVl64wcd
8wb4yNfAGNeb+HesdAD3Ci5a+nIPxpOg/tmHZn4+I1KMeQP8/WUJuTTzMswb
4ImpsX/ma1Zi3gAvKNE+L5tYhXkDXMXWRajTkIZ5y+PYL8pcijQmPyC8gfzr
Hxf5g78Q3gAXZMmYLTVn4s/wvLloWlyYRz22X8A/n/90Zs4HooeAvx2hD9/Q
IPYLuNGtwsqmM4RPwIM2LzLyNSN8Aq5waNGUzRsIn1C/UdxqTbHlpZhPwGOV
Qo+GUxUo7n/nF1S4T1+wSo+O+QR5R/EJdkJWdMwn4Lqq6VXXlOmYT8A1chLS
xs+mYz4BF6vd/lBsGplHAF+7csuson0N+DM8zx2yTc2fQse8AX5YO2ecjArh
DXBG9ZrlIRsIbys48wiKjOexqSX86ID85NxUhbnLCW9Qz1qHiS5LmeWYN8Ap
KY8evts0rIeA68866mvOJPEM4IemuLw8/JDwA/jTtdrzvI4SfgB/2Gprmq7R
hOMZwPk+jZww20fiGcB1RC5lJl4i6xfAQ8dfW3A9sx1/huf94+7Bj9UIb4Br
3vDbGbGS8Aa4yGf50M0ahDfAYxNH5gkrEt6gvNh5axb96K3CvAEuPHXDkxF1
Ej8DfsOgolFQiYH5AbyJlRKdFU7iPcCNrVLd6L8IP4Bv86rdu4RJ+AG8k2dg
myhPO+YH8MQw1cMRQh1YbwDffzeg6cN0whfgp0duhVzQIrzBMy8+Qq58BeEN
cLXvd/tElhHeAA97UiZsIkt4g++p3LxSMl6GrO8Av/bbPPzXFxIHAj7ev2uu
hQuZZwG3mqN9asXFeqyHgAt/l1AYd6UR8wy4gHHdnK+uLMwz4FTHHyPPR82Y
Z8BX3/n5cHdgK+YZcG/ZtB1/f+8SeAZ8S3tGkqwZ4Rlw/3kPPh+06ETfeh53
39bqxLiSxERd342EZ8D9hLyU4rUIz/B8Oc7szH95Blzv9jjdmPmEZ/i/kIL7
fOuqmn/3JXQqr6X69hrVouz9G+/lx/RifOdivT9Dk+v/3a/QSb9pec8sreHf
/QqdjTIPBDLeMP/dr9Cpfj371mefpn/3K3S+n1nezLjTgnkG/OHOk7yCrm3/
7lfo8PXrdf5Mbf93v0IntUi4oOZbx7/7FToydkkN4t87/92v0HlAc3q++WfX
v/sVOs7eXimf19H/3a/QafQtqulQIzzDk0c15Rm1gI6+jJVTT225/7eiAerX
sSkbIrW7MC7/t/r73ZRkwHmNaO1GxBgrvxzj/YddzyzY1YFx3rHi26mlto8X
jzQxkdNY+1MQ4G3Rq7WTpjSjKE75GJ97vORA4Qw6CuDIU1De/XqbZZWXm3A5
gDdVPFM8+YSGkBLz6d/7brVcfNWWKlfaFhoaHv3714blD0fv5j/dXI3Lh/L6
Cm6vL7CgYTyfI49KjEedop7ScL2Aq/vPnLOLbXey3HoB/4W2P4+j1+J6Ab83
5ec0N3Z8C+2A/x+hzV02VZOOywfcf22+YJZaK+YH8J/jI14JutbjcZnP4R+5
qatMb3tKx+UDfnZL2eKNp1i4HMB9JMIjxtt04HIBf3ZSauppDaIPGzn6gD4X
3I2bJcjE8qf//vvjCLpwVamodXoX/j7gvxLNI9+z5+sznM8UPEf3lKnfy8L7
EkmAH9HduW+gthqB/gH+S8e9YMnDagR6Bt8rmzenJbygF+sNyFvktWzfvawH
4yDf26yjynOrB7cP5E9YfJHzeVSL7QJw6SLp09aTa3F74MmKWG5iGkDmQcAb
rl2clnSZxA+AUz+GL2o2deH2QD9cLW2fp/+pw+UD/vTaRKvFyaS/GC9e/0BN
vxrrCeCLembNTlJrwTj4ufPiSn++P2nG+gfyq9afXinnQeYLaFfHfXWTmhEW
9mOA3625vz/xYgu2C9ALvcaiF7IJJD4GeVXjbxlPJem4XpCX9CkOXF1K7Ahw
4whzBaV6Ynfgd99mh5p7+DZh/wnyv1XunLtEI+tEwK/dPbzLpYjYO+AJW7IK
F7jWYLuA56dcect7liQ+AdyhwJ+lf4KF2w+49CXnVBcH0n5or9oFiZwSC7Le
B3l+ny36964wcHtAPvmOQpzkqUqsf4CHxGyIbzVjYBzq4ZFmDFvzF2N7AXnz
k3eU/FQZWH8Ad1xxaG9fM8GhHPvPg5300VKsByBfJFmh9zq7FuMgL2apVrpw
awUeV5A33BikdX4K8dcgL7HJsnh6XiXmHeRVTZkxxT4NGAf5sIqBQNdPVZgv
kDeLGb+CdyUT8wVPCY87z/KiWFgeypkqMBRurkbGBZ5z5r4bqctl4nGEcuR7
+Vc+Z8sDDvK1h0cXOR9owH4S5G0G882VP1RhHOTvlokavs4jfh5wLRF346r7
NdgfQjmzWZlXFVAZxkE+0cz1u6pONQI/C/Lt3WbWBx0KMQ7y4pE3d774RMd+
DOR3MK/4nFTOxTjIT9t+T/TceeKHod8uOw5vftNF9ArkbzTeDcw2KsT6A/Jh
b/N4pv4pw3oC+LGUQbX12pUo5ePhor+/P5JdXn/j7++PNP1eMG7JmSo87iAv
mSt1QE2WrNOh3ol6HzbSd5P5EeRfdr7ced2OjC/4A9HAgUpBNWKn8OQN0y0I
iiDjCPKfdS/8qCysxfyD/O6sFSsbX9Ixz4DvyXc7hm6ReAnq32VhMa9hP+Ef
65H1sbtVpiReBfzm7PW7s3WLcPuhXdEr79wZUiH+E+RpUst97LaT/QfAm2bx
qHlpE/8G5QRVuiaLi5J2gnzga0e7AX0SD4B86eUp58OaCM9QT3jHvT3BkiTu
AnlxgTgD91ZiL4Df/+3Qe3xHI8ahnFtt860tkhvxZ5CfhcqXpHTSsF5BPzSK
DVM/itGxXgHeLVinm/qJ+HfA7xz2DHAxJOtxwBeFn+8IXEviFoiX31150N9k
T0doR87tILFkytO5um7G524U202lnH/djAqfepglPc3DvCZoZBlZbif2DPqy
9jg/8gsl518gPz1QwGpnfQPmAeQv/bnitca8HcvBU23Fqct+8nTMA8gbdbVL
brYj8z7gq+6t9MoLZWAc4v1v6hLdV1bVYj8M8imr/HoDaGSfB/AL12etk2f7
DZDH+weLN0zR6yX7GCD/qLt97tBlMp+BfbSczLD5Pq8JlwN2IKQ5orBTlKxP
Qf56YIHEWXEWHheQjwh5venKRBKXgrx6UpN06SeyDgJ8VV699qU1nZhfwLt0
ZALktemYX1j3xHfI/RFv6sR+D7fTOOHTu3hybgj4+NiONZIj1bgcsKfAM2nI
azOJbwF/tapUNV2P+A0o52iAl5LUSuIf4Dl4xquxQpHgUI7tAxGLycrEP0O7
Fu75NbvzG4mHAbfQseB57k3iT/heNiN8eLwdOS8GPOneJPnAMhIPw7r57UPf
DvGa7n/bk5QZpOkh0VmH5aGed7+H1NIs63G9oI8p/Ql1Lu7VWP+h/tjiNZlz
6WQex+dH535+cK8mfg3wjKGB8cW8dKwPgPPpj25YKEDOp0CP7k+wG03mq8X+
HfuzPazcMA8yX4Beb814u2vYgcw70C7/4Ojhz3wsPB6AB53INjdt+InHBeph
HWDQ+g8V43EBfFaPxjGng2R+xPvkBb0sv9ckjgL84IYLveemkfkRx7mzmzex
qklcBPjluX0fEvSJHwZ8kQV/auGVBqyfgE/oD119eIjoJ+DyxfJ7fwYQPQT8
RyfzlIElWYeCnzt4MXa7aDEL2wXgTb9uG93vIHE7jA/rXe/dFyJ0XC6MZ7dj
3Le5iWS/HfAbp4zO19URvYJ6FvPF2gqvq0aKez+WWDckYX+ukNvxbdikGbcT
8PlKh9bUnmwl620uzruze+SobjsuH3hylPi92PQ/6wLwh051c/I+JLLweIE/
yc7xFvSyI3Es4PpTFi6e6MTE9QHfQ41iz06u/T92rSO1u999+0MGlgN87nSf
sMuryTwO49O8+Lpjz3wyP0I/dCSd73oakvUgPm+/vKNQ/isZF9B314Sck6I6
JD8DvqdW2dK+7iE5z8JxyhF6+EJtYs+Al4XXrBiUI+dZgKc+fB5TvYecZwEe
JJVV/3QcaQ/oRVd+GEP5MjmXAXlr/5NGX1+S8yy8rrWKcNgvTuIiwI8a9/QZ
+JNzVcCDG6/YLf5GzrkAV1yzISGtleyPAX5lpG7ZPW86SpYok5DX70TzdhiH
URvY6z8nfmubM8QvQf1ax5b0z2P7SRgXqP/Jaec5egsZeB0N+nwuvM++QKYF
8wbjf3KOUkRjfwPKHMMz0cKx8mqpqso9P0t/0ZDc2OdhCv5vOhrJv6CvGPGM
ld+Pcbt7NQK/M8tQ5djnLozXPFaoP15dgc6N6VMLxot2lwbPXlaF6wNcs6B0
eKC1CrcHng+G6LphB5iof6w/NIzfWZ6yvDilHumO9YeJcVqbbru8ai3aNIZ3
YLzs6KItGYPVyHKsPT0Yl0/4zPdjmI68xngcxHjsmw3WB3zZ/I/hURSU10pZ
DlyNbsb9gu/1mseXtkc3IGtO+dQDDk69U4vhN7Woxjjw98Nd7ojMiWrUxKmP
gvLQxtM3rM40YTxxbPyLKJ3dbRa2RSzcvvFj5dCpV1epytg3NHSK830E8rdH
rhjq/qzB5cD3Tjo2Xwo5QUPzOPxjXgtiM6/1x9bhct5zykHujnXleYwqdI7D
A/6/yvKV988/aEE1QzdWG6RHoJzx3i8prQ50PGLpTpGEFvSZeVjRu7cIHX3R
Fa0X0oIOxYTWerxn4nKBz4UzeJjj6ttwe6B8/kjZh+eb6tFWjhw1MtbOPlSz
LTt4s1g1xoH/s5WGW5+G1aNtHH3AuODSbcd+fW3E8jAuHirLlFrFejAO45Lz
5dH3C9Jk3x5wg937Dko/qsPjCM/6IZVdG05VY3sBnqZZKugPfSlGUB/gtjOn
N8WvKMV2BLh8l1BPvmcZlofxChF5OzD/YimuF+T5frmMuMWUY7sDXFxI0Gd6
aAWWx+Pu9as3q70c9xfkGYV2bkHWlVifAU9WVZ1bMLEKy0M5DSd/TzjlV4l5
Bvl1o+eEZ10jdg34u20/pBWLqrA8lLMxdVmj3csqrJ/wbKi6Y+ruwcL6DeV4
Ttgxs16chnEo58rOcQORC4lfAHmRh0oVmbJE3wBfZnXXJaqzAes94GGPO5pV
I+uxPJSXI3Y66Qh7fQH6icfrbc3jcus67H8A31/VmBHLXh+BPJRjfeTRrsKL
xL5APv9YXm3vPAa2B2xnmY52lzVrsDyU0zO1znbJaA0q5Yw7ln/8c1Pbh7vE
vwFupSG15OG8aiwP5fAlMwOT9lQjsCuQ/2rL56paSvwh4Iq5NhHbg+lYHsqp
evpWLPgbnRsHDmP5s8fKFaxvEhzkH3kekFC7Ssf8wNOirrNDerQOfwZeh3ur
s9Zb1GN9Bp4cZE7yJmnXYBz693rJbbnF2TXYLgDf27uSvpsdt7vVHLqRWN6C
+6Fma6/6zaYT8w/48WuRk3h16Nw8hz8UPHMC+0dCCqqx/QIuU5qrPnKzGnHC
uj/4e9O2RCp4jpB9TojvMt6cP7pnTTWe3+H/E1Z86PTobUAFB7faJf6OpGxK
v7m8kWBSiR+C4n/vb8bxMJSz7IaBl3whA9cH89XbjCRf+jYGng8ANwq/FIF8
mBiH8TIz9wzqR8QewB7V6XWN2rY03C8o56NmkGGq+i+Mw/fUbUM/mZ0gvMG4
n1VeqC1nROwQnh9Q4s1nsizMP8Rl547eNc6MJ3mkIG86x6DK0ISsy4Qj0wet
KouQ78DgsqM9VZhH4NVNhlJc701Dr8bF7fz7nq6g8a8qav1r0ZOarE/PPzeh
9WKxvV1u0dR98ccm9sPs+K/Au+wkDx2NT9YeDZfIJPk4+SlOqfUsbI+gp/f8
VWuMmml4PGB8lui+s/K7Q8d+Fezy9qIb63uK6Uho2cJJE1+0UNHcOHHTFvms
2zUkfwb0sP3bn7kx8tWYT+A7RUhpe8ePGsw/PJ2n8DUeVyD7UTh/2PTd1q29
nZgfqEc9RkBz92aihxC3b+FP8rTuqsLxM8TFIQ0vbkxLpmH7gnF7dvDl0j5f
Bi4H4l/XKV5y6H4HHl9op4nlW9t6my48L4A9vZsU3ezIxiFexftPU1/z9cmQ
eBXmpQVi63abvWpCmrdfv/j7PopUoaNdf993Gqrkcnc1e/1ikX1knJR1NPX8
4aXAGx9plG72nPCN05qx/oEd/E7cESLnQdbpsJ5j6inMfuNJ7ALmB1/Zp63r
FjRhHOaTqoUGPKesyXk96IPV5AN2nSp0XB/o0Z85KlnMBXQ8b4K/Wvpsk7aT
IxlH4DNzGm/dg2eNuByQj4mYaJqbTeZN0Ley5UmbYiaSdTSsF0q+J80pVSH1
gr4JSyxM2mvExOt6WK8M2wTeSWWvK6E+8OtHd6e5H99I9p9BT7PtAi7tpVdj
PQF816abxVeMerEeAv5jze+RRe96sT/HefhvLL8asuNnsCOIj/hujNc4fbwb
47AvskLmwJnva7txOVC/YdHH66LW1Xj8QH/mqJ4ZnKLDIvEAtzxHxVN5WUJk
ngJ8XEH7ZOEpdKyHoL/+slnrlfpJXA286rc+t+qMJ/oD/jP5cLRwgAUN+1nA
A2m70uXWssi6gPs9fbMg9az9ZD0L8nlVKdqiV1kYB3mxm3KfKo/QsN8AfIJk
ZKTr7CKMwzrUV45uyFxWhPUK+vdsQtmZxYaknSAvu/+a/CQz0i+Qv3b3XLl4
KAvjIG9rMS+fuZ+F7R/knUOd+HLM6RgH+dybn7X9jtOxv4XxiV1wNNDpAVnv
gJ22hhp+lNpE2gn/P3hgwPGCFNlfgriiVFV2vZNZE9YTkI9wapSaGFiN2wd+
K2qX8/66QpK/BPhX47dFUw+1YXmwM69x4j5uCa243VD+xy49uQUGJJ7E57S8
okZMDXJ+BOU3rg3d11NO4h+w6xNRa2wemDOwHgOufily3Gxesj4Cv7F9ldL2
hknVuB0Q36WKv5Uf59OJ4xmwY2r3chHe/8QzgK/bcOdrRXgdLh/atSVl67hd
AXW4/WAvMpLWjTyixI7AXvYUJ1ILOmjYHsBefiutFjil2Yznffi/auTp6N02
PzHPUN7kRxvWzNhE5mXgzb8xa+ZzBeKvoL87bdef6llL4hOox9f6U9u+FeS+
D/Q7nfFp39YF/0c+ae+uksjsXBKfwP8/i6eXTf5K/AXwM+Ne55mtKez16dXQ
oZPeLXhe3uK44NwpngbsJ+FZIhwa26lQjfejwF9uv7px1kdtsh8C8gcWfVon
505wvH594lo5osZEBypPf+Q/GYX3w1fbLBMRP0XiScAXbdazN5RhYD5hvL4P
2Cb+dmPgeAjw2Fy6s/06osewD1fHSLtYPo2sX2Be0p2i/8k/leTvAq7n4jxh
txvZTwN/tv1rRCK/dAUeV7DvCz9DV0atqcT7iiD/KoPnQdELBl6Pg/48Yyw4
q+yMxzcJ8K+d6vRcDXIfAcr58MCrL3NHLbYLkJfKp79UlCX5k3i/s9ya9cK8
Do8HyOcqB44ozyX3F7C8jVHA/ExiJyD/ZvtEm91nyL0GkN//si5y7fFGPK+A
vH4YX+D3oQbsl0B+pfSJ7ql7yLoY5CWXXWj/O4+AXoE8b62Jt/RoFdYfkBd6
8LDroxjJMwH5rdUG7zTUqrA/BfnGWdL1D02riN/k4mln75zZ+7ICx4VQzv0P
guOFBorxuhXkm1eqe8t2k/sUOI8l55bkqoo8bM8gzy/y88oH3gJyngT9DqlY
vORqIZbD87MvoikWk34Bzt/b/2NVIeEH55fxNbQkM9sxP+BXdCOll4Y8Ijjo
b/7L6J2jt8k5LNTDs2q4bMJcMq/B856+jN6iOWRdAzhvZZax2HQSX4FfClqV
rrbAqgbzDH6ohYUkj7qR/EzYz/9eYLfUC9Exz1DOxDk9Uta6BIdyeFJjlutu
pP/r/3WMc2ec6lQg5/sQdxlptYWebezAegv44x0J9lMedGK9BXuKjI9OnJra
ieNbWD8dmpd8KDuZnHeAnZX11k8o62nA5+kPOOfp1O3Q4sfGFW043gY/+eaO
P9r+uh3HM2CXMiuWXfAubcfjCv2YM/Pzr3GnKpAZd73gyVkvoDMdG3gFw2lY
z4Gn7CSxTVdSO7BfBp4TF793TlKox+Xi9df1SGP9Zx3Y38G8sDJ8+PT6Xx34
vAn6e7Tmk/zbtW2oiz5ZyIIvk5r8S3R9xbIOKldOfG7zzzayjub6D4fUppdx
Ls3YP0Kc23L+BsvQmeybgb7IRhzdHbiNjv0V6Jd0rJ/rk+vkPhiMi0lmzfdv
JY24HJj/H24W7ra9wsT9Bbyy8FjobgEWtiucl1u0IX33dHKPA773xiws2dac
xM9Qj9H5fS97HUj8BPJoys5a1QRyno7j3gkvk3euLcTjDnHfgOKx2zM24vun
OuAfPl079dTfmNgd2PFdp+8tNldJvTD+tW1XRbWEiTzg6szfuQv4SZwD/uGg
fU3Q3rkdOC4CfNI0M/77ZkR/QK8UedWiFDsYyFZSOcl7cjuJ0wwcUVwJyUMA
u1Q5uObJx00krwPfm7Y8+eDKM7JPBfNhe/0ly7zb5Bwf8F2KMQ2f7EjcCP+/
5KgW8aOqjpzjctv7R0lBVKCqCa+nQI/UYk/JBlWxMA76/Hu2jZukJ4nTwB9M
m2itbSBM4grAV9w0l/iYTeIQ0Guz2+or50lX4X1y8OvX5iDp3xkMHCcDLqMv
cpTpU4v7BbhiRdbsvvg6HMcAnmgrd31kSQPWP8CHDutqrM5sxP0CnHF9y4xI
RPQWz5u/tqz2z6rC7Qf83VDyk21RlVgPAC/aOf3xNv5yvP8IeMMlRZXh+0V4
vQ34xsHFpzP3/sbjAusguyOvAnQlyXkY6POG2pvWF7tIPjzgczYP/F71gYVx
6Mcy6RZLYx6yjwH627ze3zGolayzQP+tJPfZ64+nYxzGsym2pXTfVHIuD/p7
w2HF7vJPbZhP4GNLisHiIBFy/wj0/5q3mHLXejr+Pjy9lsffj1pB7nkBbn8S
+WRo0vH8CPZl7z99qdgqUg7Mky9WPw+bsJqsF/A4NH+OTF1D9klAz4+yGtxy
A0k8BvplKuoxsPo42Z8BfTxrsPzyfakO7C+AJ+8pbR+N/Ui8BHr3Zf763zpC
1XgehPP8qot79o6vIfcj8D2zOqv3Zp5kPw3so2J6RGHyly7sN+F7C/zbm5/7
Eb8N8amka/zd6CQm9idwXrwxavOVg1XkPhHg2xgO4+0KiN0Bb5GRGSL2PLXY
78H82M6cxpsmRu7jAZ6Twmu94WEnthfQ93FThzVPUuT+LbR/QsdkT/4wsk8C
/T712tsuV5fk+cB4rt8YLaC2qx3PQzh//wKDwbpA4nYYx4gIh6rXU0leFvg9
qw9PvB5crsM4+DeLZyWru1+S80soR+zBlZiNVWT+Az5MDysGb8gk+8bAx7tt
aRMOsten8H0oD30bDPW8QfQZ+iXcPzhrkTrRTxj3FuW75yaIkvx/aOekLKZ4
cAhZv0O/H6XqTR1aUYeOOGu1GC5lIqlAMWGzrXlUTo6hMDO3CvcTxuvcaS23
pTOJn4Q4pGnkyxXrbUyMQ/3rkmXdQ4/859yBK7/YJfSd1kEWxmEcNUUHrS8u
J/ED/N9QvMKpVZX4W9BfqYRJW+cZ0fB8Bzy8EOUv3epB5jV4CkWO3PFvJt8H
+7ob/1Z5/JNOjOP3kyw9Iia/phP3C8o/fH5KidnxTlw+vpdkVHeFOlWH1y1g
T2uW3pkl+Lgdvf9V4bdyMImCe7RbBz7w0Je3Y30GeyoS5eFPtiHxKuj/rAW/
6gN0aRiHeG2qfK6cVT6ZX6C9zZHCNwufV2F+oF/ZfBeSs92qcTmg1xtyHfSd
VhA/Cf51R9/5bU80iZ+E5/Vs3aQmDXLeAXrlI3L9UMMxkrcP+AO9cUmfcuuw
nYI/mSV2Rtj+QzvGwT9fV4iM779F1lngz+/MzNz8LI7ca4NyXkp42i5V78Dy
4JdO0wI6dCvbsb2DXnvqM3xzpKqxfYG/ubT75bXMCrLPAHEmajL1dXYk+UuA
589pbVyjQPKXAJ/Hoxb/RozkLwH+J3NoddBmkr8E+K+NURt1+qtwOwCXHNC/
iwxI/hLgm46aHhL3IvlLgG+bmPfnmwjJHwL8Rg0rVzOE7LcArh4pMD69jOQv
Aa5ruEdDe4DkLwH+ccl85oKHZB0B5Z34IbfELIuca0N5G/Wm8U9aQ+ZrGJfo
d9tmM7Xp/9630tE9wsP0qiT30MBOi0Y+G/59zw/oJ+CvD4T7r3vcgMsBe1kp
cN3B7j4Dx0/gTxQMUiKs+Mh5ENjLVd9JswXCyT4IxCkWU8rjnD1oeJ6F9rsw
XST4NzZiHOzd58dGqtSH2CF+3wDLxW70KbkHBHbDn5d+OK6O+EOwm/SioAuj
tizcL6j3QXlq+KNbtf/cpxtGoolxdwR5urAdgX9qE383dfAeiT9AH/Unnel1
Myb7O9CP6FNx3TW/mjC/wFPp0UWBgm1FOE4AfJZ64u60RnLfB/Cs3C/7Li8n
+aiAe8o03P+eTO7vAB6W/n6Y7z3JRwVcpTzDL0iZ5NkCTt17/L7qPbl3A/j5
DQ2FsTvJvjrgDeOfVLX/5x4N4H6vJ4X+CiT7PoCnz7124/oOcl8G8EJ+1XGh
iSSvFXCv1azhNxfo+DPY5aa3cn6yDwnPEA9qjc74sYuPjuNhsI/9K3LTPowj
/hDsKbsiIaFYg+wvgT9Ml/RRFGHHt9f2Ow3znO6iXE7XzNZ50E0duK7r/VCl
GrcH/M0Go/O+vRQNhQ5FbLoxvRHdUC7TfRXSgUIN9NPmBNdj3kB/pJgfdEvn
ETvdxxNp+Pf9lhs0SsOS7tcg0XlTCmzrIvD5qay33+W+BDJfAE/7LLb4vNtM
R0z0nPfo/GqKJTmv7O/vdHwNe+N86xhZp4AeHnrtrnF2iIYcZDjl432ACccE
fs9vwjyAnz6qYvXU3LLx3/z5pJE+0Ti/jEast6B37+KCVc7XkfgW8Mk7jz+M
m8JAeWPtCeDeE2RRrTI8/OJBzeidd9nY+0hnit220hbNQ6+ORFnfcyT7gzCe
IVMWqRWWknU68Oq46MWTy7KVuF7A91TOV78bXIVok98uGLjSRKX8kPy6i23v
q+Q2uQ5/Iv4N5vOnA4lvR9j6CXoD9dqL7Mud2kzyGHH8L/x5ou/GZtwvvrFy
Gqn12XPPr/ZpxvE86OdzxSwenyWkHGhndpS8vWkLOW+AePW0sZqNVCAdlwPr
OL9WZ9N5wbW4Xo5dsOM8pqSVhiAdWcX/0f2xhIkyMpT+WGzLQ7P9vu9rV6zl
6k0HmjPW7wLkpbhRXH8nOc8C/ymNHjLMFGrJfMfFdz6oyXlbTPJCIS5I1/SZ
US1E7qdAXDfNZ/mjBwndaNmLcgVRj3bqyG2rU+JfB6igp8YhDwvIPS6of7am
6PGzPExcDvT3UWuX+qUlDWgFt5x9nHLQjjfTFq7MrsffB78ycCwi+se1TszP
0Fg7G1DOfGfvmD4S98J86+98paJqZSOK5I6H+OWPTsxNxdS0yJjb7fNJfIjf
6yO16ZfITLIugnmmNd7Ru2WkAusP4Izl3ze8X1mF9Rbsd2PX7RUNJrVYbwFv
vLA459sakicJ8YJG6y7nwD9kXwziF9kV5scHpSHe6MTjO2V6zQI50WrMJ7RL
prOk3DiRrI9w3twXmT6HVNhXZKHjY/VXor25VhuHTQhvYBd3zbIntbqT88pp
HN5Qld2bQ7JVZL8I55VFmbrKskh+DnzPedHWCwv+kw8D9pK0cWXw95XE74G/
Yr7ypAuVVGI7gnr6Vii/ED7Ziox8tn0KDE/CeGCCavHgcCsCPQB+bmlW3xFy
JutN4Mm6bmTVwDXIq2tG8WPVtlKbG78Ot4WQfoG/FB2QCi8LoiNOHlIrt7wB
dE9LsLcqtBPXq8ypl7pwbo2g0VAVahI7wPuupgFF3rBe/X1WEaV++JGbpjAN
lw9xyN7Ob9196xswDvqwdwqlfKSX5NmCfO66XScd0uFeBuRBDaH7DbP555iS
8zKwl1yFDMsPZxtwP6H9AnNKos4bNGBeAJeRjU7wFSLv3wAepqQVHheyIOsX
0CvlbrGVt72JfwBcRnqiQ8hbmAfhXtsgMj460+X71AZszzDu9lOU20QWF+M4
GHC5J9rv+5NK8fwNdufzaRbP1XNlOE7D+mX0+t2thWSdCPx9z48dt1ewHaWP
fT+dsuH4S6q79YjkxYfkPQv4HqWTmvqqzWR9B/FJ+FWX+LdHyHkQxK3rXrZn
J8SX4/sFMP9kKSxOy/RoxfoM7cxID17v005waGfcwL1dqaGtmH98PpWpJXpr
MhPzD/pQYjKONmNd4z/3DYfRo9TGdJ8U8j5P8McDF1dbfXtM2g9+/kbX6g+P
b5B7STAPPrqWa6I4rwzjEBepvDvpIn27BK9PgIfLogejEmeUYnng00PlfLPC
XvL+GcAnFDVc/LCbtAf80Fx/4bYXB0h7gH8t4333ZC1Jni3ISz47HaR0mI5M
DrdoJppQ+LwmYdmerfFvOxBPo8OWa8eTuPwPUUvL59IYNe3kfWjT9RqMrFuo
9uIze3ksybnJ4wUHWKKF7dRcgUN91w7WIAEdixSrNf0UnTs+LzLdIp7tIe+L
+XRuIN/9RTvlYb9xrm1tCbJQjUq/FjeEQL42c1u0y/lSlKlVaLBQ+yN+r8L4
obZFdZObMT/bzU/ud75WSymt1xuXVlWO2iYv2R1yqAfzn745dro6rQKlcMsB
ftYvEhLfyva3TK484NMmhFxvP05HLYjTfpj/Mwr4J/x2oyHIswyhnfpbL6qc
YWSxkq3n+P1mV8f4QZtsgqZ9P1CJ+XnI4Qfxu0unLhAu/5cHtOAwX/10FToK
5+7nxHLruekRVZXX2ozHBb+XyUaw+M6nFnTgf8dRR+JzTaHc+1a0duqso3SJ
JIpvoL3hnM0IRaMy0MvlHUhTyW3F96QkavaD5he3uvqppXrjlAJvtKOk6j/p
S1VGqFChe1Ghra3U9XitBsfTNShQtOqV+Po/yOdh5FPPhlYqaJ14hQerBH2a
fkXg9Ype5J4r2PX5LoOqlfU/cm5tBWq2DnhmOqGPOhtFm5Y/rQnNN71gbqBF
RxeVPpUKMEcolumIQsjzNvQpVuPn+xkVyII/62xSdBK1REP9l7bRAOopy1vt
ZdyCuljTrsz+Q1E7krU3S437gzaVCW26oN2KvtIdtlbS4qnM/X+WxXc0ULsP
3i+TFWhGs7fP37X7RRfqCFgs476WhqxueTHVztPRqlnKSqP+n6nct+/tjl6t
QwG/+Ibu0mlok/jjBXXRgxTf8Kyt+6ub0ZwWew96fiUqsYwOy1ifRM2IyzMJ
02lHXYLd+V/UmpFA6dOCqYyvVFHwmY6cxywq4PK7TZRQM/p59NJYe3Tcx9qD
btmNn1XfT0PjuPI5HHn0RLPPOGoSHTEsbzcfPJPIHccmdFQ+w5VfhL1eU148
1k6Fn2PtpKK0ntjW8DejVR22dpf74qgnOc2bHCsY1A2X0vptgs2ojltOFdde
fsyP9YwRaUabay6MyVtHjsmjiWG7KvRzaWgal595r8f4oX4+qCo4plOFJCU5
/M9WH+Ofcl4kr914j+wT1nWvrasXr6Y2unUtX21bieaVfB6cEBxO1V2WTIj9
VEz5qdz4slGuGaVN/LTwq0s4FRi7V2M0oRgFr3NxTvSiIcOkqIjcogRuHMKk
FBgZCosnNKMtXBzinJ32/McLeelokYb9qE9FIqU7IGpmJdtMBZ34ni80rRnN
5+KrOThKfG/uki/GjtPkuiwCmr/g9YiuzLy0ZWze3Lg4+E/tOvOgZvb6ooQb
R7UfWpl1N6KK2qGRsy3OvAoNUeJxu+hJ1OjjmouT5nRSDtMcE4Y02v7lAc15
fe3wrXN0FOadPjCF1Y1uPqA3PHlaTclHI9841Uo0W0bXK6YlieJPC7l/37aT
0nMUn+W4rQ2d4Mrz+4zJo587Vie3sf3z2u59U7ZX9qMfITbKvScbKJNLZ1J2
BJShNVw8lYMjukavnxzb/wdc2TBxukM/nhfCXXi0v+yho5kzOPb4PWfMHtH7
u8rTVY7SkfmJQvtwtz60y75BtdWxDhUc/DBJ2oSOJjFMF2/9lYz9k0XNPpsR
L7Z/EjH9yb8+EfuzQOEU+9Snbei20Ok9src+cc+LeymJcbcyphq0It5e/wE7
7Wrsny3dbvPvSGlEJg2WL2j1pdgPy3S4hg6HkXPzN3w7v61g1FJzKsv9Pn7M
Q2/f1N5MbRkh7wk+dCDg57183I79U5cnbDtcTnmH/Dh+zZDkX3kLxAzGrKFT
mWsMDkl1knX3E935p098KqEaS68ckhwh79c93u22cKJJKfVl2se8DKk6PN/M
TI4oNVlXSfXHO0t1vqvH88HrQ/LTfUUqKZHLSbtXn6Ghh+FS33ZE9eB1UIjx
gaH9DaXc+HwIpZU9D3S+WEXNM74cG7yykNzjvRV+nbHpFzV1a5o8I7UCyXhz
yoH1yztVF7e9NWQeOcDpLzK6UfBZJwS/fzhpluBYf9HVp6nBv2KK8Pszn3L6
ixp5fQxslCtwf09w+ot+JR2tqeuqROAvZnP6ix6v7K5w4aGhIu54Qb9z3zA+
PVJvxPPsym7rA+qHC1DUuweyxl/J/m06p79o9/tiW9/TbP3kjqMnt5zyAfeu
kB3k/QyrpLO1murqUFPKOdlEBg25cfsv0lmq4jytDulfzLSOfMb8V0+QhqTt
8vc6dMTD1UNoV9Kbl2s0X7Si8XwcvYV23bHqu1V/te1fPdfZmOMi6ML266ds
WreI+SahtmUBH682j1ALR86n+qi2I75lsX/mzklAP8ydhrrDBqjSZRW5ZlPb
kKLGsOpDrWLqYHhATUVKLaU65eCVI5NZ6GXr0KCuyijyWSpyY2MZg/qx9oiO
QVseYvV783Q7/aFylMsUZ76solY9Xj9t9wwGSnp7yvBOQD8VL3Sr/9mxUqoo
5+3vz2kM1BQcbc5X30V1LO8q9ksoofTzVVaeiapFAlf1EpOz2ihGxDjjVYLl
VJvEdIOAkjp0a6p66ePXjZTjH6l5k/9UUVey9VoqlBvQjjNSlyyv9yL5+Wvc
FsfmU65tX0XNV5aiioTtc/bfGECuQml3Hw+WUmbHknWjnxahIIEzS+8dHkZD
Nzc3nj1Mpw4J6QzZXShAhQqKX0+bdCAt82eX3ZV/Ibowo4JZXo3Opdcr7Now
QlGT3ncWq1WigvIzGV9Pl6A/FxO22LHnMXh6l1qd+zWrAUmtqjm/M+wLMvKe
WTX/Vj+iXKSeLmppRWf261veME5CikeKJ3y3H0Huz64sT2xtQ5crWUp/74Em
XHT3o7Q6qJO7Ai9ZzGhBX9q8mO+96lD7lyKdlUUlVGV6Wp7HGhpK4OJMDo6u
KneYmG+oQ5qrFtetD/qIpj1ztZ94todaO9H87PyeFsSsMFDxFopBR+ervGlx
66L+eMs5TvdsQcd+p0yL3xyF7aZw1cXjC/VaUPYjT5HYxnCy/vNcmubGaEZK
ZY6l0TZp1OzyYNcdbxoo5cO7IvrvN6HKU5aSsdcLUeKm/QXNtQzK9dOU1+7s
OFPhtHRlUl0aej16L4O93qBWNRrc2tRCzl/mcvSfeuPsZPcrmx2Xyv42PFv2
E68vOu6P15zAthfgd7zd2JOKHr/wSbAnDZ055fiKNb2LHe80Rs2Yk00tpRu4
JcpXoD1DHD08ozGmh8hhqUD45MBixDvrj/szlwGq67FgwUNmKbqu6uncGVSG
1F5y9PNqvctf/UQWsw87isuUo9Z3u67Gb+mhPiicsG+5U4LGmW5K0P9Sgexo
HL2dK9r9V2/R9rMxRUrbK9HyrRz9/HlW+q9+oisJ8hsCl5P3/+Qee9UZE56N
Ls7IqHxgWoMMuHo7m6O3yPx8wJWJKXRU92Bx1GBjH9ry1fua8bUipB8k0jsU
QkdlXH124ugzcu85WTTgwl43cfW5iKPPKGaNlo6+2X/yxEzH/DmSvxf99f6+
epSr0Zh48SYDFXDXfYcW3brl3FqHVvyvvaPjx/TvqRbS0GHuuMtwxh1paLTd
ce2joU7uuCdxxh05XdQ+UsbLRMmVHH2z5ugb6tx3PmSdGHve/F/9RDULn0kM
m7Vifn5z+KG8GaZ8cwcq8b7ZvPdWfUHhpchn+OfL3bQyJMtdP4uzAgffPytB
Ym1nNRynVOK4pc9yhkLwo1wkOCjmpzCBnDsYW1WXaSiWIiO9TmdDTzoykufo
G8QVEV/yLik4sdDXXI5dwDwW/lp8rV91Czl3cxmb15DDzCtDac7VyOAVx16G
uP3oXOWSWu7dgmaaWlsdWp2LeO+cCXQvqKNO6wtdu1tMQxoX3n0fZq8v9/qp
NBxx+IUaQ+dEMyfXoActN4xHa7rRt/vuKVsFfiOjN9nLvw2x551vT94cSq9B
J/qEeJVOVCCX/IbMgsX16GPWSoadcRhSMc+6Yb+lFfldYmVkXGxBonzxQtYF
rejgHkcj/toctCO7rvHIG/b69CTHXizlxuwF/ahaff/z3mrU5qfno9TbhexG
twWYROYgoxMia54pAW8daPFpD9U3m3+hD13B83laq9Eerl0HcuwazYw54to9
wEJaWyd+tfvyEUm5Oi4QDGVSS4T/TDnBQ0chLhz8mvMYjkyrzR7X9jWh69xz
iqNWtxx3nmpEw26GoYmGTeiX3ckTtJsJON/HX66Mjx7ZhIy5fM7k8ImOqbeI
BQ8x0W+u39bl+G1K+Y3jT4PVlWgVl+ftHJ6p72iqTPfFSmTxg8PbJQ5v1Fqn
mF0uKc3IbgfHLmB/KXHZ5uwcExqS5vI/rneMf8o0NC3wygkamsDl+TCHZyql
w4Hv2+IqZMHdV5SY6PypTSmH6n+Z3SKyrgoxTp61c92QhePzsvzs6Ket5N6c
OidOoOKi1ploBbJQygmO/GeuPxR7deTOiDzJt77+8LSru1gZJW1g5Ga+jYb3
5xU540Ut1zKPHjxYiZ68n2Ufbx+K9zvvOizku27VgqbmcnDYNxrPE7RvNK4Z
n6/597Ud2snbSC1+qJMjkUbO3S51juHItcXrTOQgOU+cbz02jlRHbhIV1k1D
J+054wjnULx7eVxLh2norrz08NIb3lR//fcVvGVMVCcguDVoPP1f+6W0smxO
+7aX4X3gS7Y8B2UCs5FH9vQ75euqUQnXT6px/CTVuyNW5PlQMd6vGODEb9T+
ODm/c00lqPibpmqZfSw+/5m752np8pQW9Cu8Z4aAQQLV1zllRenlRhQV8PzM
mz805OvWO4Yfrx/Dqe08e6aIsNehAt+few6vHkUPVufHezQxKP5nLVeNWXlI
tjlmm8i3RGpYWks30agRGW9yLLEfoaGdIcMfquLZ4YNGRJOTXiOFaHc0PjY1
oU1KQa8TdgWjlMsW1/7+Xtg0anvryKEW9C09+VmcWSd64iS9sXHKKGU7pB74
SJ6JeKILvNUSyO8f7YurSNl5lYnn76pcuUdLkwcpA6cjUZr2Pfgc53xBdamI
WB/1oD/2aV1IA/ouIcpwWE3erzNR8HJTyJZ6tMEyXuzv73pDeY6XF1BTp1fj
+PnpQL6p/5JealzWlYr7xxqQ0/acu93Hu6juaZHL4581Ue1dRdXCTgz0nKvP
Ha1xS881dVCPVyxZ/GpvO8qS9v7z914w/n0T1aVy3wTY89Xv3HFbLrEw/kPZ
clZRQS0yTWe9HLzsj9dZU3/M+Gpo24wM9jdY/f19N8BzJGd93b2+Fq19+Mlo
59YmpCmaSM3rz6YGTtTt83Yi70Wv9vBtrnsZwl6XrDcNdiD5J7tVBA9O8AtB
DuMDHA4tIPknXW1PbKaxcU3Ka5cZe/60O3mGkc1u3/XmSr2nPiFIvDuY98hG
kn+ivuqiViO7/AFxgS/5vST/xNnjvXU0G7+y72yA3nYa0mzPWcHcnIfWqK/g
+/u73re+1nnu9CD5J4PThJO3sOs9cHSWP49IPSrijuOTOr+FoWx86XbVzc9D
2X7KcPzANPZ8tOZX+9vI+yFo0p3fSjerSP7JY/O6+fPZ8u/N3PqE2PNI/+lh
42D2OuHP11W1Xux66T8rlb49pCP33xyeof7dZ3NGhtnxG/CMf+9o4vj+N69p
yGuPy4xWKh+fKw269qswJpH3vqpMjUj55tKM6ONWP56+iYX5Cfw5RDWgLmT8
LP8z4ywdRXWp+v/9XciZe9YOvLreTPntpGYNFDKQ1dRc2QkfWGiLyeT7x5Sb
qZfe64OfVtSi2/tcY2rUhim1bWlOaanB1MSDrz9cYK/7ZX/eoT3176PyIvT2
f2PjxdYrjy7WqEXXjnaFaIp0UTdbnVVeJgVTGQ7Py+5p1KGNC2lmUwebqceS
042C04KppLS9q1d51qOK7Cb9rYUMyiivuzGGLZ+3tLWxeU4jOvj569f8w4XU
CqY8fwG7/KsXW6zWRDDRhBmXMztMs9HebyZHD2YEU6aPj8++uJeGVL9XTx9N
oKPMZL1xN9jlmPibJlwXpCFGbfU5k2om2r/K/GUkuxyPhxJPmevZehJmMbnA
qQNVSS2pEP0ZTPFF3ezbf6ACJU4LTtGR6EXPhiOuFrLls9TbF3h4liD3bax5
Vm8H0ewtVoaa7HoDsm6/n3w3H+klx3TkrBxFWUUWGTzpwZSkeda6g1pZSEp0
5s+MGSzUUHt8j/PGXFRcLjEc2sRA8xwDutTTX1MRw1PWJwtVo0+f7bfuimPP
d34XC+eta6buDxR9XnG2F0324jk7qYCObpy9lcx/qJZa+11LeiS3B41LTT4x
TYCJ5lwbPfCE6qQMTeKmru8bRLPO0uts59ejOB9n8c+h3VT8RrV984UGKHX6
0tjW3dXI1dPTZiirgRLZZ8kjOrmHWlnumCAh2Yh0yi7OmWjVjlL175+8/7kU
/XxMz9M1pKHKbd0j7Wsr0UBMQmuNRBs6zcvcbsFoRJvz7ML+/n7riefmk2/k
tyKeBT18WePrkUTh+/a1iZXUU551pvJ/utCKSXdXWU9lIVmzm24/2OshzUu7
Ty727EI3H30K6F1GR7V+B5+dF29Diy+ZG4lM6EHOynYRSZp01HCLv7v/Vzcl
kPt4xjqzAbTs7bE29cxaFCPyJPjU3m6KJh7J/Nw5Qo3a0WecuNyL5OxEXBXD
2qj4ojn8I9sHKLXu9YqS3t3o/p1vb5e868Z5TQtunPois6ca+dvfj1Dz76JC
Z95/csi5h0o9t2vTgGY16hxfN2t1JTk361uve+K6JB2Fq9i+dLxXj6I5T4o3
xDVeuYSG0rXD+3zcyPvFddaGDAWU01CH/n55z4FYSn/+MW+nhxmUxbfVna/1
m5BHzfHt+nQ/bK/3A1w7PU80obR1Tw9dTnuA45O7bmuOTG8m83vNujUfTKxY
KN4miU/RsQlR3PYEvFuXYyLfgKKXr79h9qgODZ6lK/793U8oZ0OzobJYI7kX
Fttiuo9h2I4GGJH0W0Mkv0gpe91SS/4uJO3rFrrnQAfep/LhzDvIbuD/cfXd
8VS/7//1Fm2yoqQtlZEVFbnKSEhEMjMbRiklGiQpWS0aEkmyKqNEg9wkq0T2
PoNzjGOdYc/vi3Oc8/t9/vLoftzdr/u8Xtd9Xc/ruq/ndT2dVvpDgMhjabpH
NnHqOnZ/UE7foE8AqWL5S1cNBtn5qC+GThk2XuTUGxdeQ1eWezaCNtqGW90N
49QLXv5Gv7VhaR+aDok1y6D2wHjN36wjW5vh0v0NCQoR/UiuUfuRBD+B/bvY
9Upl/lth+YCE+aXmSrPvc17fmz1VVlpwC8/O+yp4rMBdhen/gFVmhXt7OHlf
U1s2DIxi4zeDEva0kDh5X6sNvkXyz+r5NdIJlfKcvC/fCfSMFxuP/NApxoU4
eV/mgQ1cs+ukXMnR3vuBY3esukt/+j5JRjrG27tmervZdfYDn5++XY3Nz2ke
0r4lxfm+LhD/7UVoMvDprOT+ntQNVSz/cNeD1mcPQ5Lh16raZbuOcb5X1rfL
le5BybDWQ1NuaTUnHyzR5Hx8DbZPs0XTb/4kcvLB+h/vWeuFjW8xYDw8d5zj
l03rKJ+qw54bffmw3VfEyQdT0Fpm7/sAs6eDZ6YWexLYcj7//Pt6CrGpj8lg
WvxsV9VSDJfu89yZ70SFg9Wj/oXrOPxcvoKOdqHNw8ClfeqkrSoBUMrjqS0y
PaDqduyHq0EFBIvajUnFtkPFC7zbbL9gEjXo88mnOIgaP7Rg5AweeGMZE7Nx
gEGbFYu0MscR17sGylM7IuzVSKt/sLQf1r+mtPEo16Gnd5fu3v+5DRKyrdZH
n+2AW5dKx0xqiTC51ePTZTUyoMoigzy5PjhhOeGpUlEL1dlOZbh/GD4RDjzW
6PQF9k+V15IE+mDn00dW5Iw+qJs63q0oXQe+cYwAdds+0KtYHmpb2A0Z/4wK
//6iodPq0t6qr0dhCelbkedGIlxcq5052w/dKWr7tt5t4+AefLs5Nhz7Tqz5
55nz0bsiiyiZcTLERVLtG77SkdQ1UQ/NJaPohEf2uy5HMhSsXOP6nTqJdmV+
M9n4Kwm4Ozz4Rq7Uw8tdpg1PE8dRa+cqx9nxhhn3zsdjDXB//52D7jajyOz5
ssHZ8V2Jl+/EmjZBMMHEW1F4GHnG04x0ipNA/vE6/ME7zVB9LrOEt4yBNge/
vKGPja9QXLqZ93YLcBfXunD509D1j679W7F1fuPLL4QatkJc0tXTIZf7UeOV
K0m62HzNXbF0ErUV8i7e7QwldqNk+zvqMT+T4Na154Pbz+GAkplYNnaUjAq8
VePUsfli+n2LJEtwsJ3MLdCWQ0BvhxUXbcfWN/J8fbl8GR6qZwJ7La+WwNLz
M06NOUlwQuuCitzRbhB+23xtgX0tiE6Gq+Fzk8Aiq+nt2S1dcN1A3jj5Lg7o
n9dlhaMkuNSd6LSN1AHPbfeJvcTwi3m64EMn7Llv6ZpdsW/IkHEy7sOWs11A
nLlpbZudBIt5BMRxriT4kqm8S268F772PVR7is032hn0sdCgHRr/moltKqKC
fvaYyxZsn96eeafjrNuAO2e3gQIfA1z6w05+yU+CcVxJo3EyEYz5w6tdzIeg
insNYTc2v9E6KLtNnghexetVkmJHQGGP6xIjbP2fAmoTl0kEeB9gfP06ZQz2
hOZK8PxIApCqcBNOJ8Cg+tGLxYqTIMLFHyWAvU8b4dNxksEE2LDSbp1Xx2c2
HzDSpoIx6IqHd5VMOX+WV7JzKKcNPBRVLcP1yPC2Q5GnVZWBpDfoHNikzIAV
+j90lQVJ0K8nata+n4GKNxfYBkczYFd53FrZbSSQ9HsfxzhMBXx/gKX91hF4
q9l0w0idAOFHtp0fkRlBZ9NGOrf6zaAvY7KrTK5z6u2sWvzU38mJhrS723mj
NhNg4bCpSNveGaTRLvZF5GcSsrxy6sj+Q+1wvOP9wgHvaUT31Wn+ieEx95j/
7B+ZtoPglMSBJaYNKOlR845ZPLm8KyW771I3pE5Pxspj42fy7/7Zgb3Ps3J/
76/Yi/np71O+SMo8Aokm9aDSo7+QOm3ZyLELeOiQVrqz0GcanstfFDEvSUK4
tgVCytzlMC1lRyR4T8N/AjuvpOYlwYcXBpq4cwR4/eWg7qKCJPbfKYuiG3/2
UOCjgLb7j4fhsGfRwRKLVATo326PN88okPdg9FOUKA1GQ06b3qFgOG96LP/a
GyIIq9q/v7qqEBQ+StYSsynQbhkWUIHZ90OVwSe3p9BRl8/YgyWTI0Br/2HU
KMPhQ8mZG+R99xtGf9JfkAt76FB3v7Dh/ItkdLxN5+XLC5jdU93O9ycKD1yt
Ih4z6gzYKL6uLzB/CvBmg+JqugSomfCssa6gge4qrpJjp6bhTGCSsT6Gp9Ke
S7vN9mU2mrrRVx0xgpI8wxRLbzPY/ovNcAuKPzyAjt1LPLaZnwy2Rkz8+XRm
Dn+iCiQXbXu6F7NDylsoBxLR60zVdgsFHPJZtSL679FesNvy6ZF0YgJs/3N7
49WIBpRwTOZBSBgeXEfok+qPE8Bmo8bj0FcNYFCGz5261QPPuANxyTypIP/W
bvCbE6b32xlVfyJ6gKy7su74uQ+gJvOcMj2JAymjM+u7wnqgAHMwV6BKdl4T
w05L4q4sAUT1nlydxrUjh6xz8tbFDDjuWD/U70sAWcWhuOoHnew6ITa5yssl
LnbB+7xzIYePNqD1DrrbFvBj/s6+f5rnIihwLUTBiRJBRGlPo/eeoQxCy4lW
xc2h3fC+ksvUnIsTX7xYVOS6QJoAl9OmjB9i/q7gFfNlRY7DcPr6/mhPWTps
q1+xqFl+iF3/x9g8qeJS0zBcZOUNql3N3MudO4H6blqsPX6WCI/H9WxkSvuQ
77mjl7NyRpHnJuNdTSqDcOyXxZx9+ckzPGtfkKJUZFzNCgI8NmDi7QQm3sbw
u1TAkAAB8pY4zMlbuc+cvKHclTekEhcR2HrgFVMPoM6PU4aPMT9x216LEnxh
EoRvtL4ohvlZiFwvE3MWD78WMeWctnhOztFZbW9ZjXN4kFJZaaIl+xWcPQ/7
7CtLQgeLtqaEncaDCZ1LquVaCVJyeRewDjvXBmNu8RJGFLBNXWx2264c8bnu
VBbD9JvugsadNzH/y1XLUfIgOYPNP73sy6359gkFEmSQwePODA5/5NXTzWbY
fr5l5IyXYXqjJNA5ya4oCST3fSOVVdaCmV6xiOGXl4BLK3uddv8fXGsxLHxk
2QN1ZUw9IIub0wOQL/ChekM5Bfrqet7eNv6LdE4c/yllTwP1c3+DHEMwuV9S
d+yM8RDS2z20m9bXCytXKRe6NBHhNzMPDQRFXB+M9fXDJdxmmWcf+9nxvd1d
+08dr6ZCy3vdu6MXO8FOqcn38EJOfRtpHh4hrnWdwH9vScS6Dhp601G1/tjQ
IOjTt3dNLSfCBoWHSpMWI+x8J6MK1xklbyIIsOYnM+cjg4m/M8fEyNCqJ7XU
5E8nOx6oruuJX4vhXtKvVIspvWfo+cjKMuEdHcjvzxrfwje9cDSdGEqfmYGe
dc3U3THJiK6/ZobX+jfUe08s807thW8+/COtiTRoy6uOK9iOrVNyWa3ibQ9w
LfWXCxWjQmfJIQeNDQTYEZqjaHmnlx23WyD2zfKSCqePcqv67e0nXKcROWx7
zCdPItuOVDDtCFrR98+5aAuRna+Wvv4xeSSUhqhSmsnCM13g81fC/v0KCjsO
2VF5587djyQ4yT9QNfiVw7cbeyfi4CdCAsd8qZQF2DnMGP44eut1MgrNPnq5
v4HTl3Cyq1nbAMPVXrfujhjHt8Ou8f030zC8pCrBnV2O2ZG48Z5Bl+ucuigB
Ou61O7H5G+Mph+mWJLDSEuc7g+GlvtEe3z/Y/BANvd83hTl1Ubru4vM3YPM1
x21/DbuQwedXwzJlDC9F5e9dEoPZrzPPnngQeMjw77xWEwXzj2LGVke9eJWM
7jwYsuj72wESFz5lN2J4Sa7Lji8Wm0/W7kpbeYxTFyVJ9b9hPWx9eZpaM59j
F5x68ma9jiEZeVGtX6Rg8ymbs97oNnXCGo3rim8PV0Gxyvvvhdj3DZN0l5Y7
iocli2auSt0ogeDfn9yOYOf0qajYyxprjn9HsHd17wpPRgVl4Xsu0XDw8HGm
n2UADoTurhx9W5qEhI+EZP5ZM5+X0gMHHjUsDcLmU0eUt0euxEGcuMC28Vm8
FFLUP/E3CWnRMtf7XcRBwNitThkMF0k+Mjz+HXtvcrTLx96UcuqiaAqE8/Fj
v0swfZe3YUE93BHU/XYFw0UwarQ5FZs/aMUfXH+oEZ6cZVx9fn4C9nnm4t5g
v8suXl6gIbEKHj05qlaF4aKvf6M/i2G/q+Rs+HT7mRqQzWfKfwpT/iG3c4vO
dTIe6LuT3rY/6GafV8k/Vg2NJXi2HPJtmJNDWDaV4KjsS4VlV1bsHn7WA38O
2ifk1Q3AV69LJ/nXE9j2UZBpH8HFlKKwYR0BPptkm77l4tQzyVz/Q+ngauy8
vGHal3znOfuCRAoin/j3UIEWN7qz9mAiOpKen3lRAQeaR6vdLRLxYCT2L8A1
jAL0DW4JDqJDYHRy22ITEg0uvDWfqCwZRFtvUZ8Z35qCgOEIv9EFHXDohoSu
l9ggClmpF7b0wBR4budf/FmpA7QevvkhzzOE7m8q5vm1cxrudawJDlnXAd4s
u5bJtGuoNbXgQBudBh9JTH3IZT6nD5GFPt1/ti8kbhsz7q3NjHujpT49u99/
7IW365h+0LnJOT8ISd46eeGiRi+U/LH61NXQgk7E3F9n3k+DJe0ZUu3GBGhh
jZsxx5Fl0/upjAGOn1twtEi0C9MPbwfddjxTocFLx9A1JzUb2Pnhv4ecX9w+
zeHJ7mTqW3SN4ib3QJzA9uMCmX4cuq6+JNHjKZ6NP7M/rBHp+9SC5J3DhGLN
OP3Zta6Et0lEJYNowf5O3/21YMvSM+x6Avwq9EJPPJwoZ+ql+XuuwE91sQcX
YjhlUUudTwEZ7P+VpGf9psPNAK3NWnto4C18o9f0XBc7n2uZkdu9Fw9o8Drc
+nlxIoOVDzwEIWU1gVKnSHBQZj3XtRYGu96Fw96BkBwMv514Qtw/xTeMJJn5
wEgwPgNOnyPCDSWmPM/zoc1mogYkXEgA1y/t21TUC5fP3KWt3FWB/s0UJbSe
xIEs1Us/lzKGOsSdAmfjrltcNhRAQzv4qpprWJsPIe76pqBZfaVfMrz38zsS
KDnhTKWLqMiT8W66GJtvKSlCvNhABg9XUHtytgspT7S5fsDmPwkULLln1Alc
Dw9lnQnAocnGSskKbL6Fv5WfU08X/OD9eCDleAPY8kQ4VGPntPJA1Jdbe/BQ
+N7iqIghGbR6jBdG/05CAZchaV82Dhp8r5i1XO4HH1KJiQq2fhgt/nzT3VY4
FStWgelV2NAUkXEaGz/+8Hxhw4cmMJkgvXGxGYUTGanbBDF9ZRpp/id3Sx0s
u2DrnEmdhPvNjtWmGM6/J7ny0EjrP9Cl2jg/SKVB0noJC1WncQhYuq1uti/w
Ghe51y+VqPCC6/3qqoRhqC+R309WI4CWFRNPVqbM4UkkL5V7e7CpC6h9zDgh
u3/f3R/qeaUkaND5+WroIAMdXfjvrokRDd1BuTE7VxIhUo85zrPt2orKUSpy
s1BRHVlMhLAvbqd1pvtANbdug34YA91LXh0i9JYMDleY9lcHf3vW/iIX11Cq
xVYybF4jPOY3Q0Mi3c//fj83AIVcaycCvhJA76PEtbuRNPZ9UIAY15PwchLE
m2lY3XxLQ7Ea9/F5Y9j4kk8jyu0kuKnHPfK4jIZWXTgalCU8iAo37/FZO02C
KA3hTMt6GpogKraWulNRdLxE7aGrJHacauNRu/UBm6nIYXzMn7KgByR9ov+u
PtTJvneaWlkUlsVDgGMgo9YqQgPF1f0mrxbVoLzYGPIBTM853bHyb6cz2Dg8
oD956YoAEgxNbi8KkRti5wm3lW2zFn7dASmvJFXachlAurvJSiN4Gvn3u1aq
zN7X0eUsJLy6oCbgrMn5XwzkdWFlc59aJxCtsw8p6JVAj3t7WI5vP1oAFVaN
bj2wmrrEpNu1Hn2SX+NweQENlHRs7EUPECDgEjNOjorm4uSos8Q9rdyLDq+k
mf5IaeycP4LuiEtZpaXj4cJ/DrslznwApQKhlrRxHAqS7V7gkYyH5Vdi5vh9
JybFZ/l9oOzlvFYa82MGXvH9lsLwisnHruG+YDqqGBL/uTGWUx/g2/3e0vR2
KsqmdHMHBVFAUZTpv8/HOz8E4j0k2zl1TX0eRaR2JzWAm+YSnRRRPPw8xMjf
l/SZrecGULirVCWn75VWwbODuZM0WPo82r+jmAqwsm74oNEg2vZzL05yagR0
N02Jy7wlgdm50ZRbRCqbVzupLoxeKzLAbeC0sfDxZuDTuGDq3klFPy11nNru
dMP+WyJJDpdb2HyXQJ8azT7nbtDVYe5n3n+taU5U/tGF4RAqcx2y5tw6cC87
/lOaAhVe3Wauw66Tf9w5fFqbCt/wuTE7rLvYv1tP7f5LW+EO8Mv0VVwYzOGB
dm4ePbZqHwHuhXttOcZLY8cpi5zXD6zWJLDkkoH8ln+VU0sahDW+G4891CJB
pwXpWsKuH+iPR4Hccste9OK0XW3gpl6IlMpRXVZHBC/vQ1L391JBKGMko16k
C27W3b1tFNwJH4rGUrm8aTAk6xOxvqADLlAC1R3JVUhccW+n0GY6Iuylipo5
UUEv+35csy8FslGK64KwRohsHt87sRUPC+tPDQSnUuD9M8/iNuleeNAiSRrm
w+xjs8Tt1fwDqMS35Eqb8QgcMu44pE3n1E+jUhI1bCZrweHYx5J7FTjgYe0f
z9w/vHYLrP4tSIALQtuPF8YNoywll3/+/VPoTYGWCo8HEcr6npl/+UZHb/s2
CG+dGkerfWuXtb8eAhzrub+Zz0Ub/+nrW/zogLb/rGSlUB+q8dlXkzkwjCyP
rIs8Od4BE6z3o898Pyg0sveapSgBuJSZ/s68PKQGrs46s5EA416464qWnfDk
g4sIrZ+CKq4cPhyK+aHFO721/g2kQ2HBf+sMPdogXYAksiWhB9Zuk8mOxPBM
3qMDG9dh7+FIZMCWh49IbHlSN991ebx6EMmUwbTYYU4/rFjmfSXKTjd5KyTV
DR+MYtcsN+9g1X0aRIwdxV+NbLqgV6+j8/ZTBjtu0CEdyPhk287mtQW2Peb6
5EGFY9IBiu/utrPzGY6Yvnc2EpmGNzyMt+cxu5zDks/5eP+YzxYLrbWcPNKM
vrn7dPCmZnk1S/ewcU7fwdb2nxEMONASpBehh/m5rH3Ox90/TFy9zP0cWz90
X45l8gAsf/qCT7ZtCIqn3B68xOTcKkti5ylMT1AyW6/yxzciK2mnrFUF7fCs
9G7k3iVVKK+O+mPfKio0CNju8NtFAF3XsmTS+zZQ9LsX8EuEDmEVAo2hNVTQ
qhisXKtHhfDOq0ujtkxAWv7dDrthOrv+58PS0608GC769cSl/rsIp545QTHp
jMOTZLgYLf1vnxiFld81ifgOfj5oho0HCh7hl/gy3/dwFP08YNgrj43ftjJZ
1BXUxD6PkQ1plNXY+i9CGndGJnD6p9ByTpkIY+MBBAEd48WcPguPbl0QWoWN
p3/X3f24BsfWn0677iedx9bHha/V6FXHs/10tUG/1bux8XD7z1a/NnLwnEpz
J34Dtg5h9eNQgXROX5WqOBXBt+HJ0KMuc9RRlcOfXbqQz80aG18bIrp8pWob
W+/sl7MJxfwmqE2VPdC3mciu3zTuvkfRGXvu/r4rW8WTOXUFn9ob7xx7ib23
rGKnVMwuVGzUU23f1olkhd4OfsrE8N2CvNCNU3TwY33HEuZ3RF8KDevJPD1Q
ypovzZwPwZE+NzVudwGF+XuRpwOf6gS2fm67C6XDAv+/egMFL5LR/F7exvJb
x5EzYeaWJrZPr+V6h2qVGln3X0PIN/Jz3Oz7X+V4zSY3nVNPIetqsMcmbP7K
iqAt0ec4fTE29pNWCGLzh7QsGlb74Dh1cgoeuh/H5i/UFQp4JYhn81G1HJO8
RbDxSzoH8e+onWw8L9KYv1MSWyfuSr6M9wUyOLP2z/M5LXQPNr5vg9fwzi2c
81g1YtYph42f/37k1eYwIkyzeGRiUsM4/ln5Ic+MhDdx+jKcbPdom8bezwWV
QsGeO5x+di7NxZlH/cdRaMWncrsFXex7vfFPNibVpX3Izt/5UagMEeIFqD8v
rHuN8tf4x4p5UNCis5MzaWm90KzPjG/M/y0IlBwb20iEtQY3j8WfoKN9Oe+9
gt4PgxdvsrfQJiLYJ2bU1BqVohO2p9ME1fsRzfajmGc4Zq9zSzcPv2uAldPb
ZdPTqdB9Mnh9wxIqvHH8zTM6QUUJspYakdtH4VEKwcx3FRGW8Z7Lqb3HqR9e
7nXQ6vYpIrxizU9hzkf7whIdi1U7gHulZrdLdgNcfhc8GfaBiqz4rRc9a+T0
j2t9NtNJw97PDtGph4sc8HCMtU8j5j5har//qaaNnD5NvMx4Plx7ADGK1A7Y
s6hkahsJ85sfWOu7HhgFTS+Lnt4DnPoJn++JlBLzRtGa6jLRdmMiSAiteBBq
xOH1m67pOL3YgAiNYs56wusH0aKXix7HGo6gpPS1f5t1iHD7KtOOLGHaERhS
tPp3LIcMQ9W+6Tek6eB2gmz3uKsOyk3PqTL6CNA7vD9rzWQHaJcqNPGmNQOv
9X+rDhNJcOzCmYgOpwAUPvoztf93FwpY/jxZ6Xcv7CW3MB5YD6EHg8dkooe6
wY6/HLqDCNDPfT/iRc0QuhehUV+zsQfG3yZuPIEngKWX3xwe2PB8ZBYPoGGN
mYgbWzj1Xmy+tMv4WM2AesX5rQ9zGFB2+9SD9Pt0KIglcXlkz0D0hx7Fn9UM
dhypN+TS4Teb+sFuVXah0wfM77ha0v3Cj44uJsoW5nzqAw+hyMxd2HhgxAaV
6BU0tj3B1W17Mlvveubq9t/E81Sor/rzaVdWIxq0iHA5G0eE56WLnz87NoQE
z+v4luWOA/8jnqv5Q5i/maV9nhTJYNddkUyOhxZuIriGKw7VLOPUE6CeGHa4
O8Sp6xX/SmBb0IUxVOnmlhwTOwgyOM8xwUzMT7z4UiOhcQxZid6o2UsaZOuN
DZJjR2TWjCMNUftSrpVDEB8YHr/7UDOsWpbw6U9kP6zq6Aqs2NQNv8eZ66y6
P7cOyJ8ydrz6k4MnRJnrgNqkvFBMTAesJ+UOcj/qZ+O9iDhrwdMRdAhfWrAv
saUPBEQCOsgCo1AiXnpI6BIdqEeY311kbO67g/bqo0Wvp/GQw/LfHZn+O6ry
erYsJrUTiu84Pjqjz+HlxMn5St/Y3wXWLHsqw7SnyO9taYLDSUwPs+Tt2tuk
FhvpZtT+JdTV8jAeRlnyeZ0pn0iiZHPRIQscrH/EeJ4iMYxqpsqPii2cAlXa
Kvr1I2T2vUB+U7TWgbwJzEVvJ7qKkGE4nenfhbHkK7f7eONLMgG2HmT6a27t
c/4a7LhjV0coJsBqCT/DQCc6Uklo/n6GewwdyFP/mFhMhqwrepSZwW7I8vkm
HsbbCsNhIb+TjuNhwwmHmdhfnfDPf0eso149JJ9Z/F4kAvP7WH6iJNNPBNGw
AbvIhUQQOuI0FqrJ6TtTx/fZpWwNCTZ9LVh4ZsUg2nq20qgvnAJke1kb/8cE
uHmv4s+YdxfYt4+MBL6pgQhc+fGbNiRoiTvr81eDweY7F9S28XladwDPw1Gx
J4sYKB3XFtlYNwFGNu90hg92sO9HvJn3I5Cpy0PIP9EJeSHxMx9XpqEldfur
mnbWoTrtC6Q7a7FzHVBhqLNsGAULms/slOtBW4p5Fjza3gbqz56DnhBCPmkP
+cSDemH5n53kcSECfBMnDA1h87l1dNeTjHqQWzcPrmNDG9y9u+ZffVkW8l4S
LDMSN4DkpytTlxn2g5GE9cDYKBU0fjlqZ/pPIZfnX4Jpo13QWppnpGmThkz8
NgeacdfCUMwNutg9zF9zNbVaqEyFmlOiXWtuTSA1y2f7Jay64G/G5YzyzkGk
JXuDW79jCraMJByJFuyAzHOnBom3c1EOTcW4XoqKeK6YZlxI6Yef3L1fFlgx
UFT269dHuWlwIC39a2pcO9Q+OPi4xWMYdeDzY5r9pqDlQPLL46ZkONcguEnC
Og+dOH3dvSOuFzklC2TnLu0Fg++/cvmdByGgvEDInzyD+Jb/+jL9e7Zuf3jv
WcwOLVot2utdNoIez/B5NXp1gOjzEarTNipsKXEpv5VWCT2iwzz39rUB98tt
EUGqAxBh+eynSt4/OP6nSeBjYBuMZhQ78fpksXHWIo+9hd/6e8D+JXOd5V/m
1kHWcftulm7AwVQkc52XzHUQl/aLOPJOHDxMZa4zjzs0vj7j7pnCQ7YL81yP
SAW0777ZjSw/CpyLqOgFrwF6ZX9LLMRtyLfq5u1Dn3SPXXGu6oV7bnX6XkIU
JPftM5fB2xHgGVM1F5/sBHvcyrFjTekQ9PPX7oT9bcjZIfdeHsKDa8zIlz7F
arTby/A/K0U6rBgun6GL9sC1oTHpyOwK+HkKfy6Y1oNQ4AkRwyWYH3rhh7ZV
Yzr2+6S3m5q3wSB9r7tifA+UXfVKifHrQL1Zf81FMb3J/UljRUoEAQQiLaPv
xH0CxTN7HioDGRmduyQi24QHZeEDZiKHekCJUPzmrHQ9qq75aGEc1A7VaR/q
TUN7oC6QcWo8pg4co+ojjKg4ODhQo3O0JgO1Exvpe570wJKoX6uLeAkwQF0Y
bj7FiavUWBe/MDPuYNdNnf8uISd/h6MkCjvPbD4fefLogZuuOynsf/Mx+xAh
rohrvik+7RB1csFvw0D2vdWBUB8d6m3MLudH+n7ZrU1n81ZMVyXLxDoTYF9f
YFztdfZ+8nx/EI0+iYywn1uU+isrqGEA1SdqWJS9pYC8guPKm5tn654Y/uyS
xfz6vy8VZ/36U8IBZodq+2CBo2jIb+oILD8dG8B3gc6uw9D/pC3Z6GEliAUp
Je/0wbPrObw3O7qrLboPxN3+aAks7YMqYcIy5+pMZLXrm0ijwl84vGRx68Mr
HB6QzhLx+grlSvg3qPKxybgNelh5hquYeYbIvON81XszItitjdzXcYLDyxRM
j+V9eZjMth8GvWX3k3pGUdHk06SoCjJ4yfNcqt+I6fPTm1ontUZRRNclKy75
Dta9FTtegRoTPmrI7iKCNKuvUwyzrxOKEXLweVqDBx7nv0tm9x/3ROr1k6RS
0GuJS+1xx8PpgbA/23lKQPt+Ci0Xs5M+C/4z5LnRz85LnP+b9rC4tTCQzMbn
mZvJBx39qXB5Y+rw4oYB+MxrtvO6KQMdoSXV3n03idprX/9Q5B5m4w9TnEC6
7ZNkdMHq6I01ct3gy7qHpTDvYRGYGxZm38Cz88SW7HGrzHibjLiXq2fJt1fA
0PqNTiXXqOzv/9bT8Xb5Uk4dBmPX12aTmJ9F7vS5/NCaAG46zPNuzzzvQGsa
8cn7D5MHmQBh95RPbN66tXJgbNtKAsRNuy9dXPYPSnUbY7Sle+FDSbxS+lUK
1FHyu3Ut6Ow45PbI5Y36mzn9nXWZ3wtEf4i9S9hJhIr20YiGBAK77qVOsTP5
yi8a3DHJGNQOS2a/j1C1wEP7o/CwxPJvYPTLN0CqcNCMiKpB8ac9Dx8NwHD1
2F5iLNcbyHa8WB4RVANc5MZDzp49sE546OCjF8kQk7DA5felZiBNjqu9C+iB
LNZz5+MD9/Z9O6P1rRtA23jHWVkKO1/vZafwqruVNCDXvdi67BkNtq3sDxdo
noJS6rcFD64wwNZI/yIV6NByvIdRlIPhigO/0nR0CLC3IGPvg6NDqP8ujvJd
cwYd2BuWQKdy+hapH7bPmDacRns3VasYvBiG+s2+2qTFA+z82JsC4vzfLg+y
5X8+HiN3YOPYQ+w90MaYeXrv5eby9BB1i8yHJzwkWL6mfTCoLIztfww4bnxe
ex4PRiuN9d/Zl6NWy5S42rwktHTBU+VnWzh9fxSfKuoffJ6Mbi3YV/LnMgVc
d8lFS/7LQFLMvzDtn60QdxYPuFbS3PrzeVC53lT9kx8p0Nd6p0zZh4H+Gij/
jbjUA+4Lwj2rIglgHnrntcDxKpjhyeeyJw5Ak+SFp6u0B2CYFTcgbO+y6okZ
gNf+76wUgrtAR0RGJ+9HO1iOuTcZfKfC5tjUtwuTO4G/5jKv9AIyVJQp1rzu
o4JafWUpxawTelfb9jhV0djf0fKEt1EdDxHWsfxETaafiJ6aeEXdOUCGRo+J
MwtNO+GZht8v9eYelBPp3ZmJ2Zc81rn9wMzjRdnGH/Wl8Xj4Wzbdue1YDBpZ
G1SaotmOKP3iaz1v9cIyW+FlDVov2X1nvDNDrgU+7J2PS6BbDn9NpbH3+V/a
GbVUg3Z2nGfDaHDZv1fJqFbgkPe/M3jIrBdXW/6CU3/OyvtU4YP1/0/fovW3
9ziVj0C7/J5RF2c6rHbmu3prxch8HzdkvlguefQqERxVeBsXSzDQu1KFzZG6
k0gtuUr0OmUItrPy2J8y89hR/l3Vxg3qneB+hFHpQsSBNEp8onKOhh49XTz9
ZGM3uKlOTMzykspjimZ5ScgTWg4HFfXCEuKZx7JiFOBj/kXbR+j3VpVi/ov9
6evX3nbDr/ID8p2+BCR0UtDMZAuJnfe7lqQtY4/psaHk+EyRs+2g+1CFODYz
g4LXwsaV2PuRjcm+G6jSzs4Hxh+z0NyHzSf2bxd5OtTOPi+/tqPnm7DxSQmJ
Rrt6EjvedcXE//A6bB0BKf9sy/Wc/u/W17++3IrND9s3aZopyMkL9++LkVXF
xuuC1AxnnnSy42A33xes34Ktk8igKoRNdELD9edb+P97zI4D1X0t6Ym8wskT
NlCvvvoiIRkJC/q6c2N+fRnL7heofFw3jX1fBpfnUJsFnp0/fJYa+TIuMRm5
mDuJue3k3I/XG+mbCGLP/fU+1FCIn3OvWlG0yD4/ORlF2e23o0fg2PIhv3n5
fZvwZOT8sO227q5WOMyKpw3u3FpYF5OMuoqhuexJC1t/UdpBNAebvwwfba20
gFOn6N5ujXJrbP+hUltFO3Xm6xWMA/f38ZlSbP9qXT9/akxUg3GOy65NJc/Y
8jvDPbXe2IECUieZ8j8fZzJ+eGXHyzo8vINCro/+3ZD9kua8U5EEx5ymLNYU
YHrjcqqS8RUi7Cm74aiKp0HMkfBOkVQqiAkaFIVF98Dan899NeOHYCrd/3vl
MjrobAnW3ubSjagCdy7wPxlCotr0hrziTrYe5MrujF61eQhdU3Dd9F2QDkvj
p0/dqMCx+TjiGkPXgywJoP3/rwN+2wu3HskigCyLH/GcyY9APqTxcaELHP//
1LOFdpppNJRMi9+2UIgCN/uZ91zrFObuuVBBGJe28Q0KOBm5xPLy/EHBniV1
WSH9aNpnW9AKH04fiI875vQbOr+xXXOBMAEiq5l6bOXfOT2GUuI/m832F9NZ
eMU93aqDLY8JuIuB4z+w//8zOyb/bgc7/tfX1LvvnSceull+sREzDoOMuV+n
njDAwxXzphL7ymdsvLbwlMxiXmc8W44jSreMqszKufs3bUtVCmR4MeV8Hrfe
QLpy51R6oGc819qutxtidgTv/mXdBQQ/m899Y5w6eC8EJFN+PqbDqtxlsQ4C
NNhUUN/WM94FLuuf8AbfZoBWVpUI92sa1OJ5G0LyGejUInOX9GXDoEcQ01F2
xeRlaVL6Dg8ai281DhdjMjxb7nWw+cPJ26POtSuMw+dHZ1NDarDnVH/5tSad
AT7HHv9d9mIaxLMz33/VJUC57/W+K0NDqOht+dtUk0n0KkbjRZ8LEZYvY8rh
QJ4C/iyNhKZ35+WbXiFB8PEfBcGJ42jRqZgTfwuSEMPf1csxF9M/5VkPLIWH
UeHd0co4zD7iOjo179wmseMGjx7ffCiOvTdfx0Hqnmck6DyBOzh6m4bCq9zQ
bN6sfPvlpsFYMvB9G/33lNiNOld/l9cvTEIPqr5rya7qZPtXA/uPbtuIrbPd
8ou4slwnXEy9VF2WQ0A7Cqbvz66jtXWr79rkLnjE+/xHgX0tvNtx6/lgSRK6
ut0pelyTE+/NLgnOEsPO+zHuZMtgdTzcmbiC061th7NqsutuYvvvO3O4PaIe
Byeohu1NY73wjuc2lz42bnpsulLlbyvbviy96p8w/iwZGYl+9TN83wp3orwd
5PkYAPduq/IVJaHbMRfE+rWb2fkWakrN+v9h+5d4eU8ndKIJjGR5ym/FjoBv
9ynbF9j6dyIcbWRodZC65l1FoeIkUBImj/3C3oPoBqEvCrmVkN212qzDvJd9
D7DPp7euSYIARr0Fu1vv0eDu7+T4RvIYyBQv9D+iRYCmUUuNbAUKnLSL+ty3
7x8iJ0Tu4Y3HQSaLV5XJ5FWBX+Ry9cwCEhBTvn8OodDY8bePL4e5zE+TQO7g
P7PZ/NJ5HLrL87CxogcZmll5ej+YeXroDr5T2R/z66tY+Fyaic9BK9YoOwg7
n2cW7WwkxNPQUV6X6NIXNPT1go1bwUcSiItXjszikHl7Vap+wGGXABniq5ny
rzxqNiv/yOiNLrVIjci+Z9k143xlSxkdWUxcMGwupoLWxMk5/Dm/js+G3ID+
5Z2gztKf3X/m9CdayLj5fGVSF/SvYuIlpeE5vITc/lvl+mQdAYZGf83J/9W2
OT2MXP5IpF0+QwI9ZeJx/4c0+NzadS95Vy3ydSWQQBsHi1h2PJtpx0Ej76qd
vh8efHBMuz//9375bdIQNwFqeKsaTxt3gt6N8qu2lT1gm5npZNlIBpoLkz/7
mKWH9X4ft3/e2w4vWHzbeb/gLu5htO9+AvBrCay2KaACZdyXJiQ/CSbcZQ/v
SjBAJmn5QrxNDzt/cEf6y2zxCA7vxkVpPMWUm4EW4bm32bt3su1ySMhom2dR
H7q/830euZJzP3jPcO9JTJ/DujUatI8GBLYdYXyfsyOQO5x709ClGxbL6jSq
7yEjvAH/4bqlw6ic76q0SAwdLP4IOFX/7UW8S6r+u+MxipIFyZX/lg7CKaPq
g2fHcOz8kIhlLseXY36EsfLa1GUp1eii1mDAmDkVHU/KxW9qwfC2k4KQmFQC
8mvMOXo0uh8FJVx6n5rXB4HS+xpWl2eg+b9hSp+2jUVQ4BQrjqHHjGPA5IYP
J64W9cB/y5n6DZ8/p98gUSiPd+Qvni03KkFz9wIQtv/iDsXvJHgluU3N6dN8
f+ERYBiWWcUsI4LngbamL2OYBxNZE7blxySkv3wYYqLGAG9WHFVpei6Oisoj
C28EnScCzn6/ex4jE14vO/RXPa0L2Qq43EzB7MLaP0x7ccVizl4g8x7D0qUJ
JLC+Z73hxq1+trxvzf980yykDVYozZy64VbErver8vKH82pxAnjrM3HpGSYu
BWm/v7elzlPBOYDZn9eS2Z8XeMc2ZSordsBrFn8wickfBJsia64gKxL0Bruk
PCE2g8bJ+JrIxTR4pabRpqNGhV4uJq9wHk8NHvHie2/SBZVcgctvbBli1+8N
4F4e33uSCF+NmDxfdl6qx7sIWR8qO17UwIwXoX3Z+jVFHu2whxVf2sWML8EV
P73iHxM4OGhhMfce5vX3Z70VsXp4HFtus+rn5BaI0UcvWIr3w3AFkw8+nxdZ
Lyd9PGi2n6zpH0X3jT2wcb+F8KZF/bCO97WlrwiHJ8nP5PcBI2T1P55JAhxj
2dkw1u/aaHrwlcfOIUhj5QmUM/ME0M3MoHvh+Xhw7m1skyybQFeeL1eZ5Qft
ae+2OazWAJWr5SRdzKeQHIsPNbB0dVCqTD3Uvrd/qs03gZpZfKjUo7j94V8a
QK6ox5jLfwytLXvfI4mNF526pDr0oRG+13kU4/aOIJ/tp/lnxz+fU9xIojdB
7vHXizcVjSIbFn/qpMPEoY1iTfDKST1J2GcY3WLxp5b2RyevNG6Gsr0dwrHU
QSStJDSuh43ngtUbo6UtQC5F17wT6ejdqx+7j2Dj/Wbbnd73t4BcuJ4KTXEQ
7WTxraTj6nWfmbdA08DzixmYvbjN4lv1LL6u7ifbCoW2AvLuNlR0z+jQf7P8
I5/HerF28a0gFGLv+nFnL7rPbSrx+mcSVK2p1atTwEG1gvoSI80BNj/r7NaN
GnvrW6HzX1RVWToFWXf7P08qSIIbtkvd/pjjQK9n3ZH1EZ2o6cL1f4DNf6Vo
+yEtGgdfuOxf1XK3o84TQo57sHEaNK0w6sXB8IIi3h/rO1ARi8+lMsa3rPYb
DtxB85ZGKBElsvhc8p6ufyMXYDits0tMiNSCpou+brTFJ4FmrJu+wVY8kD+V
lH0t/wc/sh+MUnKTwNrta43ojy641izjd0u9EBaz+F8iplx+qje7QTkzkupU
UA1BBdwK2/KSILjeXdTNsgueKpXsHac3Qp/yGZFT2Py0ssfJI3c6Ife/b5ae
oUTolHr0/jS2zymJ1zK/NTrgmLNa0MquFhhk8cV8sofFxcQ7QYQ39mUVdzuY
sfhiX25K0HWbySBKSd64e30HSPFdz0fYPl9cpXPJcZNh056sPbXpFHhycu2Y
LPZ7/UX8F91taAeNN9YmLZh9aGTxy2L+/mdjFkuCey19axx29kI6i1+mkBmP
a/dpB0Z2cbmp5gAcXcLLn4CNtw7EXdEobwPSrtxFdyg0OJ6heFkFe+7Ffa9b
G8eJ4PKrTAaTB1Bl8dFMxyWa5fzbAM/wTo1OpIOQregrCez7xu8WTDnxiwjF
Kfp/6IqDcKM1d8IHW1/2StRB3rNEsF1kxjfpPQwH1nMrCWHrOBhxHd+ymAh7
BbNyv1EHIZ/FX9vkbCTkrIn5Swk5voV7R2Ani7+2P9jlzOgAAeqTh30WFI2C
pGptLh/2XS72Nf2iFxPgSPGvteJ8E2Bj5sHHj71nm+5XTvkvCSAlJ2av5j8G
kiy+m/5S67srvxIgKOvBfdmyCSgwvkQwxvb//ouchfgjAhxMtH131HwK8gre
f0vH1v/dWncm9ToBlFh8T1Em3xNE90SETFZy+rxPDszxiCFAj1hgLEqAN7VR
9SvvD7P5yD1urajrEhGeXLhoE9hJZ9+zk8gnn1/KGYLfNO3U1Wv7UdnUeyku
0REkuGD9z5u9nPivO5M3jdR+evdvWMO5NydckC54eqQbaZwq9n87gof3CVlZ
LzG9bbtn28JHOOzcPXst/kMXD3SJI1Q6oxG5sHht1ofTmnYq4EH84rVe39gZ
cDqSl3EIO9c5ERBqa0eAzeIKmk7C00DnZ/LXvkr8Vn7mjuGjO881IxNzwQFF
OfRg8m+05EKc1r9uCLYw26Y6yEBFG4O5SAX9YJjsfltcoB3eTEgbuigPouuf
InduejsCLSY7Iv57welnLJ08FCqsOoL0I0cze8wZ4GBT9OdwbAeq/rcu0ipt
EO0dH6+qMuoCm+l26gc3Isp45F0j+h8DPW+cxOWacfKVPc6+0HTiGkT7luRa
lH/pAsa7SCnp8j4QqrjhzevAAM1zPU7K8gR2nZHl4YGRk8tH0UOzR9BTwoCt
Idb7ikPwqHzhpwKFM3QU0l28qP1dNyzqst/5eLgOdF4xMnST+9DMyXVXelZy
+mIXHZzjxSPd+/bhOVyY/MT61JqLdYEp74sHxfh+NFixdt8A5v96vCja3/c6
Gc3jsgdD8tE7oBf7DuLbbuekwBjLb9Y0sf9dF94D51g4yoOJo2DJ6O8qIyUC
pITWpw1N/Eav1h653ytHg93Z5wQSk3tA48eYe+G3Jvb9ae6N1YkPLDm8l83M
9wy3Fn48v21TF1x5xMR7gr5zeA/O5W1UU23ugges+gwrmPUZgO+X/PjteAKM
jtGbSx7Q2fkvZNMMR/fDBMj74JpfTqbDXpMn6vJrp+BDzaPGAmzc02hzmf2T
IVR18D8fuUcTiP/sOVOd00RQ1uhUfQwUNj7d+OndioyWdiBs967JrfjH5nN9
4P7Tb2OMh7Ho9/271QqRv+OSDK6iJBAbjXH6YouHZddtzJSEp5HFlVcDUtj8
UN0nL8IS6yD9uJrK/Wc/oMKoomjpIgp4rLSTz/nO6ccnwMw3hqfVUfWP5Ahw
jXUvPx8/2TlcEK3ZTYU3+I+Gqlep7PqKSUsfG27nYcC6CsW/Qj7TyIj13Ckx
XMNV6zpQ6Na8XK34FexY56JtwUK94tFueCG4TbxBcRLZsnBF2tiY8eRwPUw/
OzPwIHYEebLwgPmOX5q3cpogmH+EYcPHQNksO+4W8WX/1dIWcB48fpk21ouM
Gy7fTMb01W5egchb63Cw2OW6aEQtx24m8x/ZI0nAAe/FSaUk+1rkaBUpLD6L
K1Se+YAWHi6fepKk5lAO2mEjA/LYub7cb/8oitYFfzY9UknNIUA7y35tc1r+
dfpGB4ytaum5TOyGMJbdyU3p/NqwnAQ2n7qdJf1pMKjdvzwe07eXT8p4hYi1
Qb6WqrCB8DAcZOn5n4ZpJBAmgiA3Ov45cRyM9tTVGmHP/fQrsfPZGwKI0I94
k/bOQGuOvedF7HdliTWPJZ8iwAZ7WStGNwU+3vXqE1Hsg5e3Fh44IEQAXrPl
HbQPTex66U6Wum2pW2iQM+gXdfJ8PLpk+nrasAb7nYZ2e8gpeFDI+SbqSUlA
dlFf9m9d0gqw48BE3Rs8HGDxN7+x/KzIa40/hfkZ4Cd8XkW8shJ53czam8hF
RZnJtc37V/SA80LLtHdln2A/9cOLD929SGzHb8vj53rZ8VVFJq8WlIoGT1qG
dEH4/uW+8ddL2HIbeC74aZ01Hr7YProVFTuDquGVcmNhEsCopbHVnVq4/IFZ
H6CCb64+ADpR3Htm+2gbpFD9AjMoY0iAhSdf28iceuzWCKUUB29/8yGkysKB
Ow6YXL/R3AxBCgKim4qo6BoLvx3hGhmQDWyFbKH2DOLZLtTMwl0CNxf/HgzF
gc/DtbX7AnDowa8zfzdg830/J8MvMTz0Dtwy33miAfpZOKf18yKH/T86Iaes
4LufIRkUWPgk2fDNsKcaGS5vGHh193I/G1dMrvM8LDLeBruNPyutLGPAXRYe
MNzmnkL3JoJrl8yfxzajsIFlx1fmeNpdqMTsuE93Zy11Er6w7K/SifvRNMwv
H9Tfyied38b+7scXON5eJNQN1zxctX8vo0H4Z6adPdrmkrV+WTeUPKAFHTs8
AOTfUnecb42hvqGj/Ee+dsIum9fp317SwbYoieiSMoPePv8t+tW2G3YMMeXn
JlN+0C3TXQUfLXqBqsPUz/NxyOUGtThnTK6u/RqXnK2vUhFwaFuP9l/U/VKN
LHCvB5YcYe6ziaWHu5Wt9A96EuCBR7YtI5mG5uP3odSHngsYJIjISN4ZIMVA
jZIrNU1D6Oj4v9UWT0Q594ZOByNVK7z6ER8t8sNTCRL8Gvk5JcNLZ/N9lHJe
S6hi5+usz/ScXzmfZ1VW7G6g+Q3z05o9qA7uTXDP6sxRHzIVdg09FPSSoEJL
zXllQkI/O14+RXSvWqlMgKQvt98UXhgADZVR9Vy3IVie80J1y14CWOeQFTaf
GkTFoR9o22RHYZH/Ka2BRBLcYN07hzLvnaGBeuXCS0EijPGuMPK+NYScKT9/
mKlMoM/28nU8p4jwhuWPz+fpSetQ23eZdkB1I3Ofy5n7RDwJYVSThG6236h/
4szVNd5UBJ+aNaqEKTAZxPRzfZl+LrL3iuVbfRX7jn3c39G7XJTy6JqhMqZP
JDZo5uEcMXlmxYF/J18szo7A8IlE4u5bWwgYbmfGn+fju4yWtgmtC2Q4ouST
n+KP6b/Uas1LRjT44r66KOO/TnhOOCgUuYIGR7xOa2wWGQNyS86qYQ0CmLw8
lxteSoWho1kSJ1aNwjNic97dAwTIkmghbZIchE2PHw8/OTQDYjotlHRdAriw
eCvzcZ4YEYN4Ywz3ZrDi3vNx9MOOHrW/1nL6rSifncN7EC94NeZSJhn8WXyZ
eX9561rdVv1KMhSx5GS+n4xPV2pFsixnHas3c/w10BcbEb8+QIJ3B5j1f9j6
TIXUKPmhF4ZxXemo4xFK++zwOc6hE73bYae1J5PT52jQySS10aAXPj61tD96
kgiJ5EPn2i0x+/K5tPmz1gBY8pCMfhD6IYcV/5zPv9uUqLmJpEEGMXWp2HiR
LnjxFJWHYOdjSKPGqG8rASr6vIea6AkosbbJt5OnFdG8o4ZeYc+Zx3unmHgP
+iLP6ToHENhxFkN+l9m4IiSKXrokmEOB7sb0JX956JDJypu+x/WCXy+OAcUS
99zOBNPhfHu2r+/YDFz5u1F9TwMDfLSq3udpM6DUwDi6EjcFJ+1zF57Bvtet
754+XvaDKOmBWGKl3CiSKUmVe36UCIdXVObKJgyizGrXt5dj+sDKUWFlya02
+MyqbybErG8G52zu6I9HEYBLV2ShlT0dHdpqon+4sw82fDFdcPM9AYRZ+W/z
+k3dZjyZbwsRZOq3GCw60Qnrbus+cpVjwKWuKPIDVxo7jqwQ57cl5G8zoinu
n6ykc+I7Va2ls7wepL1wciJlmggVrDjP/L0DtfcCJaCTBP0rmHnIGmvn8pBB
8oTy3qHFnH49Tcy6gkAy/qwhfrgDZC7azeF8vqNRszgf1XWY3FFYTgT8CpPQ
1SmcPqHRuCUdH16TIL5wWiL9EKc/rPYmCXQam/8t/ZpRjDQDXVxvunjlEjrK
to1S0MD0xvzv/ykdNsubQK5e1aluPJx+sgQd3ofr9YeRY1HtwEfpDlh2znU/
r9sLtPa88vIv+yjIkSd/5O33Xlj+1PWb12MavHZAQ/WStUDOkel4YUSE62cX
4Td2UUAk1MBdW74PvdYre5jXx8nPfxs99z6BB29d9KMbD7dZ+bHzfVK+lg2+
zP2Hh6t/U//BvkE4fmfdh+HEGdi97uBXWT0CSJyJIsGmQTS1blne8IMRZBsh
vCLqMBGaHuP3ft9LB/+vfqIia+rhHHny27YOAriz6va4Mev2oDGhA0nVokMg
HLVM3lujCUqdun5ePdIPQbdWJu8+0A3vdpT72ar0g0SPKBiRRuFboIDTSkyO
E14EfNhJDEQ43Go9ufXdsM/wxdP+BZjcEpjn9zPz/AKPSVyTGI1zn7WPeZ+F
Lv4YZGQNdrL9TUkmzwtdquDRP3WpC0pZ+hAx9SGyXm60/98mAtx9FbJq4/lO
KOlq3nt4dwOSHdbReCOJZ/EX6NDppoXuWzYjmY/QscIfD62s9xDMfA8oq1PK
YJUVDoIQWWWP3ghyXLhzT9PlGTjusD6s8C0Z7po6rHj3bBCdpa1PnPCaAvHY
bHOyQAeIH3CKPWg3hJYs3em/WGEGyvpwT17rd0AuK499HreXNciGnBAgw+vI
q7cuU4YQNegf/0ebSdieXfRNT4EMQf4SDhKpNDSYk6R+OJYGyqR/+Y9bCBD9
eAqp4emIkY7yAx6Oor0918pfXSbDoR1M/2VeHh4SLMQvAJ6dH27DzNcFxR0x
b+zwJODjvdNACsTO79/FHXcdGkAn5d0PnQ+Y3WTxKOOYPEpQ4+O58YlKgPss
nDDvx22IUXSYHObkvZ+OSlvjuYUCtyY6g/48JAD9m21ZuV0hqnB5ImSQSUXU
lGJ5A40BsFq/fi6/Yj4+ajcjcNZ/Axk2eTB56N805njo6NzubV9pa8hQ+fF8
zuz90fw504z88+pkLubHcZ2vaKjrZvcFO7iw4uM7DMcGnsk98mPLACywLXyT
ETYGTztz5Z+k01n2pR90RUcTcw+OgQhpKrnjDSYH5QYvItS6gKtTxuz68lpk
lxh2PH8KB5sOMPM3TlfN5W9AyY1aJ9vjHZDJipPMf8dVo5uGLeU7QN6jzWv2
PuKVImXc32MUmg537Jny64QjL2/O5RHN3/P/OZzsUb+lE25fZdbl42HW5YPU
gjuOhMWc/lZvmPnnEPLML5ky0QG9I3Euc/cUeaa6R6P7QfP0K7c21AuGVaPJ
p44xUO65DrNtWjSQXC1ob/KpHXxYeTK9zDwZEOtfvSntNx6+RQlKi/INQPH1
QN4fy4bQhZ9dS5UoZIjN/Kc0mISdX9b3VN0guvliHRnOsfpO3mf2nQT+/4Jl
ug+Q2N99JnxqkY4cBb3wi5T82t0G71n9E7cz+yeimDfW8ny0HjhTlN2xqHIY
qWge9Ig/Pg3JDeSDeR5kOLWEyePLOzDH44Pvz3e5XT9NhpSqmwaZOfnorEEv
rcGRilYk3HlW090PxiMZ0kfHB9EeFL8+a2cf+vCfoOvQMSKbL6lIZOLPaRZf
chf5wGDVte/s+8eRqS+bP3j3Q9m9u+/QABVemcgXiBVPIv2ro5/533TB59p7
3LFyaWjPhvFPe3bVwaXolMIPwXjYfOicUeehHJQoRZmJhl70mnzT/5RkL2hv
txFxMclDDXdrx5+96YW1xZe+pAsTYMY88f12QwZIvWHif7/TguJEDE9U85jE
yuzm9HHyMlGfXGTSxb7XlqGPMsLvU2DH1tBjKR8JcD38sl2bYA/8nU7vSlvV
j67blC/XnyGBRo36sFrbILvf1h/ehpMGizuAwOqbs5bZNweFiHC9iizsB88j
jBtcnt/Z52iHtLaEj1UvvNaoyLEyZ6Al6wN2qvDRIM/iZW1cQjtMhd1/8Mn/
NRr/Fl4mVtMGdZ1RHqVFeLBkxQ/nnysbXycTbU2GPaw884vMPHNUs31tFp9w
L9jsk1z724XTr1MpOa3erKEL1rY49x1rpIJc1nerA/qjyFG4uurmyw6I+Mc3
SiB2grVL8ccv6+sgNqRP69F9EowvyKeqfeoF8z0uvbUWFaARuIX4eE87LD7D
vP/iZ95/QY9kwC9JSg+br0el3KQ1v0pGlx9Ht+64087ul63e035oYUwyygi0
u+SJ+S/sfpMXyvGzeQXEc1OFPW4dbPz2fDI+uBBbp0PS2kE4rPt/82aRUuYM
hldwMH9f9Vxf8dMANj/k2YEFU7/b2fhSNyMplx97rv7Vwvi2HDLbf3vgFJeP
w+anJdtonfrdBROsfNEXrPhQ28CqSisxHDt/VPBKj9iV172oeOCx5KtlhP/l
jcI+B5+nStEEdj7wGTGZPUuT+9Abh4IV7vv6wGIBM26QxIwbQJ230nD2wz7Y
lskXe/1XOiQMbzr+ULQNaFfeaDbF9sA2c2b8ypkZv0JT3CZFl/4jQJzqg6zK
9kAkotEqO7KpG6WHOMOl373wJCxmDv94U/bO4h/IPv5j2UceAlBY+naiY07f
AmEdw+qtO4nNg2PVJ4fsU3k83wbb2Hnb0oETGx5i761oaeCvY5hdnvcz8ydq
EvSw8YJSB6GCngY2D/HGb8KSfdh33BNP2bp58182rhg1dl+yAhv32O2+m//3
fB7XCAwu2H98EzY+1HKWeCOkjh1P/Hg410gJG9+s4uOUfbQSlPTXzNUTC4q7
O1tPDBImNUMbFnbB+3u39aOa09n32DlLb5M25+FhRS+TN52hMMebBgNbhbyj
G3vAeFNQbmtGP6ha+RUNaP1DOwz8W+hyOMBJhc3l8e5WLJ3N40XNirm2y5YS
ICQucHO6axbUCaVd9RjvAhUtrtGynh7YbVj19LA0FQLp448Y2ZWIbrXxa9wG
HAjfZu5nHjeZ1p9MX/u2B2xYcexKZhwbZuBJzepIAvCTGrpzirMhTHuPwh9K
N7rwZJou8R+BfW7n/66QDN58AdfG1l/z462+BVHDZpx6QfPjRXdcH9kVcvoz
zo8f2hTOUxrPqZc9P06MEwv49oQTF50fL3bb3dse0seW5/nxp8bO/y0OHGCf
i/lxrlFd+u8CTh/5+fGCupU1bb9o7Dz//yPry+Opfr7/K9EmQrSJaKFoQYmU
obSohDYqirTJ0o5KKVKISmhVCmVLWYssLxJS9n2/97qufd+J/O67e8/M59vv
r9fD07nzmnnOmTNn5nXmDOBStimNszN78H4r4F40x5c7fvbiOAnAnTwffovf
TO7fAbzJt7SuWwnzpgH4RMVvL6jFhE/gb9Ud+/LJUgzMJzwdCszCc76Se5QA
n/y2d+FpZ8Iz4GfE1c+q2DRgngEXzBSVmWBPzo8DPt2QJZ7k0oJ5Bjyp+4+B
x5M2zDPg6vd/+uwP7MA8A+65JF1/3iHCM+C7u7JSlpgQngH3X+QVb3y6B+V0
G4hYa/ZgfEN1nurjbeS+RcDf8j+US9hIeAb8zQQTa0EFwjPgO+9N0IqRJjwD
f9GLNi3/MUDyrgMuILT12dhaBuYZni661U1T5JionBs/D7gMN34e+AS8s+Vb
dHY4uf8d8CNWaa70nFbMJ+C7H9YfXN3cjvnE5Uwc3v1fPiKc35yLU2GKphH8
hE/AjR74t36aQ/QWcOuxuyFXNhI+AS9MiFhapUL4BHxt5oPB/+UT8PBnlTON
lhA+Qe9Mrk1zXtNM8o8Bnizh3s9zj4bLBXzX/BO+Zs0MrJ+AGws4vzb1IfE/
gD/RVF/08ATJMwC4d8flYxnKhE/AJ8aNnTE5RPgEXFPw6q/kq52YT8BDJzss
vvWrC/MGuNcpt+CnSoQ3wFVu++2NUCW8AS4Yvyx0hzLhDfDY5LFFM1cQ3qDd
h7+orRdeV4F5AzxZLvREOFVN4qtMpf07ZrZSpYd0ptRqk30PkL85e6otvxX5
bgjPLYoZtQ7yhE/A1+Ulpk9eQPgEXLh+j4+wCB3zBriILuc8FPAGuIbqzvml
hxqxHgJ+6ejltCIBci4YcFP1vAlSqwifgNczNq0L2Ur4XP/Nd8mFKa1UVMLE
8/VbCZ8gz5+fJrNwHeET2id+dF68tWAZ5hPwj9dFl6abVWI+AafSYv9Ir6/B
fAJeVq5+aUlyLa4fPt9x2Zm/R4+GfLh/l8zSta6rZFA/1yDlGV7knhSQD/ph
wxv8ldwnBfi0FimTNWbk3gLA7ywX+RLm3oD5BDzhUpy1+Cca5hPwd2P00dvK
hE/ADe6W1LRaEz4Bf79juYGvCeETcJmjywV2EJ5ToB2SDumT90SWYD4Bv91P
k4npIvdTAN7ZmzTX/yW5nwLwwxrGR3dfrsF8Aq46KWj2ATdyPwXgoj5OD/Sk
CJ/wjLzsMKvqLOET8A85etFni8j9FLic0xmO62QbMG+AzzvBc0PoELmHAvBM
9ciK2z8Ib4CPJQXGuNwhvAH+MLh0zesDhDeoV8TCIEpYmol5Azx//Hr27Dsk
7yLgvorzqm8pkHkccKOimjeN2izMG+BbD2yTvplKzh0B3jlZ/8Lxc03kPngu
/u7nm/O7N5BzjvCUy9641diC5EXE957F2M58vpzoG+CCHr6BaxVqMG+Ah1ka
a0/+UI55A7zP98euiPtFmDfAj/frftONzMa8wfs/bWGI7aknfgPg/nXr5Y3F
CW+AG3cMB7j7kvPqgA/dSPtzsbIe8wb4XNmZ4pp+hLdCzvhFN5bqy9y8S3gD
eUnZtMwPboQ3wLOHcyZ/jCG8wXM+/0GpPD8aHr+Ab1j1zmrNO/L9HvDX04JP
J1iT8Qu4csneBMW5VZhPwA37qm4YCpViPgG3exQnufhmAeYT22Of0T0LPQmf
gJvy+U5Mu1OH76nkzi9oBY/inhF9Mi+C/JK7B5y1lAifgGtGUBIGHoRPwM9P
uftALYrwCbjUHRdfsXwyjwCuU8J8Fs5eX8Df8AxgWT2/6FqPeQO8sGU23xSK
jF98j1Aa0ylvdy3mTYUzj6CDh5UD57nh+zo1QF57/0zhOz9KMG/wnnG5fTHn
txLeAD91qVbyhCDxwwDvT1dkuPgSfwbwYW27eIMSwg/gDyeau0kIEv8Q8C0K
Ylu9TLqwPwO4CyqqujVM/BnAF+35sYm+gegZ4JNvbKxNdWnCf8Pz9hyxjB8m
TMwb4LUVEosdZzIwb4AHmubSpfhqMW+AF1caln/+WIl5g/JGtAtvF80ivAF+
6/wOpWclxK8GvL3kdMbs28R/xn4B/+mAlu3EXgNu+mGbum874Qdw0WOrU6jV
ZN0HeOAzpk6gZxvmB/A1prxTZvC1IHluHDvgctw4dmgn4F1JknVSO1j4b3hO
MVAyVlBkYt4A3y/fXjz9JAPzBvgXSS2+a80kDyf87tLrDZbLusi6D3CeZbHh
U78S3gC35zslGmVHvr8Dntjj5lTg0Y/1EHDpdz16G9f3YZ4Bd21pcHpbT3gG
3PKWwTmJp92YZ8B3L25Ze1iPnFsG/CWaxpBf2oF5BvwZ/5kOn1QyngFX49es
773RjPkCvN9KSM7zDgv/Dc/RnEj7gFZ8v7AG4CKSN8zvhJL1PPzfoubz5o3V
jH/3JTROCW7IHw1j/LsvoTGtQTc/U37g330JjWa3Aisbet+/+xIaDmUCv/ye
9/67L6FBdzWiXhzqwbwB7jg+elFZuvvffQkNG4OIhIDWzn/3JTSOya2P7/nY
/u++hMauPXsp8Set/+5LaCD7npffQpv/3ZfQKM8WFVg71PjvvoTG5YAs8XK3
hn/3JTReDUqM7z3HwvuZEBdqc0OutGNOL47DADw32Szy41ay3wjnRBOLH3yZ
P4XcQwPfB+6tXTWn8zkd318I+LmdlSu3nW3B3/0B9xYNj5h8vhvXB/AX5hJC
lsqkHNjPP0lbqCC0nsQ9Ap6iWTQlW6kDlw94zuSIN1NcyD07UF6R4bhj1HNy
nhTwdW/nie9zaUFIrvn5r5EGHB/4De15+YVO7pcBeU+BnyKubP8KyofyZrvf
f1EYRdoL+MWRIjP5T7X4HCjgXX0m54yvleBy4Lveo4bzCjXXW7Ec4E3VL1aY
P6OhJdx6Aq66s9aFtpPkeQDcNHo/r2UbA9cb/q94+enKsdZmXD7gtGg19RSB
Nlx/wBeeKj9SMpfoA+jLbP9LytHqTbh8wIdMXawX7+vG8tDu7JMCWyPVe7Ge
wZPfMDHuQwIZ74DzxnZvEhtj4H4FfOb6MZm9s5pwPQHvbhaZlC5M/AnA879N
OrfVpwe3B94TaJ2OHu4g+g/4mw0Vihns9TjUG8o56f9QTkKV3BcJ46JfQ8p/
mTqRh3IWzvEOu65G7hWCckasHzZVk30DDcDbVt662S9Nx+XCc3vUDnvjWuKf
AL6HeW2ybTET2zfALcTlIpqGyHdGGF+pG/wG/Gkkfhvk16a0SlbEdWMc548X
eLgUPe7GdgnkR5uEX5hrknpC+Qa9XWI7bBl4PMNzxyPVh4WhTDTgtyh5oXAq
5akyc+cZiz7q+brTjM7nbVgPQV7zFC/yC+3AONj1hXJHN9Wbd2D9Bnm7P/YP
N5mR/TTALXka21Obu7A8lMOzt2/shFYX7keQ91yX8DhKhcSxAH/rVM5e91tG
9lUAt5hxxLZnFfn+guXDB+2KpdrxuIZxMMj7Rdetg6xzGRmc/DCvBo/YntvS
idsL8q9U79//vYr4gVD+vEA+q70Njbhd+F6wgmsDp/Sb8HvxfkLjq9siqeS9
IP/n5pfvC5PJfgXgt84aXGKxyPgHPLjGJXX2LGKf4fm65/XeW7ZkXQ94m7bM
gnceNFxPwHnCtIrfR5Dzg1Bf8YUfxlj5zXj8gnzH/IlKD9WJfQP5jYJuhrWP
6/C4AnyiJHP0HG8ZxuE9ITFbEzpMsL+RAvJOTQ8Ccw1KsD7j+2bjR3ro4xUY
h3JuqBw9ONhG8iSAvLCFUoXsrmqMg3ypWLV2QC7JOwfyotstyuYU1mAc5PW3
vd94SYDkTwD5sOrhQJe4WoyDvOKx5pgy70bMF8gL8f0ON1Mi8xQ8B4vvbSk+
TcPyUM7xmMkqk1TJvABPhSuieeWnST/iedV0fLnTEaKHIL90gFf1pRLJqwDy
Dypn6QUUkvkU5FPvy3wRO0vu0Qb5RBOXTEUNBsZBfn7LrxsyiORVAPnZkXf2
vooj9hb3y55Hsy5eIjiUo9ds720un4/1BNrhatEuFruc6AnIm5nfl/NTJHkz
QL7NanXF8xdEHwDv87Kp0barR98+m5b6yHRRuVUNt4/lVaIR4ZB40WIW7keQ
n89j4iD4uBGPI3jvm+Do0XieFtxfIP8lf5nFIwvSXzC+dbKC9o1eI/0Fz8VX
ndKcr5F+AfkdvCke53prMc+4PvPicyacrcY8A35VQL5TcGUZnr/g/e/P5Jod
a/yJeQb5y6Lm1Msl5Lsd4NJBsw1OT2Hi+kO9dkSYycg1kH0YkA80CUu9bEb2
YQDn9d6p88ieifUKyknamV2y2IX431h/c8c8sq7kYT5BfsnbrraXfs0Yh/fM
dUl4EJ1C8ovieNim0ldLEkk9ABfxLgtUqyD1BPzxVNvxVJ56Mo9y63tr+bNN
KWJk3gI8492lEwc2kfuzAD+6KPVobirJy4Hz2Pyqy/xe3kTmA+68XT7QMLWy
n+gVyHc9XmtUN9aC5y/A39Y9Ppxs046Qft699+z52sOJwZob34fuhpY9Nazu
RCXP3U1SnhdivlOCozQWvSJxaaBHalssVZe6k3zvOJ/Kbd2Hy0qYmBeQn6zy
qcd9oBHzA/gLh2lWK1OJXwF4YNkWLyUdgsM6CYk5PfDQI34jyN+1uPwy4w/Z
dwU8WiiAZ1CK8IPLv/8W7QnowvoA4+DQxs7QC03duJ6AN0esMzrmT9b1gLMc
bERSrpP6wPg4Xdi+Z79CP+5HkH+in2gn4NWD+xHk6TYHDk6uI/4z4OMHKtc+
ysb7EimAm2rtPTRcz8D1BDxbw614tQ/hDfAPeWuF2+4MYHkYN6c1Tk986UnW
1yCf8mj6ssDKflwOyFcuEm8PLyb3nwI+0KahOPFuP7YPmIfTX5d6P6nHf4P8
r/fr3UV7WLi90D6J/UNue3yYuHzYDyjI85zy0LYRr5fhdz+Kbdc8RMRvB/k/
5wPvp2nS/31vymUvwdMz5Mn5brw/vXKrgPYA2c8EntQKG9SvbiLfZYGPm6IF
K4+x7c/yg5/LzzWm4O+b0vnd30eN2rBfDfJXzZF31nrif+J9oMwU8Qq2nwn2
B/S37sPAg1eCdDzuAHftlD53OpWsjwDfdHL10CI2n1B/0K8FqGr1tx7iH4K+
Xzv+xl9LjMwvMD6EAodrpiiRuAKo13TtT9vo+/E+mAbg+06fXtR4mI77A96z
a4vrsfFdZD4F/Ib2LIX6XDKf4u8ss9dvSf5E/CjAc2xvCRuOkvkUcCkB7ZBe
L+IX4fdmx2+Ypt+MeQNcLXh5UJIeDesJ4C4S23ME51XheRBw2dbyTynSpVh/
AP8ZUza7vzMf8wbzmM91/ZJlScSPBbyemW5TJUK+0+DztavuX7xKI/Mg4Ncf
mO5zLiXzO/Tnr9/Dk8sm0bEewnvk07YyL6Uz0AquHoLe8a3cGhahSfYLAI8o
2/RrIb0ZlwN8pA4lspzdiB2DcRZS8Fsp3aIB8ww4/Vakoc6LbiwP+1XvfHy7
Z9f14f7C30NYVh9NPHr/He8asgdyFvR8J3YV+M5lho9OtiX7sYBLlkpanptB
/EwS97L0z+xWMt6gvO9rRfvsN9Tj/gJ7bGITu2dWGcnXB/reXxTGlL9Ow+Vi
Py1rolfpK/I9C/BPXg8Hf+mT74B4PFWda3llRuYjjJ838Jf+Rb4vAH74NStS
8xRZ32H9TMwzn6XRivUH5DdInukTOkD0B3CeeiNPyfFarDeAazN0Pygr1WI9
wH5yUkQyryS57wxwr09TJvMPl+F9SMCpvLtiG6oLcT2xH3Tx5yc3BvGHAOfR
Gd8qy0fizOH9ijF86/fvYOD6Q38qGX7Pei5G4iJgXCb/GLVZ39qL82rBeZ0Z
T7Zumru9hRv3PErB/xuCJNxeXSLxooBL3Xms4CBYj8+DAP75emnVyeksHEcK
uEfIluP8J0keMcB/yD13//inEdcHngey9e7+PEPy0QE+vT4kQ16OhuMhAfcS
6Pxs6FeLz4kAfulnqGrUphp8jwPgq04tZq2wrcD3OAB+b8OF7tIrxbj+8P9J
tycrW57qw/mpgKcJQqPrzakefN4KeIqLzBK0m1iP4y2BJyO7uvcHF3bjvHXw
nlnrVB9f8mon5+k47aAWz53YPKGhEwlzz7lrcM+5J8WE1rt/bMb5Z45y8s9Q
Qtz8M62c9lAQt9t+6XaLnhPhEeJtt9bfOWfT24zbBfIPbrKqCpm1uBz4XWPt
/WNu7uReNmjHjJydam+za3G/AN4wX7LB51gtlodyVLyM7vj11KIxbtwpyDde
XbFq9HEp7hfAeQV/2n+aVIzloZy6G+pi/XxlJK6Vqy+Glw69HrhG7sUAXl3H
7PW0ftbh9oO+PN0xs++yfTNuL/zOYJvlbSvr1v//XP/FUwtlf3bi+oH8mfTW
11+c23B9AJ9Q3DVjpgAd6z+cHzne0uiaH9iEeQd8kYrCFc+KLpwfAPiomRNR
kvq1F+sHxFlfqdHb9TyM5M8HPWTszg3eIczA9QD5tNlByyZ4E72Fp03UpvNe
Zkx0g9ved5z2UqrcPAbAD+jt+SPDN//LEwjjAfjwZS6+IO/ExO8D3EEcSRZk
EXsCuEQR/fWKJfVYHvr36JbNU7Z+YeJ6gryUjuCJZm8yrgDPlw8ck1/IwvJQ
Dn964Y/fDvWYH5BfUZ29YDCB2CvA3+2Zdn6/NeETypl7c9kVk3AW7heQT768
9NbYapK3E3CdMJ7AzN8kzx62u6trr9nJN2I+4Wlxs+1qCNvu4XtVuOX8NtVS
VvvVhHEo51HhC7UJZU14PIC8mMKVruzDJC8f4PW3ds6NRMSuAs7v5dP7WZjI
Q3kPTwwvX6ZPxhHIh/1OfbY7qgbbW8C/XbhvffB1NZbH/XhvreoiyVp8nwvI
l+yd83Q3bxW2z4C3qa71XNJXjuWhnKajNyerB1bhuHSQ3zay0vLXwQKMg/yh
gQUhFkUFeDzCc2fHS6ueBHLODuzWvrJkanE3DcU3c+ztiVd/7S2aeJSTVwR4
g/bdWXG2MJufjnkDPhYpWo8IaLRgPQTcPVhhr+Q1BsahfQdKP9+adY6crwS8
ZGZobI8MA+sh2L/sr08yr0gS/QT74L5KQa5DuB/f6wTPNH65Pd0/6vC5AMCd
BXiaTsnQMc8w/vZf3nK2X5P4G+Cf9k5haaXF1WEeoL5bIyXXhDzpwjj4cSWv
o/eO3+tCxca7bJMLIqnzFd+d34k2U2r3+1xLJ9JxP+F7xPY5HWaVkPhqwNMN
g0qFjnZieRhPHtw89tAfIB/QlD3vpQxZz4LffSBbRbXpNR23P4qjP9R0schI
lwWl2A4DfszM4/0Qe7wADvpmGH41AnmTeQ7G760HF6tmh7ZgnqEcpcuhcSZn
yP1Q8Lsv69/rpa3NwfWB9o316YUd1iD5meGZaho90/80WT8CrhBpGb3//E/s
L87k5O1HkLf/DTef/HtOPnn0jJtPHniDcSAy7Zy67kyybwD+5LkrTGbLFRbm
AX63xjn0w0Zjss4FfLggw/QLqwXbVRjf4o96rHd9a0D8CrLTp71qp+Be6VuL
hBPe/GnAegN6vnv/IWPJJyzMD/CXFzg0FlLMwPMI4Isq8teO3SHjCPB92++U
2RsMYP7hKbIzUsZjjNw3B+uSHJFJLK8X5H4onEfR0klcW5aJ2wv/9+nrWvj7
OvHbcfy71pUfNSX1ZH+f66cH5oaaufu24nqCffgYca02QIjsZ+K4oGMfdu0a
6MH2Bfgwtgi63HC+F49fmIdP7E93O7WNjscJ8OTS7CzKu60Jrwug/lduzd+8
LI6O7SDYp7wU4e32aeQ8O+DX385ZI7yBjk7nHp8gcS6aeulzNfD2Zxpl3r11
0pRwMq+Avrxa8rxj82KSTxzWbe059wwed5PvYrDOvlb8tkXnTAsuB+xrfrJ+
yFJ3Uj7Ym+u+0xfwsd+bKlopukynBy3SNwyjtlYh9x28m17b0nC9wU6GKsXw
HjvNwPM16FtEQnSyUBo59wI8v9+QobTYqg7zAP9vb0FiJ1x78fwF8tPE+yXO
aRH7A/hq403PPm+n43EB9nbILKGiK5rc7w77PYUyWRafLjTi90I/nnGInD5J
g47bBXoUsvre0pW5ddjugD3soSyGb0S3YRyfO87PpH971oYkzG6p6WZEoGMS
nq+pjd0UT9CavYKJZP4G+ZcTZnu7JnYQ/4Fb36+92ksX6zaRdQEXnxy5xOdS
K8nfAeUETJpl0KzciOsD/SDvi2grysi8DPhJVk+35DgL2yvwgyIXnwh09CL6
AOVFoOQ7L5a0YLsMuI7J+7X/+UXYj+X+LpC2L2OpJtnHAHnhO0vjao6T74Mg
X1D7TX3WjRbcr4C/z0rxpe9mYhzW+3bbPG+t2MHE4wF4fcl7tUclkqw7QD7F
nq9uiinRf5BfR2c1qV8m7QV5qUdq385a0rBdA3mXXScFD+7LxTjIW/V5LDZ/
m0Py+XP7U1NAJ+5tWh3GYTwigb31iol1aItw7ECvazT1ePZTI7vRJlSoU9Ql
pEPiE8B+pPu7KV/4TeZNGPfppe+vjF8mfhGMm97fq/ZtPUv8IhiPOW5Lj0ud
IfvwgD8dTg4a02dgPYByVMJHLbfkdGMcxp/YFbX1u8O6cTnAR8amgrHlH8i8
AOPaMH/u2R62/wDjB+qleDVywoJJDNxesK8vFZdscTQh9h/03/bwkFSrKtF/
kB8bYGRvOd2AeQY9f/xWsc6gjczv2A8R163VMyL+EpRHqznwsyKHhusJPGz7
tmvCPn8WxmEesbmpFPGjlsyn8J6D+8ojc/PJPiHw8XV2RuWMpPp/5VN8z8V1
HlJhos6PK0NmXe9FDwrtk5NY45TxGM/4i59duBz4XSYz7tCuxcTuAZ8ey29v
6S/7L69U6G9zz3Y8/z5t2akgX0fO0YCdvO0pLN+7hY7nTXgeGFCl7+epR0dq
LD/zmkfh/f/ns7/0VM0k3wsAn7RhtHLqQnKfBfQLo/PGrI0zyfcLwBWaC/IX
8xJ58Cc7Q/U+S2wn3zFB7x46Zrafv0HDdhvw9PXecxn8pF1gV4Kb7G1Xfmdg
ebAHFSeW78waITjMkxdPPDD8lUDiPPF9KTXtXZt9yrEfAPojYiGj8/sr/h6d
gu3b1NepezVL8H4slBN9nB4uq16F5xtsp3v5+4s8KrGfBvLV4XUqI0trcL+A
/Gz+Kd5zQqsx7yD/zedlDONALdYHkE9VVFxYPI2ciwH59xLZDc8n0PA4Afnw
3T8kV5SS8+Agf+6tuUHSa7IuBvlZPnLVv5aQeB6Q97aKuHZ4NsnrBPJhT7vb
FCPJPizInzDsH9R9y8T2DuQP1zZlxW4g+WoAt/h10/b6ehKHDeWs2LQ1Mb2D
jv0HkLdSlljts4jEpYO8/RhL4ZEnHe+Pgfzy/PMRe4LJeRxod66vmO5HOSau
D/Bkt/+1w6/qGvx7sCcZcmp8Z9e3ocmp6uPhor9wu6uE1yz9zkfGBcir3DET
/ZzLxHziuL8b2+Z/Vif38IJ/emh53OalbgSHcTDxmUvNmBLJJwDvkd2hbacn
xcTjDp6SyIdpIlOP5QDX8arLCyqrxzyAHcu19b96kE6+8+L4bQtzL/sXZB0B
+wcdDVctCu8x/vm+M4r2rYhpjLMl8mDnqP3rBCf9z7oDcMlYP5dnt/6/+UVj
89b7SdXhLGxHoF4s86zzmYvI+TfA7wQWi16Y3YL1H94vICqbctCgGfcv1Fdb
W4R3+iYSjwp+l7uph7+zHsFhHIfYew212pE8XdCOuIhpx/JzW5AJ18/34Pj5
SDNXPHybSBuuJ+ivZPjqj/QlPbieoO/mjLvPJ/v14Pbi7z8s8cJPyS3YPmJ/
dl3K9phpLbh8qP+K8EvdgZp0LA/zm0zEif2Bu4mdh//PFy+tEkkj/h6sIzT2
d56+XNqCxx3oy8S0mHVa24jfjvO/qb0Mm6pG9kmA/5i2+Mi0TeTcKPgXt6+p
7K+K68TrFuBT55vuyveCXRjH539V8tM/TehCH7w8BGObwrGfPOnBjAONnkTv
wV566khpLxcn4xHw8epsQ+E5dDwegW+axDpv2z3EDwF+SmJ/OQzFsrh4G9L7
y2cFNftXaXHoHBrGbf6WX0PtTNqj8+kk8c/BfiwLqntadY6F9+cBT7rM46JY
QewS+K2JPWvp+crEH8bx4WdL8le+aSbxDeDHKhSleIUQewT2Q9vZaep+V2If
wB5/H76cXMDGQR7wiHy6k91mkrcH/DVVvlvXbB+TfWYo74F96FGl18T/BH25
u2pU8fceBtL5Wy6D+32tH71c+2nS5KZuFPSk5cXxFHIP4924X7rpcoPYH8Pn
3zfI7fnvPl9s77jjZsrA0I8NJWR/BvR3QIh1efV4HfaHgOfL8+a0JqhU4PoD
zpPjPOYaQ+71BryuxNb1/TlyrzfgmuMXZ853IPd6A/5gqv68htlkfxhwRasH
zlE9jbiegBedLKwfWETu7wb86c/tnZ8eMPA+LeAXTlbJnLtDxhGsO2oOtOSH
uZPvVtDvfjeomth35JwC4JuCyyfMCiU43tdy57XQKSB6C/V652RfXavahDj7
UB1Yz1U0w+KtHUkcAtgDq0/PHnpdZ+HxD9/Tp19zCtl0l+wnwHhf9WK7uuNN
8t0H+kHFd8iSfoTst0D/0ju1upYpkv0o+M4fGhKw3Z5tDwEHv09XQHblNMdm
3I+gFzxrdp/MSWrC7YR5RGnytNWFiMQnQ3lV1wUuhbWSeFfw1z52PzoQLEbO
lQAPsv3zF6QotWMc5vFLs+X+ZD5rw34qlN+45e3N9x3EDkN9rcUO2elMJv2O
853Kycziq23F+gbtWBN7dsn7WhIvB+89/aJcre81+d4G86GQl33Mtlqy7wDP
VVofrPzuk3UE9Mtz49drBn2JPYH5x/MSzXXpDxrWExj3PTKjo11pJB4G2vvY
UWnthh1kHoFywm44JwQdJ/MItsPLvYJ6z5B4KrBLGU630l65kvvjwE7c6kjN
H7Qk6zuor1DSqymtOWTfBPTBqX7gy1BmMy4Hx1n1lFcZJpN1LvAREHXMZUkL
HR132tiut6YZSQQKzzTZVUiZFm4byFpRT/bDufPOH/FV2c2Lif8A/fv49JcP
Uex1E4w7+L+HSe70DjcWxkHvzqdWS//xZeHxDv04X3jzfpM3rRgH/lJO/Ooq
VyZ5S+F56avU4LU0Ou4vfE/ZcpmFq4NIXAqM38M87uZ1kQxsV8E+HbLz30J/
z/gn3nIUSfC6DXo9JeeGYJyK+VfeUZvehnF4T1r9Y4eAh2R9CO+ZP+GTBaOg
Bdcf5hnJgqFO80E6nn9B304Y7DDk8yfzAuDv/WPFTSKIPw16KLZFTTd5FR3z
CHrxQe3tC80FBMfnmKOs66aJkXU66MO0wHazrK9EPwEf29+3nD2n4rgv4OlD
Q9/a7nXkfDeOA3TaNOHsBrLeATu6ICfReCHbvwJewF+mlRQFLH1L+gX6azQO
/fgWwMDlwP8PSkmW/eePQX2A/22Cz2TXradj/wTk+fVfNQmr0v+Nz0zROj6x
+WFNA7YPMF5O/Vi62iSb5DcAf2b1wBP3jYEkrgnwL/wrXP0OkbgmwG+oXT7W
YE7imgCfOMgv5pFD4poA15BeZ37fjJwrB5yXtcLduasZ20/ACzbmaSnokrgm
wO/GSIle7SVxTYC7p2hbS4uQuCbABTp6p+bWVeF+BPzTI7122V8krgnwU+Xy
q498KsS8QXn3dZi+eRLEjwL9dJeiVmzxJOttsA8nBKq+OP3PPj+Mm1pZ3Yln
z7VieZgfZHS/RVjxtJH9NW4/h02Pbrt5vhfjoIfab3qFxW6Rc+Kgh7Efdi9o
VifxojAu86sTE8uUuwj/3PERH/MmWFSK2D0YH0o192UyFck5MmhH2WNmlKov
OecI+EPPjnJ13RLcjzAuh7TynlZ1tmC7B/Nerehm7fgjJB4D9Kg1tr3ikBCJ
g4V2q43P/bGPh8SXwntZvY+EFE+R+FLAfe7X2x7oI/GlgMce0ji4sJTMp4Cb
+Ryt6hYm53Fwe89LeI38z7kbwFMHz1FXFEjcLOCHYuqX0Y6TuE3AS7btVsmU
I/4Y4Ac+aWRT68m5GMCLE9vS9KdV4rhTwPe/1y090JeH/4bxsdXgku8ARfxb
0IuMBeddxTxI3D7en5v9QWjkUTPuX/zdv/mTVsUiOnLg5gt15uQLpfi4+UJB
HvSqTTP0UP//6AeM+81BS/2W+LQiCW7+bW9O/m3Ux82/PWuRQPFlVgT+XrZr
ykm+AulW7P/j8+PvLJL0TjPQNSmOPPTDmkd+1wcTid07NDFSryirHQ3XaT9y
X0nmO+hPh+Wvnl1fUoPtG+D7a6TXPgiuRYV/6+3PPU/XQj1qErNSnkJHH7h5
UOdx8qCiV9w8qDB/A9+shJue7WPV+L3A04cvwasusci5TsBn7D3l80WAiWgz
ghYP27dS336IJe1jj3chXjHB8KxerCfQ/yVj8Xr/nbsHPQE84Ej4281PG/89
36oxNjjri19WE+YT5os3HU7HFgWTuFnAEywvT55f2oPtFM4f0+JsO/6c7A8C
bxFRy+yOtdMwbzx/f9dEHVzs5BkzSOZx4Kd2XebWj6q1uBzg4Td//DTfbW3o
+vrXa89EFlNeOg9Nbrt1Uffit/S+YM93UD5Hz1vQZumJvLPfk/zwsP644hPe
pZNG8p+Af6E5ffv4/KX1yCrhj9aP1c0oK0vuz+ndheiuuCNzLB/yT3Yj8b/8
FaOmM8kNR6aTe4FBD4+usnpuZtFE7Bp3vRYnvaVAg5/oG9inbb33VBqN6kke
Ny7eeGVl3vdNJL4L5mHljn1OgX/qsX0Gfvi6Z3jwhpHvgNDeswGetvlaZD8X
