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Enhanced magnetic resonance signal of spin-polarized Rb atoms near surfaces of coated cells
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We present a detailed experimental and theoretical study of edge enhancement in optically pumped Rb vapor in
coated cylindrical pyrex glass cells. The Zeeman polarization of Rb atoms is produced and probed in the vicinity
(∼10−4 cm) of the cell surface by evanescent pump and probe beams. Spin-polarized Rb atoms diffuse throughout
the cell in the presence of magnetic field gradients. In the present experiment the edge enhanced signal from the
back surface of the cell is suppressed compared to that from the front surface, due to the fact that polarization
is probed by the evanescent wave at the front surface only. The observed magnetic resonance line shape is
reproduced quantitatively by a theoretical model and yields information about the dwell time and relaxation
probability of Rb atoms on Pyrex glass surfaces coated with antirelaxation coatings.
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I. INTRODUCTION

The important role played by diffusion in inhomogeneous
magnetic fields in nuclear magnetic resonances (NMR) was
recognized as early as 1954 by Hahn [1] and has been studied
extensively ever since [2]. Edge enhancement, the increased
magnetic resonance signal due to the restriction of diffusion
near a boundary, has also been investigated in the past decade
[3−13]. So far all the studies of edge enhancement have been
confined to NMR.

The effect of diffusion and magnetic field gradients on the
electron paramagnetic resonances in optically pumped alkali
metal vapor was studied by Skalla et al. and edge enhancement
was not observed [14]. We have recently observed edge
enhancement in optically pumped Rb vapor [15]. We also
developed a detailed theory describing the edge enhancement.
The theory takes into account the surface interactions of
spin polarized Rb atoms. Contributions from nonlocalized
and localized (edge enhanced) modes are required to explain
the data [15]. The excellent signal-to-noise ratio of the
present experiments allows a quantitative comparison between
measured and calculated magnetic resonance line shapes,
from which we deduce the average dwell time and relaxation
probability of Rb atoms on coated Pyrex glass surfaces.
Understanding the surface interaction of alkali metal atoms
with coated glass surfaces is important in many atomic
physics experiments such as magnetometry [16–18], miniature
atomic devices [19], slow light [20], and quantum memory for
light [21].

The present study uses evanescent waves to optically pump
and probe the Zeeman polarization of Rb atoms within a dis-
tance of ∼10−4 cm from the surface of cylindrical Pyrex glass
cells [22]. Evanescent waves have been used in several earlier
studies of surface interactions of spin-polarized atoms [23–25].
In inhomogeneous magnetic fields, the Zeeman resonance line
shape for slab-shaped cells depends sensitively on properties
of the cell surfaces and on several experimental parameters,
such as the length of the cell, the buffer gas pressure and the
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field gradient. Neglecting surface interactions, the line shape in
such cells depends qualitatively on a dimensionless parameter
s = L

2 (σ‖/D)1/3, where L is the cell length, σ‖ the Larmor
frequency gradient due to the gradient of the longitudinal field,
and D the diffusion constant [4,8,26]. When s < 1.31, the
Rb Zeeman resonance is described by nonlocalized diffusion
modes only. For s > 1.31, some diffusion modes become
localized near the front and back surfaces in frequency space.
These modes correspond to the observed edge enhancement.
Some of our experimental results have already been reported
[15,27]. Below we present our experiments and analysis in
greater detail.

II. EXPERIMENT

A. Cell preparation

The two types of Pyrex glass cells used in the experiments
are sketched in Fig. 1. The cells depicted in Fig. 1(a) have fixed
length. Cells with a length greater than several millimeters are
of regular cylindrical shape. Cells with a length around one
millimeter are of slightly irregular shape, their central part
being much thinner than the peripheral part. However, since
the diameter of the central part of the cell is around 25 mm,
much larger than the size of the pump and probe beams, we
treat these cells as of cylindrical shape, the thickness of the cell
being equal to that of the central gap of the cell. The effective
length of the type of cell shown in Fig. 1(b) can be adjusted by
sliding an enclosed glass prism, whose vertical surface serves
as the back surface of the cell. The gap between the front cell
window and the vertical prism surface can be varied from a few
tens of micrometers to a few millimeters by gently tapping the
stage on which the cell is mounted. We measured this gap by
retro-reflection [28] to an accuracy of ±10 µm. An advantage
of using cells with adjustable length is that the cell surface
properties do not change as their length is varied. The design
of these cells also allows us to realize ultrathin but nevertheless
uniformly coated cells of relatively large surface area.

