\BOOKMARK [0][-]{section*.2}{Perturbation theory in the complex plane}{}% 2 \BOOKMARK [1][-]{section*.1}{Abstract}{section*.2}% 1 \BOOKMARK [1][-]{section*.3}{Introduction}{section*.2}% 3 \BOOKMARK [2][-]{section*.4}{Background}{section*.3}% 4 \BOOKMARK [2][-]{section*.5}{An illustrative example}{section*.3}% 5 \BOOKMARK [1][-]{section*.6}{Perturbation theory}{section*.2}% 6 \BOOKMARK [2][-]{section*.7}{Rayleigh-Schr\366dinger perturbation theory}{section*.6}% 7 \BOOKMARK [2][-]{section*.8}{The Hartree-Fock Hamiltonian}{section*.6}% 8 \BOOKMARK [2][-]{section*.9}{M\370ller-Plesset perturbation theory}{section*.6}% 9 \BOOKMARK [2][-]{section*.10}{Alternative partitioning}{section*.6}% 10 \BOOKMARK [1][-]{section*.11}{Historical overview}{section*.2}% 11 \BOOKMARK [2][-]{section*.12}{Behavior of the M\370ller-Plesset series}{section*.11}% 12 \BOOKMARK [2][-]{section*.13}{Cases of divergence}{section*.11}% 13 \BOOKMARK [2][-]{section*.14}{The singularity structure}{section*.11}% 14 \BOOKMARK [2][-]{section*.15}{The physics of quantum phase transition}{section*.11}% 15 \BOOKMARK [1][-]{section*.16}{The spherium model}{section*.2}% 16 \BOOKMARK [1][-]{section*.17}{Radius of convergence and exceptional points}{section*.2}% 17 \BOOKMARK [2][-]{section*.18}{Evolution of the radius of convergence}{section*.17}% 18 \BOOKMARK [2][-]{section*.19}{Exceptional points in the UHF formalism}{section*.17}% 19 \BOOKMARK [1][-]{section*.20}{Conclusion}{section*.2}% 20 \BOOKMARK [1][-]{section*.21}{Acknowledgments}{section*.2}% 21 \BOOKMARK [1][-]{section*.22}{References}{section*.2}% 22