7+Oe/dJXl9OKDLx3xwWGp2B/0lmxcl/85jZil7j2X2b9rFMXJpI4eeyHz7fu
3DCT+EuwXyvive6JV2IfUnlVJTPLvYs6dM/q7OykYfT+uWGIT3Ef1kNox9Sh
UDXT32S9APPMe4HlSiUV5DsC4FcED+ULtdFRJLf9s69/dmzeXkbRbN8dXcJe
B4E+cO6zZdvl3IWX1LzbcPk4zr/tzpQwFYhn7sH9a2I0qNq/hJzHhPdPz26e
HRxC1iPQz/yRY/ffttUj0D/IU+1ldzc4lkbyF0H/Xrbc6LpmXiNeF4D+75ld
7dihSM7liXDahUQjY+51SRP/Ad47rCL/aqZ5BzrI7UccX5GoWDYy2oHrCe32
TtMW+q3CwjyAnVyw06ld3IfknYP3H9qwefocJxJ/CPqzZuirc0ISEwG/wNul
i5umGPyuxe+F8bHV3MlhN3s+BV4SOOsVqqGtdmbIf/lvueXIc8qhnNcz7vOz
39sqfGTSh7pGFHn7nFrm/FJK+P2uoj0e5Ls7+BcqUkesMzX7cLkc/RxG9ql1
nQsd+nA/An7wepzi0dA+7JdCPZs1xc5LBJDvmsDnhb26KY2LSV4JwBkTn9U1
std3UA8cf1XkehLdJesCwAdt1Ky+PyXrAtDnMfqxZMtkso4G/uctzmnw1yLr
bpjH+ZflL7UqIvHeYI9v96p9enqbvBfGq8Qz9Y9DKRVYHuzSltdduYkJ5DwL
9ldXXWqTOUjWFzBfbzA89GiJBVlfwHvfHQ4bpN8g8lB/b4d8oxWLKnF9AP+p
tUGQ+aoa1wfGQcJxwwHp5TW4HGjvkg/mzpL3yvF7Qd75/JU56e6VyMi0fX2y
EYXXNaLxdSVLP3agiU3XdjqcSuGu435TDuenlN2Pa0dhOdV+qiMpeH/S2T2q
trCjjeQlm6PdaHCunVqn/14k80gN3td9uvhIy6ySLmqem2Ta4plViE/j9Der
TUMUnatHScW8UwtcyXftuIvDRW6vuqjFpjwNc9jr09OKURkOX34jkE821c6J
2EJHvzaW6Mqqf8bn9DWW88/elUrDvO0xMz/s5FBPxUndae08QUedM1bvDzlK
zguKTA251XWKjr5xywHeJv/uXM6a0YaaufKA/9oRO2ctrRq1I079YZ30+pdr
xIsDdQji1UJoZ/97L6oScPb/WUzyf5bd+MsPyi+0PjjRguTr8OHwg6T5jg46
GNf9ywPysNu28HJ9OQrn8h/LfY/JVeurd9jrDugvmE9XVy2kMeu60JH/278a
XxUO7EoI6kaaQvNP0EVTKJ7hrsaL58co5y3Kbr9lO5CsnKtKZkoKNc+r7dXd
3iEqvkX5vOCedpTC+JOxZtUYFcr/KCq0o4PS+hmsft2qGgXOqn0ze8sftv8Z
+dyjsYPa+KSc9yF7XR83x54vQGUAueVP6Y1/wKT0JVL4ZNn8t53zf3Fs6iB1
IYomUiTSitaVDjPTdeqQjVxcBV/zGNVybEwm5GUnCn4laJrP5vM0b/aFlOgU
arXy2hx1g2EUbpM8Vf5ZF+ptEbFf8Iei9FPVd0hM+IOU3420GB7oRkn0a7tq
aAnUr8N/FBK6GynLK5PnNwzR0II90vv2v+pF3f4rpdw0aejzjdUTeLbXog3z
5eXG38ZT+UEfbU/cYKHaLc8u1/G2oe2zny5mRY9QPKPzdx1msOc/YTHvItM6
xFfxvFiImUSVBlt35z1toezWDxpGTacjEW75iwL+lk9Z9Ie8TLhARx/lV/4t
X+bn3/KpgVye3w/oNLSh+7Lt9cEv1LO8tu03q5nUmg/7qnXyaejniat/66/h
9rf+KMv8ceUSvjY0gfvePM570eXrH7ZT/G2IZXGvzdg6mXsvVSt1clmWC68g
He2ou/K3/HORf8tHN25UNOye0obtIatPk9Uwm0EtDHAwvXuRjhaVx49MDQ6n
WNfFEmPjyihrh0Tax4c0lD4tTjbJOZwKjD2oPJ5Yhi5My3jeurQN6aVEReSX
JnL9n2ZKwY73VMkkOlqubDfuXZ1MaQ3PMrFa0kY9+WjmXCRMR0xuPcu54yVW
OtYjRpBdH668GkceWZ3JLOIXaUMPlvae9m/7iv1hSZbZ+za2P+zKxcEeykgt
Sldg99dObn1gnp3BzJJZObUNlXPz/M/l5PlH57h5/uFe+K6jqtkPImqpV1ER
C32v0P/lB2m59q5Tu1yDwjwzhgVa+tAdL3rjs+cMKk9fLbWTbc/PcHFe7784
ehONfL8o1iDNvkMCe2qG0I+Q8/ID5o0UQ3nAb+l+OtrExdM4ODp61fqbvn8l
8rffOm3OtSFs5+frvlMZrKhE8+ZyxlFm3t9xhCIyvq5xVK9GZmdK7MJdB9E+
u0bFjpssFEdt/Jh6vAp1dE30MhzD35VS8o0ynxvsbUDTmcdW7spJxfZGK895
ijObD17BYz95tyRj+1RvNXi34UYnusdveWDJ3Tjud+kBKu3d603rX3WgSQNv
h23VGdje8n7M7HL1pSGjRotXtIYKbFfr3zHjnqxtwnbsHc/e7yrMekpZ7PK6
jxp0FPSu/k5a+xiWrxx26w3Rp+N6HBZal7jblO0P3C6O1wjB+QlTPPliRmI2
0SnnRdVvpFJLsf//TEva8kxcOdUwyVv3vHw19sdO9bnKTjOqoHJSTtSxemvw
/DEvNaLCaHMN9VS1r9p5ItkHCzi6bI6vYA218FF00uNDDcgnXOK7flQ/9reV
1ji7HqwDf/s3Sq98GehkU0vt/1h22deS+NuT7obfYm7Poezn2f9Od2IgKU9O
OeA/V9gc+X24keQ3PsJpL/IM+XHKQY/kzZg/5W97Uai8U9eEPpKX8jmnvaip
wv6o2Bjxk89w2ou+inwuzJJg2zNuexdw2ouGE5wkej40oFJuf+F8nt0uoaNh
ZN5U7Tt3ZK1pMdL6stTvYivJX5rBaS+SMrweG6xagvy5/ejBLYd+9Ij/z0dF
mK8NkrkbW1ls/YzabLQxsAW5ctsv2FOxykmEhT44Odrm5NL+1RMkXlPl9/lz
IZrI1UOo1/wJd7OEdDvQZB6O3kK9Zgh8s0t73vmvnmucrjt0fuxhFzp7vmOn
sG8K6lTw/3yjbYw68FVkR/yULsSjEPtnoXgi+mHm+LsvbJhaldy+LG1FJ1qh
PKros7GMMg73r6v+Vk+dOanzSLGEhl53/B7RWjWOvNcI3t5WyaRWnkmZfWIr
HbUMeU7sc/xD5clXrpj3upY6lvX4hfSHMpQSdFbvvv8QlcB/d+jFyQpKt7pY
9LB0FWoNjjbjaeilutf1lvklllMpp6+4xB2tQXw3tJNTszspZsQEww1Tqiif
D5bH5wfUortCayueBjRRN/9ILJrxp5aSab1AmW+mIX1riasWtwbQMulNritj
i6hNNrv7j6azx1HiHvHDt4eRC3/6g6cjFdT9fvPSYWc6es9nveaR6Sj6fWdH
0wVTOrXQr3FA/ygdlcisSLI06kYbzV5cd5PPQXLvbv7UVatBFzMaZPZtHaOo
6R97ypRq0J/jPPoSMkz0xyZxpy17noFnzGTZZ8EeNCSxoe7S3rCvyMBzXq30
3SH0UWJsqUduB7I+rGNx2zAFrTheNjXTbgxtVDGxYcp0oa+dD5s/PmShrq+l
Gqql5ZS9fLeR2VYWSuTizRwc1WakF7pvoqEdtBa5/+KQn9u4+VEbu9GufYFX
T89tR+s3rGRtef8ZibxwsZt2oZ9iyr4QHTXpQM3Vuqs8+WPQCelV79pde6nW
Q5dCNgt3oJMF30QSdkThcfMpYLamH6MdyVXerIg+n04tqAp20X/XSC1R7rzv
MkhDMpaSNSmsdBQw/ijL+1sjNT3muEvfcAuqOWshFnurBCVvP1zcVs+k7tqo
H6+cRPbbF3L0nNpv8+tc5Itm1LykQO9C5U+8Xsj8WnhVxrEF8zjZ9u+Telhh
dTFnfiOyPnvzTcucXraf0hQ1VzyXEog9E7pdj4EO/Obom7XyX31DHhoNPLeE
mGjS/D9uL5yHqd6nU4p9miuQxKhrRc0TJlJ6zdHDGw3O/+khun5cRUU6kYk6
Puy7kbCzn/okc8au/X45Euk9XjRsWo9saRz9XDir7z/9RFOeT7024XM9WreL
o4c/L0j+p4eIGtlSelapEe/n5J980xMTnou8mMd4Fg7XIF2ufi7g6Cf66cnz
k0ezArG8VkaNNA2inUmeDoYOpahbP1bw5e8yVMnVW0eO3qJTJ1O1op+Xohiu
3pZy9BYd/1WwKsC6mMSxHPtrt5HY9ZT9atY0lK/clGxzh4mKueu4jA0zecaM
aEjl/45rpCRgbH98Rgsy5fa7FKffkYTpvoihx62oh9u/KZz+RXfjBALc2OsL
3TecOJzf3HZreqxJd2W2YR4KODxQNnOzaryO1eH9q0UfrQbfh1cgDWumtW8g
k3v/Th81uyVw5OOLcrT3YpKOhWs99kMGLebKBD/JR2rZ5y19u0i+JkMrRqXy
igoUf2KN/aLWUmSwjKNX4D90Pp68fiqT7BOOOf+dj5DIrvRlzLRqNO/YOauj
avlo0n3rQLdiFnVxbbtw8O9mpHzlQ+Yoe91w0G9V4/FrOegnEpLqs6lBXu23
Dcfr+tD3x27fdvEVoC7J4f6Md5Xo9A9Vpq1hGLpqln3bbmcHZX21JSvLph2V
f3/27mhGHTozyD9J7kw1Mg9ND7Q/w/a7sznyqzjy6IVTzD7nb21oFk8C/7ni
DmR84KYBb30eorqv8XxfWYv4zDn6b7H0r/4jS+M1W4PmVqNOP21vuYFeZDu+
298oMg/dWjhr0n6zKrRx17Qk26+fkYTLzcVTQpspG6bJ0/rBVnSAO34DOeMX
bWzSvbud7U+GOHPkHZz+yqPv/H8Ezkyko1vc7w4nrO7e3Hu2CV3MT6HC+mgo
x9b8DO1OIo7L8Ng/0aVilMSTSJ/7K091u+qFJuu1InM7jjx8Z5m6pJKHHtmK
DLn8z+Pwjy7r8Ds8KKOhAq4d1uLYYYo+k1ndXMVAG7j9sofTL1RjqHh08wxy
3mSFpbviux05VGRvsPTEDgZXT7rRSg6OlDeaRY8Y1yBbfc64gH2VGv1LtsUd
LCTJ7a8JA3/7i/pc1PireGUDmsrtF1NOv1D7c1lNx9+x12XcfUzuPUQU3EOU
WsOxt+c49haNeC69OcejHU36v/YZaU0zuyDd346S8jl2GPS0eoPNKVntduw/
rOX4D1Tjt4tLktn6/O3MBVuXrdnce58bqF9FudHPO0jczi0fSxc34Uoqt2bO
Uf+nLPTs43y7BLtQvO+6gOf9ofEvbUgon4PDfpXUdVmeW1Yk3+Dbwc6jeyc1
UR/bH1pHjrD9w2WSo2tue1JDDZkqkyqb0Q6+6h2uGW2Iac6pD95v9zt+f2wZ
2Te+2vO3HDTkrZEnmt7677impo4I+8lMZeB9xauXJxpLBeYinzzjVSfLq1A5
104qcewkpfNecOB3CB3vMwxz/DQq9IPXEsMkOsoJ75/Lp5tIDfYIqFRcb0KT
ph4QEGSv+3xdB/7ipxr+4tTI25fW7/7QEF/mS49RtXHkpVaU4N7KpFzftmqM
a9HRkraY3YLfk6lRyY1ayQZNqOlrQM753la0N2T0U20C2x1Qjmh11G6ilHn5
DSeN0dB2ufcBifuC0bfrpx16p7WjqTdb14VFtqH2bxNy9c16SZ5Ow/s8CurN
yNd4wk9dl0G8TnG/sb3LMZGFTnLvv1vDuf+OCuPefyeRXGgqQSf3+Pz5mFzu
ubYBCXaumej8hJzHepgr9O1yVS+e14UO/5C3Sh2hipS9tFfuaEBbLRKEJdeS
7/XiP/ebPm1jYj/5+XDRsberB6gbwz5/1v6iI8c9eQ/6TvVSfSKR6xJetFIH
RMN6JX3p6CVXP7s7vqy52NpNPe/6bFsl34pe5uVP2Hm1BZdXtkZ+vys/HR3L
aHk9cv0tXjcZX8gbG/1vHjncaDXPjdzvFD9t8tC7ABrS9Ikz2LurFa2flUwt
GsqlPhULS19+TuIKGO6+bazXIajJ/er8ve9IXMH+VVOMp/qFoPp5xuu6D5O4
gt7OZ+dF2PgHhdH6/rMsZGtuzcxl1+9WW432c+8QdFHz+o6e/4krWLvBZmMT
u/y96nLqs/4nrsDJ/eO5aDZ+O5B6M6m9Ga3vylNp3lGINq1V4bHyCkEHKV/r
VXvIempEZGbqTvZ7tX949V3qrsX3HD9j+cmGsvEGI0cFv5m1iKk3eViEPf43
5XQFRT4OQVPyRn1Ly0lcwVMzlrQ0W17rV9z4gbQyNGQ5ahjM9vv/JG2of8h+
7yrze0ZJQYXIrYDDM7yflTk3Se9yG+YZ8AKx+Un7t9Sje3rOczuoIvydov5y
6LNVN0ge71VCEd++O7ehIwPHnJdMp6MM0VnMa2pduF48U663huz8/++77GAZ
P72Y2I+iuPcIz+PcI0yd494jvHP8wt/7yxy0K/7eX/bsx7u1EXYtqKr0RKfb
xxZU+cQms46NP6iWqR9g+4X3DrnE1CmNUkq70x3T04KpxPX1s/sHytCSn/dp
z98OUoUR2oe/s3GBT8UHryVWIocTvSHrBXupOx1Oq16nBFO3BbU77mRVo22y
NBOhkTbqqdgcg+D0YOoVtdXqhngtqs5t1dlVwqQMCvuaYtjykx4mScjRa5Fx
fFJSkWkJpdK8jLeYXb7u9MM0dS0amjr3+q/uY7no4HejE8ZZwdT6VxUZad1N
SDGTMWc8kY5+pWpPuM0uZ96X/vbG6w2IWc+4aMRoRoc3mL2OZJdzUSj6de2M
evQi7PSMYsduVCuxunrWz2DqmenGloAFdShZJPibhugAejEacaOELV/0SuOD
pigDue1uWWQVNIIW7LTSW89+b/Radc2X/nSknRrTnac6jrJLT2dNzAimtNUD
skJP0JHErHk/s+a2oMb6UwectuWjmNBXl2KCatGim/69azMCqIhRgS2p/Aw0
g1rz6tjJNnSyhXMP3UIlzj10dNWuuQZnupCkn03Jos1t1OPh0niVCwMo01mt
QlK9EWW3PzH8Et9D+bVLii4ZG0GzHUqmM9/0o6c6Ao/jdQepV700bcdT4+jh
wcFHE+wZyMXD4/zv7EZK8JDFxFkz+imh7wojju/oaM0+abcf7Pkw+WKA+UqP
XuqWxFf/AQU6utkxdV+zRRklrjjv+KUJ3dTa7UdN52rQkUaljfg0qy6UpvPY
/HF8BQoLjbRpD2CgHYW2YW1TmtCZl2Yzbhd1oKvqm1JDRemo8S5v31BOH8WX
/3TuZpNhtL/BqjDMgIHyWTbDIrFd1Hy7l5vfVwxTgWf2mtl9a0BK7t+DVn/o
w/Ew+yOT1FOy6tHJ0Z7GWETy9lkaHX1RtJmO3to9jlB620uFznv87KhTP2WU
YcTjeqQe9UxmzVerId85g3bbCobta0Lhqy6/vvmoAUVznlT4w8yadBcWylAP
H/R2JXEiD3Yqvv3oyULdOoeXeQzHUjrSJz0dfbIouvET/sIL5Hvf5/hLBRdc
Q5BCoYlRyzMSP/Nnu/KJUvcQlHYCDZRvL0Hudaf26ND9SJ5PGeW1E27RUPpm
zv3pON6be386+HV1mzd9MrJqQV7upl6JPHREcevv/2FzntGyRhSzN3KXPI2G
anb3jXVp1qDhmMSOOtFOlLRN7m6/MB2NXKCv+JFI4kEerZzEf/gB+R4tevyk
4lqpLpQcFReUPaEVeYparV9YUEBZ3fysGsTThUJDSqo28bciempZXetIE5ou
6S3g5tiLlr94p3d7YiPe1/LmzF+IJ9u++vFJkt/y4AmjJ7Ok+1GF+8NFX0V6
0IGXOrX73Mj5x48hKe9kU7pRVzun34G/vntnv0odYI8PwW2nTIL6qHuiPPLf
344hnV3N47tdSH7CqyqS/93DS81zvvP3Hl7ARef1KK95Mkh13RfL5xulo7Nz
MkOX1MD31WHKPULVUfptD4ou4DlgyNOO56sLGRkWE+RJnNIM/1015dPaqaEd
jLS9cwmfOL9+m568cBONvX42XPtf/+Lz4rLlPR5nSB7zNE9F3kL2/LVCtn3i
nNMkrmlssWTnEBsXlBoQ9e4ncU1iOvEvhNjzTjuPZv6xMhLX5PCbeiLAxi/9
lvkcI0L01dClnOe/cobOeO0a9yb5MI80Z31z8A6hfr2LYO1gz4+QH9/l6UnH
IrZ89D7zB/PXkHins+hd/HO23grxWmXwHKehQu46dvWDmicP74eg8ynrkcUK
Eu8UtM/qXTG7Pi8VXpzUX03inTo8VebbsvH5+gXGGyeQeCdFremmDg9C0JFY
Y15RZh4ed6Cfmpohv/2ryPgSmOLjdOZMN9rWzBTwlWb3yz/327ZZ11BNFxlo
mUBVZ+TOHmrPQutD+m1DFI+k0njaChLXx3tvThYjZYjq3Xh+udJXEu80i1M+
de0B8lPqakBUuOfY4pWtSM1aP8lCJw/JX+8+knivFtnoFWmeHq7F8/Xz6Wf3
z4gn83ps+7FDTL0upPbNvkNyHh3lPadZMyuaUX2Xa4yxTy1K27rygzdfPUqc
XF16I42FzPJ/RHz+2UPduqslraXCnoeWcfzYrRw/ljKl9nSMHW1HgeIu+hVn
viDL0dySeuF26rDPoyOs6HbEz3OgWUm+FEm/772rfqyd+po7w/1YejNS3fyp
7MG0DiTxpqWOT7mUWqDy7P5oQS16emzDgpclTGQYIfLwTGYwmmdjc9q7rBZF
Gwd8WHy6CTHGbxodSwhG8eZSO7zO1yLbTIn1wW8HkaKKxVQ9tryyo1UCX3cp
Cru799q1lmGk4p68lC8pGMnqZs3ROF2M3icckXh1ugHdupg1vK+EgRzUpwZd
9qEhqiBDJ2VNOzp4+LfN+rwSlPO17ZTsUB368etIVFN5NXXQz0PcsKMbGVeG
jUV3NiONmtZAx705lJDB/m9ypt2od2eP03/3LYqMPyoUz/2MxOjhJzcua0cJ
rzffO7qzDa0+4m33p5ZJlYRbKhhl9qJ1csmOfZVNKCzF8v6OPeWUxHHtZROE
epHP9xfeTq1d6ML8rbE/t3VT1r6yy9qWjVBWbo5Vb70aED1fLz3nezf1VF3e
Xu3NEDW1Pj7DZhEDRdZz6sNj+Lc+lJ9FjqvZ/VaUNnOexdeuUWp1bPy+Rd+D
UeOrrELza0z0cvWBcp+gEaqmcZbZf7hGifpv02Qm8th0R/PC0SHK4On0vv/w
TNlUpr1oPXKj77NXEh2gbN51621n8/xtzPHTfcd6VGQZ+0Mgu5eSdnt5fRcb
95EdudfMx0K8mSVneZzY+hpp0bGEXc72ptrQ7rcsFBBsd/L+pQ6q4sqVYG22
/ATXuZ/m6TeglPPOje6MZirE9I6637dgtHwZrWj1rEbUEhuUPbyHRaXZqwWo
s+XXSRzSNqhsRLIsXuG6RDoVOKA0WZZdvuq92eliIU2oaNyl7bDdDzTNavxM
RWIw+p0nuavUiIZEA6uuTjAtQXNHvTbSkoNRt1SB6+gWGrqmo7A3xLkW9cSI
f/aigtFV2+jHufNo6Eus8uo1I20orv3hRh/2e28rlBvI59SgihyDBVIZXWhX
wvDZxez3shiOL0LYfiNv4jodRcFedLbjsfGX1GCU0Bmq3bK1Cu0V8io6a9iP
Cnnn0dex5XXEpu+t21aB+tT3nM9UGkVzeIR8hdntXaZ0L3RVcgGSnGkibtsQ
Q/IYuNAuyzBbUGgBR2+fpPxY0Z9Yh+ojx3Q92eug0rH9f8eXQ8Df8YWSpF4E
FLPXU4ENSnw1ar2UvOR2DSnlXjTfcp2rA1tPOnbONWBu6qUypdOOub3qRdPa
880zFjNQNFevTnL0CgVkHPJdOcJC57l6eIajh2h4tkZw0VwS5xEh4ckadO+m
+Mbemyk7dKG8TaZhdrPSkUeETAkjoYU6e/jx3TydVnT8yqWNeYGtaDvNcY37
gi7qSua245sl6WjiwIE5darj1Gbmgi9zvgVTli9VpycWlLD9r7CJnfZ/qB6H
7VXf2H7yuNC8R4+NSpHI2FKNqQfKqeBHVcv/8/Md/jSvmqlKQx//jL5VYOOn
Up1/LWfznKRocrjlYjPbfw7/IrPyEVpaqe6atec7RQl/KJLMbUEN8mvvTLzx
Bz1VOD/H8EcwJcxv97rako7+yJkw6PZ/0CThFVc+pgSjoSjd1Gu8uejNF03t
yWnB+Fm5XVLV7zQNRQpvvZD00AupTNb8cegjhc5stV+12ZKtb2ocHhQj//KA
LAWuywVNpqNtBW7GsuE9VNON4QdTRweRcrTN3OOnSF7ZNYY6KV9vD1AKGX3G
h+83oVKP9HKr5yHU/rrtL1+eq0LdZcskdVAbWqXUH1D0oBGfD/W5WvFNlG0/
kgUsE0vukfjVYlvNI44nGGiq3zbjUL9ulB9vv8ru8h/qjqRrS69TL/J3v7hz
wrReZHzJI3Z8YJRiSPUyF++go09P5f/eT603dv2/+6mpqJeb/t5Prbsg/67F
4xY0IGn9/vjcfkrXeNmUffXdiDdN/s3LtV0oKvSjWOH7AepkicIm1kb2ul6P
s47wGf+7jqBy4+127ftCY8/fyotbNIKoN7FqzEOKtdTs7IEFh4JoyGRx1CP5
oPdI9pfjIrtn5ZTsxcOP9W61IovBnlF1z/fo6KLNnu6vy5Fw4/bkN49p6Amv
S20I30ekEGjSF3+GjnwXyh35FEFDLO2ZpfstP6CNK5+2/BmtRUYs2c/2ITR0
TmfWzXCdfsozqvP23qgR1D8nqD3NhIFKeV3Xf+3qhXPG1A2Fog5HbTryHNl5
dGVWO+VguefS58Qh6pM2Hz31YCMSv7DRu+ZMO6r6uVlkYsUgdbbdMEnFtAdl
3Ln09z56x5mRf++j35YU8FxUk45evt7mesypCxnwS2vkHB2kfv5oO1eoTkeK
49kffX5EUVHn17c+2ttJrewXd/f1aEPZnHhLpCtm8WC4vYOyqJVe+SSyA+/j
rWjadGJ/URdVGabtPHS+EdV//3hobOcT6ungzGzR5Q0U1bh4+zUWDduN1xy7
QV1SUjvstZOFlqke+kFLD0Zei4zOL2Cvc08ZNm7LUGlB3ydz9Ll7yl99phj5
6y77P2lBcutn7tNaFYfMbXbc2JDNXm8K+xR0DzWjfT08ctVXf1Brz4beFWeP
3xeqAaJlbHt77OMUA0eTXErQYoXyArb9zEscnuq/uAVZaJnJaLKi8bnI+6eH
PA3Y4+j9SkrHszEax7c/MDP5HuDdguKjE0ey2fbhh4t5sElGMKqfVBupvo2J
DHZmztH98hLVfsp+88kjH20y1E1PuM62h9mc8b6q9u94R5u7pw/qnyN5VBI8
2rIimF0osaWZ19W1BQ0/L91Wqg/58AeRxu1mjUU6DKS26+28GYYNlBTXT9wi
lxmnd7QJXR+tKFg5gU4tCDbg26rThxjMDV+9ArpR5HqBiilLe6mBLEXpF9qj
yDikcO61ln40feVO4WzdfnweJ/HYAoklzAEkfG/qM/GGbiqkoVBCv7+P0u+R
bRqbwUC8qj/1x6lGdLVtwGtPYDu1T0gsULmHhfZEMNx7xsdRq3hV1zq/EErJ
VzbzoREdCXHL8eeUg/b+zhnXX8BCleOTDMszu1Fb+svYz4Yj1FFh7cODWnRs
//M49p9amRswf9WyenQjZ6lpGH8L3oe/E1X6VnMiHRkLdRb2xTXjeDxNofU9
6TY0ZJYqFz6B7V9GD0QO3XoTQmWdDGc51zKQPlq5sWZON1IS69j3enIxtaQ2
RjX5DcmzMdpUtVWH7ec3XOnf/e5aOVo9sunmJ7Z/oraUNyGXbc/NNAZc/lwp
I/cDbb9QsoItT4/fqn9kcRU6orVQ8BTbP2kfanX4xZbPbswKCTpA8mk0OdNS
JdnyPMOH/I0Fa9CN7+XTldn+iW+q6lQ/9jxSeidvytjtapRvpVXZwl4P+g2L
+T5/HUI131zHMtlWi5aei0qoYPsna5pMBN+y5bWFlNUru2rwOjFYbdLATnb5
Yp1tTwoHatEJb3+J7bosyrbL6Hn4f/s5Hmv5pX7UonmbrykF7ihEmevDvqaz
+6vo7lbZo+5NaOrkcTu56z+Q288o693scfTQ1D1g+h7in9NNLS40eYVQG4QP
j0wQbEAPPWNvH75bi2Y7zxwKzAqmLPgqGwXqGxDECWk8Kp/mypavfFLn4RvK
RAELhZeN/Ocn38/o+J0TTKkXBqu/t6hHd4dvNa5k+y0yj3T3f2XzFpjFqH5t
RPJpbBH2EhRit6sJ2V4V+E1Hd0S046+w/RY0pCf9kS0fTRMXZCgwkPfpXrun
7Hllg01yrT+7XXuuMAK/+9DRI+89GwvZ/nZczquYBex2Cc/fy5wZQUcpD4ai
fOd2o6H7Jw/caSlCamnPHrDka9GqVI69CufYK+T9a55Dun8b6lkXHMh80Ezy
8/zx7Vx6luSlFZT8628gfvktIaLj7HX+Ff51A09a0S9N0/cppZ2IZ92yuO55
LLyPKjJQTb3b0Yl23AvSlxZioZh9CQcCeUi+C+fKg/aRg/XI2JuxaUyQ5KkQ
eheNTloy0HJ/jn+eav7XP6dy1fO3WD5rQd0BQytKNIOo3RGpsecVa1Fc+AfB
n3vakKnd6zu84vXcdV8/svKeeop1luRzuDaJPijSyLYLhsczFRx7kP19xTMt
zxhUrM8r1VMtfVTVwRolafdm9JO77jjEWXdQ/MxoOeZeOnJ5Jrn+FX83Xh8n
Z/e9TM6nIQEuD7kcHqg424vGQhJ05HpRqb94OslvEL+9cb6uGB2vg1w46yBq
fMnlqEsbWXi9mfBh3pz2qGrKdsHgwmud9Sg97NCeObospNW6d+Krn8FUy9Kk
JC+2/L7f9f5njw6hg9Efl4mw9TNt8ULNiwUkX4HWFa+6pb4hyDl+QcG99Ux0
jGtPoD8HQuccvz2nHh3M5dgf+G7oW3DnjnNkPTo6tVT/1N5+aue6/nXd7W3I
aeqtJao3GeiNl9HTzKBezPPy/1fXl8dD9f3/V6KiSJFSCqUFiQhpeYlSUUik
UJY2aZWlVSoSrZJKSpISlT1KlkNKSJbs6wwGY8YyY9/id5m5936+83u8/7oP
T2fO3Hnec1/n9Xqd12KyzMpsfT0UvPtz8HxaL9LSG9x9+ccYiBqikhHZfrii
xllX+HNY8duyojKbAnD5vJZMVhs4HbvFnrWmAGm8CXCLVG0EJdYFgzTGIGqW
svce9xuHf09LuXOmEtw37Nex2t+L+MurfMblCdW9bMvd6mpQs68zU8xiIdfu
D6O/sPF9rPJgBe9acD4JG/2P05H6cMPJT9h462z61qF7dcD3UC/xmFcdwraT
FQXY+JqnJgaZCymQKhyrHWlaAdYCAXbF2HsUfc7Kzim1BSrcXcxrnDrAjZa9
VwOb52PslCH+oQY4ErKwAJNvsKQqIP4ohl9rXqHLvFoPgmetTySwRuB+9eFi
M0y/tf3wcFa3O5Ww6204dj0UXngqGBzVAgpc/+o3jn8VGB7TBzzeNsHNA3MV
54t0gvVLb+FUwV7YWU+focbA1gHXni3i2LNI/XB5bwc2fyTXT4X7H0boontV
nZug/Oqw4NWoNkhyE+2vfc+GW5QWdQ+zJqBlc+wCvhke43YBnLa+xzqwrAkq
tn9/1bulGxlOLry115iNmH4GAwqpjRCoz8EFll+aWTTAQgpWhxf3xDSC7ALx
wRtjbCTR+uzPt1Od8MPb1lzPjAb6sXKXbgWyifOsrFbTyhdNVHhnrmN57S0b
hejcp6QPdqFNIgJX4lhUuKbP3/8oj41mnzX0SRTvQSJ+nTaBk+vhpY54gkU5
Gw3Xq9bmOLKQpqdNGfUXmf91Ns8yftRoFH1k2w7772uGFW5Bf+bptRDnXNsk
d9YaFDWBvaelR2NXN6G3B0nsfmeiWw+Wtn1VXwZZMOdyut/SVEwPf+J3d+/G
btjfpXxA7gIdSryO7z39oxuNLLY9tt2fDV7nvTL4D9EQytq45F9hL4r+nmE/
V6AVXily9OGckAl9GOU2dP/9HcCEs1Ps1skd+wRqmWI10UN1qHKoSLvfjwln
Oo+aiJtWg4jOWTPHFhY6kfwuLnotCzZdlwi3c6oh8i0ETE88Ht3GIvSoJI4e
hT44Ke0Rw/TYFEpa8CorOuH/M9h4/4W1eDPs3N6doRX+mbBvUtDjkwpFTFCd
z7FziT5yhwq6e06S/jo334Co1vAKkMj5Nxw5Wg/f9TjzEP6wmvfqqXQK5HL1
5LkSE3oy5PJtD5TaxITpLM7vatKd+F2wwnK7fYMnxs9Nzu/C4wJWuZXotp9o
hSTu/ePfP+i29MBWSSrYqFW575hM5idGes9LPCZNBaWVZ/9KpZN9bdKWrNXc
5dcHfOqc8US9EH4BMb5FLdDAldcphlnz6ZjdHdJzZtVTDTax72/NfLolbYQN
lwoEDI6cp3PXTTe6IfRVeWN4D1SGxeooramHgxdu3DS+0wJSz/qj+K6yoV9n
LODKUioMK6RsECyrB4Oregr317NQR1x/fLkEHfST74dWuzMgGUWenORXCX9F
36QP/myEpzm3AtdP/4vSy1ipWrNZEP/TqLxJgAmTyznnax8552vQydykXVhD
g50n8yJoHxtA9cZtrx8SXeD9NifM7iCd2EdZjPc6h0ZK4c7U1brf8hugplru
5jzRTpTtnu3SYNIPSwoNDA6kNkMdF8/l4GirSbPeti4qNEyxVFJA7ajETask
obMP7VqSrmxEo0LLAdqlsDWp6LdzprKQRRt6d8a7OHcuFYYu1F1WtWgB/08O
EuwOBlqtZlm4J6UJfslf3VrYGQM/M6csMnJuAJcEn9uPMygguXx1cuDCHpTu
qy29CLufnBt1zlHbyTqxm/evcRoq7kFadm5P1IKo0C64eYFjcBuhh94NiM7w
1uoi9MD3ucOYlt6NDgYWJzU6UuGTMcdekOPKg+jhi078z6jEPt2xpbbxe0A3
ghof/QB9BoxdXJlbf5oF5X9/x61JrERrTdD2f0YUaNNvbrn5pJvIG9KXb5z0
cypZF8u74RFfnDML2I7FUWcE6uEcZ/9Dmy4mrOdPG4b2awckTY+T8RJaG9G5
tpJ/qCv/RgIds+tNTxeq9YR3EHJLhPrBQlidCmf/77ke8rZem24ozYQcaf0N
jctbkKLY2564hD5YMSn9nvS/LrBMlJM/gtlPjITai6LvKpGq4NSNTXIU+GqV
9XtHSDMKKVoUaBndA5lDQ3//GtPhnNhK05+hfShBzaHQo+MfhGRu1RBwrifq
Ij7MOVorgOkJeyo92ZG7ybrNVNXwY3b+EeB8MbW84BiFGw82gkS2fN5ijuGG
KWPv5D3xeOAB9F3bqE0Fw4ePFLpfkKMR71FgRTRjHjY/+1OHvsVisl49O+XI
XnEM33Y++D7zDNlfw/f6WbHZGC4tWKbnN9xCyD37NffDT2Pz+2fKRc/1ayXk
z8aeG/PWYfjLrHMaDQfI+vAa1S2UJdg8gRE+HWKiZN+Nv6Eac98+joBX6nKd
uy3JvhszJoucscLw3KfZnZn+ZB7TJmXMesBw6WFGSzKzgqhfN+SoqXoC+951
zfF9G4eLiTppT2xN5AdfRICDSlP2Stk/UMB9jkqc54g8A92u6dykA4Nz/8jV
TmTDMDb+6Q1xK6sNZH8KicoM+RXY/VOKr6vMya2DUa6dvFChr04UwzOLz0Vc
u1vGKweQ3Z7Y7NsFdVy7bAidoI5d18XuU/sqYv3LbeSeN/Ui98DPoeP8y6YK
OGs+JfsLJF684yyDjb9pdvB4YwrZL0C6gzZzLjZ+2uxv09WVW8g6/5kPHU2x
8W/R34DDuXQi73Hr4fCrEhg+zZ7vmM9mCpzg3qfA5+h7muPf27toi8nHWuJ9
+dtv3qKM4ZNDfEV8h6uIOksHG50bRjF+pMaaDdMMi2BbvqEbzYcFeP7Xb5Ft
d2UFu8GBu78T+V8dETNmepH1sobiDu0tzmlHTrT+j+l+DfBuDuv72UWvUcYC
j5CFzgz0xEx9fe80KhzSWiGZ60DmU6tFRJebV9Ch2oBjv+NXI+uV3oFzaSC5
+9qed/u6kFbKxws+H/vAd++Fl57aTSCfliPb96ECFEZXKsXEsFDDwTuLK6az
YM/7+JJS4xxkbH00eu7mDphuE7vQ9TETZpy+6pW4uxcd2bx3/u7MISRU0vvj
6wANvseuyFHvZ6E71BF3y9UDSPly6Rf92fWw7N1quVolFuTGlH19bDyEZj7o
na1e3wW23Pn3ceZHczZ7HKmSJs8ra5+OtbAxPhfEhQoWODHgAfc+Z3HuE7xt
1Azn17bC7BOp1kxKMVooejA+9igLPnbWwt7xfkmHcwUGhlkoTMlCJ3DlAKj7
vT/8a0Mz3LzI2Remc/YFyHPZsePeVCoEcvfHC5z9ER4Gtl2ymE+FX56HfY8Z
kPkBan2ZQbqtLLDi7nerOfsdelwwp/JeCQssuPvvEs7+iw7mugUszmwGAe4+
ReHsUxB51KbUW6YNOl6J5Cpg61M/lt7XfqcLCnqlvkuHtAKffLVf0N56lJSg
fexHTxe4X7Lwf23VClNLu4Y8bFhQWn+ZunbWMPrp0KlQONgFbX2bEheMNMO2
nLVVwtHVYMz/OmrfbgrsOXssoNneCz0e+B7VkUtHXyUMs16PUmDnmduB8ovw
fnGjiH7iXtrM8G7oLXaPuaLYBWf2Ndk8opeBbLZslt6BOqjTZnyfo90Dyf3m
r3Iix9Dyj00yK/Wp8HKdZJRgZDHS3drjNbifhfgGcv8aq5F9imUMbRZ7ybLQ
k+KX5b7KVFjfVNP9wKoXPejZszqotxV6Ph1QqX7aAB389wOel/Si2wE65SXY
vvK1qf+asDSZL9929/yONzIdoKvvMjobk9tbL2a3Pr/Rhc69V/qZEtcOZypW
Xfg9hQaG3P0LP791XTtf9lxZE2xJ3HaaFthN1A+p15JbpmVF9ussiUIZSjLD
oBzFltyygw6xXu8/rjTqJs572WfnStVj+pIPatLQ1O9HhyfLa1Y5jSFTu8V+
PzE7yJJ7noufkyu9K1sdZNUEjtr2IVtselH8dHmPaWvH0MP2Ov/XBs0QGnjx
uhOjF3X7FIrGHhpBcslZSfprm4j9+ntV0Fbt9GFU0dhYf1KiiTi/PmRX5h4X
0oHsC8v4Xi1qhXfej9+t06uG2YJhcb8DO+CWl7O8gigVcoc4cSmz70/EpYDZ
sisl62k9hPycv2Jw1+oFQ6A73zaHb1YvDHCf+2XOc0e/zU5t6G6nAoO7ri69
Da85pFiN1FYFv7Gh0IC1i7OuJAYn1hXcnPUsQi23DfpiOPaUH9e+i1/I5/84
nwbLtnDsozONE/YRBITJlepdpEGiiz5jrKcVEt2SpPyEa2GX18vhSwONIP9L
5fzF3T0En78fXlzwW7cZluyzGwv50QKFHqtCDuuXg3bAaVNZzC4O5NplKzh2
GSTJarpJjtJAbJf94D1dst/HpkNDESJL60Hma+bkYzN70LLjRcbtjxmQn/2z
cPmaRrh2u+D34FU62Db293u/KYEbCy0fLe2rA0M9K/3oz3WgtFTpnblFJyrM
ePklOJ5O+P+vcvz/4CpjsqZKowfS774bi50VjaaXbfpbJY/pBb9Maa/vUGC9
V4HRdsE+dGfu/jF5ZSb6t2+tglMmFZKkqL29GM6/fedimjETdUtlCEzKp8Lm
p89AXwwht+iHIlI+bcC/SjJRRLwNcg1PNktP7QEdR5ffFkJjkHPG7udMdzp8
OHWkp/5mGkpha5iUK7DQiLVRxah2G9gEHTqrtOgrMjF3EFDJ7UQvXrafzHJo
A3W2Zy2/KhuWpND9l/QPgMWmF96HMD28NifdWPdQNNp7Q9bbnL8U8j3Dtqth
3/udv+3LJMtu9DL59WtDfjZomFS0/5lZD6cq5srIWaWjfUcvOzaHtqGpSZrJ
SeJUmP+sn2W/nAVLsx3yr0cXQVKY1rWcJXXA/2J5gM+GTgiwePpdI70QJm97
HtokXwcD8b/shd0SCT2I8u0pP/MfBR5GcXB8nx9zXv8zqYMJti848wt9mZgf
PZToE7it1QD/Ajnzv+DMj/b/rpoT690AyQ6cdduv4NW47lorCqjsd0ufQoUL
nV1FHTUhELokw7JVuB3lVv8KqtFrB2lR3/DXT7tg/czuQwcGx1BeCLWeWdUN
t8+UGVwQYyDlpM98u9/2w7SfCguW+3SDbd2swT1VMeDz/ce6sE0NSCPk3uDR
UCZQ5NWML6j3Iv0ZoWukCsbQYMvJ3PkPmuH22dRtlpUx2O9QXGm2vwEGb82+
8y6dAle/LJbIk+6Cig3O016NjcJkQWnRHM1WYEdkFkbfYsGaL29OhtweAYfT
n5a8i6ND2vbrNy4JscDMjDWsuWkYCpOb7xUZ0WFOoEWQZ2gcqB7TfKgOTaht
yad9F7OYoC6ubS6hxwQ16q83xxXLkcsN/V+pw3VQHP2p3OweE8q8u48MBZeB
VrJBSZZzI2zpLNluWBKPGusruzT9mXCic8ZxZNMG+RZ6vsWf+4g45D2rd44O
CzXDo9MWu/8FkXHL4vsXrH21ohWG0b8//xPPnL5K+nuMQDqLqL+EP/dvy/J0
FQbG42AZ71ytu8Hpnlbowp//UMBY39GOHWQ9Qzx/3Plb4GVpfrJeqwinPwt6
OTikcqS3DjIC3b+s29ZF5LOYvM/WGLmP582lp3w0N1zTENQOcVKGEVbryTqb
Hf4NEcYPi+CakdAMlSayT2Fa2UCDa1Y7ygkyPGsh1QF/xamCJ4oTkOWaJInK
tX9Awa4P7t0m+3Fsny5VXqBeBGoJY5g+V0fYfbeN1h/UjWaD9ZeDyyeLMWD7
Ew+xpA89SEFP9YDszEEkGSi0OSGTBjaSgVrN+5oJf4CStvTgw5cU2C6xent6
aiNYDDpW7f6G6UVTZp/0X0SFOXwpu1KXdkKGb9abeL9BpPUlTcU/pot7zkL4
DdBCd+k9D7fS4KKZQ4iwwG+09FR2WeLdDlSSOq9KfCkVFLl9bYI5fW1QcEPe
1xdJTBA48Wf6+O8N9Vd47R+eAyplcWUtRkwiLhG/TorwTlasIOs+Jcg2bTns
wYI/3VNjgiQY4Liru8ihvg4U0Xt/jVNspHXjz00FzO6t5voDUzn+QNSYXhya
uZK0l83q5sRY+0cgw9Nuh9wVKODOPe9jcM770KUao5++Fkxi/56ueaYo/m0E
+mYhZzHNlfA/a5ucfG0+gtlNzD/uk2otcyF0lBNXnMOJK4ZX3mnWgjMwvcVq
mYhiRgOxjziN2N2cKtYKZYyM1p0Hugh/nVCqRP58/SZCb9nZlnc/nDkAmSNP
wl8WNMGgyGlBXWk2EU+nMauj3Gp/N+jUHlx1XIlB2AFeGyRm3ypiw2epFwqK
+e2Q8OTKVWG7bhR0kmmvrkIFz73xPdv8Igg+lgxKPP/gxYTpFn+8g168AVqB
nW7AyxJ0ZL6H4QcnJuwZXF8fwvcGkg+fyw/wKQGDmddEpbwosEi8d4vv8wgI
DpvkkHu+GvYmx20wwtbVtqV3ti13aEWsOZ5nRf17QWJbV0X6rxaQuyDiLf+x
EyWXLeL/ZziIFH54HqZOa4FyWfdttGmdRLzr9VURzuVLW8DYii761bQdfKEl
UlRlAC29/Wvf4yOY3sny+71SIBsG7kWy03w7kM2kKUYCVzogsNhJWHFSE8z6
o1ryup2FnMuLchjmLfAnb7Rl+Z5g1C/pkxOp24hkO+bJROdSQNBaXLBi6wui
v4n+Q5dVL8ooxPuC+2PEYkKEX+xoAvYgJ57to/JEPBva2aU3qf8YBYQWNPb4
5PkR9sdKd5bBwVgGGM8yMfhgm49qLSJDS9PD0aSNf62u7iP7lag+UTXY8iwC
sXRP6U61o8DJNcpBKwrjkQLnCqZ69zJGAxhQV0ubmB+XH4zD0s9KT1PgzHbO
fmTL2Y/gcMycUwEFbXC0k8PPtvsT/ED9PZZ+qwsTTnPjmRdy4pkh049vm8kV
BiT4c+RGAkduwHqqckKHKRk3qOEzETcIc4vz5jeaYHZZaRRrS1otejxZx3r5
aDe40YaGxM6ywWRGeMwqZzY3/n8IlphteeUs3wt/hc3lL5t1I0V2eOmtDyPQ
Uvo6VZW/D8QevUlVEehFh5b+EvghPwpLp8o5zk7sg0Vce1OXY28iJ+GIq2Iy
ZF+PrC0T8cCIcjadT/4aEw4J/608atICHZfzL1oXMdHVhAR7i8omSOfKkU+c
OGEUu073hs3TJiIO47rdHzNFjP99z82ckyTIPnxLBu7kFb6KQKM5q5fpLGRA
2zxrpv1fNhGvy+cbaL9mThM8sBG5eH1mP3H+zhJQjhi4WA8rufHqTzjx6kj4
4WRHwRIq1G7eOVG3H/fbs6Z8v5nZzIAU+jzz5v1knVQtt7ayKjkqnNkwPDye
95QfnDWe94TsJ00zCMPsTbe6Y4+UsPu6zbmiB/k3ab3Y/jXF9ujlS29b4Ue+
tkqLOxXppV+0MbhBAX31elOPh5g8qKXfjlhTiqq/b5vkbVxPyBFJ2rbVtpg8
vP2uPVudWQY7H2rUD46NoTuSII2p5ojvWJqox6ZSIl6XsueArhY2XijfcHYl
rZJYJz9WomcyGF516VlovkoN4R9z2euxYxE2z4ZbTTUBYTWEH9/q8tcXy7Dx
GipvyiahWsJf6tEerLQBw235NxdrfKoj/GbXPmYuXorNU7OxOci3pA4qLj9b
KjrlEeFnckY7lU9pkPvs7s3FF5+HRSB3tGhmVngrEfeSqRG7aBR7vhv3yr39
Jd1K2EfHWYEvQt9HoLtXRbas3dNC+NnKjQ32zsW+93zoqiVzYsg43YKsqbYZ
ERGoqSaVPb2YrDunIit0/9DjCGTE7D6T/74BdnD9bz3yy36WBUcgtWklX2ds
IPsxMBphfgo2vrVGaelZ03oifv72Op18K+z+r3lct0hEeH2DIeD/NjSWg93/
Zw0Lj0URVDBJcVgjk/2UWL+PTnUsFz5Bgd7F0vbZl8h8Glrn7CLLhXWgcJAj
93A/3NWEu5e8H7bBB/jJF+vRCskv2CfkVWmwM1ou2ukYDeqcotRMXOpBM+/K
4Q0UNjR2XXs2K5wO7r7dzyLl+pDqaL7hwsn/IC/w5xWf0/VwZfNDtZEDRH6Z
Nr3g5Jja1XrYJsbveEufRdRRYH14UHFhExWqz3LOm0SzJ86bIDzbMTr/Qhds
/7/7CLqx8ueyXYlUQi7zJbcEzZbtRal9adeMHFqJvModOhN6ETo7X4cdu5us
o7s29MbSu3+qkSfFKiu1lQJfy6U2Cj1nEuvx4NUjPx8sphLn+4c45/volBlj
7RJML9o+2cUxxpL04x6vbRjeerYJYr8nB2fcaib8hTsOO5f+kGyCVq79a8zx
q6BZVlNm76ingcv+qmzboqeEnrj+UV/cDjsGsY4DcpYOaGDr7dIyk4DmAxTw
HHap21naCMc3Ki26hu0jZ/+6oS9vmsBYSSD/ekg/uLcesX6O4W0r5rIu0qgQ
f4HzXuB6ccXXbGagCwWYQ2lWNm2tELzqzrofVnRQKjfKmRFGg/Zazzx1t270
Z7f6n4DzTPjjfTnU3LURSinCFXczutGRqfsdYgT74FboTlbWxno4oNT7TXKk
AfmU2RywOdgLcLtZ8ti6LjB6oDERb6Aj9mI83gCOr/ih3dDFBr1XxQn0s72o
7kPaGRvZMVgTcmVYtA/TdwQ5660zfS3lOJuGHoulC/f/ocAd09TMO++H0NQj
wfv+jOdbJbzKCxisAP38xAcW4n3o562BolDs96YkwtnVntWE38P30bWHUhhv
dVtm9aTEVEPLvrotAzfZ6PHfM2g8nrPt5MnSh0a1IJI0UPikvhW1zPumYvAz
HLlXRt1beaqOsA87Nxkul8bmOZqE5s9zq4NzUeeL81KoaFXm6P3xeda4bjhd
IEgBX+FnqZm2pfBh1fVnPdnhaOXPJ6uMlpL+4eTsO4kLx9/3p6sefGK1wD6W
UWPVIPaeCdzkM8Duf2Nxi3LVbrKe+YyLHmFDTyPQFKsvJQpLG8Hz5VU7FZFu
jN+bG0SywlFHhG3vnoh6on7ORrVqgynYfSaXVvQs9auHqAUfCn6qjgAjbGTP
D+x3NS6IfrriDlnnNrp4ZpYZfzcIrihfbetI1vF7PmdF5PdHXXAntac7sacF
LpzdP6FP4vIpORR5dQi1QNWAhU7yWgYctHn5uV2rEJVR9l59SGuEBO57hMs/
bbG5xz2WNEF95LfPdxlswm/2qyo76GAaFY5Nla+kvmMjQ2GHoJznbCRgbft2
bjUVpKSK+sf3WcKffSd4T5lAPSyymPqlKL4Lmd6IS5zBN4ykPngL5sk3E+cm
a8ZOuCzN60IB886fn5vCgM1cedX6e0JeoTu7HrdIRLGgYzbH3lHrm7B30Mo3
UW8nR7RA78CPiXV4sWFC7qEFJ/8dWJBJganc/TSZs5+C2MG55nuX0oj9F7++
7++6PTuHBiVcPUT/yoQeAoN7vwV6TacC24GT9/qI69c6f2UpEpUgz+U3zj+S
eOb4CPKumxpdtK4bTPwjXCjSPaimt0rAx6Yf+Rr5zs14ROZrOKgNRWLPEdUH
0p6bWpJ9g4JmT+RLorxJG55JbGfAL1sly+5WBhzxutAuodqOXl2frK0tRoUn
RyL9pI7/RcEpMz6bD7JBSkj0pq0Fi7A7qgrlnipnDIHhTbs4jYu9EFv28obR
jk5gLt/n7XB9EMqiCibt/toC05S2V27WbEKU3aI7ymb0oZ4C6Y0bqukQ3zgQ
UBFGJZ6jj1bSsa1JrbDs3eiRKwV1RLyEtE7vZR8Lsi/M6Hbhh4sN+tCdytU2
lA1U6Nq7q2jfKyYUyaLhXa970Yj0yO1gwS448HuOffGfNiQ8/e8UT+cBVBcM
m//daIF1nk5HTO+zYYHWkKsddRCZupnsU99KhTf2a8UWKoShG5UphoZBHai9
RfJcA2qDSIbTRL6eoMfx8Xw9tKe8jy9vajPU2W5yTO9OgNeCen82R9OR0HKv
HysYTPBW1KqYlx+P8GvHsyzl0OMUOML1k+hz/CRw4tR5CaUqCkwR4sg3SsaE
fIPMdekZZi402H/P8/Uc078wJpDBZ1vfCZVV55etessAyd8c+exyYEI+o7qb
hz63D1LA6rbVkivXO4j17q01M0SfUgd6XPt3Lcf+hadPpo36Y/pMMlefxPc9
2fe6MjSdJlC9zelHn8bpRw+RCrcebJClgmgJx24qyJuwmyD63Wfz8b7hr1Ys
32gfxyLiV1W2sxrXmDVDn/OQacESNspI+M4W3T+A/HYrdPXNxfQDQUcphgwb
yQxsnDFp/hBq1Rrp9HrdDDPVxo5cOZNF1K2VSHXcrZvEhHnmQs3sT1UIl2fH
LXY2RC1lw2tuPmM4J58Rvp/fu31Qox5OTLaI/pAXB5tYn55/am1DuVfV+pIf
thN+DUdO/hFqaoyleg23EP6oCo4/Ctm9LA8wZtWBhHDIi7/8jWDOzQO6PKP+
w72mOpjPiJBet7gZFEQuZ6C0cIiWmf6rIqIOZDQTNUtjGOB/UHJQ6Uc4FHtH
rTu6sg503ljtrQlogUpu3lBGaqiInlcdaIaluP9c3w/y3LwhWSb1Rq51OZRH
9LlNyhqAFRtK00TSw+FRcejuxbGlsOvXD0kpkWE4ZO4sIorCwWl90bdw8WJQ
UF5ou9FjEFZw84wiSjST39eUgCbX/7aG43+DopLYAyY+jbDlwIGJdYLvP+/S
E66Z320g9OHE8gm/E+iv/ZjehMmnPm6+PK7vGK4+KVlWQgNps9+qjtJMkN50
QFxmagccn+wYkj5Ig0vc8yw8/uqrsrvilU102KXmlhHp0QyDUcW6543ZYCtk
vKlQhuyr0lgZqmvP1wMrj6ED+V/oxDo2EnUYl9tg+O+sUfUvFphz7cen3HPd
s8HxrjW3m+EGNx/zAicfEz2zc/k33jchmhuPkc+Jx0BRc2gSS8OYcKKtsmFF
3jByeSakMZ6/M2q8WkM9sBGK5imvcNj/Dylz85VSeq+xF53D9JyPtk+2iQyj
am6+kktU09kZsY2gnMU04fMYRJJ5H5krMNzu1nfv/S2N8K3M+Vfd+n7ktvKo
6DgewrAolN1JgzTT19NksgbQIW5+0+CLdt1bU2nwyn5zuLhbH7rOzW8avL2r
3P00DfLWN4uHsHqQoprYkD6G9yalO/zJoEFTDrp09X0X+vAqdd0uDLd0NNP4
tqcJlB/ra7BVe5A8Nx8q6NW85wntNKjqfHYuHttnb3LzoWCXijHdswl+Ws9R
cTzEQreN9aaM5xNZr/pbtL6/CcTu2p6MlW9D9/nN5F5/D4ehbaGCjKhmKF67
ebqxbieRP3UgO/ZJgnIztBS+/JsXw0BWrR7PwjPDwXduiaJdezPoMxftWhzQ
gqrOXi4EbLxClX3lVucW+MJn+6qUvxG17BM7rInhOpNPm77eQoe+SVnCqYub
URY338q633whI6EFHEH3us69evSem2+1LUT8nIsnHaRb6AvFaDVoNOurtDUl
HG5fbqrPEWmFprjsvK/5hZCa/GCAgb2nMgJbDI1NKHCpevWN65t/wjRufpbh
i40en60poJ4QyLLPLAafTP61y7H3TltzT+XNnRR4opa9fqirEtrVj0kcwcar
ZRn22qpQIG1KkoXrvXpoUfD9eBS7T8E/n2btHqmDPSc2+syi10APN59r5C5k
ZshS4HZN+wI7+TaI4eZzmXsefSvEqoXu5F/5ZrqdYDhdWDQMw2cdKTvZfqAW
aGvSpnoy2GAar+qkgd2/+ckT7+Pn14DDj7zV2POCDdz8Lyf68E37SbVA6b4a
FfS+C8Ss57+Sw/iPPn9eSt+/Gn5FGvzuUu2BK7Vpw27Y/JpO6Fbc3iqwnmou
MnK1D7QX86uJYfO4K785dHxZBayfm5iWxOqBDG6+mK9a6ua28ErwSXxwXylv
GDJNzlNNsPlzJNetsND8C1veW38w3P8P0jM/JsVgvLlvFBTZaVcIatz8yvmc
/Ep4emvGuk2fGwg7SpSTdwxS1o8tb/k1Qy57W9Q8yQ6U9++jAt/8fmQR2zno
TSf1UupZxcwnu1rRQ7GLwecTmuBjWGLiC1SMrDWXT/atCwfntLMvcwtboUtu
F6uruxI5cPOwcjy/Ncobt4LUuUtt7iFjYL8rPV4PW89FZkmpj7V/g6zUWl17
8VHoEuXkW+02XX+8ejQfdDyf6Qa+TwM79NKOiT13Zu+ZO5TDFHgzrGjkoN6D
LscFysu87YcZR55kntCvJ+wCxYjee+Ib+tH1ybGnl8vQwe4QJx6puHAiHgnx
afuXzAukAt0162eTC7YeZkVv2WfehwS0NkvWr+6CT36n0h7nsGC5YaLcvtkD
KKi+Ov2WNhWEXYKnHJGtR/tHpKo8a7qQ6oUTkor2pPx0Pv58XH6itsBTO094
YXoo1//2nON/QxqCD7TOipJ9l/7W5ozHN6JrCcLbI+dTiPuX5dw/7AwcSGDu
74ZcP47+tun6hP4GycsuKkoEd8F1bp2EaZw6CaBZfS1FfB4dNK9fbnfp7UX7
3+a/jdo7Aq+DdZ63O9RDAZ+30JWlvYTf7z6/0Lu2g/UwWdCVmv6li+sfGkHv
JnU6i+6gwoCsZrnQvm6YtMfYcGvKP6S0LEStF8NfvJXRaEjrhj73FZY6d0bR
Iq0zb87vpIKphJXG57ndwNjwLqfC6h/SiCvyqcHG43WwhR57B44IDSDRZdTE
+agFPLlxxTacuGL05nb4ghwNKnzl1hvB9c/bPgNKjYJMcH6etan9dQTC/eH/
SpVpmeN1NXdILb+ZEgmDXD/QrN2ldSciKYSfSpWTTwd5Mc+bfjK7wLdB2Pjq
9V40mPoz1VxjGPgfqJQJHCH7wyqu3PfhzIxBFManYBqnQwV1nZYNj4BB+OEP
Uw9InQUKUFdeLUkrKCTymxZpaEqjaQwYDPrYsW7jT+RxeHo8XxamP9jufax3
hAGClw+Zq4mPogMurzoVsPHvXx56/+hQI7ReeX+ZvjQVWpi2hw7NYYBZyeqi
8fNKq5SmtbJHetCve5/Yy5UGwNhU5N9PQzJe0dZiIl4RrubB6MIddCJOsWbz
zZX7To5Ck9/K4DhXzC4rUP0j5jaKjLnfOzuLknPPrBHWtuo6Fat+BRvu+7Xt
ffNF36MUeD53uVSF6giy5u7LtvpXS1wfNMLo02OdD0L6kSt3P/0U2mO8Rp0G
d0T7uw+JdKNk7j6oleS9zEsd0697TJ3Yg23IpMLpWgQmr+yOTnOF+80wzeHy
/IBSct8Jknp9ibKIDsLnRtTCbUvRYctAcSls/r1Bvu3aMa3gdMQ/fKNdPmzz
6+9UweTDvJdZCef3UeC3jK9GVAoVGrny/6Tu4sJb0ygwOLuG6VTfCn5cPdBl
puSvZt06OBTXemKFBxt6tnUIvcP2hajVy9KWWNZAxtYN4rvF+2ALVw5/UUxo
d79fAXP5kenn90NgrFlWaox97/LzqY6f7xeDRNeuq7T1Y1CbYut6DvtdZjbv
aldszIMlXDsu9taEHQcnQmZInsf2/aOpg44/k6qIfk9JV+a9f2DBgJSeGy8P
nn6Hzpu9HjUqocANszWZsQfaYG1K0nxXRhiyefll07LptbBn3auFP3a3gTY3
3zOJ+5yt0tSF5M7RQYarB67k6IFosfBrC3cJKjzeJOT+7nI2sQ5vr6DtkDXG
vjcv89sNoyZYy9WfnZ0bI9ck18FJ+urfjw4NwBKu3pu8rqLiwdIy+GLte/1l
yBgqhlfqlT/D4aFrkd/hzY1w54D58g093ShL+g4fLbMD1D4ae64VqgenT5w8
+gKRiTx6JPnFPq+usA4iWTe84xmDaA5XT4tubtfZUtEIOQy7qx77e9EGrn5l
aB0x6eMHGvisnTNfJouFLnH1ojVo/SrniiZIFmuMrz9OR9VcfcYziH7isnEL
uD2ULNXyqkMPfhz7swQbvyek2/IUkw5tndf3y++rgA6u/uCo7jJ2UZMCTks6
X91y6iD2/dzXhvNYt2phnclntVl53XCLu1+vWaKfOimyCna5tbaUskbgC3ef
7VhaMfq7thB6DDjnhrgfvV3d0mCLKxV8qzh+Odkx83G/HHpSv3C7+kkarOrl
PPdrnOeOLhrZaDZh8oq1nSPHcP+k3l7b3LLHTLj0Y2jFeF2XAi+95cxtf5CM
6fy4IBcyTr6OY4+DbVZpZ6xiM7R1mc89s6WLqPsafT3F7pJ9CzxwTrbujmAT
97k4WNVupI8KAfER8l4K3ahyxSxds7td6Kj/p/Likf+pl7slcEPBhQ7UQb3e
nhhHhR/93/+tFu4i8m4u06MKIpSaoLjSmWXnWAVClscM3ZpYSLD34dwLcmSf
1kzOuTA6Lx3VN62iE0Z8HCL966vB/eC7ksBpbOS/Uadh+0YWlBtzzqkfuk6c
U0O923KfmW5MYHLr8whz6vMgpfdHO9V+0+BB4o9bjvN6ER5nquy/6MAq7L1z
LhfXHbeLiT7D03SsggXrCd4CIqarei0bQnPXye+/W9wFx91GJ+xfPC54yovU
E/OkqFDSrHeq0SIfpnzOqf68tRPZC9CMU6kdsKqd/xv6kIYifS8ZqWNy4MM5
SZ3z1xiYXsrxP+N+u9C6c95DqRSoqObwc5vDD1S/82PtDWuFxS6/f6Skl6Cl
ox4bP3mxQO9V/vXJ6Qy4oiJwvlyaje4dlakd2ToAz+nnLflUmkF1wybFOVnd
6NIfW5e3jBEIniI485pSHxScNQgoCuhBzXo9Gn6P/sGfSrMxJrbvxXP93vg5
CbOqTeuDK1m3RP34hF4HjYd/ebztp4AHN28FtzcnCWf5JQpQoY/7eepKuiUz
uBMcpBt1J4lToe0O5znqcJ4jKFwIEZl3sRUquHWNcL77dLfaX59H9jHU4vgz
0aw0wRC7OWQexApOHgSa9izIoxmzN3O4divi2K3Iw3FeVvyUFhjaxOnrFMDp
64Q2rZRrEApvhiOrvcQdI+OIOuoV/Yv/zbZvI85zRzon6uTAvIch5vEsJjTB
iwm9jj5Pelyvg/SP7zy8jpL15s5ZJghv3tANXo5PwUu+FeTvWmn9uktB2ZPj
Mtce64Lbrb+mNn5ohSKrg+01a1hgfyPMffKlIXSoPCJfj9YFWdz3Be+3o5Ly
Wm6DeD3Bv+WbiTw7yLf3Ewsxp8AHbU6dJXyfz/LZZCfRRoG+OnoMavZF0Z/t
PofatSCrvaFVC9kUeN/EWZ/bOOsTrmzyeG41iwnFTmuLsjdS0SaRwWSaUw8I
fWruFIplQ0H71d6qrjD0vrTKvUWgFi1Z9Fni7xsKuBrL5tn696LiLVPclH2H
Qez4KbPtR+shJjqiQHlOD6ye9kPIy3IMLRFoLhbXx/Rb1e9fFfWI+OT0z3te
DEbpk/W9/RMbV7th49cUnF72MKUbxLlxevg+WCry2SFvAQ1+bXBQdxwpQQMy
hXLWwSwkLKsU0KBJhRvc/JRsTn4KqppjverGGip0zOTES+tITsRLQ9DxkbHo
aLIfU4/93qhKbL90GcxeOu9HPeyYWZSmFNaDEopPvnUKboc6q26V6rX18Jlb
d06MU3cOQkyQ5GBpI/DtlJhsaduF9JbtNdjR0g7VSUsp5vNoEMeN04jnxGmA
ovpn14fBTbD6nM3EPihi+HJ8H0R/p566KTWnESgz996bF0n207TKvfG66C8V
3v0clYvRI/ulXuhZEiLzuRGSYi4ZByt2o3OLzabNmt6FRB9Q+phNjUTex3dF
v/G8DyS6zkv1w61GEDx1cpPwmedI8rS60BctBnLTThWMxd5ToScnky48YsNr
O9RbvqIUyllxtw7okPkFb4MmztegR3XTSFEXFW5y80nxfi5NZcv9x/spH53O
ydf4rj2Rr4GSnq05c/loE0hzzxNL/k2cJyJN9uyuy7uaIJ1bd4KIh69Qurtv
ThM4GdRHy4myYEnl8YZRjSFkFCEy81dFF8TVW+fl2/xEMsf9xXYnYM99O79a
HpsJmS8EVa7qVMGwPf37xV0dKOD6rIh12q0g/pKD53BwEJvx6PeU2VRuHkQX
tJzZiu5bVCPnfBupvpNUqH1EWf9tfRfc+XpjvsSCcnSiaSRpeTMVqri4BweH
zy0Ku2db1sGtV3dnS59ugWx69fod6ypQxa43k7U/0yDsudcn+XpvVFc3T195
cSsmv0/Gm+e2wXUq5338zHkf4eUqm62aCW3g4yFnJxfFRj0p4Zt3hLBBLyzx
6NwoGuit4tgROM//kj7MjK9pBHrDkTCHfT3owxYaM6nrH/Jy++a03aQZyrjx
GMqceAykF2Kc7IPtK48MOHUGKmsn6gyglZdL7a1Nm4n48EOcOF6gfbl30mIH
BUSEPSto3i2w6M+05lt2FdApoln1fiUFwv5e252QkoGO7G5jVxxmgUiY59OS
1g5gJXGey2+HiecCTZG/VHbrYHKFmy8ZysmXhBfT4/rVG2lwn6tX4HFTPqyH
rpO6yXyHoy+jF7guZcDpQXpNZlsDFMWeThk/b8L3hXcBl8fMj9LAle90QUVZ
K9HH6flN2Q86U8m879hVE/sOSvL4YLn2Dh0ONn+fqCOnbV86XkcONV/oNjze
SIe9quGiTlE1XDupA82XHNbO6KJDS/7u5wEb6cDXstr8slApaljUbfnWkQYq
zg0Xxs8pXqkyhjycB2B9q35x4Ywe2PXi2kS8E37Of2x0kWgSJkdvXuTERwlw
4qPApEdXft4jsg/Um1dzxuu8QeGZMxHBIT3Q1h/qMHGukW620zCoA/Z1BnyK
Sm8Ho78DEUf2dKO0U83my7eyYQHF+m+9cD24ceOg2jhxUMDokJJ0xeTTKW4/
xPucfohgcX3roydKZPzP2ON/U7crMxBf/tbk84+p8JHbN3Alp28gem0Xd9b3
GgUiuc/9OOe5I3ex9vgy6TYw6Y9XNBzqQZro3eJE+XZEXRgTxb+2ASJfrZiw
95tvyYzb++DRcbJIw5wOVG7fEElO3xDUP62n+JtqG2jpZ/f8vfSNOE/kC2l7
amPZBvNqTkzURVFM/DZeFwWOixf/vfaiGT6X3uYPUY5GmkuG4jTXlIFyitC2
zgVtIKt3yrhFLwW9V2CMBUEbmqwR6C83lwqWfo3CoNsNSz4OCE47j+k5J6Rt
ewZbYNvKQxIOe9NRxa3Soadv2iBzm/GmdYJtxLnz6q6B7sf3GfDs8yLqlD0N
4Lqr+wqf6zdiHfJLT7L1utoBr3UKUiz3d6Ppi73kNUTYsEdMJK1vZj3887v/
IM7jNRpKepy3sAT7fD//0arLbaDJjd8+x4nfRsq/5ZuGxDC9ulBkgFrfAlYO
v2K/LC6DyZ39mx1mUWBoUgZrY1wb7Nd0aCs9UABtbJk+F9s6kPM3qe0ojwOD
yc0rFlS0wWnGzOerHdpg2jHOOZco55wLYmY7XIscpMAwN27kOTcP47Xr4Zv5
MxqI/DgW4xq7eryuxYK7Eiu/lBP9WTczG/UmB0egsXNqKkyfKiIPbsnZfMr4
ufz75c/N90yrI/z/z0be3fmJzbPUa++c9s0U3nhXVNijEVtl0kD0cXxmoBrX
iY2XSCk8UqFWScRL7YwPTxPFvtfA5d3r4FO1hJ3zwD40ow4bb1I63Sd4Lhmv
e2zhas0ZEe3ow7Xd790xfW35/o0a95+mwgnjgqwZUxno8kwblZRvTFieIBJy
+UcMhPXJmD6c3wC/5xrxe6VRIHTDg8SiRm8koVOr1C/Tilxnr1g1eTIV/P2C
J/bNq4z14/sm1KSn97/91gYMrnwYbp6QD2D73s80418dKDFV/7d+svaJGS/9
l91rhclSObPG4zxPcuNPQ64IHGZMaoW+BqNXkR6YfNwy2O36cwyKZw7/eeTS
CqN8kW9mIRacKp/x+0//CPhtMZ2dmk8H9eyHH1euZnHjmofBwWbBwph9dCJP
jVs/HAZe5beLYPv4oc8n9NZHsEE2LK2CcW0UmbSE3Gn36oajKytjZb26YPXI
WerkzDG0KPFpVcLfbiLeWtF7eMlDjP9pH+/F2m2gAW6/ZQyXhOlj+FqDLGDK
1hP5g1dyqdO1sPVw2fqeZ5Q9qbcPmDhOn4nhs274z7h6tgnwc8eeSZtMZTA8
65DPFf8qKpE3F7sjzVgNw71WXtdmelJBzWDBRF0pn9Bb43WlYHuKr2rOzW74
ePumwcvqGELvXlB+MEbyLRNMZHzSauM7YIPljazOrYUo3FrOa2l0A9wP9ZaN
OZkI5WLRF52H6HAhKfmr9QgF1hn9fbJDkQXeXUO+3clFSK9krHeGRgP0jqzM
uqtM9v1pyFtuJf66GcRvcr4Xtz8+z7hJk02ngCitojXlVzL4bdNc+5vRipz3
01Uic5nQd6b42w/LLoieuuiq55Yx+PnYREFbpxWmrbIOE37OgoV6DVONMkew
93Z2zdEsOlzq9Zp/C9N/Tj1HO1x2DENORE/VWhOi7086fr3t/YzmsKOJqJOD
49JxNk6D85sJ/x6OM50lzWUYzYSdjuODAwLf/ia3EH5XHJ+1xbdy7D6d4BfH
m60PxL+0aSXyuXB8K59cBrYnEu8jjkcqvUwfEWAS8Qw4fp/91jOqiknwSOAq
F/I/RbURcfs4HkcbVWTfJOtE4HjiqWP1LuYdRF0aHA9wrPu1TpHsh4rji7Z3
yzydxCLeTxwvWomeyZ8k8HSiz+mAsLTQbJJn/GpzRXUsrqGJ9KNycUmf7aX5
CSTPOH45otHRxIfkGcc3mOrrqR4kecZxkyV3Ze1VSJ5x/J5Q7yidn+QZx6O9
DAuiqhgEzzg+NazmYHw0yTOOJ4rHKbI9SZ5xnC9sjtVhC5JnHI+fOejPr0zy
jOOHTUb7ivlJnnE8R3LGjN/VnQTPxPjAZWXd+0mecf7OqSd8pVJoxOdxPPVL
iJzVZ5Jn/Fr4JHmpvA/JM4Ef3N245RDJM46/DlqY/UKV5BnH4zulNFRmkDzj
eIVr/OmRulaCZxxPTzC2GfhM8ozjW58sCpa+S/KM412DBuBoS/KM40nfDLOb
NUiecfzGv7nLrgmTPBP97VcUP1Jr6iB4xvHEb7TAaSkkzzjuyQ7zvLyT5Bnn
SWdqfvuyryTPOF4m4Ci+8gHJM45nR59Stj1C8oxfNY/LO+RqkTzj+KefQSmH
REmecTxkd8ufBXSy7j2OW6x+XNKfRvJM5Hdm89/ofULyjOPyhmMMkdMkzzi+
ztzm5tatJM84rj75zpRHC0mecfzInorj3V3tBM/E/C5FzSdySZ5x3PN1Eq0r
hOQZx01K313M2kjyjPMB4gF3pz8necbxg4oHd+ucI3km+PPrbwncTvKM45mb
r/8TXkLyjF9dc9LCX/SR9ahxXHt2gf3mfJJnHO8yTp/d+47kGcefZ+/+lupG
8ozjvdbTkp+akTzjeNmw/Ytrq0mecbwi46qIMz/JM46fon9judSSPOP4XneG
pkcCyTOOz3Yq/hd4n+QZx1N6/qjXrSV5xn+38vTB/LibJM9EP/fjKjF/LEie
iToca+LP9a0lecbx2tBFdxSESJ5xnLlGMfJkI8kzfr288eDXhGSSZxwXPGId
M92f5BnHM21Hkw6fInnG8fULFcSztpI8E/ej0jp/jRTJM457BHatedXbRvCM
435a7aVz8kmecVzz/Lwn98JInnH8h5vhVCF3kmccz5+f1JClQPKM/77Kr4au
2i4kzzh+4Y0XatxN8ozj6TNbvO4sJ3nG8brQryfUxpoJnnG8tkFvbn05yTOO
sxIuafnGkDzjVx/F1uAtPiTPOL6uymhmry3JM46H7tlu9EGL5BnHwyRhs+1c
kmccj5R/E7+gjeSZyF9/LfOg+AfJM46/uisV8yCI5BnH9y9ZPqbvSvKM43+O
Zqt4riB5xn/HzEzlmZnnaDx6XXpKg36/gP/OJh69DtuX/qZOPirLq9elpzyw
8BxZN9zMo9elpxwZn6ikhUevS0/Z4CDaVf6JzqPXpafM7ipvC79F8oxfWy69
arl0iMGj16WnYHfToK/Bq9elpzz2UahdOJtXr0tPOYF9bRu9jUevS0/Rfo79
sox2Hr0uPUVcxv3Pg8AOHr0uPaUtfFu2tRPJM47bzveynb+c5JnoF8mznnGc
dz3jOO96xnHe9YzjvOsZx3nXM47zrmcc513P+JV3PeM473rGcd71jOO86xnH
edczjvOuZxznXc/4ffHKZxznlc84ziufcZxXPuM4r3zGcV75jOO88hnHeeUz
jvPKZ+J+eOQzjvPKZxznlc84ziufcZxXPuM4r3zGv59X38BxKx59g9CPePQN
HOfVN3CcV9/AcV59A8d59Q0c59U3cJxX38BxXn0Dv/LqGzjOq2/gOK++geO8
+gaO8+ob+Pfw6s84zqs/4ziv/ozjvPozjvPqzzjOqz/jOK/+jOO8+jOO8+rP
OM6rP+M4r/6MX3n1Z2J+Hv0Zx3n1Zxzn1Z/x+XjtQRzntQdxnNcexPECHnsQ
x3ntQRzntQdxnNcexHFeexDHee1BHOe1B3Gc1x7EcV57EL/y2oM4zmsP4jiv
PYh/jte/geO8/g0c5/Vv4PglHv8GjvP6N3Cc17+B47z+DSIuhce/geO8/g0c
5/Vv4DivfwPHef0bOM7r38CvvP4NYjyPfwP//3/467T/w1+n/R/+Ou3/8Ndp
/4e/Tvs//HXa/+Gv0/4Pf532f/jrtP/DX6f9H/467f/w12n/h79O+z/8ddq4
vw7Pd8avkd9PwsDjJoJ/HDfKDVPXVGgi6j/geKjWxUgDRXJ+HNdf1jrnqy05
P/453vlxnHd+/IrPj/+Nf0/sSLdp7Tpyfny+f8YhbUExTbzj0/9jvDY+Hv8b
/xx+/3i9RPx6/p9KZs5pIl+e+D9b5r7tJwNyPP5/3vH4FR+P3x/+udS4VKtH
68nx+P9Dv8zT9DAm58fvV3ewXdX9Knn/+Oc+/HnzyvLY/zc+nXc8/n98PD4O
n+c/7kcbv5//B57wwAM=
"], {{{
RGBColor[0.880722, 0.611041, 0.142051],
Opacity[0.7],
EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[
GraphicsGroup3DBox[
TagBox[{
Polygon3DBox[CompressedData["
1:eJxNnHXcV1XWxW/+TFBQCRMEFTBAFAxEMVDs7u4cuztHRx2dcWwdFfM1x+4A
u0Ydu0UdFdtR7HrX17Wej/6xOeee37nnnthnr10P/bfZY53dq6IozuwURa3y
BRHPM4p6qXK76CDVXxE1opkgtal7MYtos7Io5hW9pPquKh9ROUB0l/o8k359
RFOLphG9LnpNNK3oe/VvVc4sekvUTTS7aAu1v6vyHdFXGqOXJjaV6nOJZsjc
ZlD7I+r3sOh40Z9F/1X7vKLe+eaCantfZV/RPaXny9ym6N3eGrOX6ner/p/K
vx2rPoNFD/Ku2gaKJql+vtr2Eb1Hu2jOzGVA5fkOEc2fuc8hml7t96r/Q6rf
qvoton78pm/+rPrGqn8oGigaLvpU9EnmvphocMZ8lnFES6q++B++s5/GXlj0
mOqfpf9I0W7qu6toVGFirguJxuZ3xh4nWqLwmN9ojCdFE0UnMp4O+OP0m6hx
nuPboqX0vIroMPXpKXpW9Vm1lu/12waqryYaLVpa1F1trehn9fubylNF26g+
XrSU3llQ9JX6LStaE35Q+0cq5xGtWvhbozPnF/TuCqlvoPf6is5W2/J6Xls0
m55/1POG7L3qP6m+EWtX+aDoedHneh5R+J05a891E9EB+u7+rF/1Xxiz9nxG
q/6raC49f6eyv8p11b4H+1D5u0eJ9hbtI9pTbUuLNqVN5TKizblDem+caAvV
1xGVqvcT7c+3RFsxB9Yn2lr1vVR+y30S/VX1I0Xfqz633umI9oTfVE4t2kv1
H0U7i/ZPOZ3a5xXNI5q29tzm1BhziHZSfV/RDqId4R+1LSfakjunvuuIdoP/
K6/rSNHhrLnwd/mtu/rMJzpU9T+Jdod/9TxN7XfO0rvHVJ7bbCpnFa0O/6mc
T/S16r+Keqj/aFGpvT9Az8eJHuMuiw5Wvad+myHf6RXZc7zoPfUfqvYZRS+p
/XHRyWo/JfPlTGr1qURHq/6XwuMdInqw9Bini/rpvRNUniFaQ/Uj2G/RmYXb
ee/JyuWJonNEJxX+1mSN0xGdpvr1Kg8VTS2aXjRd6bm0Kv+u8gK+r3o30dOF
57RPzmE6jf+F2v+j+owqZxCdq/plmcdZos9Lz/ES0aWZL7+dm7kw5ytEZ2eO
Vb7PPqwQnh+Zebys7/1bdNMfxutVun6j6DrRYO3rzKKt1W8T/baMaITqi4oG
Ix/1PDP3WH1XKy3HH2D++q1P6bnck7H+JbpW9Ip+e0p0c77J+qao782iZTkr
/VaKri8si5HzUyKLwQ5k8/LqN3fpMfqXXsNE0YuFsQo8QJ4h11bKmsdmD+4U
XS26pjA+gRtgG7gDjoFn4BJYAWbMVxrneoruUP357A94B0aBVa+lP1i2qPqs
XFqW9VB5lcrbC2MIeDZbYbwBX+6pjCEP63loYbk/ROudvzYOgEdfBzfAqrkL
Y9tcmfc63M1gHJjybWnZjoxmvcjsn9T2omhyYSwGYxbO2sAWZOxIfWdx0djI
/scLy+3VVV9R9ERhbLivMv4MztjsK/izeJ7BZvCuW86AeYKLM5Xe8ztET5TG
tkdFb5SW9eDcEsEo5g+OfRZ+HZFzQ1aDexOCfeDT6Oxbd9X/mTM9ChkjOlD1
L1SeKTq6cl/kPHjyP9EYrXfZ2pi0Wta7W7Bt5cKYQ18w7lDaKsvKi9hjvTeq
Ns79UBn3wBhwB8w5pzImrVUYd9bO/MEk8BGMAu/BJvAf7EEHAIsOVLmiaNvC
MnNKYRwBa8AhsAPZOW9lXLhQNEjvzRSsWrs2dr0QvGPvwBjwC8z5S2V8+kb1
g+ATsLgwppXBtYPVtpJoO9UPUTlOtH1h+b1J9nGV2viyS+F3+gYbDxd9Vxhf
wBxk2z6haYJFYAXyvHtwAvwaGDybqja+gRlgHPgG5oA9hxXGrx9U7lcYW2jn
PXCoWzALfOO74BpYCAZOX1sPGhdeRl4+URk3wAPkOvL9p8JymfeZG7LzSNF1
pfHp2MI4vGpljH0fuaixh4kOU9sqlb+7T8bh/TvVdgUYUxlfwKmPRP+rjJHH
BtPAmuMzj8eCfWtWlutg0lOl8Qz9ZCOVi6Gcl5Yv3DHuF7iE7AcDwAbk66V5
Rh5fnrWfm35866z0BQdPzxxOSNsZIcYAG2aIXOfdRfT94bXxb/bS8u42zjnY
9de8h5zuwhlK5OcO6tO3NE6AMfAwOAE2gE1gxcv67U5Rv9LyBNmO3NtUzwNL
P4Olbe4/emj3yBowCmwCd9ZQOS46Krh1Xe7NAqrPXxmvLhadVhrTzgrWgYcv
RBYNKozPYPDFhXH+GeRBYVwAhyYUxq/nVN4r+qCwnEPOgmlgIfOZpTa23l14
LrRTHx79HZn3RmEsxSbqpnd/iVx+nD6lbSowcGL2dEhpGwV8eRfcKX1PNtS7
tai3npfOHrA/S0UHYd8eUn33rOfpyhh9V3gK3roq74Cd8Njk6DjsYaPyqcJ6
xs+FeRO+3wOcKr0XNwCwol85J5Xni6ZVfS34PnM6QuXhwdevVd4fXNxYfU5S
fZhoq2DHoqJXC+MyV+D50nbam6q/XRhnp+fMgt3g+rOqHyV6WfV5SmM/03qV
Pnk+RuWepfd+WOVxZs8ZgPHg+7rogcHTVzKPJmeNXTlfYduSep+UH4QH5i+N
kd0yx7dTB69uD2ZR3pH6PTlrcP9Cta1Zek3zVObLSYXHwy7GxtyyNB9Myrzf
Sfu+pefA3H6MvvCbrqNxFihtw8Jz8PnI8N3rf1j361nT+uo7tLQ9eFVlOwpc
W68yj36RdYLn6BX0xY5bRDQe/AE7S+s0Q6LjXFKZ7xlrU9U7okVK35tPMx56
EnoLetNW4QW+cbnaJ5W2kd4qjWlg5RWl7STk8/DKtiXYiG5GfUzheTAmOteR
pWUK+uMFpfdxcs7vtaz9ErV9qXINzq3098Dmi9lPfeM9sL/yM+1zqX557uCl
pd/H3hmUOX+ds/ihtE/gPpW7pH6t+lwjOq8yHv2cO0XJ8zGFbdWfU+ced4sM
vAb5V9qu+pPKJURgBPcUe+BUPS5WGsuws97SNz5B3yiNkQvXxszF9fw6eFb6
27x7FDyhtmkqyxfa6ozJva/Tl4s1VcafmrNTfcnSOIGeAm5geyC3L8i3qP+t
cNkt9aHwSWVZc2DWcGrmQh2Zg+yZPnVwB7kC9mynclRpG+y4yr+BR+wHmDWi
tgwEL84vjEPgEfjI++DcOSmxx/5P9dGlMe5K1W8q/RvtG5fGjfGqz5k+yE3G
7pnxkb3IU2Qp8m/GzBO5C05dVBgbqGP7IBN59+q0zZL2r+DD0tjEOWPzc15X
ZA3M//D8Ds6Cab3zbk99t0fluY8p3f/Wwt9grujPO6qcTTRradmNDAfLWNPs
WTuYOVve3Snt4P7ppZ/nyB7MmXbwqX/ms1zp+sTCegEYxu+bl7a1sLNeKy2X
8SGeWdr3h+w8o7RvEfnNewMyDnoA+gDy/G3980ZkCPJ5UMbcSG1rlZZ3+PGQ
k2AlffguOIK/kP7Ixn+W9vHR/1/q/2ZjOYWMxD5BH/gwcgR7au3SvkVkxbql
25Et/1daHnFO6JT4K7jDe5Wew6yF7b1Fa/d/s7RdhIxDJvJNZDO+OOQpshRM
4VvI88cyH/psonmuV3rt6AKDs8a3UgcTd86+sX/IAGQBOu1XkY/LqvygtF47
svR95H7ivzg1/bnXfy99H+AH7hL66BK5T9wrZNHHKj8qfQ+30NxOKS0Hbijt
K+mSCbyH/+SQvHt+1jhvZHCPfIu7s4S+tZJoQ+ZV+T6gq51Tem34Bs4urV/C
49iwI7Iu+A7+m1BYJ1w6Y+K7WCFnh+2+Yvoj+1bK2sG+sTnTVUvrk7z758p6
DM8zZUzu0+wdkXjm08q+XvyuXfYw9QUKv7NGxhmRuWJrwwvr51vofdio2KfM
kbmCzyumP/MEJ8HFT8Lva4bnGWNk7Pr1whvLRBbxXWTM2rkX/bl3mu8GpfGd
+8a9Q4c4L/XukZ+cdZG92Sj7w1ngI0I3RjYjr5HN+FPBKnCKeaybdZ1bGnMZ
ivvMvUYH405smXsBHtOH+815Y+9w/i82lhes8af0n8T8NYfJ2A45z7VzpuzN
1qXvFDg3qTLugRHbhz/BEJ7Bi89Eb+r3D0T/QB9u/B54ult49cbw2C2q3x3e
uz8yAT8LusqY9EHO4uNCtiJXHyjdB7mxW8ZlI8Bz9urJ3Gl8+siZ20vr0/cV
1tHBjIuyV8gR7vqrmufG8E1t/XXP8AnrZv3ozOAI744vrGvgO0Lf2EHv3tqY
95bIfFgjeiH+KXws6I/okehlJ5c+V870ttIyHzmPTwR/Pj4S5AnlmMI4fmjm
DKYRM+COP126/R+FMR/fKLiPDEAWPB0Z8jfReYVthcPCt/DFkeEf9PqjS+v2
2G7g3w2FbQnqN0bG06/O3qDrTxe5iO0wfeTeyVkXOjJ4ABbw+3Gl7Qvk7gml
Ze/BrfhCa/t3YR6EFyfnm0dkDhNK2wucI/IbOf5xzv2U7DMxFtqR7cdlPpwp
WHBS2tGnkL/IXmTK28G47Sp/i7WCw/8oLZPZH+7YwPDmOeHPzSrHW1arzZtn
h4c/Kb13N2T+1NEhiNF83vgcwUIwEb7Ah4auu3rOeXzOGjmBvHg3e4I+zV3m
3A7KuaMToz/iw0FHvrJ021SVdWV0453QD1vrzd+l304ZH52ge75/WWl9G/0I
XQc9h/gC76GrH1F5fN7fWfX/ltabHqj8LmOAzWA09sIFlTGbNnRo+qJffaP2
PrXXu3z2dO6cD+fHGbGfyAX0SPDthvA2d5c7jC7FvFgXtsSh6Ucf9GTq6LrY
vffn3uEXR19DzwS/7gg//3bnSutaM6QPOuAtpd+hP33vDG8gSyaED7n72BvY
lawD+TUgfe8q7W+ZBf9JFb+zyv6VfR/YOQ/EzkGe3VpaF8ROpS9yj3fxWc+c
dUzMWvjmvfnuXfnehMJt/IYswk9Lf/CO31/O/NFdWRfykxgl4w4r7A8n5tuv
8Bwez/jEU54p7c/CvqcfvqO58g79wU380YtGpuIHGV/4vQfz7peV7Tv4/Tm1
PSrqofreOsN/ldadHs0caEeuI9/xz6ArYqfjL8dv8GL2H93/PzkjbCb8eqeG
H5CJz2Ttd2R/+uC/qTwn9oAzJlby79L++mHZsyezb8gPfCLItCfT7/HMhTlM
iszEJ4I8pO2FzI01XZd1cd7YGmB6r9Tx4fWtrJ+zXux7fPjwP22vpZ0+xOPZ
e/R4fgPf8R19GD7/JO/iK+AOY1Njv2PPYyNvlt/fyPjDUue9GzX2O6X73dnY
Jp+S92hHhqBb8j38VJ+W9oshZ4gXLlc7fsj9RiZw34lBLl373qOj8ztYwDff
zBxoez/tlB+kfnLq6MybV/YHr1F7rcwBOb9FbOHTsuc/5SwWg7+yzyflW6wV
3Rn8A/vY+8+z/+g36CboO+i+6MCcD3Lu06wR+Y1M5/fLskdTIk+m5B5xr78I
n++Y9mVzzl9lPszri9QpeSZG+VLuFXcKn0GP+A3Ic8Cnwd2/TfXvSsel4MNv
wquXpp07+LesER3seLXvUrn/qKwffez+vAuPE28jVofPje/gQ5kpcubrjE/7
95kD5Q/pQ7yM/sgZcGan4AR3ccfK9xH/CTgBX4Al+G2xyzeJbwr9mbjRArVl
wj3pg428AQZo9AFyHtDd6Y/fk3awmzHajAOfgnnwKjY6flq+ye/d04exq4zP
OtjfhyIzqbPG9Sv737jj8PUy4W0wFl8NOIvtOUfq+KaIo+yUtjnTXudbzOE3
LKpso6FTvxu9+sO0T52x8Qf9Unit3TJn+AT5e3pkKXV4hrjVIpVjV2DpmOAp
tjm+yP6FfZ/4QInzXxG59+fCuRHkSJCfgN8ePwY8TNkz9Zvy3OULwa+PjwIc
I15LDBncwk+3eu4C73a9N2Pe7Z3vEweh72zpT8kz94g4GPEw5BVyDnmH3EMO
/dpalnE/+A28YX84U2y5R9JOf/abfX8u8rNvZCb+vz6R+V3ntGPm1id7Mmvm
xhzo1ztzJj63en6HT2YJjq+o/V6h/t0nSp1YZr/g++nBCPzLYNbY2u8MD/bT
h1gQZb/U4R34CZlDzKhf5kCeFOMg35DjnDk5MAtX9q2TJ0UffDGzZcy5Mwf0
iflzppzJ/DlHygXSjpzHl7pZ+GpQ7hG+amxk7D78Ftjw2Kf4w8mTGhL+nDtr
gh95H13xt5yH3PdBaWd8fJC0gyM9MocZcweGpJ28COoXZYxFM87CWSdrnCd1
9nZA9oF50XdE3h2S+uD8vnD1uw9nWOroCUP/8P2heRf7btHUscXBlYsLnx+5
TJwna1oo6x2Y8QeEh8hZgq+JMZPrhHLAmS2TfSAuTnycmDhympg98Xpk6ELZ
f/Rs+AGexT5dMDzQtWb2H2xZPHMjNk5O1kOV50w7mEXcmtg58QXmsXLtedGf
nCti67zzYeU2cgq5423u+2/6a9pmTp34/cq5R+j6xHCJX/O8SuZMzJvYN/Fu
iNg3761X2weAr3zD2vFv3sWG3qq1vQi2gDHUkWHEdYjrEuslfkvsd+/0QYZj
F6IXone9mDr2I9iyavAFnw2+my8inzeMrEDWrp928gWI2TN3cAYcwl48Od/E
742PBznbP2OCZ8hq8Ig6tiQymD7YecRi8KN+XNlWXL227ch318u77M2h2R98
WfjBsM3RodaMHjVvx7kla9XWHbaqjAXvc/8qy0vs4C0rYw119CR0pA9TXzI6
xC7hN/wz21Q+D2L55I0Q20fHeT9j4rP5rLKvBx/J9pVtas72kJwveELeG5gC
f1XhsQvV/0+VcxQZl7wQeB9e2yP8hj9qHMxWmh93D0+iE6L/oQcumXeZH7Gp
PXPPyO8j52+rwvkIu2Z87tleuWtjKucOcv/I0SAvhJwQMB4sQc8HH/+vcl7B
lamDC+S7kDtH/gt+IWwYeAk/z92tfT3kV5A/Qe4EuX5tcie4B4fnLhBDI9eB
u0IuBHkKvHd15RyX5QrHVk6pfo+9ENsgrkHewnFdvFc4H4Z9Y33nVtbxOb91
a/vYtg0fw8PcmzNzd7bJ+vkdDPvtbhfOj1whe8h8T6rsJwAbz/jDPjDOroX1
EOJp4CTznbrjObMWYpln546yJ105GWdlvadX1k3hwTuy38RnsRvwF2A7XF85
TkA8Ex8n8U5iAOi6l1XWd/nO1dm3R/Jbv8LzuiZzI5ZELgL+jJsq2znEOYkF
XJV3z8k4Z+fMr8h6e6feK7/Rf/nIeWTv4Mg/8lSQeejnt2YOl+db4OolWQux
B8a/OWvGH0YcGh8zMf2vW+u6rO22jIP84Tfaecb3jc2N/x6/Ob5u1nddZX/N
gumzUMpbU6e8LXvOPRuTu3aNyr6N5cUlqvdqnCNAPhE5POTykItEbvB6heXY
xpGn6JzoRuhg5DrBQ/APOYbk/JETRw4RY5B7Q44GeRDkovwaXtsyWLBRbR8x
vnpsYHx7+F75FjKT3D3Gw7Ylv2nbYAs5TfD0tpE5jEfeLTYUua/EZMiF4ZvE
RskpQ0YgH8ifYgxkF/Fzxubb5JStFFlCzhW/I5O500eH//tnP7bOvVsv88dW
QI9Hh2dNlLQjs/FTEg8g3oKvf2Tl2Cnz+nvkPL4CfAbYf8ydZ/YaXGHvwQF+
v6Oxbxi9A98XspZ171s5j2y1yutnveTSdeXKUW4QGXVw7jR7zNjsM2dHnih/
C8Cek1PAMxiKHcU80HPRd9GDyNdjvPUL59+Rh8f3yMtmLstWzsVDD9o4vER+
29j05xzQf+hDSY4gujZ8hY+QuDb5S8S/kL+PRI4xBvl45OWR40SODfFW4hBg
FHiBrPoi/d+pbMtj0z/R+pl6z45lCzKGHDHyt9C7V8wcyf0kp43cNvLl0JHQ
r8j9I5b37+r3XMmXMxfyepgPuT/kWpCbyj6Sp4/vC/wg75P8T+JWyJg7I2e4
v+Rk3lv9nidNPtkd6YPcIGeX3F3OZWR0KNY9Ie+Pyt6wR8yT+T6YOT9c2fbE
lsV/83Dq+D4+CN+iX5FTRy4gz9irXb+/mT4rhZ9mzb3h/pCHQr4hGEiO4XtZ
70uxlbBZsA+YL3eDO8NZfZbzYk1Thd/G5gzuz/7RNjB7zF6z5+gT7OWrOf87
cw7IDX57Nd/Gv8pc0EPQwfD1o3egf5AD2ju8Tl40Zw+PwQvY08g2+B4/ADY9
d3ui6g+09nE8qPqDreMM2+tO7tA4rkQ5sXV9AdXvbx1b2Eb1O1v/3camql/X
Wk8/jXvdOt6wtdpvbx2TvFftE1rHcu5W/b7WscAbVb838ZKbkYeNdbIuuYOv
bNn4BJg/sgcZRPySeAWyA7mxid67trXfaFh8HYyBT29o1rxb6zjGEZFNyCBk
1Xy6O6Nb67GjYvsij9BN+RaybkeN/1DrWM+aqt+k+onqf75+f6y1v2amju8k
93FX9Xm8tT9pF9Ufba2Tv1D7N9qHqP+TrfWcDdR2dWt/4c8q/9LYP7S7yvMa
6xV7qHyqtR7zrcZ5urVuPkbtz7TWTfdT/YXWusOWqt/aWl7crPLG1vrmVmq/
rXUsdPPGv9G+meo3tNaXtxDd0lp32lv1Z1vrEi+rfKl1vt56av8Pc1Z9/8a/
0b6T6g+3jqMRmyUWDE5wTtgLq6WN/ADwghzd7sFX+JKzWy5nwPmOCl6BW8h7
8nanCy4iX8mPXjU4B06QR90li8mjxr5dPvcWHOLMR4cv8H/BG8SPFwuewWcL
hO+Q/eNiAxwcvOmW8dDBGZO86rXzvHLwgHxvcpoGBReZK1g+fXiXGPxv8fTa
Mge8Jt91cDAenQXdpWfwExzlfXK20VG2Kn63T7CDv2gsK7rsk/Wjb4ClzH3l
YCn7tkruA3vM/bit8V0Ai7lvw3J3kBncuz7BbfCbfUGH+ray3rBa7iFnC54i
Fzk3Sp675OWKOQf0FPQV8rp5H/2D/HB0E3QU8sC3KawPzZ09Za/Z420L60wD
sn/oWOhX+CTQw9iPlaKXcJ7w1/D697+xoU6O2bTBjsnBwseDjchsZDd/j0jO
w1W5+xOJ89fWB2YVX/9c2ydyv9q3q60PbKz2c2vnykzgLGrrKHPrju9d2368
T+1b19YznlB95cb5h/3UZ0e116xZ49SNbZj+qleN7dHZVf+lti3I+a8T3QHe
GR5M4WyxyfA/wEf4rcgfvldj3N1Yt+GeYc+Ra7++xny4dtx6DtV/rW1f9lO9
bMw7c6JfN9Z/4GV8WtflTNCb1syZYAdiEyHPsLGRaReo/mzjfIutgxNgxGXq
/3yT3Bj1eaN2bOyG2vvOvTizNU6AETtjT9TOLSpV7944LjZZ5UG149pvq/5A
7Xg/+uiVjfngF5XdGsf+3myda4qedEDtHA9yO9ZU+6yxHb5VOVPj2Cu/z9k4
5vCGyh9r5zl8ovrBtWMjq7bOO+kvWhHZH555Ts+rNfapvINMTm7Kptzhxjkq
6KtgOzY4Mq3r7/O4H/ydAHsKlj5VG0/B2Gtq7+H2rTEVPH1d4/1QO69jQ7VP
qRPzEF8tGDy9HDldW54voPrOtf9+4QvVT2hsm9WqH1U7zvhOa5mOPJ9H9U5j
H8kAMKex7T1e5TWN7+grYE7tfCV8CfgUtiMYo/rhtf0Tg1SfprEvobvmNltj
vw/4P39jHeB61T+qHd8dpvr1tePS26l+UW3f7a6qf1A7PjMv2NvY5zSf6lM3
tmUHqt429h0gz/C94INBdo2NPgbOd+WkIL/h5bsa6x3odrwD/uOrIkcJfMC/
g72JbOYO8beHyELGQ89D5hNfvDDyhrwZnicw39pxZOQlusb4yFfOH1thfrC9
sZ+jv775YOO7OkTt0zb2Sw5V++WNfY2/Ru9DFuyr54cazwlcI85DrBIsZd08
g6V886LgCX44eG4/1R9u/Hean7fOacTOv0v1W2rnxWyOf6i2zwycBgPBbfAM
3gXfkOlTR8YjZ9gj+oIrtzfGGexpbDP+VhtZzH4hm++KzJol8h35j7wHD7gP
4MO+wQhsWLBo4+wdNgE+YXzDXwb/To2Oj08QuxZ5j9y/KrozOjT9wFrkGtiL
jn9qdG38Pfh9Xox+zR6Pjs7fFcudHD2VccHNjcJn4NZUwTHsauQ1OAdmc2Zg
OPYStlHX323z3GXz4LvEBiJnDLtrYPgVPoN/sSGwJbCfwPg3smbsHOb8UebL
vLHzsC3HBi+wAyeGV8Eb+Ai8QE9Cb0FvQp9Cd0KnQi8BZ9FTuC9gOviO3oVe
gG2LvcGZYn+g96CDoQdhR2GPYFeB8djMYD62FvY2the6C/gNdqO3YYuNCybj
o8ZXvT5Y3PpvnbFpsG0OSh/wm3WTd/Fqbb3+G/V/pXZc8iP06tzbv6p8qrH/
8mOVTzf2q/3YGjPQHcAlcjfBJuQNue7InF7qs3RjnXkh1cc19muOUv2U2n51
cOC62nJ+Ejp/49yztdXntto+/h8bywLkwD1qf692bsevar+4cc4JtsVaje2L
K5Abjf3041vnFJEL8JbKI2vnwi2v9jMbyyh+B0fBUN5bNe/+T+VLtWP+2ElP
1raVpmuNzcRW4H/ioNwp7NBrcy+xVbmjPGPrw5/8HS18h7+FGAE2NfvNfcMW
5s6hB+Ar/V/uEroVPtpO+HdA4efXs/fE5I7IeT4aPuXvR/k7Us4dGwAdfAZs
mtpx8kr1U2vnaU7LuhrnBnyn8pLaeQv4DfAxIyP6goONcQrbd2Rj+/eJ8Bp/
Jwc/bpH7jhxCr8EXsFrr/O8BsXuujO2DLYE8xbZ4WuWHjXPe/wReNc6Z2Yw7
1Thvcl+9N0vr2P5yrW1XzmIfcK2xnoOd+mXtXI331Pbfxnl+H6hPz9a+1ZNq
22/Ybieo3q11Dt6HyM/WcuwHlX1a+4d/UvtfG8fn0GV6t9Zn3gP3G/uj59Hh
9GmMDZ/U3mv2uT/73jgv+IjWuWrkSWyicsPG8Rl8sbsFH8mvO7uxLbxwx7l+
5Pwdoj4/Nc6N2kLjD2uc7/oscqBxTtAmtW1I7Ef2+7PG+YWHgjWN8+Cwg/ds
bAu/jL7TOD+P+/dOdK0BHd9/7v4yrW1s7OuH1Ofdxv8XyHpqf6R2zO1C9qd0
LvtPreUIPH2t2j9tnIvMd6bkW38H3xuf4yfqf3xj/zXxq7rjeBP+uapjG3wO
zraxn2hZ9OvG8aHX9e5rrWMGGyGTGsciNtf4Tcd/czxHx34BfAKMTS4B4/P7
L637HKn33m0dfzhM9UmtffaHq/52a532RNW/bB1D+FblV619cVzK71rHrM7R
d//Z+F5Pp7LsOG4DTzXhK3z8U1r7879XuU9tfzIxkXMax0VYNz4I1n5ga/8C
voXTkZetcxS/UXlS41jC7qqv0jifbjPV368dnzkSXbS2n28N1Qc2jvMt0jEv
woedjufKPKfteE7MZ9aO5TvyZR/4qHGcZK6O7wb3Av2X9aADf1b7e3zr89p7
yn6yl8Ry2E/yXvesndf6fO1n9KqN1Gfh1jl+3JWRre8LceDFWsd/0a9HtNax
11E5OPyMHTOisS0D/lzbOG6KrbN7bXsHeT+8scwHK7asjRfYcHu0tuNuQi9t
7aObXHtP2U98rvhe8c2uq7ZFW+cqn4iMah1f3kDl8Na5UlurXKT135EcW1vn
Rt/epbb9cCR6gfZw4ca52WAs8ZgNYzOt3Npu4k6v0vpeX6L6krV9QGeJ5m4c
U8begkfhT/oulf7Y39hU2FP4z8a2+VvCjjEPvJte7y3YOje+B7Ktdb56T77V
2i8BPs/TGKN7daz74Ts9UO1DW+cegxVLNsaLN9S2Quu/l8Cvhm8FvwpyYs/W
sgK5js6BbEcmcZacIzEo7ElsSWyXpRrbL3x/rdZzmK/xGbD/f6lth3N2d6m+
WOMceuQoshW5iozcprWcHKr6HbXtqxdr4zqYvmVr/ym2HrIWfR1dHX8tPAE/
oIPAi+ghj9aWfaxlL5Xbtv7uQo3PnnO/v7bPFH/pkMb8DW/fo/bRjfO2scvB
LTCLue+VcVj3oa3XfnhrXzM4e5jqO7Z+d6DOYqfWfw8yHl5ubA9Oqo0TYATf
OSz98RMc1NpXMFzv7tD6jhyg8rrGcoAz3K/1OV6g/vu3tj+Q0/sGcwc15nX4
HBl2cOQYOX6jGuf5vaW2QxrHJFkzOcToKweq7aLK8c6zGsddiLmgG+JXRT/E
hpuxk3i16j1iP4K9ywR/kf3TdCz/WTf2MGvfS/ULG8fG4dMx4T2wFP9yV6xn
+sR7+iL3OpZp+NqPbe1vP4B5NonFax9uaJwfgsw4po2eqbalOl5vH5X/aO1n
fq42ZoPXKyKvW9t3N6o+quPz+lfj+8/dn0Xlaa3/j43r1b5Yx7ntnAkymnPh
+4t3PAdkG+fH2Z2i+mmN7R7eG5F3wZCZO8aRcxt/g/FPRU401hOf0zf3bZw3
gE6HDwK97hjN/9zW+SRrN/bXo0vj/8CvjQ9kDZWXtv5/L/BDnNd6/8Gf8yMz
+f5ZreeArrduY30PnfqfrfVqcODs1lhwhcp1Gucc4Pu5sLX/B3/MUa19Mqs3
1uPR4S9X+8Wt/7aMM5+z43Pfrfb+srecIVjFOaI79O5Yf7igsU6APtC7ccyb
eDexAs6ScyQGflHaz9CYr7bO4b+0dmwGPkH3BiPBR7Cxb3gJOb1kx7KamAy+
JGQL/NutYx7GBjqisR0ENuI7wG8ATw0KX5HHQZwDf+BnrfUkdKSrGstxYiyL
NOYt+Ar+GhgeQ7/7b5u8DdU/bv030OhH5GmgIx3dWCdGH2b/psoeXqH2+Tv2
66Dbvt9av/2m9t6xb8ep/LB1jswxqk9une9wcGMMWDPy4KbIBHSchTrWK7h/
+BO5g/8PKdJP/w==
"]],
Polygon3DBox[CompressedData["
1:eJwtmHkcjlUWx5/nfe7zWpuRmZYpJkwl2ca+pIWsNUINUqgsWSoSskb2rZC1
bEXWYioTjZqGCSlCtkY0ZM0SDWbQjOj7m9/7x/m853fPufe5y1nf4u26P9gt
E0VRtTiKAr+N0iiqA00E3wF1gu+bRNEsZP3ADcB3Qy/BV4WehP84sawpC90I
/oSFWqH/CPQBeA7UDHldaDV8JeRbkPUFd2Du38EPR57zKfKPoGeRFQA/Cv9r
5C1YezN4oNaCnkPeFboafhxrnEe2H/wd/CDGOqG/DTwb/AC4Hfg0OM1GURvG
aqFfk7HS4Lms3wbcLPG37kA/T+xvXobvzvidkedUQd6FsVeQLwFPQudpxtrz
25/x16HX0K+E/I/QneCd4LnwrdEZCr4ErgHfFboOfBC8CflnrPcheBU0AdnE
jL/9MeuXj7yHNcieZmwifH/mNEL2mu6M3yaMXcV5xusMkb/RHllB8Bfg59Ev
D17N/AGx37QxeDfyhxhrz1hN8JvgxuCzyB9krC18BfjF/O6B5kCr0HkH2QG9
P7QVfjI6pRhvCf4P+FPw1exnutYH14OmMXckNAS+JDQM3XfAT8BXRj8vuAz6
Hdj7TnBHZIv0xuBB0JfgZVBr9KdqTWQ7gu/6X+g/gexv4ObwLaBXkbeCPmf8
HnBFZB1T391WcLnYZ1ycO+Mqfv+KvAN6T/K9isj2wb/A+OfIm8IvQH4Bfizy
/4I/QzYGvTXQBPg+UAf4gtA/kF8nf0D39+CH4Bcz/0fmv5Tx2aUjme7gOPwe
qDP8FOh6+LvQXwp/hTnt0F8dfLaW0EZkfaDOrDVf30PeF/yh9gluD14TrCsf
24PsXb05smI6O7KF4IuR77gC/AHmbES2gbH1yHuDu8E/AyXgceg8j25daDL8
DMaGwPeVDvxmxvIxPy9v3wBcH+qD7A/o5IGfgHwgfEOoIPx51r+C/gh0toNH
oLME2UjwYfl6MD+VsXPyJehx+DPMmYj8Nug+8AtQfr0b8q7o3w8uLFsEX0D3
ou4H/BU0C9ls6BX421Prvpjx3kpCjTLe4wbW68r8F1lvPLQCWSloYew7uwF5
bXBN8GPoT4IvDTXO+E50F+Wg/LHv5Cf0Byb2jZ7gL4K/obULSCfY5mXrOtNM
5g4Db4t85sPIX08crycoBsG/xVhTflvEtq3m4JcztrEM/FjGeoPvVbzJOoYr
dp8GlwOvRScw/yn0y4JHIe+J7B4ob/Ad6251J0oSo3Py2tA18NfIvrQ2a76V
+k51l9pDjGwMuBd8Hegi3+ke/JbXQ6ekn3juJKiSbBfcO7a/zZc9KB+gO0bz
4WszX0mrVsaxcTT6RyLHyMvw9zLWA9ndemP0pzNWRvkJKgs+DN4SOybuVD4J
9mX5dFW9N2OLI+eQ5fAPBH9bOWYdfK/EvvA09BT8w3o/5COgrHjmDIBvkPHd
jEBnR+Q7Oqe3Sfw2i9hDnPUamtsEKiR70J3AN4euKF7KB3LvkQ/9HnrvyHdw
c3AMV+xWjlNs3x8c2xTjdRc75KMZ30ke5vdUzsh4jV7Bd6CzSyePYnni2FMU
ukqxKXWuLYHOUb0NYzMVi2PbztvBtiMbKsT6U8DTMvaBAuA+4DqRv3mT7hbc
MLH9tIRfmtp3xrPe9NQ5UrlxFNQFvang4Rn74GBw+Vxs3hT5nroGx/4u/H4H
zVO+jp2jL4H3gzcov8qmWGtX4liZh7mtU59D/jU0sa3+NvXeZLN1mV8idazr
k7HtF039FvIBxcLiqX1LMVG+Viy1rcvnFjK/KndwH2u3TOxbN+XW13y9bZHU
tqo3/ilxDaXa6S5wDfjfQFVin/d91iscnJtTxufD12D9Jsz7AP5QIgHxm5/N
yiGpY6xiq2LwVvhfaM96L+Uv9K9NXZutZew51Ras0x1Z28i+d0PqvcgHO+n+
sz5Lkji2FkI+JeMYWx3Zu5of2+ZT2bvyLfL6yhfoT4ImIy8S2xZKZP0t2cQW
6FhwbSUd2VL+rO1LNrVOtR1j+7Q35C9DzzBnOHiT8i7y6rHro42JffkbflfE
9mm9xS+zzkV6kx8T15CqHa8oz6oG5Lca8kfkU/C/gtbGrg9Uq10JrlVUsylX
Xg72DeXMU6qVE9vWQcUY+KPyl8g1dVPWOhIcu1Vj5gMfU3xQLYtOZ3Amde2g
GvmI7lk2GuVqLOZms44Vgxk7ieyE9g1eBg1QLAQvUD2gfBRc86rWVU04DnwB
+Wjw+9Bw8PnU/GLZMPM7Kz/BH+J7A5CfRv4n8Dz5ZHDMVqzWmGwlyjoWy2ZG
qf5QjpJtozNQ/pd6bivwYPDB1LlXOfENfvurdoXvJ7tGdgZazvifoWPwY4P5
hdBRxYfgXK4zyrd1Zp1VPq7YHqMzIXKMv5G9XQIvgz+Ucawqw1iay3dfJ+4R
1BtI52TiN9Fb7AUPUX2hGBi5pj2RuEZVbaoaSufUGfrlzjBRtpi49yikeppv
lcy69ldNrbN9n9g2dMaz8AXk/+DvoTPg/KlrgRPQ0uCcrHijHmUBuBS4nerd
4ByhGNglFwOX8Ps7+SfyBqx1G/wP/B4Gd0FvBfKiwbn/a81J/E19SzaqWHJL
1rWmYsqgxDlJ31FMWQv+Frxb8TJ2rrs1dS2nnLcd2avolI3d81VHtkM9A/wx
1YfgT8CDY9f4ZdFvy9g61frK8doT+L2Ma8Itqu2Da2XlTNXew4JtQTlrV3BP
oV6iTezaTm+gu1eNVwW8D7w+tg9VBS9KXAs0Q14NvF5xWbaj/km5MHFsVE1x
DtwtuLaVzzwre0x8FtX8K+EfS733HuC98LsZWww/h7FZ4G8T5x75+Erw6cS+
dSrOvWVwr6c33Qy/KbiXq616E91vgmOzeuKKqWO8Yrtsshv8tNS9tGy+Cut1
RH915BhcOriHVu+sHnVG6pw3NFdTqrcpF1xrqcdRP7s8sa762rfR/Shx76ie
//9vlTj26s1Oo9M6cS07S/2Kcg9jP0TO+eplj6vHid3TzlPOAtcHN4qt+wL0
ZsZz6iJ/FHnhyP70F/h/BvfGvcCVU4+JL8lYheCYr1ivmK/e8kCwbarHDLId
3Q/r18u4Vt+Lznuxa3bxF4J7V431Q357cO+jmK9eoljWuU49hWKtaljVroq5
iiXFs64FFVN6QIuC/0tQT14rdUxRLLkV2gUeGRyrVUMpN11UDxE7R6n2VU+p
XlI1cH/lKPBK+E6xe9nKsXtZ9bTytTHQ6Ng+dyg4Biv2yqZl+/9jbG5kH3iD
+Y3B42L3pNuQnwyOzdLpjrxk8N1qzSLw13K+A+ieUk2j+BW8F+1Zuf2W1LWu
cnw9xZ/Ud91Pc8DbE59dPbtqsy8Zuz92jaZe6ix4cMY91fHUOUm5SD1gAD/O
nLUZ25D4rxL3tho7pPye2tcU45S71SOqN1QO19vfnLr2kA3MTOxj8i3VVDPA
CxPbou5Ve1sAbhh7j7PBRbI+u/7TqZarOTblag7lSuUY5RblzOGpa1TVarJx
9fKqeVTrqKf/d3APoNpfMeJnSWeJ8A==
"]],
Polygon3DBox[{{126, 643, 726, 127, 712}, {1056, 1355, 1057, 1238,
18}, {1429, 1167, 127, 753, 644}, {1058, 1356, 1059, 413,
300}}]}, Annotation[#, "Charting`Private`Tag$66030#1"]& ]],
Lighting -> {{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
Opacity[0.7],
EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[
GraphicsGroup3DBox[
TagBox[{
Polygon3DBox[CompressedData["
1:eJxNnXW4JDUWxR/WXdq4Lg7DwsLgroP74O4+wOCwuMsODou7u7O4M7i7uzss
7rDn9855H/tHvkqlU6kkdXPvuZL0VJvusOr2o/b19X1T9PWNpusJ3b6+w5Sf
StcDlW5Qer/T1/eUrncqnaP807repXSu8s/oerfSecovVfb1/ZjfllT+uzyz
jPJ/6HqP0mdp8z3V31rXK3le+e30zquUv035cQqXX6/88K7LH1L+AbVzh9Kn
ul9a11/y7mfT9vmqs4TKv1b+DqUncz1b5bvoumDV17eD0jXKb6/rP5WO0LtO
0v10Spt2fN1E11N0nVFpb+U/1nXX9PPgpq/vCuUP0XV3veskXW/T/VtdXw9X
nTd1vV3pZOWP0PVmpV+UX1X1R1O6UfcH6b1zKt2k/MG6zqV0i/KvK92qtL7q
/6qyX5Qu1/126uv8StepvFDZimrnAcac8TP2e5JflO/R9bfhu/AN+H4L/N+8
zKu0vNo7UOlF5ijlzBXtUrac0oVKzytdpPJD9c51lO7V/TpKz/G7ykcmv2Tm
4InMw315dmml+5VeUFqW+VUba2Xez0nfoCvoBtpaSGl8/X5dvvvyyl/P88rv
13X+xY6/3wddf8+dlK5Wekzlu3f97PMd0wfzsIjStWrnGqVru6YHnntcdc7N
e6FnxjEy43qn67FeoPzmul4G7UJL6v9HXbfznPL/CT1voPzfSbqfXmll9W9N
pc1UNr7SySrbSqlhXTA/6st8SoXuj9f1OKUOYyj8XsqXKDzXJTRbuM+t0iml
+1Mrna78h7puw73qDNX9g13T7SNKPaV1VbasfhtX+R2VxlR6uOO5HCvzeb9+
X0BpbN1vpPpjKe2p/BgqW6H0N/xR+R+ULlX+DJW92vX431bZ5LquoHb+pusk
zLnyT6h8FaWJdf9O4XoTsV50vVnpcOUnVZoMmlL9q9TmlUrr6X7tjn+j/FSV
fc48dc0/GAd8ab2O38t64Z28e0jH9bhfSfmN9ey4Sofq/t9537Iq31PfZj2l
mQdoP+uiVt0p8+xXXa/HaZRGqL/zFM6vres/dN2nYz4xjdpZW+k15adQWlHl
U+l+NaWNlZ9NZbN3zROGKU2t/Na67lWY58JvBzPXqt9RWkTlg/jmqrO67tdQ
2q7jsmlTvn7aYQ4WVJ8XUJqq9HxMkTk5Ke/mvaOlDyOUnyHvI79u5blgHvbR
e2f5v3FRtnfylB/R8fpmnc+ktG/rZ05V/kO9e9HC7ULLs+p6FP2sPD88e4rS
HCo/VddpVOcM5efkuxReA3Mp/6+O+0W/j1HZ0WlrQV1H6Dpe13T3eNYdvGr3
yvzsd+XPzHhpl/Z5Z0/PrqT+PUTfdb1V6VylTZXe6Hpt0q/Tu+ZdoyfPs8cW
7sdpaW/0lLPGXoLmodHMwcC8nZJ8V30apXL7qxemy5VCq+SHKv+hyj8IP9xT
178VptNvu+aP8OQt1MYsSpcoP6Z+v7jrPNetVL6r0tgqv0T3l/JNu+bd8O21
Sssjvv8BqnemUqO60xWm+bNU5z3lv+iaFv9VGAOQh75ODK1+lTx0tZ9+n1bp
LN2vkrVDP39W2bZqf77KPO5qpWuUNqFdle2m9GvXsgo51VeY3yI7kGvIHuTO
qIXlB7ID/gPvQXb81DVPh59v2vU4GeOLqjO10lpdf2u+81ClNaCvyv1Ys2s5
SX8WV521u+bt3xfmr/D8Yaw7pQ275qUP5vtu1PXcXqY681Sec+Z5AV3nVbq5
Y8wCpgG3XKM5nxFMo/ytSpcrXQFdq/xf8Dh4W+l+3RH5gmy5F7nW9fVJpddV
5zWlx5V2YN13Pa+v6v4mZAi0kf7Rt59V/gX8v2PcBH4CU41U2ayF37W0rksV
lkOjFaYTxt4/H5mTP5Nnvg7S9WClT5QfqvqHKP+Z8hMWLn+1Y1wzaunfdtJ1
ycgI5AnPv6I6+6cMDPNNx/jyW+R1Yd5M+18oHan85x1joqO6vieR/7VjzHSY
0lfKv91x/i1dP05faQfMdUTqb11YVv6nY7n5cOZ6eeVHD50tp/wooUUwy32h
K+ReN/THWn8w6w4Z24Y+jlT+sLT7cte0B23sK7o4Uel9eEppGQzPGrewXAZP
jqf8o13jnJX1+wS5f0Xpsa7xDHxrrNA0uK/KOmGOjsi3YA7+lXnYQ79PAs/S
/T913U1pn65l/t5dy33k5wFdy1Dk/75dY4B3C8vpY7vGVJQ/Gn51XNcynTUF
vgRb7qzxbaq0OvWRdcg85X/oGleB635O/XMH1mDo6rfkaQeZDj3Az8Ek4Dzw
3vPwrmCs5zrGduC6r6Gnrulov4yF+hPoerTSwh3LCeTFTx3PL8+yLt7PMx90
jDOZ7z0Ym96zsNJuys+WOdtL6WqwVun8roUxEX24HoxaeL1OoN9/D7ZcIWWs
35UKr5nxdT9x4b7RR77NROkn9PBRa5r4DRyh/FZqb7JasqCxnnObyjdpTac3
K79Oax0IfeGI0hgF+oMO19d1Uj1bNuaXfcpvrPrbgA+Un6wxrf+udtZX+TAw
g8qrxrwZebFQzzLj0tL0fbH6+TfVmaSxjjed8mM25tmDlU5XW/9mDal8c7W5
rfLTKD954zV2JdhTdf6AT6h8mOoMV/4o+Anv1/V2/b5F63U5peo0jeXDIOWn
aLwOJ9dvx0ETYB+Vt41lxWjKD9ez24G/lZ+y8Tq5E9zUet2MqXS80jvwXJVv
3Xp9M8ZLsobhy/BneDX8e0TKZirM1+BfH+u5qfO91mr9PfgWD+u939Wmj9vS
zois3R11XRlaV/1BrfndarreVFlv/kD5iVt/xzVZY+hIuh7CmgG7wmP1TSZU
nZl0/7SuV+jZxcKHdigt75ZX+Q2V9eBp1ZdeY/n5sMq3VH51lS+l/FRK96jN
bVrPHfO2vfKjK7+98jsrP0btdm9Rexu01uOnUNmkjfX5bVvPL3P7qPIXMw9q
c6vW88vcbtb6u/JN79V1ytZ8eBdd767M2zZqTd/Q9nqt38e79mM+lF8W2af8
XZX5LnO2Rut5+xXew9iU/6eundpzzTgPUFpD79pH11Nbr8X9lW8q0zg2h724
aiyPqOxZjeuMwnN/oNIyevZUlZ+mtB98AdmMjFH+K7U3vtLflP+ZsSq/eWl9
fefSOvsE6ktHbf63axn3ZuTceSobW8+MXlmf3ru0rrezvu9yre0Ki6avYLZC
5Y81XidP6plXlb8g6442RgO7F7ZNYJdgHfIOft87vAzetZfafrgx5oSPvRFe
BiY7qDJGu1/P3hd+96vqT9dY75lQv9dKc4FZdP9a9ETW42TBFtvqfpbiL12Z
PN96VvV/I7VzF3qY5mS5xjacsVS+bGu9bqmeeQF4GXo/uPRcP6/f39Azu5ae
d8pZEwfnO5Dn94Vb13lL+QVb67xjKv+p0nvKt7pOqPe+rXyj/JDWutr7yi/S
2r4zlvJLtpbXHyq/KDwKOaV2x6msM7Gejym9vj9RnWVay4m1S3839CJsA/Tl
2uSxF2BnQLYv0LOsObfy9xmz8npdsfWanVBtTtTYhnWjyldpbUsbBfqjH8gR
1Zm4sX3tOOWXZk2prd1po/V4P669zlnjkyhfqP73yBzlu8p/07W82iX9/EXv
Wln1t9D9vsgQpW317HTQuNJkqnt15XlhTsBwK0IP8H3l51cbx3es1y3VtX6E
LQXbBdj+DOrrejqyV89so3koC2Mt8Cc4/6rCNAMd/Zk5Hh6ZzRUZjo0DjA12
wt7TVxkr0Y/tYh/jd+qxFnYqnKf+/JH1rPd5lV+m6/6ib+ylZzevYjPrWr9A
dx6i64kd6wB76/ddKmM89K6h6Xu/rtWJHa5rvQZbFzaMZfP8wrqe0Imtq2tb
3Gm6PwPeio2oMN5eomsdFtm7eNd67GLpS7+Nqmv7GG0t2PXcb1ZZp0GXQDdA
R7gj8wOGA79dl3WJXoGugM6AzsJz6Gtbdm2b4npXx2PauvI3niX4med/KiwL
kYPoEVul/j8K091myKDgMGxBKxfGPROGPuaBZnOdL/kdCtu2du7a9oNeB/b+
b+n+v9Sxjrlx17oqcvqirnEOtizG+0jHfHDMrCt0G/SlgfmgHrh3mcL5R1K+
Q/JgenToLbG/FP529GFgXmiH902s3ydQekN92KBrHYz5RAccpvQScxL9EX2R
39AFsPMNU/7ajnVCMPMclekFTAwG3iz6K/rXpq2xFDhqy9aYCbw0tPVaZZ2e
1Vr2bB69Av0CXH9Qa8wH3vtOv39ZW5ffUOV/gnvAd3rXEa3tXF9V5oPwwJd0
HVXr5gn14SX9PkdrW+CarbEpuHTV1nIXmbtuaxwJhnwT+0ttfaLfRhy59obq
vFrb7rsPvKS17exa1X9QaV+960H9/k1tG8r1KptcdY7sWAauFTm4UmueCD/c
U/m5W+spD+i58RrbXR9T/u/hVz+im7e226wqfvMefVPZ67rO09p+tYvKf6u9
Rh7XdXrmXeUTqHxS5XdQ+Zng+PAwbOBbNR4bc7geuL9j+8cqoc8XVL6J0qq6
36SyjoR+tFFlHQn9CHzJFWwJvUAr4MNnwHalbX3U2RBsUZknoXehQ4GHNhyg
la719gG7xtqhMewZ64QvXRWdDf7A++gLZY9rfE/Vll3/LC3nsW1uprHP0tqG
PVHP9jJsZS+pH/9orWc9oedmaL3OnlH+/srr6DCV/aj7PzrWefdoTJfXlx4b
4zpSdQa3ljHgxX5MqutEhX0k+EegzZlCn9gWKH8NPKC2Z23NG19Q/rXKNvAv
dZ29teyYu7K9jDXN3M1aeS4ZO/rp7JUxNLbSCUvLQfQ39D70H7An9in04HlK
26xnLJ1fMTwBOxd8D5vGT+GH2LyOrfwb6ZfUwRbyY+qQsJ8jp35IOd9qprQD
Blu4iC1X+ZGqN29pvj1f6fxTKeMeHXPO0rgMW+v+ud+v47IflT5W6lOaX+nP
wuOm/W1U5x7dz6H83cGtw9X/Uyrfz17ads2VOht1/Px86cN8aZM+lHpmPKW5
05e50x/ePWFw42yl26Id5ubXzM/8GQttH6j0R2EawEeEbRS76MfoyIV5wnHJ
YxPmym+scXx37xf2332QZ7GTT5vy7TPn32f+aZd6PNcrrR+iG46VPDp+X7AX
uGuUzCN0eE1o5tq0/UHaZ4xvK1WVbfvYVeG9+Dreih1g24wdHYG+/BAagA5/
K4wVdwldkqeMPPSJ34r7lzumxxlDn6Nm/l5X+YW6fqI0d9c2Bn5HFh8bmqYM