The cells contain isotopically enriched Rb (98.3 at. %
87Rb) and N2 buffer gas at various pressures. All pressures
refer to 25◦C. To achieve high polarization at submicron
distances from the cell surface we coat the interior cell
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FIG. 1. The two types of Pyrex cells used in the experiments.
(a) Cells of fixed length. (b) Cells whose effective length can be
adjusted by sliding the enclosed prism.

surfaces with antirelaxation coatings. We use two chemicals,
dichlorooctamethyltetrasiloxane (Surfasil, Pierce Chemical)
and octadecyltrichlorosilane (OTS). To coat cells with Surfasil,
we first wash the cells with Piranha for 1 h. After rinsing
each cell thoroughly with distilled water and drying with N2,
we place a tiny drop (∼2 µl) of Surfasil into the cell stem,
cover the cell with aluminum foil, and heat it in an oven
at 80◦C for 1 h. Cells are subsequently rinsed with acetone
and methanol before being put onto a manifold and baked
in vacuum at 180◦C overnight. The highest signal-to-noise
ratio (SNR) was obtained using cells with no visible coating
film. We found that in the present experiments vapor-coated
cells give a better SNR than cells coated using Surfasil solution
following the procedure of Ref. [29]. The reason is not entirely
clear to us. The coating thickness is hard to control with vapor
coating, and the coatings tend to be too thick. For coating
with OTS we followed the procedures described in Ref. [30].
The OTS coatings prepared in ambient air were found to have
consistently better antirelaxation quality than those prepared
in a dry N2 or Ar chamber. Presumably this is because OTS
forms multilayers in ambient air, whereas it forms a monolayer
in an anhydrous environment [31].

B. Magnetic fields and gradients

Edge enhancement was studied in the presence of magnetic
field gradients produced by the combination of a set of three
orthogonal pairs of Helmholtz coils and a round Alnico bar
magnet of 0.8 cm in diameter and 20 cm in length. We use a
coordinate system whose origin is at the center of the cell and
whose z axis coincides with the axis of the cylindrical cell. The
front and back surfaces of the cell are located, respectively, at
z = −L/2 and z = L/2. The holding (longitudinal) magnetic
field is along the x axis and thus parallel to the cell front
and back surfaces. The bar magnet in the x-z plane is aligned
parallel to the x axis and centered on the z axis. It produces
a relatively large field gradient ∂Bx/∂z of the holding field
Bx along the z direction. All the data reported in this article
were taken with Bx increasing from the front to the back
surfaces. The field gradient ∂Bx/∂z is quite uniform due to
the small dimensions of the cell compared to the length of
the bar magnet. The magnetic field along the y direction is
negligible throughout the cell. The bar magnet also produces

a transverse magnetic field Bz along the z direction, with a
gradient ∂Bz/∂x along the x direction. Because ∇ × B = 0
for a static magnetic field, we have ∂Bx/∂z = ∂Bz/∂x. For
cell lengths of less than a few millimeters we can approximate
Bx(z) = Bx(0) + z∂Bx(0)/∂z. We further have Bz(0) = 0 so
that Bz(x) = x∂Bz/∂x. To good accuracy the local Larmor
frequency ωL(x) is then given by [27]

ωL(x) = ω0 + σ‖z + x2 σ 2
⊥

2ω0
, (1)

where ω0 is the Larmor frequency at the center of the cell,
σ‖ = γ ∂Bx/∂z is the Larmor frequency gradient associated
with the gradient of the longitudinal field, and σ⊥ = γ ∂Bz/∂x

that associated with the gradient of the transverse field. We
have neglected terms of order x2z in the expansion. Note that
σ‖ = σ⊥ for the present field configuration.

C. Experimental procedures

The experimental setup is sketched in Fig. 2. The cell is
mounted inside a double-chamber oven. Its inner chamber is
made of Peek and the outer one of Teflon. Hot air flows between
the two chambers. A number of holes on the side of the inner
chamber allows hot air to circulate around the cell. Care is
taken so that hot air does not flow in the optical path of the laser
beams, which would increase noise. To avoid condensation
of Rb atoms on the cell surface, room temperature air flows
through a small diameter tube to the tip of the cell (the Rb
reservoir) to keep the temperature at the tip ∼10◦C lower than
that of the cell body.