Wy992yDtUA5tc303+XXTP3gIvAFdE/8HNpJF4X+howVDq7fpt5mVX6Xj6yxK
K4MD+W6aj6PgH/wOZqzMU8iPoWcHl36G+huW9qP1dV02OG22ug5K+QNqc9rS
dqAnC5fvqfzthd9LXwbW7YA/ZMas38U6bnPRjnUX7LDgJdqYLu236cNeHfsh
wF/4JfDt4kNBHuEfwGcA1mU8R2Z8zxfWM/BlgM+mQx9Xeqpw+/QXTDgDun9l
uyK2ffDls/pthtK4dDxdp08f2uSb0tjz5eCKt3T/bekx0cd/oINX1uvGCg3D
9xkjPP/G0jrrFHrP1APfrvQ35XtCV9DZwslzxS6G/XbR1CP/Ucf1sbmiDy4S
/knZkJQPCZ1Qf3FdR6hfJ1TWh9F18EWjhyDP8VGjn6DT4wfGboVNBVs/Nt0h
aYdx8M2w/3wXfsKa271jXr5HvunkqYNeOlm+L2OeRPkdO6bjifj2KZs45Tfn
2VkzP7OGtvEXTVNab5gwcwb/xNY3RfgDvGGK8MM7S9stoVFocsrQdlU6D2Zg
7qdO+9ixe+E/fOc2331Q8tA2uPP30jj0FV0fUjq64+uTyYMdniotZ7nifzxH
aTKlT3V/Y8d2ZOgH/eUsld1S2j5Bmy8rPTjQ79I2Vq7EXWCDxe92d2m8STnj
fDfjvSv5h3U9GxtO5eduTzn9oX/IlidK+zSww19eet6Zc3x9J4U+Z6qsH52n
+/NLX9GZwP/Y69AB4CG35rsgI2kTmfmYro8qPazy/5S+J/9o8o8Uln2PlNZn
mUP6PbLwe+g77384de7O9dHUvyB9oj/YMu7IGM/U9d7SvnHsldjV0C/R1cHL
6G7o9uB3dEBwIvgdvzM+anzV2K2xmYL30R/hQ/08sWu7LToB+jI2OLD8Eqmz
QWgGuyc2PHRWbMdgc3RS7Lbgd3RbfJ4bpM2/F9YV+vV0Xe8p/Z3BgUdoDk6q
HMOAH7NX2T50f77X5clfFhp5IHRyRvLMDfXxP6F/Ue++5OnDpunzsmr3rMq0
NzJ1aJ+4CergP11Lv58cOwz69Qml9TTs0yeWtlGfXJp+0CnQ72iLtY++PD26
w//RE9+a9XZh6fV3l+7HgKYL+7GQqcjTVUrL/teCf0ZNnutoyUNLndLY5sm0
g/3kwZT/CUYqvf7x/0Kv3dI2CHQIYg5+D7YpSseBLJpnhoRvkIeHTJl2yE/c
c32w1o3ByvS9Spu86/jKc8e8ja2ycUr7RH7s+J78J8nDt58PL8LfwtyPn2/E
/IyecVE2Xsppb9zQLbwKGbVncB08EX54aOib94ybPpCfWv1atLK/n+txyfN9
WGOMD78uOg/6DrZ+bMn45+4NrQ7Q2hmhPfzb+1f2ccMnLv0/2rgp9IHvEt6H
/5J3XRd6wF5EPA02I2we+AvhUfgNLi5NL8hn+A7f8HClc0rricfqenZp+wO2
Jvx52Jvw+xO/gr8ffwZ2bvyMt0g3ura0nAI7M9a5s54uD/1D39hEsEXcUDo+
hjJsJKtiR6tcRp562Hkvy/o6MmOHX76stq4obZ9BhuKfBg+g46GbIS/gdeTh
l6ytG/Iu5gvcAE/mOfqMb+TatEP/PwELqeyCxnaev6s/i1emBXAT9ICMeijz
fHph+xXr8q1gKeIqWP+DK/ODGSvHjhA3cmZhGxq46ezCdjnwzmWF7Yro5uAy
sFo//RS2Q4KjWGdgYtbaieDxYONLoKWubZKnFrZhgtcG6Z3LKR0Dpipsq2JM
6FZghJ06xpdgUtY7/gJ8Bfhr8Dcs2bE+u7rSErnHH3ts8DjrF0zAeidWBfse
dr41CtMKOi8xPdjRwO3EAh3e2C4BdgI3IS+IEyFuingmYqXoA3FNU6rvQ5RW
7Rjzgn3BwOcWjok5JViIsaAnghf5RidFfiJHoXmeX6Rye4wVnIluMzi8B/6E
DkYb8J9XCuvf2AmJFSIOhhiYv+n5SSvHLKA7Y0vDVoFNl1gFbL3YeL8sHb+A
Te3+jmMb0BPRqdFLB+yb8HNiMLHzYuOFbsEV2BfA02Bg6OQl3R/Q8XfEb4C/
AJ8CY90jNImvAeyIf+2wjvP8hpwAn0OfOyu9r3o/lNatPyqtVx8QWuD36cMP
m5Sfr2cXyxoA/0M/6ADIIGhs3cKxZ+soHQ3/Lu0Dxa+xa8e+JmyoC4cG8L8j
B+DnU1T+Losrf0Rjuwm8/+mOsQ/zdlN0zc/Cn8cOv0U2INMoB5uDq8HsxBEQ
T0C8BPoleia6J3ru1dE9pwg/B+viV4LXwGeQEw90/A2Ju8TPjq1+ucLxA9gD
seMSy4AtFxmK/YB+EPNKbAdxH6wNxsqYiat8tjT+JC4Anz2xIl+VHh/0gQ2E
8dIWugN6A/jqu47r49/H7sw8spYuKi3r4eGf5/1vdBzXwPziF0Mmott8nOtK
mueFlD5kbvTs16VjLcALxJ98kTbezLw/0/F3eCP9ejpj/qW0PXsX5bdQ2pI+
05fyL78icYHEWaFfbBM6RL4MxCZDZ5vneWwO2DWwdfD9wSivhR43Sz3wAmuU
tcqaRUdkHWObQHdCb6Ld1TrmVWAWsAv4B32IduAR6IFDK8dPg+HBwhvnHfiq
18r4n874kanobMQFYUcBS4ApViwcp4GNmviLF/ONmMtnQ0fMC7xsnfQfeofu
iTPDBntmxr9W6jFn63bML8FZ4DCwFnFqxK4Rq0YsGzY19Cz0TXRNsPfI9HnA
ngZOgfcRU7xH5TjbZfIe3jd5+DI0OsBz4bfL5/30g3cOyz18f43MLe/HJsp3
XSJlzDvYb6Hw/LUyts3zzi1zv27GuVXH32yjfEdkCHJow45tqLxrqXyTzUMH
8JJ+X2nHtodB+cZgFmgLOzmyHx2ROFPsWO+H5jYLPUED0Oi75V80+17olvhm
dARwBLr0P0PDP4QPQrOP5LtAN88UjpXE/n9TcAX4gncgX/fLOw/IPbS4R+Zt
87S3U+YP3yT0Cy0i76aK3B4c2f1dYXwA3XxbWN6DFaYs7HtCrm9aOA4SWz3Y
BB0E3fXbyFnoBGwIRgSfwf+PSj/pF7IEucH74PeDgrPBseBu4meJCybGFlsl
dkpk5iSV5QhjXLMwvWJ7/yH0CR8jPgr7B7rbBoWxAnbv3fNOZBZyDRmGH7zf
P55vBW0xN/CHLwtjJnDGz+GT6IBfFcYE4KTPCmMgMNk3wUhgo68LYyfw0n8L
4ypw1OfBcGCyTwvjJPDTF4WxGvgMv8JtwXXQ8S75fpsXjq0HzxMjQ3wk9nmw
7D6Vse02heP2wKvYPIhtwu7xQmm/G3YMYjjxL+HvwBaG/43YTGyW2C6x8SKL
4CvIpoUr8/MfOpaJ6CvoPvB5+D7lyEny8P99I7fgU/gE0TmWjSxCxiCP8LeA
ZfC/4M/DzwKufiD8DL6GDrp9ZCXxfsRl4oMGO08a/Px4YV8k/hTiC0YEYxO7
ulmwDzGkzNUt8IHKviHKiAcmDhF7Dj51YhWxOaD/ECeIHYDYYOw++Jjw/+AD
wTeFDwr/CL4pYj7xe2BPQPYid4mvA0uAD9jDckB4N3PAXp7Hw8/h8W9nzOAF
YkOw17Hfhr02uwR3IHfBHr8FUyBbDgx+AZuAR5AdzD+xqehJ2DqQwcggvhUy
GHmKTGYPDXGPyGRwDL/TJrodNi1k0TelZff3HeMX8AeyEr6PnKZfj0XvwS5E
rD17N+CLxLJj60WnQJ9Grwa3g1l+zXiwvaD3YjfmezMPxGE+VFj/Rx7dwRoK
5kfmvJl3k75IO2CTgZhW4nPAUsSKoHPfFfkxbTDR1+kP8gPZgW0eeyZ2TeJ9
Zi8cl7JC6ATfJLHfxC9gNyNeAt/+9Vk3+K9vyvdCzoNZoGtoD/80cz00WIh5
ZB2xnvrlSnAuvAd8C86FH80Qewt8CkwONkf2gV3BsMPVx0N0PSy8cM7wQ/ZA
MO/wUeQMsg+5QvzRk9EfP9B12so4G1oAR7wYuXFgx7/DN7AzossUlf3v+OF5
hmeP7RgHrRoZgn2LGCRw+G1Za5+V1lFuyT38it9+Kh0TRF2wOz6zCyr70NBF
0EkmqoxXBkcurRY5hT4FX14tMutzsH/lOG/kCfrYYZEt2ESwkYD11oiMXjo6
DnXAMOhW6FjIGfZZsH8BPe3bjA2ZjewGPzCX70WGo48Rx8B3Z56INX88/JVy
eCzXN5PnyrvoK22jf9D+oOg6zOcS0XegBezNL+ZZ4ibg39wvFd0KukBvR+ai
7xMfSpzosXnPm+kjtPX30NqolX/HxoIONlfoZsnoVtAdczokczxldCXmnn4P
jAM74oWR1dDVgN8SOtvt/+ZoYM6uzzcdv/Javj24izXJ2gSfEPNLnA0Ycjxi
Lhr72fr3nBWOqaBsppQjYy+ObH0wWA5s94V+n76xffT9xjEZPMs77wgPIX7t
uMYxbPi7+A2cz/uJSybu6ybeRbxX1/FxbyaODnl+UeT41MI0H9WWs2Cly4OR
itqxVcQQ4ee8Jvwa3n5NxrKunt1P9c4KxuJ5vifvPLnxe8FclwZLgDPAG9gf
Vsxv2F7AFBcEh3xS2ccPziEW8qTss+S58wrbL+g3z5yatc6aB29eqLoL17ZD
3RU9hu/COIilJ06MtTwQU4a94cHI6neDZ8HL0Db4Gn3p18gZeB72Bb4/dADP
gUfyG7Y7eBI4kfgj/LrwAfgYvGHfwnGa0CxxmdgSwEG7ZJ3OlvfBf7CzY+ue
O98aGsN/jm8H3gefxK7BPfiTMWLHOE3tztA43vCNynGQxEDOSaxNE/ucvtfG
jf030Ay+VWhugF+Bz9lzcWvhvRYLRm6/nLX8evjpZOFVr2edwoO4R56AucBe
zBsYCb48ds/7E7GrEmO7T+042yfCo/FrLZ55x58JjzsnPA8/DHj89Mic7zPn
M1emKdbQkKxv1jv4kNiPufPcWXkW+yh20qprXnV++BXzDR84Od+HuMxRw4/g
29Az8hKbMvJzlvAxyojhIh7v3PBy3k+ft4tcxT41fXjhIZGBA3am5fJ+5MOI
8Pqpw7/xKR8euQrPOziyl3G/FLlKe/38M+NjLpDh2EXg5+AX9gpiM8T2j20K
mz02J/bvEftELAyxiOzR2LGybRReNDhya4A3cz09soh+NuGftMf80R/sbSdk
jNgRuSeeEjwKFgV3gEfBoowLGxg2MbAJ2B8cy1zRBr+hP/Ee+k0c4rtdzylY
kjnAloRdEOyPXGdvNPONXRCbMX505hH8QmwdGIbxMc7DI094P/GHzDm2SuzM
xGKeEdo6LzICnxd0cUFoA3kCjoHm1gidDgqO7t8L1zGNHRPexF4xvgly9cKs
cdqEpqAjfBTEDuBXoN8nhl8d3ZiWoWloDjrfuPOXXZYr6+bY0NOg0A7jYQ7A
JmAU4pexq+PbpU9cXyn/8h2/kt/fDB54NXKbNY/cfinPHp319WL6A1Zg3Y9M
my+l/fPybt4LL4QnEpuJzst8UA9+DR+Ef7+ed02W36kHDmwrx8YTa7dl1jQx
XQdGP2GvELgHuxt9+DxtIOPR27C3DdiY4NdfhyfBm9AJsDUjA8B2tPdc2kTm
I/vBTfflHcwJMTy3FN6z/Hzq7x9M80JwDr7u51P+XPL4pPgN/EEfsb/B9/l+
xE3VkR/EMoBH+cbIDPbTsheY/n2R/iIDqI9MgO7BteypAZuCS7Glk75IGWNm
vMwB32D0yCfaRT7xHnRr+DA4+ZPSbYKTxwzNn5vnxs6z7FunHnXAy8gt4vZ/
jHyCTpg3bLXYA+nfuOnva/lGzANjRnYyB+NmbVHnqMhOaJf4sR/TJvOHvKEN
vu0v+b4v5b3QzdGRlzyHvYb2r8t6GyV0CU1/Glm2Ys963/X5Ht/l+yCTqEed
N7QO/1Ubq72g/AHKn1N4D8TVwULwDGIBBmIHuBJPAC99MOsCnjZDdEn46kNZ
d/gA2F+CTwD+xh5/5C6xUcQTER8FfyCOintkEDFDrAX4HjGIyF3kHe+kXfwl
YJAB/wnXgb25XPHDEPMOb2b/NP5SbAXw6EmEGf6tMd4bGwy2GGIs8Ydunfzr
rX1SxOjN3DoGl1iCLWi7cCwBMgi7IHr0OvmNcmJXsQFh/2HfNu/n3cQ/IR8Y
G7Fi8GPGzL5h4iIZJzFExBIx18gy5gwbG/IduxE+0E/YP1HZR4HcBL9gF8Dm
xHvBpcRdYPvD7oe9CgyLLetD9o7Uljf0c+PU/3drTAweni7P4oN7h716Kt9F
9zMqv0ht7EYsPPMGriZGtz++X314X3Uuqx0LuKxob5rG+5TYv0wdbC+Lqfzt
2vs9Xs43YB/N2a315eHRYeGV6LnYX4nVYK7BIU+Fh2DDZi8LdmxkEHFjlwZH
MR/Yu9D9KSNOnbU+ZugGmQuO2zQ4B5sWdiNw2UBsEfiBmFpsSOiefAfk6K7V
X3vTkYkD8c7YnGiDZ/5oHJ+NPZTY451rxxgSC80ebOLnia06oLBeRWws3x86
GCv8BpyM/YezVL7smF+MkTVGDCl2pU875nXwUmwKQ1OOrelNYttrf2PslycX
tgljHz6lsI0Y2zQxScSTrKE5XqcxjiROg/MKiEflDJkjC8eTYtulfn/8beGz
XX5DRrfed0Y8O/WxvRMzMKnaPLl2PCNl/Ibt/T3Vn7W2b2cE++Nq24HYS3FI
4X2kv6n8EpW/Xjhee4vGNDBZ2sL+yxolrn2UrB/4BesJ3/Ghhf3HM6kPazeO
DzhE7bxcO+b/yPSHfv6p8sUax0GcoPzQ2v49bMBgeezG/ecfFPb5Xt54PwC+
v9sb7zFgf8HzmTfiW4rMI/b0HQvvAYFW+f3fmVt8BXsXbpsYeeiDfe6DQifY
M4mlJaaWWOJhoSHKX1Y/x6mt+5yuPnxb2dd3NXvaGp9J0t/vwpgT+/xxee/P
jfdzEkcJX2CcYNN3VX5UbTsFz51W2O79vco3rc3j4A2bhD/wG7QF1oTWOUcC
GkF/GRGZAeacOfkf1c7FtWULdHRMaO+HxjHu/f71nveqvZ/2jk2db4m1V/n6
hffzHRq+SQwjscj4v9gLzp5w4jSIq3kxPAff/auF219GbVza+OyZx9hnWXs/
IvvCnq0dt8834lsS4zpE11/ZN9J13Ovz+b7UI+aVeKH3Gu//hI89yb7b2ntx
Pm68f4C9Az9Bg41tx9PlWWyqXJ9O/m09e2rjM6Iu0XVpPbtY4fce2rg/2PY+
CLbEpo5tnfbBkmAXfAar67lrG8dczB2sAB1yVg1n1rDPHVsK80I8A3o2fjN0
bejrpdDhq6mDvQU+/XJ4/uHq58q1edhTeZZ52Cxzjuxbhb2qtf2kp6n+jOrP
aoX3IJ7SeC1A//jMmNu7G++TOTXf67q8F3l0RWFZ9kfwG/S5rcZ0WG1bD3u4
2F/H/A9X+eG17TLE7YJhsNVvrPKHasvX9ZSfS/mpGJPee1Bt+wt7Tw+pba9Z
R3X2qr0G1mZfY20eunfrM0S+0v2Dqn9k43gr/Mt3ZR7GJNapcYwS+xePr72H
cTuVz1v7bBGwDvIf/DMme3Fqy4OnlL+vduws+g46E7aguXvWmdCdwA5gCGKI
2LsAtsa+8TbvrG3nelbtDKu9Jmbveb8K/gxi4sdX+ZfK/8geqMZ77AfiTLDr
oreyHw19D8x1XvDs3MHnYNpfGu93JQbyOLWzXO29IGO1jtvA54G9hv1v7H3r
P5escNwFZzftXJhnztd6/yo03tezDYk9vtTdMc++WNnmP1ueIY6NPY9fsC+5
9l7nA5Q/BztR4diz9RN/dp+ePT97h2mDfa37BCuBgcA/7KkF42BTwqeCb4V4
Engr/IT6/X6twr4t9lGdwb6q/MYcEy9CrDH7oHcPv98h4z1K9X+ofG4Osolz
cJbr2AeCL4T4AfYrk8cnwt4FeBrf6r/q99p613q6/0z5c2rzC3RtdFDwwFxq
/8rGPr8PGq891t0vYLbGZwqsVloO41u5T2Vz1MYCxBVgn8U2i8/xsfCQF1Xn
zMbnGD3eeD8bfJi9b9QB7z3ReD8bMuVQ9i3V9vfjDwdf4xvijBTO3qI/9+Y3
Yoyh23vy3k/VzkWN6+PLRf/Axzql6GHNxvGCzDnzjazHTvlM9Johwbj9+1Br
835spAsqfzaYQfmPdH2ytr1xlp5j3YmrJr4SeyHxwOwDZn8d+OId1Z+/duww
MdGPZH1Ai6fFDoltkXmjTa4PJX+p+vZF7Xiba1R3VeVXLeyfZmzYj/CJ48si
lgC9H9sJOjb757CvYLe6v/aZCOzlugN81LMPbHHOhOg5HgG+/ntrrLEo5xa0
lk3Lq3yJ2jGh7LVlXwd+vucrxz4SX3ynfu+kTc5aGKNnPxtx09jmiX2dT2Xd
nuNlBjXeq88+/SGN38e7iL/jnA5iUV5GD+05VvydyrgKTDVUdcfvOS5jJeVX
boy7uLIXkfw4ui7f2LeJ/ECfgcYGzh/Ez76S6szTc/zp6SnHljgQu499Y1jP
fAQeAs4APyJz2UvX9Kzffc1+eeX3LK3z9J9Ho2e/UZ22ZxvI7Jk3YhdXVb8m
6TlmlzXN92ddE9tOzCJY6BFop+d1RmwFcfDEV2BDJe6BmIch6DHRyU9R/a0b
r0nanjjtn1QbN1POuTH4ofFBT6eyQT2f1zIz/KDxnvt1G/9GOXx9qp55++N5
9r3MIb4G7KLLNLZZY6++M33DRgpdbNA4LpYYCuLpFwmfhl/DG+vaeBoszb5J
1hLraGZdB/fM/xg78SXQMXsCvs/Y2RPwTebknNQhz56CuXqOd/6ZPcGNvy/j
m6X2GIf2LP+QffT5u7QJb4ZHs+bRXabtWX9BpvV6lmtLKn9a6Rhlzvvg/Cxi
CW4Gn/QcR8N+/TWzZ3+TxufDsC93NeWHN46tu0n1d+g51oZ9nzv1vPfzPyrf
vuf4kb0a77llv+2ejc+8wL/zXGXZj9x/qjJ2Abc8UxmvgFWIcWjTN84yWaLn
uKdFdF245z6s0vM9+dV7joUijol54uwF5go9jDHQ/+95b2NdEv1p8ejRd6n+
/FnXx6C7gC0ql82X8s/wmzW2i2FHGhK6nZa1H/7zZ219Hl3+ctXboXF/GAtx
G+jJyzAfteOIsRtiiyTu4mDV36vn80f21XN79nyG00WVdQDw/7fI6sZn0+yh
si16zv9R+xnqc04N9Ake4JyeYVn7u+m6Sc/n+9H2pmkfXZyzP9DHwSTEw4FF
H0sePrB04/M7OLuDfmBr4LwrbB7YPuAhuze2S7B/BBsjmA+8d294F7ji0cp+
ROwv7E35KWtq78b9o287NaY/zo1gH/TPqcO498h4r6n8DPWvQ3/tOe6J9bp1
L7HzKt+g53ilhypjVvDqw5WxLDj28crYF9x7DfKw51gn4pK2jo1pv9jsOBuG
mH7mAFlGDBdn5BHHBX/Bxws+IXYRusZHio1/3uBVzqlBj0VXrZBHjeURsreb
euB68D37ytljTh5eyrmL9zTWt+esjVfAKuuxF7uxDsieGGQ7ex8453Wv2Nqw
zyG3scVhH7mltr0ETINNF58K8gBcgl7A+TmcnTNwhhVnOizU8T32FOJ5OFuU
+M6Bc8XIs08cWwt1eM+1yOjWMWLsW0L/RPekbLSUX42tonU8Gs+tlGf5bn82
/nZX1l6T7HHtIs9bx7LxXF+e5buN2vrbjUT3bGzrHl77nvxsyj/UODYffeWR
xrGiO6n889rx+k9Xtv9i+11Lbb5YW6fmu4GjsVNhGyNWC7sWeBPciQ+EOAVs
2ti256mNF8GK+FexDWEXeqKyfoVu9Vhl+zLYjjPusG0R13RD4Tw2LuKleZb4
I2wZ6KvoqvNrrLM0toMcrPxPtXH4mcrP3NjGhT2BuH9sUxvq9xtVvpHub9P1
9co6AzGGUwWLfYesaxx7OF3OVMCmxNmUYHRiYKG1dWJz+Lm1XkE8G3tM2Vc5
RXDcpMFy2Jx4FmzPGWjMPXHfp+vZ66O/MybwIPYZYpvYE0EcMHrDaI33Em1S
2+aCveWjyjoA+J/xc7YhtiBwBPFc8GT22aN7sc+a35dOnfPUzteN9cxX1c73
tWM6nq2sK6InYjfE/gE+5PxP7A1gLc4RwYYBz+SMENokfm/enu1E6OAL1MbK
rDewFLYSdPnzVf5NY912/dpzzTyzXwgZhY4zvcrHanwOJedy7dh6X98MYJjG
svDW8Byw5dm19QR0BL7Jt+EDnJ2AHZGYt5vVxunRy9ZEx218lu2HzGHtuFzi
HrHtIaOJb1w8PAGdhjyYExvkxOED2Jrwu3L+FLZv9BtiVCZHPjfeN8XeAWwh
T4ZPrhl6gDbIwzPhe2O35n0ThtcQuw+uB4uDwzkbkPOgsSuyvx//A/vu0RsZ
B7ZH7ND4BZAFyIExWsuC62vzC3gFNsV18i0Y8zp5FpxStMYqB4UHopc1Kqtb
x8beoHaq1rGxV2Jbbv46s4ErMSf/4ZyMyvamGwufXfuzylfoGb+CXfEZs7cH
fY32yrTJmLDbMq7xVH/FxvvKbqzdD/qwfW2bCPYQMFfbGneB13qtMRs8eNnw
YdpbJHMFltm1MZ7hLJMle/axguNWCXZCznO+NrIe2f5B5D/xE8hCYnXxW+M3
wo89IGM4g3fBjJmzF/Hn4VcgPm4htf9963l4uvb5I8QIX1L5/DjOArlK+Qcq
xzjjW0SnQp8Cbz7RWldbsrZdkjVJrBN2I+xgm6ru5o1juKBF7J/QJjYhMBN+
dXQhzjomHhsZjg8JzH9Y7KX4VnaLjfyKyGt8b+zvx1e1f8bKM6cFAzBP22eu
8FPvGn2VmAd8Wvj4ic3Ax8KZS5TNknL0Cs6H2SRzt3va5/3zpw+8G18gfRlZ
GUOzNkfWtoX17yFHT2rNE6ZW/sHW5w5yfuTdrfcBc3bjXa31Fs4Pu7O1nsBZ
ife33jc8vvK3tKYbzly8r/U+ZuySxJpxfgLxRNjW0SvwU73YGt+Oq/IbW/MA
zpi8t/V+Zc4LvKf1fmXOgxzZen8zMg3ZRvwu5/fc1NqHOIHyt7a2PaHHg6eR
H/je8cEThzxbz7o0ejSxcs+11sn5/abUIWaZPPgEW9TNsY/clHbAL28jc1vv
aeLctTta66UXqP5trc/y4dy421vb3/DDPNTaF4PshGcTqwbNPtOabreAr7a2
zRGfNCL2fdbPicHJ4DLwGGtmxWBL4lv6z4GqHPdNTPassXdgZyRPPC+8GJ8u
583gU+uP4+nYZ0k7rE9sk9goiRMnLgZa2i50iT0FOiUmBb8gMfPEu9DHDXI/
LL9Df6yh3bJm1s4aIta9P/6pY9qdPX1gDbH2hmfcjJ+4G3yU8Dnmf8+0QRzS
znnu3PAJ+AWYiTj6OdL+gVkTzBljgwcx1jlTjznjfER8+/AK1gr7c1kv7OHH
H0/80v7hWbQF7yPWCQxJPBDnUtBP4o2Ilzo+63irzBl2ZOzJ2JrxrR+bvtIG
be2Y77Ftvg/fbKd8Q8bN+NkrA26lPu/lnSPyXmKdiA8gxopxgB974ZvD865T
w7PgPf3/J1D91Veepe/0j9ifGdMXYrjpDzFT8Kgd0o+V0y/mne+4c+aIOAbm
DPsDdMUYiPWBX20RGoWOiB/v34NX+Qxs5ubIzA9xg/jdeSe6H2Pnu/O94bd8
f+THqvmWrIc9sj7wL+PDHoipop/EWBF3jt+aGDhiFOCt/fF4XeM+7P2ci8D+
cPYLjCN6uLY1Tse3cF1rOcGZspe33oddK39Zaz2Es28vbX3+09jKX9PaDjKG
8he0xm9gsatb4zHOSDu3dewHmI1zhNnzOAr4vTXGXLa23R/cyTmsV7Y+i5Uz
a69o3VfO0L2q9Tm68N2TwnvBuZwVC9blDNELW9vRwGicoQZmwT43e21cydlp
6IT4hjiHnDOF0ffnrj1Oxoh9frz0c3SVnd/aT4ktlrNB0WFPqI1dwC2cH3xJ
a52cMyMvam2f4izJi1vbrRjr8Rnv16393Pi4H8270EGwA53Y2haEjeHk1ph5
xdryhvEOaxwPQSwENpWle7arrBn7CLaR+VS+XM/7Y7ZpbHPBvk1879DYvtCh
se2iR2MnWym2UOJLWP/IVzA035BYk+1VZ7Wez3vFNoPNCPsMcRY7N8YFPFul
PjEN2G2wQWGbXCF2yP9W9sdjS124sV8BnwLnzp7SWo8ta9uDkJXsxWFPDrEX
14V+wPzL16Yh5nPR2s+jf29c+5vxvXgW2Y7dgPNxz2h9PgLn4+7U+ozc3Rrb
j8Ao6LKcl4c+u1ptXyPyvK+x3oXOtUFtuYvM/bxyrAk8/O7aZ92iz2H7I6YT
OwznqnLeKLYe4tlfbW3vwIf5Stof3DhOCDz7Wu1zADkDED31rda6GucCvpby
wbX9u/h2Z20cW4PPibNJWK/YK+ZsfFYyeg/7sdiXxdkInJ89V2Nb1ztq593W
PjZ0X+I80H+/qFyPtbGN6nzS2odEvANnHRLzwHmeo4WHjEye86/YUwUOWi7l
o6TOvGr/89Z7uPFpf9NaJyTmh/1US6Sf4B32js3e2KeI3XUx9L7WeJl4im9b
613zYOdozRsXbIybwcy/qM4PoQfOhhkjbTJuzqRm7LM1jh1B38PXxDl66GP4
549pre9wJk2RsayXOaQdzk4+sLVdivdAf7xrvtr8FF56T8bFfjfOkty/tS1n
xtq4E7r8R20eCv+8JHQOrWInxLeNLZGzpXdtbW/Glo5ND1nPmdC7tT4XmlgD
zgokjgDcBIanjS2xxba2w3G2DTybPZLslfwleeLXrm/tTxui/A2t/f/U+S2Y
gVitcaOzYvfg3FWwHGfxYVfFrnh+6tPm7amDv4N5+CPfF5sB5x5iN8AnNkb0
fc6WxhYDD/wfU+EMeQ==
"]],
Polygon3DBox[CompressedData["
1:eJwtmXn8VeMWxrdufmfvs/c+kiGhSSUa3GZRxtKcUhokTZTQTKkk5SpSEmlS
Es1zmgyhUjQoCnGV4Sqay40Qrtzv83l+f6zPWc9a6333O653rXVKde3TsneB
IAjGnRUEBfndFgXB1jAIpsZB0DMvCGonQfDfNAhuRDYY3XRoGnQkEwSN0N3P
7wHoXOyfAJfEdjb8v7FfSfvLwbfz2xpakA2Czdj0Q/8sbS7GZhX4DPLp4LvA
fcHPQvcgGwKVov0c7PegW08fNcELwftC93FvLghqYf8MYyqObDr8adpNQ1ca
nMX2M/Bu8CaoFu0f0vc1R/Ak7MdBG+AzUGv0l6D/Db4+fd4BLgb+A9wAPABc
AVyI9s3B/cBXglPwreBe4HLgLLgZ+DZwUfAp2t8C7gIuBT4LfWPwD4ztBb4/
EL601gB9CfRn4BsiawYuAj4Jrgcehu1X4IrgifDPQZXAhelvBevTJuc5a65R
6LmNhUZGnuNe+qsEbouuC7Jf+X4b7NuBJ6Pfim4xsuvBozRHdAuRFULXBPwj
/MnYZ6EAsrbwy7B/hG+3R381/Q/AZmrWY1wOvx/+dnStoeLoF9HmEPwY2jSA
n4tNQWxvRvYatrcguwn+QOS9nJdYpz0tn3pMGstu2pcBv6n11FpDtcHjwMvR
L8f+J/AZ8DlaT2QTwV9k3bYR+AVws9h8e9o3hl/A9yLtF7JurGej2Hw/9D9j
/x7tt9G+sfTg0ugLwjdB/z/a/gEeCn8BfdyHviw4g74pskbg+bS/lfbH0K9H
dz1txuv8QqvRj4Suw74mdEr3CtwJ3WDsZ8E/Dt0PLoc+ZXzfg7+FH43+S/qu
Sn9Po/8KnENfHfxmxrJ76O809kN0VmlzBP4AtA99FroB29/Ba/M8pl+xfxL8
KPwDyLrQ31hw69h73gA8SHdSPoBvL4AfBjXC/jLtAfxw3RH4stBvtHsKXBD9
Gdq/D98f6hP5Dn0APxDqG/mOLYN/MPVdy4FP0/536Fr4XnxzN7rRmj/fLqw7
q7sCfizyGaoa23/Jj+nMNma818K/xbfHRfZdG7P2XfJhw/k9h9/9Omu6E+Bu
4L5aa2SHsD0I3Qn+p+4Y/dVBf4XOksYY+07qLmpN6/Ht3cjijPs8hu5TcEds
A/D3We+Z9qoE1A7da9q/PH/jMfgAqoFuJL+bsP0o9Vneis1Y7I8ie5b+Foee
2/HUe6s5HoM/Co2N7CPnYrtFPhm+Afp6jL8HbYZHll0OvxP9zfBP0ceV4M/k
M8EHGUM58Ce64+hmwZeGtqb27+qjLfh56AS2peh7Mrol4CPom9PmZ76/D7oN
fjw2f6FrxRxayV9i8zq4duyz3R2aAs6AF2fs494Bt4eW8q0hyOrwjSX097B8
H7IV6AZg/3zoNfuW7zcB1wc/AM3XWLC/Q3sDXgR+Qf4S/lxkMxK/QXp7tKfP
0X4H+iTjPt7X+wReAT8QWVX0z4CXqH/wYvkqcB3w+Rmvxfng4xmvyUW6u+Ah
6Csz3pXor479VlXXHHX35K90/qEvwQl4b8ZrVFF7F9uXlsz4rLwC/jT0mVmf
+IzqbA5F1gP7MujPhu+p+w++DFxA4wX3BF8ODnWfIvvinXoPIvvkOeAp4M3o
/6b/x7CvGftu36c7Dv6a7+X0dmTsOxvGXlv50GLoZ4J3gcuDV4EngDeCH6H9
+MR3QGdfczwA3pO1b9AbdDv2F2P/C7ru2LcAXwT+CdwN3A58qXyaYgHwCPA1
sX2NfMhD4PKxfYd8TF/wFbqP4N7gzuCS4CC0T+0ALg7+k/566M6kfuP0tg0D
x5y3JxnjFvSTwTvQH2a8dcFroabgC+Vz4O+JfPd6gh8NfQdP0PZA1muhN3dD
4jdPb51sKmH/EvYfw3dAVhh+NjbVwIdpcwp9HfnoPJ+xXtp72pfR+KAt6F5M
fLf0xpxE9zlUReuNrELOb47emteh88Az1QabStjshF+C/oh8Cfa7dNfkY8B1
9J7BV4kduw2CSjOeq8AXwregv33gKrS5SOcx/+4ep+/zQt9h3f1lyFuG9gEt
0S8FF81YVgv8Erh5xnNSbLhdcWDoGLEG+mm6YxnLLtX7gGyM9pf5Xsl81oEv
0VsKVUbfEdwp9B59Sttl4GPg68Gvar1T71UXZJ+hX64xw9+IfjW4Q+zYVH18
C14D/ln+KuNYtR80LOuYtWjqmE6xnN7cYvKB2L+PfavIc3td8WDoOZZDf03i
t6iC/C3tp6PfHtrnbEO3N3asNlExKvYL6f9u5loU2TfoV+s+KP5Afwn6Uch+
RD9bMQD8Kr2JiifQ76H/U7SfkLFP+gh9dfQlFbuBvwDfCe6Q74/KYX8rspfp
q5h8Gvjd2N++WG8s3+uq+JXvXYp+L/xKnX/4hopH9BaCfwTX1/rT/he+Pwn+
64z38jX0J0Lv6RT6nArVTxwf/U++nDZ3x4653tT6QJ2x76gzH3tPtZcvgf+h
WAXZ9NB7GCueAE8IvUZ6G3Ykjj31RjwRe4wa2yy9AdivZHyz4TOM42zFEtjM
CD3Gkbqb6OeEtolSy8RrjUfFXgPNXTZ/wz+MbGLoO6Wzqj3VXurMFqD9I8he
DH0mh8S+g7p7U0PPZVvWc9OclLtsR/9onnMYtd2qfCd0H9U0PvSTQ+/p0Nh3
WHdXNhrLZq1/6DENin0GtPeSaa12op8bes3+JX3Wa/MqFKaWidced4dfS/uH
aN8f/HZimXi9CdOwvyv2XikmbB/7zdPZ0hnrE/tN1Vs6XD4b/AG4CPwe5tgC
3Du2rik0jv4eUOwZOv8Qv05vVMayTuA1iXM5nZG3dFZi3+3dod/+LuBuoWOA
x2OfeY3nFWTDY/sA3f2XQ+/9h1nzOgN59DcC2czQZ1r8jqzbStY1dgyj2EXf
OKH8BNw/4xjyOvke7HtqbZHfgP4t+ZDQaxiAB2MzJbTPFb8l67MgWRH0G5CV
Yi0rRubf03scWbYxdoyh2EKySfLNigEi+yDxHfneO5FlN+l9VZ+h833FcsrZ
lasrpqscO8dSbiWffnXOPl++XjH4evWXOhZQzroBvmvq2EI57mbalwBPpa+6
imfANVLHRp3VRu819B9wHjRIOTE2D+q9SX33l2Z89+UDlHsoT1XuoRxEsb/O
hWJ/5QCKra9CVi7jGPtF8MO6b8rZ5JPQVU/9lg6V/0NfIXWu1ZE+P9f7Bq4I
7oJ+oXKv1Lm6YoTrlL9h87XuDvr54DtT5+qKGeYpXkhdK1BM8rnmlp+bDIic
q0axeeWsH8MPlo+IHHN9EzuHVe6qmHuOcp/UtQPFPHPhW6WuTSgmege+ZerY
SDWG2Yp3U9cKFIO8Lf+dOlZSDUG52rWpY2HlbPtiz0lzqc3eHgTXTZ373I1s
iWxT1zIUIy6SL06d6yqGXAffPnWspBrJJvjeqWMr1UCWwvdJXRtRzLVR8W/q
WFM58VrlGqlzG52BxfD3ps6VFbO+p7mljl2VY78L3yZ1rKcazV/y7alz8UL5
56dy4vOjc9Qjds6gXEE5Sz1weea5RncjMq+YQbGCZG0Sx0iKjRZGviuVwe9G
vjNNwFeB39BbDiU5x4SKBZXj3abYRzGVxp9xLP8d+/9c5Ji+ZuKcUbniGOgD
dNmcxyKf3gl9FfC+PH9zBPho7Nz6Fb1zOb/xetvnQCXgWyXmv6NNWXBr8ILI
OVJn+KrItjOWdcrxEreR7VzFu4ljEMUey8E3g4vnrNOYq8NXy7nteqhGzjLx
G6BmiWNIxY4zwE3BhXNeG/lw5abn56xTjrpN/hybEfCtlY8kzuGUuymGGAjf
Nue7N5K2D+pugCfAj4Z6KXYEF8qPITrkbCNdX2g//ddHlsnaZj3UAhzye5hv
3Kf1Uc4Ivwrqn/ib+tYoaGDimqJqiR/qXUv8DfX9TNa1rFsSxymqaTVOXBNV
LVQ10QuwbZ44FlXM9BX2DRVfR/bxim0a5Mc2inF2549RY1NOpLl2ztlXas5D
4LvnnHtMzZ9LrZxzfc3p3thvrt5anfky8s8513I0R52FkjmfZZ0J1WZjaFHk
Gm211Dmnck3VmFRr/TVxLquaayXa/gn+JvSZXxC7xqXalmpOf9H2xsS+O0S/
C3weVCRyTi5+U+y3SrKz6e9tvVGRawx5mmvi2FGyzalrTqo1qUZ0Fvo/8tdW
d2KuYkvVSxRrQin2TyGbFzomfzJ2zKtYVzHMYcWr4LvynHPPQ386ca6vPi5I
HdMqllXOoNrkmcS1YdUoFQsuRnY4P96T7/89cS1Ob4Bq0aphqHahmnRdxnu/
Yl76ugKbN9AXov/V8GdCj3UXfc4PPeY16I4njoX1Zp2EfzW271BOr9xZNVfF
OsqhlRscSlz7UY6gWv3SrN9u1ewn6W1LnOup5tkO/rKcfbn2XLnlUeX4oXPM
l2PXpFSLkky5/sHEb6Fy/pn091vitd6BbEzsHEi5z0Jko2PnIMo9NCe99S3B
syK/+aqVjFfMF7pmsgL9jNi1BMUcOfDT4AWhc6KyqWMExQYjVd8AH4pd+1cf
qtX8kDg2VM1GtZf9if9rUA1Gtd/vE49VNWD1/UnWY9U3/g9WuU7v
"]],
Polygon3DBox[{{3054, 3451, 3055, 2183, 1939}, {1721, 2439, 2552,
1722, 2539}}]},
Annotation[#, "Charting`Private`Tag$66030#2"]& ]],
Lighting -> {{"Ambient",
RGBColor[
0.19699838300000003`, 0.252204821, 0.33320940200000004`]}, {
"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 0, 2}]}}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
Opacity[0.7],
EdgeForm[None],
Specularity[
GrayLevel[1], 3],
StyleBox[
GraphicsGroup3DBox[
TagBox[{
Polygon3DBox[CompressedData["
1:eJxdnXeYF0XWhUcxo9O5xYQYMawYcA2YFVfFABIMYA4gYhbRBYmCIqgroCiY
RTEAKogZUVFWzLqCOec1gHnVNXz3nXPmWZ/vj3qqfjXV1dXVVfeee+6tnnWO
ObXrKUs3NDS8u0JDQ4vI07qh4aykoWGTtKHh4Lyh4exIwxsbGg6J/JxIl0a5
VeSbRRoW5bej7fGRJkR5ZqQpkW6KdFqi8l2R7oi+ZkQ6M+ouyhoaRkc6PMrj
428jIp0X6eD4PSTyiyOtFn23i/SPKB8W9RdEPjHSuZnuSf0t0d/r8bcdIvWI
+qFRd0mkHvH73MjHRDo0yodEGhnlWR7XzZE2j77XiDQ7yvfQV6RbI42LPneO
9tdE+d+RT4r0ZpTfifpJkY6L33tFvkKkkVFeK1ISKY20ZqRG/94n/r5ipAui
fGKka6OP6fQT5RMiTfY4eKYrIh0b478t8vsidYtym0itIl0VfbwX7XeNdEqk
kyNdH23axt/6Rfm6KJeZ5oMxX5Cpz5v8TFdGmhTp5KivIu0Y19wefd4W6dgo
HxPp6Ehjo83gmI+jI/0rykMj/2fkCyPNj3Svx3Z6tL0z8ocjfRblSyItivKQ
yAdHejLK/4m+h0X5lShfm+naJxrVH33cTznq52ea+3PjXkdFeinKA+La8bz3
SAvj7y9HOjPqzmC9RDo00rxod3ej3t3PtI97veq11zqu2yLSI1531LWNv68a
qVWk7nH9f+Oay6L8e+QTI3892sxt1HNxzV1R3z/VHvgy8vMif7FRa4y1yRo9
JeqPivoj/T7GNWotM9cXeu0dHuMYEem5KC+J9ucnesYVou549lSkhujzyqh/
I+p/iDYXJZrz76I8JsovR/mbKI9O9F5WiWtWZB9G3eeR/h1pRPzt2KibEOmp
aNMu6j6Juj0jDYq6I3KNf+34nUXKI90UbZ5hPiIdGuUk0oQobxV5GmmfKB8W
eRbp8ihP55pIH0U/p0Z/10b6NMrtI28baVnWZ+RXR/ok6ovIf4h86ag/OPpo
jDQuyp0jbxlpLGs38hsj/yDadYp52C/KH0a5a9SvHOni+P145EMi3cpcR55H
uiLKW0f7QVG+Icp/jbyI1CnKZ8Z9T4v0I2sjft8T6WfkT+TfRd7A/eLaG6PN
6ZHe997i3f8a6atIi1kL0d9JUb97pOcZS6SXkV2RvxT5C5Guin629pimxe+H
o79pkU7M1M9/Iz0T5acjfRHlZeNvo1LV3x/t70t0zyrqy0gtI/0n6u6O9A1j
iPy2SJ9F+frI3/fYfkI2Rfqce0Tf20f6MsrXRZuTct2b35Oi3C/SAtZepAfj
73MirRSp9p44P/7eP9Iu8fd/xu9ukTbyXlmNZ4++N458W+Y50V7i7/tF+5Ui
XRjlAdHmyEi92NPx+4lIy3udLZNobTwZqYq0vu+9ddxzE2RwlFex3OySqbx6
pBWivHykuYnuTx1tN861plowd5Eei7RcpKciLYhURNrO12wS6aBE+oA9+Wzk
60XaIpGMXipRX09HWjfS5h5Hg//GO7uC9xlpZKQTcs35I27DWLd0nzzXgTHe
JNLSMS+bJtIH6Id3M8kDdNL3mfTcRVHeOvINPafkF0T/Z0XagLmOfNNILaKv
RYn628RzQL9/j36eS7Sn+fsrfm7k3mtx3cBIfaLNOpFvmUvn3GL5hB7bKZG+
udB16In5lq3IVfTPbolkNToRHTYtyptE/V259PjdUT8r0tmJ5CB6Bz2NTkZn
X26dhB5fPZf+QVdd3SidM8lycgoy0PpohOUo8hS9TRlssGEqXd7Be3WudRDy
+hH/bpb7yPyDLEMuZU4i38KyAr04y216Wi4h93aNvFUqebjmn+b7Ga9d3vEU
X3eX52jNXDgC/Xyax4VeYg4fa5T+Rt8xz6el0nVgDHDHWsYeG6XS67skege8
o6nUZ9Lx6Htww9hof1GuOQY38BxgKPQ94zok8g0j9Umkc4633kH3zrf+/QU5
FKl74Lt9Muke8M3fYwyjEum5h6M8NNLVUd4qk45EPx2Yay0xzyMyra1nGnUP
1trhxg3o8cHW5eidc617jsyliwZGX5dGPi6XLgcTsMY6GVOBlxZG/nHk50bq
z96Otk97P2zt/bG/8RXyp5t1CvoCXAHmeLxRmAiMCpbkPfzTc8HaQmeDnaan
wmR9E2HY673+wGtg3UMj3Z8K6/wj0p6Z9DS452+ZsA74Y+9Muhg8sZcxBnp5
y0wYBbyxRyZdjl7fLRO2ABN0sSxFJ3bMpPvBAbtnwg3o/tRrm/lGRiC3kRnI
6Y0sQ65JJKMm5tIP6In/ROobvy93HbroJ+uO7VPpoc5cl0pf3hvp9Ux6C72C
zkJPIc+vTSQLrwSvGRugi8EB1+XCBehzdBS66hjr5cmJ9NJk66ZtrDPR14cb
b4Ax0FXoMHTXmCjfHKlLIv2xUS6s0WAZjezFDsE2wS7BLgD7YwO0dDv0/elR
39OybFCkcyI9FPVDos0xufAV65m1hjzZNsqzE+GFrvH3brmwzI+J9PLDpXRD
4nGAL8A/2xvvtLBOQS+DA36Jug8jfzH+PiVSY6Rb4u/fI0cS6f/Fxh2/GjNs
yzzGnEyNv8+P/AlspyjfEPUzc2GxNSyf0HNj4+/PJ9IHq/hv6Mv2xnVguZ6W
ndhBY9FHmXTIG4nsJ2Q1+vZRr6lGy0H6OtJ6eFX3yz1XqqVv0T/o+czl1p6b
tXz9k9gRubDBwZEOsg0C1gCLgAl2RJfFOJ9NdY9mfVhj16Rqv3aUW2eyzZ5K
pfvnJdL/udcI16BT2yfCHc3jAmfuG/mSRr2b1GMEc4Jpv476Abn0b3vf/6/u
6y+5dPFWUe6dSE4jI9C52/3pHVAGIz2X6Vr2JDoDfADe6Br1q2XSu+AQsAaY
41+J8Ec76uLvn8RYN0/1fsCZm/nvtFsn0lKsbfZR/P2sSIdl2iOfJsL72Fyn
pnqvzfY1ehTb/AHG4b1M3aGu7+Aya+Oc6K93pHVZH1HXMZFN9xOyjvXMc4HT
PKfXR3m5VPdeP/JvE+3r68Bvqa7/JMozo/whzxD5zYnW5FTkZaq1uX4me75X
lI9IhB/Oj/vOiPojIn2QaDw7xrPvlAu3gOvAD2el4iqw175KJEPebZQ9MSWR
TdGMj9lnJ0fbVxNdf3Oq3+DEBut/3tvFmcaAvh3pOQSHvJYIvzXbgZQHR35j
tL/c189MJFPZz89E3dORHo/fvyfC16z5d9AjkR8Q6UfKmeZlv8j3jfR9IiwA
bgMzvA+WSaWnXsxkt2OzH+b5AndtnAk3nJoIb4HZwF8bZMInNxp3cS38A/vx
WD/LJP+N+sm+L3Wsj+O9js6P9qMinYI8i7G8lYgPGetreRdgIO4FRgITYiPD
b0z0b8qLE9kz7yG/U9lg8ApTM8nrM6L8ZqL2PNeFmZ6B9dzfdtkMy03sOOTo
GvH3CV6TO0VeRTqQ+6RaA6wF8NPFufAUexhsBQagv37uE7sPbEsb9vop3u+n
G6fd4TJzzPXgA7AZeOHDVM+BHvk4xrNn/H43UTrRfb6Xan+C09CHzbJ/YrR/
wBi1DXZ0qvXOfh6aiN/o7z3Afjw31Z6HZ5kb5SWJsC5cDNgEDmGL6PPT+Nu9
rMtU+xEMA/aaYSzGnkQnPtgo/qCXOYSXU+lLdOX9lX5/5LbU04Yy7cFzM20H
POT6ge5zbc//OI8JXIPO5XnG+/nyXJzGs40aD33Rz5qRf5kI4y3xc8IVzI/x
HF1JF6xehLyqNJ+PR35MpNsbhUXBTeBQ7gfmom6N6OOLRDiTe66Ui0tpnWpd
giHXSiVHwGNgV3DxC43q63zXIdeG+F3w91Fus3pc+3kibnCw2/BOePbBLoND
n/TvpjWcSDd9nUgfIa/ax7ubYxy+WioZOyDK+0f9eankA3prVIz/5FzXXZ/r
N9juctusYMFbcmFDxnVVpLcaNZ/cF5yGnQu2Q0aC7W7N9Zt+uI6/z4t7fpcI
yyGrwCBwQXCj2BDwVyRshSY+zWuZ9zUiytsZw6yUCVuBz8COd8a9bov0Gu8s
8ssi1cZI4Clw4R3x+6pIH6XaY2C18cbUrKPzwPyuh3u6nedFb2caN9wRWKpL
1B2Qi1OBW4EjYj5u95xQD3cEluVZ+Q22fQrc7j5GppLbPMPd3KcWhm1vvcac
wBWhr9HpN8W107zfkaO9LU8+jfrjo/6n+L1cpn7BneBI+Cpw5Sz2RKQdU/Ea
4C0wDTocngU9DocCjoJTGR3tfkvEv9AvePX3RsnFWV5jF0S5QyouCH3+UCI+
aJfoZ1+wWiq9BeYHi4KrGAscS9M6y7XuLot2dSp74XZjkYej/BmyOur/SKTr
wHnoOzAl2HI19wVuW9bPQ5nnmx7X/i2Vrn89Fa5dKhVeQjejl3eN+3fI1ebo
TFwMmBfcONf3OQr7y7/neAwrJtK/2PJlor4ow9v8zPvNNG9PWVcznp1TYaYV
IrXMtHa5X18/O/iTeXrA7wKdjz3F/P3ie3NfsB7PAA68JBVXs8jPRD04ECwC
JoEj6pjKJm3Ww5TBALx/eK42ibA2eL+1n+MZP9fCRHhxc+cLvQ439T3Bq4Pi
OQZGajSH9Lz7Ya75DeYE14B14Kn+cF/gz+6+F/OHrMNmf7tR+g09B0cEnwon
AhZ4IRVXjj4HBz3lub3Itgd2B+NY4Oe6z3O4guf1PpfR8TM9tztH+92NP64w
1r2sUXbM6+7zNI8BzINOft/j2SOVv6oZ11C+IcrvpvLx0OcM6230NX4S5uFi
Yy36B5dOTrWXufaNVO8Vrq5tpGVTvTt0LrwBMv8g62jkLTob3f1Ks+xPJCfZ
r/C/7NmHStmc2JvwVOgG9AL77wzvwUVRPziVn+rjVPIR3gRstdj36mR997Zx
BH6BBZZ7n7t+T9cznlnW8+jfodZlyMZjU40NXvoJy8BvPeafPE44Zt7Rb43K
73IZOYo8hce+ORNWBz8xf8d7Djt63sC3L2V6T8uk4hC4Fjn8QNTfYN2HnYEP
Alnf23KUeUMuMzZs/1f+pCeb7LxE8hn+gevRFd2s98Gi+C765Kq/B27APEeT
3eA2XYwNsC/Qk5OsK7Fdf/ce3MxYi/f+WuSvWi6Pi/Hv7T3TJpVtzniuiPpD
UnGRYKcPPf/sa/pEfiJzsHmRnStm4seRcY9E/mwpfNDOOIH3C5+JfFnXe5c9
TPkky2b2MlgIDu2daP8gnF6qPpHHv3qfbuj3wH65Mtps6XGvG2l6PPt5ubAT
XCvrDZmH7EOnXBbtD0zFzXXIxC+h28AjVxiTNPln/Fz7G+8xnsujfQ/3u5b7
eM+YEK6M+Z+MbZiKh1ovFaf0iTEnc8l+WcCasb0KB0zOXpsUdb1ScU/jsbk8
FxOifIDv8UyMcV6k/pn2x1DvEd4vuA4MeA08j/XBs5nsQHjk41LZIKxJ7JFV
XeZ5mC9wJmNkrGBjdGYrv6+50cdforxHIs68NmcCZh9v3M74mAuwMXO2pufk
BI+F+WzpuQPHsuaQ1+BS1shqXies5bU8t4f6fU+wzN/A4wG/r+35zPzuwWXM
OfsFDMfeauP1zJp4LFe7mZl8fmM95i4eZ+53BgZMvB/g4XkfcATwA3CHcArw
CaxBxgZXgf3a1jIWmwwOHbtsXuyDjVP57Da2nMGm+8JrnXXFvqdP5EmLGOPS
uZ4TGdDaaxiZx1whG1kTXHuBx7mlxwbWa+8yOHcLr6tbM/lQqeed8+6xQ3m3
u3o+6ae956p53yKDm9fo3onmZ2s/Oxwg+BmuAN0Ib4tOLFNhOWQsGBG+FMxY
+b6sN+QQ65W1elsmX2kn97+N9wtroIvfEXPVyc/b4DGj88EgyOi+Xj/InAF+
L3t4zUw1fnugUfuD+yID0Yvox0XWM+289tCru6XCGMj+jn6nd2SKsWCtMv/7
ep3flcnveKHr9/c7/dKy40KvsQP+tOY7+T1S3tvPdWem+AzKYEN8n+A0bMHP
M9mDj0Ua5r3JPurmPcJ8dvdzzcrkq2Yvs68P8vqhjOzCHr8vk9+adQ4W4Fps
cPbR7FwylLXXzf3MzuQvH2d91fNP+6KX9x144SD3f28mP/3l7vMI3wvZcoiv
xT7Bfrrb+gx7C/2GnEB2gWPRU/0ivVZq3fb2+rndeqGl5TTyBdkyJJNsgnOH
o0VG4ddD3jMvPAs2AddzLTocXT7Z+/oY70EwxXG+15upuLhBjRpbX98Lbo56
MPLbqfDk6EbpqL4eP/iS+iPd/9G+F/0wZuyUezLFOkzw/DC3yDTwI5wMGHKb
mJc3Ir2aOwYkFa94RireBzlDHX+bYVkx1GuVOIXhqexNOCXaIIuQUVx7snP6
Av9s4v7ph7UxMBV3c3em2AbeL9gOjIeNfX+me/BcS2e6L9iM9Xmg1w+6gRga
uJeXUsXRPBSpL5g58h1yvecxftfEK9yXK37hpGjTL1OMAvgNPIdNA57CPgXv
LR9tl8tlL8FH4tfENsH/yBzC0WFjci1yadlMWBZ8ONv93OG+aYcdukomW+8v
iWwQytgh+NOJtyDWAnsau/pFZFemMnYNNu+FqfBVB/fJfef7b9h0yAP0EDIB
+Y/cQwYWmeTS9lE+MxOnAJ8Ah4jNvMR2Df5veNTTMsUP0W5k5J+l4h3gw/Ex
IP+ZZ/yr+EZ5/3d5DayeqR/so7Uyxd/AF4OBsSXgGrFXiPfCZmEtv+B1DucH
H4gMZ61i82DrwJvDn6MTsSeuSaVHVjXnQD/wu9gw2C/7GT/DhWLDMYbSfcDF
j8KmyMR33Ojx0aa75/55zz9+zt9S+TfZlzd7z77j68De2HlTUtl02Exw+9hN
6JHpXjOsH8roFDhX7C5sLjjaO10m3uBOzyG20nV+L7em6nMH981vfAfIImIJ
wEtw1cQ64H+Hm8S2AVcPj/ph8C/mXB9KpXPhNe9JxW0+mMrvi6x+NJU+QCa/
Bq6oxZMQV/CAr8UnAW/Lu8KPMzfW+/BE/vQ5lg/75PJfwONu4eu5dorvMc6y
5GG3f8BtwBfEQc3z3u+cyU90r/umPTzhzublr7JshMsAw++QqTzPexn77QDn
813eJtNv9vh2rp/hOSPOAyzKfC30mn8lyjvHs3TKZaNg/3SzDHzc45znMvIQ
TuVpj4e2z7n9v1Ldg/7XzPS30vJhgeUP2OaCSn6u79wvtiRy6wHLLvyi19s3
yhwiH5mT5W0rrexn4X7Yt7v4WZ5ulHyck0tewq9iN9InObY2cV1/y8U9wTvx
/Fx7rmXt0pXkLf2+7DWGzYdORcayR9Btr1pHocPwiyCzXrWMgneAf8Cf8nAm
fw/7op/7+c06Cv8BemrTTFzonEbFEXyViof+IvK5Mc5Hc/kRWSd7JZJJyCvk
EhzBRx7/Fl5LrNVLo3yc5TrcC/wXXOMw+xGYK+75ke/bxDe4TF/8Dd8HHDlj
gicntmRxKn4cbre3uV64eWIb4NTJv051HTw9MRJw9etaxjJ+rpvra9EP8IPo
C+Q3/Mv2vu7bVH0Tl/FTKq6FWIxfU/HFxG78mMoPwW9iM5D5B2RaK6wTbGDW
zFz//ZdUvopLfD1c/njfA3sQzps4GXhv7J47bPu8FX20iPQxeyrqdou0jLle
OF/22lyvUXjLod6/x7m/P1LFk6D7idWBXydfKtM9kcnowpc93hU9frjKlSP9
0ah4NPg15DDcJRwm3DtziN6F+yPe5PtUc3+Rf+MzgZPjWrhG4iJWcp/kLV1O
M92jjd8FOhV+E3w4OFO8V2vn6FDkPesL+V8bQ4Ib0fNZJp/3IPeJ3ifnHsTU
4feAA4LTAV+Dk8BI4HRwM/IT3g9fITFRrGvWN3ISHYGPGR2EHb9ZpvcOP0/c
FLoSuf94rlha1jJ7DO4Q+78dtk2UH8vka9zX+hNdjrzCF9Xaz9j8zDwXOh/d
z9/x/RMD0BznTXwYsU/Ee1OP34q8lds0xQJk2pvoE8rs6U/9XNT3ROfk8icR
49LTfZIf6jJYilgPeF3eCbEyxEbBAf/d7xedgu+fPYcPGfsZXApO5TfYFbxK
PXV/yTQ/7H30M3oaHb6xy+hrriGGDR/rBp7nwz1Pa3t+2vp+3Kuf21NGz6/n
eV7FZfAV8oAxNukgy2vWA/4mYoLRlU0Yp3mdZIo5Af+wz9jn+CFOdj32C3kP
l7Fx4KqwF/CHEQOF/wv9iR5Fj7FH0bXI7N1dRueiv4hlQYexR9gzd1jPol/R
p9zrYI+Hv2+XCRdv5/bsKfbcQL+XKW6/o+U/OBtf0iWZYhSI/1snU7wm62eQ
54F90cr1rIE2breb3zVziFzlnWzg9Y9exWf2mddhV/fJ3jzQe5D4KuaK2Adw
MHj4Mq/rbl67rKPO3nes4c5/utchXgNt3P52y6gDvd+JfeDdgVHHeh6a5QBy
gblB94JF0EfEqhzv9UCcCGcEHrDu6O16bBpsG2KxfncZGwfZc/Kf1sDJnmf2
01PeU8Q2E2ODDYtf6UiXe7mM3wm/1RG+L3GKlxjjcR2xTwtytSfOmngocAx1
xLgRI9bPY+MMCLEV7H1iLU7NpAvgxuACsFvhrrBvsZ2JK4MDwt5BJxHPNtS+
9IWRFuXyMfM3fM7IdM53DLEduL/twhMy5WADYhEYE2t/lOcOPyD5iS4P99zy
fvv4eq4lNpTfDxvbgyWwD9eN+3TO1Y5EPDJ19/qZkYVn+9n5jV/vmEz6Clk1
2O+IMyA9Pc+cAeJvrEf8vyP9rku3/4dlxUiPjfw8l6dl4iZ4D8h1OF7k/mGu
5/329jrmGalnHTS/8wFuQwzW6Fx6gXExPmQuNscov7v+bgOXjM7BznzVsneQ
1zbPPcrvnXd+vueCPk/3897iMvv3cN+LesbDugRHEBeGjcq+7OJ5xDf6oNu0
NJYb7udCjwxzubfr2UsjPFdguj7+/bDneYTnkHEO9TMy30P8jkZ5/NTT1zDv
08pteD/fe5/jlyEGr2nPJ/LR8BtOhthmfIT48oiFG+u5Ah+McXmg69FhcGb4
UeB1mCfmizgi+Dl8CXBy2IXI0x2NEYgrAidwPX2iH+EF8QfAL8I14g+AUxzt
9sgu+Gx8G/Au+AQv9jixzS9yG+Qy9cQ9cd8XK9ni8E/4UeCAkeuMh3rilYlb
Jk4b3zp+Bbgr+NqrM+15YgHedDwAOolYXmI0iB+7MFdcBvY39juxCvCC+Ejg
BeGk8XnAI8JHcnal6dxKKgyE/Ec+U0a/MIdTvcbgdKd6PuGx8XHACcDR4tOC
W308U8xfR+trfC7o7qa4tUzyAN1EnNMNnrNLPG/ITmQothWy83nLT2L/8PXv
mYvPg//CroSDh2eHYyfWnnMLzB885YNe54x5usdPPTwk8QnM5dGWofCjcILI
VbhVuFR4VDhUeFt4VLhneGe4ZfhjuGN44+Zzg9wbmTHN/WOPw19jv2OL8l6I
22X/MTZsC94zcepczzw95rmCL5mXCUvD8cwpxW/gB4C7h7NiDY72uh3tOWSt
ja91LuO5XJzumbXs/TNi3c3J5INgHh7yGD6I8pOZztbx3s6qxW1/HeUlmdYQ
OOiJTFiI97tHrrbzPX7mnPhPfJD4BK72OmAN/JopBhq99lumNYrPBN8gcSf4
B4kxJ9YcnyA6+Q23fz9TjCNxhfiC3vS1m6aKJcU/Cj9NDA1+32Vy+XKIPXkh
05klYnHhldep5Q8hRpd64paxweAttnO8ywv5/3idvaO8l+vJiYshnpe43m0S
+U+5D/6xtzPVE+sLTuR52JfMITzax9bRH2XS08flinH63O+P98Y5Dji/Vb0H
L/H7ZV9gt+6aiWc7z1h3mmUnchL5CRaCy8Cm51wb9wMPcLaNmPMPfH9iz1/K
xbERm0h8wyt+TuJ+GO9bHjPnld7z/MMXwevB6XF2hLFjg9/l+3GvMb6G9i8h
5yrFgMCl7+O9jM/qX5n8Vtzra68xuA+4ZOJn4Ja/zYQ7wCZwFn29Pp72/NIW
/pn2J3qNgVWWuE/Gj99+tn0d8FSLMz0nMcz75Vp/O/g365Hn4mwMfh/WGXIU
3xwxMJzXIr53WfPeoyxfuR8xYeD67zJh+y8z9cX8MC72AOuCZ1renDmYAT2N
jsbviP+xlddUC/siz3Q72nzuPs/x/P2l1hxSx/2YI/bEH5niJtkrv3m/tK80
BvYUMZZZrrOnw40PKa9knDgsV6wNzwnG41mX9Tw3zbefnWf53e/o35n2HmN/
LO51XKVYDsZMf6z3Jv97KTkH9gSDwu0QN0qsAzY3Zzg4y8EZc87cEEvLb84V
cd7lEWPbhcawnDGiD7gj/Fr4t5Db/Y2zweS3+f0jw/HnoEvQI8RHNseDEOtH
bApxgAuMy8F6h0V5bTi0RsVRomM5O8MZJjgt4jzZW/DQxNUR/3ud7VdsB7A2
OBAemzp8QfiT3rAu4wwIsSacl+V5OY/E9ZyX4ple9JxwFo6/cdaHM0/E+MF5
EheET4X3yDkveCFyYjEpL3Td654rdCSymvMNnGOgr0VeA7SBN902VWwPGIOY
wEdL+TuJUT7J80Y72oBnWZ+sU/Qbsn3/RONk7jmHAe8FDwYfNsHYF96FWBrO
+RADQD7J5fmRP5FL3nGOiBhM4j+JA2WervFvYn5O9ZjoizESs8q5JHzBV3t+
wT/cG3nAWOgbOUr/+MnRPzznrfn/fMjIjCWWIcRa4KMmTgJumedjjuCDiXni
HSBnkAFcQ0wLfmb856/nWhfw49iRrAUwO7Yg75B7g3HAPaxL7A/mkjmC48S/
wtluuG3e85OprmHcY7xXF/ndIcO5H/dCn3XyvTlDyDlDzicS97p+pJVzyRFk
K/bferk4yQnWAfRDf8RhY69ho3FWDPlLXCpnZzh/y/kZ4k45i0dsEmfS8S12
9voGs4ErODPI3k09pt08Rs6kcWaK81yc6eN8DXGYB3isjLNHrrNXnIvumAsj
IUPQyeho9CnnPVt7n+Kn48wDsoN11svrju8H4HNBDzEOzjAyrlc9RnTUlq7n
ublf90gbRvp7LV2Jziw9R7t4jnf2M+3gZz/Hdu6W7gd984rbzU7lG8JHBD7n
fBf6lLN6xOG97X3GWiZ279r/t/bJWdPIK86X8Tf4cLhh1spN3pesS+QkNgTn
HIkVYv0OMJZG/rDukKucEX7eMoezqsgI5DNy4gnLPeKirzImZ/2yXnmGHf1M
fbzP2ANwJcg9+EjWSluvHXAm62FXzzfvgTlHb7EO0bvwqet5HTK/e/n9jvAY
kWvk/D7c6x4chX7hPfO+2atTc+0b9jlyhT39rttyDfNF3Bl7lD1PW655JJdu
ZH0853lknzOv7HnkHjKgU+zFxZV8XHtG+d+V7Lk9ovxpJfumY5Q/q2SP/i3K
n1eyvV4pQk5U4uX3ifqvKtl2r0X915U44v2J+axk37we9d9Umhuw+QrG5/tG
m+8q+TnfizbfV+Ji94v6Hyr5DA+I8n8q2Q2jo823lfbPXlH/RSW78OOo/6nS
OYNDo/6MUrE8h0TeopaN1CXK/61k93SL8u+V4gwOjPKvlWyjllFevpYdsHeU
v6xkX14a/S9XyyZgDRxWyt7Anvi5kk3ROep+qcRpT47yVaVsop6RL1srJuij
mPdfc3FFP0efy9TiJbtGm98q+faH1ML14Psq6tevZef0jvJqtfy7Z8a1q9eK
Yz0m6staNgZ54fLRUZ/XiiMg5qNVLf99x8h7leKyjic+ppZ9eWyUq1oc8C1R
vjeXH3GXKH9YiUvYNcofVeISdovyx5X4gy5xXV0r1rVv1K9Vy9e3VJRb1uJX
eO5Vaj37ylGf1Iqf3T+eZcNacW8bFLJxmm2dE0vZO+Tr2vbpF+UNasX1nIQ/
slQcyyqRZ+6Tura16neuZQthEx1V6ntAcP9rR966VgzA7lH/SSV+ZfUob1Qr
bnHzQu1oc1opvApuXWLMhF3SPer/qOTD6RHlhlq2OLFr6LiHLHeQj5xhwb8A
lgJHYd9i5+JnQCYhm+BcOdsFDgNvIfOQfejwb6yniXcCQ9xueYqMABOw/9HJ
6Ga4WWQcMpJ+wYTUo3u5x1OWg8gOcAO4A18R3CG6m3NVnIVCFlE3z/VgE+QO
1yHrwQqcy/nReG6aZS0yt6//xrO/bZmFrMd3Co8A3gKLtDB+5Xsn4N7z/Ryc
DQfngfF41mv9vF9Y9t1imY3sBitxfo4zSLwfdAgyj3MeB8d7WboWFwJ+4dnB
tmcar8Bn4mOea5mLjmHt40sn5oj5H2BsBK562fPCO2Ge0Ftcy7PhXz/D8zHN
vyk/mAsDgX8O4tx1LZ5mUqyxzUrZGrOMt7BtwUq0Z07BcOA/YlGRTyuVklGM
e7Sfg9i72W4L3oVbA/9iK7NW6fsl/6aMvhlmXcL7QK9MNI7kulle38wp88m9
p7t/1sEEr5dlKulC5CF2yp1ep7zXmX7Pj3h+mVvWOz411jxt+7g9fYBjwFyD
a8lZ9CyYC4wz19gL3QYm6RVt2pSyVZGFz5eSh61jPP/J5Y8+v1DMAvFhy0b9
J7l8fGdE/XOl4lV+jrpXHNPVrdY5JriYk6N8ZSmb9oXI+5TinFpEPy+VOuu5
MfKqVNwXfNkLbtO/khxEBq4X/WxYiOOZEPm7pc5xJoVivYjreijaLyoVb0fc
b+dC87M5srCUXH0r2tzv9XNUlC8opDc3jHJZiEs/FZ1WSAfR9walYi3aRD8H
FdL/H5e6Bz7NNaL9eYV8zstF+bNc/PZv8fdzC8U7pJyXLHVG8/VSc8p8IuPP
LvSMK0b5p0I8PXpyXCFdeVCUB5TiSNADS5fSBYdW1ouMsxKeAEvcGG2GF4oR
PB17v5Dv5KRa8ehwC3tH/Y+FfJ+NUT+7UNxJu1oyGvl8X6UzMG3R+dynVDxL
HvX/LBRLsWqUnykU+3VDXPtcoRiFBdF230L65Z0ojy8Ui3ZIJWwBrng18l6F
YkoWRv3lhfy0DVHOCvkY20f+VqmzOsgw7EjO418Z9R+W+m7Z7nHfwaW4wrWj
PisVo9Wvlu8DbmWD6HPFUv7la6N+bKEYt22jvHUpjvXZaHNRIZ71kShfXIin
7xlt/lGK5+hSCZ+BzdpEec9CPtCxUW5VilfFTsUXB4/wftRtWij2cKto07aQ
b/eC6LNnId5+9ah/oVAMx/VR/3Sh2JSto365Uv7lLTnDWigmbLMo3xjl+5Cx
UT68UMw0MgzfEr6nTaL++kKxa9uBKwvxgcQR3VuIg98/7nVeKV7vtFryDrmF
XO9v/L4W+7QQP7pPpbN6+MrXjPbTCsVj9YnypaU4r5crccJwvmClawrhpTfj
7yuUiml8ohJuA7Mdzjovxam9AW4sFbs4KOp/yfVtib+CQQrFh42K8vhS/MI5
4NZCsdp7RXmTQmObG+Xphc7Zg/VuKYT3non6iYU4deQxXCWcJTqHGKnXbH81
nYttFO7g/cABod/wC/Y3vwGPDycIviAmERuzyb5o1NmfJpuiUX2h66njN7oF
38tRtiHgnOgLGQ4v1Xx+grz53Cr5t7Y/iG+Aq0KHEE9EX+AROCp4LvQCvD9x
F3AtcGC0Q0fBwa1k3QX/2/wNEnLmAnzS9K24zN8tS3Q/bMRtvCbAMsQTn2Md
u6/7gnug7xWb9XyqdnBQcIrP2eZijhkHeIDYOtot9HW0e826Cq6Nb7Zge/Nt
lR/jnZ9TiGu/OJ5vSKHYaHzb2LfzbWuCR7A3wXzgQzAg5/Hh1ODT4DySXN9a
weeNfYttC757w8/It4rgyLB7+T4RHB/2MN9k4/pmLqCHx4f9if2MPcr8YH8u
sI3K82Oj8s0j7Gpsap4HHoNvycAFwEfDDfDNGji+cba9j/J1j9sOH+yx8ryM
necdmv/v+0U84yEeK/di7HAnYDueGdwMngRHM8+HecyMZdVc37Tp4bnhdzNv
CKcIVr7NGIPvVPEdCuwy5nSs5xhukvHzfVC+r8R3luBs4WD43hd7BD5nW4+p
u+eT+zG+RpdZC/BHzZwTXAoxAsSotcz/9422rh7zVrEWPip1brPR75f+WU+Z
1x557j5XdHkFP3ftfhKPhznDLoBn+cRz0e1Pc9PD75/7Mw7GA6fGt7/g2Ar3
CScDb1V5LYO5a/dR+96UmUvmdA3PVzvPHxwWewFOi2/GwInx7ZmVPYcHeBzd
3Q/cGd9EgkubYz6u+ft68HLwavDpvBe+1Xph7KMHC8m+raxf+ebNYnNP8E6M
hfg1YiewG5BD6LYvzadg8ywuhQXBgZxRS0rF7nIfriMuowYLlPI5Mk/4Svku
WnfvIeYITghOCp8vz8FZcL7Z09nvbRW/B+aba+DnUv9tfffB3MBFEXPNXsbu
r0vZ/muH/F+zVDzkmKifUyhGtoz6BYViOleO8qOFYkYvwl9aKA4yifonCsWJ
jsWuLRSf+m30N79UTPJZlex/bP8Da33rA66wMzgq15mmgfATxqVnV+IX4BYu
rXR+Cr/pM6U4BfiEHyJfo1RcNLjiNK+rZn8kNjm8GmcmmS/4VOwSeDM4SfQ2
8gW+Fu5tg1x8G3YCPCi2DHIcGd7Wa4d2TefpU7Vjnon5wHZgLzbHB2ET4gPA
RgRPg6uxz7AzsT2xO+GmsZmxl7GlsUuxSbf0nqZf+Fq+occ3+J72WLfKpQOQ
Ucgq9Az8H+OEI4RbhSfEdwdmwX+3tftu/lYiOeua9cCzwk/ubtnC9e2835BL
a3jvNsu12d6T9Mn+YR+xFx+1btrWaw3O9q/en+t7zbPH6HfjUt9JaTo7nUvn
Yf/+jp1q/DaVNVjqbMGdUf5vrnO4M6LcoVSs9WeRf1pq/NcV+k35sEp8H1wf
Nsq9leyUdpF/WeqswtXx9+tKfWv57aj/vhQuGg3HVUrHE0f/TSmc06LQWmed
70J8eCGf/02F+qVPxg4GZfz4Ey8v5VN8Lcqfl4pBPTSuvbiUn3W3Wu3wOQ4r
ZAthB90U9VtU+qbglChvXunbeLcVwrtg3Q94vkqY9o1K/B1Y7vuo37PSN/a6
FuJJ4Uhvhoer9C3Dj3lPpc7XYM/BLWLTfRP1gyvF3GAjsifZj+tEeWSluIpu
hbhaeNq1Ix9U6bzIDvAfpfAzMf6/5YrzH1joN3hmUCH7Ftt2SqH3zVwtVUi+
IFt+gocsxYkNLmQrYiceXOt7XvjSJoCBS+Gk96JueqnzOPvU4gvgCu4pFPvP
GQBstaUqnRlg3f1a6uzBmoWegfH3jWuvKOUbhife2Fzx2KjrUct/TN7d5a6R
X1DKn3yjbVHs0BML8dpw2otjbFMqxVSNLGQPYwu/GOU1K/nazqhlSyCPsMW7
mOccUEtWIieJ5ehq3/Vo8whwCEfX2uf45vHRH1OrPCHaHFfrWx3YBEfVsgs+
ZM9Wirmj7dFuz7xiE2IPIo+PqCWT9ytkw2C/nFhrjpgf/OYTS/nOc9ZhqXht
9mhaaJ/+lfkrFOf7LXZYpW9A7hH57pW++/hdod+U+fuubsP67eg1/Eahvuhn
XNx/l0rflXw/6jethMnXKmTXYdPBl29VijP/Ghu60nciexTyJeBHoG4n1y+O
+h0qfT9yuUI6D323UiH7E9sT38IqhfwLyxay87HxL43x7FjpW5UrFLL5sfff
YZ+WiuOl7w7u/8tCvlv8qv+Ia7ev9G1L1lTbSjGYvLdj/e6+R2ZWij9rA49S
KZYL271TpXhibDvsT+y7PdgXhWIZ/xbl3wvFla4M35Urtuz9XHqX93t95DsU
OoMKn31gJU57zyjvXynOlP3d1Xt8RuTf5YqTG8p+zRUnB+/1ey7u64GoX5Ir
dm0cci9X3BscycbmSW6O+q9zxSD+FHljoTPFt1WSQcif0VHuUSnGe2aluWAe
zovyD7li0+Dhulfi4uDvD6rE4cMzdavENY2oJL+QXXncvyp0hgsfyPWl7Gju
f3ilMbB+j6i0hrHLe1ayzfcqxCvBKSHbelWSb/BGM0rF+T0adZt7L8AHHFkp
3ol4xuMrxS7iQ8A/gR8BDmNT8xgj8VGUOjuVRt63kk4EM55QCTfC35xYicOB
LzmpEmcypNL6YG1cGeXtC8XhvRnlbQvF2G0Z+Yal4vCxg/tUsoXhP06pxIFc
Fvl2heL2Lo/yF7niO2+oJMuQY5PQobliPeEmNyrETx4c+fqlzsM9HG12LnTO
hLZXVWp/fCFfFH4oxji50jg7RPnaSudOexfy/eD3Oa6QTwh/EHzSDqU4JfQD
vhN0xBGF8CXYslUh3gfOZ41a/i3wLXwbfh04t+6FfH74+/5biAeEA+xbyNeC
n2U2/RWKobyV918o9hG/zd6FfDdgduIFwe13cc9CcZDTkWOF4iPZWzdW2l8n
FPID4QNiXq+oNLdHF/Id4jdkr0yotF9uqYV9wb28w/GV3uNOcG6V4kt5VxMr
va95kU8uFKN6TZS/yhV3e3Wl+WVub0LuFToLdBSysVRcKth/PeN/OLNLPIfw
cGAguJ57Ij+/0vul7+sq9d+nkL8TX+exhfyd+DoXFeJe4V2PKeTnw8fXsRAn
CB+4bql9zh7n/mMqjQHu6uJK/BU86EWVuNCz0OmlYjY5t8E5Fs5uwNUdUIuv
G1AonpM28G2TSsVhbg2/VcqGGl6L1wMfE291bq14iRGRn14rphjZANeGfLgG
jqWWz/TaUrEOxDmAHwfWwpDcB98z98L/eXYtH+jwUj5Xrv0jl32FbYXeHu4x
YB9MLWUjnAleq+XfGBjlYbXiPvG3wI3yLm4sNdam2OfIz68V13Vr5LeV8tU1
FLLHms4Ksp9qxYpeHeWhteJC2KNTK+3TZQrxR3BHPN8AY487wYmsuSgvX4iH
hYPFfzujlh/rrmgzvdZ5s5lg6lrxn7wr3gfv4uZSY+W7CiNL9Uufm5S6nmvp
4zL3A6a7rhauO7XUuBnzLK6tFUt6N9fWii1FBk+tJYeXFNLN6OWvCula9OwP
hXAwGBgbpaXtlDtK7Tf2WstCfgJ8BOhq5pT5/LAQFgeHr1iI04fP/6gQXger
vxJzOaYQZ75NqfhOYjtXLcSxwq+eVsj3j98f/Tmtkg7tV8i/i28XHXtnJT2L
nrylkq48tZCvET/jKYViFIhPwFdDrAP+mk6FfBX4KZBDd1SSRacXilcgVgF/
IDGI+ARPLuQvxFeInLu9kqwbWihWgzgN+MUxpThGZPw9lgPIkgcryZOTCsV5
EONB/O0mfqfI0TmVZCkyclYlOYkOv7uSHh9RKF6EWBH8RTuVwsk3F4rVIE5j
+1J2FDYU+OL1Shhji1LfuOTM4IXRfrtSZ/HBX/+shMHalfreJeen8F2gj/Ff
XFVIbiIzF0W+oNK12A34PPB3vBD5c5Xiy9+J/KlKtidr7clK6w1b6l+V7Cmw
MDgADADXjm2JXXlZIV8OfhzGuMj3Qma/6jHcGuUdS8XFI5s/qCSfmY/3K80J
f3+vUpv1C/nt4Bi+KYSPwcbb1PI34GtAZ75bSW928DMw/mmlcAAxAksX4nTg
c5YptT/Zm/0jb1/rf8ucW8qfhC8JX9yQUv64El1aK6Z/5UK2AXHo7+TyoyCT
waF718KikyO/0vKhfSlZhhwbWip2BJn591J6Dh3XohQeBYsSQ3tqrTja3wph
XPoE2+5VC99uVsgvgk8ErLdfLbyHLOlgeUJ8DbYiduJZpfxe+LyuYP3U+j7C
xFqxHcR1IPuR48jwmdFmi1rnGrGBrqhlBxEXP9HtkUlXWy7hU8I2xi5Gbl1l
2TWslPyiDTIDfxtyA9k52fND20luf3a03b7Wdxv+D7LlVks=
"]],
Polygon3DBox[CompressedData["
1:eJwtmXm4jWUXxjdOIZz97vO871YpkQaiElKahEIlSfNgjEiiUCIKpa+klDFT
iTJ+RIYiokgoFPUVmYeQsUiG5Pvd133+WNde97PWM7zPsKZdtmXHxh0KplKp
NwukUjn8Dg2p1P+SVOqrTCo1LkqlzoLfT1st8KvpVOod+OrZVGoxeBTyx5AP
oG0k/M3IHwbfCS4PrgneAv4Vmob+fNr+gl8PfQ4/FzqDsUqh/wS6Z4DfjlOp
R2ibCj5MnxLoHkReB74fbUuQfwTNzGNOqAjynsi70fdl5K3p2x35OvRrQMWQ
H0BeG/415E2QjYZWgVdDXdDfwThzclOp98CXoPsa8l3wjzNmP/g98K/z2x58
At2i9GlE27mMVxW+CrQW/CN0MXy5rPuWhK6CLwNdA3+n9o9xHgX3ZL4j6A8D
twXPQH4a3Bf8KrQV/g10iiC7gDUNoG9hdBLwVeAN4NrgruAR6M9G92nwRtbX
B7yZ/j1yPVcOeEDGc26Dr0z/X+g/Cf3rkD9L21D4vsi/hn8QeQ3wXej8AF9O
d4L+OdA17Od08Crka5E3A/eiz0Zk5cElGa8a8m3wddH5HlkJnRnyjrRt1t2g
zzPwFWnLwI+j7VN0e9GWCz4EvgVZf3AV+laFBiOfA34C+QTwfL7zOXC34Dk0
did0DiK/EHyabymuM2Q9p9FpD/+vzgj+p2BZMegPdGNoCnwjrQlZWneAsb4G
90RWizFOMN56dH5GVoY5CiKPwHXAF0OtwH+jvxb+AuTF4YsifwD+WdraIR+t
74UvS1tG30fbv/BjoE/Ad4OfY77bmW8D+CdoDfqlkf/J/GeCr0S+BNwY/kbm
mKm9RKcFfUfR9jG4I7gpeAS4Nb/H2asF9OtC+27kH0HDtDZkL9Bek/muAx9n
jsvhf6btJmRFGP9N3QfaloIPoJPQdzvjXAU/GPk28DsicD10nsn6m/WtOrMs
/GH064H7oH82+Ai4Pngo+BzwDnAV8LvgNcz3B/hW8Fvg/eAPwZ8x1jzoR/Bf
4NuQD0cetDfguuCB4N/gGwTbjuoaA/2HWdOfOuuM7/JDWX+L7vQN4ByoO2Pv
pn/v4Dk0dk/a+sM/gP5+dOvStp35hkADwbchPwk/GPoYXB/8YvA3aO0asx2y
8cFr1xtuylhNsn77/dnvmciKBc/1k+xp1mvWWo9DBcHTGePTjM+0Pvil2G+9
FW0n6HsSagnfQjYW3T7gF5F/Bi6E/qzEvO7IAdleqHdknTaMVQqdz5G3AQf4
czQea/2etiGxbaps6T/Q/fTNIr8beYL+VvACaBayXuCf+e1Gn07In+f3PGQf
8juNO1gI2Wb4C+k/DvkY9A8jXwi9q/2BmiIvznxvo7sVvCr2G9PbegxcDdlT
mjPtN/uu7DJtZyMryBwdJM+aLwRtRW8DOiHYPw2IbRNkC3Qnluq9QFfSvx7y
g8hfCf6WL6Fc8A1Zf9cE6BV070N+NbJJ4E/AT4ObRT6jaeAO4Edlr8B59K2g
82fs62i7CHle8NsdDr4D+ULmGAu/SWtCvg55KfgvoV3gudBQ+BfQKYpu88R7
NSrXvuM89Lum7UNaINsgG4T+TbQ1Br8HnhlZZwv9BwXvfQPwaeHYd20JeCN8
MWgM+FbwWPq3Rb9xZBv1Hvhx8F3gGeAR4FZ6c+Dp4Hngl4LXOlM2lzN4lLZK
upustxf8PXrvyCfSdh7rXxZ5f9oyb0XoC3S+pW0xbZPh2+vNgmejPx7cLth2
6c7t1rkyxpKMbdga5I2gc+GnMN9Q+JbBb1VvNDD+k7S9DJ7C+PXoeyr4LenO
NQc3y9pXHwWn0C8g/wLfASqA7L+Jz/YR+fTEOpJ1lT7yiYnX+qDeK2NXoK2D
vktvJGubK1urGKWw7Cv6OfLFzFkQ3FB7mPGce+GnJrblulMv0b8iFGts9nYf
shnQyIzvYAP4QrHX8pjeLPPfoTeWto1YiqxecKx1KZTDWFfQNjnXPuWZ2D5A
tr8Sv5v5vRW9ZsH7WSLrOTS2YibFCrfL5mUcM5ygf3fwc/A/QOWDz1hnqzMe
SN/mwb5CMaFip/fBsyLHUPr2GfLpkfdgOf2qgDfStw5tDbUO2lby7RVkb3TW
tLWRPQDvUewEvkJ9Wd/v4M/Au5D1Rqd9Yp8qXzpL8QvyXL1v5L/AH4auQL4c
2QrFQMhaxraFism0l4ohFDtoT+tkbXcVD/5N++M6e363RF5ThcQxj2IdvYG9
jNUL3CM/3lEs9ILeb+SY6D/I22UdC/6m8wOX1ntSbIHOEGRdYseanfW99J8k
+5nxG2kDPwr9afCd6bNLsSx7VSbPe9xausgny9fIX4I/kE/L+I0rVuoRO9ZR
zNQE2fW0P0R7UdkHfi+hrRZ8Wdk/+R/0d8h3y6fE3hPthfZks95H4lhHMdO3
wTGBYoFTkW2qbOvz+T5jLvIiwbI9sqm6q4ltx87Itu3ixLZPNm5WsA2T7dIZ
6qzPRL4i12d+S+IxNZZijprgxeC/IscY4gtBRyO3LQmOQRV7qu2r4BxEuccR
+QRwwWD+sOwWfGHkvzDf3six8THdl7Rj5BsT95GuYtpJig3Yn/GcxxLoU9mW
2G/5Mtoro/8d+v9GjolGxs5RlJsoxr8U+aZgX7UbnZeRdco6Nq/FGP2Q14ca
ZhyDHpUueFHabSuDYzDFXqfpXxd+FW2pjGMq+X7ZCNkGxQCdkS+LncvI558A
94C+iO0zL2Hu9vLvuc750uDm4Msix/yLgnMw5V5/aozEMbtidfU5lnaMqthU
Maq+vWjw2rQHspuyn5Ui28+R9G+NvCF4ELiEzo7vLpdnn9lTsbHi08hvojf4
XnC1yDZyjuI58LXgPtCr8seyuWm33Y/sG8Vfuc7ZfoM/N99210FnIfICwd/y
B3RD4jbxylHnB+ekykX3y0ez9k9krzLOkY7k2xjZFvm4bujuoc/1yL6iT2m9
HeRr0r5DKxLnHMo1yih+BB/Nz0XLgo+BJwbn1lUV84IvB6/U2hSP6K6jf0/a
bYrlD4FX5zmmL4f+etlodOO0Y7NJ0KLIMdoUfWvsXFB+eir9B2Vt25WDVeR3
O7J57Fcj2ZXYNkq2KYexd8nXJ7a11zJHRfhtwbG0bLS+vVpiX6896Au+SGdA
/88Z62ZkXyv+ixzjiz9Dbyxy2+TgmE2xmtasXH13xvujnH0C8gN6X2nXHMbD
T2J9c1n7PKgy/HHaRuba58yGrxHbV+iO75GPVYzBmCeRL9BbgQ7BH5TPTtwm
XjWGL4JrJqqVSKeG4m3a9kWuoYg/nee7obYeuu/oHIhcw/g9OMdWbn0j+hPl
m1njIvoshMaGfB+Sds68V3cZ/Z3gmuiPBu9EXhs8HXnHrGNixcI5UNvENlu2
WvdZsaHuuHjFiPckHlNjyYbK95wPzY7sg9Yh/yi4dqOYdEywz5WvlY58xYm0
fYV8RqXgO6m7qDvWH7xa9pw+w9C9N3HOplxNOe4AxX6xawfyB8vAv2oNykVo
+wb8ejA/VvEYeHueY+lNkWsfm8BbMq6BVIv9hvR2VNM6rXwkcWx6n2xcYp8m
X6YY6JR8S+LYVjamu2wvY0yN7FNXIRuG/kR9K2O+Ab8+duymGkon2UW9j4xj
unHKJ8B181wTke3Xmeos5QPq0r9pcC1Hd1Dfqjept6hvngD/ZHAsqZy9FH2f
p61m5Df9FrJfY9faRig+yrqGpNqR9mAOul00BrJTafuqN5Dvy9hn7QAPT2xL
FcO3Sjymxvog17lT9di5k3IoxRJvB9f+FFMcQr9y7FxDMXccnDPJrytGuDr2
nmmvdOYDg3MM5RajGaM6eFNsfpfsDbpPBcfWwxVTw69D3i/yN1yoWDc41iuJ
fLhqZ1pj2jZWvkA+sVa+TxgSnPMo1/mAPg2yzrmUa8nmq9byfXBuqprLcsbf
Grv20xj6R/FS4tzmjsi1Tq1Bc6vmqVixZHCtVDHjItpL038+v530LqHR0OCM
c6btsWtwqr0pBruW+buCH0n7Tg0GDw5e61zlGIltrGyrbOzTiWtMqi2dVD0l
to+Wb9ac2axjZsXKuoO/K5dIvJfKuVRrXYF8QcY11/vybbRss2pmytVVY1Vt
VTn7OORPBL8VxYiyRa9nHevIJtVGvjzYNqrGU56+PZHfnOc7/5b2M8+1jlro
7JdvTFyrUg79JvyxPNsL3WnVJs8O1lWNckVwzUm1pn9om8X4Ueza33f89ld+
FHxWqlkNArcIrsWoJjVMuUrw2alm8z64TXCtTWeitRcOHlvfoFxnZ55zHeU8
58f20fLNnfmuo/AvJs5dFWOcpdhH7znjnPlvxbaJawOKOfbFrjGptqQa1rLg
mpVqVScUfzDmbfLv8E0ixx6dg2sdikGG6T1nnYueyjhWO0sxSMYx2+rgGppq
Z2rT/bsl+C7oHi6Wb4SWKVZizJX5beLlEzV3cdm/yGu4krG+AR+PXOPLxr5z
umuqEf0ArhpcV1HOsjb2G9bbVU6zNLimK/8kHy1f+1rWubZ8bofEMb1iefms
2xP7WO39vRnHPh8HxzaKgbSWM4P3SmtS7ts1cS1FOXAZ9PsmjuX0n8EO8PBg
26Wc8f/JM7Hq
"]],
Polygon3DBox[{{3832, 4554, 4658, 3833, 4645}, {5158, 5559, 5159,
4319, 4060}}]},
Annotation[#, "Charting`Private`Tag$66030#3"]& ]],
Lighting -> {{"Ambient",
RGBColor[0.1830429875, 0.21424763749999998`, 0.0962851875]}, {
"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 0, 2}]}}]}, {
RGBColor[0.922526, 0.385626, 0.209179],
Opacity[0.7],
EdgeForm[None],
Specularity[
GrayLevel[1], 6],
StyleBox[
GraphicsGroup3DBox[
TagBox[
Polygon3DBox[CompressedData["
1:eJxFmHm4VlMUh79MJbmkfDtRbuY0kaFEiExJKQlXigy5NCgRCVGUeUjJ0GDO
n0jmpEyZVRIRlQYZihLXvN7nvOc5f6xn3XPW2mu9a5/znf2rZv2H9By8RalU
mlGrVNoy/HapVNo1rHHYvHKp9FzYzLDpcT0j7P6we8OejXtvhL1p/Pmwt/Sz
wt4NezHspbD3wl4OeyXsbeMvhL2jJ29uOatJvyWun6+95PrPXUPsU/uz7sOw
18Jmh00Ltolh94UtMM4cC/XwLpaDWh+Ever6RcaZ4zM9ee/LTt4XMjHTl3ri
P4Z9FfZ12Oaw1WFrwr4J+zjsk7Cl5tLzW+8xx4pyxgrjKnvDuNw4sZXGYfxO
/5k9P3APvtZ/ZP/F7tkaPfv6c9gyudY5A1w/6Km33njOOMe93uA9uDbKBMta
a7M33+up+6uzkbfJXOZrE89m97DKsN+8B2/ruG5q7J+4/kneGuvC+6ce3n+N
w/ufHsYtUtYbxq1S1ps+pZTFfwmrlTJP3l/W4xnulLL1W2obZa+fsjXE6qaM
g3W14+/fw/8RVidlHt568fff5WyO7Z0H3h1TxkGtbVL2rrC+ImVx5tghZZ68
rd0j8hrIxEwN9cT3CSuHJfuvdb8apYxp27CdzaXnLt5jjt1Sxrq9+07vHf0G
bGesifEKn0+FeWXr1bZ3bftVWoM9a6ZnX/c1D669nAGuvfXU28/4Lu7rGufZ
328SXC3lhmsPa7M3e+qp28Jc8lqZ29S5a3yPDpAVxlFhA8MGhR0iE/va1h7U
PkgP+8lhh4cdEXaoucx3WFjzlPF20Lcwt4XsR+jhOth69GtnDfago3F+E0el
7DcDb2fXwNgp7EAZj9HDeJxxuI7XU7uLTLAcbT3WnxjWXvaT9OQdaX96z/Fb
wLesqzPA2M08GHvKcWxYd+/R51Q9vKe4jjWnmctMp8sN7xlhJ8h1ph6us/TM
0cN69KvyHs/kbD2MffT07CsrXP30cJ2rp955+p5yHeRe9/cevAPkg+sca1P3
grBeznFRWG/zznddL/ead4336WJrMNMlzgD7EPngGugM9BmkZ47LjMM7VA/j
FWEX2n+ErPQZZhyWy/XwDrYe/W5y/ZXaRa6f5P2xYdfKwbqRcl8ado0e3uuM
M8f1enhvlIP+V4dVu360cea4QU/eVbKTd7NMzDROTzzXEJzRl7p/7NdtMvGb
Hm8uPW/3HnPcKSuMU8Imy3iHcWJ3GYfxbj2Mt1iPPbhVT78JKdNG/FbQMnM9
N9E378qa6yR0xizZuUbjzDev2veCdwLd856xVz3r0RDopHn2mGk9rl8xzho0
zYeuQQ/x92zPv+WezfB96m871z2LyoVmWuB3kt8vv2d4F5vHPJ97neuhL+yH
jljqPEvMm298ibyL7JHrj3WyL7XWl977vlzonpXywv+tfCu8hmmVeTCt9jrX
JWv9fqFtlpULbbRaprVe51rqK+1H+ViD3kCXoCM4nzmn87Of8w+WX91j+qx3
DdwbjcHEmb7Jnqz/Xe5N5sG02bw1xjc78wbrLrfPBuersVauk2rKhdaBFQ40
xj/lQjP9KxO6hryFsq6QA71BDA70A5qDvfjLHj9Z72/ZibMGVrQBa/judfId
Yg72iRh8nMd15EMzoCtgQmOgOaiLBkGL5Fqqnkyc+/XtgX5omAotUpajgXm5
ZmqQCo1V4T3O3z1lKlsLFrTB7q7nm93M3mgKtAXs6JRGsjYxluukJqnQJXs4
ZyP5drB201TopEqfQX37oyk4uw+Ri2t0Qq4tDkuFftpLphbG6bGva2BqaYx+
nOmt7MmzOUDWVubB1ca8SuNtZN/Puo3t09zZ2lor10ltU6F7OrimnfM0l719
KvQQeZ/4fvO7gaWjMXrz7TnSOQ+2x97uDde8i3V9Jq3NZT1nF2fYcNdwrqMZ
+L5zBvC95wznbO0jE3rjBOt2dk2ujU6UFY3RxT7drNHBeyfJ3dW8jsa7ynuc
dXPd1ikVWo1Yrpm6p0ID5ZoI31smdEXPVGijM1Ohe3IdhK+yRw/rHuO6HvJW
uf4oe3bT+rovuU5CJ6AjOJ+HpkJLkYe+QVOcnwotda6saIkL5eNMHyAXZ/Yl
zjTAPDiqzasyXi1vf+ueZp/+zjrQWrlOGpgKrTNMDjTGkFRopstk4v0Y7vPo
ZW04rjQGB/phhHMOtkc/6w2WfYRrYL3aNTzL063LHCON5ZpppHzojlz74Edb
l3cULcL/vfD/LpNSoYFyTYRHu3Fmccbzb396oFHGOwPxsanQZNc5/2ivrzJ3
XCo0zS3G0ED8TtBN6KfbZLrD61wbkUf/iTJM9j7zoIfQRWiNh8xDh1xjPfpN
DXswZXmPej3BvevsXj7sHjDL02GPhN3jGtaiuQbJBy8MD8jxuPv4sHWnuu5J
/36mnL03o3w2j6Xs/5LgfcJeU+zPsxjuc5vsjI/Yi+unXPt6OetJ7zHee8z7
U1wzWf+Es0x1fnjmqm/QO1NlfVCmae7jDOca42zTZZwmx0TrPy3f//Mi1Go=
"]], Annotation[#, "Charting`Private`Tag$66030#4"]& ]],
Lighting -> {{"Ambient",
RGBColor[0.30756835, 0.18676585, 0.147065275]}, {"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{0, 2, 2}]}, {"Directional",
GrayLevel[0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{2, 0, 2}]}}]}, {}, {}, {}, {}, {}, {}, {}}, {{
GrayLevel[0],
Line3DBox[{410, 1, 384, 214, 15, 30, 44, 703, 57, 71, 762, 85,
1212}],
Line3DBox[{293, 2, 292, 410}],
Line3DBox[{218, 3, 466, 216, 1224}],
Line3DBox[{5, 4, 218}],
Line3DBox[{5, 6, 699, 7, 755, 8, 9, 10, 221, 387, 11, 858}],
Line3DBox[{225, 12, 468, 222, 1477}],
Line3DBox[{299, 13, 225}],
Line3DBox[{411, 14, 406, 299}],
Line3DBox[{43, 29, 227, 411}],
Line3DBox[{43, 56, 705, 70, 759, 84, 97, 631, 1092}],
Line3DBox[{633, 98, 775, 111, 125, 715, 139, 152, 166, 281, 434, 181,
408, 320, 182, 283, 438, 1273}],
Line3DBox[{124, 110, 1222}],
Line3DBox[{124, 786, 138, 716, 151, 165, 180, 323, 409, 194, 444,
291, 193, 322, 192, 443, 288, 917}],
Line3DBox[{439, 183, 286, 184, 185, 186, 719, 187, 789, 188, 189,
190, 287, 440, 191, 1473}],
Line3DBox[{916, 285, 439}],
Line3DBox[{293, 405, 976}],
Line3DBox[{633, 1093}]}, {
GrayLevel[0],
Line3DBox[{2180, 1597, 2128, 1815, 1611, 1626, 1639, 2530, 1652,
1666, 2599, 1680, 1849, 2199, 3279}],
Line3DBox[{1934, 1598, 1933, 2180}],
Line3DBox[{1819, 1599, 2253, 1817, 3208}],
Line3DBox[{1601, 1600, 1819}],
Line3DBox[{1601, 1602, 2527, 1603, 2591, 1604, 1605, 1606, 1607,
2727}],
Line3DBox[{1609, 1608, 2433, 3667}],
Line3DBox[{1609, 1938, 2169, 1610, 2181, 1821, 1625, 1638, 1651,
2532, 1665, 2596, 1679, 1692, 1949, 2174, 2925}],
Line3DBox[{2219, 1693, 1888, 2609, 1706, 1720, 2542, 1733, 1746,
1759, 1927, 2228, 1774, 2178, 1974, 1775, 3206}],
Line3DBox[{1893, 1705, 2263, 1886, 2089, 3231}],
Line3DBox[{2619, 1719, 1893}],
Line3DBox[{2543, 1732, 2619}],
Line3DBox[{1758, 1745, 2543}],
Line3DBox[{1758, 1773, 1976, 2179, 1788, 2233, 1932, 1787, 1975,
1786, 2232, 1929, 2802}],
Line3DBox[{2387, 1777, 1778, 1779, 1780, 2546, 1781, 2622, 1782,
1783, 1784, 1928, 2229, 1785, 3573}],
Line3DBox[{2261, 1874, 2219}],
Line3DBox[{1934, 2168, 2921}],
Line3DBox[{2261, 2979}],
Line3DBox[{2387, 3017}]}, {
GrayLevel[0],
Line3DBox[{4315, 3707, 4261, 3926, 3721, 3736, 3750, 4636, 3763,
3777, 4703, 3791, 3973, 4334, 5385}],
Line3DBox[{4829, 3708, 4055, 4315}],
Line3DBox[{3710, 3709, 4495, 5803}],
Line3DBox[{3710, 3711, 3712, 4632, 3713, 4695, 3714, 3715, 3716,
3930, 4262, 3717, 4832}],
Line3DBox[{3934, 3718, 4388, 3931, 5689}],
Line3DBox[{4059, 3719, 3934}],
Line3DBox[{4317, 3720, 4303, 4059}],
Line3DBox[{3749, 3735, 3936, 4317}],
Line3DBox[{3749, 3762, 4638, 3776, 4700, 3790, 3803, 4073, 4309,
5043}],
Line3DBox[{4354, 3804, 4010, 4713, 3817, 3831, 4648, 3844, 3857,
3870, 4046, 4365, 3884, 4313, 4097, 3885, 4049, 4369, 5409}],
Line3DBox[{4015, 3816, 4405, 4008, 4225, 5333}],
Line3DBox[{4723, 3830, 4015}],
Line3DBox[{4649, 3843, 4723}],
Line3DBox[{3869, 3856, 4649}],
Line3DBox[{3869, 3883, 4099, 4314, 3897, 4371, 4054, 3896, 3895,
4559, 5213}],
Line3DBox[{4370, 3886, 4052, 3887, 3888, 3889, 4652, 3890, 4726,
3891, 3892, 3893, 3894, 5784}],
Line3DBox[{4403, 3996, 4354}],
Line3DBox[{4413, 4051, 4370}],
Line3DBox[{4403, 5093}]}, {
GrayLevel[0],
Line3DBox[{6054, 5809, 6050, 6035, 5824, 5839, 5854, 5869, 5884,
5899, 5914, 5929, 5944, 5959, 5974, 5989, 6004, 6039, 6056, 6019,
6052, 6044, 6020, 6021, 6022, 6023, 6024, 6025, 6026, 6027, 6028,
6029, 6030, 6031, 6032, 6041, 6057, 6033, 6053, 6045, 6018, 6003,
5988, 5973, 5958, 5943, 5928, 5913, 5898, 5883, 5868, 5853, 5838,
6037, 6055, 5823, 6051, 6043, 5822, 5821, 5820, 5819, 5818, 5817,
5816, 5815, 5814, 5813, 5812, 5811, 5810, 6042,
6054}]}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \
{}}}, VertexNormals -> CompressedData["
1:eJx0vHk0lt0XN65BShKVKQpRZAiRqWFTKA0SRTMqKkrmMfOYKXOmZMiQeYqM
J4TKrXLfUobQIFPcmVKZfue63uW31tv3ef961trrrH3t8zl7789n71uP4JU7
OsbLGRgYnnAxMKzA//1tkRrsM98KqrfLNzIsVkPEMam5HqcxUH95X5/S1gpZ
9ua5NyIQlIlOpjhge9sPy8taLx7AdECK4+VXFhA6t9qqfJ4O6zeuHsg7FgXC
HdwJlHQ3iNjr1zqL7ZJiktMO38NAqHNhXfIvL1jZeWzgwgIddm937+zZFgwz
9ufMB3b4gNzAm2+V2B4zX9mzx94PhPJL9ZONvKFikMmJdZEO19beoPWNeULN
QNQHjZueUGsum3IK29dJFl2dW+kGXb/XZNtrusFZk4ZcX2x3TTi6MsHLCfLX
7h1RKXQA5he7p3Kx3bBIymZ9oAPkfmI7PN5oCY27nWMbsb025sjAsZpmlHPz
60d7rhKo9rU7YihEB6ee1PqcjmZUyW86n3i4GO4Jfm7/ju0JRbOSjVPNKPnF
w4937hXBdRaN/dLCdDDZn9H78ywVch+ahlZsrYDDlqvX+TiPgYXDSoNdylRI
/+iQdde3EsT582hS2N6vQpHfzkUFcBhpY+KuhiftB/ojMM7eEns8Cl0fwvGe
aws9VxxgH6U932aODn3Bwm8YnsbAn6o+eZ0yP/CVM3vHhnG+v++B/4tlEeBQ
o63GtTMI8gabbrzD9qdf43i+ewXBWwPtpMXFQJhkKsuzwDh/+hXeWWjoA+t5
jsuo1t6DJOvk7wPYnto2xi/z0w2a8//EuEX6guLCSIMKxmd44PvjC1n20H7G
XGFzjie05hu2+WB7TtRukzgpK1AKjdwazHAXbCW26FRg+8zWDRK6vBTEo9oE
y6sKAbFevv8V4+bwJyp1WJCCKLTz9A6JQlhwiDzSgHGL48m6EixHQUn0bYdf
+BaAmXgvM/92OtxTeTI3coSCFlSuxud+zIdHPUhNCds/G02qBmRSgc4uYMiz
phR8j/q5nr07BlJNGwQDwqmQqcz7xlqpDD65RYdLYLvB99OJd52o8LRGzvBc
0DN45HuoNxfjnypjQU3Xp0LQmlNDbacrICbR0WsO4x9/1jMp83c4hNw2GTU/
FQmp+mz8sxj/jMUNHdR794Bb+8FXc81wcPP/6sSKcRvIu7zTpMwDlF+P3l/7
8T70WKksFmO74uLO8x+67KE8RYP9pGkghCx+9xTA+GRc+iUYGWMGCZG1fR2B
vsApJbvCFtsfjqrGVt04C35XRJzTBN0h8HfqwypsF0pM48owpqD+q79NQ3Ry
obI70YJ9Bx1KJ6/IhtymoG8xr2OK9XPg61HOE77YLtB5lE/DmYIuBs+4bbqZ
DbFbfutHYLu69M3WVUEUpHU6jF3JIwvC140nm2B7dp4Px/5hKhgl/BUrbCoE
C6v6GT2XMSgMXez81kkFE57NRd1lRbB7Z+gBB2z/sHlDhmozFQx1NY9I1xRD
p2O0znFsH7A36TUtpMJy9bnCP/KloBswL2uP8fQt/pG7Gb+X5WfdEcn+MpgV
eOfxxm4MGLfo3R3Q9oTc8qL5z/ejgW3gGEM+ztuUvaYmPpUOYPzeXSgtIxys
O6oqXDCeez3y3Vq4zWFUeedXb41QWBU1Qh/E9hY/8bzZ8oPAJrJqdYl4ELTt
3aOihHGj8b3iePQA41YUGrb2eTqMj9pol4jS4cOQQ69vIs7P7vPD99TS4Tl/
G08mtltdZ4nIyqGgw3Lvys+XpcE7prbne7GdD1quJFVT0ET0CpnrfGmQ3l4p
nyOC+4ayQWUaHw3uv9H+8qUlC4yMZb3uuI5B0Ikjv7jYaVB3tGrYeXsOMOyj
v1vtNgYPLvZnOzDRQHDZRs40/lzoMwm5n4jtdb9Wnfg7R4U3nO9r1o7nAWNp
Qocdtr+49yWwdp4KRVH89cvkCuD56hWXqBjnjCqz8SHsX2nqrEekSCEIPGl4
9cBhDH67yJXryNLg91j/Nf/hImg4Kv1T/M4YtEw/io0RakHD0StPec8kQmPU
wxxWXEcph6Tyal9T0IFnRxY6OhJBw/J8BIjRgZLFOLzpMQUhYWaH0J5HkBlz
j1dRAuPPzqC4kEpBinHtx4pVksBw4IThemxvqsweMiyhoOGVdu93qScB1yaz
Pl5x3G+PM7w1xP5zCqZj+dIewWH1jwobsP9E2OSd1UNBDC4+6mq2j+DXBbcV
ExjnQw9d3tsADY6wv6V5DSbDlRXZg84YhyFOIfEmORq8GKm50VyVAg95zstm
u4/BwaGVrw6J0kBt7Zu0EPdUWPVceYOo5xhI58bcs+WlQUCegsoWlscwEKvi
99YLv4vVsU4WThp82n57H7A9BvWj2RZp3mOgwlST9Bb7vxruq3XdJQVMr6kH
v8P+u8UG7GMaaPBt9HGEcUQqrAjNNf1zYwyG/W6u2ybbglLU+pPZnN2h3tkE
ynE+yDX3cuVYUZC50oESP4dAKFns0r+4G/dbe9vv6Tco6IFD7t56sXC4JZlh
dgnbH/FFnZLH9Xi15QayUY8ESsn03+XSOJ+fTN4IKKYgk/ezy06vjoKT+Rs4
kyVxH26ZkM95j3EeZXS12BwFklRP9nSM89UO/Ug0TkF8n2JqNamRYB+sQGXH
OO8zKvlor0uDl2LCcVXDYXDxXBv/IXwvQ0roL/phGnBn+l5ckR8OPt2Teb89
xkAtPC1JVYEG6eHLVnEdiYD297/0PTE+XnsScwa30KD3lmXkF/0IoBYFmzn5
j8FMgsPpxWkqxBd9YhqvDgP/tecqfoaMwWvB2kOtNVTYmBP2tb7AG65NxaYe
ixkDkYtF58J4aNB/nhatbhuJ2FvDX/3BfrTktZ7Hr2tGPw6HZnaERqO9/XyT
A2p02BOxtWivQTNyvf3x7fe9h2AXi/sa94N0yNRdM1t3hYKahakVDKOe0D11
peeJLB1W50+Hf86gIGMbygp1B294vuavQIYU7pPTJye/fMD2FqZF0Q5v6I7l
GunBefuQ94NU6V8KCv5m5iBQ4g1+5y9mdmHcTh6aIHGrPaBfUz4chrpXyAv8
B25oCbcPGZUkbq2Zk+ycRyJQ8CDPWQK3sHUXSdz0fv2x6NePQLOrhUncltlq
k7iJimf8nKgOQx90uUnchrU+krgZUZLZnhd4o1UvEYnbkafpJG7rm4bZNGwj
QU/ancSNKXwviRvThcjtnaHRsP8cE4mba5QAiVt3fcfRzL2HkJe+J4nbgSIe
Erd+i5SmhR+eSGLShsQt4iZPBIHbOMf4FlUHbzQ5IiBI4HZN7QqJm+bmwywi
Hd7I5qr4f+GGlnD7p37R/6N+0VL90rqzXxL1++exd+x991Qk/jOHnajf/jON
ZP3Knj3byMfyGAn43CPrt924jaxfrgsNb/azPUbL1X0t/6N+0VL9smzncCDq
Nzd412Zcv2jr4SmyfgUkHMj63TNlmc/q7I7mNtuR9as810TWr+ayExn3HAJR
y9dasn73D0eS9Xv6ya6DdWLhqP3pK7J+Pbstyfo98+ntM1v1SCS/++1/1S/6
f9QvWqrfaflksn4LfCXeHqZGovuBvmT9jkj1VxD88lUg9v3Xliy0LsfC8z/4
BS3xC5+2Eckvrd3qa9L5c1FmfUXIf/ALWuKXHmHbIIJfbhulaWJ+QWvMxkh+
SXRhmiD4Rblw+WrML+iif81rgl8us3WVEfxyboFZ/95wEaLXsYwR/GLlFRxD
8MtexWzJezOJyBAcsgl+Udv9J5fgl8wGw5nOjkS0dYSf5JcT72xIfqGerPMJ
6XmEjMKW8xH88qwkRIHgl6/Pf6mVqCShRh+qwX/wC/p/8Ata4pdNf7u9CH5Z
Rgs9oG77CM0WHyL55R+dg5Z0jpblLVLnyMkA36eyIuStkrKf0Dl367vTCJ2T
aWvJJ1NTjF4kJ2n/h85BSzonv/s+qXPWfJUQ2NVfhiL9FUmd07W935nQOUP3
2i9+vx+NomN8F/OwzunaEErqnFa5XFpqRjjqp4z+l85BSzqHpUWP1DlZLddf
5okHoTExt//SOWhJ56w4kdtD6BwP/QHpQLV0FGL5i5vQOUxcr8MJnRPekrXj
QlkaCv4TSOoc5TevjQidUydt+e0GXxqSK0jdQ+gcccbag4TeXpWz+jP3mlI0
cviD23/obbSkt6WfVD8k9HazYGMJ1tsoZPXRHkJv6xdYTnNdp4Lf+lb1feoV
+H23hfU4/I/eRkt6u1sx5COht2v0au5Ya4ajKNn9pN72zFIi9TbzSFHd+o/3
0d+Y+QVCb9uwlZN6+2LO8Q2qpoFo/ad0L0Jvl95U3kbobScvrs/UQF/UzuFJ
6u2+/Buk3ha+4bHrkaA7Wv+yndTbYkZO3ITe1hmQNAnWyUWe+/0tCb39PDKD
1Nt859pVsd5Gnq5GpN426GrgJfT2ZukhSY6b2Ugk04TU2yf9xKiE3r7UHc+i
6JGF6hlfpBB62+yqRB8xJ8ZMMR3FcyKazOgn58QVYkfJOdHUQMcPz4nIMHtb
GzEnNj27vIeYEx+nmXqv5q5GgvPtX4g58U4+Fzknhvducxm64oD8WkvJOfF6
Hw85J/o1GRvplvkhW6NL5Jz40c6EnBMru2e4t+wMQudbbck58bCgDjknGvpy
2DIyBCEFY2NyTrRZl0POiTmiHRoHau8hRYYmck6UuSkkQMyJQWtCx5wifVF4
tkAjMSdOr5gh58TTsbu+cOV4okl7O3JOdByXJOfEoYJP1vcZ7qKGZRzknOh4
1HvTNA8FHdrwLHFNVSH65fN1/wyeE2+1spBzYrtSkUKnRCFCKXOHiTnx0cOv
RsScSA0tKMZzIvJaXEHOiTK6N8k5ccK+6SueE5G0kyM5JwbIXAsh9hs/ZALK
FxeqEXyynSf2G67pXnrEfsMj0GX7zQiErneIJhP7jW0DV8n9hujnKYfrryxQ
Ad8vS2K/sW7l5Hdiv7E20iG+Ld0N1cRcJ/cb66NEyP3GqMfIupRfXuhZryq5
3zi48Qa537Au2jU2tMMHZTqUkPsN+tpccr9RlRSnn2rkjY77TzoS+w3J2Cvk
fsNMPPDD4ZueyENZjNxvPMr3/j/7jZK8LC9NN+TuGE3uNzqqTcj9xqC+5cie
Qge0ruw0ud84Wa1C7jd610kdHmi0RFvMwsj9Rp2x0ndiv8Huk3PagasE7RfW
OEzsN1qCr/yf/cZbQ75Hh4tRJk8Mud/IrlLeRew3kGFq+Z17RUhMPYjcb5xa
scZW75otCH0d7SvitYMDmlEdL7B/9WneHt7BZqS8fLwhgbkYnrWq7c/Dfs6s
OZSi0hwNjnaLzz85hUJAWELRIM7Pp8sqWlKsqMDJV8Wc+7scrivuNdmB+8Dg
mksT00xBoD/id/HS9Wioyh/1Vsc4G3apugrFqcHP45xul+t9oO6EocQ9/N36
Y6uaJ7woiDtOICvILAsmTny6Rcf1NXdm3HDfdypIH0/ZzR3wFJK9v+0/aIN5
c1ZqdhHzCM+PkvZcuVRov9m8YLLzf86jpfMlZ2r8y5/i+To2sjAiPBWJba77
IojPP4tZTcb/yDn4Bo4fnZflNCbi/7Mhjozf/3nymwvXo5GcvqzPf8SPluJ/
byT9moj/2nZeSrBZFnJKmDQj4i8I20viNn/fZEOPUyhq4wwncRuZZyHxr3CL
KC/gtUPD++JJ/Nf6Mn4i8O+P0Dv2kLkY+Qqy7iPwfzAvclSflwph57llXr+r
AmEDCdEVuJ+MyK/YFSpBBa1YMysGziqYtnYNk8B2r088YmLTrWClY57AYlwD
Us+lF32IfWCZ16YEzRiw9g7av/zZZfDVNT1L8NdNxpI53XcxEF699UblPlco
O2C+ygDbA/IN/7iVR8N65vMT66YdoP8DPboN222yuSwPv3eAw+l8Hhl6rvB8
+dPRRzh+OdfG61oVdhBYZf1r5xEnEJFeHVhC3EtIMshmjyMYpCfKyyjYQlzh
uR1Ef855lbsloqAZfcmsMov1KwGtxgThxW14Hp85e3LdQjMqdxvjyVYvgp9s
2tzHcN7+ej59qFCNgl7csWxfMZUPlPw3Jedxf9j3tOL7YjPWz/V1B9blFsNn
0V2hORi317xNFFEOCopaWB4xGlYITYtfZuKxn/fZve8HBCho7b2ufIn9heCw
7VFrPrbHFx560FcRB/tFGz5ncIZA11z4jA5+ryjl9UpZflS4YtZx8ozKMxBY
eUAtGeO54e9fWneHORho/3EN6/SAFZ9pd5LxvVaUOG48++MKsHBkb7kX5gWB
zig7DtvddjdFtwP+rrd18ynNAtAS7Oyaw9+tprOUDqz2hGKN9Yo7u8Lh4ZMS
zmO4z7gKfkkJaHSAl51atuuEQoG6iyr/HtuvTVC+dVy4AzcXdCv41MKBwjA4
lYLtxily1hcTzIDTl3/SOzcQHqkKhcrh775b3RtRt9sQlBdLmL+uuQesr2R3
GmC70a2OETEfCvpU6zO7NecJ8AjZPHTBOuG30LsfvSkUpKFFiXf3S4WiChO9
A1iPbav8uSCF6yuIs1xJ50kpLPes2bvcEuvw4wa64XFYx+rvq5pXK4A6o06F
tmtY5z++OMUZ0oIcj/8QlOWJhjLP7edyBOig8KbjkMkABaVWllrIzUeCYLTO
8cfY/+tQHhWNuTYo/KajIaEYAcM7ejVClcZgdh+/9mHLN8jAtlLb57ofevBy
/d+rm+jAbCLb2MFDAYX3H2tqllUj0YinfuuX00Hpdt/fpPoXaPbln68MfgXI
zRi5S3jSwZl+u4E4v0eAfQ6fB578Ll/i/D7pUvI8Te/8imV+BWB0wo087127
jIwnImaNoqRiBFrdXUXGs3BrExmPsLqepu91P8ipWUnGI6j+QOD8aRr4L+5Q
CanPRuIXglmacf+J7LzCayxEgwsxMzZmXwpR7waxMxLYPih64hSBm/VfpmuL
agVoxPqxHIGbReIAidvui7UVUjzR6NLnMhI3yNP7Trx736nCSna1cBT0zPEX
8e7DT4TUCDyX8xx03T0fiX4rpZB4fqNonw3socKoUeq81udidC0o8NYvxzHo
uJ/AcPoLFaxNylpWJJUg8wcGJsb2OJ+7dH9+yKHC1533uEwXS9E7jtKfH3A/
jKzYmlxm5QlRi8nynKnhyGrVQf+T+Luly06kEvkp9ePRrjVCoWib3EUFIj8p
gsmpy5spiCuMHnYyNRVlhHFzf8J5VTiyn8xPfV12CZyfKHTlLjI/q96/0wyN
p0L2LR1NqdZS1L4t4gwT1p+qSrqdObepUDOwTHFKvRyFF2T4Ae5vh22ukPV4
Y7hbANcj6hpsJOvRK3ILj4sLFa5y3wuUYS9HDFJvO/3xfZ9s6cw1CfOFsIkZ
3lr/SLSrSnuiE/ex1YHLlh9TDoV29aJsnaxQJP+S2vUF2xlXGCZNnKNCgY6k
yXK+ClS51zPyOv5uQ8CJld1HqWDWumqrW1cFWql4238DtlsLTJL9c/ylfl/a
PleUFYvI/ql61UTJCSKgo6KI82V/KKo7FfXlDrbveyxwp6kkEj4L7BU6M+2D
3q6bTyXi2RzTS/YTnkqz3MhOD3TcqYzsJ55F1bdmLG7CYIC7cAPdBTUpu/VW
E7zJ2HOQ6If73E5vYJzKR4NOccVEP2S+ucpu6JUFNL3bNGQ2Y4dqlUtNW/D5
XZoGmgSPjOTphGMeQcWenTsIHhk66S5J8Ei68JFizCNo3WBKKMEjVm1pJI8s
f/X0AuYRxK+1lcEX41y+tyBKsKYVZmJ63X7KP0cro9qzZLD9qnP3ptsqcVBY
yiQ30WeNTl8dZpLH9zpz0JPkndV6v/YxP7uMtG7cIHknakaL5JczLZXjHNMO
SP57O8kv+1nESb740hQnv1vBFiFmfZIvikcnSL4I/0E5jvkClfsMk3whONtD
8oX9590fstSL0C7RfpIvrtn7kv3/ksW1Etz/0fzJeLL/q3sIiRwZaEa3C9z3
RX4vQq1vqgfYsd39x8LF3qFWCH+3WoLnRQ0c1Mx/V4jvtbLKJZq4723ebzr4
vnAyUiGHuK8kVz//QG8rtJ7xbcxWQdChw2Mjie3ilS9JHBpyLnyb7bOGdTpU
EocqmZLfq0zjYaNQK2tyjyfIG948XIb5RRqUhL5NYB5U2FOckVYEporT35hw
PIHrV/Q9wbp677Hn3Ik+heDP6Vtih+3iu1N3EPHfHbF0wvFDQcIuMv5PNecH
N+pQYdO9CM6QrxVwZCNvSh/O/yzZj2T+cPTN7K2iu0BvaBKZP+VcLnMVLi6g
910tZ7diJLzcuLJeGtfvuYXM1VprbMCjNLXril4YcCv9OlaB7WoB885vzK+A
yklph5rgEFB79+QYO/ajFS5nsRXrH4VpGaYI5izoERxXOoHr/Qq8VpuIoaCj
+fc6a3+nQ4XIchV7PJ9avBK3q5KngeSbK3l66iVwsmeyXNhsDEy2rDGonKCg
gpUvQ5TiEuFWSWX2AvbjXT3oOVlAQQbnnl84eOERPDxmsSZBnA6m2/QdCD/p
s+mHzqiXINsNV6sJP7NytMuEn4W5N37KcYnoUr4H6YedrWL2Bb6vLC8fn6xi
JIoKbKkj7hvAeJS876212/de1wtDu8Muk/dtCCog7/vT/Y5CU3AI6hAXJu/7
D85oCWch6U2sDX9C4GwCXcrYPAL94k62i8bv/i6xmnx3rdhj3x71eKJWAxvy
3VPpFrp1LVGwKnBYb3dpALrslr3FCp9XyTnzgNAJXo2ud7FOQCx77LsJneBQ
4Ezm54N3fDdwfqKPC2/fEvnZrMRK5uHlIh+RHBWEPGeyrIg8PLlvntRFsZJv
+LEuQp/zHUhddKnicjuhfwZtOW5j/YOE34pTCf2TY7+J7BvI8HPElRk7qGRs
JfuG5LmZRI5UK+BdoSWi7xkBhVxX025jfLrrxB4Tff6hL2usVmoqfHHJJft8
8Kr6ZOK8qHJTtoJnBArMk8oizoujFaS+op6W/J3DGYIy7TVIfcWj+Oy64icK
cktIY94fmAyOStsM1+M8uf2t14StyB4SAy0zN/+NQMMc3i9PYD9sjS9/bDSI
hzdTxfJWx/3Rwqj2cjfsZ9tMzyapBmswlNbpb213AFtJ5eW1OH61Nel2Us8p
yJH1+H3HiGRIOvZH8RnW/xlV2xwLGWJA/8HvxDdGQeiLmrj+L+zHXC1w7dS5
RNh9yk3tCs0DtBbTt3Bhu8h+gTaf/VToO+7u7fmsEriK9AL+Enwa90dU0fw2
HPzyLcFH0glWfStPaSLmqWDefX9nXODQhcEymeQoUP+ZPj2J33evcyl5r3iW
FFa+vxFwVuI4ea9sQ76HCyw0ENFQ/itk/xQCAhbTb5vjflsv575H2AY4+SPi
smzDYdz2e2cYPm+XGXGVNec26H/eOp3NGgGZp5WZ/LD9yFmmA4Q9K8X5XeX6
CPT8eXWPL7bbLto7J2M/YWduqqTYhqO5CeYuwg93OXel/9HLMCXsdVmi1Rld
ep66joLj77lGUfbToSC5Tp9CmwP5yJ6j5rUm5pedoT/qjrNQ4cD7iIRdZtVA
Y7kh+BPnm9lUye/GN62wSWTXzulOBMnLVm+VxvYGn5vdCloJMP/i4UkbS3Po
9eUVfYfx9F17I4yVkYLkW5N+L2Mrgg6v195XcR5aclqs6ZagIM1PId6qIwWQ
erHxUSm2t/1dr2BYaQj3TqwboHcHglC7pR+xN0ve32TNGa8PEoLP+mysgmHl
yttM27H9R73s27VXaVDUJSC8cUsxZFdkafNdH4P72kqnOUxo8HH99w/Vk0Uo
/ptmGxO2Z74bF7l8nQoekQ3qgcsqUEEOyFfh973H4HtP9gwVesxzAoVxvbOx
0HtuYntv7p16AofzeTKXMQ6oz1l923/ggJZwCPxleoDjVCw8iSxQ3aZkiqyL
EhVs5v8HB7SEw7auzvmmKw/g+Wau4v7wSChmPBqzB+O2/l0yqWeE75quq/eP
hLERBlLP9LIOhcmfvAmLTy9XeO4PQx1fadUU/L5tcvkNDxTvACxs043F/e1g
4F7BF9j+oMWDnFPsnE6V+YV5oS+SLeScEt1w/UDfgh00nsuWGXlhjeRtPvsQ
+4dyzmukXXExTm30hTXInO4m7eMKdc5S883o4mBPrItTEZRGJX3uxH2GtUd6
zbxJLHDeTLdkGQsDfml2RiUcf+O+V6RO67mUIol1GrBtHu4idNr7Ku+VX/m1
Yf23kbi6V55AHxiuTMf+Px6Uey5tS0GG7wed7QazgSN3825nPF/vjNZbJOaR
dtlT86eeYL0admUfMY903BFsOcVMg5VRQ7+tVUtQrq5KxU6rMXigeHSdXxAV
kke9f5vOPEPRstM+kVj3Zj+8SOL8efhC/1B4JEq6+PABgfM0lapZwOAHj6au
/dhdHI3mz2qedsA4u/FeyFa4Hwodt7sEBxOi0NUB3nub5/9nzkJLc5akbn56
LFcUyJi5qoiEh6OHfuFcw3P/w+9oid//wRMt4anzSFr/AgcVRETHo8+wVIPS
+q+WK7FOy9G6ReaVeF7/LgElUzhqnETm1efbTcuO+McCY5PQzvpLBjARd1TE
AtuLeI1PC1McIGxk6EyjszUY2dl+IPrkTqHI9dtozUhpmFFaILIYHExaHXzw
d23YFSfWtTQjJ5ncmV2vi8F8EqXrChH3Yh0l+nDR+gc+Zsf9gW9PCtmHy+qB
yaIyAbqGnBmj0gLBvXq5IBO2L6RbzlzlNQLfVfOD5jnOQA9ZEdr8v30GlvoM
+0INmbfi/c+6YrAOKX52jMzb3OcRR/O+XIOjP7xs7JxCYe4Ze/IQtruV/o4n
+udWef98YfuniP2xZBrRP6+PfxDby92CduoUP3aKT0KXoiIthbH/0Vw30k/Q
4Pmr9k6h6OHviSTCT31RrQnBR3OVoXMHApMRjwC3AcFH//R/tNT/39wsIfni
8kiEySWaB/K/QCX5In//1p0ELyzsjbJwlHRCpuWfSV74px+ipX4omPOafK8P
vk3hRZcMkHS2Fvlej7+yHxEqaoVZT36Od3eeQ/RU1N3VuJ9cf2sWtXasGQV4
Wg0FlhWBm5Kg7zacPwIuO8n+uf+KVhbun+i8rgPZP3PXL+Z/mmwFO2mOal3D
GtSkPfr6Ffbz93h0p/5aCmL/69Yx+rUQtd2QqjPH57duqyHP39q6rQufh+lN
buT5ma+buojzd7SVYvF5qJutJM8/alIXJfrn5JgOD+6fsLrsNdk/C68uS5G8
VQADO0LLKg+3w5OUk1tDR0fh0fsuWQYxClojRCuU4CoE5YUtG92xn4zGNW/y
VWgQ9XD80f1zJRBw+TDDxZtjkDe8bEZaqQUpnzTaOBsTCeKDiUd/4nc89EdO
IOpkC9qsd1BtyCYOOLis9Lxxfp6gKVq28LcBgkz/AI0MoJ7pYg7RHwP6sNRu
kd8tiFmoq6O20hOGFY7DOC8dlpkF3Yv+9Aaxt3WUcv6xhHcbfc/uYqWD1K0X
fAzZbcDxtX7XPeU0SNxpOZmsOob549rMnqb3ED4qKL3/VBbk3PlyKn7tGDhc
3NOwbxLr3ong67KMWaBDd0jtxPP7hMh2gd7T75DK+AkdsYIEOHX2s4796BhY
LrhnfC5uh5sbtnJ6FYSirS/+WGweHgVew14y/seKWlvuaWSgdqv2tUT8VsI2
ZPyxDms2VlR6orw1EWT8Rct3fT8i+gY5UMoPDbCEoR/NZ1YoctPh1QtlelgH
DZzZFpl+2+chqLRLQxfH4EY8/ReBZ4boj/sYTyR+LZDE8+ZOTX4Cz2VifwXG
bOJQfLj9GQLP8D+CJP8e5qkzH+0ORDUQSfJvsFIIyb9MgicEnKyCUVYlP8m/
A+vlzhL96mSb4Gbcr1D9hRhrol99pgpNq+6kwoaPloHWmlWoq/H7+R84rw6H
xE1OMFLhp0hqWmZdNfrQbTgZhO3zVu6HxmZb4YUt28D3XTVo6/204UvY/k9d
oKW6EKqfqVLhiQE7f77NoQk3kMQZqaeFuI60rQzIvieW03vmlbM1Yhc1J/se
s48LOX8tuneE4fkLXTiq2k/MXwXFzGQ/HKpStsD9EPnGKJD9MKQjafFOWTOK
uT3x+4VWCerMlvHeje1ca3IjiXq8vMFAI6isCA15Hfch6rH/GAu5ZxA827ta
JysUDs8OkHsG385b5H5AJfRoQ1N/KLxlSyL3A//wBSzxBa3ha9vUNVwvu64x
JEfmwrL+UP5P2/9nzwNLex7Va3/pxD7nqoP5cdPFUgjjFSb3OSsO9pG85ivI
7oV5DZ4xXSR57Z+9H1ra+xUr+ZO8XHhKu6f2lSei0MZJXraU9H1E7EkCFM93
LOergLrr3BH/sSeBpT1JFDvdq16UCsNNR4O8r1WBVcFO3zj8XkXpAeTcpH2E
jfmKeQSIWfLaE3OTb48OybMGc9zumGfh6vxakmc/RnpxDVwF2FWuucA16Q8F
h3m2XcPx/N7xdVH3CxUOOb/WWJlUAkl2csbEXsu04c0VSgMVamZb44ael8IO
1n6eGtv/saMl+7tzxqT/FyKJdpsn/dGw3V9Bwv9eTW9ynv241eBw3e901D/6
FIh59ipFyZu41w/K4+v4Xmjj1gzyXkH7Zsk8tC4J2RyQcAM+jcuSefi01zDl
wToqSB8527HVuxpcBuWKL+PzbqNcZF51urfJN2iVgEPHAy8irw63WvzMvUFB
9n9CFqeoOcCw18HwItY/W3R4oqzPUFBccl3Iyew8iORhcy/E+aCbcpmsd9PE
u80z9nlw7EEuWe//8Dha4vHszVFTRD0OGRS14nqEIJg5R9SjwWpdsh7bhk42
4XqEC0MDE0Q9bvudrEbUY32dmSGuR2iVD/1B1KN6ysOR92etYaOjZ7bTXDBM
zwpQmDBuE9GnfqWW3AK+J9cKI2VC4Gnusd3rib/vFdnSV+1zA3hGM4VrQ++D
UdMl13nMv8HNAmRfvcy+mIH7KjJN8SH7qvR0KNlXjboujuxmzEJat7rIvpon
+IDsn6w+n3Z4FoRCEp3TkuifnlqyZL+9Ri9o31mQgFyF58h+q3b4N9nP7yZO
PPVXTkPnN1aT/byB4kb2/yJx53t8fyxRmZEj2f/1ju+yX3SlATAxxFq75yIp
w4DxC7cwDiKCUt+u0GBX9tuH9JBCJPs3u+eL6RjwJikyn1OgwaukqyWfQ4oR
Y/vg8yF8/sxYE4kPg/f+ZXZzwciRbkLiI9SSReLjdusSb4hMCPq7JZ/Ep3l6
LLXYmgrrM6w23ZEsR5k5/RcyCL4eLpU+guuuqHEmnNmuAvlXHs06SuydCgrl
CD4VnHiggvkUBdgxbyL4dKhrZPGD7XtocdV8RHmWhNTKung5BcdgamprwosY
GlAsvlTnyBeilXVHeJmvYl7bGkn+LrB6pdxF/pwnaM5clPxd4J89D1ra8/yj
z9GSPg8/OUfmrcqmnFM4b1HBLnYjIm+Xt1MjibzN9vH5jPMW1T6scyPyNuFU
4FDlcCu89admarTWoCRZNZGL+F4plnQWQrfP8SmJmc08g3luQ1K3l0XaecY0
Yh5Zo+J9p/MpvBjIjlLF/c2p/9sRYp9cP2zdLtVaCtFxbKeJfXL5RFkHsU9+
s843aEq9HIy70n2JfbKGvTC5j214cyf29LQP2Pxa/piYp6QO2JH7GZ6kjFqZ
0gCIPVJM7mfMtdaTe4PHBVJW74yCgGLATu4N4u92v9t4kIKiM19xCgsWQESN
94IUvtftW/rk7wLM9onlIfXZ0F8rSv4ukB9kvpn4XQCdoYjd+lIIEzppusTv
Av/su9DSvuujzw1yjxF0umWtU0QymkksJfcYQu6byN/jWF81RmbquaIzowXk
73Hlib3k73HQVC3Df8QJJYaKk7/HKSU3k3uS7UzJf7raHdCbz5vJPck/+QZL
+fZ2fMiOyP85pqMbbNxzgbWUn8z/m4YjZP6XXrNYhfMf9NSHeon8P1cZ9ks2
7y1ymx500S13QdTvg5LfGehgX9YoHtFtAhfOFU+82RCMStMMPYTxdw+nGZoL
19HgYdDxzQWKWUg7vjHH79oYRDbyDD5op8H17CeSeSI5KLS7v83eYAzGznf3
F4VQ0HdrvU15gZlo9c+TVztxHqoUSu1QehoJjc0VwuymITDvK001w+81/esm
hZgHf7LQLW1US0BucnM5MQ9OCGT8ljtOg6FKTbuiiwWwovLGTVE8P74OnRAY
UKLCYIbZSuYHlSD5XiFxAeMwVcluP7KaCrkpL445RlWjbcyZFhRsX8P4NneU
mwq9aZqTxpNVSIR/PqcL2yVOTznGr8f5eUX2U+C5avQrSu95KbZv3m0E7aah
cPBllMBnXX9oCQ9zuIz73h/2u333HEPht9hu9TT7IFCVPD22HduFFgK+yVeF
gVPknynd8RBIKX+zqh3fSyNKcJ9FOAUVxU+VPM2NRWlnD7zO3EWHNPMnU++T
KGjPOqvB1duS0Pku56cnJOhw5P6dDdOPKajU9ML8mlfJ6Pcz81kx4u+vXArp
FwSo8Cv8pY5cfhV8RgGzdThOndkFh1eHacAU2j+puhAGzix5ujyemMc1hFV3
9dHAL6679mjuPXD5kf7qEH53llzXtkCZNhBe5uhUd+4hLOPSPz93bgzMTg6T
ftayfR04uBCGvuoF/5cftOSHP1R+x3szrLe/MQ+qnfUAu74NNQ66Y/CCrvzW
KJ2C7DgpBljrIDr9u8I2rE9eCBfrN8dSUF3sQVNb73Qkf+l9AcK8fOdQxYsd
9ymI+4Oe2ssDmUiwjesXMcdd7+IsP4HnTX6/vazHmvMgdN/Z5wjXqXTAwb6x
oxQ0Uv2e4eXFfAg7GF0Xi+17GL4Obj9PQSfqtjIL8ucBCnk5PI3tytt2Cnht
wf1t5HIhj4cc/H2p7fZTAc+ze168/lhFQV3CjOkFPXeR5MJdR+Jd2lNVrs99
pCCP8C13Kz9Go3Xrt13YgfF/W558J+CUPTivTvc7/9YXNW2/Tb+A6+Lvlg8q
ljlWUD+1euehLfeQQuVO7+OLxN7P6/HLb63wevIq3+vFGrQoKbHbDb+XsnHp
rMJiK7Rzvi1sm61GKQNIPxvbZwNErznLUtBJ+ySrwegCuFJ7TokFxz9+0slk
JKoFHX3IVOYquhtlijCB+DasZ8aLTad2mUG1a2NTIfc9NHRUeV4Pf7fm+zZO
OuaXnWEnLPk/FoDGV6W/s5hfRlJpHqJ7KUjGdFrmjkYBoO7sVxrY/+7yxM+T
eRT0WVzk44cLPrAqLj98jxQdrOksbQaFFNSx8lmfquwNKNQIDHPBdlHZ7t15
a6xhw/5VZtscvJFIUEiMO/5u1rmkHP4SK2BYUfvBu8oXWbIvfLuB7XniSZm2
DXeAyyF0t094BLKYm+OzxPWCkhpohE7muMxxMSUyF8kx6G8ldLI2Ux3rc10K
0i15mdUzmYdiBhOcPbE9QmPZlpR+KvBdbFqxubwQZh2YiqVcx0Bvu9/bwE00
eHx5asZ0+ROofmhxS9ljDCYlnzqHZVKQlaS36vXwONCupf+QlaRDyUYtu796
FJR8Z8NrI+tAUFrT0EeXpYOXpJzYo0gKevs984qNTQjEh7+wBWl8r6Heazxv
W8HxRMJ0XJMTGsouq1SrGoOrbuKqZk2v0F0zbr/vnS7ozti1YyP6dOD52RTK
bdSM/hwTHTZougBdjtqKVw/SofT5e9EkHgpyt7Vld/O2gKDd1XxcinTorax7
8MyNgrjmt1xCadZw/yT3fQ3i72C5NR99RRTk63Ls+OHHNqCvO1AZhfNzXdjx
4NQRCuJjexEp0mADjTc5Z9fhvsF3yKB6VIcG8czivm4nPNFExNmhUxiHuwfP
2cir0eBtuGl6+F9PpFrP/TPRawyoxa41JRI0ULh1V+SwphfqfLNG9aTfGLSd
ZlTjXkED93NavUWm2E9SXcXH4DFYv/LN68O5VMhS/qaH/JyQQwzbh73xY//i
A/8PfGAJHz0Kb8YUpRn9yFl1NTHXHb2c1NER30cHEQN58l3c7ZWrr1oHogh6
FvkuzYXoCxqnws54SZu2tgKkEf/pmy5+93/yAS3lwz/7TLS0z/xaps8YrI51
cleEl+DRSogsLdh7Btcdj4yi5KbKGOiM/1S0o+0+vEvxH0+c+588hKU8PHmo
af3ydZjvRrRYpdtKIDxff8VuizF4WXRHcfUAFSZWLK+jbiiFiESNqTjMX4aC
qU5n8DsWoq6uOzGp6M6CiXUo7m/fVB5sVZe1hsdrbfbEB9ih2o3Bsq+IfvJ/
60ZY0o1HJnZ8Zxe9BJPZl3Wj14fCjYD5p39xHZ04cmI1oWN/R21Z9jWkGMo+
91QTOja4gX+9mQkNjMTvuiieKgK3VpYI/xtj8GPfr5onN1uQzUqh1+La8SC5
q/BusyDuw70NbMT5vYbTWgqnihDfnZQo4rzqqd2k/n+hSb2GQu+jY9ccSf3v
HH6JjKd0a55t5PpQ5HZXqZSIp9rp6Jc4rDObPJNcpYVyEC/32AkVrCfT9p/u
dD1FQcbh9ickoACtVm90JH4P5TGSOfrBjgZTubWTf5KKUDuT99AO4zHgXP4t
Khb3nxXHVQsueKWh3QZtO7gwbqbe9kV9X5qRy9lEEUUoRicm+zvs8XzEFvu4
kLBbo/RAbIdY878fCfs/fmDJz/52z2RivmO7H3uQ37saHWWtKSTmu1e19deu
HH+DePXTRfc1+8PqviC3CE46MO58S9oZ2Gal9jb7o8sRMaTdVSZRo6GeCi7a
zzrzj5XA2R3xTYtYx7ayZ6+y46dBZt6YtPpcBgQ8r/fUd8fzWui5iy95aCBZ
RU0q9syEyiSrc8Tfz8+73C25eIgG5/pLm8bvlsAU+5R/KMZ/7my8NoMcBaUr
xAyx3faHx5vTuTbK0+F7c8Ystz0FCeixC3zgCAb2wl96K3HfCIUXjMov38F4
Vq6egUgSklAVOr71E87Pbq6YTO6XKIo5IFI0MhoFeHiJepjRQeZZlpN+3Wv0
dev9R6+sdVGuHYvs7FE6HIpcK/gY16n6WLZOs7QpmNwSZruF63S1z2SxFK6L
W2HMDQ9draAl7YsyVY4ONr6/WQRSKciGYpaud8IG2MYPbzyA+yezprNc7gcK
SpBu0rvdaAPqo8a9e3Afdgx34Iudo6D7dd9bHmbbAGNfh8wGzLP1b48unMN6
r7lOgpE9yxPtGN/WfRbrkIxVNN/TZ2mww68kvXrYA8nX77N1wrj99cotnlCi
QVNHkjjs8UKygq+nlH2wzjHYnbSDF+siQ57fGdxeaMFztw17AJ5/0w/+qe+j
QukirY5OcUcGxqtslCLGQFFBPPXwBSocarq7MzjTGCllfE5tzMD9ZLCYxPOJ
xNlIjCecl2Uk8WQr0WgDjY/whJVzaIVyCvBUn4tTjx4FUXEmEucaU9ENOyOj
gan6NonzP++Ilt7xH95B/z/vNOwn84eqe0NYYy4DVZpxkPnzD9+hJb77Jw/R
Uh6a1ZhdMlSKh9h3vwxkVoShsvkL4n9m6XD52iUe2RwqyC1oIErfU1CdiJDZ
j88fHyqqXMC6fU6BD8m2xqCTpyu+MWHeXwkXK8y3UcAxLPHAO9UUJD593ksH
5xtlcejuiHYpqsjqFq+vyEcFP520l7fSQfVDHHn+W/987VvVFLhzKYk8n7mg
RJ7/4WK680VFPowvcz9JnB8P5hw1rXmBZubEsyrvR8N9n/UahWFYz3jnknFO
tZkH4zgRfz3nbiJO4b438cRcrC155S+ei+F4FGUzMRffl/DRJPqJmGPhrb9J
RfB1i/0g0U86y8U9U79RoYmXrmH4qhTa7x9l6cN9O4eVSb8Mz3GJ3C+SovrS
UMnVStWveE7Z935bPVGPYz6JeoN3S9C1Y5uSiHrsUVVN7sM8mKBSmzDZWwqd
VoiX1XEMGs6439TFesNBt9H/eVUyCrn8xoIB53PZylqyTkXamSXfcwQj8TMb
9Ik6LW8SJPuA6o2QzSWemYgpkIfsA//MC7A0L/zzLrD0Lg9nhUncZIamxDFu
iOK0ncTN8+tyqexknFcdayVST6Yh14c1EtvxHBqXvbVk60X87r8OreTgrEAj
AZM7RfF87ahiepx6mgoRduJiCo4VSPLpM9MR3A8r5h6Rc+Lz+x0PT5a7gGLn
L3JOXP340LPrEwmwPqAyQ/CSD2i5cNQdxrx5gGvDdZXDicCY6Nqx+ak3RN+f
aVjE+aas/V39rIMjjClbrex8EQkqThfWiWK+gOTH6gJR10GXJfVEWb8TkuOm
cr3GPKiy5wgZfz7PcFnKyTR4z8os+R/xw1L8N8+sPEHE/1ymrkPesQKyBp6Z
EfHv0/k+VMvejBb1hT6w9tagL92TELCGDlG7NwVfi6OgA/fpZk/TE9CB5SLn
Q3BfejQEjMXxFFTsOUBlPZmAAvyvSt/HdoMP7/gupFCQtI/DqSOjD1EWx+tC
isT/zHGwNMf94x+W/DsbrpT5jee7vC4RfonAVCQ/JLdvC56PJu42lxinYV3H
aPx60PIxunlUY8AT39fWvbtsYOAmFMbfFJ9mc0TtH3UPvMH4WLE9b1HGceol
7PeY25QBJVmUDhXMa2ysXREHn1CQfrVBwDuZdHDaRosj+C5k8pRX/lMKipAS
4xRLSkZictljx/B3Xb+suPHy1DtUrmA/buZbiOaOS4Xo4P42zr58sjm2FT37
2NDGdrUGBUauYu/B+tD29FOOTQ8oaJPdwyJF3TiU5OG47yDOz+2fNQLU8qkg
EjjFeCjsKYSsPRiVgeuUteHUpF0aFZ6Yv9twS6IUXlyfczDF9tMVHax/A6hQ
PjY8klVSBr3eMx8/4Hd85K2onOFAQZ/oq7kGLCNQQX918UEZrA9v6Qrc9qCg
hhOb4wJWRqMVLKMsZwh++R0NeXh+dLJUD7bQjEUvuBKK+nE8y9+GJ1Br74E1
uwRfwzdvuP5y8/wP4v970JPdZ6LjD7cKBmSdhwNg6uL8TCm2Jwt9Ca375Q0t
N1bsimAIg+P07BXEnLKqop3t7SoaVJzukzOTzQPpH7WvcrDOXO40feHXLBVC
hPce3GpSAJs3hhbkuYzB4xUeJpOraeDzduPaCL5cuODKdcPEDeuBxmV7vZsp
aKGnX6lNKBWslfaPC+N3MVYokPn+Gs99az8wOrAkwZevHAM/8Ls71EyJ9Em0
AdcV+Xs6KU+gXivV0xnP107Ze8O18Tu6xh6pS6x9AMvVHarW4Lxa596RKZJB
QSW3fq8/8yUSCr80V13CODxbGbCZ8JNtKrAB+0Gr9h7yIfz4PQwlz0+KPlmu
/yUSdYTdJc+XLh4g42+2yvHG8aM75bnXifjzLM+6EN+d4rKvelT7AKVeuFtN
fPenBC87gU/KYZ1KU9k8NJ8k9ZrAhzabR+JjWzTtjPFB9Z1bSXzeUoKPEjjQ
33xopQqlojdeciQOBm2fQ59j/D0EO0YjGcJQ03UfEv+778f7ruP3yjeKs7Ea
DkDrRk1+E++VuCE2gYbfd1nfKb66b97IeL8k+b5G/AN/RQTvgZmK2I9Ebqzf
KLSJd9h+auVF4y1vfWFW5dbw7YIQeLus0yoc2+ciO89Z4Xln/UaTH5P8+aBb
aCOqjuMvSpC5lE3BfF3R5xM3ngw8ivICr3GcZzP273ufT0EGU73UycBoqFU8
MB2BcXj9JJt1rpaCGPKEW5WuxQOTQCpjKO7/JxacDjUw0aCm4nZWCncumk8o
PhGL8fSSC/B7towG3rqfuZYF5iNR7/cr+PB3fa87+Zzh8oPYRmaOK5tCUGss
h2MMjnMN+0g0x4l7cOpzfBX/BT+UUncg7AO279oY2PLOnQZ9ktu+7s8uBJ5p
etxHzHcffuQ9LEA0+DQ0fWKfXD66ylqpp2g4BjYiWYoOY7bgddnKKbEmEu0p
cA2SxX74o14999aggWB8/NPgj8VQOswX++LmGIyaUd8Q/tV+847vyy5EuTvH
Egj/nv17c4jzLZl7F/0/FqMFm+xM4jxnQI/IsT00iJrsyI7wKUFS185UF5mO
AdO6XcyE/W6E/GykTwmUH7xbQ9hjBP5oGlxpB6MJlim96HhUs+uYr/nMKPDk
5rC0j9Nw/jgvf2ySgyjN2xYbz4/BdW+OMOJeUq5rbinL5UPXpdLzxL3+OQ9L
5+cXr97kam2H+L7xE8fG42B3+4X0nC+jUMjIcHB/PNbnrf57nOsK0NTFsq8Z
WD9o/fhW2NeJeflz8pBCci565Otmc+nSGKT/Hle0xX3G0L2fL/lUGOyvTNRS
x/1H+nOO0zv8vly7TfZ8+5SLxs/kfvqI33HG/PyGSGMatMXw93E9KYIUxgah
99dx/OeLNhL2zS3iY5xPitD7bX3bCfvkJVfzTztoMPSr9s9V7qdA7/umft1s
DIYe8ZYR9nV7b1GNuJ+ihdMWKoQ9tOem3WxNO6SZNmT3qTyAM9N7t37/Pgrc
m9mUiDhPxtsKJZ0KQy4piIzz209TGW4cZ+9vO2MJsVz0MPlSUCrOw64VHaoE
DlGCzboYB9g34ETi8DUx3Ch5qw94WdAbbQK84F5q80oZzDv+2js90IwnmLBW
917w84fD32KTiN9BlJifCxpoukG+UuO+33ohwHn6YG43zisJtJPrGtAgbua4
sh1PKnyYZ/NtwPg8/7RByG+Ugh5NSrf1tT2A0goOj0bc9wbPvJSs6qeg2G4t
oZy/keBXIGRWjXlKk+VupboKDeDIg5hlKxOgq+DEBWOse9/mLwyJq9Pg75pk
W7vWR6AkI5lTgO/FwVLxoUqWBieqfrAP74wDDR1BwZdeYxCe/YdxJ9bVQ5M7
T+RIxYNp8uv6V75jsHZr5HNfVhqcfvD8PlduIow89Ku+7491o1j/7QZuCkpi
zS6KkHCBejbtywsKdKD/YavYj3m2S046ibXXF3qZMs0dsB7bbL6Vty6GggIC
Xc44KntDVfinaj+Mf4nWWuDHc5C01PHDOm5h4H4ixoMf64SA91mWSRfwXGyk
n8Y85wJd2lp9snie8mMoVr3zuhmJVE95fmGyR4Y+/G42eP7a+rqMPC8W01Oz
as4FaYZfJM8nsUiT31X39bhir+yNlF//JL/7D25oCbeePULDBG6stF4P29ZH
yHXRhMSteXMCidtqmS+MIzvj0KbqcQECt21Z3KsI3J6V8p/LlopHJnxzJG4e
Ln5FBG5pdX99uHMTUdu0EyJwm6lR1iZwe7XxSMt9CRd0+t0aQwK3z4qK7y4h
CjJhC7q147w3gpuF7lqYd441qqQReNKuzUSw9fqiJsn6OwSe/+CGlnDLFt6w
i8gTjfiP0ll/I9HBY9ZkngRSjJsfhtCwLpDfrfYgGxVylRim4Xqxa5SoiN7X
gt7vyFwjzR2K2oLiGK8T/870/85DtJSHzVFygrdxPj9QYbKY1gtBh1jlyXym
LWiQ+W9cnfNa388f5U03k/nPkxBrlITrxdpuqNE2wAtF3qaQ9YL86u3K1b0h
vH/NBs9cH9i/5V29ELYrKv0+Ht/uASGKc7TbRQFYrwqrLGD/sWfsef1daTD4
KPfwF9VMOEVP+8JmOQYX7EQ+dQ9TUF2R0dSTp9HA8eZYkRC+783svbJH1Gig
/mE8rsAiEZ6NpKbvwnOEdn5GWCqei7kU+UK5IuKgLVItqh7P0Ql+y225RGjw
1qdtJ7dLHGgbtzUU4Xl5eHB4dnEjDT7rvKgTa0yAze9L74rjd7w6pdnWwkaD
j63z4mOsSbC6eyf9PdaBYYKb+82wjg0s2i7YzuQL23fm/3qJ3+tqpmmrXBMF
HT/jIDFXHAxHzjoVXMH86BX3WO7OJwqS3/+B4zc1HCTdZ4IIfrTh6HZZi+cs
a/eFh8NGD1HRRChzKo7/rsHpVI59NIh12d/gTo9DwkZaOcdx/DkNvzdbS9Kg
0iiJhUUyDh1XP+zzwhvrVZnpMRYO3M87NGEyIgElr3U+uA7Hr6jNtbZAh4Ii
xbzD9pi4IeO93+QKcL1cHfTZZlBKQZxv3HS/3L2H2BpiSqJxHsp7Ne6RYvCA
eh4ew3KxIJTcznxlnPj/3vCqfnJa7w3iTtVBayV8UeJLX2fi3zvzXDXff6jy
LnAoiRbc5AyFPYO/wl/h84Xtt9/nzTmARcNm5vyDYXAy892qfGz3fSvoYexL
g64sJpUHRQXw1Oq713bc/1/CzafBVi1o/tz32seND8BY/viLBUE6yIqFHXFb
14K6ty9LFLsVAN8V2JNdcX62heaTeUI7LfXms2omulszT+aJh98R0v9Ccq0g
9o9+Vm3zJvzbWF4h/bDcXeW161YAqtncm0T4efhXtD0Ix9kpsc7m2cEwFNs2
zUjEKalatu8EvteMok2wGWcomlqMJu/1M/hD8g1DO9CeFXtkNBUGSKtMKxHb
o1KSSPtI7fc3V6fCkP7LG6SddmSVfbmrJZhxFP0ypofD7v6eY8TfOVs4vnIl
7KspPitW0cOR1wLbecJe8XvH/Nnzd+Cbqqu6uFgEKHhmn/LAdr3268vOYXvP
IytNVrEINPB4uR5h1/5YdEzMogVtKhc8zvgmAViqk3k3YtwCWF2MiHpfV+DE
KMMdCokfc5mJer9bIaQhdLMFye5eXL+BLwqiOEzFVxN/b9/n/oiwP+DzlWfh
i0KTZwRFCPv76o8LQfhdmjvudDQ0PkDK+Q0viXcRljgeef4+DRTe2FimPctD
fsb2Lb43xmDHa2Yq0X9uJQRk4f4DvWF7DIj+c/TQsgLiPHODsTQ+D1ud1F4R
56OdoVMplAY580+M3ENyEN08fsoV66I9prvJvO0RtXshaeIGwVzL9xB5Ozr3
epTon5Y7u66JnPeGP6snXYn+qencqyeSSkHdC0+1pCmeYJp+13oe12PY2I2g
uTwKUrOSyok39YKYoKvXNLGdfXB40yoJc1B6tm9kjVIEGr9soeSO8UzfZ8wq
dISCtEyrOcs+3wU5mR2rdffQ4cG5XwZ1ZhSUcMjTUOOBG5je6cs7KEsHsWce
IcKjzShMR9HcYpMLYt6gPWOhTAdP3vy7wW64L20OqqRoF8LvvWaJ3SZjsFe6
yuqoTQvitNt0U7M4Fjw20uI8MZ6CE283TVu2IDW1V4mWr+PB/hHl725sZ74o
1EH4MQ/NCX+tXYgSvnpFEn4a10Q6EH5WLwq/21kciyQ2MiQTfp51pcePbTOH
xYeWHsGKEXCoqfA0ca8DPelknJmPbZ5d2+QC4QmOZJynzkmSfUxhRGFXG5Mv
GuN4Qfaxn16jf++cp0GVIV3l9YYSNNDs8H0Z/m7h7fBkfRsayJyVbJnbUoSy
5x7/eoXt08/VKIRd7uTBD7NbimDD/c0ThH3isOfDdSNYN9YODHm+jAbNRG5z
Yt7v2RRjydTYjNjZBjYZx9shWX//2yWY3we8BS6N2NNgw6HzK499LkQX/gwK
N2E/qnvsvTQcaWCxnn/j0VeFcI0x8DNhD7/9babOywEsY76UfLayhEA3+g3i
71dPFqTtU69JhOPOOtvvFzjCrptRBtvn6MDYdMf3xHUqvJGesz/HV4HnclHm
q45j8HNtBL1mmgrQsj0i3DYXXPK32bPifmt+4ZzD0GMPkPNQCOPUjIb20mar
2nlcL38buPP+KsGKKH2HxutBYOw+zStP/B2RmvWRqkNt4LCRnVvGLgs4pg+W
TWthnZ/gekr6KK6XP5cm7k35wJ/bE/rB2H/Di/+PrO+O5/L9/qe3EkmSRCor
FCrKVp2GrUSZ2YSM7D1KSEZl772ys7dcssfLelGSaEkDr1daWup33erzz+/7
73ncj3Of63nOdc7znPu+r7tMZ5v0OFz3Mu/LLg2FAlH/pjBcj/yeDgSYseO+
SUYwSvt+KNAVe8QVRVBwvA+NZUyQwYxRn21XZQgwFv9s+xhPgXgv7dcLb0eA
fOuiG9k7DuiXt1DGf1Jg843PX+2eDKCt6gE/CjuOo5KLpp7VqrgeXUx4pSU5
iI41FusHTDsjWvqUlAYFKux3Wc6pVJqA4+yaR2esStBow46AG9j+9k7rgGsY
H/WJ7x033cvRoIqkNvF8XP9w9r6gEjIU5VWJHbaqQqPnw5kYcd25/fzlbwVs
J6nbeeG7ai2yrLws7eNLgeMOmoIn+YKh735hEotwElrX4T4YifFcpYaYbRfB
/CTzcH73wWzEpzwfcnovFUCL4459Ohl2kBaFeNMakcqnu+Hanpi/1Tu9v9dF
BrXdrLu48qthXtHDazvmdc6i86k3xYbQ5057gXnObNB5n1P5C+cx/QQ7Q5Qy
iD6wiu75sN0PggsFWHcCFZ7JnXEydSMhgc3a7nQeN4BvkDYu4zAVJHi3qZGl
Seijtu7SWQ83tKR5JchIigpf50R5f+H8w2aRaPcw0Bs1n1vgD8f5J22TcDoH
jvOv6vyektHeaLRuJ+0mzNMUjfqzLRMm4Hu13H3a2iIUOlJZVH6KAgrW9znb
jMjAG7KFTsOpGS0LRRY9xXHIFHzKnik9HjoeSl9gOJ2Izh7e4m6D43aanYEr
UCgTzvPOna377oU2MYrHa2C5W54q37aeMXjnFJF7Rqod6ZmZPCPmsR+ti+YH
NMmQePP01cKnzfBCPsJWGOMve/iu+i03Mlyz5Gqb2dYM63YkCt31osAwB8tt
s2gS2nkrZc+ZDcXgpvtJxkyIChcbPCz158mweWqKlr2/Hrju9OzOcKbAleu+
kTbtJKTTZnQmMCIfntv7t8zh648XGTu2Kd+GnUVBv8yDk9DvmfpCGuxfuq8C
1voHxdEvvyR3la4biO0Lhy9xLsGS/UEn4r7Bheyh+L4oL0ZXjrhv4g3ZttAY
EvLmkY0SZS5FfA6D3ekCVPh+mDHzuwQZppq2N0rQtCJajxw/ebwuyfme/BJJ
d2AUzC7Ycd4DkQtHtxBzVPWNO94PMafCjL1hj0iTFVB3LAdqEd+vyd4Q9f6c
Ds9LHlQcKA6DV6RTurwYz8+Jdc89U8lwoXk4fLW9HrTOcFRa+FOAi07wRc28
JawcTS9Dj3zhrr79APH90QaK5s6KkyREPbM1cZ1OJZyVvx7fj+P2UddX6cWH
ozDVGJO+TaIHZcQGb68wocBVpsu5bM1dcODLGbem7laI/pl0RMUU53lT31yJ
s30oQX14an8zgm2ugh0lxPlg6mSuoockdOeipb3LYh7qmzLavRXjY9/zN4/N
/M1jqP1fHuOuPfuoWoEMoty+pZwnW9B783snEon3k+sm7d4bOcLs0/MOW4S9
kFHILPMogY+ePbUwOQ0M7p657Wp3Gf2Wb/31C+OQ+WBQy6I0FfJ8VxguX7FH
R9R0nopi3FJ7W7jUtJKh5VaZyvzd80iK/ZMUcY5i7M62YaeKQaSnbfdaOqAW
XdZmrBDG++7Pk7969th8JvSA2D89OibDzt9UyWAok3TniX4L+P+m9Hpi+xnr
SSdNR23AzLJWpKPeF54/UQ0n/NhI3R6utm8cehqEDD+srwPIeT5nhnlF8+qy
y8cvuL4HpmaEseSAnwC96RzmORuOyh9viSIhZ4uha0MB6cC7Z4ZDAu/TjBWV
OevDo8h6lJu/eiUQ/RmgS6H/QoHawO30/TnjcLloxYn2YhUS/92zX9GcAq0/
O5TfWQ0hfc8NOnq96ciTYWdVBa6zv//dN/f62n2R57/7fkmprLnW7gMybu07
LQbj0XxfD7sgrr9KaVpdigEkVHbwBrqXVoZ2+whZWeB4Zm6VCTXZlgH7jw79
+HD4Bup2q2Q4hfH315B6yzo7BjPHTWQP6iDUvztlejf24xwS4QMcD61ZWuEL
kAcPdfIKg3E8yFw285N3SgdRN8a92q630Km51xQmrGdZPIud6yWOn0EBfcGH
OVATd+1bOr5+/5cN56yOk2E5QvjJ6ngLVA1PvHPH+DtemAP5HwGw1WZPSqVE
IvxkXFdCvGdoHsBw84PMFfjT7rP1qUQcSJrXtBD887dZVGJghgPIsHygE9oc
BzJ1CdJhWP7jdc6aXM6dQsjRpX/y83IBZ6RNSEjb1z9BuvAe8s2WfymJcbCU
km8a7h4DnSz6N57S7dD97d4Skcf2GHEbu3SnQ0blAZvhb/aw7TEPmfguNaxX
zzGkQgdMrL0Gl7nvwG8fMyUu4jvKE9Xae0yT4P1NQXZFajz8jk5WFsLXk/cf
6XIOtYezbzvDBF1jITUq7kUWtuel/ftxixrcX5t1l90bLkBvPth69mF8qIwu
n+JfDqIbd4LTVBVr0GzIFrYrOJ6r1v2Vy+WvyYH7xl/5DpsTW44KeMKKhI3D
yAE3YHLqNSTiNr4+ntuCjoSm3zmffNBfDVa9ivF1fFSYpwb23fFIBXemNMPg
llgwv37//txP3L/Hvu8jPQZwP0fbKrh6HVrmHk3dw3pC1gUVjlZh/mkrTGob
LgDW3hOxz7Cdvb+NE0psSeh3ENvTl45lEJ86tVyM4/CSWvwtwc9kqDet4Xl3
sR5JJIkEtTlRIPT4aufvCDJsmJyfYdRrQpF3je3jPYnnxWx9fOeT4dVIufCr
LfHIYZNmz26MW9YBX0G92zdhfuwPa5JOEiqLH2vUJs4fSL5pIOwWDSr1GTJd
8onITPUqdR2WLxzwpN5OvADfyh4XF05dQ6PrWTkRtl90806xASYyeLA+ylSM
uo8mgn690sLxfOPYrdfnMD4ez9RsM/ur0a2lAUo9xmfygZtRiWkKDFNS/R++
NoYXIiEJxPv//9Hu6btLHkTOG8QuR3bWgP8zdJMN44/SNCM216RD1W1BC+eT
t+GA+rrdHzGeT24xkzf5mkEyB9uFuDA/GKi4bEbk7eqoip9qZiTkcySf9lFn
BVzS/2PxA+uZfx+7Fp+xkkcTcXxCRaHsWnwWj2zp+bphCP2hZ1utM8mBw9c8
WlqwvEAw5uRuvF9upn0+XCeRiPnF3WJiv7gsSNYT1/c1Rx9oNMlBvSr7165v
nZ5VilYngwFLVZPe7Rbiu2Q3f28KLDxU3+6fmglN+SllHU+vo10OUXbE92jv
gCllgS4DVBxXvP8IOaCUL4/PF2N57OBffC45ruGDnv3D591BhUnrjjHIt79Q
vgfawSQzrPMM3kenxAJDa4R14d0P8fvsVgEokjFwWx/GYeOuG/8lTePr7RbP
ZjUgmH5nUPMK2+P8O02VcoSEeNT/CDCsq4J3MhC/B9e14g0PNdTNhhBjI2f/
nw/p0M5x9dkPnA+rVT7kSFmNoHy5XvMj9hYwOF6len89FU7/4z/ctWv8B278
4z/zOQY3qr9OQAVP1/bPFwtgy/ngM8ESFHjpl/3D5tYo+vCto9/CMBreM8pc
0H6LecuU8Q+HjnF4/qL0g2ZOJfqVcH4wyRjXO6m/9pg9ZifsQVnsf+3RK/6b
Hyot1vID+l9+MHT7tcnv9xjoR/qFvJJtQ1HqTAxkjA/Nlr9xfvLZWpxD6b84
76O9oC+3BLBY6OihsXodXRTkeUzsR/5/dfblnrU6C/+rs5y0VQc1RcjAmfBm
sGGqFVYGgn8EYjx5/+0XSvXafgHzf/slrOWy/LWh1eO2XaQxclQYCLw5J2qL
9dd+DttnXUUGLlLrs9JzDRAhRiMujnka6Z+8cHBNjm7+k1+oiZ0S5dmBqN/7
Yi84haHjrTcb7bCeXQLG3DuzSKjGjHpvaHsh+vpOTp+eeP/q1Ne7SthOM/hi
s3WqFVmJGDwNwXYemg/1ttlKBqlEnhe32+6DxX7h2fdYPvP0L/5Hn6/hD5f/
4T/Z+VZCEO/HXTLBtPP3a1DzkQIGou77/sO54y/OEP4P57cDmbuOs4yhhVaD
yb7GPMSl0P15/xgFfrVz3LyG/f7q0IH946bRqKJxMkET+33A44fi+c8TYDO0
+j3JqwDF7jQLeozjZPsOp3TBX8OIXFXbPnTzKvJRaeHgYcL7dwOfdMUNMtC+
0/ju8aMRKV1q/h6P7Q8L2tg3FILrXeVQ1v3aRuTztSEuFdujLK0jPSBBQu+X
X9fsFKxCmh0ytJ3Yfta5t6SnHiTUKeBlWzVWhixHI34T/PPV0b/5E56u5U9o
+pc/77SZvjmZT4a8bCG9ExMNMEIvCanYL6oB98JHfUkow0otZvFqOpq+uP2D
Fe6vbWmWb3sHkGHBPT7ij1cjHPj2J8jPjwJewQzpHWUkJLhrveO6glz0YMv7
TGnMA6U3Ki6kCj0GqRNsU5e2tKLpvs/XxxyW4Fm6xsPvX9zAYFqzo9/GAxT9
+j2IukOu3bvGt8P+8m34H9/2/D4Zyf4I901OO+Zb6qphmW1drPxVCiQdCVn1
7hyDTyxXxHQtnBFUJvmxtFGgrp9xz4vZPnRPjO98gdkNlCzInWZvietguPv8
592DaPvEjX1P4jhRizetF7MSFbYIyjAqrg4im2Tddbq3LIBc05LSLIvj4WBO
1ydnEhrj+6xQUn0ZxPf+FD5wBPM6CeEauQYS+uXzjPPsmB3Un915RADjc69m
2/5D8yTkpQV35U3s4VWPWYIj7qcQ3VgO8/lxODbJmpUY5Y32vnSNKMB93/f3
D6JZTo3Dgxfn3vCc80FDMvf3C4dQQIn/l2iz0Di8esfCYHPBB/V8NW7SwP2p
QwNnXP9XMrALnBXeseqJvAK+mn6LogA1YqLTNYwMPvcuDaBBa7T/A7X5ezYF
TormVimJjkGUslhIXEEkrD4/ZzNMpgB8FUoyQP3I44RQbC2XJ7w4HcHhpE8F
L5OCrVEvydByPMxlPLYKtZ/QP7zuGgX2RXXy6uF+6k2DiENbfz1aFrHXS8P9
lEHo377P/2/fB2f+9X0v1OM5fO+SgcE34LpjRCMy9Xtzn8aDAmU02843K5Fh
p2OLS4R0C/Cbb4i2w/lne7/HRf3XZNDsUnG92V0Pp57xBo5g/SHQmKOMeY7B
o9ZkL6Y86PLhpU/ZT4W84EOzl/OG0JOeeotJ2STomvRwOsKN66bKg7X5RknK
2nwD/W++8WUg9ND1ByS04f1d/xyDfIQsKu98xjykSMI83PSbK/xQIZsGKHgi
u1HHECIOu+s0HP5IGQFrhmL/fYFoSJqy4PuGedeodznv1o0XId1/6z0tchR0
icoeoiH6kaC/9pAW1+xB5H/2jHzRXNNT7rmmB6X908Pf81fPm7Y1Paj9n54P
/F91F3Bfv3VUJaX+YynSUb6VEIJ5EZhl63sqjwOD+yOxkKFauGRzzmKLDQXk
6vysNE6Og88lLprV3FrUnJOw4n+ZAgLDZ9NfncX5tvku14p6C1LZ+dqB4KXb
KDKPNV6NAa1ExsvpBASBwtQTGjjPeBbuKQ04lglXEkqqjoR6gWbsrWY17Md4
kawXfqczQTWisDDrrTO08PsyXMTyMpu0h3lYv+vTH4+1z7ZAEacm1zasX3aa
RqFEBcenxSNHF/sWqLO/z2GN5aTOx/K+1uPQx3dGfmBnDfKMcvuWYE2BFw4F
RXkjJNR0MKez4F0eqntr9MMe+6VLQ38TnysZzj5nZ3vP2wxJ6w0fl+G81L0x
Tanohi6E2TzpV4oNAHqF7cbE3OyZ5t95y5e/8xbQ/jdvya4/T/bzJUPU0bIn
Jr1N0JVYHJaB9RQe6vfWdY4A4XUKnmF8SaDsrP1GFte1c7O216qaSKib2/vm
bqECZCWo/WsW22PEzC5/+t0gGq+sTA93qEEGTPztpZjv6foMuH19PYgeWAhz
D1+qgdC3WQYULF/cSftH9SoJOXLWLJSalkCkgIfeGayH62T/gW+NJHTV0tc/
RbQA8urOfXiN5cMrskEBHkHw48zHcO3BRLh5ql0wD9szrPV3jrfOY22Oh6b+
zfFExP/a775+zX70P/s3xjG/uYrXy3Ar5VpzdxM6djMmKxev943mdDMvzudO
k+TgAdMydPlCHF8vrgtZ7kkb5dsygbz+6E+bSh8k+DrUgpg3Gr3/W09nE9bq
Kere97eeGh2JdM3EeYC7zhA0HtQj1Y3ON4rxPh0//Hd+pda3Nr9Cn979nV/p
rj8+VGPgDD6tamymDzzROeOEJeI9qKE7bNXmz8fA4ZCDvlI4QucVGc5+wPr3
PXOUrfMYRhuLd33NcbuFHGLEhKe3YX7oHNpb1JUEeh5THtGUeKBTVqxkI/73
cemv/J3LmhzR/5M/iWJ6JFLrDOpSqTdVUjxgZ9lVmzF8X8rtrPx6pnGYnF4s
vr69CnZxNcRG4/gMfZT18zbOw3K+z2kPpNTiPn3rz0t4H/XaJqWLSZPQnM7O
IK7Qm/AfXdzWD5JUOHxkqFJbjIRYlyVL9lJugubcfjUNKZz3pq9o/hDpRYqW
DcUTDREoYcdowQcvKkiNGyS64L77fm+R2i59B0h0duKJFKFCKIdbnqTuOOwS
/KIVbeKNKh6xd68GUkDM9IDteksch3UcfI+Vo9GzokS2j4epMFu4PmrKmIQe
3VERiPkdjlQzJpeycD1SEphrfmZPBiYd2/5y8yZUNp3Bsh/XZdZ/ejL/6oHn
//S4sfztay7vWOtrQOFfXxP6cB299VEynIpqZC542gJpNgEDORgfOcfGUmaM
2+3qiDn9iTrYTt3yI/wK5oeatKy3kDksepAEwojvr5uun3mN89udetu37m0D
8OGx+fGzoqVoRlXGyxKokC54X7FOqRolbr7PytpUikp3cPgyPcN++TqaI1na
gMyVzqsxCzShyYBzczx1VCh/1jZKJ9KItOVPMGxwKkWylrWuSSNUePpn0PMC
1i//y2Hn3iOl8KHi1VlTrP+de0u79L5GtPqqX8nKthS0KnVH8vH1BuyJ1juw
fsddwxdD+ZtgUvEepyDWH2dz8ima60R7nY489zTPBk+vOiGpZCokcZ67O7Zp
HIJmy2w1xuvQ+SyV4ES83tMaf9cb+3e96H/rPcNWYtFQi/lz4mRgSVQduhc7
Do8w/n2ecp1VjWTI0s1+WihRj+Ta9+8ww3hu2EvW33aMDFfLEqtM51rQ4zrn
eHssv2Iy/Hu/Fa5TRYGSOkMVyNR6+91ivI923oyVUHV5CDWdlNTR1Dz45Cw/
u4+HAp/os4+GXekD5RnDDu2CXiRVs3fbgykK2NYsNrNa9YFXd9+HwrA+GP6v
8TDrCAV8v1kNR1x4CE/o2ybPbMtDvzLfJfcIUOBS44yBlp4zFC5p33jQ6QmU
pdIFYp/q2v3Nz5Vya/kZJv7lZ2WyIDuyGIeLUaafNm6tAYay2T4lXI945Vel
mF8NIq7pJY4MrRrYsk75vjK23/YKi7d7OQn995+pJC/LXUiTGelaxnp06rmj
Hvh5wUDA2TnHRy4oIM+igPieIsSZhttZ0xuyF07vfJzqgvIX/rtH5Pkb8XK7
f3UNIqW9Ed4d2rVglELXZo7z7ctU1uE2bW/QXW7bNp/jApQp8xji+raGwBSa
acxbPHM3/6FrgH0t7/+UuGA+75co8HGODAH6zKOspHrIKXLpGsR5TFHQ9d6v
d8MowO8W7WSuJ5TsVBs12kyFhO0O1YT9+ReLwvhY7qLq68HthP13haxv96eQ
4QxPSoF6cgPqyXA0pGA/xrEX2txPICEHe9v2i1rx6NnV3ssemB+q0dV28LXg
/j39TUWXZy7SZqw6ew3zmQXmsvQHRST0m/u0x4uKHPS6i8uBFucHmiVW1a1+
JCSW8PVaPuUObGa5Sy0XpwLdkMaAJ65TC7da57IDs9Fd9L6oCvPtvRUkkaOY
h5sPftu380kCbNL0inlLvGcYssc4EMd51nk4qmqVjfQl3pYScc4ddfi9ZR62
J7j8bOdqAQp6NTQbi/usli9hPbu1yTA2fSK6OqgZGZcFJ70m3su9X7ZJlExC
AQ1luREMGTAr+czpJL7vzcxsLVerDAguTHll8CgUpr50HSXmMEK/Y57HRmaC
yhGTx2bHQoDb7db5zz+pwK57U0exPhOM4nqvz1wKAs3f96k/sbzkdNZ8E9jA
i9Dc5wcGfZCMft834py0sujPYrejraDeuIabe7cfOht9uJ/gaUdPlqb+V0BC
AncULD775QN/qO7ydYynnh+jL72eNLhOL9gzm95CSf4zWQQPZGlC5tXOZNj4
5dvEOVwfTaovfeHG/lIX+Ov3k3fW/I6a//ndr19TkQ3jcD+C51pCTjPoPT+u
5Ydx+FAtUnQF66G8vHeuuLsJ5E/JiO7HepYHctffEO5FG7bkPY292IsaF3km
ni7i6xtGq5ZxP5t5XMk+Z0864mxPGzbEflESeSxvj/HXtuR82maQiXQbL0/n
4n6B15h0rziThIbvMO37mJuPkszmE7rxuupf7G5L1rKHlT8h69wbvdH2gaW9
xD6dm3B98wbz5NzbMVXDjTlIXSvrkD72i43GscjFNBIq5PC7TXcmG634ztIF
Yv0PN4iUeuqMooy2wTPDHg+Q/c+p3VdzcB+37+bVkCgcP9km6qxtKajPY0lu
9CDmveFcq7sqsT3tHxh9TbLgjuOVmEIcn8L/+oXrf/sFGPrXL3Tsa/UechmF
8t69dFMJFPC5fmtg6kwH+vDG8lL19nFw7JL8xGFbhrYOvyVvxX3cz4SqSwrX
SahjfpLfUTICBnVpbyfjOP84tqV94ug4vE1J5DDKqUVcKaFFUrYU0PjFdmfL
ySTw13jCr/yJip6enHLr2VQCosmSJAm+cYDhrdFc1RVIVYClkzg/f+mf/uXF
Nf2I9E8/p4fEsb1cJJQTxVBwRywS+X1k0NCRxvkW6g9sdHMDsVxGqxPB8VC8
b1/EaZznfwqcnDbFfKLa7uL0JoN4uL840aGA5dmRH8OLPkyCtMvbaz+dA5EO
KlCmKV+CcMv3En0dZKjbNC/boFQPXCFmSpmYj6Wn3TSq0yYhXoUDul1TEehn
hrcUpwTuUyROmd93IKE7uvsntyfEIn+njkOsuF7zqwDzTBIJlVQ07jrKkwSX
1CxZp7Bf+KW1sj8fGAfE+ZC2aboWpK7WV3+wo0B5yj1FZR+8rp5gm/BXGejW
wfnFfTj/6Dfyo4/2JKT44N7yU+9oqBsZSbXF+kt1xUUiq0jo0qWT4kJRmVDI
6brajf3LrPqSoSd7EKV3fLZT1PcEcze2xu7jON/mv1DZGygNb71SE7qNb4Hb
YkbV2nPklhPnfgQOoQfCAW+fC6fB2YWGXFcenE9408bGAoaQUlp8qN6DFES+
Pn2RiuUs3nSPwkzGIcx3azcvfS3EzukW+FhRwNjOq4zbehCdnmjzI9u5oQ+r
6tX0p6gQ06qV1pwwiIw4Nr7fe88H5sEwWQ/X/YClUzSZJ0jo0NHLV3gZfYDn
5F6VIczTdLhaLY12O0LYz6EPFlZx6PRF5UQf7C9Ztj3lkXsdYV3E9Svc1nFQ
mbjsSsgf3TSXZdy1ACZvQ/yfPnJCuRk+N5xoXkD3ZDqayRlE5VSf02d/u8AW
7YmrDzAO+Wd67t29mgoXDgtWxg7Fovdz9yWf4zxWrMq/vv/cMGpyDXOSZAgH
8YJYA0N2KvQk0lTLRAfBERWlcx/eJiL+9PzX6Zi3f77rdUD5tQfE5tf0uvS4
ofw5yWSiDl50bf3mt88DPrVxzuqpuCMfbbpzRN7z8eKs34r7o4Iyp9SfbM1I
uOF13jSOq0gPIZFZfN+3UYnqbEPh6NgP0c2a+L7bGD0V3cuGUHmP2iPS7gTY
+USqkQH3p7WvtAZPwTg0vTKlKhXWohmFLrEuzHtfpMm8/K+UhIp2Z9o+sSgA
SfbuoDvE991qcTw/XYbQMerlzesH09DHa5euEu978OYvTPG5DqFm94O08q/T
0dEdkW8I/4Y+Fj+iazuEAiftYpzE0tDPImfjSXw9HFTZOnzrIbgHdFwdTM6B
IDf7MwG7KPCuLjV16tkgmnjZ6N0ffh0y97/VZZenwq5Tc/ubDMYhPfhU8fCy
LfBa5bBEYp784OjxhvlmMjiHXs04tbUOeOLuNSn4U4Dz+eDZTZrjkLh7hO3j
ZlsY/VRsyhZEAXcHjae3jo/Dib51uimTtrj+PGGfDKHAudXC8P94x6G44NxM
wbQtRDQc4fcLx/zfaYzh1RvMH+hUyZMaNsB0MItkFksBKeqf8ivGZBCrrTu2
+aQ29GQlnfQtpMBxtytsLBoklGiSWBWTYoBWlx+9OYTj0EnjdfCtHBKabR95
/1vZGFWey5V1EKPCuuPcU2GTJEQt/t59hdEEedKrb9LEdWFJUWsX1yrm+U65
OkULxkh612tPPuI7u9uvS4j1/pSZtMXrRU8f8rUS6/1kL8L/XjsZZD15Xo+3
ngOz9/nzxDnAv2b0jBekbcB0Lpy1JCgGOPWVPxDnvMWF7biph/mG4Tvag6a3
88DLPg7e4/qSedOV1RTzlj1tibmINQmK85h4aHDeUPSnIuN7ZDjN7NASMFOH
rl5TbF0m/ruh9J7eKJWE+N6s6kZsTgYnv6bomzgvxeZpcYkv1KJ1JkJzfrk9
4LxeN5HFkgqSK4vM20vMoJj9TEB0uB+qP8GrQDzXkF7ed8aeLxMWh7heFrqH
oVPzHTyzeB/ZCQstV0hhnpYtrs+2vhXYLvPveIvr7BaHgwbz9LZwRya+YLjL
G+/z4ZkRrId7peRj4ioZXKpTFPxF6mEpTbVq1JEC4H99dbImHY6YM75v54hC
oYUDex9h/Wqxcx5Sx9LArzPzD7XKArxM2pzYiOfFT3tkRw5kQuxdawGPc86g
XHDK2gzzGbuk6sQb9tpgLSK0b5EmCvbcFdxM/J+CVfLs66Fz46BJlhKp46lF
B95wT97GfNhs8fnPUrFxUNBYvcL6Xx1iH3lSz47z80u65myUkQoSyR01qpcs
UL9lmwhxjrFA4/hi+Ig9oN2BoSrRseDe+l0pDfvLkqdMTGvZHb5a8f2YvegG
n02uiRK8yK5/23RFvyg6VDqZt+FZELjt7XhPnB+1aHXhmWAsCX3Wm9Xz6CmC
+WQdSR/MV3nH2fdJq0fDLVW5Qzq5SWgp6ExvL3EOf92DDymcKfB2YxAnVfk8
qOk/TgzD9qTcrPTtO5QK0TIeIb+rTaGl3VdGgzj/0FSK3TsyHaK+CPU+SbkM
c/lX4gg90xvn6nZMZ4BkRZIadS4c9ul0tzzFOG9dvHbbcQ7z/8fFIr1zucjJ
q93giSAVjlNr/NOmSEjELi1LxTAP2Que4DqM7fQ2cVfjP0QG01HuLeGKraid
PzVwJ+ZdmnuS1/ikVNU6Ocwn0bq62DU++dZunvcZfyb0fmcbKXnvjFLHA/3M
sT0b+PbPEvbv2jqQs1RtiiDebs1+KzPeIeFv9sA1hPSV2OPQ1vDRK8T5rooF
z2fXV5pAjgO9iMBLP1Sz07yZOEfxRzS1fVf3GPSlx7xf3NWOjJiGuBixPcsz
RWvyLeu4f2A5KA9eWJOj5yUiCZq47+PZu1NSoAWWaQ/qiBPncGrcY3GXH0Is
Qeu0/1zNglb9yJVQ4vw30UPlqqrjUHdkg8cT/VoYldTeRovzcLjgajZr3gRs
c1bvjOsphPv3qnV2nMR6cg78x2D9BB6cUr09kl8Ah7r889L2LIF8MPsx4Qtk
xMybJvF1tAqoKS36qsR7Vi7NU5zRYyjvlY2o5bZ8cFG0fPq5jQIFwpfBbGkU
ffXJFvczSAKenXXVLE8oIP1Ohj5mdBzYrRzfPvpegQ6cYZIvNaLAiv5m3fJR
RVjkp9LtOHsbXX+Y9HIf8XzKa+HawPsxmOyzPP3saRuK7+1kFcE4WI+gkJGy
MZgIVrGeDWtHEpwCvl+I85yLqMXkSyTksVNTi7+3HDL2CS3fI77Trz9Uvqp0
HH5p28XWNwQi+7j7b5qw/nZJNVUOaTJwy1wJ6R9ugcr2RussrP/VzsdKiSY4
Ti799Deraoav+1/yVWC+d+2YdzuvWCxsXPdcPlwpCex3Zp1OwvHwqfLMfuvR
/aBzIOrQyYxI4OBV0TyJ9TMNH2jfh/v3F6NkcQeWRhhKCBS94k4BbZeNR1Tz
yeDTxBisHdaI1HiLDI09KPC6Zq8lcd8H4nln8H2RdpMyN3FfhagvHnSDCugC
dbIjoeYmGo79weuG9ff+ST6csDoO4clfv2/vKIeto1edI/UocPbU+0+Cb4ZQ
zd70zS63YmHT4S4DKhfm2zflbKMx/voeizD5vQJK+b20CfxnSaXRxD5lyzu0
bkH5PJrpWVjbp6UTOcdIw4MojNlK7mh/DUrhDBE6huNKhOfnL/L3MWg/n5js
r9YGhWYPfwLG7eTYE8WMKDJ8dAjloClsQEHjReVncT4PodEfZRXD+5F9k4AF
pRJ1diO163upcM2sfS3Pl7/R0IzcnIw4hiPX8rzhkxQTQk+FfaoC1gPd2YbF
hJ67H/mMyJfI8DhtD13BeBMIXGWrbfb9P/GG/hdvtWZh/e/jcR+RVNmy+0QD
FH6yCG3BeuobRznyzB9DDcMrz80zPcjN1Sk/hn4JjINFuM18yfDs5pydZUkj
fMqrE9fC1987R7uyUHIDuBNZJr9fTILN59qYbDE+ruXXSoh4GwvyzePrLUdC
At1r8Zb5znp/iI8rNGhdVupvdEcchyImiDqyfNDN6MVtVxh+uWmXTZY7MI/S
vCHkpaIP1/z7WV5vJaXmJuS09q35d472pfg3op6KJ6oV/syFeEd6Lnncf1nw
3RNRwH2TazHLQPPGbAjd/rvXC9fx9XI5zwYtRqFteUWTY+w6GmnTN8yhUMDg
UHal8xEyHGGuPblpVgGyj3gk3i/H+aR24EXogQEkX3+t+KLuBdR8dNuhx+ep
kEF6IyuYMoiKyR5XtVzOgoKjUYYm5sOB7do04vIkdPrQTeYWYX2QbdcpOylF
Ba1Hlg8P0uI+KEnC1dfEF4R7HzoayuI+GnlE/sB13+0GNIkqGwK/6Qlfdtwf
9S4/iO4dISFJcXrOdYJG8KryqmQn5ifZlNGHCSuYn3RepXPcaQTas69oPfC6
XvUd01ivPw6bNW/cvhJ4GfV6HTYdwzytcYDNk1Z9HKof5JYIe9uijGitTc8x
H1On7M4yksL7Yqv1idYddqj75Dd63lAKPF5kCN7FOg4ZPD+/xkTbovOfFR6N
RFKgboPXXedeMlgrlgis0Fihe7yvqeZJFOBtIM8Jro6Bevj18Ai1I3Do4R3x
tjoKSMoyaWdfeQwDe17odRf0wbHP4dwFS4vwJc656cJAL6r1ohHnD/eB1fQk
J04XKvTXvRcd4CchqVfOUZWBwSgw8U+2BO4H+aLOhz5bIQPHpo38H9ZXIkkp
7W17cJ9bYPwxj8gbh4wH7HHeQBKbucWIvGH6MmzVFMfnaJPIaRyf6LDQOWki
PisieU4I4Lz0w/yLRKhSEgppL1vLS4/dH9pJxmJezplaslU8EY6fVvpzEstX
dXWLJHG93mpmQtRraL0YsFavo0+91SDyUg9P/jWcl+DjUSc9Ii9trRQ3sL1C
Qjrlg0mHacvhjuZDs0Uc50PCn/bw8B2DkM9BM2rNgVDxyf4RkVfFf/55QvCH
25Gc3zc+C0JNPGVr/KH+y+sBIVx/DZXo2q8otuL10MsR9bdliSfgMeZRpwfZ
SF0cUcCU6bLGo4xmq7JkxUk4/7xMK3xZCdU1JdsjcN4w5jGuniLOI4p6wkW5
lQsVJzbS/8Q88+qTLjrS1SG0ebnK+cCpNHjwX0P6Hdwv/PL345JuJ6GzDlU9
g/P5aG+CyN4SzAdmw3wdiPpSsPnzy9mnbRDzTGAHUV+ek1YYhvSHkLyhv6Hr
9ky4svIiV5CPChUcAsxC40NIkVO+5fmGeLQ+p//pm124vihYhgdtGofdvqkh
hx7VoYK9bDmpVyiw99OKfpeIPbTffeeeLh2LGr3LYoowH8hyUUnywHzvWNEe
m3c0UYht/sIa3+ucHenRkCND34PLH9rnWtB+6XOiE7iubdYfM/UzdQGN4IL4
DQLxIOnqp6pH/N+hPqTWtSoT3uruCq7oDAQ7riKHTdiPpRWfP/m/JsP95aGQ
06ge9POf3XnqTIEFWlIu4w97eP1aqesRexxcSMvVJfjJJ5nnv/PYx2H82E7t
e6l1KPHlMl+oA66nxx/P3xi1h43Mo5u4omPRC6+GMwRvZKJXb+wFMkT7rG4P
r2tBfZx5s/ewna49rVmKT8egszq5ps8Kgaucz07iPT2N5d85os6ZwKUwGF0q
7go9pcczzmA7Ld7YrgwpkoHlbKXMlZst4ERev+qI9TAzOzqcx/s9w19Z9MRo
DbrpdLt8A+a9cdNyHZeuj8Nspv7R76bVSHn2nAzbJVwXwvz7zXkNYWG4n6LB
GY2mo82p34n38WijVuXHSUj4ws11ZeV5aLF10wsj7Pe0W3TzvIMp0PmhMyDc
Jw6Y1nuILOB4u/7fju5vjmTQYBuW6NvfDC/DZFSYcP29Z5/sqOOvAcniUcUn
ea/BorJqaAcxl7h+TU1Qi4SkP225++VKBcwkd20+iPeFbvA+yGEwh9nsR1XS
m/yAPu1hO8GrI7Y0yB5IJMMxncdp3cuNoGTdlnvQE+MmkJXr6k+G5+riFsWt
TUCR33HVA/fdFxsZB2+X3ALLO4+TPtQnQZTNCwbi/WG+U94Cp9YNIYehFwUV
eTkw2Hli1zS+b2RT9uZqAUvYICxBc/BFNHJZf0d7BuOg77abu7wJ520ObZko
yQJ0bftG+4cYBz1hUijB54V5VL649xShjD/1cgSfb7gT8rP6xyC6pL8nwCOp
GjpkThQ34bp/WdZxJnJkELnDtmTUWQMPKVFWJ7DcSyhW1vT1IDp7Nerl6sEa
2KW+d78/lj9ZZu0XbkwDjU3LUWLrY4BHPaZ8BuPcN7G16PFVEtpy9Dcfi3Qp
ZCZEL0Zg3u7JwfczbiUIfCcs2FK+JkL/7fEi4lzZvW1NNcS8/Trlydc/dA3I
ZonzOzFvP7D8Odnb1R88JX2svv1JQAby/xm9w9fThByN22weDsPRLV3j1UnI
MahP7sDq//E7+p/fVzQN7KRwnryoGTG5TTwRpcY3/ybyZFI+8je+TIZvZrSG
UibN6C2U7tYj5n7Pqngc8b67e+GtblVnIPr4tuoKse++z7R/JHiR8mGWVMyL
UEyc1irBi3afHs56wk8GeYdFTaGsVhS87YaCL5Ybb8rlt8I43/6vpJY1rRo9
OvTGqo54745FN5jA01KH/jnGE7mJMwgQeOYhAyURBjIsFDGIllffhyMa2dbE
87X9lYbdIxHGUCbUIZ/wyQ8sWYI7iP7iEvPTooQTJKSY1GmralAJCV47o0dx
/hRrY9WNfkGGsZ+TV689q0dhm8f6dmA8G97cqvDCfYS54Kn2Tdey0EPZ9W1E
HzHLv2vhY3EmlKs8Cz95Kgit7i/lpcHrfdPB+0Yk2xnat8alOS55oOxNR8uI
96jN/O6frx4aA7LBNN23BYRSmJcvbMV2Zmxx+PjAcgi9Jh1t2tOUgbac/OSY
xEuFC/Zsas8Nh5HcRb63snph0EI7bV24nQr7Ns4xTjA+BPuxJtsv4gVwVDJk
N484BeQ9Ddf8ay/P8ZFcnQQrwdQ1/3Iwlr8g5ksTdOfPT1sUoNhLB9bmS+8W
D2ae3EuGVzMPX+intsJFjrhVf2yPgvD+awqCyRAeq15aciMe2o+b22zD66pO
ik2SsE2CrWMDW4fOJCDmTIM/27E8d9059SUWMkiIhEXbWN5HJhuD184BZtog
E7ZVZRh9UrlQl2UQAR+v7TjTwU6F/RJSqUSfJWZxpAv3WShrYkqX6LOC/utY
/BJGhs1sOwMsDJvgyfOdkg9xHgj7cXYpDJFBaflTdGh+LUg9cfre4E+BTlEP
vQDcH/0x93PedvY2fNUeXuuPtnayyBJ1refNrW5c18Ay0ouPqGsal59n9IqM
QL6ddxE59Rb64KWtemcjFTY+4jSrujmATLgsOY0fnEaem5z2cWlQQSeYLNL6
fhCZml+YGT/oBRLl7wQK5ahwsYdlB8f9QSSSurHOrF0L7pTovzt/jAqHn/p4
b9cgoXkF92snhwxgoXflDjGPKu6so43MIaFB/RihTR5G0CGWFkjMo3LvN+uF
T5KQ6Ry/5wteY1Cb2StPzKOC/mMipZ0dB9HT07RsonbIycxzuyfxXaqXx6dc
uXGIpZQsbnxvhyh0WQzuNyjgP8CZS7NzHIoKZ1t+lNuh9vtTZ+Ii8H6UiqP7
9ZgMuYZxogvcNuhVe3V7Oe5PK5dcdRgw75Wj1eqc2amADPeRP5Iw7xXaJj4r
UdeDYi/G8nF8CwJvHa4rNQG4DgrTBVvxkdAp5W1JDSI30PLXcB1pzNMULslt
/4nX+7a//6uVxB2kxFN8Xl4C83wjtbW5lvN5Slo7axI6Nfacm5hr1bYe9FnZ
MA7uVNvdYx1lqFBo+xAj5qupBwJGCb8/26JSjf2OpOPrZQi/R05Ek0PvYV73
5fvl4ft1cGlsjl2J+M5CccNq0K4hJPN+eqEQZYMx/THWMbx/DegfpNpwk9Bx
937uFwo3YFuRlrU5tvPot8714yEkxELJ28UWXoK6TS9d68d5dZQaejDDh4SK
ZUSahbpLUXO0FOtFLD/7K8OOiOcP1ty3cDwD39kP99biuS9wmuAhMiLXuzEP
AQaFif0ED3lSGxDb6usAL86icQNGb7A85ilB9C8KbluDCP5zhnngAeY/EFQX
vsZ/esYZKwNSTED1E7d/9PlokJYOnSe+n731xXdzPa5TffOHiToF89mRa3VK
c25lbW6zQ06UX8UwD1TDwtfmNiJCI/1auL7LXioa0eTEerz3rdX3b5SXTKWz
JPgp4nVh6kc8KtpwSpQ4n1P5TIkvMScMSC6+65fbg57q704m5oS7Y16u7z3T
DWf1XOzusd4FzaLXz5hDqWDXvDmRC+uhCJ46zrMlAfYrC2wRwXouBqxOfY5r
R98+96mU+qdBqovo1Q2NVDg2KxOYOV2Ouo+GzvmGFwHfw2i5nLeY9/bWjIfK
dqM8Pp27sdYRICrlxvbmNhXub3pk1feLDPrnu+ncDtYj4WR6pbeOFNhzdbaC
wGd9X/qbmPPRqGhabw0fBq6hkT4JMtRdM1g6srMVxbbu2/IK4290e/tXAcw3
vr8w08d8A1G+zrISfINt7Budjm86tLbs1+adskHW675+HcT5ah+XurRn+yB6
MuqcY763Fg0VcTHy4Hx+fevBdzMZD4Hl62XLt0s50Hdph9RRTgqcvi4uY6be
DZ/T3kP7nwL0u+rjSRECn0/mNMHZuUhLNlC0r7YWic+rLjY8wzzn6nBbjXUz
xJhFOW2hb0RJB5gNv1ZQgTKmufrDZwLGZeee6emPQpQ3+QTH4SU48Hjj9Mnt
D2Ezo61q7X8F6NWVoC7HQxSgeZPJWXnrCpw2Lb1Wo+oFpcofPIg6Enil73tM
PwllDfWu15HKh1ix/UbxOB7uS23X444aB92NVjWV76tA7Xhz6ooF3td7umsI
frhOuTXoP7NqEFLp4yX44clfwVkvRzyh79A64WvnXeFw1LmrxPOO2OCwN/Ul
JMS0gT1BTvcu7gP3ib7F+k12HC8z/cKL3uRzsLMeiUCcYdUm2vh6pWzb08R3
B2ByRHnrWAF6endshfh/VrK0dh7B3340IFrM35BO4clrBH+708W8NjfItJOw
+34xCa0/QF6bG1AUWPWUvb3BfSVi3MPGBdX0f8sn3ivot5LTEnuG8+2qa0CC
YQ3yrvYytsb+MhX8JkbUfc7hYXdc99Emt3uXibq/3MjHdqJtELH82DX8n0Qt
xB5oY96Br+eh8Z0uqMD8bVts/aWoWqDv2tqxgvsXlgVK4/MYLzh6QvCy8RMX
WLlzx5B4HqSR7hzpQSaDi19E+1PFBji0D7HIuFJALuaG4+tXZDgvUnc9ZrAe
ntZu+f4V9xGheevU08tH0GSd7APOc+fRLv7R60K0OA8o6l9IGh9GUZaJb7xC
/CE5/2F+OTMVEoquWAT2PYINrh/L7FYTkUKjuzr/6yVg2AtP6GAcBro5dsiU
4f1qsjeq/TLu3/ultCpCyMCU1jd8nrcR6TGjTC/c54Y/e7kkVkxC68T3pfl8
y0GtbbnXxoSp8GU9Xa6XNxke1QdsyptpBMqnlMLPGJ8TU6tpmafGQWi+NdEp
uhZuKsSs88X6Fd/SrsXz7dcT9jieIeB2wQIRzxrjmsHTBSR0zfvL1uWuLBT3
pSV8rygVXjoNnhPH+5rFMelNs1cEalLs73mH9/X86RT9gwntKAd3TqFJaaiP
acn+awMVDly0fdeQR0LMTMtLMgYFKKTrgQ8N7k+PBSkF1x8jg4GtBnPijRY0
TqF7Spz3e9GwJJ50mgxOW4+wrDvZgtSsZ9masDyx68dCyjkyGKtw2Kg2NaNb
H/UTJ7DcpeJBnmo5CT16qPc6Iz4TzIVjNP/Ddiqx7qs60zCIjp1mX6Qxq0XN
PYyu9Dge7o6T2svWjSJd1+PezEau0DRhHOj8kwK3ImjX/Dj/Keg677nzwMUy
subH/rA79x41Z4Ket8IBu/zrYHYzJYMW55OC1uJQzRVv4K1tKVQISgBtVamL
jDhfndDSELR9ZQXmhep7xkx80bMnHJuJfidpjn8NByobq4WsQQFQxD3XcNgc
sdwtWyQIJXQP9waGRSJJnofOp4j4D1exu36RDLvJ3S+yZZrR56ahMSper+Ov
L3HT+0ZQZX990y93R0R3cVXiOgOuX2xWMa1FJFT5guF7gmYOGtRUkJHGefvC
969reI5eOf6O9iSuXydNthN49op1bCQbkqH+0t6gJNzf7bVGZOL/Xythn19u
tyPDS13OrY2+TbBDIaZ4J443DxqlDS+nR5DawtMj52gGEYMVRzCOLtDgcCj5
g3nOl/evhlIyMtDLp1krcxj/2U9Za8+/rpZskTS5nYcedwmdIJ5/XZl5IcKB
5fY7arW2NOWhZabdRmQsP1LBaPCe3hZsph3fTnV5o5RdRWvPm8xu0oa1+jnA
5BfQt9nsjcqUrYQJ+eFbESpzgTbQFWjbvqzug8TdvEwJ+dccmiyRdBJCz7cu
d+wuhEJB31BRzHv9fn6jp+B8teHUFRF6hhz06RxZcxLvl7O8743bjciIFGh8
IruvCv0acqhYjKUASyn3z5gCMnrsuiCrldaC0PDJoVw7CmTvnz6fHkhC7GcE
LbfbJaDYozQzfpjX+cxRrG9VktAFdhMns+g81KLeFemE1/Vz9JfZb3zfDspy
TUhCLjJ8V0v6hOVfxayNOlJI6PJDecq7sVRUWyrz9g/mgZ/+U089Gk1C+qiy
SsY+GVFiecYZMI8a8npSuiJLQkeZVfLEXEJBuo0pZwLzzAbmoDul8iRkQV8c
zTdxHXW9PZ6+gOWTAV1S+oV4vUwqFvYB2TDkoiXRhuPBY52ayW1TF6DjLYhj
EohHKy0WKsT8hIGJWkjMz2fJL4Ctoxy5DD81IebnqgZF06oVuK+/m4wmbLLQ
8RFXwyqsp235z2XB12RgoZHLqp6oAk7GiqB1Vymwa58cz82NT4Alnuv298Pp
yOT2cbtjMktgKObYIqdHQs8+BltJz4TD5oCW97SYNzJeZiBLT5BhZOBgJbNA
DZq9vI7NJYACVbvSzgaWPoSsuoprL0JykIOyZdCGHRSwMOeRVuKZhKhNBbfi
jOMgaWrbm3cTS0CauuZLzA+tT/0m5ofAP7FvOzE/9P/trtaC+eeJqp1lPmNl
8E633WAD5p/Lp6m0cZ/IwKxsJHLQqxKVDP6ZnMT2j1WfTeXD/NC5ITlo/kQ8
sOdFtOwUp8KvbsevMYm47ril8ansa0CtMZHJnXhfMO/QvJN2nIRmZ9t841Yj
oKmsYlwP4/9fFnOnnxEJkdJvLLwsuYF0Iq+Vvz1CBYfanuOE3/eHV1Gx36Fi
z8I7wu8RqbE1zUueMNrZqfr0UAJ0Jood2UOc86aiZsH4jQwBdsLNoYyVIH4X
OjfjdcUozU72eJBQgYHcTzhUhsQG188dxjzW7uRzc7etJGQdpXJXzz8YLTS/
/3xUhvr/44/+h/+WZjEzapk7MPKjlmMD8TAxsn2dJL5v4UmzHcw8niDVPxYj
j3kgy+nDU8R5/h/duIQJ/FeVotbHG8ehrv2h7wj833H+btcvJsPRjTLOrlvq
oTqTMUwQ8/b2YE2jcVESuklb6hqYfhMFRR8dDZGigiVVsPwR/zj0f/FUTlGt
g4PptFv07Skg/o5G/PrucdiXZGTUdqUO3d711mkZy39kLO24dImEWoSeLon5
xKBYHZvJ2sMYt+vF/sR+OZhMV4P3CxyIJU8Q+6W3SMHmNV6XMLVNkWYgHnnn
iTAR6/oW5l/nyzwBf55voQv+U4bYPXV4r+pQ4PkRVzoa7nEo3rYu5dPlOkh2
se/vwPdtCP1ymagviR2mX9PiM5HZegdtor50P97EQdhTwWXw+ZBPDIjcDluz
Rzp/bw5RNyX82Xd86MqCbWqKYUTdrKWf/yxiOYj0mz59no81Q4N5ZmMKp6hg
PynEd8CUhHztjv0MvGyAjD0k1aSxX+L985ozxUnoPzrfvK9C18Epb/Z3EMZN
cYJOuHvIAe43ChyQU49DDP/FoKvEOY2M1YLF9mSgL9BRe6TejD4K5ojs8KZA
28SvrX1Xh5DckZf1+afSUEq6ZxsxBxYegrvSbE5gdc92e3pDHBj8F8fpQPh9
fWPxK8shxHypirmtMQMWEu6HJfBSYXmcPPHMcBgFBHn8ktYLQyUmXI7EXCKp
5U/6L71xoGNiQarjNRB/UeUykw0Fdj+sUa7BfGP4u7h/XHQt6tIINfTEfEOh
hNfTcHEQnW9aKTb4EQCvL8wOe+P+miFL9tQtQxJ6E7jh3JThRWQefnrGHuPA
MKXv92sW87qiHRbNGl5Q4fOqTEOeCnLRl+W24D5UYcM53ZwUA5Qee+gz0XfL
NdzVn5oZREvfE4uHQn1RWHNhnja+XqOXEpCF9cyYPvE4YFoDLTHrblphPqAY
HODVL0BCPctR/TkKVXBuebRJH/eVVqcuhdzxS4W9Fn3+1gGxyFeJO3zxJ+Yz
kUdspbWG0QXm1fcztuHgx8y/5wQ71r9L6t7S8SDQe7K8oXYqER2QuxCZi/nt
fZ9FqznMt4s8vY4EnndFV7hV1vh2YPZ+p0/Lg+jjM+fbu0quocYa8R18GAfW
B0zbeqQ84RuNOcNBJjdU6hDot/Y+ksOmWNsNHkC2ftX4mtkdraRXyhJzrcBx
NwMtnyGU9HnnSt1kGvK+6hPdjv0b7hdRf9h6CPEpn2sWT8iA29sv7fHDfhQd
dVqb677W2r+hb38z+nNucG2uW3X5xtq6TAot90zahqNNNF5r6/J+dHVjUnoc
vGlV/yHwxxcJi5j1axH96dmAV0rXE4HDn1foVIgLKtmjr/IRr3dLwDnpk45j
UNOhs6m14AFssqxR/4n175F5YtcsMgZWjR28Bg86QP5+OM8j3BfYmFekfZwa
BYuvCnfy1nXBy1059L6eFDCQmt1j7jYKix65RhaO3XBo1x9Leg/c90kOXLn6
cgT2GBloLdD3gn4Ha0CBGwXYB6UlPycOQ7VcufnGsT7Yl7jntzvm7d18Vc+P
fiABy+fFbp7+Adjm/nkhwYUC9yWqv1g+GgAure9639+RgF5X7LQclrvORK4f
EesDG3veTXn8I9CsXnAxFcvHdbT+27PYBVIi1XJt5aPwcIXrdzvWL9Sa7enz
ux3cwNmNvmEMOCNnxBzdKTBIZ/FO+1Ej+It1+PEnk6FH8EKVPF6XrzC9ieI3
nGczuIVes4aiMb8PZsMYN+U3Y8sxpqmwM8HokkFrIOLc7K5KfAdalfDgB4tM
JjzwQ3H6maaIcVthrR3mn/KnTaeTKWOwQ5t1lmW2DWQPyH1LxH3xzEDNhFjb
GATXq9G4u7VD8DaG4H0Y/1zFsckH18dAYdNNk5icB8B/7OgJXWwPa8TqmU1H
xkB29ln0GE0nLCY9jtXH9j/WESf7D4xCMGX/uHRiF1iirEZPvN7+k9tMumAU
aisDpxite2BJjoF/DPdB3QLzl0O3jICC8LepJY8+yFsovuDkRIEwTZfpPv4h
4LodZMzYOwA9H4s8s3G/v29m47G3GwagdgPNYzvzIXjBvyFbF/s3g9X6Kr9S
L0yM0bDEPB+BzwI17aNY/6GfTBYe/J3wCb1gszk0BgMD08zXsd+H6aSW5tVb
Qee/dcp3VMhg8lLFRBKvq8vqQkodXQKY6Ei1PuaMRXrVL51/Y9w2OkUe1jHP
goCON5nZM9EoMpPBlRHva/FfvNtVe/NhgpladkDLG037xZzn+k4Fx2eUzfR3
h1DF0W1qq/ktMLW04ekXKgXcHoS1WO4hw6u7f4Lezt+HfcG02qb4vm8Kv7up
L4zh/v3md1nZdnD4+sEsyI0436bXaCULy0maYgGtD8A/YNcMDY4r7VdJ1GeS
YyBTW7Rn87VO2JQvy/0F4xN3SOjtt/xRiJAWfd4a3Q2o2HS224ECHWbB5xe1
hkBm2r+//MkAvHpxW60H81IePf0LwowDkJP87k7a4yHoquGlX7hCAZ0kNk/f
zm7Y7Vq4csF2FMJ5f79Ix37U8Dmg4WDeDksboWdsEMdFZrhML7bfuNCkJscw
GpYkst5zqKUjV133J+MYH9lf5mFXurIhgaSQXrszF/Foc3/y/UqFFWX6jfu5
q2D60JlImn2JaDFrr3zrAhWSq+ue1rKNIJR67JqBcCnc02eWpvymwI5kPj7j
jCEkup7368PiEqDc1l48g/PMrouFjGcwvzq6Mjp5iq8ZXv3nESaK7Qx7/ILp
w2UyCC9P/lT51ApWrz8LPcP4pEx3/wjbTYahXCUNu63twOzwk8EKr9dW8+x9
1D4Gcu6znx5+eAB5Hx6InMf4sCteOyckMwr0GhBSW9ALnmm9LnUWFHjwuLdw
j8wQvDTaFGnNMgjTfzbWGdhSgHFznEQJtQ8u6jC5pAYMgw/tB2s/bA/NzO38
rdqdUHRioH3x5yiwlVt1D+H99X18l0eNsgXwexupTRvnoiX+s+vqflDh4Vvt
imHdG/CIun6Hr1ol2lV859wnyv+j67rjqf6/f0S0iEohUmYqRaLpSNqFJlGS
rGQTQoTIyt5ly8jIJuvYe91rVEhDsu/Vh1JEv9f9/v+7f57H6/G6r/d5nfM8
z+f7/RqE//vu3hB+IQuMK/wLokwb8LIHfS7Bmg4TfdT5ujQKehR90BCNeoXW
RnWceqU0mGEXcCgcb8erYd3tA8+c4DrT65Cf2+hwbCq3cG1fG+5v4rv8pDka
HA22bPYmukaGN0uibbkN5a76xnqaJsC66C/iewk/PKwrsTQYqQeiCyMmZWbB
cKLZJuwVY3/NZENK1+Wr+KnmsoXu+2AI8gZtxvdNQ5GJ4BtvqZBv3X53CwvC
7KjlWktNGnzrWIIMLirYjimxsz+vhfYYpSkHFRpwRV1++eRSFzi6Rh4yNGqE
tbOiBRTi57aVySKy5W3w69aapGMZLaR+2LCrMPL0pKlJ0rlGmMotSjrK3Qkc
O3e4/yb8v00p1OeCURAu6HJN9lDi0alNc1iP+PP9isdT/JsScIneuX59UxZG
u3MrBE7T4eOP3x1dkkVoKVBZ+li/BKfX75boKKODbfWK4CeHGvDkL67Wp7U5
2Lfx9McaSzo8/9sktvisGe3Gf/RMrAjENg0HvduadEjeqv2ULbIFeZk5KbI9
zyCCfyI+8yIdZKET2d0Jr7vJNuV2+AU0VoxYyhGeaXcpSSLBxRJMVqdxbbsV
DMtVf5DhN8W9J0J5Bh6AYYLeqLR7FBT91ftqRPB8RqlizIi7B2YaR7//4cyC
KgPPhcZrNGi66vBFRLwXYia+cn9cg/Dq0Kk1PrPTkEl379Z2o0BP3RraAaFa
WPqwNqaD8KuJVwqDBVu6wDJa8rXXlnr4pxWTv9aDBkN6Gv/eubfBcr/0A+2Y
ZvAbli7j8qLBSvZcc8vgOFTWpP0Z5ArBEcUM/jfEn6rmtZt/H8xE9YavQw+3
x2Lj82dyTDN02GplKyWsU4Kfi5OmDh9KwrOXNvYt9NBhvRbTrOqWGly32O5o
Jh+Lhi95nXe9poPnMeGexLUNGMj/cSCEyRMH/ivo4vOgg/N5pVynmUa0Dbh0
9pWmG0xnnioSMCd6vz/7gkVZMyoxX6jkXZkKW7Wo4ipqhFdrv5rPuuIGkkWN
wTbTXnD20b7CDYTnHDkQqvx8byg0l7GJZ9PCYTpDpoqxT1b2fOMW7ZEGSHUK
6L0+UQ/0L5/iGefwRxcoumFdF+TmpJkaPyyB7AyHxAWSR+KTFlrwkNRpO+48
9w0l4C7T2x+TRIP52pqXJ6UIPnM67Xr6uxIu7KlEaijx8/SvocTMRuQbzuJV
f5qOOiLO/peMyDwupk+xVdZhmfnxa4N3X6PdP5vpXC/C0+zz524mEtjT7Ir9
ZpOBSR8ef71eSPTj1ZC4J1/yUY7/q8XmpRTUzY/h+jNEeJTLiXtCJ1JwQstw
bkolFpmYC2+/nmPgw7tEcaUI5FRmLv6JwfhcKuWiO3le9x8xrL5h7rgkvVaD
X8wbg5w6F5mIfwSvyumXrKeC7GkT1xPf0tFYrXJRN40GI08uO1n3UeCUWEFx
SFQElp0+4y74ltRZf5ZsV5Yq0OmtKV0/Wg1DK3Y0WZjRYcPaWxK5WYmgPuGe
9d0wGYRW3YhjJ+P5e1O4zP5fBKi+smwQ3e4Hn/I7YIGMx/mnytDt6iBg+y2z
+FrTDvYr30xIJPF/POnZsPuzRlRYOWXH4liC5s+cF2VV6MDXNXXZqLEei3t1
vzmnlOLkcMB6HS06rNWK1d6dj6h1YdlNSqIKj7kJu0w408Hq8aTzSak0lIqy
n6/oKMH9LSXflbpIHRdV2rdTPQxzXDhO9Uln4NcojE79j/AlpmteHfefYfYV
LabY2DhcZUR570/qV/RsJ/fmdxa4+TIOeNiFoVF2q94OMk4Jz00tRURvxri+
vmF7JRf7d1fb3Ca4pL/JfLhpigqR2nurYpzfoEXqnjXGrjSIW72YMbwQgLN6
Bl77FxNxZDbHSZvwBCt/zpIalgxcU6y4TvaBLxidtyz9MEv4w2BIpsyzW3ia
U9go8FAMrOnc1JRC/GZ642m+xVMPyAqW2f/zmj/wrvaWTyHjeW2m1mn+0wuS
WP5IfmhyBrXKTat2kfkN0EpW8/NoxA23LjhcpVbh4q2LXLJEV053bdyk+bEJ
d6odVm2QqsHdAxG7gJMOd6IeJasxdaB/w3+bg/3bsa/wWCBFntT35SY1M/5M
uCrjmdhyrgxHs3WYRuvocK751JOiEm8o+Wi44wclAzfzORxVJONPls64Fj9k
CQPCrsmtDxJQ4TxPwV7iz/hipy0qEkZwJfB2ZrxvJLLEPVdj7LNwNVrY5fyG
CtsD/nVQq0rxasIgqyThLS4eR3n9lJ7i7aTVlTybAlD4tOxwKnne/PhzN3Id
n+OLdPeCGx6XUJ+3gsq4f/n25YptSqZWWL9afOGzjDu8/RIR70/sY/sufre1
soJuvUgh/Xg3uPrs41IIY//aULqlwNITuDmvktSvZw+bpSpSgol92ezTPjO+
Rsw0/mJrjrVIm3G+VEx0q0Ncnv/cqRa8+PfGLeE9teiUHfxLcJYGwdkDQ4nr
u1CpZ1XbPqzCl9EGbeq5hM/nJU1eC4kBI28ux/7nCXhx+97k2nk6HNSRYfpm
4A+qAYmFsd4vMbhj4PQE8c8FSdtbkcLtOGEQsBhR9xqvKMgcNRCgQycrT9AS
Szt2h7z7rkVLR4vYd9Ij2+kwSXW40Dnchl93Bu0TyUzD6x0bP73fSQdWT867
zKVtaNGfyslVlYrMzwt4FkVJ3VFZ2GTAZ4FZl4BPgPsBPniVrf6NPG/YyD9d
esVZtE3+YhabqgPms2Zci8QuZ1tSOrHfFORkvXcXOpiDgHj2gWFib/lx82ez
uCPk2vlGWheaQPrT6+z1xO53ZuR+O60eLVxyvm1Irse5vXMgQOLKTWXlkZjZ
JnzxwdRgYXUd3t5jua93keCnjX/xc+42LHt7cmziaTXyGrAKeYzTYO5H7poL
m9uRvnXajP14ARpxfvpiRPq55HRiMaKqDcczDWrbMA+bb3E85N5Kh++/ix5L
Rbeh4+k9Yafic5E5eGfiOOE5xt+40/LcGes8DX0/pObgQ9/FLepE5zL95Sz3
tGzDeLlAAcf8NzgkuujISXT98lBvQJBBG7Jevj59zSgbO1Qelv0huj6v+vaf
6Q9qEMTmsJ1Gt8Cpia2/phj3hnAF9k836MITF5f4ozOX8Lzbi5g/jP1B+5bd
PnBawSlejbh/zpegLrayZoLYZyuP+zVzO0CEqeTHrr/qEGt+7WQ3Y52qwmCw
w506pDiscHjP2Yhmp8x+IXlelsnrZk3cjVhDG7l47Xw9Op4s0K1lJfr9chbl
ikUzVuvtVA0VqcVrDmynAghPZsvNEB5na8V6s68sf8qq8HOa78lL/2ggkFc+
HPG2FWP2J0p176/A4zev9DWtooPYxLbTmaOt6E49Urq0uhQf9voJPyD/23V4
5q0AvRUfZChZMHcUY5uKitBuwreVNbofH51txcrQantXQcKb/PkcJvjo4KNW
x5P2uxUTnjdw9dQUoOiqsQFNQTpk3Tj4Pme5FWUKefVpifm4h5lqzNh/JO17
6nPWKjLvG1xbKnLzcFlh7HoHiduci8W1dsvmkCDOn31qnSVOOmq8+8g470t3
bGvFHSuovH4wYwvoopN6SN4IsaeWUzb/zLMF40f2E88lzyKn7OLhT8TeHyd6
z8rFEXI4JyssGthhm4lkBeN76APi3L91NfhQc6PkKukmzDPfVivJTfjMQ8H+
xyfqcXvemI/v0wb8pjw0kLGODiv+n1/XGR2/Z/QmVNz09rBmcQ3+aOC+e3I1
yQuedCbh2WbUpk69uv+tCudvCo7nk36S86TdYr1bMGJNA+7Nr8QySL4XyEWH
FMkd2r+/tKCIfVBelnw5Ohw5uPIo8bNV/4OFCf5WVFNZXqDKlyIwSxziIX7e
fvmIfMrpVhROT2dKDC7B7iPrfm4n+BD9JPzLolErDvxK/sclXYz68zeSHAg+
vF0RFfDOsxW1LYcyo1cWYfhST4HiDjrQ9LYpUhJbMbI6qfXScgFSpHy3ehL/
b5t0WmM/Yw/7spfW7lxtiPon63sZfvvA7zq6/NcBnD4YutE7NPFXoUoG47uJ
zdbkT6yVj6Hu9Ke1KU8u4qAn5+T/zv3QEaB9InqW805e6qHHCNzFnNxWdjS4
sjVS/eFoOyqdHZBT9c+F48ozTrbEb7te5lLab1BhMk+rKkCwHBqjPgi+taFB
Qyjr2BWpdjwkHFT9beUr6Hr/Z2YfGX9qw7vm3alUOD5qa/hlpBT6nA6I0ki9
OJMu0S5ZaIxnbzxhVrz1HNb/entd4B/j3p/NqUVjHRhS/lm87mQ85ED9HVXy
v4e2Kw4VTJgA05+T+l0GzwGp9A4+xj4dVE5q2+MBPSYpH+7LJELpffXvuoT3
fqLsrlaK6gNtg28mxWov8PG0gtD+6Wlw/Xhq4VXYQ7zqnS2iscYOT4zm5zPu
F+64o/AjXtYYC4v5FFJ++uPt+eAEVsZ382UvDp7Gbrhw2GezhFIOGmkoYdJt
Gvip+LC6VlHhy44frppzcajENbnvEuGT78sm+l69eo1HqsMG3ya9xcqPNaUp
rUSXjfNxDE25gMAanfVeiS8wcbbKqo7wBObg6oGx7e0okt781wOTsfLNz7qD
ZH6zrssn1ghTgRNOI3N/FfapOT/O1qdB86LxiBRbBORNd6+z74jCZHlmvauk
Ht14uno5a1873tzzhWPcPAcnKhN5+kh8FrbOfdwZ2Iarxn7EZ58k/GXjeXfG
fY7c5/J1Pt2/gvz2NlZt1Y8wa3q1XC95Xv0p/ZChuDaMUrmikxpfgpHrOH19
if/bb+l5fuhuxeNian94RvMx/V1yTxoZ5/vx0+eV1j+EK7KVW9dJmmB/pvjY
O9LPxMXQgcRb4TA68Mfd1McZjdkzQyiEP3xgVpTo1wgF5eS+3CPHXfHHXaPk
LYQnRMSFN4+8j4IMnVKLhEtmeNyu/uF10p6pqWqbqC8FzlnGdF0XqYa/4lRu
xnmVGqK8Jz1CKSAu1LmXtqkaZj6dyUwmOt1z3EHyhQoFxifUX+/eVwNi9uyz
FsS+19p5PsIEYT68emPcEgX2rLp9gvchDWL3P1w4ZFsKSTcuHXtqQwWOByu1
9hJ+uPKewVDQgXg4nlXeXNn6BDekqh+JI37WFx/gXLRIgKDyt3WXpx+gI4dS
qgyxK/fS7V8zU2Fre8SDD/crwT+4atKG/K+3YxSbmXAn1upcmgpuKYDLJq68
K2g0sPwo8Pnyi1fQHup3fndtKF7qn1diIXwjJ+Q3qztbBjgUf2bv+2gMDWdU
r3oRfv7EQvzyhY8UOMN+ZMzldxUYPTdxWWdOA54vM0MrT1NByrbgT+yTStDp
10AuMxr8Vc+9ZkN00HEfs/TZthrwtGBSHiN5pyxn0pwm1I5cRj2lk6WvIDY+
ZrULydMHdnF91xup8GjtpmN7Td/CFncb/7WmNFBJ+yq1Uqsd3zoEdyu1vQT3
IHfeq2TeTwX4OYlnKWNXOs3Fe2cgfPu4/egi474hD/vPrr/uwjtvK8E9B0Ph
TsWvQF1if/AvNOj+kD7Ybi2lJDwKhk3x63YnEfv47ic6H5va8XyS2t1mahTA
Lm9pG8IHxgJ7VGi/DWH53kIVy+dgiDxgU8K4twi4uFfuXJbCjceUi1oPhgM9
rCuCm9gdLDYHni3thq2xLu5FeuXAsy1p5OdRGnzZutNkzbkWDB3aKSi5Ohy2
tdxssFclekTgWPq1qVbM2/p2RNIuHoTl1x3RkqNDxr2kw1tuugG/YO+aw4sh
MPB917NtpP+NwtcjkkwewlmKiGMIux1Y+bGLM9ZFLx9xsHsV0A0uGZJjRRmu
EKx4JCmd4OfUyNbKuuEyCKqdU39hmwXjy7X6YdVEX3uqsRTsScWvnJciC9y8
cIOc1QXGvO8eZF0rcY/UMwux9z/fRuHiNoEjfC4Ex+6139TxTcCNwqbB5m7u
uPPxZhkKwbfH201bNNzy8drH09sNDgYRcTR3j2WUDr52XwozH9Wgqkbb2NHy
aCw3PLBKP5XolNx7MtpNFchvfYjvqnkQrt2YZ7G3kQ4NgUe/sT8pRUODaMWn
ClHY1NfV6UShw3mlC/Oy7rXYVmYQIlD3FO/z6Bn2xBH9eCAkvcY6B2XkZJmN
/gXjNlGp1anTxA/vEqwWjjdge9PXSxGn5DHkF0fmHXc6WArs3TVtkYhCTVe+
3bHywt7sgUpeMv4MaltwpH0D7utfd0rPLRDk9W7Y5JLnnWQZvaMvi+iVYaAg
ylMJFfQZ1yJvUu/sjsdu3x+MTcJZ1s8uuuA2MVG6HZkX7xnN11jWAaUVX6J4
pPKwYeKyxHrCV1uDdnBu0Q6GLNZ6CZF/riCreijuNmlvPsXmFyhHgWChoqxo
jxBku9BQF9VFg+t5oQYDNq/A03rlAUgJg4q6g26/f5H6cqpJ41VGF3Ce2mh/
UFsCinp+FMiN0OCkBm+3xYYWyMhiKZuoTgY1OdMIp0t0KFt9YlKtqg3aFSfm
9LKzoT5PfmUA41y14QCVt+JFYCCoEeu6KxnWcKzt+NpP/H8sN/zEOVJ/y71U
NDemwcM7PHqCDTS4YD5+6Uh9ErAfqlytnOILCnt/pIsQHTquve9yqjipv6Ln
NCe+Z4DbqpO9LYk08GfNS2Dxi4Cf0vKKrw7bkHojOFJG8PPZ6897WIIaUPvr
W0HlLflYentWxc2IDlJ6JbcnqxvRqtikhnFOxZvw9dtXmdPhurpG9onOGuQw
zTOwESvEYfM9yVU+dFBbMinbPleMPlHeZkc7C9BTip7VU0XqS+/tTFX3dCxL
frbzhlIm+mki85VxOrQaKnuXq0Xh0aJfj96Mx2NQzAaZVWT8ZUPnDXVjPdFv
h1dK204HlI/kM7hO8ijefrWd7AUvNBaeM9lxKAx32xtte03Gn0lNfiG4SIVP
4duY0+j5WCN+d0aH4LZd8lb9Oj8qWMvybja+n45TZ0SlOsJowP/47uh4DgUW
5XaGfrRzRi+9fdrBVTTgYHF7OsBhjTggbjS5Iw88aTxsNybpoGgcf8epJBA4
DTdrhN+JgpT7ukZ6pC7fV6n4Wfs6BOw3yvSvYDGGCI5tkVYkfo6tHXslLB4I
CVnDrf8CPEA0IbGLcX+HvARl06GwRtS6LrXiam8ePhbY9n3PbcIrRuYkvqp0
Q5DDf8ni1floaLVpOsuIBoXrb6VoPaPCb7ZZqkRWMga7vOCSjqZB39di7TUH
z+OUSQP/O8lsjA4xH679QQdPEfn9NXWRuEfNr+z5Hj8M3GEy0U3GeT3W6Rqn
mj+sCVjV+1jzMTTuHL3/jXEvSUPO1OTTO3jXlr+dduYl/t6fIjZI2tv+Ule1
qTSGjqSZruSul1hoWXCziNgLuhNlRDNOw0bnGN+81lBcW7JtWYX048oku2Vq
kgo1LAWrOzcUon7n+ph8wve26rvds3hLhZEE+5IGn7cYvjPIuo3UndKOxYXy
jc+RSTFVr/dzOB6bUeXZscQ4V3++PG25DffsSP+TllmL2UmfOTY10kDvfpHd
U9UeTKhcbP3dmo+8pqePpysQHvWf4KzO/QBg2ybX9waS8FW69XMFEj82NQvn
+YnfrR2U1nVIx+ODkiwTK1J/n3FfeXiyOxQO51Eu3GKLxyfu2QLnCc4UdTn8
cyO6+3e2Didf6hu8pDqp6Ufqy/A3+zSDhTbkl+CUrxV5hYt7LkftIPqxYMOO
+sHGNkxTExvB1iyc8SyNWST5q1Ugq/JVicyXgF/o9VBE2wm7VhFjGsgPLz2J
SSc6d5uuR79WJv7I3FLJRfTpn1/Tt6ZVn+Atl9D3zL7OaMaru9udxPm/uA9N
SnWteLDWS/SUVw1+OtOt6fSNBrpmYRYnjnTisavVw8sL5Xg8suaMBJUGv29+
z3kq3Y5WOjFVYeR/5RTamzpHaSD07uz2ruAkkLTaXrY+JQLjFkXlukkd4Ukz
XhsnFgvzllfS7fij8eihrWVNxG+fbZP9TdQSQFqM7bS0fyButw86o0D8885C
dgWNuR2Xbw+KjHLmYF6oafMxol+EqgvuFlm34Qn5quWqI0WYRhFSuLyRDn4v
pWOMrFtww13p53drq1C+w3AlBxupj7/s7xR5t+FWue9KNy8Uo6dmy2M6Bx1e
bapdVtzQiliFOkfnK/DR+fbe3euJbu27YwZH2zDlgrnpy5u5+HX71NFZwisq
+plrNhC7yEnm1a/mc3Dg4UJXO/Hn8+O51g07jKDrJM+e9VRDXGM6zk5j8P8E
gU9/17ahuJMa68jpPNyv8DLchbTPSBM5NTBch7a1Zbt3URqwuGldiSj53x2f
7Z9dDqzFz3JBjh5pjbgvyDN2ZAPhn7c0DGZDW3HXvZTZcKdC7Jf0Ovwf4UUb
eDrmYhzsIaFDdfs3ZlO8FJyvz1jvF2gqyRqjaAc0wd3Z6pe00Xp4PLaf2FmS
VzQ3VjhAKl96mPv28zg4kJNEJfZX9ubTs9ecQO3dA2Gvt1dxuSFTlXFug7pe
93YFoTAI1NJe7bjTDgsXTu0XYux340gSzgyPgF2PN3p/M9HDg/eV/raRPHL6
bpCp1RENlNNHx18YqOFjbzOl/cRuoeLnP/aG1JEPtZ41gVVgbr7j63HCk3WW
rmwJf0eBUXXZJoEPCF6jgRw0wktt+nucLwZVgAO9Up1Higq5Dy+tUCe4Sr+0
8vlkVzt+WjTJbhF4C7J/s6WZftHA9XnrV/XBdLgUtSJXkckTM4r4/nD9pMPX
yzbPDX9Q4P2ZAa/Vs1Uw+Ktw8gzhmbu90eQ/uXY8yBxX2ZSUAO1jWssNZH5V
ee7lrYVrcNqB2/puTDC4sh4bZPDAoyW9/N7ONqjpw7S+8UwwsAYV+EYw9rXx
Jdx74tINphtVp7q2lUB6RvfHK9do8Ohw+96gBw6Q57yZg3YzEIqtrv1tIu1b
RH+4jshbQbXeX6xP9oB9rm+EbYmfB8MTue+N12FTqLTlUHIyePBNrdznS4c1
3cKF0qeo8OyG8v61djlwQc/4mWEUDSgCn7dsMG1AkTj3K2op6SgirrD9nS0d
eDtbHdd41+CHbgHWVcoZuN7ORXkshuBziDPzSOJbfCU1uYbO9RpFLb4MCrfR
IaX+qaL63yzU2PDJNpAtCZVKNvQrT5FxcmjqaZ6JR7NpIfvlpghskzub8ork
6ZZDkV2lbwNwhcfe10mS/li2e3sXIx7ShRcPeY5ToLp5nce7fwn4cDU/7418
Gmy+rbB2hWAGoEaM5mbNfDgdeTGS7SMdlngf9BWdiIHI+1HMK05HQH3PyWlv
ku/K1ZtteYn+cveZnb/f5AoPjgqt2Ej677jxXKA0ohuKrDlehS7kYEPz2MXy
e0RHGCjf7+JJwRX7wg4uXIxFVYUH+5qIHhnvXHVk+xMj4AjnafN5EYasck1Z
wqQf+uy9u5qc3TCHtaq3Ugow+uzHOTULGlzaaSUo8h8VqnL/jDwwKsTq1VlV
jVakXryNFh+PoOA5dtUSyR81eLOBbdrbgAbUbaUuI5ztyFsQ/KbW9DVaqA7I
vBOkA/Vqq2Trrza87jZg3nw+HXMPqt8EkqdTqiyTKh1t6DsW67IgloZGguF/
XAieK3rL/9bsaMcRdYs1Zweq0ENPhd+kl8R566zsMVIXIrnqbt8xzkfzMw9b
TTfRQenp46Of7VuxqphLzfEA4jf7O/z+zHTQFYvX+PChFS0z9Xy+PypDrd2f
oo6vJXGVPuv0fEYfbs0cPnc/1RLN5H//Y7yn1V8pXft0fR3WXTvwIFinEQuv
tDaqcpJ5Kdgiz015BLk/7nALtd9FtTIVPca5mk5nFw+uDHWCzMPXB/3uKiD7
lZpSBj5MrT1478blV1A8IaYyNakHF/ILw4Z+k7hyH9t27q4h+MQlvGiUDwLB
bvHFDuJ/4/jLmTvzOlEr4mD/kZACGDFXzHcnfNU09MDAf4l1yKZZ8SvqYDTe
eW6+sC2YDqnFlKS2ccQ1WnzpRrHRuDo/Mk6lgg53nY0n2GULMdexhZbkGY60
VfHCH7+QfHT5dX7TRBpGFVda5DT5Y+quL8baBAd8XwZ3zHlGo4+7R3q8vjse
HSjZ+pXwCpeLgwHShlZYyDH9aDW/J05O9KVbkOeaKynzM6jqAiG9haF/8/EY
V81vWfmRBhEy6qdW7KHA0Oju4YofT3HBb7R8TzcNtLKNPTgXO4Cvr8fx8+Ug
aDoVrnmI+N+41zishacGNiWWj9zofg0Kree3PkgkenCcS7H8XiZ8ahrsuLIy
Eizu8q8XITzqX1jQkYsvY8B4k+wbUZ0nQBUs+KXK+M7VtzvkITUThz/VfGUP
LQGj0Y2H+NsJP2+Vq8oopMKZaqEzdItyTB5aPMmjT3Rlte4C7qLgh1pK0fby
txik5nvmQxoNRHp3N01ItqPz3ydn57RfYXDSApsoQ19vPXzn9+s2dFgxyeFy
tRS7N248dnUliRODZ91qa4zBaBfH2pNHg6Gk5uwSY9+0/HVTb4OIeizLl7+t
/TAJJf2CHF48pcP2KZX5ymPVuHDKZGDX5WSsbju2cSib4IOr0/44zWL8WHI2
RexIIrKNqV6Of0/qJuXY9tX+GTjyM7XFNisKx5gmr/gRP8R2B2TP9MZgX8L1
o/zbAlHkhP2SK+FRaB9x67A6BTp1XgQurclGdcdf2qOVNGAvfByv7EMB2nR1
t8jJcOTrdQ66WkeD5lgWHbG2Ljgklv6W2/EJ4bN7r3h/psGgshVzhkEj0BrS
Xk7tL4TwP4P/rt+kA5Oj/tiJoiyo7BvsWVeUApILx4QFJ+jAzNIa5xwVCyYs
Q7KyBc9hS+GXWodFBo/V9fLkb8eobez0puFUNPBtQjkhOnDAyAtVoTaUXvw3
59xZjk4ZJw+Ykjy9Khi8z0w3HgJTfNebX9uP7Obm/e2kn3+8TgbuV5Kg3bIq
e5v5FYy6cqVMguDh8LPtcy+ECM4MzvWpvkqCa8zFt7+SOmWgrZFWTCc4o/h7
qVU/FT6U1n8UJrzC8+zZqCfulhD2aIHNLS0QGuNbVBn3EcsXxIXw/CK6bOv9
t0uJibiu2DfsmQ8NDL+dru4ScME8R7GLi3OuOKq0aciKxL/l+rYA/m9UyJj3
W1G0kEr0vbV1uDcNZNTuXzuj4w1UlqBlD95i/HRl461Zgufau6Pcbx5vx32n
dfq82hNRkyIeWELiymNyKw87dzsmal99XuqXip19zGvZiP3hwiBlyysqyF6X
bf6iU4o7E95rcZnTQOyW0UG9cYKTGlJTOw6mYGfctz86BCePbHbo+vmQCivP
eL7X31mJn7STX14kOiVNmO1z0J0EWHnsyOkP1c/w9O+mnWXEbxV9uuIHB1rR
IGR0zoET0X7Z5G3iEg1Y38coeB4h/Lnpwwn3iVJkz7KprCT8kB6sK2PDTAWV
kGPyKpKVQKfbhz8i/MStUKxFlvjfQEEigiJdDil2mxsmftJgRIyfbYrwc1Ot
Tym8iRXAwpGbVvofDcwu2R7MrU8FBQvWv25cBpj/MPLNTsJ7N42qVUT61eP7
BdXXpye8UUF1zN6I6NbgONN6lYha3LPlSXrgAx8849DL0RJLB675n6dElKtR
bPOuTzuTfLBAojrJtIDwk9XnXy0n1eK9v0Pd5X9Jvb67dul1JMEr473y+29X
YObCaq/MMW9MNlK0OdVMh0+NzdybuUrQcL9bS/CnZ2hcNr0kMUDi03uXxN2l
ciya/e/87Psk3HNaO5a/ng4ll8r5B7jzsSeeVjBQ9RRLWnet7xwjOFaf7v7p
XhZ+v/m3mGe/Kz64KrVe9j/Cz/OVFZd25eFcLdNlLp04NN8ir+IySvindsqT
DVtTcEOcCuuPaEc8/0KvT4rUBa46to0ZUvHops769PzEQ6z5Kni8hcT/Obb0
k/tckjFqndoV2wehaOh63bWd+K19mumQ0GQj+sVXVK7ckw/L7zUCz2nQwZHP
y8fpfTjuKTVLrXlqiXfsj3R/JTzz5UyR4ac/oTjYn7dNKNMbs2a0/3fOdkCT
n31KXQf8FGGfrQiOxsV6R+v5dXRIU/6uEFhBcF7g8ZRIqQ9ue8MXxPWVBl2a
ckNq6yjwlSMm05LyGJ1lQ8Va3tFgSeRgzx9nClB8NmxxiktAD0tFs+81JB7K
PWd+Yxf88Pop/XbpHh77t8rXgvQTFpY9xpfYCXtnn60+2W4Jb+6n3+piInmR
ANp8GhQwuHlrUfL8U5R5e+LzqnYa3OvZd+Li91bYu+L6oQb356DIZdu/6wjx
51PV8sz2elC7HM7+Y38kKLGOSP70oMNH9eMCJ793QHyES+7ugmTQDqJ4UFbR
wWdlht3lVxWwbmvZg/OEpyueuaGX10B0TevjKDaufLhJsW+tWgqAntTEDgUy
v3SppGKq/Vt4Pn0srVg3H/onja0KkQ5unY+WNt1JhyHmO7z1X9xg0Jp+I5zU
08DF8lxV9kQoY9a7EcRiCwWG16PaSN4FKz81P3s3GWZD+fKUXKJAJmWrwvwv
OogmR3j9MXoBvIpS8l2uxjCkcCOYlczL73Ond0rdiYR2rrC937e5gcQZ8WEt
Yp/98M7rMU83HORwsuX2yEO+Rse2LKLr9+wQ3/j1KxUCeLn2zeWVILP+9u69
DwiOlfGc8/hMwTcfmkaYuyowtfLRugEXGtQpP1WSGevEnQcjVNNeVuIwD19z
bhUNpI6wdWwx7MIPufanLuuVoPNv9isUovc3MRe2xu9rw7V/WE8dJnpzk6HL
Yx0xEj83mPxdgrWhliu8rb/OBmVfZd/7QnCy7/KLlJnBUDjOuaf2d6MT7j4X
PLqV4G391EACh2AUiJnCFkfmOygw9+CkB3muR0u25gk85VAy1K77V40KG9nc
bIqIrpF7/ZC5vK4SgivMopXWBYFdieCUfS0dqrjdLdW+d8HLMqXVkmvqIfK/
7r+p92kwzJLvFmbYjiI9mocvdcZCp+XwCj6CqyExH/zEEijwcMrQd3awFg6l
y+U0a9EgiV0lOiY1GfX8/dZIMtsi6wpVLznC51MDqlfVV9ch8wvuCfnNz8FQ
qS2hjPAuPQc5jVzC7zOrgs+9LzRBHfndUYz7lFP/8fUkL9+Dz7XfznxUfAK7
ZV0Li4l991FvpUIHKlitDLgT8iwW4lIaCs/E0cBd/eH705vD4WZK/hmneB14
mmz7k8Hna649OrPI14hZuu4a8tJJGD98xjPEmuB8PpuF874GOO47qJUQ8Aat
4s8FSNvQoZXH0zmZowXOW53oTqyrgi9dF6ZvkPz9aFMhdEI6FNYeyP6pUaYJ
8uN25vqk/0Gr/4LnrHzhQInReEhqLn7RoZ2umSS4Yb9HfMd0Kuoblo59FmzC
nhMa/wT16GDkcfrZjeBu6PnvxtWGzFzMTL8rzEL0xUS65p6d8zpQKlq2ykk9
FKVKMJPxnvbap5saOSQOxYWhoWy+CMVtXgglEh1xtKre0/pRJIrZVMqFu0ej
qNuaF+MkL3wXjxfEBiWDT2mdw4qNGbi97OqziWk6VIs/0vsvKB48swtk0TkM
H1DF+UfJvIS9oeZ9FoqHSwXD3RYBwXhcUPt5OOmnuLRQwuhSIlSqzXM2HHbD
QwsjgRbE7uP5iVm8uxZ/7Ew88oexTifBy3qY8Pljgd0Rjjed4HGQNdukygW8
OaW0hvF+4E7KiYr30lTQWrd9xfb2cnj6I2BHsR0NBMRnPNLe5IHyoUU9Dntb
SDz0eecqwn98TJLOvHv4AjrsfC6XCiVCWpau+QTBZ8X2mq1b7dRxVOZzolpd
MN4P6o2LYezn8pmOr5OhoqIN8xO2tlxkVaxJkyS6Fc7G+380bsNfZTnHlVjf
oJrHAUUhUt99w2/+4CtrxQuFkX+lbQtw5pE2SwThObVPXq7L4aXCNNafjEmo
gFbbQyw77Glgr6hkW+LUge8s9HfmFueB5MFrmemkvncUL+QL6FNh2Shk5rxT
BRQGVA3pmdLARnEh+5/JfaRfN5wy1/KBlNSD8meJHxzuHriRwtSJnzm+/nzx
OxQO6fPNK6whddD87gGHXXeJbpX/r/+wN0wO1V66Rdpb2D4MP2nzGFlBnVqW
EYSO7785BTG++6gLTId87oGOHdv4tmbk4tzNI+byu2nQ81HH+YZYDxQns+c/
8stGzpwuDhY1GmzZzTrXbfcIKAphxxPZIrEziWsmjODDWGTy68wcG/hLpzqs
V4rGe8cikg4Qu1RP0NtLB0Lg7iHfmZDMF3jlHrtUEKmbihOvtz670Y4HR2x7
vdULsaehTSKWndQ1nsrpWsLz0fxY6qnkLAzPcyi5w0fq46ZH9xaIvZFfo5sZ
8lBqUHjfxo104Nkklzl+1gIV1Tk19hg54qSJvkMVY11Tp27a5bE2fM7V70G9
W4RbfeGOGMm7lSWbflj+sYD5v65R5T7GeHPd78WvpP0qiyMHaruswHlfyyav
V+ZokOV5mPHe6QlngrbJ3xB4Yrcroc7FGe09BO/IEb+VF53p2hdDgToOze32
g1XQ8O2NuxbhXbIzjhe0X1NgsWxvL3tsFRwW+TkWQewBBhdb6ARf5CjzP+1M
2UFv58IrLaKP/jttPZw+RYGtHNHjpWIIRvIsK0pInOx5fCtfcD0VdF9jof1Y
BTBlWp4YJ/b5KOaWuaNvQPJQU17SUXtspQqcj5ohPFwrKD5QgQrDQ2eL0jYi
VL+oLxk0ocG1b4sXc5Z3g/irpuWk2CCQoDY+Yty7zcrfKXMkWA8lTznUtv8N
hJy0mJb3xG4WYD+p2G4AG/w31djFB0P3E+nhlwz7uXP/SfynhqHpI53BH6NA
g2W+8i6Z39Pvls5J8xiAYt1u3o8OBhDZpOI4Q/x2XJB9OUsDsaMpY+N5nySg
Lp94pV5Oh6BDn27f5HPFs370QL4wI2T9W2WaRdp3lm17IRGej+7mcnuexb2B
VV5dopeIztLJui+zV8cWRfsduEfPGKILq+Tx96R97jhbCo9QI0YLnTal5Hij
6tXukz72dHBVGbzWLNCIYjtTH99NjUL7jsnBN7YEBxRO7z0Z6YuBv4dj/lvh
gY29Gle6Ge/zL70SCfd4gn8/y08eVbfHfwvJb8NJ/5ND9F+PSP6a9luWvBuo
wjsxEl5ihjS4UCIWWa3WCikd0/IxPyrQgdcw+e1qoo/qmOYDr4bC4IecmzvX
28HfaL7QE6R/nqKH+3oNwuBGuVyKlYgFeByrjWfsB1wKXWI+dfslbqkTTjYv
y0ANu77gbjKPzs0ZU9rCgVghvGC3yTkfTRQ94mUIL93XTuWd7bIEC27Jqxu+
haPD/Fnez4z8ijqvwSXRDewK+q661oU4G7RX4ZAxDcpaDHefL+rDz96+3q4/
atDe8qy4gs80qFIc8sqZ2nEXa+rnxLcpeG9rPD8Dr17ksMjw/GrD1y9L66et
UnCV8fpJO6LLDrxOs43d1I47NAIDeqySMXEf823Ge/iz+p6cfh5UkJ85Nshn
VY5nzy5dNSfxlmRukyEhSwX9g8kfx89VYUnOcIsw0Tuut/xH6ntJvtQK9lBX
1qDGksdeXwMaJP8sOXYysh1z7H8dVZSpQvND9zhvDNHAy+p99UYlUneuFTaG
fwpE05DYPnvCw494NlhrlyRC19t2TX9OPzQKiauuInXnWq+/sZlwGyauEtuV
npSLQveaKl6RcVp+drHe8jsCtM0EZp4IaaBRO10Ilxj8WeOo1vEy0BSfC6Pp
UUHR/J1HC+Ezql/WJJyJ6ECDvUkHGkJL4PSXfrm4SRo43nnkLH7EEk0s1i98
UA4EC016FeN70A4j6R1pO40w0fG82wtKKDSv4zQ7xbgffOHfSmVKO4pXSe0R
IzzxhfqTewrbiE6XqUwTCqXChYq9myIr4kE64p1vejQNVtaFHzt5qhskds1t
6HuTh35rO46PEn9GbeyXMjV7iGsvzC9ZH3LDLQkHLgQyvnfw5gS2yZiApKH6
Z3N9M/xXFSfMWA/25ae2c9aDWuxeZd8k3tKI9JRIl9INJN7y5SWixR/DIeZo
afljp3FE/aweY3/cxuFHgUY6oSDxyPeqx5lH6Pxjrv0QGf+f+L+pfPFvQW9w
BdexZ1TgtOTTk2Hcy8ZvVlZ8tgPvv8iqDR4pBPrgUYr7bxrUtv1z9Rz4gEIm
/IUHHpF4ZNFfORE9CfVllm/im7IA2qTu6Yv5gqVlh4DRDzro7jf2S5dl7OtJ
6Dw0UAtNCu1XDAkf3iUalikURQHlib939unXgJ1MQHMZsStzCgoOfKDA8jmh
QH/TauAuFfhhTOxhHPq/vZTaMd7z963k3HiovXJOP5bEcx7Lzjz1ICr0RtRb
KWtVA32O8jmQ1K+peOVdguLdMHcejqSGV4CEOOUJsyoN3ouc5zUV6AbTtnnT
iM4yWOmmGqysTvSUwaYaGYNeeM3tePGIZx4MhQv8K+KigTgn39WuxR74t2L9
mn8/Y2GDgs6ArDwNUpYFRiPX9MCZp6vtR37EQwk+sDtxhwZ23Cr/upga4E9R
3Ll7ibmwnXozUsmK1J1v2WwsoVWQ3SIUN2BZBk3sY/66vnQQU39hO38pG2Xe
vGQ3fP8cd/HJH64j+HBSaPBk7JoMFI3ezDO81xHPMtdU684RHDOqxcCFBNzy
IExU46U1Kp0Zje4n/Er/3MEHrE9LkP/OEUW2c8EY1wAvV38g8+5a6ry8vghD
inVPhNa5Iv3gWNXRL3RQb6elD+lWY/LiPv59Us/xUkGS4PF8opcNduu/WluF
SwsetJL1T7Bi3w83IaKzmJ4t/Y4UrccbCs2jTxVt8eDnV7YqAXS4vpPezbeX
8HPNBd4NLBZI+/LfgGcUydP1r7T5KhuQnlgwdH/JDurHzQPdHxM+c14yZdXZ
Bty2JbglTPcGnIhNhSk3Oih5rkj6ZuIJugEeOjk7HMHNnaLEOEdlXP2RSepO
V6gMeV3WwHMfcDVrTSaxV9AubHkn9BJ6W6lS2pk+cE0lslCOca/36ieR1taR
wGyZdHxMyxZqBc93+hAc6Lcv0n8xlgM2Tjs8BiwSIVL7wkgT0ZWnlxU03ZOy
4Mmiqd1tmefw6Y9ItSmJ25tqXPu23K8BUYGczCDleBCwoHAmp9ChUnlHdpVy
F8S+XQotrkwH2YwHf2TGaMB/UU0xKagDNjcuSUn8fAHSNymZnYTfeoko1v8g
8cyxR3Pj7N80qJia31+UQ4NfsYE3mDIo8Cbvpqi5SyTYegrFyCPBgVPBildL
GjHttPwK6rEkFNJb53XYhOSR1a2yYhVFYF0x4xTCFIJBfxMfhZP81fPxEq8T
C8S9pa2/T4jHIHfChck0wrvq+sUTg160YXvyqXaR+gwUqlM/ZkR47NGAXC/f
gjY0Oeznx8L8Gj+a8rM5M/htn3psa20bXo8JujVLT0WN21unT4nS4UJM0h2b
N3440e2o7N/qhuuf98x+YOgL7/J7Avfd0W/j3RcGKp7Y633ekLEuvebtvrBC
3ieYVSLHWfDRB4MvfixbQ+zTu0KEJnfV4qCE7LdsWiNeDDD468lYFzrNbzn6
ohVL+u6wmB0rxBTbjHwgef1Sd+Rr4ehDcC/o/SEmpo/RpyxZBxjvvVWmbzRv
sYNj+V9Xb7hxH8dFM5N6iP0m8y6W0yn2kHVEMLdo5j7+ks51Y6zbPNlQShtl
fwxNz6pqR1vVMDZX/yADD5dn3tm35lNAkmO1hs98FRyrPGooQurCzsQH/75T
KCD/o3+19bUquHjPmucqwUPKOmF/OxYqhPGf3LyypBK4ji7wzRN7lmTHBtv5
dhQde/mRIyEBTo/u2Ki+hQ6ekWOvj+3twFthp4p3RryGmiwtpqL1dJioF9Zh
E6LCnNdZUONFOEW5e/O6JcG3gry6AiUqVE3MzXreqwCuKePC/6yI3nl/Yjz6
IRWs7YJc3oqVgc3R2vIwaxp0/+I5oXCCCkfi1rWda6mBo1e3wnqCb9zDy6yq
fGrYuPm21B27QNzhH9tDJ/Nl+eLxf/cc25C70Kh9/ZdM5IiwnzhO5jfBRdVA
4mgznpQAl9SBGtyv5n2Pi4UOQylVFy6yUSG182yxmQBCUJ6M6IwNed64Dsum
w1RoOcXeBKsr4KKPpnQS8dvdeKUDcm5UGOl4TVsXUQYrKLqzW4jefB+gvetd
GhX0XCV/vm16C/3ZPuPPiD2y7/SN/d+pkBwTNHNKswS4Zn89aCI4bxbaFnxh
/SOMbWRjNtX1w2aKtTpD1/v4Nd/XqPKEL28WaPp2LzFVbte6ayTfV9pepbI8
pgBFpWqCW68azDU2jBwmPHxHGIV524N29Ld+8195XBLQFC3GngoSfaRww/ru
vXac61l7v9Y9FSxm3l06Q+r1s4six6aU29FWRcWn8H0qXJEeZqUK0CG+9yLb
hRltlOyhsyVyBQCvnMc0I57Xs4/tFX7sAeOxS9mdWdGgO9Qcz1iPWtu4fidX
/EO4WShxXS8jFrK6h6YPMvYjS3eoc3j0wInDQ/K0FY54+c1pzhtkvv6lc8TK