Zeeman polarization of the Rb vapor is produced and
analyzed by right circularly polarized (σ−) beams A and B
from single-mode diode lasers operated in the free-running
mode. The line width of the lasers is 45 MHz, and the
diameter of the beams at half intensity is 1.0 mm. The

FIG. 2. (Color online) The experimental setup. Laser beams A
and B are circularly polarized (σ±) by a Glan-Thompson linear
polarizer (LP) and a quarter-wave plate (λ/4).
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intensities of beams A and B are, respectively, 0.5 mW/cm2

and 20 mW/cm2. The frequency of beam A is tuned to
the 52S1/2 F = 2 → 52P1/2 F ′ = 1, 2 transitions and that of
beam B to the 52S1/2 F = 1 → 52P1/2 F ′ = 1, 2 transitions.
The two excited 52P1/2 F ′ = 1, 2 levels were not resolved due
to Doppler and collision broadening.

The two beams are incident on the front surface of the cell
at the same spot (0, 0,−L/2) and at angles slightly larger
than the critical angle. They undergo total internal reflection
at the interface between the cell surface and the Rb vapor. The
penetration depth of the probe beam A is 0.7 µm and that of
the pump beam B approximately 2 µm, so that the two beams
are spatially separate outside the cell. Both beams being in
the same plane of incidence, their evanescent waves propagate
in the same direction (x axis), parallel to the cell surface. A
pair of radiofrequency (rf) coils wound around the Teflon oven
generates an oscillating magnetic field 2B1 cos ωt along the y

axis. For phase-sensitive detection, the rf field is amplitude-
modulated by a square wave at �/2π = 200 Hz. The intensity
of the totally reflected probe beam A is monitored by a silicon
photodiode, whose output is fed into a lock-in amplifier. When
the radiofrequency matches the Larmor frequency of 87Rb
atoms, the longitudinal Zeeman polarization along the x axis
is slightly diminished, causing a decrease in the intensity of
the reflected beam A. We scan the radiofrequency across the
Larmor frequencies of 87Rb atoms, and the output of the lock-
in amplifier yields a resonance curve.

III. GENERAL FEATURES OF THE ZEEMAN
RESONANCE LINES

The width and central frequency of the modes that
contribute to the magnetic resonance lines are the real and
imaginary parts of the eigenvalues of the Torrey equation
[26,32](

D
∂2

∂x2
+ D

∂2

∂y2
+ D

∂2

∂z2
− iω(x) + βlmn

)
	lmn(x, y, z)

= 0. (2)

Using Eq. (1), Eq. (2) becomes(
D

∂2

∂x2
− ix2 σ 2

⊥
2ω0

+ D
∂2

∂y2
+ D

∂2

∂z2
− iσ‖z − iω0 + βlmn

)
×	lmn(x, y, z) = 0. (3)

To simplify the analysis, we assume the cell to have the shape
of a square prism, with faces at x = ±R, y = ±R, and z =
±L/2. Equation (3) in this case is separable, with eigenfunc-
tions and eigenvalues 	lmn(x, y, z) = φl(x)ϕm(y)ψn(z) and
βlmn = ζl + εm + αn, where ζl , εm, and αn are, respectively,
the eigenvalues corresponding to φl(x), ϕm(y), and ψn(z). The
z mode will be referred to as the longitudinal mode, the x

and y modes will be referred to as transverse modes. The
diffusion in y direction is free in Eq. (3), with εm = Dκ2

m

and κm = (2m + 1)π/2R, (m = 0, 1, 2, . . .). The eigenvalues
of the Torrey equation for the x direction are ζl = (1 +
i)(2l + 1/2)σ⊥

√
D/ω0 (l = 0, 1, 2, . . .) and describe the line

broadening and frequency shift due to the gradient of the
transverse field [27]. Note that the eigenvalues in the x and y

directions are for Dirichlet boundary conditions. Because the

cell radius is much larger than the cell length, the boundary
conditions for the transverse modes have little effect on the
signal. However, the signal is strongly affected by the surface
interactions on the front and back surfaces. The longitudinal
modes ψn(z) satisfy the equation(

D
d2

dz2
− iσ‖z − iω0 + αn

)
ψn(z) = 0. (4)

The boundary conditions for ψn(z) at z = ±L/2 are [26]

0 = ± ∂

∂z
ψn(z) + µψn(z) + η

∂2

∂z2
ψn(z)

∣∣∣∣
z=±L/2

(5)

with

µ =
√

3

2π

ξs + iφs

λ
and η =

√
1

6π
τsv̄, (6)

where ξs and φs are, respectively, the average relaxation
probability and average phase shift for a polarized Rb atom
while it is on the surface; τs is its average dwell time on the
surface and λ and v̄ are, respectively, the mean free path and
mean thermal velocity of Rb atoms [33]. Note that τs is the
average time a spin polarized atom resides on the surface
without its spin being relaxed. This time differs from the
coherent surface interaction time τc, commonly measured by
studying the relaxation time or magnetic decoupling of spin
polarized atoms [34–37].