NDXiJVetzf9avVFOM+dWvgUdNL5rDenJPMfys/cDZy2dUGI24CLj3kbvlPkt
+b3BsOuXg+vrFCsYPbz8iHEu678jl3xPBT3D39GLHGJhaSjWp3Ob+RcdBLmZ
vU71BaDH4cob9cIB+NIctm8g7WOTFc1Yir2wyzbtxC2fYNwpfdaJk9hzHo5s
mEpuw5PWc3/8/dOxWlYVa0mc/I2oGnSJbcOepHIxx1vp+GRms/AFMTrcl959
PEWoAztV64Z/XKtEyaFlTjvC60KblWN7eduQZVC0cME/F/OuxYveITgzMPX9
u3OfLSiHOLjdzjBBy8A1AYzv+28/vGCKL3oJjeztRy6b2OJeb8UfqcRvpX4K
U7rfX8BGTu4EqRojfB/138dJYr96z1zi2r2XcPxxv0KalDrKvK//+I7Y19+M
WEjqaUf2TQbnRNxKgfZ6Lb/wDxqYsig/ZMmiwI2vZ0yH31fDs55P77nNiH3c
uWNfB9FxHBm8libV4FGm3SlJ9LiAtIXcNxL/a89apD9zqYKvzznnpwhPK19V
Uegk0wOfMo8opxoUQpZvXawYEJ6witrl9a4bWvZWr96F+VBxueNq1hUSz9E9
urUVueCUa5Jw0ysXbgkszbCSujzCHhV5wzoXC/hjnDO4nyDveBHkTtHhQ/xD
iU8byzCYe9JefsQVZda7Xi2j0IGSsvkDVa0G3zkGAwfJj8/Fn7x9M+jwe+RP
/XvPenwk9yuec1YdB4WFNVUJr3jSwi7+5lgDKvEW7xcJtoUbl47yqLjTwfRB
fiSl3R/EGzaYRYeZQ3aa+N6VxP8a9cGCA6OJ0HN/XSH1iStsY2HaLUB4hZZX
krL7m2Lg4yzV2tUfAWq6JTsS+ung5GaWSLFqBod/58Oj78fDpzNMpyU16FCg
eEeatb0LtDnG90S3REJY2u3rsiQeDpS3buPbSwXRlVY+NY+iQUfD7nJ3Bg2m
Ky+F2w9RYXQVk1EeJQs/qTxTVfOgAVZ5Vxle6wbhhyIF3jdz8F+B/Lmv5kTv
DOc3LhV1w5hPaHmufA6GWMb2qevQgFNi7N8um26Y+qpupnQ4DwfrNm4IJLoj
9J4XcLArY0G6VsaVmgiUX3i3upXwgXXmhp+/hmvA91UuNTezwjH+4Ykri8Qu
vKc4/JqQEbRsluFdmA5Ht8aV3IxzYrWncyx6Stqw3HPl16nVWZhkNPYjcAcd
+Fu3D5o2tGFx6jbF6/6v8V3XAdd/OxnnWE7NV716AMu+Os2O/Za41ffRzs+M
fTTdqZEJEfJY81fq8FGjm0i5lqO+ROz7Nw3XRr27jFKffh6rUjVHKf5lczrj
fKe59722q1jRfPxlwrUaG/xywWEDg/+XHGjzfXFEA87/HNUF53to8oa1fp7x
nlNt+zjrKx2I/SCuflfQBMMjdl9m9MPtuOG1Y0c7UlnDEqO8sqH6Jj27nfH+
bbFk+kRnO9qPZ7+49zIF/Ha3CHnx0OH5nL7DYREqdHFEjuufrgQDvU1FbAT/
D8Sm1DvypoCbxUP28M4kKJ3Tijj8Hx3a9O0sLMffwbPul5+/s+ZB3QmxE9TI
abiQ/vJfzDUKOP19tsfscA0oKaXsl7WjQeXV2QJqAgV6+qaWm1iqoVjl9elz
xJ6uVnbEqYcCuY5Oaon8VVB3m/8K4xyMu63TJ/ihDY+0bPSZnooEOZf1J/wP
EL3zuuTjnu42tDG4crSAPR6U2RVMbXYR/5vNPHEwakamiA+GhaG16P9B81jY
Ag0aOnzLnNJasMbrzwqmqzUYxfX7+MZfNAh56RfxbrQV57OetYruqsYHx9hZ
xBnnGOgFmDJVt6Ja2MapNd8KsFXxO/d2Mu+ExBqptbSiuZnpyn6dApQNvLr6
F7EXHIg7sXa6FZmnZt49VMvHbRGtt8tIPJzzsbbqb2rDnCTD86YDL2HuncRM
ryTRcWzcqaM87fiUOjZ+9mcc/Ej4ZOBH8FahV6xNvaINObFmxVfl13heXIy7
jujcN5/edBo6dKHGz433P9hHA1dL+cVFwj+5u0QDfRIKQML3Yty04EtIi67Y
feIrHe4JW4+MruoC6b8fU+51NUKkf7iUhCHRd1wfV7G0dcH4ZEBB6mI9NP5k
TYzVpUH2XvoCnzEF8ksT7C6I1EH4R2aHFpJfTZ8OmnC5meI73p8yfoEFuO3C
4LT9CB22hEi0Bx+Mgi0lWs4m6Xn4SHVuQ/EoHSSjBfJTKWkQb+9jRrmWhzV+
xnVqRHd0XVQLNKnVQ5bEzO/jETb4aM3amiGGzr2WEQdvKVA3r6Uu8qYK5C+3
n/1A+NWJsfL5XJkufPZ9v2V7XhbQlR7vXjVKcGDXv9e/hLuQb/eJT/te5sNL
ylehawRnDOSqPyR+jINeP+Ne5VMpcNX9qdtpopv6OiY/ytKasU9o6kNcczUO
skXXzhGe8/S1u0QFdztmb9lT1f04AXo7/CMXSJ36ddi1dcUpwge+fl9Zb5AM
M/JiTSeF6LDG+2Bd1Op2/BPFZb91TRJwlb6MjCbtexP/q2soasNHWQN7V4jG
gsV1w7Lg3QTPP3qz0v4Egq1drmaDdBxkM925zk34+bIB1+WQ2x5w5lHZtpVN
cVB/u9DzBbHPCmt/tw6IgzXd7NE8Ntb49c26tSykrh3r2PIn/G8Xxjt1xvxZ
SIX3MX+7BrpoUJN42Xg3CwWyz2Zt/O5VCzFzJfv9CB/7rMZ7X+Q2BZo3jNhk
n6+BkQzXdRrEfnGA6eX2aApEN8/l/lKpBk+c9GsmdoUse5tFo04czjdMPHO1
CP6ZydVdGaEBc7A4yx8DCuzdp218zqgGcktV3LoJL2X9Wm/3sIECM9Uvr2xh
qoYbV+jqW4jdueLQO5HVVDAVcZR4n4SgNHNU9gmxn7u29iuLJBXE+73kT9XW
glbI07GkszRoe9NT0vWFCm/9/jhExdXAQovdAe5DNDDZ+W7FfyY90JRrdFi+
rAY0OfwmHX5Ng2bEE89LUTEQLbwgH7HWHB+qjqY9Jf4pltQQm1W2x5erzgqq
qurAb80PbIx9NDUOX45dfGCAtM7qVxuq9+JJx9wtvxnnsd/mWjqaooPHuUTP
RRzSxauZuxx/EXvaTG7kn4ud2Gu7dcfuFbkg82/kfdIcDbZp7/Y609aJWwWE
eeq586DMSO/9lgkaKNLsdlEJLo0/W2u952gespyPOZlF4mRf+fe1qxxIXciv
fXngaA7ys57RbCH40Ot9xPHa8zasiRL77y93Nsatu/54M8nruYXx+pljbThk
b/d2ri4XI733u46R9nJMl2wPaLUh+9HOQ56suXhPTuzcILFfKba9v0czF7jq
aCcftwVDQZzey4ZJojdFO1PXXykD8yjzS99W1kPh7p/ehncJn6fO2RjE1uFk
0q/HRbt8sHzXZ2X1UPK865lfDC8hCg3Inl5j6oN/umfZtxK9bzrw66eoWyHe
UooKHL3viYKBS9y+BE8s6TLaHAHpqNE2b/79qzN2f2RPf/6TDh1jX9q/3HyB
/ZkcC5L+1vif7LtPi2Re4mXoXKX3nuH598+O/9Y1RnZrnpsmxM+9EnvMJU90
Qeda8auWGsG4WfBV4ar/aLDrqY3Klt9dcL33bvPW8zb46fDKxrx+GvSdtd7c
tK4DvLIbbv61d4OvZ1ZdK+SjQ+YK44WMozUgHpekwqwVBTInYjun0umQteJO
qMbnbDD4u2f5Y6UXVP6zrXk8Q4dXS0yW10keel/rO3TunwVcjlV/K0TGGZLv
YmckTcHr9n6rRjILsSxD3/tKAeO8Pusb8+9VQerWLuPLzTa4R06GibE+jSXj
z98h0TuwffWt8lpNS9QMGdYdZ5yz3cd8+eyhJnzY19QjllOLamvyzhax08H+
uXtsXlkL9O5UaNDa3A4ujRrN24gOmqH56+Y2N0JbXd3ZO46dIGKwNWsN0YNH
MnQSvF7W44j+wsDtx7X4e854yZbUtT1/P2+ts6bgj43Dw//H0XXHY/X98Yyi
QQNpyshMRYRCn1BJGYWMIjNkKxlJ9sge2WVmb7LHsUc8xkN25FvJyPOUzEi/
8/z+Pa/7Ovfcz3h/3u977/mce88SgEjVUO/cRoJMDaHUHwJ6wD34rrfuSyic
s5n8/RfzeUaliAcMMQ5APvDTOFW8ES39p6ZoVUYGPRfRL7JMBPSb826+bG8F
krm6lm+8kwwqYtRWb9cwbnjLimX+rIcD6yh2Ddffu1pLDXrWBDS0FL7TCOXA
uo+oIu1RzM9DbsVR43n0xggfG+zTwMrhkmg3judwGg1NHS6si4/evGD8LB2a
9bv6fXHcvolg28Wl342eOcQYftZrQCkWZ/I5cJ2dEFRp6v3ZhfRjxKzgSCnK
mIhbp+xT3lH8Men8GSJcy2d/sLKAIJrRjFsO8/D/un8kVx4noLZrjIMxuSkw
3vLR6z7G4ev7Cw5uyRHQH6vLoot1SUDMtGxdxfV3kF6Rk82wDdm3FTQP1L1C
WedOHWXzIEO0kZj6A6cmNPbvibdnQgA6q8nyIwzHj3ztBM2e99Uo/Zbk2Z2M
r1DHuR3LxUSsU1L2nq/pKkIHTSoiX2x6ouwDP2T+LZJB/dmnuWt/UlGJxhSX
ZLwTOsAXvu8S5s/Vk02jRu0R6N8vGhfGKBtk055cG0r5zzPd97tZSRcM0dBS
ndJ4h05YhFQqUvqHq8n9fbjZB7eapM/VHvRGHm+v+/4axXyJ1qhWWb8Pql9L
y9g0yALfueQn8thub186cAWf6oTMI5oDXeKvoX36wPYuPTKc3bkqtbetApC2
oW4ezWvw/h5zkm6cDMqQwnZNNB0y/PwqI5pfAO1gBlXrOs6LfbJyVbax0Mbk
7/nxP2P4VGbdQvkv5XqLhEzbpwEYdHZLmGUvQkflXr8Vu0+C+05SJzl2PgSN
XKokR60oZN1a3SVK2R/E+i369Gg3qvt3Zl/Doyw0+GwpvIByDvuf/AjriW70
rviPpihVBnrUDnw3MM/5NRl9e7pr/cpqJpN941lnNJ8uo0/57qOqGnxCjjMX
nB9cHRBW84Etyf+O7MV1XLPpiM90qh7oyNfnFZ4OhydU3GeH8H1vXBM+ZVnf
D655364qOjShL52+xJxHmA84W+RV+hii6+mlD2c+BsADL7HYG3j+DTf/99Ks
w6gGfr0uuvYebfwc8cusXQQ3U0ub58f7oCifxTfoZxHaZSrX34jrYHKygKrQ
hD3QWOxo3rllg3Qngvsp753o5EsND+C8SB8XKLcvygVViZNbF49Q+P+uwJB+
Ezidm6NkUxYBdLVn++Mo36G0R4cmzvWhLInHwTPfI+GH7K7xc7i+/FBr+E/s
dxdQ0e7ylqbthqWAf/dTsT4tEtMUv5TWBmJ5r/7NsveBy8tDUpQ66/L0svDq
QBTqJArMZs1VIqaJeXkYxjzn9XxUWFY+4t5KOXr/QDOa/f6vojKaDEeXqXxT
9AmoL0kh/fm5ZIgTeCvAhvORdfXEtHOSPnKZn/5x9ZMPYjrYI+CNnyuw0H3i
rlQMGPIOWX3gaQBDDvhmXEsG81q3FXGBNjTmWjTWON+EAjybL33lIwPbY64f
5ieaUDbX23vhW+2IaSBhcRnjc3L2fEbUCQLaTFec4/pdiXYy6f6UpcLrefBc
4/C9NDDuZsyQNDWC6uuHEzlxvvS+Eb15vTkXDrjHvjfJIMBOX8nibmaMnzlD
YcshBJSRXTwjap0A8ix8hZR9YfO/VcxIPgREl1M8lGL1BvJapCyn8LheqtWl
8Z5a1MSnmN7iSkTRxz8cksG4ofyOekZD/B40fxE4LtwdicQOycg6UM6psfzj
tlu4BHgWf623mL5HCfve1fNh3X3hP7OHC/4fkK+8pZvu0SZ0/Zir1pcNEnzx
+zk0RGUCV+e8Em/RvUZ/W3OvmuJ5AhR1HYTe9MNN3lrR7VEzUPnzu6+umQTP
NX4eZrFshf3LC2pKiR1wtp3B6+YvzKv3jMfESxFhuUZj62FDIxxtX5xt0iYB
9zWfhIsaRPjU6Olzf7EBJEM6z9rqkkA8SuVXO1cFUm/a/Z/dixg0NtKlrDRB
Bp2RmjtEjNvhfwqe8GbUw75y0dUTziQgmq4JBu8gQqzhkMIdrnookz964RMe
fz8s/701jAjBJaqmH2pq0EbSn/L7ViSIeDNa4EjbjUpTDrq3fa1DV5+yBc/8
I0Hr+AMWJa5u5LEu85aJWIdM+75W2Gxj/nNyi+GNZDfynDn/MruzCDm68L/h
xzgsfXmYgx/nqbG8jsqNgkg0WPW90gnbx37Evnrkfj/ENAgPX3nZDF/ml0Xr
HmMcW/myr/BGOHCnk36iwDQwt1aImMC4tCBefKrmcS9MpYoaLT6pBwu1NSPn
ThKoXFWqs/7UB6SZmxmJtm1QnN4rNIFxKeoci0tIOAGSD7C7SDP3gw7n9/Dm
n4vw9DK/iY9KO0q65p5EXG5BX1bPPA7bRYbFxM/vG7U7UJHKtZKQxWbUfEq/
JwnrgnNXVCOmf3Si4bpb2iJBTSiWevrOzF+MA598i67uKgWrAYFAfuUaCKT+
pfWimgyeu+9UmA0VwwuDNPrDDM2QFvBqKDGMDCKSa//pPUmH18PyfAfbUpCk
0Oilyd9kMP7R8nhTKBdYafIGXlenIzrDw1r7cB15qUk+tLPVAN29biCo/CML
NSsc/n1tlQwzFZLhohJEEDFsXXdkiUNL3xP9nXJIcMQjrVdClQjUerTtJQnh
SDxF0/ZbJgmK66YkLkxmgrNAmzXrehyyqrPrscf4aVyu1C5M7YK0v+rFl/6s
R8+PHvrd0oz5kkHR2mW7ZGiYln9ZAa1I6m/ipX0BZNCNmWO5Uj0A/xarM3RC
W2HlMdWJrZVFaL8qFjidToQjX17QujpVA41yghOlb+FyW47HcgERLpwtNDCa
roKvolrs12wwXh0+/OjwZj9IVaxcuxfjhNy2ztz8Wob1fjNS29ffDyP7uy8I
7GiG1rme8yk4zifqo8yFWYlgL1f/pWWjEczyaZkAj3c4dcwxP8iFkxvBJ174
5KHaUW/LUKw3fbnjV2yEulHSvYyCV6cwf6Ye8j6A41DASbtKfEcsPBU5/a8i
Jh3i+unDn2F7NtWoy9dfi4SdFT+G8vA40XEyWnaNDHcUi6UMaz6gQT/Prh01
DegEK/1FFxpcdzjmVTXku1CiQXesBW8DekgePNW4A9fHwy0rnI4fkOW7mXBV
+Ub0Kz2iQp2aDKadG28kYj8g8pDSozLFRlT7w7FCD18f4sjVbJLRjXpEiQ8D
NWrQWJ3OycN43OPJVTVd7W4knqq3wyulFo0/9hQewXnnrCqVXqvYjbqq1SuY
L9QhMb16s2c473ptuNZWgmNh6MCtR99oMpHETlUPHczDBd+2aN2/mgLvtzOf
Ld5LR7c+DQdfxn5nyPk1GZmQDhq3hn82UWegyQ32g6d+keHA19j01qwuZKLB
e2eKDSEW28ZUcbye82sCOhnH+iGp74ngT74GeFqo17EVToILU9rJmQb9MF5+
wXy/bQPs69v/KNaHBA9v+PNc3tMPO2bSVMz1EAgcumZzKRbj1ZLgsWJDIjCZ
HNre+awWGow2duVT+joGsVnyhRBBQ+hKjM+Harh6n/k6Bx6P/MQVfyOJCAo9
uU8k5ashl1F7jzLmyb8uJf4X1xWG/L53PmFQDYbu1xZkRownKt9pmATVo9E/
znVmxYspoNQ+J2u5QYbi173TtHREKLEtbbot1ASZmxmCSTh+cmvt97nvIsJ6
j3xrJG8DcBFGi5jx/C6Rr7MNbxLhUYLdyTdf64B5hG2YA49LaInN+TkSwaxy
OeyGaC3w+k7UOuB45vPxf7fV9wHx7A4073+HkDNb48Vfu8nwPEs5wYK9C/Wy
8vGmmyKkNKTAF4dxJiKy+oHh7w/oO7XgdybRBnTjmvOvRYwzJ64esawhvIJf
PaepbuS8g5jGEK88jHt3zbg5Rk8+QXtKYx45/EiHjbq4bVM8nrI8fT7uZB+A
gaiQSXEbUE3sTZqknMek0LpQWNsHoW9NEhe6moGUVdVX94IE9uH9nVdF+yHP
tPjoi6lGUK5mqDjphv1y+dn+2AkDYLLuz2TLD4ESj6v1lO8sB/V4ClHfM1Q5
/Dnjh3o4jHdxDZdhO2/tnhru/OyL9mt47L3cEgOnlWPO38T8MPD96YRjDi/g
ufS9UrEHURDWzyyxk7LPVznBpTz0KnC+kp6tqHsNhB8dLyl9cfM9DF58F+wD
gcRlq1DVNnD+0ftJwh7HlcnyAtPfPrBpSNF3Hm2GeqPFDXlKX9Bt1iZT7Uio
ZNkvJvYvH+3xXo9wwDouyv6D3yxdAAirKFxYTEtCxvF7+a02Mc+ntaTarEuB
Oi4l45WuWrRdxyfM2E7pT8I+O53WAheZGfRSgvvgNfXSE7HnuA5qr0UX3uoG
I2OF0/7Hu4C+lkW0wYEE8dd3jO8904MGbufmCM9FA/uRHLYTrGSwltxsmdfs
BzWio8utiy3w8lFUY6EhCZJ4SEOht4iwkZbxiGmyCby52xc+K5LAkicgNfkq
IKE4/SAWpgiUcefP3ipK/7fm7Z32kQHIPuBh6fpoMtwOWuaYouy31YnS2vm2
C4Uo+aj+mW1DUzOfqCMrSKCgcKo7858d0r0jqh63EQ3rF6oGx7H9g5j3UfF5
daJLdJl30940oSNXghhaqCn9zW5Mqau2o/MPpFi41ptQyvDY4ATmY3V3I3WG
Me/nJVqcPrNhBwe0pY5UUvremIGubVY3yhXrM97BXoK0vlSeXMLXa1hb857/
1YWOjHZ8vzFQjsQrW579xfyWY0/hnVc7u1DH6p9Ap101yO9J2K0APN4Rve/7
fyl9YLTKu+6w2QL3A3axVmA/3jvZwRxq0Q9nZ7kj8+43QQAf8BRiHpsh9COk
ZTIUWEcF5FymM5BfY3wqEeNz/z+3l/Or7XBSdrj75nAPZOuo+t7FvKXrZdcZ
n+p+6DnfWLIV0AyxxxRvWzwggbmJurhkIAFVsnS/YrzZjRLszP5FqJLg5J2A
nbO6HSjtKFy2vd+EDhwp3PzNRIZn/OX5N5W6EefLf7LSNe/R0zvf7TOwnh1d
lTBhs+tCsUIvf3rJVCHqvwvrcfi5YmM85FaMCUjeimmuJ/8tqG/J/vPD/Llg
Ndqxy/wdKtq89aAWFUA8k4FD4TzOd2PJ7LUXV6FueHnXi7JIxMtaL+OC/d67
Ks/VP9mJXvDH7PxvVzM69DHj/Bbmk8euJIzLCBAQ83QTb5RhJvqyNi5Ri3ns
9c1dLJrXCcg2jX3H3elkGGldcL+P9ax48b6cyxOacGuO40tyxGuknuj1UgPP
v9eWVzz05SNQFi6cq2KPQtUNlVqX8bh/4YL8s1wzkPj8Vk3zUhSScfbdFKHg
p2ykc2sCAbF12Cj0GcdjHRnNtQvfd0d27vUfQwTkHiSx1ugeCytmu3ZMH8f6
9OqJX/9dISCVjUKFd5Ep0Hira0ILr2fo6qndmeo0SCjGNnxjKQIl2DDOxOL5
L1lyCZ84Mgg3pOdOWLE2w2OSFP1ZKhKwmTmK6mEeSH21ZKgutgk4SlXzOnA8
VL2cNSghE2GkesY5IKoJ4ovfqyiIYf1rkO/3muYrUizS62AjNaHe+sdfT3vP
goOCd1fC4DD8YTrv1hI/ghrrx0JW6RYgvPh3H7M6AT1kPMc1/iwJHC6tlx+m
/K8reJiL8bQ+MC4HxMtOvUZ27zakblK+h/5TPSN9mYA8stl+xwilgn8B+dU1
fH3ExvS8j7kF+CptBR6Vj0JUTXcdzuPrqasMt686ExAj97iDMf8baNAK5S9k
x3Xc56Nz07s7cHc109ZA8jVajS8LpPzvHcUqPilgMQgfqxw5rhs0w81Pc8fO
YV7qH7mDlfcVEZ6njNwE9Rqg+2lV8gfXFyOPBU2eiSiUmGDdX+CVDmb6Qnrf
cF7A7WibR2lEeDnKZ/gpA+dRbhGjswwJPowVOni6ECHwzmz76eEacGWd4BHB
9evQdgP145xw9Jkpffq0Qho0f5B6tIbryH8jRqz0XH1AdyNmLXugDYz0xN2C
KHUtd1K7bFMVZi2PkutHgmHh2+epUxgfLs7vO/N0VAK8wlmFyRxhUFk+GUHp
V8MruGPYh/4lepPAHFAwEA//nJu617YwH541OXU7RB/19TQdO1YQCQThP3oU
/n+YRqqY63YvfL4myWL3uR28q1x1d2N8uBxrMdkS1QfN525Q1yi3AnOR+UID
rmt0DA1/9rv3gzan/V52xSYIHEzLu4Wf64LRteaV8Q/o8c/xRHWhYPg3yJbd
fJMMv6/p5RQFPgXFc/r+Xs9ew7HEXR6U//TUR76kB818AGEdFWXzgC74ceq7
d6E35iETkfH0L3pARSy5zv1qO6T5Mgh89sPzu2t8R5xZiGfhWKp9SQYK2iuX
PEgiQwLNpZQyjSikXf3MhIE9Ca3Tvn9kg3E70q/QVe9IJaKv/XA7NTQXqYZ4
DpX24vo4+Y/N8WgzOvmZLvh0TzqS1Wmpan1Dhm/qxauX/2tH3qR39R4loWjC
OEyOwwZfX8FfPmjhCbusmG1EmuJB8bPU30lsT7/VVNWR+32QnKSgV51TDabS
AZnfGklQMPJb0iyxD3QabinTODeBjVHOLb4QjKufL5pEc7RBd3bVue/iCKqk
6FMCbpDBzUyeTX4xHTKPfX2cvJgLKheXB278IIP8pH6cz75W1LaRVjMzV4qo
Qz6HqDjien2T5uBMYDsaai2oMNtZjn51PP2udA/ny6U//CGPEVI/6iM0Jl+K
4m+U+WTkkOHP2p8co81idLtDWjdfuwgxFOVm/RsjQ0agph29TjKyOd01OcWb
iUZFqqWtsQ5SeOJuGDhLBN8vVC/HBovQj6WxZ42Yn9Q7/3rdlZYEp1Qsjpso
pMPLV1/9d2B+K/R36UiBeTAw6D2+XHExDNLdhkYp+7sPt1+rJev4g8K+R258
o96wvZBF2sbjhGOP2J3uaaDZc3QXtkxj0GCUEMcYrpsdjyrL5Y4PgNqDEt7T
10vRfNePpwcx/jwqYnJNFPcFQ/Uh/c+zrvD2T2e+Io7/t3UCuT/Cu9E2B8eb
rpvF6OhqnSIvGxlGpPZ2Gq10oY3hO2mavmXonmK5hcMJzEPs7u5nvdCFlF/Q
n+UyqEK37/zrysL4OXm66VvZoT44xvNKXbq5DdT4GL464/vqGJpQn/5F6Qut
Zi4i2gKp9MeGxXD850ytV+tifX1wYvm3l2cc0ProCmeIkMHb6vJ6wbNuuNS8
9vnMSCcoxlUKdmMe/mxAtv0h9xuElH++3lWbghqEjzVuYV0ztnTIn7unBB1A
b/6Bbw4qCFiyHpokQxxJZXKkvgFpa3x2ULmcjT6Z6nSEFJLhhqJaAN1KK+rl
9jmRMvsWmSdb/tnphfN9zjFoYqgDqX+be3/zlQsaNOXSYjHGeOLMSpXa2QfK
1w8EpIZVg9z9YOM7pSTguEToXD7ZD6/z+lNbTiAQttXq8I8mwdefbMcChPtA
QqDmv90XWuC2oI+ceiAJFt15hFQi20BFm56PMFYBvsybAg8fkEH0d1ycnH4b
8ki6rzVq/h69zRzfd9+UDMPoFS17HRGkbPp/yzflIl59z0GjIBKUPR6+LfOw
G9Hc6X2mMVmCrt3RU7E6iflPwg7j5ZQu5PY6qKJOsQK93xKupsL++nlhy/iR
LxHi/cdkdffUwrKQgG2vFQlo7p294pUcBLGR89PPVFOA3/qitSfO9/xTD4Z2
2BAh//ObH+s349FxHvnDdKlYny5ku/q09kOABc/W0xuNkPzAzbMT4yp7w5tq
11NEoHlQcyIxH8GB61+P7sLjirGGMxpaRPjyKO12SEUdPCnZPWeBdbRgFe8r
3hoiNKSnPfOnqwZRTiaq/yxJsEftEyMNrr9UX6+ODq69hRThQ3sbuciQ9/QE
i4O6DfjbWi16K0VCc7M23Qsc/xd/N/cczzcBhl9+LK8jImDuDmE7kbIfpH+3
c/M9CwhqtT8u3R8BygVmIpT+YFKaXetR8aYgmvDPQyIgAnIcbrxKovQl86w8
SbPoAmr3aH9/NYiBd27ctnk4j7LpqpK3P3UCy7XdcNamHky7c2UzcJw76zMz
e9G2I+oO8YYHVGVocPujrv5DMlRA6aWf/M3ov2e8eS2FpejjhJUDRyCum9e4
3alPNKHOB0TO1bhS5C7IOaAURYbvx4d4PzdXo8H+pZq92SXok/6LNaE6nNdJ
DEFbEeUookKlYKOpGI1pph253o3jVsckdrEmFsn0aqkKB71Dl/jOnqbG8S8j
GCuSxEkA6ou/XJRESkDDM+NgHuaBR5o61Xn0UmBq/OKDcI5MeFfARTe/hPEk
z6o7siMW0hMaVlBlMtCm2MVfxrryig6MXU6NgDPqoh3ZhTGwoOAe/JTSd/o+
6UMxXSDwb9wpTJIMhJ0mpt8p7/krq6b+PE8mwpm/YuFK7hloO/neTtYoEigX
ybozhBEBzTUF/5NIQ9+O+D0hxpGgpLKvY2eyBdr39nbAgyNxaPc0s9hLbOfD
e1/pZbopQXxR+xcj2yg0f6PD8f/87fGuiAS6AYgY0p5RMC5BOar2oncdSSB1
59M7tm84/v/b/EPPmodWk9q3Ke9FWXfxfQyt7EZBBg2iFgOFyPjmJeVxjGON
MvE1D3PLgPkQpE4NVYF81bn4N5W43jmTOTaqmtDoAUXNHZmliDHIbcs8lAxK
RsbXzKMr0Y8b4TLvpEqQyre3M+KtZHAP4julXFkI9sP00q9Xi4EcP6FJP0GG
Q8G5TFWVkdBSVN26FRwH9Ml9TYtYr92/1zMqfH4A/tLffpEo8x5FNC1c0cNx
ruLx7rLLdjd6JdTuOvI2G4Ufc1jwx/yKv43r72GHRqgQ2mZ2jasEQ/kzijzB
ZIhvyzz4lI+A3j6dVoo7lY5IReGyzzA/L+O9Vv7b5jFUylyyKU+LgFe+iVbx
2G41zYdL+Vg7oT7OyZXzUTm4ej5J3iuD47klOsjgeR5oKY3R03QWwXfjyZrs
aVwv5rq/HI8ngqKbkYusZDoi09SHrWEcYzD8oZgsQUCja79E+p+lIeoPL4/H
4vsq2x2ZvybWCx12uzNSqvMhs+bEqiPl/5NQha7AmmoQvJ9gl366As4NJH12
KcZ15GTdUZesUgAqBnEzufdgZ/9bgb4H83m9u7ZbDe1Q+dRww/paBWiKeKwK
q5BBbCX6WL3IACyfYE66l/4eiYvseppgTgK3mk/VmX0mcKhwg2Z1LgKEzykf
peR17W2W4LpzAzD67dygpWQZMtvg5e54TILzVFoLiaIDsPsLw7eZb+/ReqVe
ZDse/9Z0dlgBz2+nOtlkwFeGmj3vBV/H4/0qB5fvcw/AsKRd2+/qUvSlxqZL
CeOYznx8e8/dRtg0369aZFcPkxmPNjedsc69pHORpqUOFIU1+Lcl64D88Jri
8wjMB6wfS4xOEiE4uUTIPLkSdsIDoT3Y71MiP0TXU3zg9MqADRe8hZ2uuuYi
OL9Mg14dUUrygnd6NC2DhQlQ6dmwI4VyLvwf9LNVoxgCaaOc+c5XQLg3vHzS
RYYTej3vj5zOgmn+KLKoUQ7Y+xca/l3A+tocTdcsf60f/W29IXUlGt3bZXH+
ILaP29dIt5mabhQRnhV/mOkNyJvQfm86Q4Zu3bEbtowENN6zdLNG/S0csxa9
WsSD+f+p2Ff7fvqDnenqO/neJADrOi1bHM9TDkFmF843wJZGzuL47zro/85t
4OdDBppArz3PMG7bc7mSBL+nomutP4woceLsySL9YZ4IF5nz5/t5KuFozoBj
mQUJkp+TrZASAZ1uvVW750IimOygu0Xp/2Ow+rxMo0gdPEbP9IueiELx9Ftp
V/H6Nf2Fh84Zm4AKh9zDyqwIyCvO2KCcs3BFf4O1zcEEFhk/CGb2RACTjKAe
5b9x7j46/pxRIyj3qWUM+x2J7kh21FtQ4uTWe53LOT0gwKVWnzpRA4Q5vQCV
Kay7g8ybmFsqIF2/VrOUsxxi7+4r7cE47OzS0vP2dD9QGVSMCWHdEXeh3FQU
18HHWUff3VvoA0ve9yEhldVQ9O2vMncBCTZe3Qo4T+4Hwo55a7fkBli8cO+K
PY6fo+VDyxpvHwC38vPTlhWvUVJfOUGF0peSx2qlVQfrTbqTB284JoJx9P5F
IrZb7gX+3dS63XDxYuWLsuVOUNPxulSJ+U/isODJ6HRtoNJsOSw3+BpZi3D6
38bzHLUzv6mgSUA3MwY7GR8kgngLTbQgtqenj86raFkCMjGhqrH0SUWntgv3
UM7zYvZxXSfKdMJmhhGH80oPOAoKChaYkGDAtbfhwN4OUJg8q/RVvheO9zAd
4ME8TTzu6YT1Wj84nBkRfO5aDxsfWYZ6nEkwuaVDi4J7wbV7p8knwQ4IdmzP
WcN5ysw81Vs0TwA9teMMtPKd0B9dZHAY4/Y3/Sv3B/iLYX6NqpkoHwV7u7uf
duG4rXUwW+Sm60Gz/xjLWz3fA9Pz3u3bO8iQc0TeXezuAJJqMTjdvbMKSXAy
qrdrkWBI1bf4UzQRomx4QzYnq6B2tYl9C/NM9sqW4UELExgU8khrM4kAJ75U
d8r5JrZOHVWKmG/Q9fzzUDtdDyevfePI1sU8bUouUp+7B/1gGO5by4uC47Sj
HXmsZLj9x0GNf2IArhNrl8505QEpoyNtBV+voHXmVZRCLry4KnQrniMbko3z
aZ3myfCBNVCf620LaurO1mC74ovi1DZ8Xr8mA/v55Cc+OxqQt2awab29L9q/
sCohhXDccvoHOoSVoYHuMx1d+7xQkHOosd9/ZECI6bdsQTaSMG7i8Lv6HPnv
ExL3wboA/AZzJT0TkPIFCf2QNFuk+YZM3MD4YHPcccjllR8y7hJgErU3QQyD
9olWmM+/0Rzo3eTugw2NCIVG41B0/pSJ29IKCXx5PYUzFvvAel++6aGLdmie
dFmdf4IEDUdK/hz/TAAT8dPsqhFuQM1oY+KK+SSVFH3JYZkm+OkTvdhoFwUa
xzrGnmId9LV3q5D1fiG45xSu7mT1gS0RQ3bhn2RYuX/4ko9HEtzIe9KesmEJ
VKOitIfwOov1rnW2ucgg+77IWkNiOGK5ZbK/CfuFgd/W/ZiMPyLbTvP20qei
i0l9TpqYf467LfMnixEQzcjBMpeoXCTMwy8egXnXnvrO1/RlRODuX3UJ46hC
xLFDvCNYL9sXcfzqexIGZ2qrJK85JyBPG23jbYxXTO0xmWMiA0jW5JSBC08s
yg0NzT2LdfH0BeWD1N5EKGfkXDbNQxBsp7Pnux4JvFbFDNZZ8lBhN6AYJVeU
O76YaI913NXtZOdTqBxN3aqe19f3RAOC3OrXpsjQNFLwQFO/AUkdty1ZI71E
vjLnD9vVYl40o8L+1rgFuepk8yfFmSPzzIeld2PIcPzUr2cZqm1ox6zJv7+C
xsCwweho40mG0UW+sKTLLWj8nMj5/c6RUKmr1hCEr48qzl9sXPCE5Yb3qlIn
LWArOZQ6Afs33DOn4iZHPAR9WbaeqHGGp49Fys5gHvWrSdjSYKgQ/q2s8E+r
hYMrSbZ2Hev6hgvDC34mzfA69+uWn1IKjIhqDiZhnW7h9+31zqUe0NqOiBje
ToC86dJvH3eT4V5Dmbxyfj9Irg+oMVyOB6oXx9771eP8urV8kCqQCHOrUUov
TOKBn6thou0tCU5PXtxHR+oDqxCXKq2uVyC96xryHMc6/RN9oqP2dVTDP3Ix
qzoMDd/hyPuO/S4RqT90mzsJHhffCUpTikLc839TKO8ZJB6MEWqsCOjoqa4v
NE9K0bFbhWmX95FBY4Z5ZfeJLuTbbO/9tKoBLXndblXYJkGAZ3DmvFsqWG5T
Kz0SkAOpR9vSGXgeOW7LFuqfBJTMMcUm7VECyWNzS3W7yLDBfLfGtrUEpfpQ
kX7fakR8DtcD0xLJ8HqGPs3DmggVj7+7H1mvRbInxo6vYH00q9IjwO1MBPd9
DiHW0g3oaGCeEM9DEggwKy4bqROQy3fTb639hWhsf8S1NhYyfOMRLlfK0kcX
P3t/eqbvhuhednPUY3+pzTnJFGXfRDrrs++ms54jIsPWJmVfwG07jfGIzx8Q
Vxix7M7TRuS24l/OtkkC/4j2qqG8fthe/1Hv7dYAEd+KPK4/J8F/5YLXi/72
Q48b//cv9+qh66ZdnjvGYcluDkPX9BRAv/ZLWcNV9CqooIMDx78KSdF1z3YW
UO/d9ro85Ah8ifDiyCoZOF8M37+dyYkW77/8G2QRBpK8dzWXKH0bRsYeaZw1
QqdWfM2gOw58aY4l6uO4MnnDRifhZozelHAY7FWKAYaEj1aU9wxeJzN12H+3
oNt8gx+8H7bDf0JXxUk78Tz/0ucDUgbh6xW3cdsflei1p8XHMA4SRH64qKaU
rAUD1hb0+o6RKOlqY5Ynvu/l4zKBdMwDkFypH+m/rxzZ6XJfzsI8IbvtXIrl
GhHS8iYfzRdWINqssd8ilPFN13aO66/QZpO+y94/MejN5d+alD6iJxme0s0c
JYKTvbxT4BxCN2NvF3zGetNn/8ETYwnd6InxDuvU9SzkHGhZ3oR5Ts9kZaye
y1tYejsXOHAWzxM7xuSB40cti9aM28EJbBxn+O0WrdB2ysMESr81Q33Tj3RV
/XDjDP2Tb2oNYNeYAevY/t86q9X1ZQio+XK+Duqsgg2jC8z3t0hgle0363WU
gP6tDcyqmabCXzuGFsbT2J60l3wuuqtD3ab93/hv4cBkMkVfj+3wxin7CrPN
AGwP/vtm9LccPh56E0U5byund6fdzG5jYMsctY366Q0Ru5KPBeH1/B09Z+Zq
0Ib4WY0MXL74oIat9I9qHljPVpUyNzk2oU8J0mcs3vqil8/K+TuysV5WyrS/
WVeNdrMdG7t7ywdFb3g11xPJkBI2rnxyoghlOR5XT+NyR6ZFJ+pWFsmQNtBX
b8Cchji3Pguxk+zR4+GvayLYPlH75z8HZDch1TOC86suCXCkJSXleToZHN8f
dFH9GoH01PbadkyZo9ruhHaKTrzhyHUhm6ULrPZ9Ky6zSEHvr4gfyMR6JPbR
XNZBch8Y3pkbrDnsgQqzTVfqMW4c5kerz+/2Ad0enwnTfTIQv3f/nNQvEowG
/zRKWumAkLTd5zx4w+HEnsdnIw0wPne2PH6/vxI+655CgzvC4a3g/Ym4MTJ4
X+j3dnmRDl3HEp9EejrBfvV966nrZLjTcM3889tY+KUJroc/GEDCq4VNyvk1
qwt+dor7BmCa+o9WeGEZCku75DGHcWB319SDBX0CstVRr1ExykL1wpFGDbge
dXxszZz6yw4NWwf7hXKdEJ153tIoJa+Zs8I1Nfrg1J4CxvSWKOi5yTxRQCLB
ca/X6xqqtuj2JqNl049MpOfI5LpFOUfv/N4jIlzJoHBIbHOGLA4hhTsWKfqR
IVZl6sBXIujsyB9fX3qHMlJf5xMDSeA3pCssuGsAdv35W2LIkoN0E7OyIjxJ
QNqfSeDTjYAQ8Qfnr/CUo9IzXCIruE7tXYpPHZMkoKDzezc2dXGdfVKYfBDz
w9My+hHWmUTg/TN+5nZ2NRr9UyNahZ9X99bMCT6JFFg/uZEr0eONqNHDB7+w
36vYlrfUpruQ7JTgyA5GhC6cuB515y8J+Ja0N+nqu1GcxL2WHYx1YFFloOu0
TgKuq359M4vdqNXiSzP1TB2sf/mk6LREgve9GlkpxFZ0JYTukYuHF6LRMkGF
fpjnJOWtxSw2oxt17x4YG3kh/tqThbUJ+L7ZlcYp2Y3oTe3V53t4vBCHGovf
dawr02XVmUmS9WinW5X/WT1PVH+wa59GG9YpW4Lhh5YqkVWqXY5ltzuqlPMd
rh3BeBi6xTX/pRRFZCUd7Djiik7kn9Sl+06G6ty5j5mEAqRc9G9/4gEnpPxS
aJ72F+Y/bQ+uE2Qz0XDFy/iMW0+R+nSJytM1MkQzKszan0pBWR4syoVB1ugD
t5SKDvbXc/NXgYUPYlGknfga+a4Z+kwWv59O6VPd7hPRlUMAttPJ1rTk1+ha
+J1FgVM4DhdcLO+F9YGAv16tdpsPItezr5rOkqDATimEn7YfslBbg6fvc2Rn
tK26OkKCS4kyCoSePpDSUvmdIGeOBsRN+M0+k+AD6OmG/u4Fp25PjZ3q96B0
j4BsDsafLv1OnfZX3aAeZrZp5uAON84+LPIVJgPb965zCuNt8NDn22H0NRjO
PXdffeKCeZeLzZeyBQRT4gKd7VKhYMjz9M5xzFeTjpG+pBe8B6dPQ6OM8r4Q
suPLldqvOD4jLlhuy+fCSgBPiMjIczhRQl95fpkMIld7WLU50+BWqjLLMV0b
WLcUeieO42fGIps4WvEGjA82PmLqMYSVGxWRjZgfJnI8/a05bousNUybfsg5
INsgdxnK/tYMnnG5IrYBeByG6jv2FaOmFa3gAQcShGZLLbwK6UM0U2HbmcIV
aN+R1iHpNozzJY2BvdJ9qPPeMW67rkq0tiTrtKObBMI+XLVNplrg8pjl8pXb
Dih3D80byr6MjatenYSpWEhLvNF/ilMNfS4RbojE/pI7GJwZ06uP8lMLLlE/
DgDdvDoRpX+U/3UPBDypSUNhLjFT6dE2SC/cW39sgwzJhNzg3y/T0fe4kbsR
a44o9WbNMgVn8i5vNGUut6Dfs7fjhUv8ILiVkTAXRoaavyEpt+6GoVOStPOE
ASNUWjAYSdnHKpxaOXDkuAG0d5tI8tm6winjMjnKeUzpPpe/+4UTgZZtXxnH
QiJM1/76XZ1AAj1/M8LW12hInQoLSLLXhBbrjORflHOHn7xVbO5sBhV9u58u
AtmouCdc8mUkGYQWB7aaB1pg9FXq6w8lNWjvIf0CFkMylHunvmqg6QJ6YT59
HbdmoEI/v6V/IwH3X38qBlyXLfMy1WK5y9Fz2digh7j+pmjz6N15lgrmT78f
oL3riYijut1a2L8JJJvTFy4QoWsvR6x3TC247Dle9dSJBBNuH3MOhSyAIQx9
2NrfgU4fPqR3QmoSsvxVsy4T7GGRdtQjzM8WHZ2e/Uw5R2mWhXfmXXMXmme6
4srJ/h6xS0Sl/MV4dbSyksvwBBHOPr5FDLpUB6nJep6KuP5evvzKR4CTiPWk
wJlup0ZwCCV439EnwYrZWm5rUw9iOeQdKeYSCcPaaR8eMZLhfpi5yfKlCeQe
NnOOpa4N3u1gDW3m+QF5vlOuNd0GwCv5rjnk9yu4bWmXp0qp+9L7jLxqB6F/
9njf/sgi5LvE2jAngutC5Lm5WZZBOHvI4f2v5ALUL6J9KFuVBEd0r1Tlig0C
WCu+9AzLR0QpuW/XlUnQNuJc6N/kBHqrKSefaMSgb6vly5XYX/RO3l2dPhi3
qwtnWzPj0dOgZq7/MJ7c8Nc2obMhoBtp1YRywXKUqTT4eZCWDPxSZPbjV7Cu
z3XqdN/OQ7tvsJmNHiWD/Zkd59UuEpCWTINGIWsJ0nSZyBo4RAZZun8vBRht
kPw2jXbsLg+E2EueZVH6L6Xmi4RpdaOq88WuVDn5qPdZurErZd9roNE7j3TM
c6jPTZlkNID9bY0TNJh/TsoamnTfTYTat/u660sOoAyeaz5mOH/tlw4mqjAQ
4dJ6I8GwrA7EQiW+ZmO/vNiYbtHiMAB63mx4vRoOvPtflFfiOM+63y/q8k8e
PObZRVJehIO3pFgyAY9/46+0IC+YgL/kv9NGqRHQo13rQ+nb43/oyOO8Xllk
H7j8nKMmARoPBHpQzvPNj44ZsSvQhzPJO96UL+iDDznnLGWf4LWJlwfyJA3h
myDbw4VHlvBA31CU0g982SkrbeqmJeyKVtd76GMK47E/xyjneZUzS2wbJlej
oIqkdEbBFDD++UmV3IN1gYDWsux5L3RcfepM6JQ+sk+yeZWEr98tzExUtMpA
6M6Ls+uGJbB2sOnzCtbvy/RHD4uSbNHc8fd7FcVMUeiqaw5lP2MjDTv/c812
9J9YTd6zSS+0cFhTGxwwf1A/GKjZNgAWd52q30MTKvr2xuskKwnMDmu9ESL1
AkfnzKVfjO3oS6CJdtATPG7Adi2bnYC20orjwkqzkFGwcYH8KUrfxbyxEtNR
ZM8hbVCm14SogvpszagXwVuCS1OAiYDOz7RcWvqUhi7TCDj6cZHhwaWubWpu
IlwHvj1JeQ3ou/pBnv2mOJ7HFWrnP/XDs8lLpxPLGlH08O9bEmYYVxW2FUuu
pgN5reypZ3AYangQIjuJ62BxfqFExItYaKxa3UP00kQu4rN8GRT8cYwx6Nzu
QWoHHlZqK1WC38sgmf0zJEglSqteynqK6G1PONBKhkEAScvkM/bvIA3tGg8i
IN3t56zP62MhYunJDpmTuD5ajikLhBEhMEXiZOBAPHQllmzNvCGBFnNceCLP
E7Q+3sVi/NoTsdfsPB5F6ZsRWSugmeeEjjDUEv14vdG1pveP7PG4zRHU1arX
jRxzbLMeuReg9aZvypT+D/lXPfbMb8SBdMa7ze352+jIYpyuDl5/5tFj1Jak
PFAJT3an9wuA7cfdtJR9oMRhna49c/1wJe3AOT2BRpC7vedzBMbDj7zOtPJ/
MD5zuXDqeNXAy2Pv/3zSJYFEz98NybQB+Ch1Imb//RRQGr1x/YsNCSzUarSu
07SB97iDYErfOygzA2Byw3mtHF5PHitA9iIoqPyjB3LTmy3q/onrgpViazB7
DpK89+c+vc5z5GfeI8G3QgYlVxLfcmAlktJIe0xK9UFdMpzeXaOY54fxKPA/
KkPL/RfKfQke6KNyUTzdFzIsjTtwVIlinbmTy2iD0wOdJOXm65SRIUL/rUy0
PkIzRx6IHt/jgeSuzpYsNZJBa6npdcbXFnTW8x7Tfo7H6HHW9ABrBBlK3aWj
M2eb0Tf3MDmB0idIcoX7pfgbzHu9qE0H7rWhQhW2FItDtmAkOukj44nj5IhA
50mBNlTPLp2yu+w6XAv8JgneZGB2yuR8U+sHBQx3kkfCbMFQe3bTgHK+20dy
bephN/A6LcasVm8G7GGzu6op/azMSY5FhYkgyvuV1tzRHY6fT1BlxDjwqsf7
9L7zMdBpwKR5q8IebB8qvaXsg+bsWix69KMEngTePFgcGQ2D2bU2MZjvPUn4
/WPkZB5cL5HJussaAOn09X/XsX8TbmVdNfdoBJ2DySwGzknA+jm6g62QDCyi
/4UfPtEHtvc5fhYwJAP9QkD4wWUSwDse96B9PUD98Acz44tE0EpksVVnJcOX
qOWhF7/6gc+1UUKuJglEgmXrtEtJYBu38tcU46qyZ5nch8Q4iNp1e/gDIkHm
LY3I6OG7oLI/pdaeKRLxa5YPUr5rhKkJoqMyr9BaxZciA/+3aP8TNbZ1XBee
UilOVzZ2I2oh+aw+mUxUIV3uMovjuX/Y4GQUrTs63n2Tr93bD22VZ4ZdxHaz
Pnh3fm+7G3pclnz0gOErpDfV1k3574Xz2GXm3YFuaCsyatAxNBAN8FV+p+yX
/1PyMkzHiQhcNDucNCqr4YaEyp1ie6xn2fczSkb2QKl4dV/ebAs8CDQ/55ZC
AoOWUoGMl91o56FHTMHOeShn9wVfK7weBYaPK95SncjYlOMG3ecmNDBfxPqR
BtfTC4PL0smdSPpDWqdLVBNSE2Za96fC618xaTx1uBOVhVG3+2g1o9POrHZc
eLw19ak3myoRZlc9eGgcaoGGliuND6+nlcAwF1JMBPmarenG21VA6DX/N2iL
8WFvSPDkEhHCF5o/BP+tAF/llzKr5hjHkjY7ns4SoXIk7Pizy5Wwj8li5yDO
30jPlqLQA/7gCpvT29cTEH3tZ2E/Sv8NBuLeczcJ6K3XzDOlPdmwZnpzvugE
GQ6U+B88YEoE9dZ/JSTzGrCREYocxOvRL+oWPixOQFVD6o40IZmwvEPh1xgb
GW4dCprRvaOLOpReKFX8CIZfXLZNJyj7gm/6Js9Jm0EF+3U6pz9J4FArvLSG
/XugNFn6HI7jLkmiYf3RNECXQtWEMb9qU0rTny5tR7Jpzju2yD6oIvdH6bAd
GXSTZT3jOFyRWz/B8tbvDHTh+tR6COW8DxFpxjxjH/Qi8srJPqpIZJenJnsa
x1Ucs1VSfmI30nZluftxMgupj+3qz8d1P8CP9PxdXDcqdNOsC8/PRmx7NZnv
4HGnkUpy+vkedNds/NbGVh0inuoy/zpJgjMpfS+PJjgA+ynB4UR7K8QXt+JO
ea9V90K1otTlDZTbUS39d14NMYLtCcp5NBfo9SU8kgZAxVPr+92AUoivVJBQ
1SHBl49L20EaBaAa3+w2V1kIZ5nq1oamyTDkH5qrcagEcZJPzcfu9kD1CkP6
8gtYF3x0+mraWYN2HbrYffaHB2rV91i72Us57ymsgxjbhPoTOWdLfjkgfy9n
p6UsMoR4rkZ9zWnFukxVe/bNdXRgaeBq2ysyOI5OWRCOt6GZp9kHPBJfAvFi
6IF0jEuP7I0f9oSGQcNyfER7uh2cqeC/NIbtFrhbkkZe+h3cYzdxlE72hg8h
L4zOYf7/xs7d18OwCjRoNBnPv0yAVzmV0VmDZHixM2SS+uwHyPxv/FmAdjJU
TcaRE5TJ8MH1t0745z5wpVqNXqqIA6kOOSHtcRKwXSI63TlNhHmhrOZTa28g
57DVjbA8EtAkSloJc1pAthFj0zjnE8QYrvCTcj5mcNq1g3HS0sCSeOHTnUYH
VMrVaEUZL+wa5aHOJ6C1Xz9Hso0L4fTnerbfB8gwsaim287ZhcZJI/2R0Y0o
rtTmm9wqCeRKS/bQ0JYCYVS7ZiM5HqImNRViZsgw/0p0/qXUewjYiJIijCaB
zthAsRHmOQIhlk9pNPuA9ZcDWTqsDc6mxRU14jyyK4o72JTRDyJ333wIFGyG
EePMs/sNSVCToUpSuVAIzxjFz3V6FaEBg6aNgilcL1jFA+XC+tAmjTFTulQR
yJ+QNOofJsGyBvUJ1nt9iHfGlu3LoVK4eTb/gNgoCbobOxfnDvWhK00M6I9f
GUT8UX1mje2mo5QaMiTQj3Qzume592QAUVmaY6YL677qP6/jjhLQp7rQjotT
6SB7lEOml4MMgpYRD0s1nyFGrvdZRlwRYPZIxIPy3fxkjAzV2mgN8N978/n+
VAewGUu437hAhq9sxvdTVAiIU4Y3j+pxPTp89oVl1TwJQubDgwROdCC5z8kl
Vz41oye19D036bHfxVUFAlvbIYvXR2fVphfeV2ud37QjQWx8Ps/23z6o0za9
fm+sBSKjVjLNMb+6cDAiMuo9EVQFYjM0nlWDdv3Cx8eWJFBIKC99yukOkuMF
9c0TccivsGqR8p7z6Uz3l4/8RCBEa9Fr9NfC67HLh0exzooVPM6WKHYfgiwr
5KrvhUHOExsnynvd/PPdYivz+uDWv8zocSkUZkkjLXQ4Ti6JiIiUUAfDz7ci
AnoMCSgxaT70Ls7TsbIwLs6HBHQs6uoisOXC+hRNVybWF9R2x+YeshGQ95Wn
vEo2GVCgP6HBge1pqvt9QZyzEjULvFfbW9kOUyG7e7YVyVBRy7w1JBSPFMrZ
jnjdqUf0V39kZjeTQapCN7JbewB2eLF5KTGUopmee99qsR0GguT+s6joRgOX
x6XhRSY6vJZYpI7xZ2/mRpKBZTd6IX1UiYq7Ackk/fqq85ME8rvneB7Nd6Hz
fDmDe1hKkf/P53NPMb89/KX0Tos4EeZ6YwcMyhB8ETv44zqOzyO0F6/48RDh
T+o3wvrFBth1oCZ/GNeFC4H3m1r1jMGwdmstOyICftWd9E+m7AuQZu67P96N
YlyXt391pKO+71/yXHFdK7wXsm7V141ieURFdthmoJY+wlwWHs8Z+uEXdpwI
znaEt/HPGlHNOOP8YwMSpHFYDj2jowV5I9/YEWZXlFndzNWF7S/uR+ieZDKB
72w8zAx/7FHV8Mj0BB7vbHlFc/dhL9p3W8ArO6IGbW5IxNJ/JIFaecMiHy8B
7WYTltq/ngIpWYeCvfDzFsc9C/kpRQSehmNh5TUI9S5usD3Cz0VLyq2xLeuH
cFkn1Uj/JlTAHc5804QE5xIPud+IIkLVmRpnm9kqUB7pPXmMsh+heihxieAA
Pz/cuvtkLR8lCbfqDf7C/OEmV47ZWw+kyq+2OCoXgmqtBx5T9FqZ4KbJinsy
/AfX87iTQhHh0IMjLbhODVW2KA/+joCXF2MvlgpVoLt3JDdmJ8gweVKiy/ze
Y7CTFzXts4xC7yOX/hPA82gwzEok1cZDoWSvyni/AgqlbnooiuPcZf7aReff
/WAbXbx/w70ezjrUn9HAOjRB/nCuThQBBYedC8uTrwLBT+G9ezZI4GWSTFwo
ISDj60KdFgcqgf/w4ifuTRJET5y76ilyEYn95FJkGAmF07IxutTYzirOpffO
s+ojXW53nb93AiGO1dhEhtL/iu3CA013R8SQX+avPBUB1LMj8s54naxUR2Uv
dA0AA4NF0uqTIiQXIysUiuvXfMht94ub3ahT+9qVygCEbl36U82/gPFB6LSM
wgcCEjk3IfG1oxiSw/Tmi/eQ4Wb6SVMqPwKiOzTdf0gjD47+szHiOUyGEoaW
Gs0GAvJ1H0hKGSiCkzfrlawYMA/0iCJ0LA4gw3f0d99ezEF0EZ0Tj7G+mPww
HRjXQ0QhNcmq+QsFaASs3+X4kmDT5RAdD8sz4Fdz0yrKs0ELC9yBlP28Glq7
7pj6WCOVhNtl6TmBIKfMwnSB8ryJ+x6kihFQaLhc/SZXDpK6K8PZj3mOq7LQ
QVtVAmK4/fi2skMh2vxhOHwVr5M95v5FjY0oeJRHX7R3PA791NK64455y3sZ
L5ljc6eARmHP/W+WzohDtfo1pU/Fn4dyr+n2D4D9DkWnlzttYULiG/FaEAlc
Ccypn9ycobwntV9jOQaJXQm3j6P0L/LjvdFc3o24JrfHd3hmoh+H1vbfxzjA
/tNl4fhWF6qjPVi6sFWMSiUmrQ/gvIsuWD/MyN6OzKTYnw4O+6D/ngryVDnh
uG20ffbqbitksKC0gckcxCuSgziwHqlZ/8/PO7AVKezyDWXc6Yt894onpwVg
ffE8j9PhWiNKGeYclk/yRcon9za9eU8G1XO7HXhOVqKcPSwfam96o2JPxluC
42TIVbLeY+6dj3Fyb9f+y65odJk7WADriPABLzni9WQkrehs+vjdE1TZ0v+h
DdtHNHSF2vR+CAquHiqTMzdDf+hZtQ5Q+iP1t02JmPVA1ZVHSmwd0ejK3rpa
Mya8/tvdPSSqfiAUWr0L1HFGeX+eL97EdXD4eMnhXa69kNhz33UxxhrIZwe9
hGnJkDZa3plU0Qr5UWalYo6v4di7zuBwP6z7VHqaL2iXgoWTcTitWCCc11/d
HMY6qMPqURbvlVR4iGWdTOsTKDxwRqsc5+/zpZZbGeLREGo8+F5BUwemRvYK
U/qnyQDdqo0wEcLmKvw4kmsh4C2jLuX8XH8D+mFHXBdmhORbnw6nwyity2Qg
rgvvWh85NT0mIPV5XgX6s2Xo536D+2Q6Msj197FMi3kg75aXzdbzxkghQoW5
ENthMNzq/NRbItyduleUHJmGNpILk91icF4PeXw6H92Moi4oZwfa+aKJpI9q
u5LIUCB+9Z+GUR1Sdf87tEHti7hksip0O8nQTqybSuIsRVaqDzfPpnig1Iv7
tdtncXxuv3+9KJqB2gcY99x+7ogC0kLo+NbJIO0QeHPvZjRimG1l5uyyQjnT
935P4zh8XHX5jUFeH6x6/nYz6PdFwJPtE/2VBMV/muVXSvsg8qvlJ7kefbSo
aT1wCI/vf+z9YqusC8RaBfdJsr2C4z+v+7NKYz+e796/Pl4HxhITWZF/I0GY
dybAqw3r3PseVY712RC+FNpVcdQdTKadzA2xrp+qWVsdfpcAT7acbHvjTGDT
7X0Rpd+IoUHDx+OK3dDxQYfX7W0XHGZfdntoQwLPNCoOUnILTL2VLdkl8AZU
xTW028LJsLtjf5fNPcr/RbKenwyS4dPo2Pk87JfUWzOjdtcLQIn1VCP3VCjI
R/Nv5v0kg5vml7dszOngqaB/MXCPP+IP1Hjkiu3DIHbmVCv2L/X5UyViK2nw
3PE+UxcnGeQbzPknprvRgp3+fs3kdGRyc4fbJZyP/Cvnyj6yp0Bg+ucyKlc/
pCSPeD9TzqfQtll6E5AI1yxL5Jp2i0Ny0cj0ffxcFvKa58sOERB2WKu7VC1U
qJT3hmBe2pbwxSb5FhGeLTkNxn+uh8kQaY5PuI5fb3Zx/urrgCxEuHs4e41Q
1Y45Hkqf870ppkXHJZ+ALK9WwXpBNLKsUUucxX6c/NGw72RTP6j3JBwYU2xC
ChILo8W4Dm7VmeUaFejDU39hdrozz9DMxRfpFP68MfDoxGGuNJDK8Tu6PGcA
ipO7w2Tw+vesb0aAShqkmXxbQMoWwHJBWY+dct7unf9S0svegfWYTvr5Lxag
nYpiAOuCI3uFd8d/wjr6f3RdeThV3/dGSZQImadKpeGjUKRkUaTMs5ApMqYM
IYoyVco8U+YpU5lntnm+hitCNCmVuFfmud++3/9/98/1nOecfdZe613ve+7e
aztNruWW1KAjNgzJmZgPaPFyeAnRVoG9rgk/7VsC1tdF921XSdC+T79lUG4Q
ZrgTaDJOJKKP+ua+X5+QYIXT+am9PwEpZWocLG1/Dc9mfXK+CpBB1XtNIq/j
HarXu3NKnHsQIbbTlbtxffR953Rg9NgA2rR1UHD4RkRiy2EVv2/MglzdVFtZ
+i30YUeRnnFQIEi619/Sp/yvkdjPQ5fVjXhcal4Kl5ciaePbzVyYV5zTWLc7
ldyNXC24c9/1lSIjWYYdktjuU8XJkq5QBAExvK0nHIsR6SrRimaEDM9Xfjjl
PC2B50V98Z2tZchbQZzZpIsMT3sH7ddpRsFNfEi9LT4Wxbsb0B91noUq1UjN
XsIHYHD6fZnPpRDd2Tk6tTdtFpRM5yLXrbtQ3czR1mS+JpQh9f6jF67j88fM
9JL31sIZk6/aEWKZwH6Vq+l1OxlmZvV4jW8QoeDSdCJPYwNkO7s/yTTB/sx9
ENS3NgBVF3nF+M7Vg+nXEb1o7J8wmtpGCQYitLITXQQm68Ds/oL5HQ8SGBVk
ZzXsJELbx2vlmvvq4cx+BulwSt/7mzfiGh8TwTzmRtBFg1rE+mcru8CBBP/d
f8BOd7QHwSkq4kuOerRU9dbn4hYJ/lWWUH3Z6EZHIgauj73Fdg3qcRVs98gR
Mn0p1YNeeK3S/eksRLfuxtMoCpFhy5B316fd2L4mw+RpWIiKkj4/XjiGeeCL
nIOmbWZAy1RBbR8SiabLj/N7YRzm4beu+WI+AJv0ggd1s5vhcFg7zQFrEvy0
miPP1gyALcvBkssBTdAjLqvsdpsE4zTJ4/6tA7A9Xl02NNkID1X07bgxP2z8
4Vr5gyYUXskZx8pUpEOcmcniBs73r1m1L8Sa2gFJr6uzyvSDeOAe1WdmJFCa
UVt09exAGROvJAsVm5GItt1EGD0ZuD5v5gsQOtGfye/JJ4ua0HSw28qJbcwz
u+U1dwvnwM/k8IbTlSlozw/hazWYT94olSO6iBbAwd625LKr2ejFsL7HmWlc
3z9FDYek9SCW+T/37fTrQZLwe0xgCesC5pj3CVSk+tF3VzamJXPQP13GqH3L
ZGhxe85NbUfpby8TVMLyEmlyHS4ZzSCBbeG/QyaG2RAzvVEhQh+LbIq8hKww
ruZwzjdEWfejQcn1i3mTFagr5YCUTicJnA9IO/bkF8HHj2+sf7N1IOHanKhe
AzJ8LLtxghfHj46+4K/mYwZoa4PupHY5Cfy/V12ivtGFrCdfiNe9aEST5MQL
ydRYNzFdfvWqqAtJS8n0Gak0IhLn+3Laf7guBBmovCjuQe9TAuZZhqtRV7qN
O+W71vl5D83I1QFEfznJWzQpCWzr/2uNKyZB94by12dskzA7Mv6aN/83pBwt
3flvKxG46o0EVcbtgDlL4tzH3Gh0+uRfUQFKX9NXO8M9NsiIj7FdNscsBV1R
9NFWd/NFBJp/XkwDRDAh+rys9quE9DOMNwLvksDMpoNe6X4XnJLi3vn9IQFG
ptPSRnA8f7jJcFyYWhrd4zl99cXHZ0iFbcXHiXL+svWl27NJ3XD56ZJdy60e
sOHs41zF13vFfHo0fakTlR8jaPudbkaVxhP25VRkWIyu+sRdT4Q0xV3Hdeyr
QHqEfcELP3f/hk+5w/oAEqCxOnShrBANnpLg/JtOgsAVZVGp6x0oOGTw9GGr
ZnRTcvBID+bJA21Lg0NHCUhaS02sRCoNhJXfXrmF8Wc+3f38xr828JSVPtu4
1QeFhOubF51JUPD6J6dHBQHCuyXJJxW7gL50qyEX6+jpeyqxV+S7ITjke4pR
ezms7yG9L8f1S2e/JdnYoB+MTh2QtG+PgZPCmptcJBLkERl+HBMZhD8yIBKx
WIoOX81WycD5Erq/+oDKgSo49O/q/tMYNwgvdZiUUsjAatX3aIb/DfiX7010
2c6A4z9zW6hxPWW6rfz4yUkrSDo+TJPVHwHXj8Reo6xP7n7lZaV3h4DcLd2i
HF4lAa+1GemTINaDawpPX88RYXLaRrBusgKcc6P8U3G9u9XnXDxzioAuK1U1
p+VWoCvKtTLamO/t5bVOei5gBOf86uXdP4UB2W/fS8r/KRdaKk6cxDqxjDji
tBaL9cJDCbIeHxlePdC/1LJ5G678ion7KRcBE3viDuTh6913Rh36/XkQXMON
D/GwFaLbS/6KqwYk2NJ8F6VaHgO2X1tFbt+ORzriaV/cMI+dFj7FncRqCRtU
UmaV5hFA5JLrzMb3Waf9fdm8nAiyWSFMin5aKNhgsWhnAsbDiOyKvp1h0PjW
ZOQjTxlqL9zcxTVJBu+zRk19RBtYmdI+FXAqGn2u6Ng8h+9D9f/8gnbvWszf
NQjbevdvCqeUof4imsfLOK7a62q7XvQQwb3ALmxsugL9GOYIPuREgr1v7Ryv
VhPBTNE8/Y/oM6R8IGjmSxwJ1LN9W3aytaOr1q+WWedbkGyUSq4rxjF7dfN5
ZazbvRIKgixONsA72uF5UScykO/t25iPHgADc7eKzfkGsDjQfCIZ1wXNxYei
/wKI8Da2U6ZIqhZGpPWWTuO8+JZ0gpxEZwWvrNNFbavuo/2oOWIC59HZxczl
Mq0e1Pej++5P9A5RP1STasH4v3Ok6p7XoVuo5lBYeZG/P+oxzXwVjq+XC76y
qxYIaFXt9vAWUzoSWXdQvYP5m3zW9ZNi5taoROS/iTknH/TEdcE0D19vW39V
4FlnL5wa1UzMdy0FTgP5UZ9FEpxRkRbZ6ZwKlwXfCj/nNALqvhe2F/E80gzl
3/tzdhA+c5ypZGgoQFcPKbpOupPgV3D5T0nbHtT8MSv0REs9DC03tCDMx94x
vJGdXelBJIOs7L8va+FZgCbjFrbzt4aztxNyIHjwdTjrHX+IGH0WIoLxVto3
WM2V2xx2C3+sbWOMgJPKL90o/RZoeN9smJ6wQeJMyU4Bf7yRZgCLQA0ev49G
X+njIwQU0+byLpcnHSW/Ku8n4TxdUbgc9OToIEQ28LpIZZUh1dy9cj9tScBY
dE9O/W8P+ruteO3IZgZ605OhT/EnWwHL9MKHAUhc/fZoRy6C4xxhORl4vjRE
J/j9k1qRRzrrQscfD1AcFqEWwrpPQKxVX45eDY6ep9IeE/ADsTM33qbj8ejS
m049NCdCUewxKqqhSFhmHy5VyCRBrqrz5bOne0FXT0ohOa8a7kV35LNjvb9c
mi6bdy0KPnWvJDl0aIHzc9sjFpT154LCj1LuWYIznw7RviASLZ9/Kk3py8Sj
ZVnj+s8G3jVEHZ0Kj0Im3z/tp+wL6I+r/+bYT4Th8RvG/j8qUWC22XXKOUol
akzPX/5LB3LZwOL70wHoF6+KsTrmmbxt4ifDTqXCreteHDcOPUGmN4YaD+H5
vZMhZiqIxy9wUpJ92LQGfMy7f3x1xX7b6C7+LnsDCh4+4w0ZCoLXL5qH/8Pv
6yBSKj94UBuk/55eKuR7Bl6/AtcfYHvYU+4XW0eGgbax+l29Ugk6OsQ7sTYz
Cy93Hvh1qfo9LOyY4qZ6UoBsPm0wsZ8ngVqBRtewIQG9kXKQDMI4n3c45XoF
1rOF3dcStgJ70JDyqjb1XC7KyTnocgTr+omAM1NCH7qRv5RYnXxhCYoquCFI
i3H+YuLIX+O9TuBXNNTGzuSMxnhjXEb/991MZLwsewA06Q+W12U1wDK/kctb
PL/NbHM5O6oG4OXEyAq1cQPIHtPKzcX2gCzaL1MsRLgvTmd/LaUOvOM9No5h
+680k6LyTnX0fGs1+CtbMlRcma86j/XIcGyrap/fIDxMC82bb08C/cfzl7ax
33QXnVg//lEAjvYxpiSyK0ic7L5POYcudIF34phFA9KxMyx7MxcDHDds3fyq
8Ty6JNWY/i5CNs/+FuwUzoL2om8CF7/jvNYTNLH5Y41Y89Y5ay1tkODVC82z
lPOGDFRUaoVbQVNL5nqVQhs6F9R9KJSZDFXZDeMLYZUQWiihte9AE/LQONOR
jXX9gzdcB7TpCIgrkubsjv0Z6HVAyQMOHP/+8kXUjoZEyFLNi6/Tqkdds/oe
5biOvOcc7GFjIgKNw/IEebAB/b4/c3LVhgRxxrW9DisDwMIqMXVVuxEZVJQV
UGG7YVSx2keTbNh3ne0bl0IEstv9beUY5l3Z9zu2Tb8QkGlqJnfNtxrIzVnt
icbxXyl5kk+w3xVdououlywJB2n1vX8p59WqxF36dS37Pjpm5JXN4hkL+i9o
uOopumx3zuGrwr3Ifr/rTZf0KPgj8pu6gIMMxV6ebA0zGAeO8Wo8ehoDnx4e
OvOXmwwbA4I80zUZqORfyMOKgbuofP7L8Hkc/4dbx2fypK0gHR0PPB9hCsdX
NMwXKes0zATFZlg90AKtoX9v9DPk6UKTTFnHFfyAs1dItweN36r/xxr2Dk31
dDgMYL99Tpn+KWkRDz6lHJuCBSqoXS4p3BOP8+i1a3YHvwzAlOS7tmETBNqc
mrNvcPw874tUsvpAQAKpNDGhQeUQPJ7O5I95flHQ380FRiKETHcsJwY1QNsj
8ePR2P8jrO9mJOwIiNGIJrxLMxk0OATfDeC6TzinIb82i/WLf889C+NaeGOT
uDf7JsbbuM38uMRBQCyF3CF7MiGDlvGZO653n+V2b+k0ZKPg+tVIHREnNNRS
OcCzQoZ3Ax5ODxjT0PyBu8Nf3e1Rd3LFuXGsTyWCp99zlpWg3VFycy9H3NGM
khhN8E8yJFIz2j+IqUOcTVI/+ekfoM4WjsilDjIE3ljNO7urAbFGjRiH3HFD
E60tdQ4I87HZIP09Cs2Ic73VQoZ0B32S6P4XnUYGsQRdf+6/rYjGr6jkh8cB
NHSq93vdU+z/oUu0Py60Ib3XnCpX+9RhU2cp0ccP63T1231hkleg60NVxnPe
J9D41aCesk6e7XhfOW+AG3heEwwwdzUDaUtqFsr38BtCkoIuCj5QOtV94VOq
OVyK2AorxPYIbvu1qYZIuB9S+SpI0A7uhNFz3sPx9mjNMEe6Lg6SEjhz37rf
A0uNb9ZBeB7VaqR5A1azQT30Xilf92No1jHhasXx/OHApepIznp4/DPnNBt7
FPwbu7eQ0EoGuqay2qNPmkD2+g3D/KwY8DTPsF7MxnUh+5xqxaUeqGKqNztz
NRp8Znkt1c9iP4Ax2wPlAXhlr3mukj0cnn7sZaTvJQGVWoF1SMEAuDF0PK05
Ew7O5cq97A0kkFB2MODlxfFRWzChd7EUFR54+54ukwwW/+5vNw5ogNil7Oq4
yAhUNS3ZTtnHxHVHXrod8wMF2R+jzhJJaHuvRBEtxiuJsOv0vY09aIZ65AYP
SzYirRHqGCjruHzkHz7x6EFs0a0eh73zkWTixczSI2SIPZ1dW/uHgG5159Nf
3iiBT4pPpnR3kOHhxI5wRl0iOO1zJp2vqAH2TEYndzcSxHxVEmZ1DwSJSj5r
KacEZPPhrW8afm46dfCZ/eUJkLhpvIdoGIueC8kXsuG646PFyz7rQAT6ABMX
R/oaeKBfFXfMlbJumaf4ohIBNXZOOK5L5wDfn2YGW14yMG4v9CuIEZDZP8Oo
4IpsKDjuXbBDgAzf3wfuVT9EQPpfZZRd72SA5sn1tmuYD3QYlqaqu10EmV3X
op5Wh4GHp8ECZV+J6dhYh1X6DSScQGvN3hYEmxdr00RwnDD3K6nSLd9B3AcP
803pvYLuqXx1OhwPDMJqggQvWwg88NDzxJNU0LisZ3kKj7/+pnG74rgP8P4V
ZPVwSwc60SynFowzTEfe1F3zVIY1oz0H90lZwbeJ/peU9WZv6bzj+QXrEdFn
K9Z16BWU55Va7G7B/Byu3GU++x7En0XuTazrRqqBmzszQ2ehfNPQP3rKH10Y
92Ft+BeFLr2SaRrF46H6GNrw5G0PWmoPuzfN+gYlxzUaW+J5/MeW0Jse14M6
D1g9d9POQXUr4pFvsD1t+rS6OE8vuhoiQSIp1mGd8qp/7BsJVJaai7UJ3Wgu
RamLzhIhVtF+iwMYl2huvs0SONaDqDdy1GktitBJ87NN1JTznW+QlX103aA5
ZJx3UeMeSibyP6GcO1935MPb8PXXMHf5miHjzsNI8tkJhko879kHWyuDAgfB
Y2o1KaGsBGR+KurfMcU6/ajJ7vjeQrSQ5PRHVdYVObrpSkqSyPBzVi9eCqpR
tBWj0SPNB+hmBZX8u/cYt8/SHkfMNaiPk97s6dYDtN/253nyABnC/S38F+Ya
0ftdJ8jtg04oMS9kZe87Mhj9a7zbpNqKOLaJMm6NOojJ78JsTTAZXKIy/K0e
taL64B1vhyo0EE/ub/eml2Sw/LfRdPNiGxLZ+NH0/aod8Ms133LG+LNGnIOU
7CBYKa+eL3hpCWLjYfynKOs8mxd9VzlDITdzo+wQnt9dhcw+u7D90ROC1uKX
VPi2dudpDbMbhG+3hn3DuCpOdTm2RKUcrsQa0rxkCwF76qvWa5/JoF5ZOb2+
oxJIU0xdI4VhwLU8Otg+Robjty97t5t0gJ1a5qlbD2Pg2x1LHiEbMixHN4wd
s+4Ess2pK1SfY0DM+KHfiiEZxtpYX/XE9UNejSvv9Z3hsJHRfjpqCuOJ1IHB
+ENEqHK8pM31JhwurHMzrrwlQfJJyXhhbxdU6nbuwIy2P7q1y/rvEzx+zm6W
wC/vbMEPhN4n5bogRyo1f4oeCd3Tn0ITmwEHeLmiZfVyYC00bI8OmQz5idPT
WbndSFFmTIA414D0eX3KnmId0U89dvva5AD6ue+CpkTPa9hluvvCkXKsv/Y/
ek3PMQDlb87+8VpqAWYXbYU6CxKoris809TGPFyP10DsagsQLcju6bfwffQc
3/x3sAtxs8TmvR9qRDsIXRwj1GTYDJXdpts/gKZXy481XykA9YSfZu6dJLhQ
oXT/aUAfCs8WM9m0qwDT2Xvb8l9I8OLBjWL73CxQHZDfsfOLB8hHwsleXAel
psi6yi+J0Om6W2tTthoM1yZPOrqQwHz+rO+F1H4YG/jdurTZCtbk6XNOmOek
CBf0z34dAHURD6oV80ZQ0RuKycR6f9I7YlbbRgMdIwo6/d0ZApFF3pl8/yj7
xWi5R2IHITlL7IyTajHwKLR5Z5iRQGpLbFzqeB0ciAkqTeTvg003r0NSgyS4
U0tflsLghiy5Ot4kLmegE4rhu3ZgPNlVr1WjL+aHmLU4ka1cBCo8nh5G6XN1
2advID6XCPyspP5fQnXokoXTTwFLzKvllc97HR9AbldEzD4ulyIRuSI/6wo8
fqfLCvnhGrCcxbXC/N0dpfdty1LOk0p4/uKb82Y3kg6N7ld9V4y6kISdNebV
1qnqP54W9kHqEme2744OCPqTpNCI3/e/xyKTs1oD0JYUw9iOmmFHvMgrKeyf
kzRZXNKDRHjja/iPzFsFt//deAx3MN/u4lJPcw+AgHYuXY6teGRkNHvhN8aH
M0ENK9q3CSjvuVhBaU0R8i0MujOIeSy7RtAP0hUieF966zJyqhb4fu5bN8B6
U/ZRaYseL9bpgcvqJ/TrYNjV13j8AQnM7EL53+L7dPzHb53enAtrVEzn/Lkw
3pafrdEVIqD52TaJZzZZYEG1608P5lEiAUndx/8QoW9oVkNqsgJE5lI4HuFx
apWU77315zH6NCeuOfi6AmScIvjej5MhQPHbP4gYhC//SfE1zRSh9SmWD044
Pl33fbifuuyPFC+o8m0pvEYQqhbsjN9rf8QJTaNv3WiH9M5HVXUNyIbFpebw
AgnsVwmsw0spsFznHpGSEYhEgupiKLxLzXLvvmNz3WisbuIJga4E0cmxlMph
/w9qhJ1omnkFPNeWg6RmzqADo3u2FvD9be/v9tL3uQ1219I0C79GwIv0yxei
cDwcjgnZEP5vEG52vc5NK6oCmuauU7KYH/4ZoNplLzQIkh3fanYK5aBs299K
ad4kGFp7uVNG0wmWvkqOjgrHoG9jf47Q4PtkCgnF8PX3oEmhiH12t7NQpBqX
SBnmAymt35541Q7AHW33q62vmtD42RaTABxv3mcLeHbH9aIxmb5lNv1a9GD/
YljxJxJsUeUYm433oJoF4auE1kykyM5e7Yjv8158f+KkMhGOflSM5NyB0M5T
hmKCmPeejt6MTrJJgf84urY0rqqDa9HZrk5KP4ELQv/5xBGhgnD7PytSFTSe
t0x75oxxTE3L0f8FEQYGhVxDz75A27HNhdvJJOhzpovP6wiFcCdDvU2pQvSd
9tNkIK4vermCJoUX/YFlwEL/w41q9KIh4wsnri9Ob+SLn5wlIO0v52pWfNJQ
gy1rmR3mDxzSC709fL7oTtF1BzuTMLTmqrORiv1TlyrWbCjjjX5lmwbdnH6B
Tszble2n5Duj41+GjBSwaHOUMZ4MRvTN8TGU89aLnmdcu0JLBJeutyuW9PWg
uhJ/g/J/gUK6z6RNpAmYRfpvcl0Ih5WB1RDKOa0Kl7ldtWZbUPK+3B3z2T5o
OTeO7BZOhhNpvEHBAm2IRbbwQZCbD9p1gXmPrT/mG7kbnM7KLagk0cA3t8UH
JTPZX2GOI4PmgrPZoQ9N6LOgtvPqqg/SNeUPuZ9FBoGSPKsfdg0Irqm+bJrD
9/mR9W9nLebhfzz9eTiaUKybEGcHrS9ybbMfdikgg/C1fimtkwjJ+qnta+zy
QSJVslN1TZiHyMevMsfVoC7pJYW/x32QjpDd/Y0+MkzeOdycYVqOaFe2Kot3
PEb+JJE99l/IQHNsWVhosgp5R7zZtbPyCVpXvttdM0SGpTs/ko2aS1H41c9N
1aleqMdvYKQb69/N41/lmiKKEDX3fX145InSJE5w+cyQIUk31/3l51wUY3kn
jSbfFVncfEuKXSTDPUO/9o/ChcipJYT6JfkB8h6dbPbFdcrGyln+id8bFPTE
ws1U9D76+PXfHR/M56nP3BRu2ZOB3K4P9rJrOaFhmnS5TIy3Pz1uySQwJyIp
NvNPwgH2yG2pVopyDlfw0oGAqkNpKErMWbGE1RGtS2z1d+P5pWmRo3u+GY/O
sL5L4IqxRQkiWze1ME9rrrcr4jgahSKj1NL6z1uhwI4Z+Vt4ftt3HPxwZqAP
GA/161TKBKFPU49nWbdJ4OXA7+9j0wNsckblzMpxyCeqv1xHFOspAas/djf7
Yfl68ZRzzFPU4TwfQ+l7r9PXaG34pR9yE9kXtRa80MrdPbbvJ0hQK6wU8n21
H8yYheT1o+6h2JyPrKljJFh0ft8bs94PF9yFPkdPPEA6Vb4OqtguKj9d9Plz
Pwx8TxqW2LRChR48iB3n79BVG5ZNt35Y8f11+0usKLrwykdUYYYE0lbz5qfd
emGxqS8z4cN9sNaI4nrOhsd5ML0kQrgfzrzpHTKc0IZtsVmO+GUSnGO2em0s
S4BXy2wP56e9oD7Mcnob89LtjbUayT+dMCQ/+p8/YyCYneUNyNMlg5vjSJuP
WTO8Z99LSl4OAzIye+eSQoYvDA0sp1faobTl5UeAYGh5cYXj2l18/Wf3XM4j
jZCV9etIMDEM8ugsEpjLyBD5W705oKcKQjvMb4TUBEHyJynaRzjePqz9PdhY
Vwhnp5ScObR9oTv3QsshjA9Xpy3nkq3KYbc975VC3UB4wqtXPI952pJawH6j
GwXwyL82yWbWGwpL3tSqzJNBcXPvSm1FFhCXMGrddoV0xpylAcwrWAXqgow9
U+CR9d7u8GO2UDf4s7oC41h2evK5Fa0MWNDkN6dZcoJfJ7p+uuF4Y/5PNdL8
UBLIz1h36xjdhudXZ+Lu4HjzcdQRfewTD0ic4/bmWxN4ZMWQ70TZN7FDU596
Oww0vxru1vaqRJVyNowqo3g8hhoeS0fvwem623AoLRq5yb5u56Wsx2ipXr7y
JQHEOTQvy7LLI6uPK8L/4fuYtgqe91wcgG33P5xMifWwq6IzH1H2KbfY+Del
ERCv/QF9useVcHvWvr5pHeN8rIW6M5Ms6u4VqcpPDYWkiLNxtJT9Mh5L7R/s
3dDkq2+/b6VEwa6Lv1kl8XO1bmVOcWUFIoGZkiO/HG8hwYx6CT3KPpp7FvNn
s8IR26frMU4NlujWL72GRny96vkMe9OJKFjS6Gl0fawN0vIjByl9S1TKn8uY
tMbCMQbmd+K3DOHspsCRDjz+11LfWTfjOyGnnUvxP/4U9FjiIKO2HhmG281i
bViGkNYDlRaN12nIkWn4j48oCazZffUB9aCrx7Ui3T8j1BU2lq06i/kYnfnf
pdNEONub7G9UUwtHxqUUL2NecZGP38joIwHdP7WtaFVeBAeV0jsofQ9E99jJ
3n1GQLXcUQ/Lv+XDmZlnD5MOkOFcwTfXsXoC0iuwsOeVKwSiNYNS7T5cx91s
GR2YbqFx0os60fXHSNf94jZln8J5rgVxWszPv28uvDr8Xx34yO8MzMTPdboa
fsLfjoB+PPzzr4Q1D9hW2GqWOMkwkXDZBymaQcK5FGquiXDQ8xSuqsX+ac1O
GWEasAZ/81FX5/oIMHA0bY3F9mdmHezHJp2RqcWXzIisYGBU15lixM/tb9XW
2n2lH3VH3ynsUg2D0e8RHPvnSdDg1qB57sJ7OGnI/CtrvQBFhw4HXVUlgYC8
TJHnmUcg4353yF87DpHTPR5Q+nGZJDFYXBEkoKpPrHe3r71BluyJvqlYjztn
FLaekCWgr7Kyj5V6C1CMq+8SZfxpyruWLQwISEb9H3VdRjm6e16Ao2kn1jUD
/06+dSQgaX7G9f3ZJcjhVpj68z0Yt40v5u9/EAfR73SYdjbFoUzfX8tXcB6Z
QYpUbbUznJyItKz2dEL0ho3rw/i95grtHJ3rXOAEt8aL+M+OKMWhc3QI269y
5p4SUkuC64YpGkLqZ0H0uJmSLc4v03fnfAiXB4E4mvvdSTcEVneOcSn4kSDn
ckyrhlMAuiYgl9jmYY62X59SfI7vs/Hl1VluJU9ET1eneXSvGeLWedXej+2F
eu8CZ1Pb0MPiAK4Fe1wHPZ+0JXtjnDllZFN8cBDetT/7uPapDDE0t93ahfnz
7pSZh/xinnD0wj7VyyuxKO+875sY7M/nV0lG1OU9yJ53y2YpPxsVpdiXyGOc
HC84JH+WsQet367N/iJajDQeXFVKxvyQQdzZN+xHG+qwK0YbNj5Im6ffL/wh
GTIuLZtWxLZD4uLz/TONaWhu7V34XoyT91gPORHkWtHIo8JT83E+aEB6Q2gO
62KBqYnmvokGdD1h9eW3LR8keruDU7aSDLcNo5tSFCvQE35Xty/lj5HF3KfC
vgkypLqnhDhczEd3/rte3ObrhjhOmKfbLmCefKKlm2MsCR33DA4ezL6DVLUv
8lzEfpZrKmdcYgtCVfofmJVmbyGlXCRD2W+y3OQ6xnW8D3ouzg1aCIShGBoj
qSe7MZ5LOisLUg1AevahWuB2RrsH0/kSR0kg8kiUgWV3H9Qffa0VK+sITtf8
M4NwnGi70Gwlv2oBk4oQPdWiMIiq9VOliyID3cPyOgaGYph6zU5juc8f6KhI
B2T+4Hz5bapabpgKzxd4hhIi7IHkI8IKOK5+HZcQZ3gZDevbBKHbLLrwlucF
jwjlfyj/XfeV+J8gJf+UioyIIBSWbUCirJf2H9D+UfSQCKndPqzkzGoQyH1o
4XifBFP6+sykAlFkIV4gkAdhSN1549sKZf2qdnVLR/QVZGgs7BQbHoIWqs5Q
sWM/5N3ivxB9lgiftHXzlDJq4X2SkecvrHeanK0mBnF+NUlm/D3ZngmVFw8t
uRwkgyC9zY3kJSK86B36HVxbAW33dO7pYP4sHcsRN3ePgLpKjyz5dZciJRdr
03jsz19Bz4LXfLyRQmk/v8xNM8QXFZvZSPm+zcV5+2R0Oyof1+9vdPJB3+NO
HXJzIcOdyVMLuq5EMNUsObC6lYLColNOi2BebVZs6FIs3YxoRWVaK2d9UJVK
uVR6Ghn8Hl3cwxtYi/4aS2Q6mPggrmD231k9uN7Bl58q5sWIfaJuRVr3Icps
+7acP00G/sDNE1+PZaKUawo93xmc0eB2ZMLMKs6j1INN315FI9ZJ5cm0ZStE
ZdnfRNmH0nsCMZ3r7IffbBeDCqKfoMPi3iMkrOuT2z+nJsf3Q4xC0KTDFQ3k
/ickNe0nCQrKtEcafnTBzhejT3+4PgUDMa+p6GsYb3dHyqDxGmDx/HY12z4E
RoQXdRx6yfCivUbkseQbkJ+KyzUMcYfH1TTCxZgfGii8roiJSIBcMq9IfJEZ
HEz+aS+F81SuVNnMKpmAqCVWCQvKb0FcnTdqlIUMhyQ2ZQ4LdMHousqUcQoB
qJ6vFl1wJMFCZHFMoRQBdC3tHS51dwGI8YsecCDBY4fBpILDHcATMfZE5nQf
SOxg3ennRALNz5cUvE/3IV++G5fXx8LgQk1RGBWeR3cjGQNzcSO4wbOVkv49
FAy0BQmU/q6yB0nDUa+JKIOF6vLZY5Q+YG/Ex5dngTe2RW/yVDhoH9mtsLcg
AdHaxAnvx/l4IU7M6410P/INfjsQ5F0KW/53YrtGSHDQJGf3Hf1CkG86/6Ol
IBLGuetH2mbJsFd2T2GUGxF9oC456i7rAz+OvKCyTieBvut/r27FZkLfoYmK
0dGXKGh9XmtxhZJfN4/ZCROQ/fRFBpWcdKi0a1qk6KnLKlW161970I0jpSPX
IzORdnBKmyzWg5qbXwUCzDXQFLGSnqXoERqw4HxCWfde+PjJfqM9J1F3ixHx
tYMneruqqEpZn5x0P4wrSbMHPeMJkT2h34BOe0Rfkp0jwQmrI6IN+1Mh23b6
fuLSU8QeGWBMwvzcf61yh/zfJCikep4cyyUFP8PURS9jP7BmH98owuPUDfh2
sDi3Bo60F3tprZBgXYePS/giEY5Mh2jLqyLgmLoh53KHBIOq7tPqN4mgzJTV
Yvq3Dri6zYbI2H710mpAvwgRdCIs0lJ7EZBExhTEsd3oNBAGup2RIH0K4dZx
U3TO/ZTgFB7/53iNnooVF2AeVl/k6Y1B1If6yJ9wXKVXMu55en4Qnh5re10S
XIykV1zvytwjQTZH660NwgD00NZw02J9thatuH/NCuv6Y4JCoy9vw+ulNOb8
5ftIbNVekfK9zk0tbvKgtykokXc5Vg25ohdXl7UpfQxqvY8Km9u4w/F3L7Zy
6O+ilxYMbyj9E5DzU/bD/JlwiLt+7O+2CzBNB90m4XxUSptHi8yDUNhqONQn
mIW6K+nGdviT4J5FRZvnHBF2PLv/ZyO7Ckn29x/4cRvzpTzdPaHlRBgJbuxm
TKtFM1JrhAuWJJi72KFa+roX2bPeSf7wtwqmlSePvJ8iQaOkPTfhCxGo696H
iNmnoLup35i5QknQ/dblaUcGAS2v+xQtcCVA7JW9b4L4yUCY95IIjiMg9z21
m2V/E6BQPmeRE/ONRPlbHtc9RlHrn1jfXzi+LkxyXJe5PwPX2a5MM7ATUEGE
FltCcjoaZTam9sd1k8aZ+6xxwABUcKu9Ts1vhpBJP8Y2cxI8TxFq/CJvgXjY
LGTK3z2Hd6uxw5R9pt/3bAvaLPYhgbXhoa+hoZCnbDDzeoME8XcOOwq2RMIF
NRt7iZsJaJW2WLgJ1xGtU9kyqqIERMtPvz+eNR+lVDUZOvGQYbSXtakIdSNJ
1Z0qOtdK0cvTf9IJOC8qVNoa6DO70Y/iSGm7mVKU6aVTGYPtTYE/rkvwuULD
41/3NxUcEY0yMZrS98C1dZ/hB+p0ePstdEu72xqMzVVDNHGcL+jedWAXG0Em
VJLttfWZaJGVmmlX3CwoOaELLypKQelEfxY7VKNzOm1LA1UYr/4p2xsvFYPo
WbY2xr8lKM7G1/BlP9YXpf+sj7kUgEeHWzF3RDBED0isR/3Fft5/JepTcg9q
F4je+3TmDbr+M/dmOOYnb67Z8H3nHYeob1ESXlO26Leej6oamoHPzBbj3RxD
oLDjYHGobRG6GFehdPYQCdrEck1bm7vQt6Dfqk9bG1FKdPpc4xoJhJuPhVG9
tIJd1SxU6F8k8rstx2SD8a20+1pasHk3qjo3Lbdi2YBiPvy+rLRFApuh1+9O
ziLQqDKvHzfLhWu/o2XZsO7zmBbU3FIcQDdYBh1QUA7Iqzgm8rSSwF7tE5Pd
yVLQjDvyLIY5CbhUR5a3vmGduOH+RtevCFpPBXU3b8WA55AvQx2uU72cWw23
9lUAn8OjTrmmNMhUAs/TWGfxpAJb9WIv0I1UqIzt7oQvGY7H8m1JoHWvL8fD
goAI5pyXzfelgI7Q9/c7cL2uInXTvhPsgA76XXcKjLtAR+N+t2g11t3hZ7Iv
OxLhdVcwi55TA2Sc9/3aYIxxptGf9e1cC3rhTr4x96MM1RV9NBLDdbkn0lqL
fqAZldzZu33WvQbpFthXGzuQwaG8UTpkxR1MzcTl2qcckNKFVsFeHCe0cldf
R/xNB6szioHMhHugKSQaU4n15qPjve9+ceTC+yoUeMK/Dx4QDyX1r5Jgy/mJ
ghQdEVhulYYordZBBHOoxwusB2u7xt6lPSdCVry9uCt3LQqmFm6VxvXLkjvV
tFW2B6UrfJP+EFqI/hTZhlDOH+RT//pxJsACiPwmplsZkWg+dj83pe993um9
RvORJuB1zK/PyygSea9/SQjA9tCsm5KzEQNwNyr9byhqAn39p2oi2J/JU3Ex
j4gDIPzZn/dpfiNs7TY6cwHzZ5Vk+WXhH6bo6oqOz83eFzB43cjsGn5fDneq
fYcbQuDjUhPvjsYM4KvSbdfHODa7VpPZvjECdb+FBuZaOiDf79qDUMIM8Azw
/GtuIcD9uGtHdJcHIGf9KevdnlmwmKI+VmjTjt5dvDuuXNCCBEQv0Jnj+itd
ZmlBrd+J/rqQ2dNbm9COI44fKOciuT7j30Wt2IFE7HVP5TU1oynxlp9ydNj/
/rUaUf860ZssqgBzlyb0Z8/NuhEct3pBpolCpp3Iij5D4zF1M9r6oTzfSYX5
YZYpr4d2ARQJeu1Je5CGRNqf5Z7D9Vf6NKm8zacHzTSHN0WzIuAkT17lWiTB
95/HvOO37SGrxv05Q14uMtj1du/QIhnomXqithuIIB6U0OBU9wqtLiiLykWT
oFNOTa3TiwiPXw9ncgeHo4njIz03U0lw/6nwev6VXLjPI537JRfj2IVvJXfn
se4OTbheZJQDDLoDwVkbscglUlO1GPN86QhH7j/8pVBOnZ8p/GAAbevwJoa/
xfxhPTLWoIUITD7EdfOxSlj3LPS1wvWr/e+Mfc78ADD7ZPfuvtIEzLr80yRT
EpSJ58+8WhuA7R35BNVTTRBiKM3fhO3ROQx7yusKQVvE2kstPR/5JEV+eP2V
DAlnj67Jyykg5RKvxaKNbHQgtjqAGvMNTr8TAf7iWDe1H9E5868Q3Up/2HEC
x2FjvvHzVqkedKh3pm2hoxAt1qv0KGA7z+g/0x+7Y0HjkGL2B40sCG6U/nkY
8z3vFhG5PyZd6AhNSML5yEZU0ZKhs4jnxdOl4b3S5y50Mtnl88t9jSidW1O8
eJsEdx8ruJxf7UE8k8dcqZarUBVNbct+Ksp5jm7zq0k9KL/jFnHXWg1yO7bI
KIuvf/iLwdTTvwdt3Srtq/etRZ6M0cP9OB76bjFoxjv2oF2b4xGTH2rRsGPw
WhW2s6KgbplzBJT//f2PNLEMRCrbk6CF8eRP7kprAD0RTcRyXTIZL0J930V2
CmB+zqcZPML7SAHy937guc0Ygaj/E0mnnLMTurr3iNRaH3w2+Zh97mM72OaL
amxYk0Do9W7PSpF+2DcsWRho1g7xQfu01LE9z50tweZpH0oV5l3p8a5GXx6t
DcoNk2Av7Zkx569EZCYwHkyr1INKGXedFkKzcNUiOvL96HvkYXA48fS+d9C+
edeLQ5QE8lV8gg84OpDfetfSb94WtC7z9/c8LcYfGL7+Wb8D8TUkZD+bakYk
i8Y3/3biuCq2ZDMhEOHR2KJMXFolZP++Xl1xF9fZKzsX9ZgJ4ManHkszEwXm
yf+RFITJkDshkjt2aC+o13XvMWH2REZPPwZS9L7QnNyG/AgRCnYbZd40rQSe
kIeFXzBeyRNFRxsKuoDpUJrR1+MEWAk0NMnC8fkj4L9mi2EDxIKeOZK3n6MD
iaJnKHX/tN+rmjPSBMRyYKZkSTYNhL/xZ/JR6nWy5KM8EwcIlFhe1bCMRmqb
fh+F/7deNx0l5nWAx/U8MfWBXnCvMP5ZgPn/P+FCD6OhblCJHaCKPdgDfC9L
N7PwexHWLyv21HUgjajmeOf4EbTC/vsuy+QMyL2RP2GsRISWk3rbDTsaIUDc
ns3JhARyPrpadAKdyEdUYM4Q44ZaRUvAPuy3PnLmit4AzvcpR5uU55XwXSDL
5y6+v8FTbvfDxwkobJqutqs8E5V87/hJQ9lvteed4GcZIvpEHyTlw1GEvlpI
0q3FkSBMr4wxT1cOHhr80Q35GI4Wr9zvbMDvNeK9Yerl2YGyiI4PlDubUdN+
Whp3/FwjPd87ZEkCahzwUGMJTIPnrokLYtg/D/jPnTBEbXDaXfCKCkc/FKd7
qjA6k2D48DT9f1cJMKcW4JXS3wU1HzjO0GOe/E45Mq8a61/O2d2r1677Iw0B
6uaDBbi+BC5UVN7uhymxRmsjkVQYPaht0PWbBDfOK+TRKwzCzF6VBMaQUiTI
WmXFb0OCyv55fybBPBRpUvOWkcEFxQbrHLTBeEhaEa64wVKOxoglV4TGHqCV
kan/bmA86YsU8k043IJo2S+OStlYIYc5ZoG5eDIceXyg+suLFnSFm9mjrd0f
ZGi539+KxrzoYeuSnloxzNVVfadRrIPEhod0Qphv9L0VyHJ/VIT47L/V9z12
Q/OhdUr1M2TQjTaKLrjWhI7T7lRfe+aEDl3sZP6TR4Yf3+YaTh1tQ+YMPEs9
DI6QGRFXauRPBjr2Tzx/7pWA+Av6IImZRhA+PzxjG4v5Q+vWK3WiJYT7lRQ8
k4yA9/w1+gV4Xiztuy5sH46FEYLv6q3j8chqfJj1Huafi3vu2rctE2GSPVnu
VWQFaKT+Hcy0JwFb0ERQlgIB3ZxoLAr4l4p4eef8ynA8HCdeCnn/axAMx3Xt
Wr68Q6zZzl6EGyQIjHH7pGBrDaHnBjsOjURAf7eECuV/RumOPZav3AjorB+H
QeN8IhxJ//H0jiAZcvLiy5wYrUBWMFZ/189I9OypidwdfH1s1vhEJSPmD4iz
zCTQHbVpuHacLCGBk8azyRGafjjx2+T38SdZ8IvWeUx7gQSMzc3anwTegoHp
uXW9cH+wCzBftcT809HqXLW9by+I9iX9/i8+EkoYPz+6gXV3V0FcR1oAEbYC
NULe20aD1vPRf6EYD0W5ze0YRdLBm5mucjD7AUytmGxxYZ7c+PGYRGtXP+TY
WF9rMQuHq4pHato+k+BMwu62RHEiPPhAd4g9NAJC078yaOSTYPf0xdF9cgS0
pZKdyPOkAtHFxxzPxHWfR2NE8auZCagy0x4OOhoOnyO1LlLO4X0quy9Y7igB
OaSaltI55KKdFxvFA/kwzxR3T/3ytBC+lbFbTZ6tgOGydwm8BDJc2+AvuP4e
6zgdJxlDnQgQ1ZUNoayHrDQ6/CJRZhAsm4W1z/SUooIthjIPHOfzrxV6cw2K
YSbuQvS5GgQRlwuXY3BcHRn56Pr52yC8oboULcdQiPbV/TcfZkCC18e7wnZ2
xIDlmuO1fvd4NPR3hpnSp93ce9pdTNkaotiCP0Z+joBpsXvXIyl9OGtH2jZb
mtDTiTDRXaIdwH2usekE9vMvusRxL7lWpKV74vxL/zboYvb7nLcX8y72mJBn
5A4UmtA1a1DRBGTqQYsr9GQwkftEfXihE2nLqSTZfm8AuxXj3yX4+oxiUd+k
wC4Uy9CG/iuphxrIsAjbT4Z/PAvGq1+7UMilmcYCyVr4ufKP5iI7GXQSeDan
ebqRwV0+c6JkNcQbcFxg5ybD6x3p57KudiNag55XaRGVoJ90cUEA+5mhc/Lr
hk03Gvrc9mW/aAU0VbxN98Q6McXsVNiHp91Ivmf/vYQd5bCc/bBMFsd/pUIo
DKR1o+MJXvRq26VQLTrD8RTjWOzxxwwP5h4ARxbtXn56a3gi1DFE+d6rvO78
c3vTE45tfvGBPkOoWryUR9HRG0w5n2nrvYDxWtDeq09U4PMntj/tFPtkbaqn
aQs64ajlO8LUDkxq95YQExlYmu/d6WBpR6faH77QUWoFr6SjZs24PuZXcY5r
OXaiXWN9alFCzeA05CMfivlD6tqE12+6btSiTM+2VtMA3Kr8Mqr/cF04ePp7
bFU38uf4xTB4pg6+2RCHO3Zh/0z5K+b/7EZEp3LpLfpqOPOU74g9fm4BhB7k
J3ejaPERe5reCnhC94L7JPZzr/FVoYsL3YjJQaPFh78c+viUvaexn8d29a9m
r3ajHZ/+SrxvKoWNFPEJQ6zHqW7eMC/c7kbf482DSWkl8KmS24mMccDMR/9Z
wa4eRKj1ItQVFQPd0FfDXuzPMUGGhMW5e6AYSr9mu8sJItY0/1K+V9zN0Xpc
b+oMu2KV82jgFmRzvS6m9EPL2ks8sFTsBtq7/4v2P3ENhjM2pCj7LnW0Tlg4
PX4IfjfreHc17EYuJ0XqKPPi1rz2lkBqRREnd0vuz2iFiCJNKT78vnFkw1OJ
Cx2YB5vTbtC3AFGx9PgQ1u9c1s0ewSxYv4RLTE/7N4JWnOvhAFxf3JIDzw/o
pcO9P13ne8efwxMLzd4grJs2KjfTlQ4QULlXkuLuS6WwT/raLxt8f4FYveLY
hh60J6PcoAcVw0MOeU8WTjKELJ99JJLQg3YayN24mlIEzwq8U37zYvystXhT
7NeDqM/tMBvNLoStLm1Ofcq6lKc5tU+depC41cQ9z5J3IHYh/RHl/Pfb7Ted
wq16EKN+7oKuzVtY6xatXcM89jaH8trGqAbw7BkIWCY7wl0l2uUZig46uyn7
q+0WXOI+c2GWrAqM5umJa5T941zUfqNMzvCjaps2y1sVCXU0N1H62hkMnw/q
YvGEo6uVbsOb+uiNoMYVyneGd5bHahy429Gm7ecn91AztNwM0Ko4QIb6kzdi
FxW60C8y083Dp5pBY0tgmR/jtj6dymwaYz+SVg+bP40aYGFErFO/iATHrLns
dSITgWuHIs14cCqo7r6f3ox5e9eZKJpPViGw7W9ulRj4GhibfBSnKf+TsvfI
xB0mILUlffG4llxwrq+XtsJ53V/tsrS1k4BcslmnTUk5IPEyS/gHzuvspS+u
fZM9KCRXeu5o/huwXL83NoLj7c4lI2+a6h7UXSD0cH9DNoypFrNtHCGDu9o6
mxW3I8pWBW4+Fnuwz3yr/52yfs/1YMx63TVk/q+f1JJtho6YGu7fwHaBX7+Z
ps44AM0X0ZNTnvfQqXO+4pPY3vXXYKnz2EPIdX8Z51J2B+X46+6m9OEso/e6
HhTQjloNTthrExuAzfAIy9lTZHgYsj1nMNGB0NZ7/TaRJvgbt/sk4Pj55Bj2
RoO6FxHv3u0NDyHAz3XDqAFJXAflTn914MmHUPfcr13Xa2DRY5rqZwsZ3jNJ
+5RVBoKincatuYE8+Kv1n7Qs1mUZ6fU6KZ+cwLsu0bLbPhX0OaRK/8P+3Hmf
h0NL2AZufZI5lfoyDh6wOGtQ+hgfaDhW8GyYCPxfyOFP7leC5K/Otq+YJwvy
H93n/Y4IbvvLicSGalDyOcBwAvO0RRp+rqDL/oidt7aOiy0UpvNoJyn7ueZT
zksUPwxGh0t/lF4NUAV2wSLiEeyHXVyXy2UdnFG62/raDzE/dJnPPiUE2yW4
N5kfODvDC/s3ghYpvijBbXYrkrIO/1ykE9/WEyiN3k77ZfkAFXhHZEVgu4fU
zm9+z9pREOuzQ7QPK6GG7eHaWTWsg67uuW7T3oqE28u+e2dVg/zDv4xmRmRI
Xn3hdrIEofb8A5dEhBuAY4vKZ9ob40mQlOIVkTfoKbcRXX1vJZhHFk1d7ieD
qcy+e4f0oxF511fLYdE82DMen5CN9W81SWt3r+0zNMJzxicpKRmo8ypGQrA/
j/85wsr8wREpawy8CnCPBm7SF8uD2A8SOhZd5XyD4HealttNqwiON8i4GruR
YCxxdLJjhgg2IsP0id7vQODWCIOdDwkGIrJPfV0PRRfZvZ+f2UiD+fGRRyYY
Z87kH61s2pmHWsO4GcXsX6LelKDqUTy/jXUK+WLPbiKF8dyf4ecT0TvJuvas
TTJICnmWOPoHAMmS68yyTgia+uwhmYXHE3jnfN+9pedgnpN54muHN9q/skR7
nIKTduz9afntiKZz7rWefw7Q/o4JVbXBdVBX8xddfQsCae8D4+a5YC/9Ybbo
ORmULh9mMExDqGzHFu+P+3mgtrfmqy7mvXlsOeFPvpYg0aedYQe2siDJJmf/
2icynMz8QXNQLgvVC0Qs/lFLAjZvX+NczMPP9z36Jnw5Fn1WbJdYRhGwaGCg
4ofHf1q3gPZltB+6MSRyg+toIPCk/tqgxuMc0uW+TeGNjL+i6uW+50BuR8jG
rTckSGq2e+QyPACfEvc2RcTHwmCHsx9/Fbafnu702dkAjIz7ghh/NqKfIj87
HO+SIfy9i3BRQRo0DpU5TFlnoLsV3sm78Xg2DQ7XPPgXC+qZTm1HBILQ55Je
WMfj8V5S+2TcGA50q2IbuYbu6Iy8QWoa5RyW5MzTThHJSMCvfG1ifyT0zkbx
vMN80mRu4sDquXx0Zx+YugokwbHQTAnKvs7fC9Mih80q0aV6fdL58+lQ55w3
vP4e46rL3Lw6RxOC24brdyWT4OKuTa/juZg/q7K9T9vThoK/CLyPpn4KDPHJ
/dwBZLAbc2l4NNeOOKccVDIMfdFEdXQZ3z1cT3eWGTrWdCK9I9V1XDuy0ehF
xmNqGmQ4xxW7UqDlCxt6mRFus8+RYjB7GaV/SJvWY//g/6Igguqv1VtSDKo+
xNdA6atwbPXhYZMfbWD5+DqN3nQrOlFhlDRFRYaPojn+qKUfmAwSH9m5VqKj
S8up69Uk6Pnx0hxcB0AhLbzBj7kSGdJ0jiamk0BmoCjhisgA2D6sr/RfrUfs
B1vqiFEkmOHvfqFsE44i6WxOvh9IAb4oNGmJ/fbfdeMZHrZUdL/RRZWxowD2
nf9wKWyWDL4fL37vP1GOHsn/4PS+XQmRvL1He2swPnzbTHpyvg2NmpnRBzQX
AtFSZLzJiQynHtRwbDzrRP7bukPTVGEQYy9z29gQ4yGniT9dXBfiomEaOPv+
GYrlmU7Jp/Sbcqzs3Y3r76Ol9Lu+Uq9Q7/pRJ4nTlP+tqI7HP3aCwF25mrw3
I9DgfpoGyvlBRDP9KPaP9qCu7Wct6heP2h56f7PB+BmlF7Rsw/IeQvQU36wx
FSCmcI/Vdh2ssxyOzgodGwI7oU7mCQaE7A1kdr9YmIWUeMERE98BKLd9sCku
2Izu5fa/6rUmwZtA84lSrJMT6/2Hn3O0IsfYoKI9ASTQ6PLb/ODXA/n/FPea
JHYiZRm9hv3PSbA2yOtaongLDj+4qfTROA1mD6vSlGF/sh0p3jGgFwBX4o0/
eCgVgm32ivoCCeMwQ8+FGOUCOPeHRIx3aIPzMg4LqS5kmB4mrrS8GUAB5aM3
jsRngotNC5Mlnt/xjU/Py34TUESv0+8Pzx6hNPmhiCXMW1ptE8r2DPeg0gPv
CE86E1DZ1hZb4An83K/NDD3bPSj6u4jhM4dUdJtb4vh/R3FcmZpmzmlqI+K0
muOtkQgUUHbBhOLPkx/Dw/WqiDBlqL/CsROh251X6CnnF0xz94nl7SfC+0+E
c7uDm5HtS4sZTzUS6PHYpT9R7Yft7K3PVjbtSMjGrWLgFglC/lYKnq3tAaGm
UwvSeV3IZV5lpxrGW6NScY/06+1AZBz7eoGlD9lXT4SsepHgPDNJLMMoDAi2
Dz05lV7DmtHFsUGM570x85ccWlKg9IGXZSl3Gtiv3l7wXMb5vvPi7uMCRdDZ
8vfm9rEYUGELuFj7hwxN27n1pWx96GLZ9VDDE3lo4Sf1eRLm51x3WwONEwno
SfgEx1BOLhoP+jmlgnk1r2E2g0oMES6v9H+4fKgaTe5wfX7KmQTdHmYH5myI
YPx26PK1hVq0h+rO8c93SfDfkuzUcz4iWHkWnbPb34Der40w3sZ1OYrKqBU1
DMBYBScammtE0kefndKyI0FRZIXusfP9YLKa7Fea2Y6aPq07lmH/zF1ZeMV/
ngC/moenbjN3ox9LX+oNbElQP555PpfcAaeFU9vjvXqRtqiu00M8nolNtdf7
dZrBvlS6a2ajH/01tmkhPMC6o5PIVbozGgq+8KUPc0WAR76DE6Wv8u7Rg+K6
5smwpSHI+noiDNR/pzkzYH+OCP9VVWrPgBzb/6PryuOpfL5/iWSttPhQSSVJ
oYSEOllDskaEkF2yryXZZUn2fV+TJfvO2Il7cS8lLSotZLlXFKL0nfv7//fv
eT2veWbOnPM+7/czz8zYcYhoecHyUofWAVzX5mwCs8x5yHBCgDF05lsrumVw
UN8Ez5e4GKf01TkSSOgQTkhdaEdNH7utA1wpIIKsb61mkYBHv/6dT0sHOvhk
7sMWZwpw9jpPfxAngRavug7bwy7kuazA8wv77c4V619r+SOQXX1hR2t0D+Lz
f/GmB/OW21kpZow8I2Dp5vUq779+ZJv+Wy3clALFUYyG81pE+OekwF3+ZgBd
cUtQ7MX+JF/lNBNkHoCZrJkraa+JmEgg5jns/18Mxi73unrgp/69w9dtR5DY
5MC7dOy3N3wPlezN2mHq5ng/aZCEhMvtJPvwuLT06TMV1+JBaE/En88cIVD7
Ycl0CONG3P4wmViTVDD7KdR0vcUP2KsjVOiwfZvaiyu7JDOBdTvbJeNMExA/
O1Jjh/0sLW/yNplCgkPXOSZ3TbahC0JSa4neFLjO7jp1po0Eq/XPd7m5tiP+
Q/f9BPB8sZ8aedXhTwJ3sdHYmJwOVPDB55Ie7o8F+ZItyzkSVLc7R5G2dKGB
pOUofTcKBFg/K/IZGAFyFv34+cRuNMao0+aBx9V8IPJGN4zA6SnDdmarXhQv
t+s4yYkCEn8H9oTsHAbtnVzEBfd+NHiw1cDRkYJ1llpw/zEiJJFuGTD3DSD7
NWafbDwv+8zoA44p9QGvJVtP9Mdh1FTh0DOC21F8XKTvfqwLRviuHbIWISE+
YWZ2fzzvSz2HJr5dbYF9Oa/vRCmTEdmD1UAc9/+0UNiOpPQ46DuTsc777x68
2eH8QgvjifUfp89K/olw0CueXzXIGfLSlZSXsD/HtrdKyDqQIMld6mRLQQdi
v1GtuoH9wyP5xq7pFAksGzqPGHR0IunWMN5XnhTg+MSetjQxAqUTf0ry6LoR
y5rv9nu093KLHjZzHYFp6ZfXbjv0IKp9qgWjOwVsqk3tfKeGwS1kW9ocYx/y
ChjxLsD9/1HUJvkzcQi6H9/5bwcJ++dizlZ37E/Cz+sfZRYJsItRjMj7YgDl
3IubS8DxvNToumT+agBybvxO/v2dgKTVA0AK2wO7rzIOn+kH598607nHhpHu
+mujVGyP1tmk45nvBpkbly61lY0gPcG8v+24/VKihrP3ZjvMcUvVMdaTUFyu
3gkHPL/KyqT5668aIEFi0uRYMhnJPgqrlcbjIhpZhEyMDmIc0fy9f7oaisfz
x55i3bTnjtxrLTZ3eKqx7cdxQXvo2pyepp3PZjlvGUdb/01Q1zYtym6AZNad
ERFMVJCfn/56ijEJJNQ/mt0bSgFt6h4LHYwDp697k8pEiGj0gM3l744VYGky
/t8rjIe7HlyaPBpNQNt7tS6Xy5dAm0NqYADWZRzcnqZUW2000bi95GOHN5gF
94rTvuczjWawzsw/hBPSw5FhuWnQKqPk0o3zYjNR+O3MYSI6lOvyKwTlg1yM
frc47n+dl1hx5zEyOO+sbaN70w4ad718yi0xPji9XiwVs0MsErsvFf6KAgm+
sBza/6u6b26z7+8bBdmA/nMCchWYTzKiPGMKlO/7mJkwSIbtPbX1yUKZ0GtV
p8oWRwHL17V1BQXPkPjvTyxNeY3w6qpiU+EgFSYMXU0sxRD69d7P+Pj+NuTM
7ONfF0aFtU2j3rduBdBaxVx9qTABBfCxBKzh+nL4QnKirAoJmI4uRdzc8xQp
jH835+mlwMe/zKN1M0NI1MNppks+G2kwCRprYD+/eCU6WTNrD4zqIpYkq8dI
kPfTEDfuf34wVezJuWB4/LK48g4pB0n3TsikYD6wVbOhTy7lFezu6LpTr5kG
1yvoDp9ZWAD980MZ2sJE5Gj7w/frtgLUzjv6U+QIFSJtvEmninBdVmOI/fK1
CQm1vPyPgvEz5LsYUbDWDhl/jqcDo8fIOK9fl7a/qZPlT5b7NBHRP/Qr1Yiq
RJ8Phnt64H7WaLB8JOqRIf1v7pMnPC1IwN/iUCOOQzlF8p8PGOdDrksaSD5A
SMdPcLcLzrsaet0rbz93owa7qSkBUi/o1F1rPs6G64vPtgCt6C504sK+c8FP
+2Cz50zu111UYC0hldi4DqC15o14s652ePnbiI6dtt767ozm1o5B9Dvj4yDz
lxrwzv+w9zAel4jxOxvNgUE0dpTQPmFaAxutv5lWsP3gcT/L5fhBJDhgrpnk
UwvPDsVLLmF7wuD4z4x7XjDm6nz4Fd1dsJZvtyTi8cqfOsWQcdkT1s/am+hc
uwUBM7OZtPPE/r04Fv3iiA1c0RALYyBbQ3bX/A7aPQLiw/vPc5C8IcTWiOMo
0Qz8M69Z0PZLhtFVvutvvQfVdh0OQodVIb6oMo92HvJ8wIb4tngf2DQzzrlv
dgk84zqbaPdJXeS+sf++zQtURHIurI3vAjXZC6IJ6zivp+WzfZ4OIEdnv6At
Op2QkMyssGcF45LHEY21ZwQUunsw6KFOEwy8cpLW2YZ1xPV9JiOxebDRbsvD
XpgEpVHz4qOruB5xDO0DaQJyXOpTTjeohNI6OdllnEeV/fYD7+0IqHE8MVKW
4TmovLp3kZePCol7P/8JW7SEn9Y8Kp5FzjDb8PYf7fvJjer7SK57EGkPjh9X
fNQJcww3DH2+UOCZUKGFrNQwsuJCe/6tt0B99PAVATIFus2aFw1nCYiznFX2
7L9y4Ld+mTuMeWZcukrPuz4CelH4tQYNloG86beMjcO4P5KUtsEVApp0ed/T
r1oMiEVBC/B8TbSNN2cUE9DFLZNTbwxLYa3NpGn3MRzPJlnvY9IIiNe+0Jav
pwT2xihdsMH9r+bjn1UfIiDFT597NvifwpOFgrWH2D7MdF/+dOJ5ZLy5rWSn
jQF8UGq98RePy8j5pPF3DT/ULndo4me4L3w42XAqkPbf1L//fr3w9IYF6S1t
2YzJ8MLPezEB150HZBOpOUEiyugsi1u/VQDJzmt/+GjfmeP2XzR+pgQaj50G
qwfjYWfqj7/quH6tUue1WTYIaG/ECOHDoQKonN9bdRD3Z+KIy6Mp9VE49VRJ
6nBHNZzZMrhcZoN52mCe4ZQcGfqvawzpxiMgEQL7+TBvmVPL+zo3R4YtOscK
h3fVwnfizrxqnHf/BUVynvG8gZ5vlhzV7o6FW5+TszLweysvJpbf3DkKxrFB
FYaFNfC6w3NWE9flbWsanHxLZLBdWKG3t6kF71/OHX24vrQ82FrR2Z2MYlcE
m5+cjoQ2qfOztPO6naPHV8SvPkKMhu9Kj0gmwEzR1YPPsB/c+m4kKro9QJeE
dcjNJTGwx+e9Twztnvof6je6I8kQUEZKt7Uthjrr7DNDCRSgY+xMQ81DkP/b
JnW/cBXU35I8ybaB+3Mh6xazuCqaIaRJjwuWQ1yg1ueuH7hO2UuNOu0aAGnW
IJ/ZjnxEtxif5HMN64t3DCwC5r3oixP/61+NKbBx8JAU90MqFJgb0NecLkI/
r2UmVwc8glAn36v0OP7tdU7pzXX0IS7q50COthS4WeN+eDvW101bX6JS7050
y7xaULolFb6nbzJYFlHhWmnMpH5ANVLdhzKtxGMg7myVOf00Fag2szuY/JqQ
gBf5YdClFOjhVB32IWH8idcRvdXfiqiNV1N0HGPgzqdsJ6E+Ksi4hRV3ulag
gJgP/jb/YsFT+gBTEda/IVsUV8UCu5BR3a1onu4gsFoysB7LosLj3GMqC065
aKv0gy+3XB7Bbe+XbbT1LKXkHJf1i73orKgcqU7xPFxLZy81CaRCeLTw5OEz
sUhmm5truNpD0NPZRfXE/h8eurJekOCOoqKq+G4we0JAf1017X9g60JFt2Sv
XiTl1KVoERCNjnZUuVdiv3moWSTl2LvDnUrJ+092eKLsO1wnOvHzBIepoGgJ
EgzN3ShPDY4DzfKenpQRCsw83buT81Ys/Hye9JT/nz+KIR/JMsbvnVfs1y8o
GYGdinu8xG8JoLqxHzUSXynw1TvufffnZjh+auZ8mkcZunfc1TKhgwpvgs0O
NZ6og9MJ5Zn+J/NRQ3Hc0NQbnL9OLh802wlAnEvRtiwvR+5vw7Y9wfiw90uc
h1QPxjflOSb5wghU/PZrMR/WHfTzo0b0kUnwWQwuF1xwQ8oJp7424/js+3tH
q+gEGTSPH/j4/VsJEtEufjmQS4FDN5prxZxy0ITZPtUvjTlwLFNJTRfXa9u9
rw1MI3LQn6XB2LsBgSD7W0CUhP3/Qlsy89h6BdKUdchTYSsFK+0Kq9xPVHjm
cXobPxWh4vIPp24rl4Nz/WH6J5VUyLl1OvxnRQ/KTXRwXPXNAr/puxcTgqlg
fIZL0PhxP6o5z+hmvd0YOIXenv9gTYV3ibkc5t+7UX/8WefJ/HwUzD2/TSQC
8zFlnhRmlQEkTPI+KMiUiFRe/e3y0qBCB+e4/8x5F9it+w368oORvXPyMQ88
X+fUmi5wGgSA1+m/zJIbcSjxtVYobX9QU8hfxnH3NKhOf0tq5M1FFNTgOIvz
4vuG2aVLsmSQGrxKUBnoRO8lfYFNA+svzhHTQm4SOPuk8C0KtKPe1o2+PzEU
0D+s0nhWkQzZopcsWTwr0IslgxDrFAqcOREnTsD8WTiEA1W1dKLMdTYfffz8
vcbJHZdyUtBHVlYbjetpEFPnigKxP4d6J6KLJi1B46bE9cfesejag3GhPNp/
CFylQnwPgiFqHjmMlKUi/eNJ2TQeyHH9sVPBk1H48jH0XX2JP2r5dS2/GPMK
ypGYJ8pNo7D30AVUZ9GCBvRef/kljXldYrFUiO8wDCTe+FGs2IMmpS4mxEZR
4Oc7vXMHgIAWHj3eOz+fjL7eOSUXdY5W95/mnR4loAcTrkOVO7JRxsRrZ7eT
VCj5uOUkvSERbdOPqFAkpKNthIPMOrhumhts/+S4YgYlT14anxGPR2p8utG0
fX+aWRx2fg9HYe3EkxOkgw1o6hj7O+3rFBiOvbzybvYpMDRx797C9ByW1UVP
SmA8ubz2mdTc3Qaa0gPpsqwxqPLHn3mvLipEbKouu68S0V7DxoM7c3LQnEzP
3hucVHDs5Nx28A4R/RKx8GjJykPffJpmgnioIPHDulFGaAhl3K6dP5r0DKkG
qm2pw/zqEVv+t6e8RBTKuSA+31SAqq/GMj7EderISZKBXh8ZmDaa84TuNqLP
w2+9WLD+/Zp0w5qRlwxBe/ae0ORCSPNKlb4u1iO5T5c5Wj3IEBNiaTR2sBWp
+UfdOYl548GEO55u7iS4UhrWukzoREQ1uDSD7S7T557x55Dg/oWoa8vvutCF
i/fLXxhSQP1yia3mtxHYEul8WpC5B/1ztPxTZEsBvl/dO7TTCuDmMse0YFc8
jIXMy9FweyzaYiyAsQQK+PT4Jt7bobBUD51HP6nw4ZNjr55WASTMmnntmbdA
XTMGCZNrVOAOKt3ngHXU/kSfA3EDNSh7/PB/WygUaHDPt27wGUJuqdSjlfVV
iGlVsqz4L9ZfX8rJNbjOZiuu/Agxb0Wv3xhUL+E6WH/IrXKwmgR830Muh6+2
o/CgURM+rAfvnhAoeHIuG7Zc8/jdNOgHm2zJ0llYByHH3Z/XnXLgd6L8bfeF
O5BvJl0kiu0CR63kg+NJ8Dih8hBlbwdq1ySW5mN9esJ3z79vJBIstc4fdL3e
jizr3+3TwXptSpGFPfM6CRTfKB9wuNCJhKYviojhOG+vcXuba5QIi8EZht6Y
nyi89I0jYXxTbhWZmdCPB3oxrnC46A8hBOV8ThyHYorJL76+ToGAF6EqWdcc
gNW/z10XP5/g2ND+vZ8E1ysjBV7ubUdXiM1p7d4UGAwuOVaamIT9dyOcbG8B
779c+0PAzzupR0bNPCfBromukM7oduToeGTqIn5+a3/7weMRJFBxzhjR5etA
f06QOdywfZc2/ck0dRLcdN74eUqkE9mtuS3SzoWuO+A4n2SPwLr/+4/MvySU
tTNciQv7UyF1NFgtphUUnrbx7xcmo0aBAMYb2M7hH9IexNaNctMUe2JN+4BP
5FmXxk4qzCTDmY9eg8jjTazivXMIYk1EeKPoaPsNP0/VTrvDQHfc5VP8lkC0
d2CgnXuwd2j8ttNvJziwrZ1CCLeDc8SFjSlsN6PcW1i+7gMBfhvHxBp14F5D
owaNh8dLWTyx08yBVZUqDrGoaMgPUVG+hPFq9N6prl2YP08On76Tv1oBLEWy
ZCLmn+qHwoIMh4io67KKvvLbdpgUOrXLnnY+v1GI39edRNSbuJnVefcZXNte
d24c52lj7nBX9rgW6soYlHmn4QilzZ8cqfi9J5oPlc4pO6H1c6/HJWzuQ9Tt
i/faafv4zO7KLD+0gTHxl4ORaQmwzTeu7BieXxvnPHWnRjJc+3y0uTe8EQa3
t3kQHDAeZqyikloyCBCPW1KdWkBXOkF+P9bF1Xbz6617HiO/yoYvYx8ToUZR
fz/t/ojeKwfyvSZxO1vacqtIZTDZd+qaZjAFSsn5aTwbZPiQeJDuKbUaOk+Y
LZrieeG/oDFtlhmC60dQIfHoPTDcOGilS9t/J1An3v0sDihWt9782WaH9O/t
S3bB/VRo1GKI4ClALhrln00UkkG3+n1xI66z0xT6Dz8bq9DYR63Vqe4c8HcR
+sL9FeumLfPo08M2pJUS719olAtZYbv89NtxPY0YUi817cY4S1HatxAPp0g+
6y8SqHDeZ4zxm0gfmlH4ePH8sA7ot5FuenhRQVL/yCnr0H7U8iXnB92vRNQj
QGXZa4Xn3aO2vPFeJEwrcCevMkaj2rUdImK0dR+63dzNtsMQzB1lvuDShoxf
aFl4v6DAngOUizuBBF2EGKn6ffVIM4959Wo5Bfyzh58NuZCgg3TO6XVVEzqR
IS8qnUaBHQzooKKZNWynU347cD4GDbxrWh/C7duvyHWKWr0EanGMsFRIFere
ZvKvbjcFOseH1Y7+tgajWrOtWz/Gojc9bxpo9z2p/t7x139TGHlmbooTxRNR
ZtbjJA6ave1V5QG4DmtE2WWTjFh0Qcv5Ha1ubunUjmYTboC8EZtZs1OlYPZc
L+X7EBV+ZUbvlAggQ3hZjRFbUjMK2CK7yon5/1RGTbr1DxIk0ekrMS23I22R
vrkrGLfFPQcydd8Vwyr9iRGZrSHwbpB7Y/cvKrRIs+ycHyEioqb6pcFDjWgp
fIfAVqxDfXP9bqoxkuHYXyEzh0MI/ekx51vEesRYsHZ/4jgJpAhi7DwTCJUZ
BrJRMA606SzXkHFdePVqfrOfvgPVqz9TUqHtg2NYPHyJNwHOYBlgf9QTJPWc
z/DiccX+nWYwGkqFdsHfwflWmtBUflPuDI7bIIOldUmPJkj9EC4Z5EZG+x7G
GQph/CyK+9L5h4WACvxitb4oVcHM2uuUhzhPv1XolgadJaJvwiJbkrCeimRZ
6xqepkAMiU20KWkUePd7dMSvV8CwkaFKizkFhKenn4hYuyAlmUVvpgMhEBX0
ttiJhicyjz1Wr5Wj3Pm9O2xeP4YTMgIXuhcxT1MRv8MQ1IAOmEhdZlSJhaxe
SGeaoEJp0Urx5O0O1HE575Cw8GNoZKjiuViN4/Zo/vfk4z1oQf7iTNBlD8i+
q+qp/oQKy0++3OVu60XitsKTtn890VwDehL4AOOSJd2To1XDKG/86LpUXA36
7E2oCcS82qF/6ehX+xAo22tjWn3kPtJs6ZC7jvu54/xlznHedFixKBY2KQ1H
6hvhtRKYR3kID+imzVTAzQN7Ct5inVH29ObX/hmcF8tFrKStveCnqqZinluJ
VNl7kuRccJ4OHKtuVxgBP12F6vq2YtRaVrwmOoPxn+m/nh8TuE4Jijku/3mK
iteqztRVYPzpOFS2LEFEEVd6xEh5Och4f9+3Xtr5uqlVB8J83RCvNimy/0os
8mt7EEHbv0wPkcZFz6tgtLzlzWEvD6QiYXl8+yyua4pzD1ZLFdAase1hxNFo
RL3ySWqDts/d9tOdZ3RkUBWhrL+2bUN7VJyobjiutn0WEpRXHIV/PEp3xnB7
q5e7FaZxPNutffr6pawY8eXPLchYxMPNwH+yuzB/uGY197mnoxat6PTTcVmn
QYScZrndByr8V877h2TRjni5LHveDyeDheVg5IEmKmh/03JS6epGmxuzA1Ks
j0AtkNONGkuFj15f/Mnb+5DzcPC1NYIdOmD6YYvGPYzzihWJ3Bq+kGW2MP1h
1h8VXLulTePnB8+aH78pFw+ql42UvCqi0Ou0F1tp5wp6Zcoz+HAVQuouVpvE
4Tx0vPRnIu2eweLBm4z08e3wofAb8a1zM1JgUI66jXXB0Dk5+tH8YbjgW61j
n1yD+G9lCmh+o8A1O+H48EASxInJe8VPV6KXn+5oOVVRINKNNFU8TwL4WCna
zI9QBs+PzXrsN5/jonIsC4No5mByrLtmNUTbO95qxvM185I5cXx6EO3bcXLz
+MkOyE4yojtBxbyIvUBtPp+A0pC3YFRUMWyohbd0HafCLZ5tpjoXiShISvd2
EjEXYmuzPjdgnsnEdEbe4jsBkWKa/I+JF8KblpVVUz7s5/V3JM4CMry4Jvbi
k2kTqOS8NtztSAFbuci71CkSnE5MVWDZ7ICToUc2yBaYd23vi73K5o1IjX/9
796OhNRG+xs7sT9Vsmcbra+PwrfH3F5hBhUQNN6jOoXb+VLRQVY2DQNDvcDN
YK562Ou6xWj5PeYzirFXeOf6UEH3ysNtp6sRu51YtIo+FQQb/S+9nc4Fl710
tWQ/f3TuGEXwEK77R6t8uQPzyuDfqU8rt0Qfo4MXVDvu/qDCWmTeB7rODFio
+nvjQFISUuYW8zbGz2tP3j/NQByByGhpvrSBZJSr9EpXbJICJabV+ltLSCD8
6sltx4fJKPFFT/p5RIFe7z3bri+OgMgbUVXEWoUeOSfXNvZi/CkyO8KZ7Q4B
tYovzUsyUYL8woI4zl/3/pq4/StkyOiw8fmbmwsvn5UlhIZTYH7B/6SZORFN
UpQKuwKLUMgjBu0rB6lgpOhNTsH8f/a7wZJ6QR7qNhT2ncLzu8hD2cKWS4bL
1+47bPxrREax6ZyvcF3o3/c1/cI3MqTqNWUK3WxA18u2q/TdwXx14vw54VgL
JNviJD/0JxqZmMcPvMb5uHLGeek+5j+bxGMjqY/KUV6JYzER8zSv+dA3qe5k
8Dic8aWRvxmxCyW2JrhSgOWfwA2fMRJw7+CSyT3Qjj5yZanT1mU8Y/ayir8d
RKxhrz/f24mAab9Ucy7m566OkveiTXKgqcRC6W1HKCzGuh5rpt2/YD+v5nCM
gNyCOQWL8yqBpdYFFWCc32CeS5NLJiKHiFjBy6LtMD6bxKWH/S99u/Ecz3Ei
OpZJWk7iKAa1z/cXGjAfY1If3ydEcgbVa/+Nsn9JhI2HrFwfcT4eErr/J4O5
BO1dV97/Weg+0NludtzGuLF7XDFYz7USMX3WfPiMww9CRb9D5TwVClPbfTfZ
6lByl7FcXLc/nGL80S79iQqPnw1wDr+pQNxe4sb73JOheNdl8ak5rMu4HAQ+
7GlGDsuunpJf/cFMzEunmYTbsTlhWcDSjky23J9vZPMDNZXvAbyICqtRqbGF
Cs1IK/H51Hh/GjAt3y01wvWd7hzXBFmzE93OmFRgZfMGePM1LKKECrpHqaPc
Qt2I7uY61y56J6B8WnobkoLjv3Nc7PDLToS27gvX5IyDQ/zaEzYFVOj4vtrz
OqQH8ZanWR1evgHHpXlvamCcedXc2L1duRfZ203NPL6thzqUNC7NB1DBuZfb
0pO/FzUoDRreveUCDiwF+jpBVDhAUuwYOvQQRS9zqv396Q+N+5gnXWjn9K56
7Xgu04u6pMvP8sV6oHD9eE71QCpo+Yfaa97tQ/XyTMMxKhEoIOdV2ZQbrgvP
PO2LjvrDk7qM5oH9tmjl29bOUtxOgMOT/0aJUWBxYeZueoIjCkhkF6LdU+nM
EK7v6poMT9r9Ls4aeqCH7ZrD4XgeIzK10hyCwmHJYJl84kQIyv+V9vAljlv2
eYbjgc/rYU93adrJNzh/XZiP5ryhQruKGhenbSek1F+fj1HIRn+v39+VX4jz
OqzMpau1Egz0DXIMHlWinWsTiwy4vpvspqaRXF5AUc517TTbbPReallREOMJ
UVf+cl7MECRE7L4r8CsNmQt1lw7jvGBXl/A8WzAA4r+mXU9ca0LGqcp853mp
IK/depBbiAzpWqwMXd6paJTBRGu0hAI/2ug0Tw6SgNlvcdVLpxqRuvoflOdT
IFvG+ceZJU0kssXzSfz7FFTmk9ZmhsdbWXjvyLOjNsjIa0gumRSPYofiHRTx
eEUvXD8jLWcCdSN6IU9/xKDwY99PNWF7MLeAfMW/U8C7s2QzPzMG5dXneb/A
dm7B1Z7oS2QQt5NJKdqDUN5mXf07XE8zxrTPWx6qh6crIhpqU49BL8IqqRjj
6vkpqbSf0s9B1vDTyxRpL4j0s1VNwbxo9+9QUkZ/GWSmDB+4zR+BTHSLeG0w
fq6/VDopjnHpzH65YdLZFqR0rRLN/qKAya04NTdc36NHPc6pC7ahCJXiWG+s
K4d/zGzyj3ahFKWEurXgPvjO+8P7M/ZnyRGVHB8DH+ixYsraUL8K7MaXmGnr
ON6dGdEEUXtwcKO8CLZ0gKDF8GO0/40tbOs8gzTGUGbbxuDaYDVw3VW6WHyJ
AqRvP9Uiaggoc4bRiIHuGTTyfWDyxXVq/UKP32AXAY1VfTRephaB/U0ChXZf
sE2Ei4JCsBm8Uf1zf7tSPChj3mKK/cbr2R/aspWIYsruW2Q3FgLfx/nDSRhv
3QRXJvatEJBfrdmneZdCSHYYWfTEeBWWWq9iwT4Ks8a2pHNMdaBUEs8Qj/18
9xyHyB0HdzRS0hViLxkAyVseXI2mnYtucWR1gt0VaVydD507UoWU3cjb9TCe
lOnJp+7n7UOmZvIewxVhYKLvqRCOdZA7+2H9KsEodCLRTeVNrT0U3eBOodVN
ykmD1e6ObhSte2Zact9jdLTTJLcZ85n7gRKb3lxkuPBy8ek41rMey+mh/NYU
SO71eK20LxHYZJaueGWbIu0Gr197aOeTc6kq1N4jA/2VZxNxoZnI7KFF7ZUs
CjzW7aNPtchDp+I6Kyd0o4H8upd972/MS9u3qJ7dbwXH885yjd+zQpn/tO8v
4v44dvQW8caT4RtLuWlyazbapjYaUZxKAV41/YC/WOc+Pcmwr1A0FIJjvVjn
kymwwnvDMebSbSDF/Edgmo5BW7yuKNHiee9/xgM+omMgSyQcK7KqRc+nytP4
gQLMYUrD1vdG0M7j4YrvvVKR3dnVqxuYx75sPVuUwkRE+ptafpzMecia+Wtq
Kp73uELRm9v2EJHTS58DyC0PBbCyChLwfFV0DJfWKw8hBXb17tivtegokYcc
uEaBD3wylqOdRCRe9r4uLK8eGV//sea3QQHHyA7T+XUC4siRq+PKbUWtFIm8
piUKiB66W7j4Lh78tb65s/b7gKfD1en/cP8bpady2HlS4OtJ51kDOhNY++Mq
H4zzmreV/q1IBgnOb91+zetdOxrXi/IzxHlhtMvbIWd/C5yZZbP7o0lGL4od
XOuwTif8leAM1SMis1Uv+/AbtaBjKH8icwcV+KwjRNpPktDPA7uovC2NoOpM
JzPxlHa+5TFVCh0R7Wh/zDy9swIkAq/3yHBjnvZbaOJ7BQnsJAQS33v6wk5J
KdPYdgoMbtOXe99PRJxrVYpEcgoq13sk6ob5BuPLtOjwnBpgeVB1a5YnHZVv
up6WncJ5l50y+PosGUQb2cd4iC3I2oCDtx7X/ZWwopfczYOIySD171mPGjgU
8I2Bli/aNomPO0ZcwCC74ElkgSNM8YRcoK3DRhf7jsnheXkzs1YmN1wPE69I
5RYMVFiwFo/I4s8Ej/cXij0PpILWofWmfhxvfKUaY+b3CYg5eyOY/VMpHN8e
OncR56+RgwLLs20MaBfrf/K2nW4g9FFhFw0ffrqwbr/KrYmUHl10MPWMBolp
9zEqnpeAYeWFuI9jcKpm3x/OkkqYE/R2PH+KApMqKmEj+wvRmQSK+2+1TEgM
DxDpxzzh9Fnxhuvzg8iIMF8o6JmNQhluXDCUwHoqy/Gc10kziG8AlzcXwlA5
DF4zwu9liRPInRc0AfU3yRptn58g5PFq+S9N1we5SAf/HYPwyMEbhbU9SG5X
Rxtv6wJ0y/hscbidDWqrSWyO18/AyuPQN8QNXMefktI86cngtPei9LaGNjQt
ZPjfKtbFk88ieOZOdqGvWScFn1P6oE//4O+Q3VTo03rsNJ02iDQKJOQcZGrh
awFzNWD/7ztb8b6P0xO2FS+vsOnZgixLVR7tXA7/qhPufq884E/Ath7lEntw
rPnvCW1du6RYfkCDl4Ay9v5W9R1uAZcc7nN36ajwcIsFyaqQgOyJ+4Ij9Jqh
nGHbwf1bqJDIZMUQGnsLgvXDCZPdbqB1L9ecdn7+uyM5l0VnhlHQUxvC0/Q2
8HZQ7qvE8eamyDEQfICINAUnq3s/F4GRfyZBAtfNz/zrW28LElH/NieNm9kF
cOTn9Id/2K54ff08MwcR3fFKnmmKLILXKp9mt2M9wjErq5ixl4i2oWdJBJd8
aA3b7UZbR9Y4UMYXGYxxTF22mdulBX6GXNZyxDjcOQEvfmEee317xKrl0Ta4
LyOXoWaDdVNIfp6AGBmI4rtYZlXaob8qbOAYtkd/z61n1LgM0sMpfxK2xsEP
J1lv2j0vCwfu3XuwfxS+H64gcwRXwbv2t8QyN8z/+ZvkFI3T0ZTuYpdjcwn8
qSmNHcV1U6Je1MlXpBdaDM4eynnyHN6nhzw5i3nRj453xgbc/sgl5F00b4IN
nDBtuVuG/faDf+pvmT5CLkRWHdXwPESKOlBwo4UKqnV3RIVMPZDPoj/H5yvW
4EY5ffE1fv7Pi8wmgcRqFD1geCc06zkaVFc4fu01FaoSbZozivLR2VcPmAXp
PKAw48IjCZxHdkdOBoeK5KPgd/N6VxeCAaXoSZ3E9tqa32vjLrjutHkv7JjK
Qg/nI8d1nKkwkTPRHHG6C51qTq/YeroSSTfVsM5EU2E7N8vYs01zuPNu6sr7
y37I1+1BbT3uT1v3jzmXS5Zgovxs9MMpD3Q/KOb/8p38wPbVgwkS+KTKDOf9
V4fqO+KNuNMosN00oZ9ThgxBvIfUSw6Vo8dOTRNPMygQ/3m7zsjGGFhFEAP+
/cpEN/IU3oqdp0DcJIMWe/AY3Cn+qTO/BfP5q6679DQo4OWzcMDaiogO+hh3
ebVnogML+sG0/2QuCn8p0xyygnVO8cHI2ljE1Ss0nEJbR4s4/tzoGBHVL9+z
tHQvQFuSxwZD8PO1a0HJ1T1FQNETm3y02wqurRDLjq5S4djwQ6tA7TwI2fqZ
ZclBG4zd9ZsFsH6RH96ZtUc3D8o7538rW5ujlvSqrKPY7ssq6Nd/gQx1PB0p
wNSKREW/iuRhPKfztc1fv0WGsoefxZYfNaOcfMO4bGznEV6DW89IcMqQ69eO
zHZk8CrsexKuC3rb2inTOx7A0RC27uZBTUj3vCM+gP25++KY6h65fLAofL0Y
/yEapHkExr3WqJBUPmLEJjAKbvcqz7u71sI2m9liSdo5DOVFkeyOZGCenFRm
FEEgcMJx9yFLCgQryOydmsL6Pc88ebmqAYI7348JYZ1YERAe6uydjKJ4Lc4n
BKbCEchJ+47HVR3Qxit7Nh6sZPavaDbfRF3x3o6W2J97ti2OXWK2g6ejzYMX
pWORZc/+Tdq+SL5Mh+dXkoaQq5IstSe+Aa1GjkhkzVHgt1ojY/4YEQ3ejHLl
C2hCh7IruI79oMCOjbBoG9N4+Caz+/qDK95wVoJ9SBK3Y85bWcud3QiuHOiA
TCgZmR9WvS2K8fCtc6ZP2Z0u1LzLjV5goA92iw36NO36/+8bOlErKpB24gFs
eCedPS+jBP+qFCxo/mzvsrFYiskGt5OHfiDfBIz7Ow5M47zw/i0rb5k6BPXs
ltySDAS0W+v8zlxFClS937rWXnAHPB+kjjm9cQbXzZijH3E7v2sWDvxnPYJK
w+sKNS0aoNUqS4XUh3X3fq7idh4b8DjyquFkSDys7GnLpv0Pmf600cT1eSQS
vRykEDUYAO2fp5YnsD21MS9U5dUTlB7dqtd17Al0zvIc3oXtZky1d5nqHyEW
IZcOo/BYWPy2ep92j+eeprDTJsei0TtNLpu9vtXAupGXLTpNhX9S1yIUY0LR
WuoGO3/CU+B/ZWpMt4L9uSZb13esHt3dOWPm4pMES69MNK69w3H+Ri1hYH8n
MNG95Lsx+gzFGO3/704uFXI2y+lKrPogxSHkwfyZWqSlI7xFz4AK+/ccSctn
H4CU0tXq3O529G7Xm3k9Viq8SHj+YSm3G0k4J66kiKfC7/LL6wcxL93Ju7Mx
ObIHPU0UKlecDYOBgWPeNuGYj4nzZ4r29yG7HUXZfwbDYO7esFG1ExViJX7n
Eb4j9MJtcNY6MxW+rKMs9VYqGI/3XOZT6EC67BofjuaFg5IhJe9uDRUWE3cV
7BCrRdH7/crzQxLhb6EE33us3/+wjB7et7sBOejGD8Z8CAXhK+S/Am+pcCU4
+tne2adoO8cep8r+KJiTC7W79YsKKcsZgR/My9DqR43z/53xx/l0hE1siQrh
J53Uf4WkoiYn9+Jsy0BwMsj8b+oPFQgcu/aUCGejc6VvghRm3eGYusjFAdr+
7obmSKv2EeC1WJ/8t5oNWR0HnNveU0AqUyi0sHsIbg/JLrXGpsIp+niXVey3
jJTjl7acJsGths0R9CMI5thHW0+PUmDkpsSkJisJptgzSp1JD8BXLJ5/YJwC
huV2wTs3hoD71dj9j1oxqF8x8aYkC+2eHcVV7txhYFUdEACiM5IV7DYc2Yp5
qcfTgVJiD2TIc4YvnklGHIG3BH8FY1663mzfYl4KU46sGtrbklFoDQsbH9Z3
CWqhKYy7q6GHoERAf5+gzaiqoUszWO9vC5dSS8+ANXOO5/ymfihvsWRFA/uh
cOhNuMaOXNh5wFUvht4D2V+/k0I7V9k6jGzaMZKNbgrJa338FwnzExqqnbR7
aaOjO9m0m2E2B8K/bOtBT26zhlqbUeGJQ2aNAomIEq8/KjpukoyuvGUwuIR5
qbCwfYDVISvgek90/J0Qi16OiHzNxPHv9Srq66PxUZDscfwugKrRT+Y2zTJt
CkwnZwYVi5FA4c23Jcm3XciWw1PbGuNboKZYDG8K9ufPxIsilp3IJI801Izt
e3KKz73Fdappq6Jb1N0OtOP7MsUO29nGXpTciCHDxVvpugqGHejD4MupaE0K
nL0klZmK61dvmD+XSXsH8hmc/tZpgPmG2YSTuB7G+cS62psL7Wh1MFLUyZgC
Dlfqb9n/iYPswPtqzQ994dF+ORMJ3H/103fzs+vSYcvSx2Ylew/wuHvhB+0c
Y/W7nxNvf0uDYtZAW8NOG1iOnHo/RztXfMn+7XXzdOCRF2osFb4BktoZ78ex
XfKBjyvnWhLw3rKlJPPqw48rc7yI9r+6hw6Z/gEJSOrtsxwWHchRf9fXC7i+
BJqHgeHFZpBUDfKgWJDR4buh4QO4HjFGhBypdyWgHuN45g6pOuBZoT+ntYcK
g7ECcnVhBLTC8OSMwdV6+KRX8ZDKjuf9M1uv1gwBcVH2OZHN6iBBt9uYH8ez
bqeU4vYJDTBwfidh+MINZkmcW2n/H8o+Ul66bfsEbCgTuhWQBwqOjI8vYbx1
lkK/ZEfj4dPq4lUjxmz4823+kCqOk5ZVxeouGj88arBbMb8MJMgeLSZY17T8
YtEr3DqMOIy5KOlr8SiSsrRyiZkKzS9sHZblyHDw6uXSGI8WZMfnHXYX1wtK
6JkVXwEyDAQcOJ2g14qsn70O2Yn1S+U3OjOZzwRkt05wNrGrhoDN6v67e3H/
P8coreP3bi7SRdNBFcjvdTu7B/uhfs+w6sEnwVC8/SLr0NlsoCzn2rvgfK+d
e2lzqz0EGo/ssrLyTIce7wGW63heBA6pKs4ElyKZ0DJlf9YScG30YCZjfJbU
sE2ppxJQErVDhmBZhN6luE0ewzxW96E4vVKhFxiUqVTmLtrCWZuOANq+9emw
+og0KX1QTU8Wsfc1BzrL2W7afSWyr098ZygwhRmdhFJ1Hnt4vCmtRVuPDh+o
Fx9rIKDumu8180xlkMzo/Ssa8xx7z3/Zd3sJaPtZenndqGdgm5YW9A/rhZHt
YcZ8EwTkVGEd0Gr5FHR7ZZPKcX+EctgrnAWI6JzdNfPkwwUgNP/5hjtuh/1a
l/kh20B0u9wxzVI9BBwrdK1p+0kF8qbjm7j8UA0rlb3ufTgkiKY2M2P7Eedb
ZYahmIe8liYLlOUD4VbkrrOpFLBRyMk48IUMzlFE6br1Isj9weucGEaBIo6l
Bm0DW0h9c7tDNK0KFm5VBV+dxfpI+Liv5LNINNqyIshtWA58su6sLzDfrvcO
XlxDI5D6nxx7619zuFFCH+E0RQFNFf+/e02KwfljPVf3pwCUOrmml4hxfk6w
5kP0eg66ZBN+XD/dFby0X6a+wfH2UO2orMz3HrS75fKOv29SUKF1yqhDEBX0
uBjZdQdIEHE1dacGWwPy6/cVsU2iQKHfwY/JzGNAzmVY+vojGwVFaXjJmlBA
ZSZzH8+JUXi13ttTmNiK3kVXBdNhvvr4uN+K/aFReO73ITppuBl9kVFNUrhB
gfWr8bmP0nuQa7ZWufGDLmB9xP/P4yR+b4UdK8NsLzh5+l+Jf1wB7IH6pIt2
VBBfOGP+dLgIBIvDzyeLW6Piwq/u3JivynNlu3ZokmG86lWt79YWlBKZL8CG
43++Iy1zKIYEq42OJ/70t6NnYy3LJfdxPQrpdb3VkAuDjcSbUTsjwSYuq6Od
to/+yt8TnfzRiMFD1Fv2RAYsqxTPPcVxnqo1cUr+2xDMBn+pOFWTj/yFvweR
tmP+n2PZo57UhZ5l3ymMuRMOyvH97AOZVFhRy5c7Y9yKZMutgspnwmDi+B9X
xRdUWFp9fuAtRzV6cdyh+n17EHwT2Mc2jOtLde699l3/FSJnVjuGxdT7cHdJ
+pUw5rdthjGqPq8TkUSnZlF3kDM8CJAdncL49vkxp1J06wiUiRfM8TWFwxnx
I9G78bzn3ZaRVfs2CKW/oy/1BD5G73mC3pyUooJHXbunVkEr8MVWzqskJiGj
sLsWVb1UcJXYIvvbJg3Wt2acJ/jboSNfbWIZcPt0knJCqXfuwbdPc2xUg2gU
xbz/Tz/Gbec4xZSAQGfYHOLY4f80GpGjpjXGsV3w2KRdfostCJf0Wk7zRiO/
D2N+P2jr4MFzuY7sVjDXpPrA9m8MmmX3b6nBdo2RtLevb5Jo57uLg28X+j3g
cLrVlgLK0e4endZ56Dg6dxrtqIIt3JEK6Cuu1yqbM9PbR2D3p3Api5E+5Kvw
hV/AGvN51scfGe6kwsF3WZXmJeYglX55HnD/k9R6G1XPxcHwC4f8pNI0aI0t
F4rB88goyZ0fdvEJXJur2lbomA0B7GFbR2nrX3/T3fkJI1C857+BXff9UGvF
NY2wj7gOfpZgl901iHL/+gtLr7ZCZFv9y1NsVDhuneUxMTGIVgP4LL95N8Md
95rki5iH7FlcqgqRIqD9Z0NJgbNN4PDtS20bIxVCDwTKPmyyguUJ4u5lm7tQ
YjFhSzvf4AI/38J0kAma5BZ5TLmC65t6Lf87jJ+1Gd0aXm12kGd3TTt7JB0Y
pWtu1tHqo0a95tX3JHhy/v6/h2vtSDe0zJfVEeedbAM7vRIZVHdUu2f5taGI
u9J1ux0o8JL39OXtOxQQU1LgnFZnEryd2WAaxP6x5Cn7OJWoDz0JHzpvlCVC
zOF07Q1sP/vxkSZ9GQmiPjt2fH7dgXamHX7Lgdt5cyhoTmSIBJdShL452Xcg
4cxVguBdCnxQcWKlx36TdL/9s2ijBy1TjDMzb1PA1/rOL247ErytOHHuKl83
UsjNezBgSoHwP33nMmPywX87UZJuTwnEKZ0OmV2gQnR3TVG3KBkR4mMathMq
YRSiiwVTKBCxHHnc3DsdNWU+I+a8yYUvvKpHlXC+l67c4hl8lofiCxcv/j1T
CPRGPYyXMV8NcnO5njwYjcp/2rhwaD9GTeF6VHYcb7qSSROnrycirUchY2ri
OciM3lTOHuf77pO7L4ooFCFSq+Yv7qEStHnLKs1xDvPnsRv3Z5kJqPW8oqv2
2RxYqWljuyxGhXGBlcHFR8Poif3Sl/0RwVAl2iLAuA3zvYBJn/IjJMQ0KRtF
d+Y6uj9LNWJ9iXlF0eBei4sEdHdPscg/40ZgqqG+IGCecFi+86ipSwHEs50R
2N2bAxt3yi9MLlOhpjjiz9nJIlD/7dZ7cC0Fni48Irr9xHVHptvV/TEJ+Awv
sq5bmqEfp8az3vdg3fo7qSS/wg3+cSttsMilAiFnPe8cnscGz/WhlzPXYIvT
Hn72m6mwXVQlWRnbv9VLx4hJkuHc7Z41z30psDSd+cjrGeZpSpd1XNIwf0g4
Zbv7Qw4U7LSV+p5MgcOkmNxDlmQoP6GgoeLTiv61Vk/T7vGUll8TP/qXBGLh
kyvO4e2oXqin+DiOk58DzQUbZ0rA7WDi17imArhwM1ifFc9vUUDEQo57PorT
KI8w1CyF56+YZL7PU+HayWv2TFeSIVT1D6cQjxdoyL4/EYX76UtPqRNWx/qH
8UpbZ58n9HEoRwlge+FB8xOyZ9MgiXSgNOuOC9QKeEvR7kGjY3ty7+2NQWQd
3/ZR+nwzsO1uNzHFvKWSEuLyaX4QacvSMx5+2QCvOlgGaXzmnueDphcSmCe0
vHEd4G6AW4wdzqK7sa45m8569G8BnOQ+vb2kJh4Unx/63oX1I4O4+pn8wwlI
KqW4ojy4EAzrHXV1sD2xcSLRVDcDPbeviWB9XQjyRk/238Pzde69s2pSWio6
kPN4znOXBZJYvZQhjvv51CCc34A3D3XbvlZUtPaFZZ0wa3baOcAKtSyHLpYi
pd0PyM0PQ6A2fp6HCcfDsTAOqT+VOfBdeF340MFMAM4rhCc4/vUVLvGXFeSD
QHrqvZ5X6RC350LUPtyfx/eV1A8dd4YuAa7fygLKoMfwiZ12L+dKogXp5gN7
mD6qVLc5YgjZxMSrtPULZqJODudHC0g/PO179JQpnLA9c+AXtk91cPs5syeD
TPuJobRWJ/jVIlZRQrt/sHtLu+XhFDCyHLfgWnSFg56V0460cTm4FpePOkDP
e6mSzCwLKMj09Kfh20Rb4DOWW25wOfeHZ0GbHuTcNWSj8eHAo3ajAY+cgdj4
81hQjz7sH60xpz2/+xWdlrJkP3J/1T/GX9EFmsxVynU7qFActRBuc5aEtrC2
dn8urYVXXFLh2jUUEHymQOf9ohyFzv8X8qXzARx+0YZ+YV6k4sOVmB/WgF7L
aGsr7Q4ALoMeqZUJKryv0l/ZfaED1X3qtlee84EYdWc5tVoqqKpMfvOc60Zp
c4Yfr16wAsmTW3tIMVTgVH6b8NWsF+kMGIl//GiLrnLmybT5U2H9SpX9fWon
OnZa/um2jCTkoXv8dXEeFT4ZrzNOJoXC25jvW1HjHXTcpI9sg8clvfv8iR/W
mcD1IN/XrvQ+uhhmevscxvOfCqzk0/VVEBnxw/nE+1gkEcSt8xzzgZvspp+Y
dvZC/UHhy/9RsxE/V8XElB8VdIT1jtLxj8DTxlXTrs0UpLNT8o34Twq8tXYW
dP6JdZ8AMfykdAoK6TvAexf7R/H2rO3pm5UQrUSf7EmIRZXWFzJ6Mb7JvKq5
dGShCCXVmv37yNMPv4ZFNnkscFy9Pc+z/sUY7cp35XnUFAb3NX/S3cD9Z/tv
+IEe/xjIdpfk34ssh8cWv9josR40VCo6LxBAQuQzv6S9PephNv+kWn4eBbr8
0lkruMiwhHrkM3Ja0aCHJP0RLwr435D7MF5EQOJ5Bcvf7Bth8lTC1wDMo6QO
0f2dPG4CbjHmLeimMzy/PH/7O37vsmq5u8M7AqpZ3Ol8bmshcHyIFlQ6ToUI
ezW2HVtcgSUi9baCQzIEVgr7xOM41Fs8yxSk4APM3xbDsqtToHZ+zIh2Lnrk
NifrLalFEH/pklRaQAi6Y7bxbhDnS9z97AX+qyR4fZ6Jo0s7Ge1U1D/3noDr
5laLfT+0yJDacaqSqtCGNlxPnBbHuPeMUPlyVwIZPugs7IzMbkY7Hfz59mP7
/sbBJGVeG2CrSeNaW0gEI18bju/4vaPp3/ZVMtyCjaevDrvoJ8DL2kAC7b/N
0X2sTUwlRcjU6FudV5QXSD4zvPkfzutHvTszZ8uq0cvXZenru/3h3iKnljfW
Tew3J1jyMlpR3oHnRjsk/cHmWVJqTT/mqwJhdgzqXWhL+uTz9Uo36O1PiT+T
i/FT9/gpnz+YV09wi2Wl8oKfWgsdhFDhTK9vgmt7D7ruMn3g9/kA1LDCyB78
CNdHirSokqEH/OBQ/rppZY22xp4Ro31vF2QuKTodGQcVFwgyXaEuKKK61oJ2
bl5TX55IB6EVtnToNHiNpaNsP2EW5h4qvM2REHunTgDLT4Fd3h6ZyOlr7FnH
s7h9H5Lpsj4Zij4frxCTSkcMui7F0/kUyLdaClrINYH9P9fty/hi0PhJRyHa
OXWseu4cXxjJwP74ycfQh+2o4mfw+jztvrZX5tYip8iQrFKY9msOIZnc3tPy
9rT/cDZLs4NvI/2r6Na3l+Hoj5VCshJt/+ySuNK1omEUS68wcO9sEyCXgW/C
uC5nq0zt6H1JgswO6S7ytk5gKloViLCiwJG/xHO970chslDSdIa3AlhVFbIl
blIg4fVe6q/35iiedM/b6WEYSrueoUrLC1ZL+Wfs5Ldo+S7/xDnWbFg22n19
J3EeOAIO2FNDM+EaE4dxvcsOpGq0q9AQ53vWfMc1nojrqJyF7YZPymP4fdFF
/RhuR/mOf8vZuR5IfyukG6IYiupuml7ywPMl9Yzr13nBXlRPXvjeMdsJZvRi
F74IYP78PmXF7mAn0uYYM4r50wfNep/mf3JTYT/vjlFhOivw3SObpcAYDx+D
TWStsT9n/Pyk6T6RUSCLHSnRvApV+ZuI6zygQHVR3nOH9yNAf2c5INOpF/Gb
3xB7h8d731Xq7MpoAnpBFpx5+r0B9rybvQLjVHgVP5sQ/bQMHf+Tw3VzVxfM
TP+rb0jEeFi9VUeBkwx2d9+zhKW0okyRBsd0nO/hm/rRVc0DoOZ6FhnuI6Kf
WREDB50oIGTyr6nyRR/YiTMHmNwfRr5b9hQwO1Ngx9NmqQt5vbA0+PXtDO8I
2n8v9zKnCwVyrXhU5h4NIIfTGXeNuTrhi/WVm59/UyB2TiDqynECokepUhKu
lVC674bYGtbvGfxNkyYORLR3ITTpNnqGis+PqNJzUYEv3/ub+nldKFS/YniG
EAdre03laPeYO31p+LVYYAK+HTlaouVxoOzB0kw7F1pz7bRVVAwRrjgcfHxx
LwktTWZHdy0uwGkNavTPKCJyUVG1E3NIQ78Z5Z7T9nkJZ1+Nqwu/D/ummh8J
LSZDFMt8zO2/tP/Mg32yTIlom0DorRDhbMSrckWe5wjOxw5lwbzoWhRxXnPo
t/QIHHXRpV/B8flr0X63misZpcr9nf53zBFygqj3juF80f687W6afhYAi5cM
Q2gheh4fqnkB841QuuKLY/YdcLzzm3kSIxF5/RtakXhHATMBj2qJ5UEQkZAn
X6QnoKytEga5mKctinTfd/4+Dn+TA85PM1ShVXXmS+TkBfD7Y2MVrNGHLoqZ
JJF/dsNvsp9tNMZn7bhE1GHQj/x+DuJS3AXnnp4ZyqKngtsRrsJP8y+Q8xe7
rHORnfCDJHnt218KnPKOFXjTT0Bv5/tJ9m/T0T/3Rz9fCmJ8SFrsnt5PRJZ0
yOXKryxUHuxvGYnxXMrc03dDnoj2ePX2zbVmIb47jkMrR6nwn/8ivfEhIgrf
KC3vZXsK2W92zKxjP1OnIvh6o8mgfO7YnsHmZqhuFym5iXHYIDQlje6XDnDF
7/tb1haDnm16hnfheTR63axJXiVB/Hq5y4nCNsRaJ7Zy0JsCD5QLz22j3X9H
yfONOdiGzj33PaKB7fuML7Fs4SkBpJ9xc9/NaqSUrJbM+B7ryqcqrloySXCz
m/vxAH87ku3V+WLRQgUiUXOvYlcJvHUseGRVSEQsz3fUEPbS+p83LKlNBjoT
+r6qtBg4n3PD6WsRBTrJpPXJYCJi73ASuHU3Hb33fmn5EY/Lmas35juZAJxm
/Tms1zuRBiHJf+EVBWI2tuze30eA+LPhBkNv+xDLnKTSZCoFSv4LX60UHUGX
dP68I1aVIRGdg6e2T1PgK1fO78Q/IyiJ00Fxbb0IfXr+i/R2hAJNrDtUA8NH
ob7n0Ss+0xTEEaF0UNCDAj2a0ClGeYGiTOn3Zr/ogPsn/kfZd8dj/b3/l5EU
Jb1FZiErFcmI6kqRkobIlj1LlJ2skIzsnczsvbdjj7iNm+yMNCjuu0gR6Xvu
3/+fP37+PA+P1+uc61znOV73Odf53fITz+/4+wBa0kYYODmX6HSI4/naaXCX
GftohUONwUVXwuE/9o/fUVA6enhKJmJqHePtXlaBDxlEsPnru/+pSy2yKZM0
pdTZKEyuiP5ZiNud7ftN5mpQi3k/hwL2raLHjxX/4htAD7PkBMUTy9Ao2xqn
+jQJYj0tg/ewp6JsYQveb9I1SGrEtSV0iAzrbQ9VZjJ7UNvaLRkSsQxsH9rd
0sf5Q++t580oOYDSnb49T45pgA6vpXTJehLIysbXSO2IgwjFrXvVsRlo5r/1
MEfM+3BHYuO73CDiILxnEA1IQLe+rnwM6CPBRZMbLJWPiXBeDKQVTjUAT6s2
jyfml78WH24d2hyETW82PbVYFxCNULn+sQLzAnV+SqgmHhfviNLPwz4Q0lX/
4i+eX6Es42ZuRsx3oQ1lLgsNyHraDBYxHh4WEw3VoyICYVnVKf9qIzqjlh9P
g/NtJFD2eATmu8Qjxa/27GlEcooe96VxO6fUsvBV2n701vpQkItrEtp/v7mH
AethEa9r+xs+96NXMlOnD9zLQIR4l7dHfpHgtcqKwbj1APq7mRzXsC8TOerl
ZVB/xuOyTjF4Wh0G+y1YtGIM4lGmlbGlKeYjNCGmVkMIgPpXBs2KuW/QyL4h
n3w8j4PhOqfevIuD5/LVC0MOBUjw5scgGqyrY7I+b9KIEGG5unRFobUVQcvj
L+lXSXD+dUzhwBwRNBJ6zeKTW5C32AdJZhkSPEh8cXSc6zHa4aVi7riUgRz7
rv6zwM8vN20NyjIahDKNqrj9dk3o6x0b8zg/EnCFiizT4Djs8vy1V0WsBSVa
nBVK1icBG5ScT5syAs/NnizughDEOSTbSNkPVvr7+yyHE9Z7JpYSUrrROBWP
ydDi9e5GxTKQLu0NzS+jIv4pvUaqPz4r6+Hxzr1sgXiuATD+UnzSvKQDvael
eT2NeWfc+oaSBeMg8BwR7Xh4px0FaAgzMBqR4Fus173vnwaBtvjh2uOaVnTo
1IkeETU8j4s3vxXVD0C+YHX5t55W1E73ob/hKc63nNaxndMDELGf6b4eakM3
QxX30VK+n9zVuB1A24NqumtzXXbVwb17IsqBbGRgmfggeepHD+L7cHyv0lAl
qNC8dPiL28NoXrywy+5FGZfufNpxpBRKbu1nX8H8LiRrZCbk042EJxwhPbEF
Yi4y07dRYV7uzp9Rv9OJ2hY6dvGtt8Akr8m7Kfz/Q5fXE2hf96Dt3x2/NhY6
YHzKijqyigTNWbl6o61PwUhYL4Zn4xGquKnBVk2pt8l5zXDW0R5EP1DfZa3z
RvoiIXXxuJ3G80/G7YuAPnyM6T14MAL6OmQZKPXb6wUf/Hvz7xESrNmlnrAR
g5rCw4cnMd+xcXx+5hIZiIT56CQ2xlPQo1eOR2ewz13o/Y+f4Xgf4vgYHSex
GIMeeM4e5mTFut0ylRCqTATfirrTB6dbUHatMHlWhQTPtf48+9OQCl7K+S1r
PfVAvnRYbF8nGUY9/0581RyEe9NDXsqSbUjLWKaxyJgE6+K7+c20I6Gx0d5Z
8l8BeFEfiHLCeXu6Y55ukS4QPsdeg6X0ZFg6JS9sQ6kHlT46P5feBofyNkJS
Xw4gYljSA6knJEj/LfXcsWMQ6F69PMe6sxldHYrToOiQyL+qSwf/DoDa5PVb
ruOtyJM/+o+SPdZRfuuBX0QH4OrDcf3QOx3o7WTilIwDCRyyKzfEQnoQW8nt
994N1dAn940jC8+v0cNIdhr9XqTl57Xpql4OXE93eg5gfRITmhMYVN6FAjKY
UPK1FnhiWvv9OhMZTJNuvtD66QqJafvIoQ7OqMeY0acMz4vGLgsl/90eKNt5
mb5oKAE9UEjr/Y3zvDnwSsnQzjxoGuGzbPveBtYtp+cOYD35X32B86GvL+G/
7ocVt7LfQFgzg4sDXo93rp6VNNAZhNiZfSUNcS2I6kNmQRce7zupvmrlFwPA
X1Tylu9aO6IzfB4yjMcb1KeSwv1eE76MfTILiYgCH6o73pR7n6ntHylwsg2D
SPMXdhvWVpS/zEJ7YicJSmyHQzteEZCq0XGPMdMEtEp948AuzHfCziNh722j
YfJgx4uWnSXAsFnjz75Ehv0BvnKaHmZwrMn7ftGRaAgYjdeRxc+PFk243GP9
Bp1ZsNatR4XIXeqZU9FXMnzaXZ/z5elF0HzrccWzIhJcgi7Iu1F8xKdDywKa
1Ihz1UV1YyUCOAZYP8dR7vs4uemxakpArIGqKTUFrxHL0T08L7AeO93S4K6h
SEB2KRd6tOZS0O+OaD8drEPWUruvSuZZgl//zgGbs9Fwk+fvbwn8nH+ruklL
IwRE3pDzQ15xqCJEbHOWgwxmXcWaAlPRqMWMSbXIJwMlPpu494nyHSlYprM4
7j1wlSjXac93wS4jaf+kwm9wkUpw2pPhA+ptnF3MvvkOWD7dOGh3cgFSAw8J
7OM3hEwe4yPcM1GQl7F06Srle+buiskD9+/DWnOGzzWlaLA/MGtzilLf+8SH
uPkLBGT97E1tZWQqeuX3oksL939/2r5fsrIEVDPbKNYglobqWLWiFXC7mfwT
e6mM2yBoVlhkIRcFH2pyAin7W2wOlXSCKwHJh1jpWQsnIt3pRNmiI9h3hFZW
/6dOQMoXqQZbHZMRc/e1xkP4OTvfXjwZ3YD98kwxbc7JGqQU6Kykh/n9zhP1
B/vUs9AumwHBsZJitG/Xa0n6z2T4GCJnXEomwjw71/3A6BaULn329jUpElxX
GKGyyg1H/+69TeW/lo7YVUzMfuP8TA/lfGSWTgSDpvro95ktqG7ImcFVngQi
oY8O9W/egfgfO8ho7CW6I9w3w0PZbznxQnI33wAYlW9/yhnqQPEZe58G4/6c
Ij1Z9DAcgG3NUBkzpQ5E/5RWfQTrxpd1Xjx+tYMwM8eSsRXYijjV39y4r0uC
sw6CCX3fB+Bw3+mFgF3taFRw0UnHkvQ/99voEH4ysZ7uQecCaSN5jWqAbscM
IRvng0KOWa3JWg86uGs6XPN5BaydqnngxIl1+5hA/lJ4L3rdR8fec7UEdIIH
bghykyHF0uIRQcYXnV76tPreOAlWNMxOb2O80lSLVg9aIIKDtLjnxHAxyMfs
cGn2xLx5mc89Sfo5jH1lMJpYcEdXLWcLVHAc/mao15P1XgB/6TNPgXFfNNra
QKLcy3Zil2ucH0M7qnxhdPXLYhk8Xvd7ecuZDA9n+vZ8DupEz71nGCxpK8Ez
Imnxxl0y9Nln8IRYIZS5lfFjXKkMKkycn2fm4ny4JBpqslmCLubI2hRoF0NP
Znf2vwnMs1/g0W69FMQQFMY9K5gFDruDzz9cxXpS8QCVWwoRXN9pHLrhlQmW
KbE0rNEkUOM6yq20nAFvdgXnpCznoc9J9UNXMA68vFLoU2D9Eh5U2chWSYah
QwdnxinnK4U7+P4ecmqGKrHt/9zjq5Gx0nEVgZdk6J/3uDimMwCyRS/5a3Nr
0cA1lPupmQRJIjNfEG824unhT7cvzYSAqd8pwyQcBx8powqNaDQZff0z45Fk
MI5NNrPFPGUyohhpwFaNiuLm6NND84DomPiurJ8Mw5xPDjgfbkVTM0Yv+fsy
wGjkSm17IhkCVut/yX7oRBK35Vq9SkNhrij58lFbMnDWxOcWBNlDyKTLbh/H
KLTDjNebcq6ByPe+6u63ATjyqSA3pLoW+X36cP1YIQn8LHdKWSYNQI7hO6B2
bUGV8rQqQiEkePj2a/zup31wXtyk1+si1v8SpsKz/iRIGDZn/VzXi37vigg6
fDARuRroLrUcJwNPgrRL/9378CXlOAcMRiCC2EEJyvnckWKL1ODPb4GR60u+
dWAPygwd8CzyJYFF8fGP+70GoZxaWeOISgva/MRcoIx9OqMR3UBb9AAER8ow
1N1sR+r7fyw1Ueq/XWst4LveD/Tt5fcezXYisQ1OHXrMCxupR7/HYL6LH/FM
NCmsggN0RqnLOP99kuZPr0r1olkzPSpnchnc5Jqe/Yfzv2Rvb/dm8n10tPtl
oA5bPLzIvSVFub/VUunIc5+l53DlP79W+p3eyJRXX/0MZb/o9UhmH5pOFNrX
EKi3swI6xLt1De+RYbZnTxIVZwtaeXlR9Vd8GSynJg7eiCZDwuFJz62ISvR5
l5LBRksJ0IQ7HVbsJcMRUoMiss5Gje3ayR8r8iCoZCwtG/OIoChd3HJdHHLv
GjpwOvgN3OQv5aP6TYbdBQ5FAgapoPJmJCH8aBb6frtt19cVvE5nq8/KpkUA
98Kxq7lFsQg2PV/aY/6V2hkhW0IXBBeVhItS5YJQzlu1L6E4/mHJaYl9qs1Q
QnZ/XPyoEbk8Md7adCXDrw9esxS8js7UfFhRkg6+V1Y/sa+RoYVjlIt62Q1y
F49LfDSKRUYvr9rl4/iMri2l7hcdBEvj2zUPH7eiQZMXdON4vuZFbyd6igzA
34FWc6lnHehw3llDbczjLR/0u3bYEuHZ5Q379asJkNztxkaXRoJy9olGr5Rg
mMviSHO8k4rCWt0ePsP5f5Gupc7sORHQibhi3T31CKibLPsxTg4L9eaEVvei
J4stR62HiuBCM1F1EuNVv95sC/enXgSmfwx3s+aDAzHq7wzm94uHe0XctnuR
3c6RP+Ovc0AnW+jbC8wj+a9pDZI9b8CboFpea7toWH1f70Th0zeRJRyNEkOg
qdG2qJ5RDpoz7Q6vrLEfzEDJr+iGYKJIl1rZtBQs8+hPqzqTgIdt7/hljiHI
vU805Fcsg+KkDZsDeLz3uy+Pi58aAtLU35Ek+XJgYWC6YIB9XPnIe+YjmKcm
Hx+RU2rJw3n/m2gSjMeV9vxfUF0tVAkFhmXwV6H0s9EzbiVkmLn1b4/BsUQk
z9XIQlufCg5TM81bvyn39L2g3WNbjBIyry/VPcsBy8b7lxc+kuGQHC/5WF8p
Oi8pj+B5LlhNnXk4Mk2GZ6kTkQaHGlCEX27CBao8yD050u+MyPDtzs7pscYm
RO/vf+a2bA607OjqDCnCOiTXwn1qpAvxxrJ3KwS4gcssWYvFFOs6+YS6e3kV
8B8zpM2MYJ6tOZmQWI3z+eHS7rTuAdC3JlinhdWiC85fTG6XkeDYoG3/a/5B
+E39xVNstA6t6C1YnsHzLqpi3/mTaxDMVk6XtnEilM/8sOtFDAkSNYyPBooP
QD8xI5P+dBv6qLVHUT2IBGEsByvf3X8GbMe5T0m0JKC8PfJ/p3Gev+m8Wv4n
1Q/7KqFTx+A1UjwzZUX5XeOyUFKIvlwvott+ufXsWTyyl2Q+kymB16P5mVYq
rE/uh758/f73a/SG1oKxmY8MZbI6LI/VbeFclkuB741I9FbNgu4pzgcunlYR
kToiXOm5dd+brhbx/3UvmcPzuIegKZHMS4Da3KmEGxKliDRmdCD/IBm2XBT+
o39QgsYHFTZrN3Kg8DoVle0HMngmMXmcMkHIbt6iquJcLogF/JDVriKDToeX
nmxuH3BsRRLSpurQeQbRwFszJGB4L3Z2SXAQ1Pf/Vss924hqDj8WKY3Dftb0
y6Z2ggWcY4tsORMYgbgr/gYkU+67KX7rGnO0A76H56l8kUbI509pcuAVMkDi
jzqdY0OwYMus+LO2DLY3/hBvYB3yrUiGlbqtAQ64u2ptyzUgaTs6lScRZJC2
64q6qNsPzGJFhR+s6lC6I/vnnnckKMyuvfhahoD09eNTFhzTwcc2WTYO61UB
xkdsN5N9wDyB0Xe46BXiC2zbkYrj//SWpdbINBFY3Hn4DFKq0c8CpY49OG70
PBfEOjRKIM01W1voVBUKOMrs8biHDI2VcS+333dD4cSbeydsG1FH+MnLmRi3
G3RfqmZQE6C4I8jU4Us9ijjdNrXxkwROneduGYsMgdRq5q5N6Qowu2nu743X
aYPHwz7WAnMQz/r8X3xEBHr49NA2Zb9iN3z9fCvRHMp9A67f+xqBxMQZT1H4
iP1yw/SCsTls/1mMWcuOQJ1Fr39Q6jBPdG6taDqZg45TY9WFAdz+KYKPch7B
9XfW7KszQ/DfGpvg5qdyML6aMtJpRYLvH0XWFDBuqFOJV78TqoCDnEv7FXF7
x4czlYu2VmD4JYdUmx6B/rRvP0jAzwlxzuW9FdkB8fEaX3snqtDTY3dE7+mS
4XvYxzIh1m44J2RzhNesEglMP07dK4/9QuiY3VZTJ4S6Xa17qFCFOE0lfovf
wn7t/G+L06eaYP6vidzUagN6q0Bt6O+HfbHeCS/GMCJsuMy+/SeTDjXfTR4T
40kg37f1gyOBCI9WW//Jy2XAlbxvIb/xuqv4krOuINUPKzNCGam1Baiv5vSa
8x+sb2ul5ENrB+BgWsAXpZFY9J5heefnWRJckf3Z6c5DBCcuGdOkAoSKBRsP
7cJ5Ndn3VNuvfRA6ApCUw5Vm1MFc5teN2wdPR7VpaBEhKVeX8LKqAfHI7/9+
/yEJZrae8ync1UA+Efbi/yxi4bRywZEJzC+7E5zm6n5+bFzauekCF2IgZGrz
5AHKuUufJFUNLyKo07faxomnwB+UtL36mgRH5o4pE74S4f2KiPioQDW635ax
XH6fBDVb1OUP8XrnYtCTPfAlDc5f3jlMyVsnntqKO8XqEFYnFX6GMxr+ytK9
uYifD0yl9b+NCWh86cPQmGwyGr9uvKaA/5/o9tHEbh8B1X8aqWhQf42M57+f
LxYgA3eyZge6QUAetYUSe08noZnOSgVK3QavYCGem9VF4DC6+3zUrxJETpjS
3D1FhvKZ+3+vn+4BJmeWqJLZBiQVmteeuZcM9p6xTpFdcRAp/6CiqToFhdJy
J8huYH1upUHqSU+GwDg9DvNrGWjscd+LHZiXDw/b2HbqEZDCb622e85JqF+3
foCI+7nwmofmyytd8HKoSg6qioLm4OWuW3hcaaIjiTYzz+HuZea0o1NeqHu7
gFcK6xm7M6PlJC0Cmo0Gn5MmSUjO9VnnAdz/z3snvaomteB6Bg/TrtkoEBbT
bb9G2febyBK7+zsRrOstlo79qkKyZvYpHvf/tx85LBXzt1unAy2I6Ip9CmmH
wQKjesp+aZuYJ5y7aDC/uI5SnRFsA/k2hhuuuzA+N7B941x9i97s8fiQwdcM
nVbiIR+3cB6uPxwZTO9BT4Kjfv/9Vg5iztwiObifcHfxrUpwD2IUrzsBwU1Q
ZHB99PUGCS6mvrZUPTmITGPuvKqfLIcFzZo4mioS0H6qjjNwew370xeDhk7E
QkLcxEFvrDcap5X0H/8rB5NP/xlv7mmDx0UN7v88yFCXyKCbJkVA3omXGzf5
cuGKqjzvINaNBkwCdD1iPkgodNh01T4MRs6JSETj+JgxP98VsHoOKTp+Vp58
Gw5sF5MkKN//NY7ZebHLv0BrlnOC/bvT4GzygIsmfm/hmxoJVtUByLgkY/Ca
KgbR/Phx7S6ZBF/mZA8szBaiK4fvroeruIKBuIAP6TsZHlcWn6gNrEYc3wTF
qko8gJGJrpoe+x2eskArRfFmpHlB4eGFCBd4uOdBRlIFGQbofXRuz7ahmfBp
zqg5Y+DjT2ZRxjgfQ5XipH6rA7FuXd8ZKmCO+CeetEY+wzzCxaKb79eC5HY3
On1RiUKFtDsJAtlkYHkn5d9L9Id1bHa+xlugpPQ1cyvK/S9LP/xaJ5IgpdHI
JiTBGdHZRf/gx/ivr0YTzs9YBldGln0OHAhDymKs/YoLOM699f41TB2gsXNW
5VVhIrIlnntwGL+3sMWo2YhnAPZ4t4dJ88QgEUnq4KE1EnRXXlXKWx8EJhH9
0DiHaPTt/JHw5+UkUPe6Ly9zvA+1PNgu0rePRj4sXw/rsZLB94+TmvDUEAyX
1q8c78lHVFld6Wv6JDgoXbUiHkqECvubw+pQi8oF19rfY53WYCApxYxMwTYz
ROGddgRKHUpzp5yjSc6ydFhbIICTyeeURetuFH77a56aIwm0+C/Mx/4YhLf/
WHMuVDeiyXc7fze6kuDq2N3hh+fKoV18xbJhXzWs3pMv/tdMBnc9xSs2RCL8
puGUultaDf0cbv71WMdWXuHLtXztjR5yqy2PXw6BhodDVgRK/f+jLCE/tdrR
7qsNSbNcQcATJM4VGEyGZb5IjdbVJsQe8o/ug0MQZLx9rMOG9cPygUzhW5ZV
6GTEgdKLnf5w7ZMm+9H3ZHggSN3RaZKPdIhN5XsLvOB22Oo6D/a/RwUmmGL3
JqN5eToJ/WOOwPDHguoIpb6NsFPebv1gNMfxK3mM6wEUSPP4ilDOkYWJkr/w
9IMMMx07fUkMhE9Mr1C+/4sKmQx93RoA9THFsWyvJ6ByfGl1bRzzYO0O1V6u
fnjJ2S6UGu6G0tu6S5n2kOGCklP+la42yH/GL2eeGI/2MiskloeRIUeVCXw4
S0FRMI7GNDQYFS6KJ+djHxTqGVe63yIV7FdWlLwz7VGh10V20U0yLOq8q3js
GA36q8M1i/c00S/FPRriOG4x4Rr3GL5mQN4PbUM/qizUU++tI4nXywnr33nt
LX3I7JBvpJRbJGrVTn9rto8M4mcuXCVGE6EXGd4lfK1BdYYP6rZwPigJCDT4
UPWh3anNW1XvKpDE9/43axh/Dn9TkHRdHQRSXMn+Da9GtNep8bjGExKYhjkS
JOfjYN0/5Md5FnUoHzL+EYH5i7vi8+s9VNhP9p39kXE4DoKZDWyv4f7Le/JX
qmYbIv6XG57Ohp5Q/a/1aCOOs7DF8TrWB15AGhfzTTqZAMY7g7/vw885a8he
RNM/CvTuz9IKbYqhx24saSJ1GTJpnjWuX7NHSWYC4+/HQtBT5o+jf3Ac1BgT
bvFupoApQad/Wvsa2p1inu6O36sxFjq2Jt2LSu4y21+IbYRFUeqblzC/T35X
0+/k7UEzX8cGI2OaIbLM9tPlX3i8iq9O5RLNQDX/+UXJkw6Qb0Zmp9wvZtd1
8c7VlD6UtUS60vi2HgSp+F18pkgwdXMu7q4iEQ70iz/YE9gICk37uHdhfg/p
ajOyZB+C9zdM3N4zlUN3WY3BMewTv3zzf6TCMARy1H+0wosqIDz9rPciXhc+
alyeURHW6AD/u79LdzxArifLow6/9/e83n9UtNnQdojz84KoD+I1C/uR9IsM
ZFX/yiTlQZAbKv1zoiAKMalR9ycQSKBhdYWDi8oUxvIb1J6SfZGs27ZIMGWf
A4M8mS0e83uY9UHegATkq32dS5CHsi9FbOadsgVIaaVFP6yIQGGN866Uc4sp
gzsPT7LdR6RfO8VCkqNRsILkAuX7T96xAyPTLcrgfrDO6oZcOOpzfaFN2Tcy
4JJz4T/bIfAd+vfJ5G8lGmROjKbc32EX85q1gouAav3unhDckYlcP+6Ie4L5
er7I0rD/AAG5GzNcJzJkIPaRQ5XDmNesh9mzhbcHYJzvfFfxRBsKi5rNMrQk
wS4ny+VjdH3o5M79le3PyhHHk/7t6zvIwEFjW2ipQoS2fkJOyd56dPvbQn+I
Ewm+Lk5VCOkRAb7UiCaE1CGad7Sr65T6/G+PGrtnpAIWaOcewkUIDC7sOorz
xC5MteBp9yCsqC/7ZO9tQszHNwLXMb5J/vsadpK5F/F5FUweZ2yE253+nT7b
JLj0kfmXcGwK0K2mGdxfCIHXpTfaWzGvmRPlPVqketFOo/tM6oPF0Mj31cSA
nwzpjP88RPbZouUCau24Xd7QcqTUMRvPy62DC6w/DtiBsXCQkPHraOAw+5pA
qb8qveLeeVQxANG/M3Tb+ycW4mVXNSn192S+X9SVTBkGO8N++hOL1UD9N5Z1
5CgJtOtV3oq0ZqEAOdd6mg8OoCZw4xMT9ssTZAGfo5VlqP4Ac4MOlTvcywnS
ouxrWsiJMK6JbkD5e/t/PbjoDoLSh99/7sLx5zNU+3O5FTHW9Xv6xT4C3S2h
fQlpZHA4uFJfTG5HLmlEQ82THLCtP5lMeE4GIweeFLKbP7oe8i2mLdUW3pRt
uZlT7vO6qB8rndCOooJjdSPBE/kY3iJCIPatyzWbpYFOwLiqe577iwlyM7rJ
SDm3e7qqas/3zkgIbD6nff+lLVpl/shlheNA+yc9mP1II1if4j5b6ByHbt4u
JNS04ffSUZkZnO0Fg0qDHtb5eFRyu0G4CPvci+MNJVZGRNhD3v+v7F8s2psa
VB3whgReydx0Mp6miLX0qNHeG7GI8dU7G4reHk4NzortN0S/AgvPUlkFIoP8
BokblLrHeQvfUkYT4IO818fqeVl4YNktdgr/f0ZjroOiTyo0Ct1oezn8DIQb
mASnKPvYn5beYTLpRYVuXAuSak3gtK950AjrmX5lnxjOlkHwq5WpGFZpAd+B
Tu5ScxLGuxl5wr488Cdya5az5qCj+5kmSjD+p1OnH3yvSUB+X10LOjlz0UFT
0d4P7GRQVXwumDsqixyeV029WwlF65n2qTtwP7v+PfWvShiCYjHJmlDf18j+
pk5xCsZz5yO654SyetF/s5+NIxRz4PxpK8vpY5hnbY99+6FAQKHWm+767mlQ
9KHbyAmvx8WthLQJOQLyWt2zsamfBhWPilIoenhcfnDUJosIXOtnwpRzaqHl
oKNaDcarSZU8Qm1mMBR68JMPfamCLHk+W8tJMkxKcKRb9KfCXouaLudtJyST
W9ZAOc8b/m2u0mc6D/L1ZuvKeH2Q9foh8MS8vO697VETPwBLrjlWp65For9h
r5l4PpPguqaJcGfYINiyNCi1BUQiY5V/N6Za8bq+/Txl8bwlfDuqSOfyJxk5
1ouv/Mbr90eS0m0J7O+E6VeFoT4VqBYsN09g3+eX/YTeTpeA2kuozjwyzkbH
D7lOH8Q6tgzdmQgpIcJBHXSn5XoNur0qteMdxucgGVWF1EUiMJ1W090lU40M
9Sa/5mOd/7xwVICqgIDYJjfGckyL0OPfjdyrTJjXKjzC9FyIIL9zh4tGdS1a
k751u8SBBO7cMJk914NecvY9VGVEYMRSFHLzL9bhXVFiJ06mgp5r05O0HX7w
NVQu9yeOzw9BkmrOEQI6+4vue3hZNgzTPM9Xwvhs7TC259t6DjLOpg25MvAI
nBJDBA2xD1r4OMny7m0xuiqup8ex1xEumywWA4kMssZyEWtXK5BcHZv8wXPO
MErb0uQ1T4ZT67Y5Fy7UIq4Bs8gnOs7Qfs/VpGKYDCUVNLoblxHaYTzhKNfv
ALuVvtiFt2B+aWKXZl5pRle+ze+Mm7YF6qfnJ3YVkWHH4Ijr1dlWdP+5k1+O
jgmwmBtuvkrEOpaUnltwqx1Jzt0/xLX3CrBomdzPfonX9fqM22fhDlTt8OjB
bm11JCps5H7RF+u3xwqJA9CB8sQvVktL26ETDiMGsj5kaGXWvBPo5QGCHYdr
oroN0bDkw8eUOuQGV3emTEQEQynt2c+Lv0zRb52zVCdwe0qyeZ/legz4np76
+MTLBrEVvi6hnNMJ1BYkFZ6pBCaut+cumoYi66WF80KzZGgKr3nNcKcZep3K
i/smo9Ev/RWq9lKMw0b0jL76XZBVuTmddCYWPSiv4mC2JMNbzfiXN8cIEKqs
+Cb8YxTqXae9S6lbcvoui2r7USK4sxAvK9tFo7vHmS48LcT8IiT72eZoNaJ9
1l87QOhExtue3evXyTBNxWaV338J0QX+fHK07hVqZgryptyXdDomt0PoqBEc
ibuPYn6Fo/NrcpXVlO9vqSznbuUXgtvwNIn2ZBgSUKbavoR1XTwbO9UDUj5c
80jx2u0fiHZY99JQ6v69/6m9SdfYixrP323bsa8Bnaox0ndZJ4F9sxC3KQ0R
NBipvbX3N6L9TwvGEjCvGe9Umatu7kU5p5SyB+SzoOZ8pdsCxgdN53/6DTuG
YMrvVfaJl5VQUPazUAKv97meehHNfBe0dLqe6C/oC5days0ccPxfHziVf0S/
E7X8vNtokuoLZppV5j8dMc7TodmArQ5U7JP9OnAiEKxz75tzPCHDfSPhyHvs
YUgoeu9NVjpbIBRtpy7/v9+vF/bF/mtDKVd/GZ7y9EHqutZe6VgnCw7srHHD
PlHAR86FJaYT6B8aph00JMEThcesl5pj4PfI3Eigigmasjij/hPPu/K4JV+J
KxH2qs9b0HyJQ2fv282Wp5DAgDv0P/p8Q6w3c8ZMFg2RfoeAGOU8Y9TAQuha
nTbMX9F21hO3Q/PiVrso+/bjzdNoMrgsYI9R0tuAogj07CibM+X7lYHr8mLO
Wi/KP/zx1ImYBsT1rGiP9CoJ/JtVdWrCCOioQX/D7/0VEFw193OZlgznJYYP
NZQuIeL0gK6cSRs8ZP517qT1BAR3cqk8OEmEjS8PCMEf6lEt74nuBWcS6ITY
riQGJgEN38HLLfTSKKZ4bI5yH9/BBTLDcHMPetqXrLGPrxyElDL/UO6BjeZx
cXp8zh5+LaHJOH070K3g4qXsH37rE7VjBuP5xReqLSbPqkCIWs1ziZoM9PKR
h7559KKHK1q6l13zgTeofMwKz/tNAtf6R0M5MKBds7u43xl22J6InsbP4YM9
Sc7aimjx2Jhkdm0YjN4+mv8Fx2F6NUzYML0PCu4+Z5GYbkM/rx/RI+M4K19P
XcyvG4ajl9+KBMYXQ3aWjfqOMyRo4mWZTB0wgtg65RCttQD0SZsp8g5+vng5
n5S2oTZ8Cros0X8nDLGvk6lW8fPn+DY3MhcN4VkS/0CCbCgq+q1dTkepJ6N3
OrSZLwWef9inL39WGmW/kclaxvh/hsbD+VCkE+zMDPdRj7GB5RU3F0qdmaed
0iqBpb1In6i4yjxSCw7bFs58O8mwBip78s71IvHEoPCc50Xww2ks9oIA5sGz
/0kMXTSEY7m6+l9FHCFYWWSaov9b7myVLUpowwWtTP2Cg06g8DVoH6WdeneD
U4AYAXny0v58wZUBl/4cMf17BOtAGT5NkYNY3/7XfnblfTrwUIs4++P5mpXp
2aY6hvMThPYk5zfBlvoBgf0WJBh+ejcyZlQVAjhT6x0ORoKgZuUw5TtthcDk
5WLuIXAORY1dDCXQvKb1cgjr23rVRWLF21Z4uF/PN/JEDiywBSg8jsT+dIFV
PiejA4r2Mi/dwfrw3d6MuouaWN/uDV9wDeuEj/l9JdCaAz90N6ltrMgw0kVD
fs/kgchbw1nsu4xhWIDahnKPQ9nz2+4KPk1ISVFBZUkyHkU1lHXtqcG6tO7p
6sCyHQpXuhJhOmgNB86XjVPqY3usRo1+fpyJNjyZGab0i1HsQ7l3WpRzx0cb
bagH0pHh1etTjz8/gDXljxIDG2S4DJ6fL/IYgq+jdoPDB29UzLa8nkepdxpq
lf3lviZUn1J6fdjWDSmcvjXYh9sJbKda3Q4TEAmtFsY8y0R/EowC9LBuSSxh
OWt0Kx3yUmpehR21Rgm6mVeOYj71WW6r02wioC9/hpNTh4rRM+nGGzaMOM/d
LU4c0CeC6YXTE47mdejcyliLOY7nLaOJDYmBQbAYLyOR3BASt9hX5+dGAqtz
x17lZQ3CfIs7vVhsE8qtfJAljf1vO+2FiKTyDFhzal/XYw2HoFdwzgPr7cbX
1S62fkQoqI5q3SOPgJy1LPzAiATMUUJ/C2mj4Y7jU+YUyzsoVUW5VAHP7ye3
uWemv/pQa7nf98Na1ci7cIPRAeuf570lTv8tW4OOoZDud+bHMC96Up5S94Ou
tDmo//wA6lJlP/aopxr+W73ksqOXBPL7z+/LN/VDNkEXuAZ2RoJ9vtolfsrv
nmJvzNjkXZFYbfXK+13ZsP/9ybxB7B8/nfp4KexSC1iV0ry6PpiE7on9FHTO
JoObKK18gVc3nPLw2BHu0Ya4VMd3z2EdK0iunhNPaEPFKlVVomxhwO+twiES
hXXpJm8gY107OlhXPe++HIh1+dSk3gsy3BBl6Uj4g5BIJTE+mzMMun7fiOpv
JIOLJo1+XXgzSv68f/+J+CCY4NLUrSwhwwX/nhz0ogI5JDH4d/AHQdDTVLsL
H8jgp6csY9Nejd5mXTlXdysA4jkLT5HGyEAaaeVISs1BjrQpBbcSngFTMfW0
CdZFlYIfDUwCC5GntMHEZNEzOBwre4v5Bxl4/1s+v9v+FRLdyksqd3UG1b5j
Pyj1DRTOLTsY/0xBgl9ee1zecgbOnUvT+hhPjkZ40xifHIAdzjN7lvbGwCCt
CNMHjPPL6z6X5RcJEJ6XZeglnwrtDO6BFmxk+Ms7pi79YwD8f3lvlU88gQzv
J55hkyQwc2lktWccBCmBHVdtcT8buZKWvUdJQJfrXf7lOwHYhdJ59g36IpkR
q5rrWFdMf5PxurveDwl/3ESSDAyRgsuDTa0tEihykiZ16jqA9Z5nBVdgDIp+
SwptdSPDgx8b0X1nisBPWebkhslL9NXyQtESGeufu480n5qVg+/J02tCxRHI
IHFnd8xHMsSMfd5MMU+GhfHdGxHHHdDs6L9bDDgO4+oFhZ3f0+BHWKuIPd8T
FPofufcspY59v+hxlr/VoOOjP8yxswv9+T3OMHyFDKt7aX4LIALa9ecJ65PG
OMS68niHPBcZ8mkNZbyTh2AwQOuLamAZIldfk7mjRwLCqF7PnsVBkH/DdNJA
pBnJXt8zG4F19QHXWNtBWiKYbYz0HWZsQXoFFm85DUig2far5aQo1le1hPdh
rs1IbaTo5tt7JKgJvyzzSIsIyYUc1982N6HJU8yPEnH7Wf87VWVuieB/befK
h1NqwAB2nJR7iP4B+QjHBQKyyXfp9trOhz5Fbsvxw2SoF9MszZGYQnXNdOUv
OzvQwwveef2CS8B7biS74hIRRPNCFwQS6hH9wY+uPxxJwFOhSYgSIYIOvRuB
s6Ee7fx5bTc91lGdx3ecUpMkIN9LTRpFrKVw220qe4iZDDQubcWhTC9ACTbn
thVfAX39rLg/7s9GU++Jpj01SFRp4gfrm1og+jUq0+STwWnKiCuaxguNDl8V
6vT1h63KrDBJvN5lnH71+MR4IlNq6mLn0CCQdbKppdQvdR/RFxfdNQSTm39L
jVlyQT8pOzviGY6PMKd1vegQWAuvfhw/nwJypj9A34cEiz/4hUNfDYCGRjIj
3y01GI+OSjP4QgLX0A+XVZSz4YHtEYX2Wi9ETfs01Avjg0TDbeFVuzT0Onjh
eEmBHbyNkxx/jfOBdWRb60fFELyP/RztQExDTToSFn/xPHIIudIo/SHCcz43
Xj2fOvSYvfzPe308v6W54b4VvRBW0ixUd74IuFd6F5KxrxH/8OCXtl8WOOkE
8/al26Cnos5CKhg//1fdgGeaouiwfAAyqJ4vNnrxGvY/VuNex+v0dvxarirr
AGh/PubkuisVbd3fMj3+kwTfnjFa5au1optZxD+dz4PA12yIoJ6K+VF44iRv
cT16ouY/V6cYCKevrJZU95CBsTuoPdqtFPlsMJ44oOsLv7ZsJKSxH+/LpO86
qJSBOLhohI3Sn8DWyxuzaJ0MHf9t7b7cHo1uuy28Pf/XDrStWVYo9S0TR2zI
n1oHQNUwfNdXwRcwcPinn+Yc1quSO9SoD/QAC53fhS/cEci99eL8I0Ws31r+
dGTtrocDd6i/nuOJQRVvBfT6e8kwWub1ZF96Aii+C5UTXrBAoW/974tTzoFq
qTXMGg0CW+sZ3rtZrahjlxMVC9YPZT/cdTliBoBN/W76Je0ORORekWo2I0FI
0+k69cF+0FrxkrhN34XOS/IuqlliPa/n29PtFwEtnUUL7VkJ4BjcyvcBx3Pt
0K3z7zcG4GfKo1lL0XbUv5M6/jF+jve+X7Ip5wbB2+pG/pF7bYjsdubGe1MS
sCV59LulDkIFb0yoPG8ruixL/CFrQoKO+65Lq5WDqL6R/2Z+UCmYMrnfDMgh
wabDsEAMJxE5r71Uz3YvhoYGkSqjZBKc/nS16d7gIBKvnGK3DwtGNxv2dyrX
kUDAvEzz3dEcGBIymSitTYE8y6SxRoznPdtfF94VZoPZh3urn98kwAt4Ule6
ivOh0ECuij8b7h09kb2fLQYuVSZq/PlJhpoDPjunFvPg+jv1AqmkTABOgfy+
b2QwkdyUdknpQrXhtvos6q3AY/tA6wwdGX6thL/9VkEEmk/m5isp9WDYV8Wu
hcf7Mp2V3C+bATvqgkTM7R3Qsc8W8hM4H04c8Tp9tasHnb2p9OTT2TJYXevR
3Il1tQDbiaE9Xr2okAbFaUjgdWrCyqolSIYqrQlCnQ0BjR/umad+XAY3lIvS
ZRnIgHgU2F6wDUPLN9+bERmFkKE3Li15hwRF9IuDJVLDYB88r1cdWgCMFRKZ
ijdJcOb8fwM6k73IIfTn9o+uDBj4Mp/vjt87rx6ybjPQi94Ln5HYYZcJhAHC
YjZuf7pdMaxp5gHpxCYN8v14uC36Y5ZSt8FpZMk/jIMIa+6E1wmOzaA6ue+r
FdYtEhX6kb3aQxC0weVzg7EMIgbufqrH+XOee+uH5qQdmjnI6Lek4ASu2dUX
KHVjmvxpD6jffQc7Gq1JcdG54F/+4H47DwneMem3tBuYwpHxzd85ERGIqZHr
RQqlTqYGC01DFhFuscUFa++tQ3ELBTRqD0gwMV92u02aCEpdcUNGFQh9ljqw
pIhxho5a8oK/ABF2p34irEs2IWCqKxi1JsFu52QDc7+H6Hh73d3R+iB0qn0f
qzjuzxnPsrunWA2RqLyX3t/bQSiO1dRcHrf7/9x81NU9CLuzVz2IB5tQyfap
jGyM5+YT1+q/vh+E5emz/EkVzZAzuqosg8f7uPTFASYLIsh3/islWdchbXmx
yGEHEgQxW5Z9GhsEIaOm808JzSj6cdwaC/7/JLFwS6fAXIj0cpeecvZCev8e
BVbjPFQ6e7SzIN0Y/Tt47ZlucAA64DVhTDnPeOWVY8j3c0R4hdjDKusQRC9v
cJvhcbEbaTEn7BuC3otqMg+u2aHLIyGad4Ox/u8YPJfGTUDn85k0m0cyUJ06
71wA1sPbPwvKdvkSQUGGu0o/H6GmHgWvz5hPZaiSp3zbB+HAdG3Fu/lmFKCi
ac2On1+YZHNq5jUR7o3cLU6JTAf65KIUz1gSOMZRubcmYj/b2dK+YFCDXnr7
6ymvk+Cknn8hp0sKPPKL8KhuDQW7qJ8mHZgXuF0t7qa9Sobkoz4aDscjwNrV
xrAPt9sr3st/N28J9iWitjYPouGVVZ7Kcco+2D3i9AnvieDxZH4jt6wOBC33
JGfgfNNwmn0REqAL4Y2fF+5ZhqOBLOIW5ffB4WRlvmulbyDilqBCFtcDZGRS
FS6PfcT8ni2bf0KxcI5lsSDFLR4mk6M/UvSb8shpEUHzXtRFPTJbYFoIPCKe
etQ4/9cqjv4YeBwGd3tr5BRcX4GHrbYpZX8v7xzhofpGNHzljvF9+CUePLZP
91N+Pxq/KXbA7g4BXVK2un7TqQh+LxmPXjyE13VW5rRRUylqP+E5ZXmjGfwu
B+5NSCJDaHABpyN1PezScYq2l8lAj8Ydjtd0kkGxxiqxz70KxtQl3dOfpCJ2
gacib7COHeczNu9VTYJ+PobexlImKBBQ8LPEOuGdlZJG6F8HeO4UTzfEYAtK
O6fMKPfeMrC5K8Vu3EEr4ys6eStPoeYbowylrmAAcu0/eoKAzJjXv7s75UJg
l/9edqzHIoDul604EaLnqvyPptSjV6/36VPuVzIJ8S0ucXaCV9/cWl7sKgQ1
R3PhToyrMhwbVMGjBPQgrmCIu6oEve8Zb9m3hwypBxdkkusT4JLcwK3JwWsQ
QtVy7wzGjTa2RN1XjW9Q/XTKHumqx6C8JkIvhucldU4uO1PeHGZZMzJ7eEyQ
QkBm0Arup2OEsCMtXx6Kk72ZvcnqDM4365Z08LoI3nftKcPBSqT1o1Rd5LgH
XLDg/3B5jgylkhUacbRN6O5qdR+XohsE7gv0MkFk6H9T8MyZtw19VzPJN5G9
DynpRUu/47FPHLPqkDnbgbJ9O8qvn1BDyZ8O7onywX7nEVeYjk8bOjRQl5T6
6wWSevIzwSsa54nyoUvb17xhVco9Q1DHDM3ovDlWiPvpJJKt79sRByet8w0J
++3RzyuL93zweMc9tlaiThVCMlUG167ZF8iJZQfXMRw3B/Y6hiTvFgjcv534
6eUrxKve8m45E8+jxYidnUcf0NT5OzW1xqK1mKq1qQNkMLizP4xS76V2VNdK
910UYv4X6piASHAutI02C/vHSSql8fub8ciEuPtgQRIJtLrNXFqsCGjgt+C1
3ScqIGq/kQ4Z85SR57qV4loD+iU2+NCqLQWNVY4yKreSgdlOW2RQKh1o4lT1
XSfd0ZAU0zYVXo+hBk8DQ7sH4GzYEQsHtmhk+PdUjN4MCSor2m8Or0aAqUyc
ZJlYFfDdlttYmCLD8/L8rDb3EtT3ZKpR/oYbXDmu5Ji/RIbCjo6rXkx1aKg4
MWDD1AMWYezC+0Gcb4KhziVKLYg/gj9S94ojcMzXbX3NI8PLG2vVbG7tKEvb
UUdKQx1M+2iPDQSR4dyDg3p8fB2IxzL3xLSqPTJbi3zq5It1ckWNWh9vKPA8
yay+8MkafbJdVqXC86K+9bnnGWM1CM4qapGvRKHxN/SzxybI4BUARzxMuuEr
Z/sXhfFXqOnGddVjOhgPYwN/GUoQgSq1g6nteQxS3jX3rzCPBP3dN/teMfSi
2x46XRcVSuHmv2ujT/mw3xxrGPe9RUAmUXrpzI8aobnzP71XX0kwdkUoDbWM
oAKPQJ/5XcWQOJ3ABaPL4H9j/97Y/RYQRLsmyMAWBe735D+YYLxKKhk5Zr7Q
AabTn2LPzvUjudZRDmnsIzSJr8iGTwbQsfr9jnU3q+APy2/jhC4SpCf7p3Jl
96G3nfA17k4del4V8vwe1o0DTdbCU3O9aMLBcL9mSgboXd3heRbjWO6F4zzt
GP8v0/CUSq2lo/+cdQ728JJh7333EVWrtyjRkRNOc7ZAkZLnsssmCe47qj8t
ZU8F0a9Totau/mAo9jFhHueDyARozfL3oikvoUPSjiVQuLonaAPHId7G9IWN
6GN4LBsSfSMvBo4fEzCn1FWIsFIplSwoQSu5jbJTi7no6vdxdTa8TmMfS736
do0IVw9mxtB+akQJK9IGnzFfDwcPcvzhJyDnZ7FRS96Z6HEnz5/iIxivrmqe
qmAmoB2P7rR7natHCbcq+0N+kYDz4mldTS9n1NBa8eLmTATa/jKm5Irj6f9W
9OIzCUl0eoZPhXEsFAlcitWn5MPnrg4egeJe9HzzTujiYexjorieKAmQwTZA
8EprZS9S+7w9ueNZFrQw/96vg9u5SJIVdhWDECU8IR35ogWu5PkdumpOgvjz
02/+HicgzTmO9GctqcgomumDNo4Dd1UYH+89Arr35uIycOehsRnqnizsHwkm
aapV9wmofCbpzBuhfPSfjkrCMisZWoccArJ39KKFIP4Tlesl4HT2eu0YPxmO
jV6QmJV/AhYr+jJgm45Ytx8/X8Y4yejYeeG1nBFs5KoRhOIigeGSuTHl/BTv
5PNem6oeVGU8Qm9tVw7d3C1RE3h+uxVH02Sru+CcX4u1GuMgOvRn52yzNNbJ
RhFGS/tc4Fpy64dwNxuQc+S4QPlu5qwVW/pA7CnkP7fU8lWLA5P6FhfKPv/r
x1uMQ2+5ApHQmXjKPw7eqRmeo7SfDOif2hpuRj0qnD+TCwdA07s4hD6CBDZa
vh4u3bWg4VLI1urXD/0yrVrK70hQzs27O0qeiFrajB7VXHVGNz5obHjh9VUh
VltfPk1Eu59qfxBfew5F9ofblCOxXxB/1P9cZABSy+hGciU6UdhfDzI11iEx
M0oWPOQhxDjvO2InlwsFidyJotg/SjHcWN027oXjm3KKTQU96Or1ASEuG+xn
j7SqKUMXSHpHdnrN9KGM+MpDMnh9XdzvZKXJ3IlyVL/xPlxqg1qB5rAOeswv
v8qr/tzvQnJns6XJya0Q/HFMm7gL621qJblfOl2oxTDuQ9HrVnh2+Bo7wrh6
WvGIhdvZbnQoep7Zg6MVlAOH1it2kgFmtvJ5CN1I/OPH5OMlLfD5pdNvkW0S
/PIo5hl3JsLBOnnNAvF6eF/4mMHBlgS85x9Vnmy8Aw1eAYcHbcIR6yrfCOV+
t5sEnRapPUSweWQuzDPfgFo//zN+gPWnfHFWZhMNEev1q5Wq+xoRiWnPuXDc
brP2TJD/Uh3oncy+dP9HD6rUqFIrwrx8/Pvv7/S9RAhQf/6KUSAGtk61cpVF
kcBBiUP8ti8BcfuUfo3vTEQaOrdvzmPffblKPOJj2AD6+pz9Ren5YnTtwnhw
zSgJtqL1G+guDSJ5SVGnJ6MZSKuM40kvxqXsHzJ/1h8MgQXDEZKgZwyK9vqY
aY/9+LTs/gXmxG6UYHiCj/5SC5yWdj8yToN9K8/Bk/la4fDrJf/t07oZKE/O
I68E+/pdB64wLa33IwX+Qfum2xVILMbqyMo0Cf6N0sVeTyoAye6bodw0IUhO
OPiROebTRtej1zcticj14DnyY/1m+PWPXJGuQYJHnYzi/6nGQdzk+UxXvSy0
p/7QjOAaGSQTs84KGxDhjXhTdL9JA1yXZh3PeUiC1Jujr28xEkFjKvGtcUUD
Kva+8TEHx5NOZXbaplodrfuSv9U5vYDetuJSSr2gs61Wz/ZGf0RTz16sBLou
II8NlSjNjDR0hTymIMJIBpdb6XJJmrUoNaF3PvhvD0R9fDGtd4yAok7+K/5K
nYa+tI69jsW4YXYh5OSEeicktHh+pS7vR9V3LeZo7Ekgxv/uylMpAtpOZSn7
lJ8J4+7iokF4Xn6cOXcnWpSADtRfuZH8OAOmDAh+2xgnOXK/t9cz9YI6HSrm
zexBR+JWnW4/xuvlsqpZxyQRpa9+yc1ySEHrph+jJ0JJUNLW9NX3SxlM360U
arycjC7/ftV+b54Mk9xLusvcNqBgU5AakxQNc74TyjyUe58TaBrOtNXAyYeg
xl3WgELs1Up7sY59RrtxO78d68g+66S5jCx0zsZ7hh7zvpjAu4rrLuZQIrvz
hWZ/BGp0P6VA2R++S3K5m/bkEIxyxgcJfSqHcs7EQ8MUX7ZXw3U7rQckK96M
pR+qQj70f5WjOMng5j5GUkkbAKp14DJfDEfhrgEDop9IsG2nbJM5aAy3Uh6M
2bVEQvS80V97yv3gTS/GOy8SENcr49D7r9Kg9QkHezr2Ow+9C8Qi0nvQQxKn
1q2P5SAqfkO9GeNkjJYRzW1uIjxuusNQdqkBBZRd257BulcvhL7Z+/sQLCkc
Wl5JLoKRr4U1fZokEOJa4W3i7kLb/Eos07OtUChlHEK9G+Owb+c7u8/3YMY8
3YblVDjqtJX+NYz7U3SqcyU6uRtaps88tN7qQ5yX8o7dxf7lYv7glasmPRAG
aEi7theN1An6S2A/S9q9vZp8qBfez7DXc//sQZxNVLN+GMfm9Tbt0jSGoGRf
FB+DfClsWZb1nsa8OSoqwfTV2weYPrTKrZcWAT3/YfdFMvaPW9IM4uVE2Dru
3zLUmgw7pQb1zsWQ4BWXgNDsaQL6bRqpftw7FXmtc6Sx8v3v+uT/v3+MszNX
uMnmIKfinJebEYGCDUTpEyn3VDJF7Huy7gDlXVd+BF6xA6eJ22tDlPqxJt6H
Iw6ZwomuXS8dsd+3a6FqpPj9XfzXtSsfPweaq3Bi60cJJJ9tHtP5RoY+DT3d
t0fHIT34x/qSeReKSWL/dvPtEgifFWvO+U2EfUW6PS2BVYggst7zGsdn/9Gu
kcET79D65etimVul6EN/ztwLdhIELPnZe5whIDdtLp1f3mnAdi921BrnQwij
xaGYVCK6LuWiIPOsGynskX6p+GMZdP151jRuloLxibXT1EoNaPdNvV38FWS4
VLN/WU6ZgOz4aB//OZeDxFeV6axw3r5wvxiamduDZDduihK/N0Hq+9O1z3+S
AOmY5U9330JndiS+/PBfMrIvKKmRwT7O+fNvEp/lbTRlFu1Pxvim9TI1gwvH
503H2TRfiV6keXYoRexfMTSfONUhgnUCb/XeFNpH/Wj+acZVgYxaGMga2sGB
8Vn9Y2cNd7c9GKqdcWdqioFwFDc/h/n6Y1YIO0/KEOxV2vRgfV4Cq7aTDfw4
DwdLQvSVhrsRT9Oh1iraAZR5XZtuRYUEhq++1j444IAG6RaWz9yNQ7esBzNj
KN8V3URu79Mlgi8X4RD9dgP66q7hRMJ5WyZddZ5roBfR0uxLsTLLBOpgP4kK
rD+rVZZ7FHc8QlcdijKpjvqAdNguhwg8ru9a5+fk5iJQi5G6VCaPOWSaec1E
4nlXOvL0leHkCHgeF6aT9G2CFwb2VkYJy3Cy8VqiS1wcyJgWfhG010fddsVR
ybg/TLpWSX9TiTD07mjnP7dYNCfhHT+XQIKP4Ul5d4fNoFr/1HlT9Qj0f619
eThVXxt2MjYYQoNShpSpKJqIniSlJFGZUqYyJFNkTsg8ZB4zz3PmY17mMnOo
kDQgCudQJAnfts/Xdb3ve/1+31/fv/e1rmWtZz3rfu77sc/egXmt/uvPLRPs
jGUNEjqR6fmcEz8U8tFWfaOIQVYyyMecsaqu6UQgOtFMf6gafbhooJg8TQIb
2Ypjp4w70B2fyXihplr0pZajDmH6U2fSlD1/oB19+6A4wp9fDBAc4jyP5U/e
5g0xKz4dyJ49toRqNhtuyhAfHsD0JJMQH6MPsx5acHOsOfr7CWzJFl6txOJQ
mbf0e7myH7rPufGnuOQBiFwYmMd0mpZGY33xzjfQNpp56J1kMYSGnghrIc/A
gO0X5oZIFcj+7jmev8UL2R4rH7HH5rm3e8Jg1wV12HJMjXhl0B+F3W5KWH/u
RaDhYEf1VCdy+vQiT2a5GE3ucf5ykxq771dkftq7dyB1Vh8t5FYNB8PDh3pW
SGB2jfb1r/gOJOj8pY9uqQroK5OYz2K6hc2rMn7n1Q5UeS0wNJCjAMwUdu8N
xvKwVM7N7ilW1wglu14m70mBjCOicSQsDpoNtsOmi70w6yz448L1eviscSpn
gxEJju+bfHPeSQ4EiS3P7zGGgL3V7pT191Q8d7Ffrem9BuUtBpUxoSGwR5DU
krb++yOHWKOpY31wQnJ5YXMdFp9WfptRWxK4b/f287ykjyzVhTVElTDdXvup
3hHTD6M7kFa1QDNEX4zdUyHXAnrN+/kCWTBdPXBknuHYUzR7wdHHmU4XHH+t
XUhY///1+8D2ADcbtEJFX9mtrANGlx8ID2O4Uf4BbgkWF3T9Sa3Rj3gC0jzD
udyB+dwTvU/Y2qfkoNl4gDmB/AilcrZar39fpoT5oFakRSfivU571TUsHsWx
McgnYnV5991la/VyItx+7iT0/Egl2viSP7MRuy/kDQtbLmA87BJUERxAyEAs
zpuzqbH6Lq+gt2VwMAk0vAoGoh7oII3jck0blslgEifBZHs6GS7YOmiMZ2F5
tDvC9hXmy97UlOyfMSWCI01FksWmKnTwPF0EP6ZvaX9/l5elJcLT3zv77m6q
RaIJ+zTW9SF7DP2HH297Ybk58TR1NkIyPNK5qRiuuXbzd219L6jzbODOFK9D
cWPPhlswnDU1oyntUipEvDcuXhrzgG18aYwcmB+xmR11Md/WB47nqUY9H5ZB
kYYwaRyr4+dcu3ujs4mwj43UM8lXA9L6lhNcd0lw7/M+STfOPjAIaeS+7V4G
5a+TtOexfMg5cXzIk/slYhH9oSq07Aob46uLhta/L5aerERt0QycEkp+bQLp
sHuxUcgV8/slrrL6nh7d6HD1xsnl+wR0Kml6g9xHEjzdqH/ipH401BEY65tz
rwBHZEvw+vdPvZffCeofjQfluYtn2s6Gwc/tXq9eY3Gzll3oZpsigjjV8+Wi
QQJwDBoaxGHn0hyyJ/qQsxWytGenmbnuDobt1+dcsPNdnuCrpD55D1RmU734
W0PBU2inteV6f9I3tkpV7Cli3WUFhjIh8GCNPnj9PRv7/UdKEjbboFvkU97x
P1OBwYeKjhqLm3opu3LX5VegVdj6cvhhG6K69OzachkJvqQLvVjTbUGHEh/6
pFK5wUw/0nnkivE/YfvI5daXSMpenD6FyQ1OseTY/7Egg/2+txcl7BrQh+We
JPkoN9ieFpQ7k0UG1zu9gi+rK9EHBU0zAxdXqIh5ZDROJAOHCNM+Kc5ydMjp
zin0wgXG81Vsrr0jwyGtwWiXoQIkfFhVO9rfAbo02GSYSGRwMb1Pit6Wgo7c
6JXol7CEPTnetuvfK1/alSeiLJuIMuW63x0uNYPsJgembiw/qYJZHFmO9QPt
aMquuJp22G++c2Na4Az8uGNs80qoHeov7txH+zsWxNu95jecI4NMsXPRaesu
oIuva1gihYCh9y3/9ff5e2+tt8ia7QE29izd21ecQJU3tTv+HQmUeDhDhal7
gXY14IDxJ2s4tXmxUGiQBLFEhT8S13sgiudt9bZVacTHW0e3cY4EuRrpFgq/
XwFp4+qzIwf8EceF7f0VumTYVpCjJVbZDJt1F+y0OoOQXVhRw5oXGST5viUd
oS8H5d0X2ty++6FdXvwD27D4LN/VbKyxSoML0ouL2letUTnV54SSX2QYQaIX
0clk2LSWP6nEaI5ezg7M12Hx8ZLbU3/KXAEI7Q48dBIG6PklM//158devrAy
nDIvBiXamOwT0/WosYFuyjiSDEI0yo51050o6+PKSyfPCPSi573g3Pp7Auf3
sw1E9kHQ8PARS8Ui1Nzy8UmqDglmsu81zHzqhfZPK0yLuvXIYMQ4Kg27dyRT
omX99HNwfZbEWjp9BC4dEF/5gekK9ojlC03cUbDKObWqcO0KPNN5u1SO3Yt8
2cCn8Y+vAUvPzoGGAlsYOSw4vP5d+xOI0O56kQjCxo2zVruqUT3TNW5OjG/Z
498UbCuLgats79m7NSMh8nVxATt27iM8GXQ37nWis00K4SVVhbA555NJH8a3
bzujleJsPYD0J01q10o02K3+kPyKrWd46ipr/mwTit6URjM3XgonNTdrilmR
YZMOt9g0mz2apdV07wr3AgerjQnrz1cP+9YqEeYdULFxh+LDQm9QFn+2XxLD
Pb2fbfY81Qcse6MXiwOKYDkk1/QM5qNTqX2K5ln6QPaDanoXdzo8eLU8TO1O
goGlXZtvdhKh3uKh1IHLcXCGfLF3LYQEu88b3zTdWwcmRYdzoyRLYCy+hmot
FfPLivFSJeKu6LMAIXtFUhc+/1jSLcT+bkTCxIpDew9c+tBUm7asCye+Cjd+
wvhnE0nF3eB2DvCS0h/7sjsh64YoIY55MuyrudCdeFIWnkVU83lzuiAOpdu1
679nWRK33Sh4uA8OMxVnJRdWoKehZcJntbA4TzYcfs/UjzIzTPaw7SgG2Scs
9bIKJAj1aRkxyk4HkTyQ2/LRHn3cJXi4C6t3bRaWDKrXiEA/e/k01WAV4nSN
fVVoQwKqnM4yWw0iXJVofLI/GqsLYcbhkuvPg9FZHUvN7YX3qyMqgUF16OaE
L6kc43lznuT55J/uKEwN9q7IxULj4JmAh9h5fTEQ+32U1IiYlWLOr/S5wmBg
kFLzc8xHHwnmipeuReqmoxFH011hQGXksGoLGXr7Imtk9GvQvddHE3fscYON
HFWPPFrJ8EvyD135l2JEfbTQeuS1Ezxxu6pMNYHxIW9GTJZ8Bsp8x8tjZ2wF
9U/a68ywfakkMfgOHU1Htzc5Nuy8aQXBl8TPH8funY+G9t7PulFIcKuH3unn
RsB1iHo+BctnSQWSloJfDzCXbDlFe9QdBMQPjh74itVBvWZCbH4P3NQ781Zn
HFuPTFeX1RgJ4pLotVmdOmDndoY7dSGuaD99loWcGOZzS7fFXq1qB5Piylsj
L9xRq1DuzzUpMvype8+SMY1A+toaE7NJECoIoC9dqcXqlGbxqv/rGjC1Kf/o
ahiEBK1Hd3K9JENUraz2i+ZYGJ9IorYJ1EetTrtoarF4vt/dXTOjgt1fl+OP
XqJGlOdyJVYCq4N18lTbZ0J6Ya+8VFcgakDiUkM3RIxJwOfT5C2Z1AMjf0SH
F/40ox1R1Mcs13XUmyBRzW294Kg+a1DC5IfeN8okhL7BxjdFh2d97wWnP58H
GWQbEP9F31GSNpafLKzuZTUF0NEu66yYkgtDEQ5vYz+RMf7c6K1zKg8Mp+o+
NuUlA+8R0yjRGTKIjxWeeXcnA5ySLwjtlAsBJmHlX/w/sXs609uYwNeO3Haf
/mqHMH2e5uMeh+nGWmlbe8WjnejkrfJz0Wy5cL+dV81yDxk2U5VNddZ3oLWJ
3Zp7WDPgFskVbcb08LMJ9UV2ZiJsdFitIffVAasO4eAvbF/vq2Kqm9zdkemZ
CQ6rE/GwL/xsIS0Wt61KTpVRcX3grWLe/WxLGtrAr+9ua0aC/rPMckszREju
69+uf7saxfZ3M2Zg92iU0Doe0/8IZQTXmDfUBKMPVQfMM7C6fPxmNc3jXwXQ
WzZj470Qhmi/3Ag9N43VwYrSHQd+taOMsxFxle1FIGxU+k4H88WGuwI/n/3Z
gfQsqhKobBEsbTe43TRFgk+tPXmfkjvQQVHzypq8TNh9OpoxEtuX87jSU58m
IiTaX52Y068AozGdz1GYf9fb+ttKYZ8LUlWJJqSG+MP3KGXSd2w9T4O0HwZh
/mVcs5RBNbMCvfOXjmJ9SAKN/CCv+xuIMPjJc6+hSC1qbdG6X4bd09qSL5EF
Ep0w+U31pnR7G5pdviO2HZufbcdzg3xMf5pPyTKxZhSD9a9RBe8tZEjb+G7g
jWYn0n1Gr+RfWgC5CcHyBKzOfv52/yCHrQ/MC4t4gGUMHHm3zzUZi7NCqdIM
B+M5OJ+5IKE0ZQfNmWsj688Ju58RmHtp34E411bSLtjkQv2VM3UEzN+p28+R
T/7qQJkPF3g3/KwAjp8Onds2kCHerFf+QZgxFISoGC7FWsFn646q9+s+JT3U
C453ojMmCw+yxFLB7eUrXxUeMkA3g0yjLBHkrIoIj7zq4AMPm1iFPgkk+EM+
fz/fB6kH38mMBJSAxSTRjRfLkyupt/R+ThqisQ/qew/qGcGZRLqX689jj2bt
Pxvgqgs6jvk2lmdCEIsFlXo+FucPbzKQv08f8Amci48pLUZXLouoPsDuhfYG
YhSXBxGC6Y74TJ+rRuAaWCqKxbOo6BBNxBd3pP0Ecy9rmG78StMwiPHM3OHg
kRen3YGrbtzmrXolZDrLfNzVT4aqBrGVH4xE6B7e+jXOvw41aCUJhptgPFPm
Kn7boxdk360QknIb0cctjltbMN+dWJkiR8wyQT00x1sqMrzR43aebevf62T5
daRVNUUdjRn1XN7V4o9suFKTRTD8iOPb6UIBzMcV0Zwsyq5C+dTgrLJIgl1e
PwTK/iQCfeom5jPIE657bV1bXv8O4MpUmtpCO2LxeDB9pb8Wq1P2Pjuwe7pE
uO1qgs0TNXfs5tmsFGRl+mVive/BofRjrNCRCIUDXHLktEokmTasZ2FNgofZ
LNKyrzKgVyhWsLXKGXl/mL08g/FAR6pe6nO5TuTvpSuZs5YEL/PUWMuwc6yT
juh/c5QIrQfU9gjuroNLobt82TB9ctxlbcfEcjAwrRz8Tf+5AGIIbGpfsHtX
6r383sE3EYaOXeXJULZG/uU+TgmYrvC3UeU+ei0dlNMSN9VLOaFT+nFptBj/
f84x5xRPL4S505PMspleSIVx49jCFBm4G/VEqohZcPvTsVKnLBd0buWYjeIC
GQI0b5gXavWApeXnU6EqwWjrxsJ2PxIJRLvY/VIP9EKe4beMvX5B6HxgzOrd
Pow/K/lm5z73wj5nwd2iE0HImXU7r1E5CeT/ZIsdNeuFWou9fvQOQSiK/pCd
RCsJ1CeTGkTSiODA92npU5orCI+N3b0RSwLxeYO5+3x98M5q9DwNXxa8P+h1
NdmZBH3hJQOn+4jQd/uFyhxnBcq1ovEAzHc8MXfTcKwkAmNnadZG/Vr0J07E
rRvjsez0vRvXFIjgw+MgnLihHnHfeCF69Q4JDjHFkpZKeqHGvr+SSqQBKVbe
PdGE1Ysrg4s/Gca1EYf5e9PbXb4o6KOqjvz684HMkd8HazvRsO7rH3tkCtDF
nI8q1UxkKNP9rK/gR4RbbBLX/pytRPSJbYIWViSwLM/2vd7ZjoinDTPo7yL4
JhBnsB3LnxXGw7M5CvYglOnaHvc+EqjWpDTisXtx92xUc8H7PojouinzmqcA
BqYeCJ3SJEEHlIp2J+Qhs4qiDKNIKzh4Si5V5DsZtm9G3891ZSIGqmkLsWOW
MBr3ouYqllfmyqV28uwFiM7bmCM63xpKX6k8KidjdfaFn3LKUhE6vlfnO1Oh
DWwfoxlX/UqGpIPUDerVBOTPU314VtMOTMLeHgzGfDqhKtVS5lEJYjg4tP2K
hS0QL3HczB4ng/LBXfdXNCpQoeZ1VTlTO0g9Trsa/pYMn4Q65MdbqtGv+oDk
S+m2sDMwe2K2nQzNGx7Fbu6rQwcfCoXFKVnDE4dHUn3lZLhQJlkagJ1Tue7n
jK9vbaDV88Gf781kYLAIiOZ7Vo8ktbdfPVD/EOImYiRcisgQKb1BRuBnA5rL
ujens2gKZ644hwWmYbpF1u+cckYTmtQi+F85qQu8Z0pqk8PI0PhRpzM3sBH9
yJI2EKe7D3ELjH5VCWS4L6JSMbqjGXkl/5Kmy9WAT3SXChmCsHqqdPGGRHcz
2uT2R8xw8RTI7jQcPO6N6Td+7qUIpRYkUzsnyemnhQYdqrXD3cjAb1xBd5Sx
Ba0qnZD6XSiCQhpeyrh7kGGv2XMLn8st6HJr04e7z++hVwby99uw8XrXqFOL
+ptRTLVal0DRI1RgNu/zDvNNwb3mi68SPbC8KMxsEtZD+3Xej3ms/3+kyfm7
nqoD/OLsXcsT1UHSSlcDeta/t1VylTuX1Rf6ClUua0boI75kna3X1n833XIv
nOFmCHxMdn7HPWiI7lmr06zXa/2D+1OmK2NhluHV5+Mhlgidl+UsxuqUF++x
mivy4aA6JqbXQLiP9tI5DK2/X9HuDP3NGs8SQGvT3KnVfmhWMfzzyNj6d8x/
GN7YUg2q/mvULA9D0KH+aCqtTownpd7mvpxpgoNfI4+fy4hAxCLdN+WBZND9
doZ3nrcO3hmXkRXvhKGDxgdEN9aQgUg+zHTjyEuQ+KXw/EcpNt5rXMXAhgxN
IXQxanrtIDtn3c50MBxxmw5M+Z4lg6/qgPOrmm5I31Sye2FDCHJkdg7rXcXu
e8eNXTP0nSATx37z0tYwJMBgJDYpQAZa27MP32N1hHbHamy6RjDiSTUtYiki
gdiuI0NaN4igd2CCP708BCnPe6kYZ5AgS2F+9CrGG67XRhsU/dLh5njvwb3B
JHDnmD/gbNyJIhivmr45X4loKhYitH6RwJf9zSmftwnQKWERPBEQDD1veT3W
+yGtd2vfOcxiOsQ4s205owLyWZdYx++R4Dbh2/N91xpRJ+P7T/lb/dGPV8si
Fklk2EO1OyrxZjMqsDuUMyDxGNVcVTUXC8D0wHtl0I4hwvdre2Sr6COQ6L0K
PSWMD8td6EQrzIjQtLZnbuF5KIrS+zGmnILV33sXupjbHoLJE8YaVmlt5Mvk
yvUFywdh4uTbyv4U4Ge/wxeoZoqeBhp+7FgiQ7ZV3J27Gp0o+DLtjerUMpgd
mGJtoCHDqrNMEP2rCJjJDdDoso0GsY4WFgusjvBdczaVN+tAfry/dn92yIN7
bXFGpphuUegIG+Vx1oZHORZNla8fwYO079fXf8cUck3vaPdQAIwlC436VsSA
UfixOtV1H31Fcpa7KRS0+54Qj2nFQJrTd4EGbP6rAfw/5xQ60fxUhUCf0ws4
onlMJHYH5k8f3XW5zRCFNKYP3EuOqAMButHEFIw3KjS3zC2IEqH50Lb8W1XV
iO5G9oVzdiSIvOY/TsL0z+eVPKuBQ9VoYYLptwbmu58f1XS7OtGJRPadq7SO
LEIMbOe4mOmx+6L6Qjn4dyxc1tp3ZTPtfmDeDJvLsXXyk9Va4o0S4dSeXdGZ
F5QQ8trR1oqtM7Ltsb119UPgjrWgGRG2BEKJe9JbbL9Svry0OqPWkNbwsGQX
vwVQcZ17sP49bp6U/l1iYANPnEIL+bjM4UrTR1Lvuh9P84kQPGUNR3i33uYO
sQApDri0/rxZjsTzZ5u4O9EkW1rsr8ZyKPTRU0mnIkPMvMmHJsVzSHRrlKS5
lSNQ95wLXecBE7nAASFMhxgOuOnmtmXD06N6tpx7yWAtNj6ldPMK4tonlPfF
IACCtel38GPj/aV1NHTFb0HjzCmepLFAlCwi37n+nkzr3knJA1JEuPLUPtFC
pxo9mn611oTFjT6z4dbFuXjo/8Dd684hgT43uhw5t95/oHk6bCZ1D5xPdPx+
XmYN5SJ6+9fP/S1rvmPCqgk8+TZDvyUnG9yMzmx9jfl3M5FIQaOEeqTeefjy
2KlQBOI2TN4FZKA24E71dixDnHEBZSfTk9HYSt/Q6BAZ8rnFtlfVpiNo//L0
MrsFuKYHWg9iftZD6dW4lq0hfPxi8ZH5XQhSzXzWt/7/js1zOq+16VKAkf5a
32qgIZoM2c+ghN3Hg1yfxjmGOpHLyLeuDKoiRGhqHzu9iQxXmOKfnyBHw3XW
uYtTNZfgNLV9+h2s/lpIxP7wzU1DtosRYZJkM+DIreCLxvTSds3wtXs+pqDy
Y6eyY/sdtEdmJYuE7TdDQ9/06pVcFPzAixaWHsLQyr0x/R9kaEPWI5LDZYhO
zYfT9YQdiG18uoHnAxlenhW45W5UhxKqlnYrsz0C1lSTfsVqjJ9rampp7zah
91xhqgdC9MG5t31OK5IMrx9kCttebEEGzk4ENdObKITNtP47Vkd6wsxVWzc2
oS9tQ+1DDl7IpoZua2UMGZjTEyXqVZ7CZZqUo1q+uuh+8qe3cevrFEk7cDYs
BjQ1yQNslyzQ+ZSawUPYfoUvHVcbhgJwrL4woBXngXSb9y7TYjqhs+yz5EpW
IxS2bjKpVYtAvF9D3r+MJYNawRcvc65u2BQv9/2RHcb/7YMZLxkwf0cakb76
qhfCjdS+zFYGoeunBSsUqklwzfx+o3wQEcKvWvtrq4Qja99j9xbjSKB8NHP5
mzkR7n+aOMRgVYe+aKc7o9skeLXddVTobCdKE3DdebkrDxbEDswv7CID0yjt
DWfRbsToFNL5aygIVef+DNyA/V1dJWlV9vlu9PtobTy9XyAyUOBMTl4mgaNW
1BNb3U5k5qBXOOlXCkzXD3YaYvf9l5xt49UzzmjvH35/3W++QE1/s3Tb+nt0
X/jyrbRVouNrX0qGwxMQMKqe2NlNhtuvWF5pJqRCB/WsYPlre7QnZ8J4/XlL
naUDByR+9UBD6BvZgowgZCA3wpE1SILk7+wj7KPJSF2K/nh9rAmEcKqX6WB5
6Hph5a7wDIJQ5ZGzwzrZqOyz0Dn2UjIc09t25/p8GDC87Dm07UEplHzkHvf7
hOkH/pxh9iNFaFBJmX3fSRvYas2WfBjT502jTvtcPlWhjPdZrQZLtuDYziXP
g61z/0AVbX5sAyqsqBCtobMA0qstZz5kkqH8s65pbVozOtH8xsFs00XIP+PZ
uOpDhuuBUTfjaVpQdIhLrc2xh4ho/0u4G9MtKld6vLIGg8BjJ69pm7cBsjS/
tXcYu1+7ioK1Jz9VwA7n0Lps2WAUbcVsPoT5Na2k+8rHddrA6/hvFtqScJSq
bDeudBVbjyhQc50nwkWbjfovr4SgJKqepfEsEpw0HlQdOxQMZnEinZvyYqCj
eUlgG8YnE+9/z4rv6UKm56+RyBdroLptvmHoMxZPuyXW+LyjKGdvnXY2BMEf
F/bRRWw9dTZ1yscl+0FYk2Uy/XcehAe+8b+gSAITvi3GKZ6GiI7WwTbxsSu4
h1qMZGPne+6++3zFfBfEifMGDDG0IhO6Awdz13X+nxSzRzFtwKS+S0X1Qieq
NV+0XzMjAX/WjprCW1mgE+ofkL4cCbC0cGX99w7b3l26WvKrB4VHdGs7RJaC
nlsU0QLLc73928m0sUXAtPnwC6b9RfDrRv3gi9dkuMGcc68ktgvd1Rk4PTBX
gSx0bvH2fyEBd7j80O9PHYh2zP3tpdA0UHz5reksVk/FErm1leY6ULPVx80H
/qRCZAG7ahMfGdJcd+3XGe5Av9RH7nQ0p0HYFs5aC2x8a0oh6zXeTqRPvHTd
8UEqmpcsKJbHfOjIE1md9PvtaK/nUL7q4XpoKuE9vOEnCdR834w1vGpDViu6
rKy19XD6F69C/RJ2LmJVW98sJIJNsN9EUqoPJB4riFh/z8bnk1e/XhXoQG5G
eiuB6oUgrOD1gx5bz8VQH4ZdypawdltWq00gAvjypwU2YufyVf65/dYdnYjf
HXVFJaTA/m+D357ux/hET+GUYVUmmjutwNgvm4lCCtRTT82Q4cOItCL1zwdo
JMtLa1L1OcoIO660/p27vmc7+QVOE0HnloXyeUWEfgZdAivM3y2JZzQr83ei
UL8XO4zq0pFUnrG1DjcZsp4epZ9Z7EAcXcLW3/2qUZF1FeMKtt/pVyF9za97
YZZXo+JrBUJG6TNHSuxJ8OAstSdNZy+8M3ef7KSqQx8S1TxeYrjaqAd352Nj
+Jpe8lvQJQkNH469u/4+qEWL0ZeDJjaozPSHsV5iGGo584vtJLbfaC5OMX8x
G3RvvFuR8UAIenpDYi4Sw6de70pWsjkNI8Mp7E8xPuTw7/qx/jvuqrMy93tE
iCA87eub1IVQIoPe5fXnVR79qrwz8IUNqp9FnTa+H4T0byS7rPe1bLf2ubvk
d6A8F3P5KbZMaKLz1bl7EIunU8/JrTUdSJhD5MPayQzwukr/+tg6Tn3GYhnb
17WQbcdpdzbAr8/XmZYMSLBplpTIm9QLy1keNKPvGkBwIDuKHsP5Uk1HPTHd
lexsSb55LwktVGpVlPBgfBgr5dN1pBN1aW3mfEubgvSOpOSrYHmVcn9CwNqt
E7HHv0/RM8tF21xY1W9iOi3nCMueoMhOxHshqpgzKQ8ZnwlrWmAjw+6byiHu
9zuR5rsx3mK2HJQgVFy6zucdD1gEk3k6EA/dhWGuZ4WgLRZrPIvlySbJGUG9
yDTYoyVi8H7QD54JbL0+j9X9kNj4kSa3x+Dlw15uTJWC/nAXHuXD8lOvuiOQ
dfgWXI/8zFFxNhTyntjL+q6/n0rkiOL3sDsgkpWm6HsrFJjY66I8MJytwL33
YxwRrnqdX9oiU4WmqjpH1/t+aTSHHvvoE2HlXNhZXeUqtEXuXlH5IxL4ALVa
Zpos2kFz3eVD0DPITwjavAPjEz73NfkDV+OBvlJtqFzpGGpS3XPZGOOx3Y1n
rOI8bOHaaZW9XxXM4Kjvazb8+86fXjhGW9tBi1+cSMxrU6DZrVXWsf77a2sl
y9XidnQ+6FDRYFAJmNGtMJVhcQ68x2y3atCDWnqkTNSWCMD/9MIQXysJYmiH
lnPineHxYEFAS2wU9LuneRpi96X6PduoYq49CJZrVEp/i4QUyZnWGAw37hfb
Iq3didbGBfyNFRMRlTkj437sfL9XiFP9eNMFn8WZH+n5N0HdlR3nBJJIcL/H
e3ok4CUYuv8eYA1OR2rJrBFUD8gQMbUtYI27D+2okGN40ZAAfzwGde95kMDD
V8BrPJqIAn+72mVxXoajXkQ7rfj171uRfbkzeyAmd+L5qkAL4lr0XXiC+aBj
MXGRRqyvkXW8LvO12GTQ+ik57XqUBFbZOpXs0vnQ9t5wx2/aNEh6qOn/8hvG
A6PWkXm8RCTDUHt+8HAh2M4wWyxiPojuxy9pcY1eVMxHPXCRowRWH4tepikm
wQaGg78DZoiIJcNScj8xF/Y2X908+5QEBsmtHY83G4B2SkNjxEQoSMvNHVr/
vlv0I55XBU418DXxfaoibTeq8jSuD+0jQWiF094xzmFgu69hq/PFGGakIxSv
omko5dze8K7tHSy1EOrYvsZA6jThC1fPNDgPaKl+UHuFttQ9M/D60ghxnSh7
DfNTej/2XOFZeoUyWO6duKnRCDZGoX3BG8lA/s4mH7bWik6q5x3XtWqANx8b
6wZWSDBAFjLoPdiB5iTL7y/qF4JYzPVtNBjftt3OCMrj6URXusuXu6QygPuj
EIsGxnvfD5epJnsT4bBPsp/17mrYyML/WgrLZ7m16SHFPeqwz6XcSDIoGCn3
L5xuxfb7y1HJJ4CvHqktdanJJNchTePHebssyDC5mus0uTMbvvFUKQm5d6OV
J6tJPZjP5W92X2hs6oTNN92lb/7sRYK69ixmHTNA0A1N0rchguLJywmhfsHw
Rut6qEMyCb6W524osulE/UQXWp9vcYj31E0hU2yd0xYL/IFRWB6eXhprmYtB
lXzmfbu4MB2VtnDacFsv6gnnNV+KzUOVHyZH2LE8X/h9yLXzXB/wKBIGHt58
hholOzjksHP8rpAZuiLeinKGs90t3zTAqekJ+SQszr2rVSWHedoQX5pETv/r
ekjQEdg5gPmmZ1pex6butCHN/Z4pp0Lr4Xbi2o35DWQ47M8mnZn2FFbnbL1v
BKeggF3ql1IwXWercnTeei4ATpcY+Youp6I056xtZzD9X8XTwnynkwgSz5xa
YpLL0fBwdxEB0wnaF4SlNZqI8HVhO53eUDkqCXEMMjDH4rBd2TrevAfFlA+Y
pUoUo8kfjG+U1r+TO3LeN1OqB6Wv+vX4O5cgjSOE8LYBEhxUULv0K4aI7nF3
z95V7IDVhpEFhrYZGHPbfUV+tBdNyG4ii3fEotMn1M4cKCOBq/H90BzzPqze
uhAkZ2OQYNgKE5cDCbTiSzZZaBIh4Xcmd41KLdRtpHUoMyHBzdayMBZMb5f7
jZ8/dL0G/GkY7d2wunP44qRs3SMi9Fy/oStOXQN3J3qKCzH89jfq6XJGIiRO
73+v6WML30wetAhj9+uXLblMlZMIty/9EBdSq0HRnL+1hzHffcALLX9hJULl
QaUA+cQadO/t25/8WD1lLtroLLCNCFvb9h78nlODvpZ5NUlh+GzzYCI/MxH8
eDWjFGpqUOBD/X1yGD4yJiHKP0WEEOdC9cujBCRRs/WyE7aem6LEiICpYnCQ
SLUeOhqLyvubh7eMkUH9K9f2CwJd6CjB6O7DlDBUMPVjY95OjP9jLex302cD
L2d4bOiQO3pR0PR8GfOhLP3+NBvlS0FzwErI0aUXzs7xLUM2CSZ+XNi7egzz
S4TDhgs0HnD56stv6+/xa07ZKSTP14m0dixlfAxIh+4bjdVFWD4zbj9T1Xdu
CG3aK2uNPApAovSk+PCeGTjuoJLZPvcSHudGaR7S7Ea9cVqvT1qSYHfGUGvD
gU50sjWsvvZcOjy5cTmbiM3j4fTuMq9gJ9r+hnZTX1kafG8N+bER4+dtce9/
HbrQCQ96z9Un9rQhlTW9w5uwOERbOrexT/eioB+++1QHI9F2xlSD6VISpFOf
i6/pMIElOp4zztzhMFNM53Ucu+/v1+Yix9++gvQlpudHCrpQcpbkVg8LEiwW
K7n9Pt6JtCVzJLhSkhHtqY0vz2J1h97PscynJRicFsTjZwPeAMvko/v75maA
3FAjITNABM7Jm/tctcuRE8m55yPGMxW+Kwf2ppUAVcyW1VWhePRei0egDvMv
jyKD5ajOdiG3PTtJ+SxhiGdInv8GphNEH6aPmc4+gI+bRD6VK4QDgwqb5mFs
nX+i2XPzDoZBi6xYE2SkoaKorZLbsbo/JZOrEKaVA0ThmENIqBA5zq8N9WHz
q580P7JxEeO95IwPDC8ISE0i4NJFLM8fZ0TnPX58D1bSxCODP4WgV891ZcKw
+WuW0o4dE+2Cg2s6/Ak5lShiJ33+jilM711ekdru34yOHHnsrcTvBo082m+b
fMnQMCDzrf18PSLFWdzXTHWDBka9i40lZKAu3rmV1TUP7fuudnI3sx2M8Jz9
dOY7ppMftJLWbjxD1ecYjjAfuAsS45dT2LD8+ToZwuXV2gUsC4HOuY9K0PRM
0KDrPAnYI5tvVkU0Il4vx81VT9zgSL5Gq2ACGdbOxUjs5ClGV3b/DL/H8hhy
HSs3jE2Sof2gcrDAYgSK8260/BRmBJf629kmsPq+NUzvqBZ0ooAHRmVZu1Og
vuOWvgmWP4yX/JhSefqA6b1s3akPpeC5HE2mv0+Cb3v6j5wRvAN2U0NvaFiC
0fdwLYXB9feWv87e+SpcHy4H62n3pYYC3Y6+HevfhQxZKIsz0+9EPPKNEY5M
iejDGxEzmvXnwMd+JIwzRML4U3Wvt9fS0RWvixP7f5Jh2DuCJ3j1JVQLnwoI
v9SNtA3vUWdi+Z/E31nLz9oGr710z0XndKLrXNHV0lgeJjHWLvnxvwKHENY3
b4S70UX0tswHG89HOGRSX9AGgRXbvgVj96Zk059rtRiv8mg8Zfo82A4i9GIv
BPZ2oOcvis+mYzyc9tVU2uRXPpwb8n4RFl6M/B+EtX8fIMOAJq+d+Mt21Cty
6IguZwm8UwgPXX/vpZL1m8rk7HbUdedWuFRrCVy+a2+Stv68pe+HeEHXbtj1
YetLlSfG6C2b8sfv1GR4aLuPMflaMbRHzizR23gib+uML/zYubB9zficLR4B
6jE821b11FDVecXPLOvP3zI7H1cr7cH0u94hZ/VbUFAq6DE2SsL06ZM3xsVZ
mP9IW0LhDkh3RXTpyQIZsgfYhMbjnsP9F9vHTDL10PbZl1VrmJ4MInP5lAkQ
wU5+J+HpcjU6ZGU7qo/xbUZ5te6Hz32wEq0sJbO5ADieHv8ZpIHpQ5Jfj3JM
N5w+pb5hj0IekvzekOWL5dv3bz63ez7fg/ya0OGOCcyPHz2ybb1vFs55pM66
oQu2Kews3vKiDHFZluXXkkiQYDhQIrvhFeIVLvd7/aMRXmfuXq1kIAOXls+l
Qp07cN7w52f/g8FIF86fXn8facJ3wS0tB/qA6tSh0MWKUrDeu6zQgflr81ud
0u/dXgEWDj//yS50YvRzsix2vio8izMbRtug1fHCxrKlDpSzvas6Cjvfki9a
5C8r7SAnJeOiuNyOhvlZ6ryx85WKTlYvzStDV2l6dYOVYkBod2A823sy5EoU
b7mFypCfc9BWUIuGKCorHA+i3ld/sLsMiUhT98yZR4FGagSODynnPlV7X4Z0
VRyObYqKhMambhxPvirXyfutDFm35Wzd3hUBQr+X49bx0noWnZKFMjT9h3Ol
lyUCxvU3Jazjxs8nncU3EBDLMq3rPu1wyImm4H4huZ51mwhoVsDSYpkQBpq2
tvj8fB8Qhy0rAVWOini67w6DVmsZHN9lJrXPfDcBpb7fk0TyCIX6kS4cL+9R
ra7hIaB7lY2X3JZCQEr8Mj6/gwujySMBAjrgNPYjxjoElETT8fEf7kweSRMh
oH2eTDLpP4OhdqkTxz3Ns87fOkZAn2pvye57EgyiDSE4HjHr6psiQUBGb63A
lzEYbmf64HiD+nMZIywON54UmJW0RoAeYwJlnv7YkqbFMvTI/sobLVI4FNG6
4PiLsYz8YmoC4v90WuwJbzhQp9njuOhbmwYDJgK6nqDYF3Q3DIJ7Jijzd3h+
pN9FQMsh6iunikMhjKsJx0sF9H9VcBOQ4KGvTvKMoaDbrovjV65I28Rg+x11
n9pQahkCUHQLx30PWMY3iBJQ7GPegOAP2H5fN+L4nZ+9tvInCEj0bFoMo2ow
yBgcwXGZ4X2z0lIENLmD+Na0PwieOfrieNjRxhvFMgSUUnbMfKtmEGTZDuB4
xtGs1rILBDQVXCyW2REIzrGKOF4ZYf/sugIB/QxY7nGZewasXOz4ubTaf1gJ
UyKgxz5Mai94nkGo3gd8fBcfP+npdQKyLzX20dQKgCJiHY57n2hXlOcioD6U
OS0lGApqTWU4Xs9vx9CF7XcHjU9OhmkIfNzjgOOb8zdzKxwlIFLn4vdkFAxM
I044zhp7TmrsFAGdMhqQatsbDGVaqTje+s2QuxwIyKKa6te4ZxDMX3fE8d2f
PHQ+yhFQzj6pkq4fgTD1cC+Oi3xWO/gQ2xd72vbuhqln0CBIycNYXXotl2sE
dDYyB6jnA0Bp+xZ8vza5Zwt23ySg7YpHFbm2BMBtKcrfPRbpfPyqBgGh1j/h
HaL+8LuzCMc/G1jGH7xNQAs+U97fdPwgT8Cfkue64tN5OgTEXdD72yLOFwzG
LuK4VmnovWl9AloM8Zu0H/MBOmMijrOwX+H+ZkBAe55w94od94GKu3E4fnaQ
83yeMQHJp5498fGZN6gGf6TMk3m+KQHbl7nw4Ljw6DO4wVyM47PKRm8GlQnI
Lu8cr1tBAEzsT8bxinnvyrtqBNTJtCPELswfLu29g+Op8oId6loEtDvH1irX
3w9YDldS8tO14GMbtv5eWb4MpkhfSOkJx3HdkRzOjrsElDV9qa2r0AcuCPFS
8qqy9d59IwI63HrXQuedN+jviMXx7n2SpkUmBHRJ/o/2HVZv2PasDcdpRA4Z
5Zth+z1751nwTS+wyBfB41++/0qOoSUBGW4y5vuW4gn9XAr4+NeWwnNjVgT0
IEZf1PqPBwxK1+P43ZzJhMM2BMT7UGP45h0PYHsojON5plJ5F+wImD5rTOh6
5Q4OPynnOBRLm3bcAcvziIfqoqfdgX2Okm+zQkeDVh0JiGtgPn+k5Cn40lvi
eNWtSfFubJ3z+x+231b0guTXiHLvMmhEtR8S0BcNgqiFvif87qXgf1xlNvg+
IqDLBnx3Nvl5QO9jaxz3otaqvY2tx39I7O7lBncQ6aLwW61cY8MXbD2xhXWM
gfTuIHr+Ko4/DZpKFnlMQOk5GmMWGk+B6jxlPYeFYuulnxBQ+8aus6VlbmCw
nxaPW3pEX/geVwIa2f5O+eI+N6D6M42PF3s+OtjpRkAXz4vyHA90BXuFRRyn
lraf0HDH1n9HNCaDwRWe8nng+HK26vNGD+wcey97TPq4gO+2GRx/dttfjdmL
gPiyW5LkWV0g9HQmjqu/tdx21puAqhJe7jM99wRWjSn8yWzs7afuQ0Ad+w83
qj1whiaLChy/zrAp5JYvAZXxoON6SY9BbfI2jls954u9js2zt5KgmCX+BApz
KfNr5ecvzmDzZCUw3x1ffAw7t8bjOONgiqGmHwHp73x+cme/E2yaf0rBk0vM
EvwJ6Pkbney4ZkcQ3kmZ53liVWRDAHaOLf4S4m0OsNA8hOMCwdOEV88IKLvG
YW3qgz2kKgrh+DnHT+ylgQT0LeT64HZae3CUpvDt251q7b5BBNR6Q/j2mVN2
wJjAhcdf6l3wI8VgAjq9+SD9JjtbOOIWjI8XDgwNXcXwuPvCdPqNNmC4Wovj
177QuiWGENDWX4uPZThs4LUgJR+eZQtPHAsloIQPEzov7R4BcwXlnnJ+3Lu5
BsP5uDsieD5Zw3mFMBxXzbJ1kQwjoNLM4YkoZWvYcecujkdRS2/Mx/AT/MN/
QlutoK94FMenE0G+PRLjpdN7+4XkzYF/Ko/CA71mhWJRBLREdc2RebMZ+Ko8
xnGbDh+VZxj+bVebo9zYA0i60ECpawz+pz5i+OVaucEt/SYwVUjRJ9uYTtkJ
RhNQwUmDDYff3ofTzJT1fBu2OGKC4Wa0bkefTxkDkUzhmazp+4Hp67iUi2wm
szE8723H8aKFz8eGMXyS+eJIr4wR/Ezkx+O8qX8PF2MMAWn0/XSqcTEEh3AS
JQ49HPkSGD7vEql8o90AqKYpfOgepa6rh+Hnd2/y8OI2AKsoVxxfe1jm74Xh
xx4Wsls8uQfv+tNwfGA5tSILw+88eDdybuIuvGel8GccF7NCK4bfWl4sOat2
FyL4KLxEUx507QuGk6aZLrR16QN/8Xkcl9rB+3sploD+788eXZSDKefLzDcy
/584zWFKfazVj6X+/R/4NntKHX+3Zfvqf473G46h1NPpmU3/OV6ylqLHCKD6
7T/HG999/f8c//9rnn8b//Ff1t/4L/tl+5f4/Nvf/Z98Rn/zeZz5AZ7Psj9I
NmybzZB1NEW/XbTyx/NZakzIRWbsAbryrhnHF6c98XzOTnDvYes3QUwdD/4p
n9HffO51NMPzWW6Y53DClDEyrSDgeLiEKZ7PPyU+XkxlNkbV0xS90WE8Qcnn
KrqJVhkjdCz1MJ7PBTkceD6L8kTa1bsYolc5U/j4LZN78Hx2YF28ea3dAJ1E
lDiYe9/A83lQ7LJTILcBusPp9E/5jP4ln9HffPaUYcTzWaAvquC82l10MkGe
cl7sAXg+H3h5TZrYpY/OtAHlvisL4fy8kY2klCH+BCUYFeC4z9EsnJ/p3g/q
Tiw+RmbxFD+iHhyP8/PJoXvHOfqdUFkXZZ2Pyytwfs6JDc993uyIHi7l/xM/
o7/8rLl9FOfnwRbWZfIHe/TOnqLrFJUGcH7WuTTdz0Frj0Te7KfcxyVtnJ/P
UYXoSp6yQ+2Jwnic0Xd3nJ8V3/tvYLazRU+YKHUqVy8Q5+fE2F/U9xpt0LwG
pU6ND1Dh/Gxyr9lRlsMG+b1IxPGUGFGcn0dO79ZvtnuEArdQ8uFRCQ/Oz0aX
V6O4PlkjYbtoHN933ALnZ94Cu9FYZWtkrKD5T/yM/vLz/+gN9FdvSIo7yqzr
jRsPCo6Y63uiudywf9Ib6F/0BvqrN0xSSnC9UWHusSWY3h2BkSSOyzmP4XpD
75HUqKXGU6SRa4jjAVQpuN7IHvgmU1LmhnTvM+Hx7DkxhOsNvbBFlQv73JDR
4gI+nmg1i+sNx2TD/eKBrsishAEfv7Fp6OW63jhzQy46k8EVweIgPt6+XAvX
G1mPDDwnfFyQ4/mFf9Ib6K/eMNr3ANcbmRDMaX7uCTLMtqPU/bduuN6wFVqs
03jgjOBL4T/pDfRXb/zVzzYU/Yz+6uc3tZa4fubjk5V1LQhAb2leUOJpdz91
XT+ziVxb189o0zeKDqnw4Mb1s/YHO5U8fz/ULEHJ57LFclw/B2nyvmKM9EV6
GkmUeV6k4Pp5n/2VrO5CH/SLZieOT/ZkHFzXzyk65KI777yRiYoJHjcTu0u4
frb5M5+kxeqNZCwo/issQRzXz5rcmi+CbnqhlM5T/6WfH1D0M/qrn9/ZiOH6