The eigenvalue αn in Eq. (4) can be written as

αn = (Dσ 2
‖ )1/3en + iω0, (7)

where en is the dimensionless longitudinal eigenvalue.
Through the boundary conditions Eq. (5) and Eq. (6), en

depends on surface characteristics (ξs , φs , and τs) as well as gas
kinetic parameters (λ and v̄) in a rather complicated fashion.
It in general must be determined numerically [26]. In order
to understand some general features of the Zeeman resonance
curves, we consider the special case µ = η = 0. For such ideal
coatings the spectrum {en} is real except for the appearance
of some complex conjugate pairs of eigenvalues when the
dimensionless parameter s = L(σ‖/D)1/3/2 is sufficiently
large [8,26]. Figure 3 shows the dependence of the two lowest
pairs of eigenvalues e0, e1 and e2, e3 on s. Experimentally we
change s by changing the thickness of the cell. For s < 1.31,
all the eigenvalues are real, corresponding to the fact that there
are no localized modes. As s increases, e0 and e1 coalesce, and
for s > 1.31 they form a pair of complex conjugate eigenvalues
with positive real parts, corresponding to the appearance of the
first two localized modes near the front and back surfaces (edge
enhancement). The eigenvalue spectrum at this point contains
just one complex conjugate pair. As s increases further, e2

and e3 begin to coalesce, and for s > 3.06 they form another
complex conjugate pair, corresponding to the formation of a
second pair of localized modes. Note that for small s, i.e.,
when there are only nonlocalized modes, en (n > 0) is much
larger than e0. In this case only the lowest mode e0 contributes
significantly to the signal. For large s, Re e0 = Re e1 approach
the limiting value of 0.509, half of the first real root of the
derivative of the principal Airy function, while Re e2 = Re e3

approach the limiting values of 1.625, half of the second real
root of the derivative of the principal Airy function.
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FIG. 3. The dependence of the real and imaginary parts of e0, e1,
e2, and e3 on the dimensionless parameter s for ideal surfaces with
µ = η = 0.

The fact that the dimensionless eigenvalues en are all
real for sufficiently small values of s can be understood by
considering the effect of the purely imaginary interaction
V (z) = iσ‖z on free diffusion in the interval z ∈ [−L/2, L/2]
to all orders in perturbation theory. For symmetric boundary
conditions at both ends of the interval (for instance, Dirichlet
or Neumann), the free diffusion equation is invariant under
the parity transformation P : z → −z and its modes are even
or odd under P . It follows that all odd order corrections to
eigenvalues due to the odd parity perturbation V (z) vanish.
Corrections in even orders of perturbation theory on the other
hand are real. Eigenvalues thus are real to all orders in the
dimensionless parameter s in perturbation theory [38]. In
second order the purely imaginary perturbation has precisely
the opposite effect of a real one: it increases the lowest
eigenvalue and decreases that of the first excited mode, that
is the perturbation tends to decrease the gap between the first
two eigenvalues. The perturbative description of the spectrum
becomes inadequate for large s and certainly is no longer
valid when the first two eigenvalues merge. However, this
perturbative argument does show why all eigenvalues remain
real in the presence of a (sufficiently) small non-Hermitian
perturbation of this kind. Note that the invariance of V (z) and
thus of Eq. (4) under P combined with complex conjugation
implies that eigenvalues of this diffusion either are real or come
in complex conjugate pairs.

The eigenvalues e2n and e2n+1 form a complex conjugate
pair for sufficiently large values of s and the corresponding αn

approach

α2n = zn

2
(σ 2

‖ D)1/3 − i

[
Lσ‖

2
−

√
3

2
zn(σ 2

‖ D)1/3

]
+ iω0,

α2n+1 = zn

2
(σ 2

‖ D)1/3 + i

[
Lσ‖

2
−

√
3

2
zn(σ 2

‖ D)1/3

]
+ iω0,

(8)

where −zn (n = 0, 1, 2, . . .) are the real roots of the first
derivative of the Airy function (z0 = 1.018, . . .). The complex
eigenvalues α2n and α2n+1 correspond to a pair of edge-
enhanced modes localized near the front (z = −L/2) and
back (z = L/2) surfaces in frequency space. The magnetic
resonance signal is composed of a superposition of diffusion
modes. The signal due to localized modes has a Lorentzian
and a dispersive component [8,26].

The contributions due to the lowest pair of localized
modes have a half width �ω/2 = �0/2 + (z0/2)(Dσ 2

‖ )1/3 +
(σ⊥/2)

√
D/ω0, where �0/2 is the half-width of the spec-

tral line (assumed Lorentzian) measured in the bulk in a
homogeneous magnetic field. The broadening due to lon-
gitudinal and transverse field gradients are (z0/2)(Dσ 2

‖ )1/3

and (σ⊥/2)
√

D/ω0, respectively. They are localized near
the front (back) surface at frequencies ω0 ∓ σ‖L/2 ±
(
√

3z0/2)(Dσ 2
‖ )1/3 + (σ⊥/2)

√
D/ω0. Relative to the Larmor

frequencies at the front and back surface, they are shifted to-
ward the center frequency by an amount (

√
3z0/2)(Dσ 2

‖ )1/3 ±
(σ⊥/2)

√
D/ω0, where (

√
3z0/2)(Dσ 2

‖ )1/3 and (σ⊥/2)
√

D/ω0

are the frequency shifts due to the longitudinal and transverse
field gradients [28].

The lock-in signal is given by [27,39]

S(ω,�)

∝ 1

R3D2

∞∑
m=0

e−κ2
m(r2

s +r2
p)/4

∞∑
l=0

∞∑
n=0

1

22l(2l)!

×
[

Mlmn(0)Mlmn(�)/a
�0
2 + βlmn + i

(
�
2 − ω

) +M ∗
lmn(0)M ∗

lmn(−�)/a∗
�0
2 + β∗

lmn + i
(

�
2 + ω

)
]

,

(9)

where the parameters rs and rp are, respectively, the 1/e radius
of the pump and probe laser beams, and

Mlmn(�) =
∫ L/2

−L/2
χlm(z; rs,�)ψ̄n(z)dz (10)

Mlmn(�) =
∫ L/2

−L/2
χlm(z; rp,�)ψn(z)dz, (11)

where χlm(z; r,�) and ψ̄n(z) are defined in Ref. [26,27].
Figure 4 shows the calculated x-quadrature component

of the lock-in signal and of various longitudinal modes that
contribute to a typical edge enhanced signal. Each longitudinal
mode includes the contributions of all the transverse modes.
There are two pairs of edge enhanced modes localized
near the back and front surfaces in frequency space. Note
that each individual localized contribution has a dispersive
Lorentzian line shape. Due to the partial cancelation of
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FIG. 4. (Color online) Contributions to a representative edge
enhanced magnetic resonance curve. The x-quadrature component of
the lock-in signal (rather than the experimentally measured |S(ω,�)|)
is calculated numerically using Eq. (9). The parameters of this
calculation are as follows: R = 0.75 cm, L = 0.17 cm, N2 pressure =
5 Torr, cell temperature = 103◦C, σ‖/2π = σ⊥/2π = 400 kHz/cm,
�/2π = 0.05 kHz, ω0/2π = 600 kHz, rs = rp = 0.05 cm, T1 =
8 ms, �0/2π = 0.6 kHz. Contributions to individual longitudinal
modes shown in the figure include those from all transverse modes.
Localized longitudinal modes correspond to complex conjugate
eigenvalues and give a dispersive Lorentzian line shape. There are
two pairs of edge enhanced modes (red and blue). In each pair one
mode is localized near the front surface and one near the back surface
in frequency space. Contributions from nonlocalized modes are much
smaller and have significantly larger width. Only the two largest
nonlocalized contributions are shown here (olive and wine colored
curves).

Lorentzian and dispersive components, the low frequency
wing of modes localized near the front surface decreases
faster than a Lorentzian. Similarly the high-frequency wing
of modes localized near the back surface decreases faster
than a Lorentzian. Higher nonlocalized modes give only small
corrections to the signal because their amplitudes are much
smaller and their line width much larger.

We note that edge enhancement observed in NMR generally
is symmetric, that is, localized peaks have the same height.
The asymmetry in the present experiments is entirely due
to the evanescent wave probing at the front surface. The
peak associated with the back surface is suppressed because
the polarization near the back surface has to diffuse over a
larger distance before being probed. The asymmetric edge
enhancement of the present experiment turns out to be rather
sensitive to surface interactions [15].