uS7tzjWrPx5I/WXbf+lnfop+Rn/1M2GbLK6fb4jV1nW+ckfuv/P+Sz8vU/Qz
+l/9vJ+in9Ff/fzXD76l+EH01w/OvDPD/eCCWQVNpmkIilU2pcStjAr3g9P1
AldSUDAK8bfA8b9+8DTFD6K/flDGXxv3g1PR4spfPIOQ1ztzHPfPf4T7wdf7
aTl6fgSiJjl6HP/rBzkofhD99YMRLWu31v3g9MNt3zE/iFQLNvyXH9xN8YPo
rx9UfGBL8YON+vKdov6ITJuF4yp37HA/2MHq/uarjh+azqT4JvnJJz3rfjD2
4rj2wzhfVOXnieNfFGNwP8gO+09gfhDBvXc4rpEhh/vBoGM+T8WP+yCVNMp9
19UWxP3gHg+z3pFn3qg0dg7H//Y31Cj9DfS3v3Hezxfvb7Bqz9y/TQpHNzMM
cNyOJQHvb9z44e/0hDcc1ZhQ4v+3v6FK6W+g/+1vrFD6G+h/+xvClP4G+tvf
sPM7jvc3vnicUSi1DEGa9Mo43pdgjPc3FkcevQ3+EIx0nlD49m9/Q4zS30D/
29/4RulvoL/9jfa1Hry/scrsP7RFMwi90aXUzb/9DTKlv4H+9je860Px/ob4
5xvOznPP0NFvJ/HzdVn6hfc3FlgMaPJ4nqEr0htxXLVsN97feN1SW3RLKwBZ
v6XwQPq1aLxfp2zgkhSsFIM2MbtR9JtMNt6v25N59gqoRaNgS0qcndS24/26
jxwlzN/No9AfT8r6/6dfh/72675uOY736zi/Mftv74pAdbfH8X7dfQ9uvF/3
p5/wuJclAqWd5/qnfh36l34d+tuvU7QoxPt1dfERtB67wxCz52FKPXooi/fr
nqYa6pI8QpG1P6VftMv+Lt6vm07QbHNdCkH3qW/j84sP0eH9uhbVaPHn1iGI
cxOlX/E//Tr0t1+n2xmL9+saPVsa9j0JRoeNKTo8Le4R3q+7y/Gh1pcxGP1C
FD63H+yyJPeXocIrb8e+7ooCkQ9vKflWL7VhpaMMJXJzmPMHRcFwKUUnJO09
EvHqPAE58RBIcmxB4PuWco8co0y1GC4S0PhWv7vFNYFwU4YS/7vbBvD5h2ch
EZsfpVSP/df8yZT50d/5ndKl8PmPxz2+h82PcqgovnjJqd5o60lMz2i6t8XK
BaNjByl9jw8aQxUvy8qQhPQxE+HeaLhzqOmfxsO/jEd/xxM1PfH1X92TCoU1
gSj5QC6Ot2R8PzVaX4bMGQSdmsSiQesbRVdrpPbJn8X48I+Dk7FRcBDsC6T4
I93JZXz803FOSWw8QiMZ/zV+hTIe/R3PeTzxfGhNGeK62UXTaBEN8r8p/tqE
epnuFsbDNLfkygwEg6Fc8gtFr6q2sigVlaHazYZe7cwxqNuT0sf+2N7T9/As
AUUp0U4/tAlCd2a8/2k8/B1fYtmEj/94XdDCyiYIaDZQ8uG7CDq2vp6CE5t9
sPWg918j/mk96O96/g8VxQfQ
"]], {}}, Axes -> True, AxesLabel -> {
FormBox["\"Re(\[Lambda])\"", TraditionalForm],
FormBox["\"Im(\[Lambda])\"", TraditionalForm], None},
AxesOrigin -> {Automatic, Automatic, Automatic}, AxesStyle ->
Directive[16], BoxRatios -> {1, 1, 1}, DisplayFunction -> Identity,
FaceGrids -> None, FaceGridsStyle -> Automatic,
ImageSize -> {360., 372.1954668539864},
Method -> {"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"RotationControl" -> "Globe"},
PlotRange -> {{-2, 2}, {-2, 2}, {0.2059284450948405,
1.6352830971032983`}}, PlotRangePadding -> {
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]}, SphericalRegion -> True,
Ticks -> {Automatic, Automatic, Automatic}, ViewAngle ->
0.5011114127587019,
ViewPoint -> {-0.5085437027736799, -3.290506879253052, 0.603280846668917},
ViewVertical -> {0.02723056263852125, 0.17619400889103468`,
0.9839787435149683}],
FormBox[
FormBox[
TemplateBox[{
TagBox[
FrameBox[
StyleBox["1", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["2", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["3", Smaller, StripOnInput -> False]], "Placeholder"],
TagBox[
FrameBox[
StyleBox["4", Smaller, StripOnInput -> False]], "Placeholder"]},
"SwatchLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[
InsetBox[
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All},
ImagePadding -> 0, {DefaultBaseStyle -> {"Graphics3D",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
Specularity[
GrayLevel[1], 3],
RGBColor[0.880722, 0.611041, 0.142051],
Lighting -> {{"Ambient",
RGBColor[
0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}},
Opacity[0.7]]}, Lighting -> {{"Ambient",
RGBColor[
0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}, ImageSize -> {12, 12}, BoxStyle ->
Directive[
Opacity[0.3],
GrayLevel[0]]}], Center, Center,
ImageScaled[{1, 1}]], AspectRatio -> Full,
ImageSize -> {12, 12}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.16666666666666669`] ->
Baseline)], #}, {
GraphicsBox[
InsetBox[
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All},
ImagePadding -> 0, {DefaultBaseStyle -> {"Graphics3D",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
Specularity[
GrayLevel[1], 3],
RGBColor[0.368417, 0.506779, 0.709798],
Lighting -> {{"Ambient",
RGBColor[
0.19699838300000003`, 0.252204821,
0.33320940200000004`]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 0, 2}]}},
Opacity[0.7]]}, Lighting -> {{"Ambient",
RGBColor[
0.19699838300000003`, 0.252204821,
0.33320940200000004`]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
ImageScaled[{2, 0, 2}]}}, ImageSize -> {12, 12}, BoxStyle ->
Directive[
Opacity[0.3],
GrayLevel[0]]}], Center, Center,
ImageScaled[{1, 1}]], AspectRatio -> Full,
ImageSize -> {12, 12}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.16666666666666669`] ->
Baseline)], #2}, {
GraphicsBox[
InsetBox[
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All},
ImagePadding -> 0, {DefaultBaseStyle -> {"Graphics3D",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
Specularity[
GrayLevel[1], 3],
RGBColor[0.560181, 0.691569, 0.194885],
Lighting -> {{"Ambient",
RGBColor[
0.1830429875, 0.21424763749999998`, 0.0962851875]}, {
"Directional",
RGBColor[0.14004525, 0.17289224999999997`,
0.048721249999999994`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 0, 2}]}},
Opacity[0.7]]}, Lighting -> {{"Ambient",
RGBColor[
0.1830429875, 0.21424763749999998`, 0.0962851875]}, {
"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
ImageScaled[{2, 0, 2}]}}, ImageSize -> {12, 12}, BoxStyle ->
Directive[
Opacity[0.3],
GrayLevel[0]]}], Center, Center,
ImageScaled[{1, 1}]], AspectRatio -> Full,
ImageSize -> {12, 12}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.16666666666666669`] ->
Baseline)], #3}, {
GraphicsBox[
InsetBox[
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All},
ImagePadding -> 0, {DefaultBaseStyle -> {"Graphics3D",
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
AbsoluteThickness[1.6],
Specularity[
GrayLevel[1], 6],
RGBColor[0.922526, 0.385626, 0.209179],
Lighting -> {{"Ambient",
RGBColor[0.30756835, 0.18676585, 0.147065275]}, {
"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{0, 2, 2}]}, {"Directional",
GrayLevel[0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{2, 0, 2}]}},
Opacity[0.7]]}, Lighting -> {{"Ambient",
RGBColor[0.30756835, 0.18676585, 0.147065275]}, {
"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{0, 2, 2}]}, {"Directional",
GrayLevel[0.3],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2306315, 0.0964065, 0.05229475],
ImageScaled[{2, 0, 2}]}}, ImageSize -> {12, 12}, BoxStyle ->
Directive[
Opacity[0.3],
GrayLevel[0]]}], Center, Center,
ImageScaled[{1, 1}]], AspectRatio -> Full,
ImageSize -> {12, 12}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.16666666666666669`] ->
Baseline)], #4}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.3}}, "Rows" -> {{0.5}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"SwatchLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Specularity", "[",
RowBox[{
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.6666666666666667], FrameTicks ->
None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"GrayLevel", "[", "1", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[1], Editable -> False, Selectable -> False],
",", "3"}], "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"Lighting", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"Ambient\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.20067051333333336`, 0.14943112333333333`,
0.06032302333333334], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.30100577`", ",", "0.22414668499999998`", ",",
"0.090484535`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535],
Editable -> False, Selectable -> False]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.17614440000000003`, 0.12220819999999999`,
0.028410200000000007`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2642166`", ",", "0.18331229999999998`", ",",
"0.04261530000000001`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2642166, 0.18331229999999998`,
0.04261530000000001];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.17614440000000003`, 0.12220819999999999`,
0.028410200000000007`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2642166`", ",", "0.18331229999999998`", ",",
"0.04261530000000001`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2642166, 0.18331229999999998`,
0.04261530000000001];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.17614440000000003`, 0.12220819999999999`,
0.028410200000000007`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2642166`", ",", "0.18331229999999998`", ",",
"0.04261530000000001`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2642166, 0.18331229999999998`,
0.04261530000000001];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.2642166, 0.18331229999999998`, 0.04261530000000001],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "0", ",", "2"}], "}"}], "]"}]}],
"}"}]}], "}"}]}], ",",
RowBox[{"Opacity", "[", "0.7`", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Specularity", "[",
RowBox[{
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.6666666666666667], FrameTicks ->
None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"GrayLevel", "[", "1", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[1], Editable -> False, Selectable -> False],
",", "3"}], "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"Lighting", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"Ambient\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.19699838300000003`, 0.252204821, 0.33320940200000004`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.13133225533333337`, 0.16813654733333336`,
0.22213960133333338`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.19699838300000003`", ",", "0.252204821`", ",",
"0.33320940200000004`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.19699838300000003`, 0.252204821,
0.33320940200000004`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.19699838300000003`, 0.252204821, 0.33320940200000004`],
Editable -> False, Selectable -> False]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.10315676000000001`, 0.14189812000000002`,
0.19874344000000005`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.15473514000000002`", ",",
"0.21284718000000002`", ",", "0.29811516000000005`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`], Editable -> False, Selectable ->
False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.10315676000000001`, 0.14189812000000002`,
0.19874344000000005`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.15473514000000002`", ",",
"0.21284718000000002`", ",", "0.29811516000000005`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`], Editable -> False, Selectable ->
False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.10315676000000001`, 0.14189812000000002`,
0.19874344000000005`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.15473514000000002`", ",",
"0.21284718000000002`", ",", "0.29811516000000005`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.15473514000000002`, 0.21284718000000002`,
0.29811516000000005`], Editable -> False, Selectable ->
False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "0", ",", "2"}], "}"}], "]"}]}],
"}"}]}], "}"}]}], ",",
RowBox[{"Opacity", "[", "0.7`", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Specularity", "[",
RowBox[{
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.6666666666666667], FrameTicks ->
None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"GrayLevel", "[", "1", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[1], Editable -> False, Selectable -> False],
",", "3"}], "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"Lighting", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"Ambient\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.1830429875, 0.21424763749999998`, 0.0962851875],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.12202865833333335`, 0.14283175833333334`, 0.064190125],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.1830429875`", ",", "0.21424763749999998`", ",",
"0.0962851875`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.1830429875, 0.21424763749999998`,
0.0962851875];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.1830429875, 0.21424763749999998`, 0.0962851875],
Editable -> False, Selectable -> False]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.09336350000000002, 0.11526149999999999`,
0.032480833333333334`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.14004525`", ",", "0.17289224999999997`", ",",
"0.048721249999999994`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.14004525, 0.17289224999999997`,
0.048721249999999994`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.09336350000000002, 0.11526149999999999`,
0.032480833333333334`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.14004525`", ",", "0.17289224999999997`", ",",
"0.048721249999999994`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.14004525, 0.17289224999999997`,
0.048721249999999994`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.09336350000000002, 0.11526149999999999`,
0.032480833333333334`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.14004525`", ",", "0.17289224999999997`", ",",
"0.048721249999999994`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.14004525, 0.17289224999999997`,
0.048721249999999994`];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[
0.14004525, 0.17289224999999997`, 0.048721249999999994`],
Editable -> False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "0", ",", "2"}], "}"}], "]"}]}],
"}"}]}], "}"}]}], ",",
RowBox[{"Opacity", "[", "0.7`", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Specularity", "[",
RowBox[{
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[1],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.6666666666666667], FrameTicks ->
None, PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"GrayLevel", "[", "1", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[1];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[1], Editable -> False, Selectable -> False],
",", "6"}], "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.922526, 0.385626, 0.209179],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.6150173333333333, 0.25708400000000003`,
0.13945266666666667`], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.922526, 0.385626, 0.209179];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.922526, 0.385626, 0.209179], Editable -> False,
Selectable -> False], ",",
RowBox[{"Lighting", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\"Ambient\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.30756835, 0.18676585, 0.147065275],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.20504556666666668`, 0.12451056666666668`,
0.09804351666666666], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.30756835`", ",", "0.18676585`", ",",
"0.147065275`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.30756835, 0.18676585, 0.147065275];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.30756835, 0.18676585, 0.147065275], Editable ->
False, Selectable -> False]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.2306315, 0.0964065, 0.05229475],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.15375433333333333`, 0.06427100000000001,
0.03486316666666667], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2306315`", ",", "0.0964065`", ",",
"0.05229475`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2306315, 0.0964065, 0.05229475];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.2306315, 0.0964065, 0.05229475], Editable ->
False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
GrayLevel[0.3],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> GrayLevel[0.2], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"GrayLevel", "[", "0.3`", "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
GrayLevel[0.3];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["GrayLevelColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
GrayLevel[0.3], Editable -> False, Selectable -> False],
",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "2", ",", "2"}], "}"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"\"Directional\"", ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.2306315, 0.0964065, 0.05229475],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[
0.15375433333333333`, 0.06427100000000001,
0.03486316666666667], FrameTicks -> None,
PlotRangePadding -> None, ImageSize ->
Dynamic[{Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.2306315`", ",", "0.0964065`", ",",
"0.05229475`"}], "]"}], NumberMarks -> False]],
Appearance -> None, BaseStyle -> {}, BaselinePosition ->
Baseline, DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.2306315, 0.0964065, 0.05229475];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.2306315, 0.0964065, 0.05229475], Editable ->
False, Selectable -> False], ",",
RowBox[{"ImageScaled", "[",
RowBox[{"{",
RowBox[{"2", ",", "0", ",", "2"}], "}"}], "]"}]}],
"}"}]}], "}"}]}], ",",
RowBox[{"Opacity", "[", "0.7`", "]"}]}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm], ",",
TagBox[#4, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]",
Graphics3DBox[
SphereBox[{0, 0, 0}], ViewPoint -> {0, 0,
DirectedInfinity[1]},
PlotRange -> {{-0.7, 0.7}, {-0.7, 0.7}, All}, ImagePadding ->
0]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",",
RowBox[{"LegendMarkerSize", "\[Rule]", "12"}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.8003378913384247`*^9, 3.800337929996578*^9},
CellLabel->
"Out[119]=",ExpressionUUID->"e9944856-87ad-44f0-bbbb-be64f5621e0d"]
}, Open ]]
}, Closed]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Archetypes", "Section",
CellChangeTimes->{{3.8003507012615557`*^9,
3.800350705391283*^9}},ExpressionUUID->"1028af87-e00a-485f-a964-\
e2195d7f72bb"],
Cell[CellGroupData[{
Cell["RHF", "Subsection",
CellChangeTimes->{{3.800350720891529*^9,
3.800350721372995*^9}},ExpressionUUID->"0f8b992b-493a-44cb-a5fd-\
40fcffae4540"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"HREN\[Lambda]", "[",
RowBox[{"1", ",", "R"}], "]"}], "//", "FullSimplify"}], "//",
"MatrixForm"}]], "Input",
CellChangeTimes->{{3.800351561760757*^9, 3.800351587477044*^9}, {
3.8003532945490923`*^9, 3.800353296616446*^9}},
CellLabel->"In[76]:=",ExpressionUUID->"cb1d231b-9c09-4092-8bc1-d377a5db8147"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox["1", "R"], "0", "0",
FractionBox["1",
RowBox[{"3", " ", "R"}]]},
{"0",
FractionBox[
RowBox[{"1", "+", "R"}],
SuperscriptBox["R", "2"]],
FractionBox["1",
RowBox[{"3", " ", "R"}]], "0"},
{"0",
FractionBox["1",
RowBox[{"3", " ", "R"}]],
FractionBox[
RowBox[{"1", "+", "R"}],
SuperscriptBox["R", "2"]], "0"},
{
FractionBox["1",
RowBox[{"3", " ", "R"}]], "0", "0",
FractionBox[
RowBox[{"50", "+",
RowBox[{"29", " ", "R"}]}],
RowBox[{"25", " ",
SuperscriptBox["R", "2"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{{3.800351575187879*^9, 3.800351589379211*^9},
3.800353298123711*^9},
CellLabel->
"Out[76]//MatrixForm=",ExpressionUUID->"521a0cfc-7149-403d-8e83-\
74257f630e0d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"HREN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "//", "FullSimplify"}], "//",
"MatrixForm"}]], "Input",
CellChangeTimes->{{3.8003514243875523`*^9, 3.800351459357768*^9}, {
3.800353309269043*^9, 3.800353312310116*^9}},
CellLabel->"In[77]:=",ExpressionUUID->"8045d5c4-afe7-4fe9-8260-f1a06e8a7a3f"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox["1", "R"], "0", "0",
FractionBox["\[Lambda]",
RowBox[{"3", " ", "R"}]]},
{"0",
FractionBox[
RowBox[{"1", "+", "R"}],
SuperscriptBox["R", "2"]],
FractionBox["\[Lambda]",
RowBox[{"3", " ", "R"}]], "0"},
{"0",
FractionBox["\[Lambda]",
RowBox[{"3", " ", "R"}]],
FractionBox[
RowBox[{"1", "+", "R"}],
SuperscriptBox["R", "2"]], "0"},
{
FractionBox["\[Lambda]",
RowBox[{"3", " ", "R"}]], "0", "0",
FractionBox[
RowBox[{"50", "+",
RowBox[{"29", " ", "R"}]}],
RowBox[{"25", " ",
SuperscriptBox["R", "2"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.800351459798152*^9, 3.8003533143918257`*^9},
CellLabel->
"Out[77]//MatrixForm=",ExpressionUUID->"c8f4b82f-05a3-47ef-98c5-\
1afb30ebcbf3"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"\[Gamma]", "=", "0"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Delta]", "=",
FractionBox["1",
RowBox[{"3", "R"}]]}], ";"}]}], "Input",
CellChangeTimes->{{3.800351935033564*^9, 3.800351950725281*^9}, {
3.800351981526742*^9, 3.800352003718802*^9},
3.800353389049596*^9},ExpressionUUID->"834eca02-582f-4ce3-bb96-\
1b571a228597"],
Cell["\<\
Abs[\[Delta]] >> Abs[\[Gamma]] : this is a symetric zigzag archetype, this \
agree with the Plot of the coefficients part.\
\>", "Text",
CellChangeTimes->{{3.800352055095591*^9, 3.8003521550249233`*^9}, {
3.8003534528158693`*^9,
3.800353486555942*^9}},ExpressionUUID->"94c34547-b059-4293-aea0-\
5471bfea483e"]
}, Closed]],
Cell[CellGroupData[{
Cell["UHF", "Subsection",
CellChangeTimes->{{3.800352169843026*^9,
3.80035217133442*^9}},ExpressionUUID->"0fd431af-23ba-4723-ad15-\
7a48a0b7639e"],
Cell[BoxData[
RowBox[{"Clear", "[",
RowBox[{"\[Gamma]", ",", "\[Delta]"}], "]"}]], "Input",
CellChangeTimes->{{3.8003522482913017`*^9, 3.8003522617324963`*^9}},
CellLabel->"In[78]:=",ExpressionUUID->"6cd46e1a-4338-4c46-ac1f-92df2f102ad0"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"HUEN\[Lambda]", "[",
RowBox[{"1", ",", "R"}], "]"}], "//", "FullSimplify"}], "//",
"MatrixForm"}]], "Input",
CellChangeTimes->{{3.800352185397801*^9, 3.800352185791136*^9}, {
3.800353493956765*^9, 3.8003534967676373`*^9}},
CellLabel->"In[79]:=",ExpressionUUID->"a9a22488-55d8-4a9e-bc82-97944583d0c0"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox[
RowBox[{
RowBox[{"-", "225"}], "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"75", "+",
RowBox[{"59", " ", "R"}]}], ")"}]}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]], "0", "0",
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]},
{"0",
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "45"}], "+",
RowBox[{"60", " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]},
{"0",
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "45"}], "+",
RowBox[{"60", " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]},
{
FractionBox[
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]]}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{{3.800352181073542*^9, 3.8003521865121202`*^9},
3.8003534976580772`*^9},
CellLabel->
"Out[79]//MatrixForm=",ExpressionUUID->"7477b4c9-ec9a-4a36-8210-\
6e64d98e7dd7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"HUEN\[Lambda]", "[",
RowBox[{"\[Lambda]", ",", "R"}], "]"}], "//", "FullSimplify"}], "//",
"MatrixForm"}]], "Input",
CellChangeTimes->{{3.800352201390511*^9, 3.800352201698962*^9}, {
3.8003535019331903`*^9, 3.800353504345255*^9}},
CellLabel->"In[80]:=",ExpressionUUID->"d5c56810-e234-4468-a1fe-c75b8dec17c1"],
Cell[BoxData[
TagBox[
RowBox[{"(", "\[NoBreak]", GridBox[{
{
FractionBox[
RowBox[{
RowBox[{"-", "225"}], "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"75", "+",
RowBox[{"59", " ", "R"}]}], ")"}]}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]], "0", "0",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]},
{"0",
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "45"}], "+",
RowBox[{"60", " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]},
{"0",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "45"}], "+",
RowBox[{"60", " ", "R"}], "+",
RowBox[{"92", " ",
SuperscriptBox["R", "2"]}]}], ")"}]}],
RowBox[{"336", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]]},
{
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}], " ",
"\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"2", " ", "R"}]}]], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"2", " ", "R"}]}], ")"}], " ",
SqrtBox[
RowBox[{"75", "+",
RowBox[{"62", " ", "R"}]}]], " ", "\[Lambda]"}],
RowBox[{"280", " ",
SuperscriptBox["R", "3"]}]],
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}}], "\[NoBreak]", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]], "Output",
CellChangeTimes->{3.800352202376692*^9, 3.800353505117051*^9},
CellLabel->
"Out[80]//MatrixForm=",ExpressionUUID->"36e713fd-6180-422c-aa06-\
fc75a1d2448d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Beta]", "=",
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]}]], "Input",
CellChangeTimes->{{3.800352232832694*^9, 3.800352245340536*^9}, {
3.800352343460321*^9, 3.800352343738543*^9}},
CellLabel->"In[63]:=",ExpressionUUID->"7fd9376d-cc64-47b3-a329-bfb72c76f804"],
Cell[BoxData[
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]], "Output",
CellChangeTimes->{3.800352348927875*^9},
CellLabel->"Out[63]=",ExpressionUUID->"ffd163fc-1924-4599-8769-aaf637a07fe9"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{
RowBox[{"16875", " ", "\[Lambda]"}], "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"1875", "+",
RowBox[{"8550", " ", "R"}], "+",
RowBox[{"900", " ", "\[Lambda]"}], "-",
RowBox[{"7039", " ", "R", " ", "\[Lambda]"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]], "//", "Expand"}]], "Input",
CellChangeTimes->{{3.80035253192638*^9, 3.80035257801448*^9}},
CellLabel->"In[66]:=",ExpressionUUID->"9ce5eaf2-115b-4b61-86b6-90650d80f6ac"],
Cell[BoxData[
RowBox[{
FractionBox["25",
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["57",
RowBox[{"14", " ", "R"}]], "+",
FractionBox[
RowBox[{"225", " ", "\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]], "+",
FractionBox[
RowBox[{"3", " ", "\[Lambda]"}],
RowBox[{"7", " ",
SuperscriptBox["R", "2"]}]], "-",
FractionBox[
RowBox[{"7039", " ", "\[Lambda]"}],
RowBox[{"2100", " ", "R"}]]}]], "Output",
CellChangeTimes->{{3.800352536180687*^9, 3.800352578346717*^9}},
CellLabel->"Out[66]=",ExpressionUUID->"1081430d-515a-472d-9c71-c51a1eb9901d"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"\[Beta]", "+", "\[Gamma]", "-",
RowBox[{"\[Lambda]", " ", "\[Gamma]"}]}], "=",
RowBox[{
FractionBox["25",
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["57",
RowBox[{"14", " ", "R"}]], "+",
FractionBox[
RowBox[{"225", " ", "\[Lambda]"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]], "+",
FractionBox[
RowBox[{"3", " ", "\[Lambda]"}],
RowBox[{"7", " ",
SuperscriptBox["R", "2"]}]], "-",
FractionBox[
RowBox[{"7039", " ", "\[Lambda]"}],
RowBox[{"2100", " ", "R"}]]}]}]], "Input",
CellChangeTimes->{{3.800352309626172*^9, 3.800352319837036*^9},
3.8003526160573893`*^9},ExpressionUUID->"a6315198-1693-4dba-a7a9-\
7d086adc8bf6"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
FractionBox["25",
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["57",
RowBox[{"14", " ", "R"}]], "-",
FractionBox[
RowBox[{"16875", "+",
RowBox[{"4", " ", "R", " ",
RowBox[{"(",
RowBox[{"2775", "+",
RowBox[{"1511", " ", "R"}]}], ")"}]}]}],
RowBox[{"8400", " ",
SuperscriptBox["R", "3"]}]]}], "//", "FullSimplify"}], "//",
"Expand"}]], "Input",
CellChangeTimes->{{3.80035265705797*^9, 3.80035267180803*^9}},
CellLabel->"In[68]:=",ExpressionUUID->"8715de4c-64e4-4333-89dd-e717ee5903cb"],
Cell[BoxData[
RowBox[{
RowBox[{"\[Gamma]", "[", "R_", "]"}], ":=",
RowBox[{
RowBox[{"-",
FractionBox["225",
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]}], "-",
FractionBox["3",
RowBox[{"7", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["7039",
RowBox[{"2100", " ", "R"}]]}]}]], "Input",
CellChangeTimes->{{3.8003526852670193`*^9, 3.800352688516603*^9}, {
3.8003528206689377`*^9, 3.800352827232439*^9}},
CellLabel->"In[72]:=",ExpressionUUID->"e04607f5-a828-4356-a612-c66d2fe3204b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "75"}], "+",
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+", "R"}], ")"}], " ", "R"}]}], ")"}],
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]], "//", "Expand"}]], "Input",
CellChangeTimes->{{3.8003527211884327`*^9, 3.800352722968658*^9}},
CellLabel->"In[69]:=",ExpressionUUID->"4a49486c-8597-4978-9a89-a6621e300c52"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox["75",
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]}], "-",
FractionBox["3",
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["1",
RowBox[{"28", " ", "R"}]]}]], "Output",
CellChangeTimes->{3.800352723348968*^9},
CellLabel->"Out[69]=",ExpressionUUID->"883091c1-e039-48c9-b0ff-e95bc361ea98"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"\[Delta]", "[", "R_", "]"}], ":=",
RowBox[{
RowBox[{"-",
FractionBox["75",
RowBox[{"112", " ",
SuperscriptBox["R", "3"]}]]}], "-",
FractionBox["3",
RowBox[{"28", " ",
SuperscriptBox["R", "2"]}]], "+",
FractionBox["1",
RowBox[{"28", " ", "R"}]]}]}]], "Input",
CellChangeTimes->{{3.800352698524639*^9, 3.800352737123376*^9}, {
3.800352830417364*^9, 3.800352835662073*^9}},
CellLabel->"In[73]:=",ExpressionUUID->"ee43965f-298f-45d1-a648-e6c96be60017"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Gamma]", "[", "R", "]"}], ",",
RowBox[{"\[Delta]", "[", "R", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"R", ",", "0.5", ",", "500"}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "\"\<Expressions\>\""}]}],
"]"}]], "Input",
CellChangeTimes->{{3.8003528119460382`*^9, 3.800352880012958*^9}, {
3.8003529333689137`*^9, 3.800352934201359*^9}},
CellLabel->"In[75]:=",ExpressionUUID->"08913359-9bbb-43bb-b9ff-d738ea1d4a49"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwBwQE+/iFib1JlAgAAABsAAAACAAAAkWLpMVFPzr/x9YZuCengv1h8vQan
I86/CN3ZnJ6C4L9AJJyM3JnNv2BX8aN4ht6/DnRZmEeGzL+AEwgf8qbZv6oT
1K8dX8q/MErRJEZc0L+eZ8NyOBrKvwAGQBwUe86/kbuyNVPVyb+A6PE/N0LM
v3hjkbuIS8m/oEJXHTDex79Hs07H8zfIv4AKVNQmmL6/5FLJ3skQxr8AMwlD
0W+APx2Svg12wsG/EPlsQ/Gazj8U4IvtuXfBv6j7RHI4PNA/Ci5Zzf0swb/Q
QCPoyCjRP/fJ84yFl8C/GAfpEWz70j+hA1IYKtm+v4Aluu4rh9Y/COMmFWgt
ur9AAX5Q/zvdP/V+wdTvl7m/eB5xAqQJ3j/iGlyUdwK5vwg2gWdX1d4/u1KR
E4fXt78wA0xxfDPgP27C+xGmgbW/bO7+rMW54T/VodAO5NWwv9Qud8p/muQ/
wj1rzmtAsL9IOvMSnPLkP12zCxznVa+/oPjneNtJ5T8QI3YaBgCtv2BjgiTK
9eU/dwJLF0RUqL8AhA8MlEPnP4iC6SGA+Z2/hL8BaTm46T/MPFqWWg6Vv1SE
huOfweo/vT/iUg==
"]],
LineBox[CompressedData["
1:eJwBoQNe/CFib1JlAgAAADkAAAACAAAA5sGsVUnt9D9UhIbjn8HqP/oBZlAG
rvY/SZtMMo1F6D9k0VcTFf74P5+P88QxTOU/ZoNLjD0m+z85d32E9sziP1Jl
Tx4dff0/enZumVVi4D/VKVVmFqz/P2cwa61gxdw/IY+1Y+MEAUBvz3kK+/PY
P9zcw/83LgJA9/opx4es1T/jG9N2mUMDQIr8CG1r/dI/33JqelZwBEBUbL13
dnHQPye7AlkgiQVA0bYCYDi8zD/zVh6jZpwGQKH6lBBWKsk/swrCeQjHB0Cq
PqDQ+8jFP7+vZiu33QhA2IF1hWIJwz/AbJNpwQsKQPqNtvXAccA/RX1DE0g0
C0BD5ClZHXu8PxZ/9JfbSAxAoTC51oXmuD/cmC2pynQNQE+r0+yfhbU/7qNn
lcaMDkAGMsz+CciyP4QCJe0+nw9Ayx51tMFusD+HPLVoiWQQQCNu79Kfbaw/
cnBYyHnvEEAwVtPwM9SoP1ewP+4XhhFAAZxEZVxwpT/iaKeBvBISQC7+9f0e
saI/L8vQSp+cEkAJDw/BFlegP3Y5PtovMhNAz+RUQZE+nD9jICzXxr0TQGA+
VYYMppg/SxNemgtVFEBBff49OESVP/WvUZOO6RRAG62vAsJlkj9FxcX5F3QV
QMa7QRgsEpA/j+Z9Jk8KFkDoqLHLQMKLP3+AtsCMlhZAL4pGHyc1iD8xxLCQ
CCAXQD35aV3eKoU/3hPvJjK1F0BnB2+Xk0yCPzHcrSpiQBhAHEwxAMXyfz/u
D8Sqz0IYQIaylmlo338/rEPaKj1FGEBGy+aNF8x/PyarBisYShhAs8fi6pil
fz8cel8rzlMYQMHCezAnWX8/CBgRLDpnGEAoTrTJa8J+P95TdC0SjhhApDVW
DGWdfT+ch4qtf5AYQCjwNWJyi30/WbugLe2SGEAJWNyXinl9P9QizS3IlxhA
8qgqiNtVfT/K8SUufqEYQLIaasX+Dn0/tY/XLuq0GEDBukoERYN8P3LD7a5X
txhAAxgXSf1xfD8w9wMvxbkYQKjAKAbAYHw/ql4wL6C+GED/r8PPZD58P6At
iS9WyBhAz2VE8Cr6ez9eYZ+vw8oYQH6FjEY26Xs/G5W1LzHNGEC1msziS9h7
P5b84S8M0hhA8QJW1JW2ez9UMPivedQYQKtqOR3KpXs/EWQOMOfWGEDN7EiT
CJV7P86XJLBU2RhAf+9aMFGEez+MyzowwtsYQDKTSe6jc3s/tHWdlQ==
"]]},
Annotation[#, "Charting`Private`Tag$25304#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVlnc8lt8bx59FGpL9JF8hCllpGeU6yAiV7PE8dyWUSJJKoaSyQvaKUNIg
JETUMZNKGYUou+y9R/ye31/n9X5d9znX/flc17leR8z2grE9hUQiOZBJpP+v
PxVJTbJW72Bixs9l7UAnPu//vPgMoxwW/PI36a/twB8838/8e1oOlyuLshQb
27Goa6NC1FQ57CX/l+ye1I6/W/57XBpUAWldDye5d7djVZnjwZuLKsFUoIES
bvsbc9TOMz7zV8PgSUXlzQ1tOI1Hb0X+22fwzRvlNBhrwSvsTOUqoS8wXWzg
/6aiBVsuXXSzcfgCMu0a2y7EteD1vQ/++v/7AvV7S0reabZgt/yxr507vwIR
ouD5KaEZi2Z+Pnb4UB383vVSZK9lEx49ekl0KaUBLA1NGrjZvuPg3aOf+D80
wNqCsrKE7kYsTXe8rDjUAFHLa9iI0kZs10V8st/bCNtLApbDvRrxz0v67nU1
jbA+uWvtk7kGXBkn9vHJ5HfY/aQnSGK+Hid0f7tgdKgZBPyfvN8kWoeVq/WF
nBybQcXxdpsirQ7/yKiqvBvaDAYcdF1S/Te86XLx5uKWZvil9H7Y7PQ3fHfN
0wrJ8y2g6ZEjZBz8FbvK3hBciv4JXvfEP64Z+4J1rsjiJ31t4HLJOPrcVA3m
vLaGTXPdL0i/RjtkVVODv3t267fL/oL+APUTQck12PZWXJOA2y844tunnGtY
g72DaaP+y7/gSoeLLOeLjzjv0S/hc9ztYDsgXR7rWo3Dz+gcjP2vE8INrahM
mSo83b/75B/5TtB4aXesdU0Vtjwndns36oRQykGR0D+VWOT88sdvtp0Q/Mxo
JDa1Eme65ZpyPOuEA4QH507hSvzRW8T5mlIX2GcKD7NvqcCrkbMJNrrdIFp6
YtHpYBnujsm8stW6G4KZJ6uKRcpwZbytcY9zNwTIp0siUhkOSv661imiG8h7
c+BPRSnmy0j3uP67G+Tok/KxR0qxTLm5efylHujt+yec9P09Nh8v4G5O7oWR
BXucEFKMVaacRxJyeyF8OmqbEKMYC8+K1xBVvQD2ly+OyhTjrqVQn7+DvaBa
qxoQWfMWO685Mzaz9w9cuKq1tnTdW+wrIljL9+UPaCfpZUglFuIsw6sBxvN/
Qco3wiFhLh+nE793Na/tg8LuUypmDfk4yVWrzWZLH/jEXWkyeJmPg6O45O3V
+6Bx3fOpwdP5+Nyvp41X7/SBzLtyj7+NeXi7c4tI0qZ+qPsS6u/7/jVOuqeS
3yc1AIuXynMHi1/hqKRkwlmVxXtagi8mvcLB2WwcEwYDMDtZaSt98xW+3lhv
vegyAMYLqp9ltF5hyy3nSJz5A6DaqCrtXJvD8ivBQEljEH505s8e/ZGNgz8t
dXlZDUE7F0elQHAmLuEWMn5+bgi25/DVathk4mFL5fIfnkNQp/vgX5FMJjbo
c38k/3AI1rlozdz/lIHX0UZtO7uHIDaLeriKMwMHHOzs0XIehrfBGjLjqc/x
nZzKP+tujoDrkyRZtJKO8+a6zfaHjYCRNv/snqZ03KtO/nA6dQT0/r5UdsxK
x1q1B9NLKkZg2OT1w9AT6ZgyWODgwjEKQ1efaJdXPsE+25731YePgnjc7WfX
EtKwZ0zIQFzaGESateVmuD7CMifcedTejEGG7L83vEce4dYdNmq/a8ZgPEtD
oUj6EVYukgoRGxuDme0bm972pOLFkVP0H8LjIOVW3RxinYoLNv0rZp4Zh63B
py9tMUnB8ua7qReWxyHMX/nJtdZE7Pc2XbCUbQLauQWfyKUm4t8iQrLcXBPg
8HhIUPtsIg7uI5m9FpuAOVm1wgdzD/Cgx9f0OZ0J2PDVqvaH0AOc/sBR3yd8
AmQarETH3eLx1q7k8PDtk2DKrWYWZB+DSUeGNmgpTMKhV6/tQ1VjcHfhvoDp
/ZNA9Bjfb+GKwelhtTcsDk+CGu+s+8HiaCyPlpz+c56ElawdKQf5o7F6srnO
81eTcCVZ2vTtj0jMYHIulR6YgmcaLQG/74Zj9RrLK27aU5B28oFVm204Ft2b
NrHt6BTYKSjk8qBw3LtBrd/vxBQclXgQJrsUhp1Kzv4w9J2C5QpVVap7GL6+
pTK7pXoKXpkevdfREYrjfl63GzeehlaybMyi8D2s6idTwmBMg+4zHV79jiDc
ptTKW2M/DUJVGm4cj4KwSLBKRarHNAjaVnd+lQrCaerzYiYPpyHaMp7HRS0Q
5zy+3JE/MA1Gjq2nzN39cc15V2tPnxnYEukowq14B58TEs3tC5yB5mzf6t6V
23hD9be1ppEzsNHldj/319vYSFShSDZ9BjQ43eSvnL+NmxpGBNs/z4CuIZue
eY4v7t7v9AMJzoKhLaVzSvsWXiQ7GLFnzUJa09uCZCtvrFxz8Z7Om1noV2xx
/bPBG18O8/7gVzoLeRNGugWlXnhcJPrAmsZZULI4nToj7YX71CqlOOZngUND
s7qe4om/XxYnr9OcgwOvPVJVaz1w9kD7K86mOXDQOx4z9t4dD+cMDh/pmIN9
5Cczo7fcsYzH7I7Q/jlQzAgbJLTdcTr7xocbl+bAtiQ0KaT2Ek7cdjCIS3Qe
6D9uP+XuccNBzAe23OfmoXE6QJlP/CK2q7fg5V+Zh+mVgfc3mpywbIpafj77
Avhq7kxz8nLC0y5bLcy5FkDJcdPqrLgTvrOhLyFWdAFyvNNk/1w8h9N0r4gL
aS2Azq9AG5qgI+59F7Vra8ACFCroBFz3dsD2L+qPSfMsQu7LzbPTeaew/LX8
iRqhRTCy9ufucz6FZ3XjI89tW4SWsdc8NpKnsN+fk80ZexZBtZAcWhV7EqeL
jhPyFosgHL9GT5jtBP4bs9Fld+IifCwbM77Zbo0dbhsEH9y+BGl9+yW7wASP
RkSui1dYghQNh/gnFcb4yqO2gGnlJZjvOrXHTs8Y3y1zupthsATCxdbCNabH
cdrqvRubLy6Bx+UbVPbJo7jL84vrTPES1OVYakW36eKz9/jGjKqWwFKMf6GF
pIvHExjnM78usfwMPvt7hw4mvR12PN21BHrXpw4Lex7CIvMbTtezL8PZa0c5
RPZpYIb7EbOXx5dh07sf2Zpze3Hv7ehGDptl8Dn5nUP46h7sHPn7uJ3dMrhe
RiubF5WwZ+75o1uuLkPdid/N59cq4oTxEN3AxGVIOXJ1sjheAjc7f1Wx71sG
UoQ1V+qbHnVj+2Mi/3n/A59bfuw0xh6w87pA/Xn3H5TeWgzgcdkLVyLv90eF
/oOT3/ZvHfXeBwll33I3pPyDsD6XWaFYZej+z0h3ufwfKKoUb83OPgCXmoxc
2zhWQG/e75eDuib4jbiaxXKzWDrB93mBJsTRwlVNhFbAiLf5+KicFpQo1dM+
71wBKT+T2TubDwHt/vH4t0dXQPlaezjvH22I0jUuj49agbPrlbIEjx2GdMLt
qVnSCuSktg6pFR6GwssRwdzpKyAqKGTjKaoPvx43mAe+WYE6re7i46P6IEEy
GfJoZZ2/1f323ZuGkFdowmcpugqF/o8SD187Bj+kzRwEMlcha++C0aCjMaTf
+rkjJH8VFCUEAn9EGYPHT+YAFa/CAT/9ThNsDMKBDs4T9avQ6jJM5eQ1Adv+
q25f5lYh0Ufvhl++CXiYHIEyMRIqtL+0eKDPFE7d5Erx2k5Consu6+StNwP9
jHqS8k4S4nm66vVJwQyEqeblWXtIqN/T7GLTFTPAuYR2oi4Jsev6v7hJMgd2
HleDq+dJyFRlQPElxQLGDiplKrmRkPCdkm12YhbQ4ji9YfQKK26kmVAJFvCi
zOOrnQ8JMYrqw+94WsCRi7eOG0eS0J0rgUPcYxYQVRdhIVdEQtOtf3v7P1iC
97JpYf87Elqs2tTi02kJDlKCm9PKSegAEfH984Il7Pd50Cr0hYTMIzZKee+0
glaFNCZHBwnRdkcWMu5Zgdj9/NM9NDIy+tThFHDQGiw/ShYErCWjgsbiTkVj
awglx3DIbyQjidcM21gHa1i+dOWlhyAZ9RdauKeEWkOL5f45Thky+vjYkZzT
Zg1h4kVBysfIyLTlR8rOczZQbSP9+7cJGWlyz3kPX7eBlah4hduWZCRUKpvt
ds8GnNdc/157iox+HTOpqsuwAd1hVZHT7mQU9i4nsWOA9X1+yauQeDJCVckB
aTYM2DsmS9v9kIzeZmvlDJ9lgLNUknnLIzIatbxRSLrCgNYE7yXxTDLSOSU0
G3KfAQU31bUL35ORlMnhet1SBowUZsUyK1h6LVNeLnxmgMSkyCDlIxkJxES5
Xm9mQITdauiRejLi8zsuNjjCgPOHS1u6e8jIb7O/YTCdCWm+ijsD+slonCPW
B4szobU4xVtuhIxeFFpcq5Rlgp78LXGPWTKq5A8S1kZMkODVdOZcS0HKQnrl
MvZM+PWrYnW/PAUVKvi6NKQzoWVzyt0QJQqy++x+9vNLJnw391rfs4+CdosV
vEvJY8KXuj2CoUBB7tXz3l1lTHhX+US+14iCDI26rcpbmfCW7JunYkZBi+8D
9j7pZEKBOqF634qCNoTWOzr8ZUJWoYCOqi0FqfP4N96ZYMLDTH9m2CUKCtzV
aKnMTkDCwOmeP1dZ+x2jn/OtJyBmO3JU86KgZa3E/fVcBISmzLv/vUNBJWH5
s0N0AoJ+f19UC6SgkXjvRP3/CPATeuUTHkJB/WGzZ4PECLgZ5Rh8IIaVT97V
JkuaAK96bZ6IBAoKitKdipAjwGOjeFzfQwqi3boRbbWLANeA1scRTynIw6K1
JUSZgJNeBsX9hRSktjbaIU6bAEbRDg31dxSUOy1zIlKPAMtZanVkGQUldH2j
uxkQYORa0qD+iYIKGnaltRkRYPgyzjLqKwX9jQ7rcDAhQG/QvX2ggYJsf2tm
N5kRoGEnNxjVRkE6oYZtdtYEqKeudR3soKDxOy8e3mYQoNr+ZwZ6Wfrp5yr9
CQL2bSn3jO6nIBMuzZsXTxKgZPmQPDRMQaUacWQNWwLko6/7owlW/i2+3rOn
Cda7zJwzZoaCBASqJCLsCRA35NqsscLSc7njrddZAkQChx7GUKio9ETB+i+O
BAh9qJYYZqeiyrN/DShOBAhQ015orKeiP+6ZGVudCeBBPoqxXFREOzpvLXGe
gI3ejIJhXiriFjofuMmFgHVvlQ9o0qlope6UQy+L2ef4ymOFqWhvbpdoygUC
KHsmdEdEqei/osw+LVcCVlxrazUlqYiXW3ngG4sXXz43iZOmouSALJNDFwmY
Hbz7c0SOiki0CdNUFk/usD2hpURFy6MxQn0sHrVT/xO3j4r4skbr+d0IGEwV
chpVpaLRjStP5Vj8t312XAuoaF+hb408i3u2NF6J16Ki1LhJ280sVr/Wdc5Q
j4petaORftZ5CU1jxKohFcUr0s48/H/+3SvGucepKC7wyxpVFhuHb9C1N6ci
Ho0a9hLW/2aNCqnRbahoPKMmQYLF6wylFT6foKLhkoOLl1h6HZ7v33bDjooa
Hu+zecHyo5xdR3CXIxU9cjozVc3yT8TOdH3veSqqjZWc/8Ly93qZ7WqMGxWZ
lzo+LGL53yRycerwVZb/snVCoedY9fa62bfsydLvEp+qz6pX6M+QtmwfVj2W
XjiMnWHp35f4zfYuFZ0vvZ/k5UDAo4nCNx9DqUgy/aDccVY/rBytzvCMpKI8
C+ZQ3CkCrDN/JMvHUVFw6MqfmhOs+p6Z9I9KpaLyxRcW/TYEuFSSvHTTqehF
97FdTVYEfBLjcl18QUWxTS82ZFkQ4Ptrp+XJPCryjFwTJMzq73YVVUPeIio6
YTB/7zWr/1Vj9dCHd1R0as2NY3uPsup33F5KtpqK9mwKa15g3Z9T1Q/n535S
0bnib6v3DhJQIvFy+EU7FUX4v5a4oUoA3be4k9lDRR/qLnsy9hNQd6DlY8Uw
FcXwfXJtVyQA5XLH31+lIl9+gcPL4gQkcomGaNJoyOzAjVrTrQTMO8vfmuGg
oaMfTToTthCQs8PA0YaHhh6GD1mN8xIgmnRHZYckDbWs3yZdRWXNh8UIuVZp
GlrbY50dusqahxapYiHyNPR3SxOn7hITwnjer53aT0McTKmpO5NMIAXM/Xyv
T0OTvp2ZKqx51+F27rq5Kw0lJDicfVbIin/vTS1yp6G2i55xn14zQXzviRrh
azSUJ+XR05HFBLs5E3rPLRoSVvVQ701jQr/nwYILkTQkyqMiaxHGhIk7myYD
Cmgo6fURxxU7JlBjCxyLl2moN++hAic7a57PK4aLkNlQOPXV8+pVBuhYZRTe
YmND7gMXgzwWGBCwJWWN3kY29DfsePu7YQZsSAl88n0rK+4vbvOzgQH8zxld
I5psSE/gnd+ZJAbsKKZYiQayIeX12cNXZRkQI73T7XwIG6K2X+o7KskA9jiT
e2/D2ZCi/XflrSIM6HVPe2eawIZ6NA7tyORiQIq8jnhgBhuiNRttuzZpA0KP
AocmatnQKyeB4tECG+AM3HSjgocdBc9uyilWs4Epc5HHDons6AdvkauosjW8
Xld+jaN6DSo1VdVr67IAnO2w881vDpT4TOWj5HMzKHWOdCxbvw7x9VntkjQ2
AW1vLV69PevRh8TrauZSx0Hg5nRsm94GBE6bGc5RR+FXnNzzT+6c6KrZQrB6
tz6MPj4T/SF4IzrcpjJBqdKFOxTJEfVkLnRjobMgiE0b/A/knw2024TaHl+l
pTE0wc3V8uO1sU2ouuhSB0kagUUOjAr6cSPOoM23zggdgO6zT2+V8PCgaMms
M6qPlUHhc51+ciIP2r9/D1PxMeu9q6LeqqDEiwLkN6ZXVCvBaVHZ5g/veNE9
/v7rMxcVwYCXSFhvxof4w8vYL1+VhZns45GhA3yobed0xkiOFGhXVS0IuvMj
g6+TnepJknD/r/f2Y+sE0KLJfA5fnjjc9CkoDY4RQL4JBlXi5qKwqzInjENU
EJXJLfs/eiAM7bxj25XyBZFus4Tmrgo67Pr1UsYW0ZGyFVnp1GN+GOWqfPFN
k442PvlsaxPDD5larTIHtemoiFJvzQzkh+0Z7Dvp+nSkaaQT6nGBH4Svn9j5
1YSOzGO8b68/wA8cdG5Z1TOs/YkpeclNfNBu4i7HE0pHfEzKNltuPkj0D3p5
M4yObEaVwg3Z+MCqOEVuJIKOAoORivoCL3wXr5X7GEtHQ49GJPd38cKnCUn5
G6l0JF07sXjjFS/k32+WH8yjI67IxL+2JrzgVjGSZfGGjgSeL8+/1+UFxTmq
QlURHY1cVKOIH+CFF4SiQsp7Osov7u9fluCFFLlABfOPdCRXFxrFNscDxKnk
7IpPdPQv4eRQ3BAPbInOV9hVS0f6Epfpuzt5IGa5S2FDAx39Tj/0x7OGB0wV
57OvfWf5cXPaS+Y9D3DbbVTsa6Kj6sa61o5cHvgaK5Fj+pOOIht+Lj54ygPB
n1UVy9voSGyW+yeRyAP/A0qAiqc=
"]]},
Annotation[#, "Charting`Private`Tag$25304#2"]& ]}}, {}}, {
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None}, DisplayFunction -> Identity, DisplayFunction -> Identity,
Ticks -> {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , Automatic},
AxesOrigin -> {-0.6931471805599453, 0},
FrameTicks -> {{Automatic, Automatic}, {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}}, GridLines -> {None, None},
DisplayFunction -> Identity, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"ClippingRange" -> {{{-0.6931470395853477,
6.214607957447594}, {-11.081898426642045`,
1.4494697535923777`}}, {{-0.6931470395853477,
6.214607957447594}, {-0.5284468802198586, 0.8361358112198425}}}},
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0},
CoordinatesToolOptions -> {"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )}, DisplayFunction :> Identity,
Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None}, PlotRange -> NCache[{{-0.6931471805599453,
Log[500]}, {-0.5284468802198586,
0.8361358112198425}}, {{-0.6931471805599453,
6.214608098422191}, {-0.5284468802198586, 0.8361358112198425}}],
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
RowBox[{"\[Gamma]", "(", "R", ")"}],
RowBox[{"\[Delta]", "(", "R", ")"}]}, "LineLegend",
DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{3.80035288101691*^9, 3.80035293534479*^9},
CellLabel->"Out[75]=",ExpressionUUID->"38bab27b-9172-4867-a690-cffcf270d3a1"]
}, Open ]]
}, Closed]]
}, Closed]]
}, Open ]]
},
WindowSize->{1200., 636.75},
WindowMargins->{{0, Automatic}, {0, Automatic}},
TaggingRules->{"TryRealOnly" -> False},
Magnification:>0.9 Inherited,
FrontEndVersion->"12.1 for Linux x86 (64-bit) (March 18, 2020)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"258ac4d8-b0ae-4397-904e-d65bf4609214"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 157, 3, 89, "Title",ExpressionUUID->"16dce8c1-32b6-49d8-81b0-4ab61451eb68"],
Cell[740, 27, 416, 11, 42, "Input",ExpressionUUID->"80ad60af-86a2-4fda-8827-489ce9a5dc31",
InitializationCell->True],
Cell[1159, 40, 358, 9, 42, "Input",ExpressionUUID->"e3c918f7-5418-4fe0-a7f0-83630d2402d3",
InitializationCell->True],
Cell[1520, 51, 726, 16, 82, "Input",ExpressionUUID->"4b3fa302-b0b1-4b48-afcc-dd7d3cb6f69e",
InitializationCell->True]
}, Open ]],
Cell[CellGroupData[{
Cell[2283, 72, 169, 3, 89, "Title",ExpressionUUID->"d67f97ba-1e03-42ba-af26-2ba27f192a75"],
Cell[CellGroupData[{
Cell[2477, 79, 224, 4, 60, "Section",ExpressionUUID->"3c74c21e-9502-4bc9-a659-650e70b4ea0c"],
Cell[CellGroupData[{
Cell[2726, 87, 418, 9, 45, "Input",ExpressionUUID->"d885c70d-1710-499c-a414-e4316bd418c4"],
Cell[3147, 98, 1155, 30, 70, "Output",ExpressionUUID->"d5fead00-b3a6-4446-b4ca-0ce7b6b6d160"]
}, Open ]],
Cell[CellGroupData[{
Cell[4339, 133, 790, 17, 82, "Input",ExpressionUUID->"a18716d3-6a39-495f-8f4e-6a966becdb15"],
Cell[5132, 152, 2238, 60, 70, "Output",ExpressionUUID->"692af3ef-045e-4764-8352-7f7255bd65ac"]
}, Open ]],
Cell[CellGroupData[{
Cell[7407, 217, 534, 12, 63, "Input",ExpressionUUID->"e45051e9-76b7-4644-ab40-79b851ee4e1f"],
Cell[7944, 231, 1318, 38, 70, "Output",ExpressionUUID->"5d5c64b4-8720-404c-aa67-eaa2ad14bff5"]
}, Open ]],
Cell[CellGroupData[{
Cell[9299, 274, 487, 10, 63, "Input",ExpressionUUID->"82d466d4-7d32-479e-93a7-5759e9c1f0d8"],
Cell[9789, 286, 831, 24, 70, "Output",ExpressionUUID->"2218a806-c790-41d1-8dbd-4d365289cad3"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[10669, 316, 167, 3, 48, "Section",ExpressionUUID->"844fe8d0-f3cb-4eb1-9e94-a26f5035c4ce"],
Cell[CellGroupData[{
Cell[10861, 323, 6204, 190, 175, "Input",ExpressionUUID->"c9b257fd-5638-4f66-ba9e-a268c80376cb"],
Cell[17068, 515, 395, 10, 23, "Message",ExpressionUUID->"d364e640-37f9-4f76-9665-427d6edb053b"],
Cell[17466, 527, 1058, 29, 46, "Output",ExpressionUUID->"7cfbeb1e-1755-4c48-a5c2-f45e30e03619"]
}, Open ]],
Cell[18539, 559, 4857, 150, 134, "Input",ExpressionUUID->"f3e4fc84-acd8-47e3-a94c-8b95c14b97ab"],
Cell[23399, 711, 2289, 73, 88, "Input",ExpressionUUID->"28efe04f-fdbf-4afb-ad7d-2abba99fee3c",
InitializationCell->True],
Cell[25691, 786, 657, 20, 31, "Text",ExpressionUUID->"13696ba3-1f41-49ff-b5aa-247dca623925"],
Cell[26351, 808, 2128, 68, 88, "Input",ExpressionUUID->"8fd7199b-136d-46ea-b887-2f3fba74f761",
InitializationCell->True],
Cell[CellGroupData[{
Cell[28504, 880, 232, 4, 40, "Subsubsection",ExpressionUUID->"df63035a-1fc6-43ef-a84d-d3f08d517f21"],
Cell[CellGroupData[{
Cell[28761, 888, 525, 14, 26, "Input",ExpressionUUID->"63b49f2e-34fe-45b8-9472-e38d5bfd391d"],
Cell[29289, 904, 420, 12, 70, "Output",ExpressionUUID->"0b91233b-d1f4-4af1-baad-4f1c5b2f4926"]
}, Open ]],
Cell[CellGroupData[{
Cell[29746, 921, 2033, 55, 176, "Input",ExpressionUUID->"846899ea-4557-4a5d-a656-61004b83f6f6"],
Cell[31782, 978, 1397, 48, 70, "Output",ExpressionUUID->"3eb3b03a-f6fe-4027-a3f8-f07757fef3b7"]
}, Open ]],
Cell[CellGroupData[{
Cell[33216, 1031, 882, 23, 45, "Input",ExpressionUUID->"6d0f8a35-4401-473a-9174-b9f5cd75aa52"],
Cell[34101, 1056, 667, 13, 70, "Message",ExpressionUUID->"e4c9d9c7-11a8-48da-9c56-31ede496dfe7"],
Cell[34771, 1071, 667, 13, 70, "Message",ExpressionUUID->"7669b32b-557b-431a-8e5d-657ac4d4e959"],
Cell[35441, 1086, 648, 13, 70, "Message",ExpressionUUID->"8f727b4f-ae13-4277-9660-4019ee9fb558"],
Cell[36092, 1101, 458, 10, 70, "Message",ExpressionUUID->"2e17d0f1-44b7-417a-a615-3cd938948c77"],
Cell[36553, 1113, 1445, 49, 70, "Output",ExpressionUUID->"157d73c1-19c0-47cb-872c-82cc90436f66"]
}, Open ]],
Cell[CellGroupData[{
Cell[38035, 1167, 2198, 58, 176, "Input",ExpressionUUID->"39a76bda-9b84-47c4-aaac-115b2fa0ab3c"],
Cell[40236, 1227, 180, 2, 70, "Output",ExpressionUUID->"096b7e94-d759-42a6-85de-99710d182c3a"]
}, Open ]],
Cell[CellGroupData[{
Cell[40453, 1234, 907, 24, 45, "Input",ExpressionUUID->"55ebc313-238e-4414-bd29-e68cc73a5644"],
Cell[41363, 1260, 1607, 55, 77, "Output",ExpressionUUID->"8d3a171f-015b-4cd5-af3a-e0cf8295d1fd"]
}, Open ]]
}, Closed]]
}, Closed]],
Cell[CellGroupData[{
Cell[43031, 1322, 276, 4, 48, "Section",ExpressionUUID->"0f3a9cca-e608-42dd-8cc4-19f13235aa5c"],
Cell[43310, 1328, 412, 10, 26, "Input",ExpressionUUID->"b8072621-4f64-4c90-aec6-7e04d8ad9729"],
Cell[43725, 1340, 172, 3, 31, "Text",ExpressionUUID->"a72092fd-cf0d-407e-823f-afea1402ca86"],
Cell[43900, 1345, 1015, 28, 99, "Input",ExpressionUUID->"934d15a4-507b-4f5d-8a24-2d5e42913e70"],
Cell[44918, 1375, 185, 3, 31, "Text",ExpressionUUID->"5e1f8c76-898e-44d1-a6a6-d54937a3c5db"],
Cell[45106, 1380, 1033, 31, 96, "Input",ExpressionUUID->"f7215fc1-fb84-4352-96f0-625f766b6f63"],
Cell[46142, 1413, 199, 3, 31, "Text",ExpressionUUID->"0b76a565-f848-4a42-9110-3696e691a3b8"],
Cell[46344, 1418, 1415, 39, 63, "Input",ExpressionUUID->"dab43983-d755-4b03-bafb-790ad3657b6e"],
Cell[47762, 1459, 197, 3, 31, "Text",ExpressionUUID->"5faddd9f-47a6-44e1-a54e-f2d4e1fe5b45"],
Cell[47962, 1464, 1531, 45, 74, "Input",ExpressionUUID->"1972c041-98b1-4941-94dc-257513a35524"],
Cell[49496, 1511, 356, 9, 31, "Text",ExpressionUUID->"75e70534-a77f-4fbc-bbfe-3f61c923d1bd"],
Cell[49855, 1522, 327, 5, 31, "Text",ExpressionUUID->"54fc6b45-7f4e-4fb8-acaf-5b00791f14c0"],
Cell[50185, 1529, 1148, 28, 116, "Text",ExpressionUUID->"2d67f35a-a8f7-4395-9db6-aada87889d6d"]
}, Closed]],
Cell[CellGroupData[{
Cell[51370, 1562, 179, 3, 48, "Section",ExpressionUUID->"88d1b6b5-5bea-4e44-ac1d-422fac666e30"],
Cell[51552, 1567, 1815, 53, 86, "Input",ExpressionUUID->"a5619f0a-81c8-47b4-bc04-0f01cf0e4e32"],
Cell[53370, 1622, 162, 3, 31, "Text",ExpressionUUID->"4a723b0a-595b-40e7-a718-b8dceda3c167"],
Cell[CellGroupData[{
Cell[53557, 1629, 2758, 85, 94, "Input",ExpressionUUID->"2c510fb9-7815-465e-8275-3af213e72b3e"],
Cell[56318, 1716, 648, 13, 23, "Message",ExpressionUUID->"188c0920-3ba6-4be8-bd1e-c12e32ee6c39"],
Cell[56969, 1731, 646, 13, 23, "Message",ExpressionUUID->"63c996d4-5549-48a1-8127-af639bec2f9d"],
Cell[57618, 1746, 648, 13, 23, "Message",ExpressionUUID->"6e3e76eb-b38b-4b08-9424-4c2ad8375465"],
Cell[58269, 1761, 456, 10, 23, "Message",ExpressionUUID->"ebb5ac60-e8d3-4550-8ff9-48d3268fa57b"],
Cell[58728, 1773, 842, 24, 48, "Output",ExpressionUUID->"92a2088f-cc7b-4037-b9c7-d3578f2988b6"]
}, Open ]],
Cell[CellGroupData[{
Cell[59607, 1802, 329, 9, 28, "Input",ExpressionUUID->"85af60a7-84f1-4bf3-84e4-8b303f58a7aa"],
Cell[59939, 1813, 5989, 170, 161, "Output",ExpressionUUID->"d566a9d5-cc70-4ca9-bd59-bb86b782151a"]
}, Open ]],
Cell[65943, 1986, 156, 3, 31, "Text",ExpressionUUID->"d228c982-60f2-4308-8c3d-a729ff0d9551"],
Cell[66102, 1991, 453, 16, 50, "Input",ExpressionUUID->"24b1c0ba-b8f6-48b0-a919-960805693e6b"],
Cell[CellGroupData[{
Cell[66580, 2011, 253, 4, 26, "Input",ExpressionUUID->"cde28f95-f4aa-4c06-835d-e9e835badcd3"],
Cell[66836, 2017, 217, 4, 30, "Output",ExpressionUUID->"5f2482cb-270b-44d8-9815-1058327d746c"]
}, Open ]],
Cell[67068, 2024, 169, 3, 31, "Text",ExpressionUUID->"be4eec09-b8a2-40a9-ae71-21c1e084172c"],
Cell[67240, 2029, 479, 17, 50, "Input",ExpressionUUID->"0865ccf0-0456-46d0-84af-873c05ba40ab"],
Cell[CellGroupData[{
Cell[67744, 2050, 795, 25, 50, "Input",ExpressionUUID->"792b115f-d62c-41d3-9ed4-386e1cd85623"],
Cell[68542, 2077, 435, 13, 45, "Output",ExpressionUUID->"817db579-e47e-4f92-8513-a370faf9484d"]
}, Open ]],
Cell[CellGroupData[{
Cell[69014, 2095, 594, 18, 42, "Input",ExpressionUUID->"eb2c39a5-344c-448f-bb74-25006d1b2338"],
Cell[69611, 2115, 12245, 221, 215, "Output",ExpressionUUID->"fefbb2f5-4364-4785-bfa2-3d6ca23cbbe5"]
}, Open ]],
Cell[81871, 2339, 155, 3, 26, "Input",ExpressionUUID->"92edf535-0da5-498d-afe4-d2067a4b8960"],
Cell[CellGroupData[{
Cell[82051, 2346, 2700, 82, 74, "Input",ExpressionUUID->"a9a2e93a-6c8c-4f78-b9eb-90631ab6c195"],
Cell[84754, 2430, 646, 13, 23, "Message",ExpressionUUID->"b82e6414-4cc7-4061-bd95-51c7d6e87268"],
Cell[85403, 2445, 646, 13, 23, "Message",ExpressionUUID->"13e5a827-ec4b-4d07-a14d-e39dba52c8d6"],
Cell[86052, 2460, 648, 13, 23, "Message",ExpressionUUID->"429a7d6c-b98e-4229-b19a-c97f3162d499"],
Cell[86703, 2475, 456, 10, 23, "Message",ExpressionUUID->"d5addb50-6cd3-42e6-ae7d-f79e03c0a258"],
Cell[87162, 2487, 822, 24, 48, "Output",ExpressionUUID->"ff6af3de-9a55-4901-9fcc-62b34e79b63f"]
}, Open ]],
Cell[CellGroupData[{
Cell[88021, 2516, 396, 10, 28, "Input",ExpressionUUID->"cb14f184-1c90-4d30-bc32-15d0e8145bc0"],
Cell[88420, 2528, 5989, 170, 161, "Output",ExpressionUUID->"032f6e8d-dc9d-4ec5-bc63-565b049cbfc8"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[94470, 2705, 323, 6, 145, "Title",ExpressionUUID->"0a52074e-c7dc-42d7-ba34-e36f8a07c424"],
Cell[CellGroupData[{
Cell[94818, 2715, 181, 3, 60, "Section",ExpressionUUID->"df11dec1-6a95-483e-b301-63ee055cae1b"],
Cell[CellGroupData[{
Cell[95024, 2722, 203, 4, 49, "Subsection",ExpressionUUID->"db909c0e-e94d-4e53-98ff-1fcd1e9db327"],
Cell[CellGroupData[{
Cell[95252, 2730, 527, 15, 41, "Input",ExpressionUUID->"4180999f-b578-4334-b501-0e64761602e7",
InitializationCell->True],
Cell[95782, 2747, 1977, 35, 70, "Output",ExpressionUUID->"bba80de9-d61a-4ad2-87be-f452ba11863d"]
}, Open ]],
Cell[97774, 2785, 551, 18, 26, "Input",ExpressionUUID->"d33afd0a-5117-4ecf-ab34-88219e7c735c"],
Cell[98328, 2805, 1165, 34, 42, "Input",ExpressionUUID->"8435f84e-9b1a-4d78-9a8d-7f4fad49a8c3"],
Cell[99496, 2841, 824, 23, 62, "Input",ExpressionUUID->"dc095120-7d46-4759-83f1-b544ce0a97f3",
InitializationCell->True],
Cell[100323, 2866, 843, 24, 26, "Input",ExpressionUUID->"738d43b2-6207-4158-86ee-ca90203397ca"],
Cell[101169, 2892, 1303, 32, 49, "Input",ExpressionUUID->"369acc51-3a0a-4316-8ce9-1efe4c9ba39f"],
Cell[102475, 2926, 191, 4, 26, "Input",ExpressionUUID->"996e578e-5a50-408d-bc5e-b69971106628"],
Cell[102669, 2932, 1000, 28, 70, "Input",ExpressionUUID->"ded60f15-55a7-42b7-af7e-242d53d444e8",
InitializationCell->True]
}, Closed]],
Cell[CellGroupData[{
Cell[103706, 2965, 177, 3, 35, "Subsection",ExpressionUUID->"f3499336-7c71-4263-9391-c088a34f380a"],
Cell[103886, 2970, 1676, 50, 83, "Input",ExpressionUUID->"03828073-977c-4344-a85a-bd2de2c1a82b"],
Cell[105565, 3022, 217, 5, 31, "Text",ExpressionUUID->"b3250612-8996-4f80-ab8a-2c01684cec36"],
Cell[105785, 3029, 4419, 130, 201, "Input",ExpressionUUID->"c4d8ac54-6336-4dfa-a72c-5eafe69d8908",
InitializationCell->True],
Cell[CellGroupData[{
Cell[110229, 3163, 858, 26, 50, "Input",ExpressionUUID->"0b371f85-d103-432e-a0cb-c7cd280964d4"],
Cell[111090, 3191, 565, 18, 51, "Output",ExpressionUUID->"22385a75-1d06-4a72-b2b8-c66dc0d09c2c"]
}, Open ]],
Cell[CellGroupData[{
Cell[111692, 3214, 352, 7, 26, "Input",ExpressionUUID->"2edc62d2-b563-403a-83f1-4e61580dcf3e"],
Cell[112047, 3223, 530, 17, 51, "Output",ExpressionUUID->"f2624ecc-0d6d-4c95-8d36-0a08b2b11662"]
}, Open ]],
Cell[CellGroupData[{
Cell[112614, 3245, 348, 7, 26, "Input",ExpressionUUID->"83b07df0-48e0-4362-8d9a-18b81ddb4da5"],
Cell[112965, 3254, 532, 17, 51, "Output",ExpressionUUID->"c859d2ac-076e-4256-9c74-adfeed7f053d"]
}, Open ]],
Cell[CellGroupData[{
Cell[113534, 3276, 354, 7, 26, "Input",ExpressionUUID->"1030fbac-32a2-4c96-80de-d441dea46703"],
Cell[113891, 3285, 591, 20, 51, "Output",ExpressionUUID->"c0badb89-13f0-40b2-9706-9b8b6d9e829f"]
}, Open ]],
Cell[114497, 3308, 1845, 54, 67, "Input",ExpressionUUID->"bc2a4e01-4a42-4c88-842a-a0e75c77df17"],
Cell[CellGroupData[{
Cell[116367, 3366, 920, 25, 26, "Input",ExpressionUUID->"5d1ea56f-13fa-48f8-a048-b7acb1c3f360"],
Cell[117290, 3393, 667, 13, 23, "Message",ExpressionUUID->"ae4b385c-0321-432a-bd4d-5b745499e98e"],
Cell[117960, 3408, 668, 13, 23, "Message",ExpressionUUID->"3cfba2f0-e481-4fb9-9f91-90def4ea69c2"],
Cell[118631, 3423, 649, 13, 23, "Message",ExpressionUUID->"e3b3dd00-60fc-4500-a76b-516e3630df6f"],
Cell[119283, 3438, 457, 10, 23, "Message",ExpressionUUID->"b417f738-2820-47da-b6ba-5c0b9d3438c1"]
}, Open ]],
Cell[119755, 3451, 3835, 99, 94, "Input",ExpressionUUID->"0d545a38-c01e-4db9-95e4-f88c5af2dbb5"],
Cell[123593, 3552, 1229, 39, 50, "Input",ExpressionUUID->"fa0248f0-3f7d-4f6e-9993-42a1e4ec4f8c"],
Cell[CellGroupData[{
Cell[124847, 3595, 1352, 45, 46, "Input",ExpressionUUID->"94cc5c4c-414d-4dd3-9335-d32a6920c12f"],
Cell[126202, 3642, 1309, 45, 48, "Output",ExpressionUUID->"316756b9-0356-4dfb-8d5b-9a6a362c3e84"]
}, Open ]],
Cell[127526, 3690, 1478, 48, 50, "Input",ExpressionUUID->"f6e5065a-29ee-4b4f-a77a-07f55b26ed28"],
Cell[CellGroupData[{
Cell[129029, 3742, 2123, 60, 70, "Input",ExpressionUUID->"42ec6d28-d8db-46df-a550-a32767af2be3",
InitializationCell->True],
Cell[131155, 3804, 1791, 49, 70, "Output",ExpressionUUID->"a293ff27-c086-40b9-99a1-30c24f86810b"]
}, Open ]],
Cell[CellGroupData[{
Cell[132983, 3858, 635, 19, 42, "Input",ExpressionUUID->"8a81f1a5-de33-4fb1-a7c8-ef7e5c069523"],
Cell[133621, 3879, 17576, 313, 220, "Output",ExpressionUUID->"e347d9a3-a698-43bb-8bf2-2715ea5cfe7f"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[151246, 4198, 171, 3, 35, "Subsection",ExpressionUUID->"2e29f87d-b002-4387-9dcd-1e29397736f3"],
Cell[CellGroupData[{
Cell[151442, 4205, 1867, 48, 85, "Input",ExpressionUUID->"dc9b02f9-e10a-4196-842d-f4415b6e4ec4"],
Cell[153312, 4255, 60977, 1158, 358, "Output",ExpressionUUID->"e586e923-c09d-48d5-bf34-97e29d2fa68b"]
}, Open ]],
Cell[214304, 5416, 612, 19, 34, "Text",ExpressionUUID->"4eaa2d7b-45fa-4318-b7e7-ea808455e59f"]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[214965, 5441, 203, 3, 60, "Section",ExpressionUUID->"6c64cb96-3334-4292-9b6e-dd886d2af85c"],
Cell[CellGroupData[{
Cell[215193, 5448, 151, 3, 49, "Subsection",ExpressionUUID->"9e6aaa81-06ba-42d2-a090-49e3f5a0e79b"],
Cell[215347, 5453, 152, 3, 26, "Input",ExpressionUUID->"bfe01521-4810-445b-a5d5-dd0be413fbd7"],
Cell[215502, 5458, 1073, 30, 26, "Input",ExpressionUUID->"31834666-ac95-48bb-888c-5e3473c0b895"],
Cell[216578, 5490, 3558, 99, 132, "Input",ExpressionUUID->"10bae95d-3a3b-49d5-b6c0-da421cf9f00d"],
Cell[220139, 5591, 3708, 87, 71, "Input",ExpressionUUID->"b5faa348-1eb1-474f-a5a4-d3ed39d023d0"],
Cell[223850, 5680, 2405, 69, 118, "Input",ExpressionUUID->"6e4f6e6d-5616-448d-9ef8-04d79a2d1823",
InitializationCell->True],
Cell[226258, 5751, 1061, 29, 52, "Text",ExpressionUUID->"575d1f25-9a6b-417d-865f-0934d7769291"]
}, Closed]],
Cell[CellGroupData[{
Cell[227356, 5785, 152, 3, 35, "Subsection",ExpressionUUID->"1ff36fea-f6e0-4927-b494-83381e142e8e"],
Cell[227511, 5790, 1313, 36, 26, "Input",ExpressionUUID->"0cfd58b0-264c-4a32-a787-6dc97e0bede3"],
Cell[228827, 5828, 3776, 87, 71, "Input",ExpressionUUID->"9884ee06-2438-48e5-a706-7ed7a2d33d4e"],
Cell[232606, 5917, 5957, 174, 129, "Input",ExpressionUUID->"3f786932-48d4-4f24-b3f3-24e1289acc74",
InitializationCell->True],
Cell[238566, 6093, 1338, 37, 72, "Text",ExpressionUUID->"3cada83f-24c3-49fe-a339-0566f14382ec"],
Cell[CellGroupData[{
Cell[239929, 6134, 644, 20, 46, "Input",ExpressionUUID->"cb4026f0-35a4-4d45-8b9a-35314725a5e7"],
Cell[240576, 6156, 5651, 111, 209, "Output",ExpressionUUID->"c26e2d6c-ee16-4853-861c-a39115a14019"]
}, Open ]],
Cell[CellGroupData[{
Cell[246264, 6272, 985, 31, 58, "Input",ExpressionUUID->"d094781c-d1c5-425c-b3e5-23f0293bed05"],
Cell[247252, 6305, 484, 15, 47, "Output",ExpressionUUID->"ff995faa-4bba-4da9-b77f-ee24c7ff147e"]
}, Open ]],
Cell[CellGroupData[{
Cell[247773, 6325, 778, 23, 44, "Input",ExpressionUUID->"853ec222-1da3-4b95-8cda-b665d0e9c2e8"],
Cell[248554, 6350, 6233, 123, 213, "Output",ExpressionUUID->"1cebf0ca-1a6a-48a8-bb81-e24f7a7d6bb2"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[254848, 6480, 163, 3, 60, "Section",ExpressionUUID->"100bae6f-3872-495a-ab0c-896ce0c0e84e"],
Cell[255014, 6485, 217, 4, 26, "Input",ExpressionUUID->"d6e67f73-194b-41c7-9739-d78c807ca3d6"],
Cell[255234, 6491, 1307, 45, 70, "Input",ExpressionUUID->"eec71e21-c0ee-45fe-8701-eb10d240bef1"],
Cell[CellGroupData[{
Cell[256566, 6540, 691, 22, 50, "Input",ExpressionUUID->"12dbfe5c-372a-4f2b-beef-914402780641"],
Cell[257260, 6564, 315, 5, 30, "Output",ExpressionUUID->"22d286a5-afa0-408f-9bb0-e903a4edff97"]
}, Open ]],
Cell[CellGroupData[{
Cell[257612, 6574, 242, 4, 26, "Input",ExpressionUUID->"498cd2d2-cabf-4c0a-b8cf-ff6444abbefd"],
Cell[257857, 6580, 1205, 43, 71, "Output",ExpressionUUID->"c29eeae9-169d-40b3-b8ae-3606dee56b0a"]
}, Open ]],
Cell[CellGroupData[{
Cell[259099, 6628, 1972, 58, 70, "Input",ExpressionUUID->"cf48f2e3-669e-4a29-858e-1a9fc6957703"],