Boundary condition (5) without the term proportional to
the second derivative was used in earlier studies of surface
interactions of spin-polarized atoms [18,40–42]. We find that
the second derivative term is important and cannot be ignored
in the following two interesting cases. (i) Edge enhanced
regime. In this case the longitudinal mode ψn(z) ∼ A(en −
2isz/L), where A is the principal Airy function. Comparing
dimensionless quantities, the relative orders of magnitude
of the three terms on the right-hand side of Eq. (5) are
1, (D/σ‖)1/3µ and (σ‖/D)1/3η. Thus, when (σ‖/D)1/3η ∼ 1,

the term proportional to the second derivative cannot be
ignored. In our experiments ξs ∼ 0.015, τs ∼ 1.8 µs, λ =
30 µm, v̄ = 3 × 104 cm/s, and σ‖/2π = 400 kHz/cm for a
typical Surfasil-coated cell. The relative orders of magnitude
of the three terms in this case are 1, ∼0.06, and ∼0.40 and
the third term clearly is not negligible. (ii) Ultrathin cells.
Ignoring the longitudinal field gradient, longitudinal modes in
this case are plane waves with wavenumber k ∼ 1/L and the
relative orders of magnitude of the three terms in Eq. (5) are
1, Lµ, η/L. For sufficiently thin cells (L2 � η/µ), the term
in the boundary condition proportional to the second derivative
again is not negligible. Note that all previous experimental
studies were performed in homogeneous magnetic fields,
with cell dimensions of the order of centimeters [40,43]
and neglecting the second derivative term was justifiable.
This second derivative term in the boundary condition of the
diffusion equation was first derived by considering a Poisson-
distributed dwell time for polarized atoms on the surface [26],
and the parameter η in Eq. (6) is proportional to the average
dwell time. Note that effects of this Poisson process can be
included in the boundary condition for the diffusion because
it does not destroy the Markov property of the latter, i.e., it too
is without memory. We have recently indirectly verified the
presence of this term in the boundary condition of the diffusion
equation by experimentally measuring the dwell time [44]. The
dependence of the Zeeman frequency on the dwell time and the
cell length for ultrathin cells in homogeneous magnetic fields
can only be obtained by including this second-order derivative
term in the boundary condition for the longitudinal diffusion
Eq. (4) (see Sec. IV F).

IV. EXPERIMENTAL RESULTS

A. Broadening due to the longitudinal field gradient

The magnetic resonance line is subject to broadening due
to the gradients of the longitudinal and transverse fields.
Line broadening by inhomogeneous magnetic fields is well
known and has been extensively studied in nuclear magnetic
resonance experiments [1,32,45,46]. In many cases perturba-
tion theory describes the experimental results adequately. A
perturbative treatment is justified if the relaxation rate is much
smaller than the differences in the decay rates of unperturbed
diffusion modes. Since R > L for our cylindrical cells, this
condition would require,

Lσ � D

R2
. (12)

Here σ = γ |∇B| is the Larmor frequency gradient associated
with the gradient of the magnetic field. Electronic gyromag-
netic ratios γ are larger than nuclear ones by two to three
orders of magnitude. Thus, even though Eq. (12) is often
well satisfied in NMR experiments, it is violated by several
orders of magnitude in the present experiments, and both the
longitudinal and transverse broadenings are nonperturbative.
In this section we discuss nonperturbative line broadening
due to the longitudinal field gradient. Nonperturbative line
broadening due to the transverse field gradient is considered
in Sec. IV B.

From Eq. (7) one sees that the nonperturbative line
broadening due to the longitudinal field gradient is given by
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(σ 2
‖ D)1/3Re en, where en depends on the cell length L and

surface properties (i.e., boundary conditions). From Fig. 3
one sees that for ultrathin cells with s = L(σ‖/D)1/3/2 � 1,
only the lowest mode e0 contributes appreciably to the signal
(the line width of the mode e1 is orders of magnitude
larger than that of the e0 mode). The broadening due to the
longitudinal field gradient in this case is negligible because
Re e0 becomes negligibly small. This can also be seen by
noting that for sufficiently thin cells (s � 1), perturbation
theory is applicable, and the line broadening is given by
∼ L4σ 2

‖ /D [46], that is, it decreases as L4.
Equation (10) implies that the dependence of the half

width of the lowest mode on the longitudinal field gradient
and surface effects is given by �ω/2 = (Dσ 2

‖ )1/3Re e0/2 +
const., where the constant represents the line broadening due
to other mechanisms. Note that the dimensionless eigenvalue
e0 is a function of s, µ̃ = µ(D/σ‖)1/3 and η̃ = η(σ‖/D)1/3

only. For sufficiently large s, the mode is localized. In this
case e0 essentially does not depend on the cell thickness L

and is a function of µ̃ and η̃ only. For small µ̃ and η̃, the
boundary conditions are approximately of Neumann type, and
Re e0 is close to z0/2 = 0.509, where −z0 is the first root of the
derivative of the principal Airy function. On the other hand,
for large µ̃ or η̃, the boundary conditions are close to Dirichlet
type, and Re e0 approaches x0/2 = 1.169, where −x0 is the
first root of the principal Airy function. These considerations
qualitatively explain the data in Fig. 5, where the half-width
�ω/2 of the low-frequency wing is plotted against (σ 2