Cell[261074, 6688, 36589, 609, 145, "Output",ExpressionUUID->"a6383fdd-4e4f-4ff7-84bd-bd68d5465477"]
}, Open ]],
Cell[CellGroupData[{
Cell[297700, 7302, 1974, 58, 70, "Input",ExpressionUUID->"eebf3ccb-1559-4da7-bdeb-234ad307674a"],
Cell[299677, 7362, 36380, 607, 137, "Output",ExpressionUUID->"669e99bd-436b-4846-a43e-5d860e77ffb0"]
}, Open ]],
Cell[336072, 7972, 7074, 199, 169, "Input",ExpressionUUID->"ecd4cdf8-af5f-4cab-859d-aba1c354768f"],
Cell[343149, 8173, 93167, 1557, 157, 22199, 393, "CachedBoxData", "BoxData", "Input",ExpressionUUID->"5c38a6a2-82a4-43d6-8233-ba811ff2d35f"],
Cell[CellGroupData[{
Cell[436341, 9734, 6946, 197, 169, "Input",ExpressionUUID->"940d9eff-6030-437b-8335-864a85272893"],
Cell[443290, 9933, 21074, 375, 144, "Output",ExpressionUUID->"7b764416-c238-4186-9012-f9b34d9d7185"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[464425, 10315, 159, 3, 89, "Title",ExpressionUUID->"9bbe0ea0-6528-4545-9c4f-868b32b20dcb"],
Cell[464587, 10320, 2347, 80, 107, "Input",ExpressionUUID->"4ff6a594-012a-42c1-9e1e-0ce854cee633",
InitializationCell->True],
Cell[466937, 10402, 522, 16, 61, "Input",ExpressionUUID->"5be72a3b-c8f8-4b96-9265-4e9c94871b49",
InitializationCell->True],
Cell[467462, 10420, 776, 23, 57, "Input",ExpressionUUID->"140d9680-5488-4cd6-9e93-90da85bb14ac",
InitializationCell->True],
Cell[468241, 10445, 331, 7, 41, "Input",ExpressionUUID->"729d0ca0-7b17-493f-bf05-6177ed58c74b",
InitializationCell->True],
Cell[CellGroupData[{
Cell[468597, 10456, 438, 9, 26, "Input",ExpressionUUID->"e1945473-5c00-42db-99a4-83a13b93fd62"],
Cell[469038, 10467, 1189, 20, 70, "Output",ExpressionUUID->"4093005d-2040-49d0-a908-cdc1c80d3aed"]
}, Open ]],
Cell[CellGroupData[{
Cell[470264, 10492, 1105, 21, 104, "Input",ExpressionUUID->"29e6def1-058c-4787-8a36-da20af8eb94a"],
Cell[471372, 10515, 826, 15, 52, "Output",ExpressionUUID->"0fb21a07-f74b-416f-9ea7-5f7d559d1b1c"]
}, Open ]],
Cell[472213, 10533, 275, 5, 26, "Input",ExpressionUUID->"27c016bb-5a31-44dc-840b-1501bd3a1b35"],
Cell[472491, 10540, 918, 24, 28, "Input",ExpressionUUID->"40d902eb-88de-426a-a413-db609c284d32"],
Cell[CellGroupData[{
Cell[473434, 10568, 329, 6, 26, "Input",ExpressionUUID->"8871427b-e128-4795-a3f4-cc84bc1de9ec"],
Cell[473766, 10576, 5308, 159, 210, "Output",ExpressionUUID->"021ab0aa-c0dc-4a5f-86ad-5a65e04cba03"]
}, Open ]],
Cell[479089, 10738, 1115, 24, 43, "Input",ExpressionUUID->"f6128365-6e64-4c25-825d-64c6722e0685",
InitializationCell->True],
Cell[480207, 10764, 283, 6, 26, "Input",ExpressionUUID->"558e7195-ec20-4ae1-a25e-3c80a0b9b80b"],
Cell[CellGroupData[{
Cell[480515, 10774, 233, 5, 38, "Input",ExpressionUUID->"f622e75f-0f5b-4118-a203-1d6f94cc0e12"],
Cell[480751, 10781, 234, 5, 42, "Output",ExpressionUUID->"29635d95-93d7-453f-84ae-15597df23491"]
}, Open ]],
Cell[CellGroupData[{
Cell[481022, 10791, 312, 6, 26, "Input",ExpressionUUID->"bcb22def-eda0-45df-849f-608a0687b97f"],
Cell[481337, 10799, 207, 3, 30, "Output",ExpressionUUID->"f3e95ef0-60a8-415c-a5eb-83f467b75947"]
}, Open ]],
Cell[CellGroupData[{
Cell[481581, 10807, 1163, 32, 28, "Input",ExpressionUUID->"b8433c3f-b91a-4f84-ab67-731c9d1c1b2f"],
Cell[482747, 10841, 66614, 1102, 237, "Output",ExpressionUUID->"731d0591-4abb-4ae7-8a8f-a252ef0c284a"]
}, Open ]],
Cell[CellGroupData[{
Cell[549398, 11948, 1032, 30, 28, "Input",ExpressionUUID->"9670fa52-71fd-44c7-a4a4-05a591e73124"],
Cell[550433, 11980, 35895, 600, 211, "Output",ExpressionUUID->"a2a5b14e-ccbd-48b5-8e14-35ea7371ffa1"]
}, Open ]],
Cell[CellGroupData[{
Cell[586365, 12585, 1218, 33, 28, "Input",ExpressionUUID->"3145c817-fba8-4253-8ac9-2df1a740717a"],
Cell[587586, 12620, 89844, 1472, 227, "Output",ExpressionUUID->"c05f908b-f690-4f4e-b09a-fb4b83f06b3b"]
}, Open ]],
Cell[CellGroupData[{
Cell[677467, 14097, 1137, 31, 28, "Input",ExpressionUUID->"6ba4c5f1-b775-4e04-99c6-67ea67b1e47b"],
Cell[678607, 14130, 71684, 1175, 120, "Output",ExpressionUUID->"30b2dd54-18f5-45ee-8d6e-9696a32d99dd"]
}, Open ]],
Cell[CellGroupData[{
Cell[750328, 15310, 1207, 32, 28, "Input",ExpressionUUID->"ec08b2f4-8c07-4bfb-82b2-045c5a32553f"],
Cell[751538, 15344, 49864, 832, 270, "Output",ExpressionUUID->"7f6e0222-0c66-4741-a2ef-0a7907009d3d"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[801451, 16182, 196, 3, 66, "Title",ExpressionUUID->"f8469860-fa97-4a60-9e16-c7b467058037"],
Cell[CellGroupData[{
Cell[801672, 16189, 169, 3, 60, "Section",ExpressionUUID->"256f249a-892f-4165-8448-4758153da25e"],
Cell[801844, 16194, 1005, 29, 26, "Input",ExpressionUUID->"c903323c-20ea-4825-b68d-ed54a1640c47"],
Cell[802852, 16225, 3760, 106, 114, "Input",ExpressionUUID->"d4535ec7-8743-4bd9-8dc9-a48c2508f7ff"],
Cell[806615, 16333, 5407, 124, 71, "Input",ExpressionUUID->"93a4438e-3901-4102-a0ed-49f488288f8f"],
Cell[812025, 16459, 2888, 83, 118, "Input",ExpressionUUID->"421b263c-0954-47e7-9e6d-3e92847ba093",
InitializationCell->True],
Cell[814916, 16544, 694, 17, 60, "Input",ExpressionUUID->"5bbd100d-b730-4596-b1f5-29dc4abf48e2",
InitializationCell->True],
Cell[CellGroupData[{
Cell[815635, 16565, 1233, 30, 48, "Input",ExpressionUUID->"cacfdf0d-2f8b-44f2-b8fe-35d081abf0aa"],
Cell[816871, 16597, 34565, 686, 340, "Output",ExpressionUUID->"1303c429-d8a4-4db5-af15-805751f0aed4"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[851485, 17289, 169, 3, 48, "Section",ExpressionUUID->"199c3e6a-3658-459b-a32b-de545b86b670"],
Cell[CellGroupData[{
Cell[851679, 17296, 1534, 39, 88, "Input",ExpressionUUID->"322c1b80-08e6-45ae-9fd3-61c806283984"],
Cell[853216, 17337, 25761, 542, 317, "Output",ExpressionUUID->"a53c8364-c0e6-4893-876b-6076df4fde18"]
}, Open ]],
Cell[CellGroupData[{
Cell[879014, 17884, 1597, 39, 82, "Input",ExpressionUUID->"3548fd3b-492c-4629-9c62-ecefcf188899"],
Cell[880614, 17925, 33344, 709, 324, "Output",ExpressionUUID->"e9bbbe02-9afe-415d-92f8-31790c8d6ec0"]
}, Open ]],
Cell[CellGroupData[{
Cell[913995, 18639, 1555, 39, 82, "Input",ExpressionUUID->"d859a61c-05f5-423c-aeec-df9b4ecd1493"],
Cell[915553, 18680, 32574, 698, 319, "Output",ExpressionUUID->"8ba9d687-92c8-4daf-adba-5aa60f67d78e"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[948176, 19384, 144, 3, 48, "Section",ExpressionUUID->"0d9de29c-52d5-49a5-99ce-c99cd55b7634"],
Cell[CellGroupData[{
Cell[948345, 19391, 219, 5, 48, "Subsection",ExpressionUUID->"60a1c53c-e29b-478a-ab95-abe0c1c7fcd4"],
Cell[CellGroupData[{
Cell[948589, 19400, 3224, 93, 138, "Input",ExpressionUUID->"bcdacb72-a592-4dfb-8fea-6c60b17ad205"],
Cell[951816, 19495, 5792, 163, 327, "Output",ExpressionUUID->"5351795f-c7d2-4cc5-9a31-8e02d5330852"],
Cell[957611, 19660, 2547, 65, 230, "Print",ExpressionUUID->"6e4da88d-aece-4c54-b324-d3caaf423e10"]
}, Open ]],
Cell[CellGroupData[{
Cell[960195, 19730, 848, 21, 45, "Input",ExpressionUUID->"bf8846fc-cc5e-42d6-b529-b0bb9ad6ef59"],
Cell[961046, 19753, 666, 17, 29, "Output",ExpressionUUID->"1a933c9c-541d-4321-a1bd-2625af36f5d5"]
}, Open ]],
Cell[961727, 19773, 514, 15, 31, "Text",ExpressionUUID->"7b0f9a8e-40ae-4f81-a85a-0b4e16541d98"],
Cell[CellGroupData[{
Cell[962266, 19792, 779, 20, 45, "Input",ExpressionUUID->"bcecc14b-884d-4557-babf-8ec30e3d3eb4"],
Cell[963048, 19814, 595, 16, 29, "Output",ExpressionUUID->"3ef05d4e-e8af-41c0-b0af-748113dab88a"]
}, Open ]],
Cell[963658, 19833, 743, 18, 31, "Text",ExpressionUUID->"6c283925-cd31-4f0e-9613-89b9bb45a247"],
Cell[CellGroupData[{
Cell[964426, 19855, 868, 21, 45, "Input",ExpressionUUID->"44af6aed-b238-4a93-89e8-1340e433a148"],
Cell[965297, 19878, 328, 8, 29, "Output",ExpressionUUID->"5b5beadd-cd77-4464-a293-83098e0e5d37"]
}, Open ]],
Cell[965640, 19889, 612, 17, 31, "Text",ExpressionUUID->"82eff177-42be-4dd7-9453-a54f54529238"],
Cell[CellGroupData[{
Cell[966277, 19910, 778, 20, 45, "Input",ExpressionUUID->"8ea8f494-540f-46b9-add5-8510ec0c1ba8"],
Cell[967058, 19932, 296, 7, 29, "Output",ExpressionUUID->"355298db-6a2f-4e31-b53c-ce707c2ed739"]
}, Open ]],
Cell[967369, 19942, 698, 21, 31, "Text",ExpressionUUID->"afb9d0d5-37ff-48e1-8f85-39ad49f0fc79"],
Cell[CellGroupData[{
Cell[968092, 19967, 774, 20, 45, "Input",ExpressionUUID->"4222a322-77a9-47ac-9cd7-b96c801433e8"],
Cell[968869, 19989, 194, 4, 29, "Output",ExpressionUUID->"a79d8ce1-ea68-4a85-bc5a-b69846a2058b"]
}, Open ]],
Cell[CellGroupData[{
Cell[969100, 19998, 777, 20, 45, "Input",ExpressionUUID->"09b7b442-f051-408e-be5b-ac401dacdf6a"],
Cell[969880, 20020, 290, 7, 29, "Output",ExpressionUUID->"2d869042-8314-4786-b0c8-e39167a5e138"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[970219, 20033, 159, 3, 34, "Subsection",ExpressionUUID->"f911d4c6-5cfc-49b9-9ae3-8e185e5e9327"],
Cell[CellGroupData[{
Cell[970403, 20040, 3232, 94, 138, "Input",ExpressionUUID->"8af7f735-ca14-4a98-8c03-1fd2345b57a9"],
Cell[973638, 20136, 2548, 65, 230, "Print",ExpressionUUID->"b1d5ba64-9c3b-4954-ab9e-30b07e59bdfa"]
}, Open ]],
Cell[CellGroupData[{
Cell[976223, 20206, 3256, 94, 138, "Input",ExpressionUUID->"f3b52bee-17e8-4410-a817-4eea81fadeff"],
Cell[979482, 20302, 2590, 65, 230, "Print",ExpressionUUID->"2932b857-d006-42b0-96f1-bfa322b4f49c"]
}, Open ]],
Cell[CellGroupData[{
Cell[982109, 20372, 571, 13, 26, "Input",ExpressionUUID->"ad74092e-deab-4815-8c86-07eef5c8d8ab"],
Cell[982683, 20387, 685, 22, 49, "Output",ExpressionUUID->"8be537fb-e64e-4b3f-9c0f-8b49b03be012"]
}, Open ]],
Cell[CellGroupData[{
Cell[983405, 20414, 729, 20, 46, "Input",ExpressionUUID->"0c773149-d703-4bb6-94a6-7b5cc0ce8fae"],
Cell[984137, 20436, 11998, 269, 226, "Output",ExpressionUUID->"0e5afb43-03a8-4921-a0b0-171f8b1c2ecd"]
}, Open ]]
}, Closed]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[996208, 20713, 242, 4, 89, "Title",ExpressionUUID->"12d80845-73eb-493a-bcea-3b0b87d21f3e"],
Cell[CellGroupData[{
Cell[996475, 20721, 169, 3, 60, "Section",ExpressionUUID->"1e6ffb79-24e9-4397-b007-32df81174525"],
Cell[CellGroupData[{
Cell[996669, 20728, 155, 3, 49, "Subsection",ExpressionUUID->"7a35c830-d09c-4c2a-ad54-c9c15f347871"],
Cell[996827, 20733, 1185, 27, 26, "Input",ExpressionUUID->"40be5691-8587-4301-ab69-4bfeda29a864"],
Cell[998015, 20762, 1356, 40, 118, "Input",ExpressionUUID->"30f17efb-d41d-4259-b874-cacd3b56ce75",
InitializationCell->True],
Cell[999374, 20804, 191, 3, 31, "Text",ExpressionUUID->"8924de9c-9efe-45a3-a9ad-408e2b2b698d"],
Cell[999568, 20809, 1252, 34, 79, "Input",ExpressionUUID->"19c3a2e6-282e-4147-9930-7ff961395f5b",
InitializationCell->True],
Cell[CellGroupData[{
Cell[1000845, 20847, 4473, 92, 146, "Input",ExpressionUUID->"b19cd367-957b-4cf0-b4ae-1fec45bd95df"],
Cell[1005321, 20941, 79223, 1479, 525, "Output",ExpressionUUID->"e9ba8c85-bc48-415d-b020-e4d2f6d02579"]
}, Open ]],
Cell[1084559, 22423, 36497, 708, 336, "Input",ExpressionUUID->"0cd992a0-f8d4-431c-a159-0894032808d8"]
}, Closed]],
Cell[CellGroupData[{
Cell[1121093, 23136, 151, 3, 35, "Subsection",ExpressionUUID->"950a0b1f-8163-47aa-bf65-f1d765efe46f"],
Cell[1121247, 23141, 1243, 27, 26, "Input",ExpressionUUID->"bb01d8e1-d6ab-461f-be8b-c75f50ab8739"],
Cell[1122493, 23170, 1889, 56, 118, "Input",ExpressionUUID->"7a60d268-132a-4489-a887-307f3a80c51c",
InitializationCell->True],
Cell[1124385, 23228, 1129, 27, 60, "Input",ExpressionUUID->"ddcd4a88-334b-4e04-ae2f-810ac917a7dd",
InitializationCell->True],
Cell[CellGroupData[{
Cell[1125539, 23259, 2952, 54, 48, "Input",ExpressionUUID->"1975b756-0495-4b7e-aa86-45f0529e0f3c"],
Cell[1128494, 23315, 43988, 853, 340, "Output",ExpressionUUID->"975e5da1-423d-4c59-8ad0-8991cde1a8a3"]
}, Open ]],
Cell[CellGroupData[{
Cell[1172519, 24173, 5510, 125, 206, "Input",ExpressionUUID->"434e3915-a94f-4412-bf3b-733524d65036"],
Cell[1178032, 24300, 235782, 4232, 541, "Output",ExpressionUUID->"ce0b1897-2fee-4372-b7c0-1b8c3414355b"]
}, Open ]],
Cell[1413829, 28535, 171, 3, 46, "Input",ExpressionUUID->"b10f85e1-de1a-45b5-b961-43ea9978a88b"],
Cell[CellGroupData[{
Cell[1414025, 28542, 5359, 130, 187, "Input",ExpressionUUID->"38f39947-d817-4c98-9bbd-6cf292924898"],
Cell[1419387, 28674, 77651, 1369, 541, "Output",ExpressionUUID->"cb0f567a-0435-412b-8586-3e71be14dc1c"]
}, Open ]],
Cell[CellGroupData[{
Cell[1497075, 30048, 1383, 36, 48, "Input",ExpressionUUID->"d4c31428-ffb0-4bd2-981e-56ef0e5ea0ac"],
Cell[1498461, 30086, 9499, 190, 186, "Output",ExpressionUUID->"f8e01c31-b094-4485-baca-56687bdb1b84"]
}, Open ]],
Cell[CellGroupData[{
Cell[1507997, 30281, 1302, 33, 48, "Input",ExpressionUUID->"cd81a8fd-8f90-40d4-8f31-2c745a5956fc"],
Cell[1509302, 30316, 37280, 736, 341, "Output",ExpressionUUID->"f0d5c1e3-c323-4923-96ed-5265df42efba"]
}, Open ]],
Cell[CellGroupData[{
Cell[1546619, 31057, 2369, 56, 68, "Input",ExpressionUUID->"2cacca77-bb0e-4b9d-b70e-3dcdf52e7857"],
Cell[1548991, 31115, 9641, 192, 514, "Output",ExpressionUUID->"49f79181-58d5-4c98-b66a-b45b7b27753c"]
}, Open ]],
Cell[CellGroupData[{
Cell[1558669, 31312, 2987, 72, 146, "Input",ExpressionUUID->"4844e83d-444c-4b0f-b5eb-e25af1479e1e"],
Cell[1561659, 31386, 75249, 1418, 514, "Output",ExpressionUUID->"39a83dfe-a7f6-41d1-a1b3-17af8c0ec4bf"]
}, Open ]],
Cell[1636923, 32807, 336, 8, 72, "Text",ExpressionUUID->"71c5c746-2cdb-40a2-8429-b19419caa149"],
Cell[CellGroupData[{
Cell[1637284, 32819, 325, 6, 26, "Input",ExpressionUUID->"5aa6764c-4086-4c7f-97d0-832290cfb9d2"],
Cell[1637612, 32827, 7622, 243, 132, "Output",ExpressionUUID->"7095227c-2d87-4ca2-985a-dce33d61d518"]
}, Open ]],
Cell[1645249, 33073, 1275, 31, 48, "Input",ExpressionUUID->"121c8817-adb5-45f9-a185-17e726b281d0"],
Cell[1646527, 33106, 61414, 1131, 99, "Input",ExpressionUUID->"5ebf123a-9b73-45fd-9416-c8c20d2241b5"],
Cell[1707944, 34239, 444, 8, 31, "Text",ExpressionUUID->"81f281b2-7a45-44ac-a7f5-5824ef59d144"],
Cell[CellGroupData[{
Cell[1708413, 34251, 380, 9, 26, "Input",ExpressionUUID->"4205314e-d4a3-4d2b-a2e0-34baba0f0950"],
Cell[1708796, 34262, 1054, 27, 50, "Output",ExpressionUUID->"ea9352d9-1a5d-49c3-8319-1e5f14ad9553"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[1709911, 34296, 171, 3, 60, "Section",ExpressionUUID->"38ecd62b-d033-488a-9f8c-2e379ccb4dce"],
Cell[CellGroupData[{
Cell[1710107, 34303, 155, 3, 49, "Subsection",ExpressionUUID->"0705a04a-bd50-4ebc-b528-bbdc589f6dd6"],
Cell[CellGroupData[{
Cell[1710287, 34310, 1686, 41, 88, "Input",ExpressionUUID->"de2ffbbf-c99a-4d93-b812-2f447550d662"],
Cell[1711976, 34353, 25149, 532, 329, "Output",ExpressionUUID->"4403f607-c3b4-44e5-a15d-7283ecde4f9f"]
}, Open ]],
Cell[CellGroupData[{
Cell[1737162, 34890, 1597, 39, 88, "Input",ExpressionUUID->"ecff5721-ebe6-4815-971f-c4d672c96905"],
Cell[1738762, 34931, 35244, 750, 317, "Output",ExpressionUUID->"2a70e00b-94e9-401e-a18e-53300a7c35ff"]
}, Open ]],
Cell[CellGroupData[{
Cell[1774043, 35686, 1600, 39, 88, "Input",ExpressionUUID->"7c651ed0-b6e6-48f6-be9e-cd2e24b5c91f"],
Cell[1775646, 35727, 41517, 853, 318, "Output",ExpressionUUID->"cf49b5e5-2504-4041-8500-14815d97eac6"]
}, Open ]],
Cell[CellGroupData[{
Cell[1817200, 36585, 1539, 39, 88, "Input",ExpressionUUID->"130e809d-7d20-4f5c-9d02-13bea2e20883"],
Cell[1818742, 36626, 31688, 651, 317, "Output",ExpressionUUID->"0d332ed5-967b-4586-bb01-b421b9550e00"]
}, Open ]],
Cell[CellGroupData[{
Cell[1850467, 37282, 1510, 38, 88, "Input",ExpressionUUID->"005b1227-a5fb-4b5d-a72b-43e663de0b72"],
Cell[1851980, 37322, 24239, 514, 344, "Output",ExpressionUUID->"b81d2a18-78dd-44fe-87c6-b7126c75f3d6"]
}, Open ]],
Cell[CellGroupData[{
Cell[1876256, 37841, 1455, 37, 88, "Input",ExpressionUUID->"f34dda2d-ccc2-4e95-8433-501f85dab860"],
Cell[1877714, 37880, 18689, 365, 317, "Output",ExpressionUUID->"4e9683de-cadd-4c17-9a2f-9cf80bb6ed6e"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[1896452, 38251, 151, 3, 35, "Subsection",ExpressionUUID->"28c03220-4253-4ac2-af1b-7e79584e73c8"],
Cell[CellGroupData[{
Cell[1896628, 38258, 1769, 42, 88, "Input",ExpressionUUID->"4770d01e-d16d-45c6-bc42-c53413d65f4f"],
Cell[1898400, 38302, 26504, 559, 318, "Output",ExpressionUUID->"1e2e5b00-6444-4d24-8ef1-8d2f252d7f82"]
}, Open ]],
Cell[CellGroupData[{
Cell[1924941, 38866, 1771, 42, 88, "Input",ExpressionUUID->"6684712f-a153-4f02-b620-d9a25829205d"],
Cell[1926715, 38910, 30668, 633, 326, "Output",ExpressionUUID->"56618b1d-b8fa-44f5-b244-54ee774307a4"]
}, Open ]],
Cell[CellGroupData[{
Cell[1957420, 39548, 1555, 39, 88, "Input",ExpressionUUID->"e4ba48bd-b679-4118-8c22-a27665e21944"],
Cell[1958978, 39589, 39923, 825, 315, "Output",ExpressionUUID->"b3095197-d30c-4feb-ae34-4d45eea6cb69"]
}, Open ]],
Cell[CellGroupData[{
Cell[1998938, 40419, 1553, 39, 83, "Input",ExpressionUUID->"a374304b-756b-4003-b1a7-83d5cac5402e"],
Cell[2000494, 40460, 17164, 341, 316, "Output",ExpressionUUID->"4648b6d9-1be8-494e-a38c-33cbcbe73981"]
}, Open ]],
Cell[CellGroupData[{
Cell[2017695, 40806, 1539, 39, 83, "Input",ExpressionUUID->"1189d55b-e3f1-4fa8-817c-47da353f8e75"],
Cell[2019237, 40847, 30429, 627, 316, "Output",ExpressionUUID->"4fc7ede1-6329-49b2-9e92-4f2af7c23afa"]
}, Open ]],
Cell[CellGroupData[{
Cell[2049703, 41479, 1431, 37, 83, "Input",ExpressionUUID->"e96e85fe-afe5-4fe1-b645-8c01f0c18fd7"],
Cell[2051137, 41518, 12578, 266, 313, "Output",ExpressionUUID->"880d6549-cd45-454c-9d4f-d1e60f311942"]
}, Open ]],
Cell[CellGroupData[{
Cell[2063752, 41789, 1484, 38, 83, "Input",ExpressionUUID->"8f2b59b3-2fa6-40e1-8907-0b0f99d32b21"],
Cell[2065239, 41829, 16692, 335, 316, "Output",ExpressionUUID->"09b932d0-8ecb-4518-ab9b-eb823d96f63c"]
}, Open ]],
Cell[CellGroupData[{
Cell[2081968, 42169, 175, 3, 40, "Subsubsection",ExpressionUUID->"c6c546bc-5576-410f-9743-59804a99096a"],
Cell[CellGroupData[{
Cell[2082168, 42176, 1801, 46, 82, "Input",ExpressionUUID->"69ee8234-1d63-42c1-bf74-c4bfb11a7643"],
Cell[2083972, 42224, 23175, 511, 343, "Output",ExpressionUUID->"4e82a56b-509f-4b7f-a295-4617e86524a0"]
}, Open ]],
Cell[CellGroupData[{
Cell[2107184, 42740, 1599, 41, 82, "Input",ExpressionUUID->"8e5e3748-242c-4089-b15b-bf679b76b788"],
Cell[2108786, 42783, 211, 4, 29, "Output",ExpressionUUID->"986928d9-4338-4727-bd90-a11f28de9bf9"]
}, Open ]]
}, Closed]]
}, Closed]]
}, Closed]],
Cell[CellGroupData[{
Cell[2109070, 42795, 170, 3, 48, "Section",ExpressionUUID->"3cf320d3-6c13-4692-b242-d4cad7fed598"],
Cell[CellGroupData[{
Cell[2109265, 42802, 221, 5, 49, "Subsection",ExpressionUUID->"c40bb50c-519d-4650-b7f0-37c61810c51e"],
Cell[CellGroupData[{
Cell[2109511, 42811, 154, 3, 40, "Subsubsection",ExpressionUUID->"bc4855cb-d055-4c5b-a5e0-792e82ed43f9"],
Cell[CellGroupData[{
Cell[2109690, 42818, 3857, 102, 157, "Input",ExpressionUUID->"8cde43e0-6c22-45c1-be31-fa4bfe9e9cfb"],
Cell[2113550, 42922, 5580, 153, 328, "Output",ExpressionUUID->"a500d884-be05-426a-92ad-6b010dd051f9"],
Cell[2119133, 43077, 2822, 69, 230, "Print",ExpressionUUID->"3f0cc588-78b3-4d5c-8d6c-8105081254f5"]
}, Open ]],
Cell[2121970, 43149, 335, 7, 31, "Text",ExpressionUUID->"b6c5864e-998f-4f55-a2b5-3bcaed605691"],
Cell[CellGroupData[{
Cell[2122330, 43160, 796, 19, 46, "Input",ExpressionUUID->"26ff945b-30aa-447b-a7da-681164976c41"],
Cell[2123129, 43181, 636, 14, 30, "Output",ExpressionUUID->"83e94ffa-c2ad-4d89-b8d2-cc901505493b"]
}, Open ]],
Cell[2123780, 43198, 514, 15, 31, "Text",ExpressionUUID->"22f026d8-1f14-4085-b8a9-1103ac77f479"],
Cell[CellGroupData[{
Cell[2124319, 43217, 724, 18, 46, "Input",ExpressionUUID->"78c83c8e-3dec-4b9a-9c7c-9e35dd60a379"],
Cell[2125046, 43237, 359, 9, 30, "Output",ExpressionUUID->"58320fa1-bce5-4901-93f8-d49d6c245680"]
}, Open ]],
Cell[2125420, 43249, 675, 19, 31, "Text",ExpressionUUID->"fdd982d9-401c-4207-8eec-b15a5550f82b"],
Cell[CellGroupData[{
Cell[2126120, 43272, 871, 21, 46, "Input",ExpressionUUID->"4dc967ab-5ddd-4a4a-8dbf-19317ee21c74"],
Cell[2126994, 43295, 241, 5, 30, "Output",ExpressionUUID->"2f717f13-fdf2-4e9f-ace7-b5cabc606e87"]
}, Open ]],
Cell[2127250, 43303, 477, 12, 31, "Text",ExpressionUUID->"625ce02e-78f9-4a40-a1e8-3b4ec0b96e06"],
Cell[CellGroupData[{
Cell[2127752, 43319, 723, 18, 46, "Input",ExpressionUUID->"a14a0eaa-ac66-448a-b70b-0d2b2cc0e34c"],
Cell[2128478, 43339, 537, 13, 30, "Output",ExpressionUUID->"373adab4-8b54-4869-89cf-c956d96b6e56"]
}, Open ]],
Cell[2129030, 43355, 685, 18, 31, "Text",ExpressionUUID->"84597ffa-eafe-4f3c-9d4e-7c888242eaa3"],
Cell[CellGroupData[{
Cell[2129740, 43377, 721, 18, 46, "Input",ExpressionUUID->"ecda13b7-567a-4553-abc4-f7b0df23882e"],
Cell[2130464, 43397, 166, 3, 30, "Output",ExpressionUUID->"732bc038-a50a-4fde-9440-76810f331904"]
}, Open ]],
Cell[CellGroupData[{
Cell[2130667, 43405, 722, 18, 46, "Input",ExpressionUUID->"a6d1004b-a7be-4819-87a2-62ffbe643df9"],
Cell[2131392, 43425, 260, 5, 30, "Output",ExpressionUUID->"9fb6b259-f8db-4801-86a5-1df5bf0977b1"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[2131701, 43436, 154, 3, 33, "Subsubsection",ExpressionUUID->"e8cefca3-48aa-4fe8-a42f-a07a6d0d53ff"],
Cell[CellGroupData[{
Cell[2131880, 43443, 3588, 99, 157, "Input",ExpressionUUID->"86296c81-aa67-48e3-9459-a607c4dcb5fe"],
Cell[2135471, 43544, 2571, 62, 123, "Output",ExpressionUUID->"bed7d171-990f-4d4e-800a-ab6c67336ddf"],
Cell[2138045, 43608, 2955, 71, 230, "Print",ExpressionUUID->"0677df06-4be7-4bd3-80e0-e0306a28d5e2"]
}, Open ]],
Cell[CellGroupData[{
Cell[2141037, 43684, 945, 21, 46, "Input",ExpressionUUID->"fa626888-9aa9-4ce4-a267-7560eb5953f5"],
Cell[2141985, 43707, 705, 15, 30, "Output",ExpressionUUID->"c1f4f9e8-4ed4-458a-afd7-21b721d6a2d6"]
}, Open ]],
Cell[2142705, 43725, 580, 17, 31, "Text",ExpressionUUID->"46b6972c-5f54-4408-a21a-716067159692"],
Cell[CellGroupData[{
Cell[2143310, 43746, 722, 18, 46, "Input",ExpressionUUID->"7ac6dc4b-1be2-4222-ba5c-5417e4b23a35"],
Cell[2144035, 43766, 166, 3, 30, "Output",ExpressionUUID->"8f315252-fbc8-4570-9ccf-adf1bc0395f9"]
}, Open ]],
Cell[CellGroupData[{
Cell[2144238, 43774, 722, 18, 46, "Input",ExpressionUUID->"ed30fc9b-d583-4306-b0c4-1c9db9bb097a"],
Cell[2144963, 43794, 234, 5, 30, "Output",ExpressionUUID->"5d3a5b06-fa07-4994-866d-f2521b346836"]
}, Open ]],
Cell[CellGroupData[{
Cell[2145234, 43804, 724, 18, 46, "Input",ExpressionUUID->"b6aab6e2-ecab-4643-bd19-e1c96b86c0f0"],
Cell[2145961, 43824, 547, 12, 35, "Message",ExpressionUUID->"89cf3103-e73d-48df-86db-ec7b26a06bb5"],
Cell[2146511, 43838, 166, 3, 30, "Output",ExpressionUUID->"a0260599-8186-4a58-87ab-1debb7498190"]
}, Open ]],
Cell[CellGroupData[{
Cell[2146714, 43846, 724, 18, 46, "Input",ExpressionUUID->"c04c95d3-3228-4354-89b7-6c0a9bdc3525"],
Cell[2147441, 43866, 547, 12, 35, "Message",ExpressionUUID->"2843fbbd-4d9f-4276-aa7a-fa585db89e52"],
Cell[2147991, 43880, 166, 3, 30, "Output",ExpressionUUID->"b38c806d-706b-4d67-a8fc-8f46b49edac0"]
}, Open ]],
Cell[CellGroupData[{
Cell[2148194, 43888, 722, 18, 46, "Input",ExpressionUUID->"182aad29-97d7-4575-8885-0a013b62cd47"],
Cell[2148919, 43908, 545, 12, 35, "Message",ExpressionUUID->"1f6e816a-7efe-44e3-ada9-cce2c848449d"],
Cell[2149467, 43922, 166, 3, 30, "Output",ExpressionUUID->"5330f810-cf31-475c-a470-af6ad3fbb687"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[2149694, 43932, 162, 3, 49, "Subsection",ExpressionUUID->"28754d59-75ad-4a9b-b825-ac7c07b5aaf1"],
Cell[CellGroupData[{
Cell[2149881, 43939, 153, 3, 40, "Subsubsection",ExpressionUUID->"9e25552a-74a8-4b5d-9071-0790e0d767dd"],
Cell[CellGroupData[{
Cell[2150059, 43946, 3306, 95, 124, "Input",ExpressionUUID->"8f6f46ef-b8d9-47f5-be7d-ce0b91081075"],
Cell[2153368, 44043, 2574, 65, 231, "Print",ExpressionUUID->"a1b609a5-51a7-4130-bf01-714db2e18059"]
}, Open ]],
Cell[CellGroupData[{
Cell[2155979, 44113, 3254, 94, 124, "Input",ExpressionUUID->"85d2d939-bb10-4182-addf-ccf25f02abf0"],
Cell[2159236, 44209, 2570, 65, 231, "Print",ExpressionUUID->"835ee8f3-caeb-46b0-92de-39e21e53b73d"]
}, Open ]],
Cell[CellGroupData[{
Cell[2161843, 44279, 3278, 95, 124, "Input",ExpressionUUID->"704445d2-c8f7-4e6e-83e5-ccd083bb0be7"],
Cell[2165124, 44376, 2623, 66, 231, "Print",ExpressionUUID->"24bb5ac5-97cd-4066-b62a-0868f66da1e8"]
}, Open ]],
Cell[2167762, 44445, 593, 18, 31, "Text",ExpressionUUID->"03e9208e-7955-4063-b8cd-08c799624961"],
Cell[CellGroupData[{
Cell[2168380, 44467, 575, 14, 26, "Input",ExpressionUUID->"cb729408-fa91-45df-acdb-30bdd1a725e8"],
Cell[2168958, 44483, 1207, 38, 57, "Output",ExpressionUUID->"75542468-48ec-4ff8-a22f-6c34054f28fb"]
}, Open ]],
Cell[CellGroupData[{
Cell[2170202, 44526, 2270, 56, 105, "Input",ExpressionUUID->"9a5ccd83-eb3c-4c36-b3af-ee05e38ca73c"],
Cell[2172475, 44584, 20955, 474, 531, "Output",ExpressionUUID->"65bcc5c5-0688-44c1-957f-cbc413daffec"]
}, Open ]],
Cell[CellGroupData[{
Cell[2193467, 45063, 969, 28, 55, "Input",ExpressionUUID->"0fca1f7d-de5c-4612-a519-21ba9c1fc6d4"],
Cell[2194439, 45093, 16663, 347, 226, "Output",ExpressionUUID->"0d5f8cbc-2c70-4ffb-819e-65593a755c77"]
}, Open ]],
Cell[CellGroupData[{
Cell[2211139, 45445, 1490, 39, 88, "Input",ExpressionUUID->"6459bbbb-2219-4d3b-abae-46f30f338dd6"],
Cell[2212632, 45486, 22326, 462, 317, "Output",ExpressionUUID->"55a47366-3c86-4fbf-89d1-56ca8b6051d8"]
}, Open ]],
Cell[CellGroupData[{
Cell[2234995, 45953, 1492, 39, 88, "Input",ExpressionUUID->"172ade52-bf8f-452c-a049-b4bf067dea13"],
Cell[2236490, 45994, 40671, 762, 317, "Output",ExpressionUUID->"1b28833d-960f-4f1e-bd91-35c66e2df63f"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[2277210, 46762, 156, 3, 33, "Subsubsection",ExpressionUUID->"795da5c1-b4d6-459c-98d3-232c1d1c121e"],
Cell[CellGroupData[{
Cell[2277391, 46769, 3905, 103, 143, "Input",ExpressionUUID->"f7ea65c6-0702-443d-917a-3271c2330626"],
Cell[2281299, 46874, 2230, 51, 87, "Output",ExpressionUUID->"2c0dc553-4bda-42b8-a192-6443430e9f60"],
Cell[2283532, 46927, 3158, 74, 224, "Print",ExpressionUUID->"ba214c55-e592-407c-873f-1d6ac2dcedfa"]
}, Open ]],
Cell[CellGroupData[{
Cell[2286727, 47006, 1370, 33, 48, "Input",ExpressionUUID->"a059c68c-55ee-4f41-843f-0e4beea3d83d"],
Cell[2288100, 47041, 38859, 759, 358, "Output",ExpressionUUID->"e792ed8c-e828-4f34-9203-2a647a04c235"]
}, Open ]],
Cell[CellGroupData[{
Cell[2326996, 47805, 3492, 97, 143, "Input",ExpressionUUID->"7b41ef67-6714-425a-b787-737d0e979814"],
Cell[2330491, 47904, 3246, 50, 63, "Message",ExpressionUUID->"58b1743b-726c-4519-9132-62a0d005f519"],
Cell[2333740, 47956, 1956, 42, 87, "Output",ExpressionUUID->"81b1d857-2115-44d1-a112-0c1196e98d5f"],
Cell[2335699, 48000, 2801, 68, 231, "Print",ExpressionUUID->"fb76247e-c69e-482f-914a-a6bbdd901b0f"]
}, Open ]],
Cell[CellGroupData[{
Cell[2338537, 48073, 3512, 99, 143, "Input",ExpressionUUID->"c16f29f6-13d0-4952-8989-a6da0e4c9f2a"],
Cell[2342052, 48174, 4021, 61, 46, "Message",ExpressionUUID->"6e12b5bf-75a6-41b9-ab18-4d6e8ce0ff09"],
Cell[2346076, 48237, 2692, 64, 127, "Output",ExpressionUUID->"0e4ab51f-91fc-48dc-b11e-74c81bf0bbe9"],
Cell[2348771, 48303, 2807, 69, 231, "Print",ExpressionUUID->"0bc56279-8d57-45ca-ae17-fc2b034c080d"]
}, Open ]],
Cell[CellGroupData[{
Cell[2351615, 48377, 3385, 97, 124, "Input",ExpressionUUID->"fc527673-fba1-416c-8d9f-891a47b30e07"],
Cell[2355003, 48476, 3282, 52, 63, "Message",ExpressionUUID->"43ac5757-0975-4d44-958b-526a85138610"],
Cell[2358288, 48530, 2880, 70, 231, "Print",ExpressionUUID->"a24c7cac-cc33-473e-b7ed-09df82cdca90"]
}, Open ]],
Cell[CellGroupData[{
Cell[2361205, 48605, 3400, 97, 143, "Input",ExpressionUUID->"e3b16e5d-ae18-42ed-afea-82863f45eb0a"],
Cell[2364608, 48704, 2718, 68, 214, "Print",ExpressionUUID->"52c694be-b5de-4671-9227-12a698e31511"]
}, Open ]],
Cell[CellGroupData[{
Cell[2367363, 48777, 3401, 95, 143, "Input",ExpressionUUID->"c2d60e3d-4d64-439d-b5f1-b8a8639ae541"],
Cell[2370767, 48874, 2003, 49, 87, "Output",ExpressionUUID->"178553f4-c694-427b-9a3e-86aaf01b5315"],
Cell[2372773, 48925, 2735, 69, 223, "Print",ExpressionUUID->"5d54fc1c-415a-45e2-8793-875d3395ce53"]
}, Open ]],
Cell[CellGroupData[{
Cell[2375545, 48999, 3339, 96, 143, "Input",ExpressionUUID->"90b1403f-09f2-43dc-ab86-39c6e34ac1ba"],
Cell[2378887, 49097, 2654, 67, 231, "Print",ExpressionUUID->"448954c3-4b8c-4ae9-900e-87b9b9ce36df"]
}, Open ]],
Cell[CellGroupData[{
Cell[2381578, 49169, 3380, 96, 143, "Input",ExpressionUUID->"c5867d15-affb-4f83-a970-58502ae71ab6"],
Cell[2384961, 49267, 2034, 50, 87, "Output",ExpressionUUID->"9a4fb0ec-cd66-456e-835e-6d436cbd7d05"],
Cell[2386998, 49319, 2679, 67, 231, "Print",ExpressionUUID->"f2944c76-6125-42de-9c7a-945ab662159a"]
}, Open ]],
Cell[CellGroupData[{
Cell[2389714, 49391, 3613, 91, 406, "Input",ExpressionUUID->"141bf38d-c2c5-48bb-9032-5605f04bb986"],
Cell[2393330, 49484, 1714, 54, 68, "Output",ExpressionUUID->"2c1a6f30-deb3-42d6-8950-af7181d63d56"]
}, Open ]],
Cell[CellGroupData[{
Cell[2395081, 49543, 1795, 56, 207, "Input",ExpressionUUID->"882c4064-a2bb-45f0-ba21-eed2b7dfee7d"],
Cell[2396879, 49601, 1831, 45, 218, "Output",ExpressionUUID->"c34f4831-99f5-4642-b2dd-3e6e7cf55f49"]
}, Open ]],
Cell[CellGroupData[{
Cell[2398747, 49651, 5168, 131, 184, "Input",ExpressionUUID->"3c69d6bc-455b-4e7c-8ee6-355abc159580"],
Cell[2403918, 49784, 3243, 50, 63, "Message",ExpressionUUID->"62be9c73-e32f-4d98-89db-e9be32def3bc"],
Cell[CellGroupData[{
Cell[2407186, 49838, 2247, 48, 72, "Print",ExpressionUUID->"37856ad8-140c-458d-abea-3eb9ff8417ec"],
Cell[2409436, 49888, 34512, 688, 339, "Print",ExpressionUUID->"baf9d57d-027c-4ffb-b08d-723e5a8a508b"],
Cell[2443951, 50578, 2946, 71, 231, "Print",ExpressionUUID->"c105aa19-e7d4-42b0-a9dc-ad6aac351ca6"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[2446946, 50655, 296, 6, 26, "Input",ExpressionUUID->"1993fadf-9490-4358-a574-f28745037061"],
Cell[2447245, 50663, 1550, 37, 50, "Output",ExpressionUUID->"4abe87d7-27ca-46b1-a538-bd1bd5a81df1"]
}, Open ]],
Cell[2448810, 50703, 151, 3, 26, "Input",ExpressionUUID->"7fad1c66-1cd6-4763-a597-5196829fd2a5"]
}, Open ]],
Cell[CellGroupData[{
Cell[2448998, 50711, 222, 4, 33, "Subsubsection",ExpressionUUID->"a46bc08d-2a3e-4fc6-b5e6-d8563708aeff"],
Cell[CellGroupData[{
Cell[2449245, 50719, 2125, 57, 82, "Input",ExpressionUUID->"de2fcd2f-38d0-473f-be89-2d15deffcdd7"],
Cell[2451373, 50778, 282196, 4889, 360, "Output",ExpressionUUID->"602a29d0-0e2e-4208-88d0-48290282265a"]
}, Open ]],
Cell[CellGroupData[{
Cell[2733606, 55672, 2216, 57, 101, "Input",ExpressionUUID->"b1650a8b-406f-4152-a295-09148849643c"],
Cell[2735825, 55731, 274284, 4762, 576, "Output",ExpressionUUID->"52c1128b-4a6c-4506-aaea-9ac6e983aaa2"]
}, Open ]]
}, Closed]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[3010182, 60501, 157, 3, 60, "Section",ExpressionUUID->"59823bf3-0206-4a75-bf96-0b1d632d400c"],
Cell[CellGroupData[{
Cell[3010364, 60508, 151, 3, 48, "Subsection",ExpressionUUID->"c76fd690-4dfa-4319-a555-3596b82a35e7"],
Cell[CellGroupData[{
Cell[3010540, 60515, 306, 7, 26, "Input",ExpressionUUID->"8bb941d9-e032-4bc9-bcc2-4dc7ec2bd917"],
Cell[3010849, 60524, 1262, 41, 117, "Output",ExpressionUUID->"f9762a34-954d-4245-ab9a-3ce085a18dda"]
}, Open ]],
Cell[CellGroupData[{
Cell[3012148, 60570, 316, 7, 26, "Input",ExpressionUUID->"13e29727-2f9c-4348-a8dc-a50537d40d25"],
Cell[3012467, 60579, 1597, 49, 117, "Output",ExpressionUUID->"8ec44973-3399-49a8-a558-9af354264350"]
}, Open ]],
Cell[CellGroupData[{
Cell[3014101, 60633, 348, 8, 41, "Input",ExpressionUUID->"0bc60b54-bb45-4263-a752-83a294c462e6"],
Cell[3014452, 60643, 202, 3, 29, "Output",ExpressionUUID->"c22639b8-5fe8-4ea4-9f75-85162efc62d3"]
}, Open ]],
Cell[3014669, 60649, 432, 11, 74, "Input",ExpressionUUID->"4e6e5662-9064-45a5-ab12-0cd860a459b8"],
Cell[CellGroupData[{
Cell[3015126, 60664, 281, 6, 26, "Input",ExpressionUUID->"0ffb6086-5540-46f3-b60e-7ab8283006ed"],
Cell[3015410, 60672, 297, 6, 43, "Output",ExpressionUUID->"45a01882-55b5-4884-821e-a19409cab185"]
}, Open ]],
Cell[3015722, 60681, 313, 7, 31, "Text",ExpressionUUID->"93b865e9-a921-4b90-bd9c-19b5c5e8f975"]
}, Open ]],
Cell[CellGroupData[{
Cell[3016072, 60693, 150, 3, 48, "Subsection",ExpressionUUID->"875612af-fea9-475f-917d-3d926b1629f2"],
Cell[3016225, 60698, 244, 4, 26, "Input",ExpressionUUID->"4282ffbc-f897-4182-8f0c-bdec158908a7"],
Cell[CellGroupData[{
Cell[3016494, 60706, 306, 7, 26, "Input",ExpressionUUID->"8f5c2fe3-94cf-48d1-98a9-b7eaaa519048"],
Cell[3016803, 60715, 4521, 150, 132, "Output",ExpressionUUID->"426660d9-e9a1-4552-b3c9-a127749fc87d"]
}, Open ]],
Cell[CellGroupData[{
Cell[3021361, 60870, 314, 7, 26, "Input",ExpressionUUID->"71f64d67-0982-4c21-a781-e915b01a7af0"],
Cell[3021678, 60879, 5567, 178, 132, "Output",ExpressionUUID->"5a2e8a73-5d78-4d3b-9487-9fd4fab9c91e"]
}, Open ]],
Cell[CellGroupData[{
Cell[3027282, 61062, 473, 12, 42, "Input",ExpressionUUID->"bc9e12a2-4bf5-459c-8b02-103dd4ed5b19"],
Cell[3027758, 61076, 365, 10, 45, "Output",ExpressionUUID->"1d728b97-9eed-40e5-8812-9f2494f8e682"]
}, Open ]],
Cell[CellGroupData[{
Cell[3028160, 61091, 562, 14, 42, "Input",ExpressionUUID->"08a80101-b01d-47b5-b3d0-e8c691604134"],
Cell[3028725, 61107, 638, 19, 45, "Output",ExpressionUUID->"592b6f93-bf51-43e2-837b-69eff1bc45e5"]
}, Open ]],
Cell[3029378, 61129, 767, 23, 42, "Input",ExpressionUUID->"485e6698-0874-458c-be2c-b684804f00ab"],
Cell[3030148, 61154, 640, 19, 42, "Input",ExpressionUUID->"7b329505-d845-4fe4-935b-edaae7501a25"],
Cell[3030791, 61175, 544, 15, 41, InheritFromParent,ExpressionUUID->"6ff45040-3f77-4ba2-8daf-5928e0161c88"],
Cell[CellGroupData[{
Cell[3031360, 61194, 461, 13, 41, "Input",ExpressionUUID->"6784c224-d7e8-4585-98c7-26400ab199d4"],
Cell[3031824, 61209, 394, 12, 45, "Output",ExpressionUUID->"1cb766fe-bf56-4437-97e8-20b651f95239"]
}, Open ]],
Cell[3032233, 61224, 535, 15, 42, "Input",ExpressionUUID->"e8bff279-0c1a-456d-8a37-145123dca0bb"],
Cell[CellGroupData[{
Cell[3032793, 61243, 546, 13, 26, "Input",ExpressionUUID->"2029250c-8fdc-451c-8889-f050acc3b510"],
Cell[3033342, 61258, 23425, 454, 233, "Output",ExpressionUUID->"4eb170f5-d433-4288-9b07-40aafc5a2875"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[3056828, 61719, 157, 3, 48, "Section",ExpressionUUID->"61d15e14-b615-4a5e-a7aa-404c7a205325"],
Cell[CellGroupData[{
Cell[3057010, 61726, 1303, 33, 28, "Input",ExpressionUUID->"0632fbf3-63f8-4f59-b1c2-cc8175161631"],
Cell[3058316, 61761, 385, 7, 30, "Output",ExpressionUUID->"bcdc10a9-e507-43a5-b844-de88de15ef94"]
}, Open ]],
Cell[CellGroupData[{
Cell[3058738, 61773, 2040, 49, 48, "Input",ExpressionUUID->"a40aea77-09bf-4f3d-8423-e1fbee28c678"],
Cell[3060781, 61824, 2010, 45, 230, "Output",ExpressionUUID->"f925ac81-a3d5-4607-88a5-0cd301f4683b"]
}, Open ]],
Cell[CellGroupData[{
Cell[3062828, 61874, 2164, 56, 68, "Input",ExpressionUUID->"4cf7877f-11f3-41fd-a130-dbea82457812"],
Cell[3064995, 61932, 1424, 31, 230, "Output",ExpressionUUID->"16b61230-bb39-4a13-824d-1eb4ab314813"]
}, Open ]],
Cell[CellGroupData[{
Cell[3066456, 61968, 2185, 56, 68, "Input",ExpressionUUID->"918f4460-f93f-4d2b-a390-b503d533efbf"],
Cell[3068644, 62026, 1336, 29, 230, "Output",ExpressionUUID->"f4eeca3e-e5eb-4563-97bf-4998dc8f13dc"]
}, Open ]],
Cell[CellGroupData[{
Cell[3070017, 62060, 2729, 70, 88, "Input",ExpressionUUID->"f08e6844-e706-404f-ab6f-2c01558c9a38"],
Cell[3072749, 62132, 1373, 30, 230, "Output",ExpressionUUID->"80353c03-1457-4ac5-a68b-24caed61dc7c"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[3074171, 62168, 161, 3, 48, "Section",ExpressionUUID->"566e0bb1-44f3-4fd6-93fd-55680abf1c6e"],
Cell[CellGroupData[{
Cell[3074357, 62175, 153, 3, 49, "Subsection",ExpressionUUID->"93f596ca-102d-43a3-8d75-118c93bdc137"],
Cell[3074513, 62180, 223, 5, 31, "Text",ExpressionUUID->"5fa7476b-b686-4068-b6d6-52d0dc6a6b2d"],
Cell[3074739, 62187, 2819, 86, 136, "Input",ExpressionUUID->"0a685f80-721a-4011-a569-ced015f9b3ad",
InitializationCell->True],
Cell[CellGroupData[{
Cell[3077583, 62277, 1548, 36, 48, "Input",ExpressionUUID->"044116cc-b052-42c0-88bd-54b853590352"],
Cell[3079134, 62315, 840, 16, 23, "Message",ExpressionUUID->"7940c05a-b7b4-40ed-9913-e903c53d53dc"],
Cell[3079977, 62333, 840, 16, 23, "Message",ExpressionUUID->"bd5f7b18-4aa2-461d-bda6-016edacd5c79"],
Cell[3080820, 62351, 817, 16, 23, "Message",ExpressionUUID->"4dc2a87a-d8a9-40b7-9df6-f8f3ae29c494"],
Cell[3081640, 62369, 629, 13, 23, "Message",ExpressionUUID->"87fce9c0-e979-40a7-835f-74ad4a38d182"],
Cell[3082272, 62384, 40514, 805, 331, "Output",ExpressionUUID->"7d983109-7364-405f-92e5-1b8ccd1bf9ee"]
}, Open ]],
Cell[CellGroupData[{
Cell[3122823, 63194, 3494, 97, 124, "Input",ExpressionUUID->"de60fc66-4d0e-4b01-8e5c-8d41c70264c7"],
Cell[3126320, 63293, 889, 17, 23, "Message",ExpressionUUID->"b0ea24e1-def0-47cf-b838-b7a0fc7e00b6"],
Cell[3127212, 63312, 889, 17, 23, "Message",ExpressionUUID->"596bf8cc-7717-4778-9008-12d681ebd026"],
Cell[3128104, 63331, 868, 17, 23, "Message",ExpressionUUID->"6a8d687b-6bd6-4b6b-b307-c7e540e81b09"],
Cell[3128975, 63350, 680, 14, 23, "Message",ExpressionUUID->"bc8ace42-d1af-4e54-9707-85f5b1f8a17b"],
Cell[3129658, 63366, 4008, 62, 80, "Message",ExpressionUUID->"9c0d067a-3b9d-4c85-b599-0e5b39b03ef1"],
Cell[3133669, 63430, 2725, 69, 231, "Print",ExpressionUUID->"132345e5-b8de-44f3-8827-dc7b1a649e34"]
}, Open ]],
Cell[3136409, 63502, 2274, 52, 143, "Input",ExpressionUUID->"6d7a4316-2c80-4771-8862-68b30d4db3da"],
Cell[3138686, 63556, 431, 12, 26, "Input",ExpressionUUID->"3e443d05-9a6c-4216-a9c1-f5f84c47a28b"],
Cell[3139120, 63570, 2172, 58, 144, "Input",ExpressionUUID->"12425906-d272-4c01-8978-5fa95816e4d7"],
Cell[CellGroupData[{
Cell[3141317, 63632, 301, 5, 26, "Input",ExpressionUUID->"c270935e-bf41-4889-92b0-890cbeb91ffb"],
Cell[3141621, 63639, 792, 15, 23, "Message",ExpressionUUID->"0d0c57e7-d224-4f62-8cbe-26fd1f219bf6"],
Cell[3142416, 63656, 794, 15, 23, "Message",ExpressionUUID->"1d06285b-ef7f-497d-b871-df258f4b080c"],
Cell[3143213, 63673, 771, 15, 23, "Message",ExpressionUUID->"1a3a04e5-c8d8-4a98-8958-77cb2fe3d7e9"],
Cell[3143987, 63690, 581, 12, 23, "Message",ExpressionUUID->"3105f5d9-c9e6-4409-b594-d4b752a32bd3"],
Cell[3144571, 63704, 1420, 25, 42, "Message",ExpressionUUID->"74ddf5be-6561-47fc-8806-899e1173baf5"],
Cell[3145994, 63731, 1418, 25, 42, "Message",ExpressionUUID->"3818b43e-06ea-45c9-b17e-b9fcc60b36eb"],
Cell[3147415, 63758, 1421, 25, 42, "Message",ExpressionUUID->"09d26c5f-a751-471a-aa1f-d470df8184a5"],
Cell[3148839, 63785, 576, 12, 23, "Message",ExpressionUUID->"b9021d77-882f-4879-a669-ca24b904c179"],
Cell[3149418, 63799, 7996, 180, 216, "Output",ExpressionUUID->"2b80e58f-428c-4563-b503-1558690ae93e"]
}, Open ]]
}, Closed]],
Cell[3157441, 63983, 151, 3, 35, "Subsection",ExpressionUUID->"bccf1217-df55-4d3f-a67f-f220fd9b7c14"]
}, Closed]],
Cell[CellGroupData[{
Cell[3157629, 63991, 207, 3, 48, "Section",ExpressionUUID->"173cbd31-c127-462a-9060-7967130c2bb1"],
Cell[CellGroupData[{
Cell[3157861, 63998, 147, 2, 49, "Subsection",ExpressionUUID->"e3f42931-0815-408b-ac8f-320ff914f89c"],
Cell[CellGroupData[{
Cell[3158033, 64004, 1239, 31, 48, "Input",ExpressionUUID->"009622ee-4830-442a-b200-65a7f8cf4413"],
Cell[3159275, 64037, 35707, 693, 340, "Output",ExpressionUUID->"87967132-abd8-45b4-8f0f-ab2ec6c465a7"]
}, Open ]],
Cell[3194997, 64733, 1466, 36, 48, "Input",ExpressionUUID->"742eca25-68e9-4ce6-96e0-a12b7d8f3b28"],
Cell[3196466, 64771, 2036, 41, 432, "Input",ExpressionUUID->"83860d6a-5544-4b4b-b21c-6de5cb50c0a8"],
Cell[CellGroupData[{
Cell[3198527, 64816, 3911, 103, 143, "Input",ExpressionUUID->"f5f79e48-2029-49bb-aa63-97469a79ad25"],
Cell[3202441, 64921, 5731, 153, 181, "Output",ExpressionUUID->"d40f3b9f-7718-4422-abfb-1dfad4cda647"],
Cell[3208175, 65076, 2854, 69, 231, "Print",ExpressionUUID->"2963daed-1d26-459e-8eef-fd5129978aa8"]
}, Open ]],
Cell[3211044, 65148, 335, 7, 31, "Text",ExpressionUUID->"8ffbe039-ac2d-4132-a285-44b8607294f9"],
Cell[CellGroupData[{
Cell[3211404, 65159, 796, 19, 46, "Input",ExpressionUUID->"0fdcd118-4a43-49bd-af81-abcef7338c6f"],
Cell[3212203, 65180, 636, 14, 30, "Output",ExpressionUUID->"78bc2235-21da-41e0-b1d1-6794aef9930e"]
}, Open ]],
Cell[3212854, 65197, 514, 15, 31, "Text",ExpressionUUID->"5cf747c9-154e-4de0-ba9f-92dc5a3b5d61"],
Cell[CellGroupData[{
Cell[3213393, 65216, 724, 18, 46, "Input",ExpressionUUID->"5be0e74b-5200-495d-87c4-8c0c909fd56a"],
Cell[3214120, 65236, 359, 9, 30, "Output",ExpressionUUID->"e3925dfe-9a82-498f-918d-9774446931b1"]
}, Open ]],
Cell[3214494, 65248, 609, 17, 31, "Text",ExpressionUUID->"f50d593e-2775-4983-87b0-e971be4244f0"],
Cell[CellGroupData[{
Cell[3215128, 65269, 871, 21, 46, "Input",ExpressionUUID->"0456c932-e80f-4a41-b367-8f73a952075c"],
Cell[3216002, 65292, 241, 5, 30, "Output",ExpressionUUID->"27e7db5d-752f-455b-a620-71987a7da8ba"]
}, Open ]],
Cell[3216258, 65300, 444, 11, 31, "Text",ExpressionUUID->"8a160cc4-6695-4197-8963-95c5f328042c"],
Cell[CellGroupData[{
Cell[3216727, 65315, 723, 18, 46, "Input",ExpressionUUID->"9c39bbdc-5856-4cf6-85e7-a5993f2e190b"],
Cell[3217453, 65335, 537, 13, 30, "Output",ExpressionUUID->"45ae0504-7e6c-4a2a-85bb-458db9c7c39c"]
}, Open ]],
Cell[3218005, 65351, 685, 18, 31, "Text",ExpressionUUID->"3c3f1e40-312a-41df-988e-17cd32481248"],
Cell[CellGroupData[{
Cell[3218715, 65373, 721, 18, 46, "Input",ExpressionUUID->"e1c85c2f-0fde-4663-9816-5b814acea2dc"],
Cell[3219439, 65393, 166, 3, 30, "Output",ExpressionUUID->"060a47a4-b836-4aa4-8f54-c396dc1bb879"]
}, Open ]],
Cell[CellGroupData[{
Cell[3219642, 65401, 722, 18, 46, "Input",ExpressionUUID->"60d2b83f-887d-4838-9bbf-f94bbb2c8d29"],
Cell[3220367, 65421, 260, 5, 30, "Output",ExpressionUUID->"3670b37e-e7eb-452c-b850-3078959b7b3c"]
}, Open ]],
Cell[3220642, 65429, 563, 16, 31, "Text",ExpressionUUID->"796e0419-001c-4efc-a560-d5e6aa37e8da"],
Cell[CellGroupData[{
Cell[3221230, 65449, 575, 14, 26, "Input",ExpressionUUID->"7f020f91-e91a-41f7-bdb8-0d7780d79000"],
Cell[3221808, 65465, 1207, 38, 57, "Output",ExpressionUUID->"a42d465f-7a69-49e2-a8f2-459ad2f72d97"]
}, Open ]],
Cell[CellGroupData[{
Cell[3223052, 65508, 1714, 45, 81, "Input",ExpressionUUID->"69cfd6a7-8b65-437b-8a0a-5079e060b8b4"],
Cell[3224769, 65555, 20355, 405, 329, "Output",ExpressionUUID->"811160a3-d85f-4f0c-b484-e072bfa2a624"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[3245173, 65966, 151, 3, 35, "Subsection",ExpressionUUID->"1ea37c31-d94a-4415-aefe-7732066d4f30"],
Cell[3245327, 65971, 894, 26, 34, "Text",ExpressionUUID->"0a285b6f-a9b7-4fcd-b386-eb36fcd898d1"],
Cell[3246224, 65999, 1025, 27, 55, "Text",ExpressionUUID->"9b99270a-56e8-498e-851b-963722ee6767"]
}, Closed]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[3247310, 66033, 187, 3, 89, "Title",ExpressionUUID->"543a2e05-43c1-430d-b0d2-6caad7fe4ca3"],
Cell[CellGroupData[{
Cell[3247522, 66040, 193, 3, 60, "Section",ExpressionUUID->"4133c8fd-f5a2-42de-a1e6-56f435fecf5e"],
Cell[CellGroupData[{
Cell[3247740, 66047, 155, 3, 49, "Subsection",ExpressionUUID->"d0af0821-37d8-4bba-80f1-8624d4c75f06"],
Cell[3247898, 66052, 191, 3, 31, "Text",ExpressionUUID->"579f66a3-0e96-4244-8bdb-04cddec8356c"],
Cell[3248092, 66057, 1305, 31, 61, "Input",ExpressionUUID->"1cd8adee-e904-4d7e-9c8d-53799ac4602e",
InitializationCell->True],
Cell[CellGroupData[{
Cell[3249422, 66092, 1529, 34, 48, "Input",ExpressionUUID->"3abcdc6a-4612-47b2-b219-22fd5de22f39"],
Cell[3250954, 66128, 41071, 794, 339, "Output",ExpressionUUID->"5b8155f3-d509-488d-91a7-6e266e7a429c"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[3292074, 66928, 203, 4, 49, "Subsection",ExpressionUUID->"fcede236-1735-45e3-b270-28ffe0fb3e4a"],
Cell[CellGroupData[{
Cell[3292302, 66936, 248, 5, 26, "Input",ExpressionUUID->"92a26b6e-bf59-4a18-af5e-f498abf70a4d"],
Cell[3292553, 66943, 4570, 154, 129, "Output",ExpressionUUID->"5677527c-a7af-4b6f-8f73-0a43e7c31df2"]
}, Open ]],
Cell[3297138, 67100, 191, 3, 31, "Text",ExpressionUUID->"397ba0ba-91e4-4f5a-8f0d-0257e5c848ce"],
Cell[3297332, 67105, 1400, 32, 61, "Input",ExpressionUUID->"2d0a6b71-a35b-4eee-a7ef-a569c933f14a",
InitializationCell->True],
Cell[CellGroupData[{
Cell[3298757, 67141, 1968, 41, 48, "Input",ExpressionUUID->"a7e12bcd-a521-4201-8574-d9deecc0896c"],
Cell[3300728, 67184, 54360, 1013, 331, "Output",ExpressionUUID->"83b31b03-439c-425e-b046-7a05a10f6ee1"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[3355149, 68204, 167, 3, 48, "Section",ExpressionUUID->"3b0990ee-511f-416b-a4bc-f5c7f6117606"],
Cell[CellGroupData[{
Cell[3355341, 68211, 153, 3, 49, "Subsection",ExpressionUUID->"e2347259-0079-4fdc-aefc-303816be8d61"],
Cell[CellGroupData[{
Cell[3355519, 68218, 1533, 39, 88, "Input",ExpressionUUID->"9ae18ff2-6556-4c15-a8c2-953a34805b2d"],
Cell[3357055, 68259, 22698, 492, 324, "Output",ExpressionUUID->"2fa60550-77eb-4d31-917f-f9b5e323d219"]
}, Open ]],
Cell[CellGroupData[{
Cell[3379790, 68756, 1501, 39, 88, "Input",ExpressionUUID->"4467579c-c5e0-4a28-9f8d-ac1535784066"],
Cell[3381294, 68797, 23509, 506, 324, "Output",ExpressionUUID->"0847812c-dff6-46c2-ac72-fcc62e819bb1"]
}, Open ]],
Cell[CellGroupData[{
Cell[3404840, 69308, 1509, 39, 88, "Input",ExpressionUUID->"8bc26deb-518f-483b-b041-62d70e373525"],
Cell[3406352, 69349, 24777, 532, 327, "Output",ExpressionUUID->"a28c4daf-3f54-4f9a-97d8-2b1e8d1e699c"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[3431178, 69887, 151, 3, 49, "Subsection",ExpressionUUID->"48603b7f-3465-4809-a221-f1026896d00c"],
Cell[CellGroupData[{
Cell[3431354, 69894, 1580, 39, 88, "Input",ExpressionUUID->"c4ae8476-8ff5-4521-9b44-cde2c45daedb"],
Cell[3432937, 69935, 23505, 511, 319, "Output",ExpressionUUID->"1c6e8190-7223-40f3-8949-ab439c131a22"]
}, Open ]],
Cell[CellGroupData[{
Cell[3456479, 70451, 1623, 40, 88, "Input",ExpressionUUID->"01d01b7c-1d1b-4a07-a039-89526629b6fb"],
Cell[3458105, 70493, 26393, 562, 320, "Output",ExpressionUUID->"07f695c0-468b-4448-aaf8-8e1182a053ff"]
}, Open ]],
Cell[3484513, 71058, 117, 1, 26, "Input",ExpressionUUID->"6f2ef4a6-63a9-4073-833d-ea7294b487dc"],
Cell[CellGroupData[{
Cell[3484655, 71063, 1552, 39, 88, "Input",ExpressionUUID->"023e28d8-3d5a-4abd-b059-fab3ba26fb57"],
Cell[3486210, 71104, 33370, 678, 320, "Output",ExpressionUUID->"b9511137-4c18-472b-a1eb-141f33a303fe"]
}, Open ]],
Cell[CellGroupData[{
Cell[3519617, 71787, 1524, 38, 88, "Input",ExpressionUUID->"dbe23c91-059c-4b34-a730-981ae080f005"],
Cell[3521144, 71827, 24247, 458, 314, "Output",ExpressionUUID->"8c62cd7a-0ba8-4628-bbbb-a653fec768a2"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[3545452, 72292, 188, 3, 48, "Section",ExpressionUUID->"d7144ed8-b75e-4584-98e3-2404ccf2c65e"],
Cell[CellGroupData[{
Cell[3545665, 72299, 221, 5, 49, "Subsection",ExpressionUUID->"99cd382b-a84a-4c98-a1ee-a804808bdb4b"],
Cell[CellGroupData[{
Cell[3545911, 72308, 154, 3, 40, "Subsubsection",ExpressionUUID->"f81b48d4-6ca9-4e93-880f-1d0c41620c11"],
Cell[CellGroupData[{
Cell[3546090, 72315, 3851, 102, 156, "Input",ExpressionUUID->"56c7956a-d243-4c5a-869d-eeb02e265b74"],
Cell[3549944, 72419, 2435, 67, 142, "Output",ExpressionUUID->"d6b8c97a-ba7a-406c-b3c1-3d0c8463e707"],
Cell[3552382, 72488, 2554, 64, 230, "Print",ExpressionUUID->"64027337-cddd-47e5-bb13-318061d95be7"]
}, Open ]],
Cell[3554951, 72555, 376, 8, 31, "Text",ExpressionUUID->"a4feeab0-8d6c-47ea-80b7-f6f56248271a"],
Cell[CellGroupData[{
Cell[3555352, 72567, 851, 21, 45, "Input",ExpressionUUID->"01047b6f-9a55-438e-91a4-8daad1515403"],
Cell[3556206, 72590, 599, 14, 29, "Output",ExpressionUUID->"2e541eb4-5707-453f-8376-3d00dd22491f"]
}, Open ]],
Cell[3556820, 72607, 580, 17, 31, "Text",ExpressionUUID->"1a526bd8-e92b-4103-90e0-8bff5aa01299"],
Cell[CellGroupData[{
Cell[3557425, 72628, 779, 20, 45, "Input",ExpressionUUID->"b4d6a8d7-ec2c-446a-aa6e-ae310f6d8126"],
Cell[3558207, 72650, 286, 7, 29, "Output",ExpressionUUID->"14d635c8-d511-4f8f-ae7e-6c2d05775fee"]
}, Open ]],
Cell[3558508, 72660, 760, 20, 31, "Text",ExpressionUUID->"f1b935df-0761-4fbc-a20b-a88f4391b42a"],
Cell[CellGroupData[{
Cell[3559293, 72684, 869, 21, 45, "Input",ExpressionUUID->"ecf076fb-eee6-4aa0-9428-b9eefbc60f2e"],
Cell[3560165, 72707, 313, 7, 29, "Output",ExpressionUUID->"9fd5b233-6547-48b1-8de9-66f3c84c6988"]
}, Open ]],
Cell[3560493, 72717, 477, 12, 31, "Text",ExpressionUUID->"e2965313-bf9a-4d58-870d-802893aeef01"],
Cell[CellGroupData[{
Cell[3560995, 72733, 830, 21, 45, "Input",ExpressionUUID->"b9e3a9ea-a8be-4740-b8ec-993e5e41a7bd"],
Cell[3561828, 72756, 219, 5, 29, "Output",ExpressionUUID->"188bc341-2d9c-44b1-9cf8-f3d087c4e9b0"]
}, Open ]],
Cell[CellGroupData[{
Cell[3562084, 72766, 509, 13, 26, "Input",ExpressionUUID->"8991f457-97ad-4bc5-8018-21c1d5a6e921"],
Cell[3562596, 72781, 451, 14, 44, "Output",ExpressionUUID->"b73d09fe-d126-41f4-91a9-067a5d689713"]
}, Open ]],
Cell[CellGroupData[{
Cell[3563084, 72800, 922, 22, 45, "Input",ExpressionUUID->"9d3c5b74-d114-4ef1-af76-aa0587aa6642"],
Cell[3564009, 72824, 262, 5, 29, "Output",ExpressionUUID->"3eb7a652-bb30-4c3e-ba15-68a29919b5ae"]
}, Open ]],
Cell[CellGroupData[{
Cell[3564308, 72834, 777, 20, 45, "Input",ExpressionUUID->"2f059305-4b19-49a5-8ea0-9d942b559ba1"],
Cell[3565088, 72856, 290, 7, 29, "Output",ExpressionUUID->"a74a908a-6404-4b89-a689-77d51af41ff3"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[3565427, 72869, 154, 3, 40, "Subsubsection",ExpressionUUID->"a2a91e79-cf2e-4d60-9f15-3349f1c10a38"],
Cell[CellGroupData[{
Cell[3565606, 72876, 3640, 100, 156, "Input",ExpressionUUID->"335a7aa7-ff2b-4e95-a126-e6619f67c02a"],
Cell[3569249, 72978, 2231, 58, 105, "Output",ExpressionUUID->"04014854-6bf2-47b6-bd77-8eae538c3e93"],
Cell[3571483, 73038, 2912, 71, 230, "Print",ExpressionUUID->"461698f0-d264-40e1-9390-5b8125edb3bd"]
}, Open ]],
Cell[CellGroupData[{
Cell[3574432, 73114, 1001, 23, 45, "Input",ExpressionUUID->"8c22c7f5-d97d-4ca7-b08b-aedf5c6f2e05"],
Cell[3575436, 73139, 332, 6, 29, "Output",ExpressionUUID->"0afb0921-243d-4bda-9c56-aacc15c6180c"]
}, Open ]],
Cell[3575783, 73148, 580, 17, 31, "Text",ExpressionUUID->"53847370-0e8f-43b1-b8f9-e9f320b5557d"],
Cell[CellGroupData[{
Cell[3576388, 73169, 775, 20, 45, "Input",ExpressionUUID->"28276ba2-412e-4137-b3ab-4cf197031cf1"],
Cell[3577166, 73191, 191, 4, 29, "Output",ExpressionUUID->"ba210443-fa98-4637-b3c8-4f6f8da67639"]
}, Open ]],
Cell[CellGroupData[{
Cell[3577394, 73200, 775, 20, 45, "Input",ExpressionUUID->"334ddd4a-ba7f-4861-a414-4e5458f7eeb6"],
Cell[3578172, 73222, 501, 13, 29, "Output",ExpressionUUID->"5ca1f910-ed3d-498a-a58b-431916b5735a"]
}, Open ]],
Cell[CellGroupData[{
Cell[3578710, 73240, 781, 20, 45, "Input",ExpressionUUID->"e1590da7-9c25-4b5e-94cf-55ad6b6b246d"],
Cell[3579494, 73262, 572, 12, 35, "Message",ExpressionUUID->"0971d34a-2dfc-4805-b321-a21a97370aa6"],
Cell[3580069, 73276, 192, 4, 29, "Output",ExpressionUUID->"bc571d62-5b5a-4a36-bb47-06a2fb1c7cf2"]
}, Open ]],
Cell[CellGroupData[{
Cell[3580298, 73285, 777, 20, 45, "Input",ExpressionUUID->"2c552210-b526-436b-be2c-640ab5421247"],
Cell[3581078, 73307, 572, 12, 35, "Message",ExpressionUUID->"98c730f5-574c-4031-a56c-7b10d55feda9"],
Cell[3581653, 73321, 194, 4, 29, "Output",ExpressionUUID->"a6aecd0f-40f1-4007-8843-3e2c6541da31"]
}, Open ]],
Cell[CellGroupData[{
Cell[3581884, 73330, 775, 20, 45, "Input",ExpressionUUID->"bac6391f-5c90-40bf-b31b-96513a511b89"],
Cell[3582662, 73352, 548, 12, 35, "Message",ExpressionUUID->"9ebe4adc-d996-4d7c-a94c-9e7721f377cf"],
Cell[3583213, 73366, 219, 5, 29, "Output",ExpressionUUID->"5f48d0fc-f833-44be-b084-34eb830dc39f"]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[3583493, 73378, 161, 3, 35, "Subsection",ExpressionUUID->"3500dfdb-3b29-467e-aaf5-c3676fcd873b"],
Cell[CellGroupData[{
Cell[3583679, 73385, 154, 3, 40, "Subsubsection",ExpressionUUID->"73101e70-d86c-456b-b379-a8ad4c1c9c2f"],
Cell[CellGroupData[{
Cell[3583858, 73392, 3255, 93, 124, "Input",ExpressionUUID->"c90c31b6-dc92-4440-8c74-2e256971a963"],
Cell[3587116, 73487, 2305, 61, 231, "Print",ExpressionUUID->"89ab21a7-1c1c-428c-a9f7-966aa488341b"]
}, Open ]],
Cell[CellGroupData[{
Cell[3589458, 73553, 3255, 93, 124, "Input",ExpressionUUID->"18489723-5a5f-4c79-af88-2b55464378e9"],
Cell[3592716, 73648, 2311, 61, 231, "Print",ExpressionUUID->"16f245ff-f49f-4824-849c-000293008195"]
}, Open ]],
Cell[CellGroupData[{
Cell[3595064, 73714, 3261, 94, 124, "Input",ExpressionUUID->"6beab092-00b7-47e5-8a3c-2d0a642e0727"],
Cell[3598328, 73810, 2304, 61, 231, "Print",ExpressionUUID->"b756acc6-6234-477f-99b3-e938f8a698ce"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[3600681, 73877, 154, 3, 33, "Subsubsection",ExpressionUUID->"363c9830-99d2-4619-9537-99741119596b"],
Cell[CellGroupData[{
Cell[3600860, 73884, 3314, 95, 124, "Input",ExpressionUUID->"25453783-8cf2-4af9-9b1e-f65c10f6b3f8"],
Cell[3604177, 73981, 2483, 39, 63, "Message",ExpressionUUID->"843cb4ce-0c40-4249-a1f1-7312f9c950bb"],
Cell[3606663, 74022, 2820, 70, 224, "Print",ExpressionUUID->"73da1e44-87ba-477d-b879-40016bb86635"]
}, Open ]],
Cell[CellGroupData[{
Cell[3609520, 74097, 3257, 93, 124, "Input",ExpressionUUID->"bfce9265-826f-414f-8fbd-e56e2b3ab796"],
Cell[3612780, 74192, 2642, 67, 230, "Print",ExpressionUUID->"a61703d4-ad7b-4373-844c-c4ddbe2db387"]
}, Open ]],
Cell[CellGroupData[{
Cell[3615459, 74264, 3401, 97, 157, "Input",ExpressionUUID->"598c186e-8111-4bfb-9b4f-f392b819386c"],
Cell[3618863, 74363, 1092, 24, 68, "Output",ExpressionUUID->"2d7ee757-bc61-405e-946f-2caee431254a"],
Cell[3619958, 74389, 2662, 66, 230, "Print",ExpressionUUID->"31945ad0-dc58-4036-8f12-5af4e6f68a1a"]
}, Open ]],
Cell[CellGroupData[{
Cell[3622657, 74460, 3255, 93, 138, "Input",ExpressionUUID->"54327045-010b-4b65-a7d2-4b759cf46ced"],
Cell[3625915, 74555, 2643, 67, 230, "Print",ExpressionUUID->"620d824c-4b41-41a3-819a-262ec7d642c1"]
}, Open ]],
Cell[CellGroupData[{
Cell[3628595, 74627, 3449, 96, 138, "Input",ExpressionUUID->"b8d545c6-81a7-4d3b-b47c-8fc881c530c8"],
Cell[3632047, 74725, 2776, 68, 230, "Print",ExpressionUUID->"c1fc9231-8e0e-46c8-84ca-dbe411513be0"]
}, Open ]],
Cell[CellGroupData[{
Cell[3634860, 74798, 3256, 93, 138, "Input",ExpressionUUID->"23a66bc0-8a2c-424c-816c-2703166f5df4"],
Cell[3638119, 74893, 2626, 66, 230, "Print",ExpressionUUID->"8afa458b-6e51-430e-b48f-bb41132ea304"]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[3640794, 74965, 222, 4, 33, "Subsubsection",ExpressionUUID->"72e295f6-49e6-4488-9f13-f591f507b640"],
Cell[CellGroupData[{
Cell[3641041, 74973, 2076, 56, 82, "Input",ExpressionUUID->"4b94524e-d2b4-433b-b4b4-67276a56ea98"],
Cell[3643120, 75031, 454834, 7740, 352, "Output",ExpressionUUID->"e9944856-87ad-44f0-bbbb-be64f5621e0d"]
}, Open ]]
}, Closed]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell[4098027, 82779, 157, 3, 48, "Section",ExpressionUUID->"1028af87-e00a-485f-a964-e2195d7f72bb"],
Cell[CellGroupData[{
Cell[4098209, 82786, 151, 3, 49, "Subsection",ExpressionUUID->"0f8b992b-493a-44cb-a5fd-40fcffae4540"],
Cell[CellGroupData[{
Cell[4098385, 82793, 359, 8, 26, "Input",ExpressionUUID->"cb1d231b-9c09-4092-8bc1-d377a5db8147"],
Cell[4098747, 82803, 1288, 42, 118, "Output",ExpressionUUID->"521a0cfc-7149-403d-8e83-74257f630e0d"]
}, Open ]],
Cell[CellGroupData[{
Cell[4100072, 82850, 367, 8, 26, "Input",ExpressionUUID->"8045d5c4-afe7-4fe9-8260-f1a06e8a7a3f"],
Cell[4100442, 82860, 1294, 41, 118, "Output",ExpressionUUID->"c8f4b82f-05a3-47ef-98c5-1afb30ebcbf3"]
}, Open ]],
Cell[4101751, 82904, 392, 10, 60, "Input",ExpressionUUID->"834eca02-582f-4ce3-bb96-1b571a228597"],
Cell[4102146, 82916, 325, 7, 31, "Text",ExpressionUUID->"94c34547-b059-4293-aea0-5471bfea483e"]
}, Closed]],
Cell[CellGroupData[{
Cell[4102508, 82928, 150, 3, 35, "Subsection",ExpressionUUID->"0fd431af-23ba-4723-ad15-7a48a0b7639e"],
Cell[4102661, 82933, 244, 4, 26, "Input",ExpressionUUID->"6cd46e1a-4338-4c46-ac1f-92df2f102ad0"],
Cell[CellGroupData[{
Cell[4102930, 82941, 359, 8, 26, "Input",ExpressionUUID->"a9a22488-55d8-4a9e-bc82-97944583d0c0"],
Cell[4103292, 82951, 4549, 151, 127, "Output",ExpressionUUID->"7477b4c9-ec9a-4a36-8210-6e64d98e7dd7"]
}, Open ]],
Cell[CellGroupData[{
Cell[4107878, 83107, 367, 8, 26, "Input",ExpressionUUID->"d5c56810-e234-4468-a1fe-c75b8dec17c1"],
Cell[4108248, 83117, 4933, 162, 127, "Output",ExpressionUUID->"36e713fd-6180-422c-aa06-fc75a1d2448d"]
}, Open ]],
Cell[CellGroupData[{
Cell[4113218, 83284, 473, 12, 42, "Input",ExpressionUUID->"7fd9376d-cc64-47b3-a329-bfb72c76f804"],
Cell[4113694, 83298, 365, 10, 45, "Output",ExpressionUUID->"ffd163fc-1924-4599-8769-aaf637a07fe9"]
}, Open ]],
Cell[CellGroupData[{
Cell[4114096, 83313, 562, 14, 42, "Input",ExpressionUUID->"9ce5eaf2-115b-4b61-86b6-90650d80f6ac"],
Cell[4114661, 83329, 638, 19, 45, "Output",ExpressionUUID->"1081430d-515a-472d-9c71-c51a1eb9901d"]
}, Open ]],
Cell[4115314, 83351, 767, 23, 42, "Input",ExpressionUUID->"a6315198-1693-4dba-a7a9-7d086adc8bf6"],
Cell[4116084, 83376, 640, 19, 42, "Input",ExpressionUUID->"8715de4c-64e4-4333-89dd-e717ee5903cb"],
Cell[4116727, 83397, 544, 15, 42, "Input",ExpressionUUID->"e04607f5-a828-4356-a612-c66d2fe3204b"],
Cell[CellGroupData[{
Cell[4117296, 83416, 461, 13, 42, "Input",ExpressionUUID->"4a49486c-8597-4978-9a89-a6621e300c52"],
Cell[4117760, 83431, 394, 12, 45, "Output",ExpressionUUID->"883091c1-e039-48c9-b0ff-e95bc361ea98"]
}, Open ]],
Cell[4118169, 83446, 535, 15, 42, "Input",ExpressionUUID->"ee43965f-298f-45d1-a648-e6c96be60017"],
Cell[CellGroupData[{
Cell[4118729, 83465, 546, 13, 28, "Input",ExpressionUUID->"08913359-9bbb-43bb-b9ff-d738ea1d4a49"],
Cell[4119278, 83480, 23425, 454, 212, "Output",ExpressionUUID->"38bab27b-9172-4867-a690-cffcf270d3a1"]
}, Open ]]
}, Closed]]
}, Closed]]
}, Open ]]
}
]
*)