‖ D)1/3

for three OTS-coated cells (a) and three Surfasil-coated cells
(b). The field gradient is varied by changing the distance

FIG. 5. (Color online) The half width at half maximum �ω/2
of the low-frequency side of the magnetic resonance curve versus
(σ 2D)1/3 for three OTS-coated cells (a) and three Surfasil-coated
cells (b). The cells are 10 mm in length and filled with N2 gas at
different pressures. The Rb density is 4.3 × 1012 cm−3.

between the bar magnet and the cell and is determined by
measuring the peak frequency of the magnetic resonance line
as a function of the distance. For OTS coatings, the slopes
do not depend on the N2 buffer gas pressure within the
experimental uncertainty and are close to z0/2 = 0.509. This
is because both µ̃ and η̃ are rather small for these coatings. The
measured half-width has a systematic error of about 10% for
the following reasons. (i) Even though the low-frequency wing
is dominated by the lowest longitudinal mode localized near
the front surface, higher modes do contribute to the signal.
(ii) The lowest longitudinal mode has a Lorentzian as well
as a dispersive component. For Surfasil coatings, µ̃ and η̃

are no longer negligible and mixed boundary conditions must
be used. The slope in this case increases with increasing N2

density because the coefficient µ in Eq. (5) depends inversely
on the mean free path [see Eq. (6)].

B. Line broadening due to the transverse field gradient

Line broadening due to the transverse magnetic field
gradient in the present experiment is also nonperturbative.
Indeed, with R ∼ 1 cm, σ/2π = 400 kHz/cm, and D =
30 cm2/s, condition (12) is violated by several orders of
magnitude. In contrast to the perturbative case, we observed
a qualitatively different dependence of line broadening on the
holding field: the line broadening due to the transverse field
gradient in this regime is inversely proportional to the square
root of the Larmor frequency ω0 at the center of the cell.
We have reported our experimental findings and presented a
simple nonperturbative theory that describes the experimental
data quite well [27]. To mitigate the transverse broadening
we used a relatively large holding field of about 600 kHz.
The transverse broadening also depends on the probe beam
size. For large probe beam diameter higher transverse modes

FIG. 6. (Color online) magnetic resonance curves for an OTS-
coated cell (No. 128). The length of the cell is adjustable. The Larmor
frequency gradient σ‖/2π is 400 kHz/cm. The cell is filled with
5 Torr N2 gas and the Rb density is 4.3 × 1012 cm−3. Symbols denote
experimental data points, and solid lines are calculated with Eq. (9).
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contribute significantly and the transverse broadening is no
longer proportional to 1/

√
ω0.

C. Dependence of the line shape on the cell length

Figure 6 shows representative magnetic resonance curves
for an OTS-coated cell with adjustable length. The response
curves calculated using Eq. (9) are also shown. The condition
s > 1.31 for the occurrence of localized peaks when µ = η =
0 holds to good approximation for OTS-coated cells for which
µ̃ and η̃ are very small. There clearly is no edge enhancement
for L = 0.15 mm, which corresponds to s = 0.3. The nonlo-
calized modes are shifted away from the Larmor frequency
ω0 at the cell center by (σ⊥/2)

√
D/ω0 due to the transverse

field gradient [27]. For L = 0.50 mm, corresponding to s =
1.1, the line width is substantially broadened because of
the sharp increase of Re e0 as s approaches s = 1.31. The
first two localized modes can be resolved for L = 0.70 mm,
corresponding to s = 1.5. As L increases further, the localized
modes separate more (L = 1.0 mm). For even thicker cells, the
long diffusion path from the back surface becomes more and
more effective in suppressing the edge enhanced peak localized
near the back surface (L = 1.80 mm).

The experimental arrangement is such that the position of
the front surface remains fixed as the cell length is varied.
Note that the observed separation between the nonlocalized
peaks corresponding to L = 0.15 mm and L = 0.50 mm cells
is 6.8 kHz. This compares well with their expected separation
of (�L/2)σ‖ = ((0.5 − 0.15)/2) mm × 40 kHz/mm = 7 kHz
due to the fact that nonlocalized peaks are always located in the
middle of the cell (except for the common shift (σ⊥/2)

√
D/ω0

due to the transverse field gradient that does not depend on cell
length). The data in Fig. 6 also allow us to verify the frequency
shift due to the longitudinal field gradient discussed in Sec. III.
The frequency separation between the lowest mode localized
near the front surface and any nonlocalized mode is given
by (

√
3z0/2)(Dσ 2

‖ )1/3 − Lσ‖/2. It does not depend on the
holding field since the frequency shift due to transverse field
gradients is the same for all modes to leading approximation.
Consider the cells with lengths L = 0.15 mm and L = 1.0 mm
in Fig. 6. For L = 0.15 mm all modes are nonlocalized and
the peak position is at 588 kHz. For L = 1.0 mm the lowest
mode is localized, and the front peak occurs at 593.5 kHz. For
D = 30 cm2 s−1, σ‖/2π = 400 kHz/cm, and L = 0.15 mm,
the observed frequency separation between these two peaks
of 5.5 kHz is in excellent agreement with the theoretical es-
timate of (

√
3z0/2)(Dσ 2

‖ )1/3 − Lσ‖/2 = 8.06 kHz − 3 kHz =
5.06 kHz.

D. Dependence of the line shape on buffer gas pressures

For a given field gradient, the broadening of localized
modes due to the longitudinal field gradient is proportional to
the cubic root of the diffusion constant D, and D is inversely
proportional to the buffer gas pressure. Shown in Fig. 7 are
magnetic resonance curves for three cells of approximately
the same length (10 mm). The cells contain different N2

pressures, but have the same type of coating (OTS). The cubic
root dependence of the line width on the diffusion constant is

FIG. 7. The dependence of the magnetic resonance curve on the
buffer gas (N2) pressure. The OTS-coated cells are 10 mm in length
and filled with N2 gas at different pressures. The Rb density is 4.3 ×
1012 cm−3.

shown in Fig. 5. One sees that as the pressure of the buffer gas
N2 increases, the line width decreases.

E. Dependence on the rf modulation frequency

Figure 8 depicts the dependence of the magnetic resonance
line shape on the rf modulation frequency �. As � increases,
the left half width �L

1/2 increases slightly due to the larger
splitting of the side peaks [39]. The right half width �R

1/2
decreases significantly, which can be understood qualitatively
as follows. The Rb atoms that contribute to the signal
coherently with the rf modulation must be located at a distance
lcoherent from the front cell surface such that

lcoherent <
√

2πD/�. (13)

Thus an increase in the modulation frequency � corresponds
to a smaller lcoherent, leading to a narrower line width since
the dominant contribution to the line width is due to the
longitudinal field gradient.

F. Determination of surface interaction parameters

As mentioned in Sec. III, the asymmetric edge enhancement
observed in the present experiments is due to the evanescent
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FIG. 8. (Color online) Dependence of the line shape on the rf
modulation frequency. The data points were obtained using an OTS-
coated cell with a (fixed) length of 0.72 mm containing 87Rb and N2

buffer gas at 15 Torr. The cell temperature is 120oC. Solid curves were
calculated with the same set of parameters, changing the modulation
frequency � only. The left and right half-widths of the left-hand peak
given in the insert were found heuristically by graphical analysis of
the data and are approximate.

wave probing and is rather sensitive to wall interactions
of spin-polarized Rb atoms. Thus the line shape of the
fully resolved edge enhanced peaks provides an interesting
method to measure the surface interactions parameters of spin-
polarized Rb atoms [15]. To determine the surface interaction
parameters τs , ξs , and φs , we use a cell of variable length, and
fit a series of magnetic resonance lines taken for a number
of different cell lengths using the theory in Refs. [26,44]. A
representative series of magnetic resonance lines is shown in
Fig. 6. Since the surface properties for the entire series of
resonance lines are the same, we use the same set of surface
parameters to fit all the curves, adjusting only the length of the
cell. This fitting procedure accurately determines the surface
parameters τs and ξs [15].

In fitting the magnetic resonance curves it is important to
take into account the broadening and shift due to the transverse
field gradients in order to estimate correctly the values of ξs

and φs , which also broaden and shift the magnetic resonance
lines. The values of ξs and φs were overestimated in Ref.
[26] because effects due to the transverse field gradient were
ignored. Without taking into account the broadening due to the
transverse field gradient, it is impossible to fit all the curves
in a series taken for a number of different cell lengths with
a single set of surface parameters although any individual
resonance curve in the series may be fitted by adjusting the
surface parameters.

We find that the phase shift φs caused by the surface
interactions is too small to be determined reliably using
this method. This is confirmed in the following experiment
carried out in an OTS-coated cell whose length is adjustable
between 70 and 500 µm. We study the dependence of the
magnetic resonance frequency on the cell length for σ− and
σ+ evanescent pump beams [44].

The observed Larmor frequency can be interpreted as the
time-weighted average of the Larmor frequencies of a Rb atom
given by

ω
(±)
L = ω0 + φs + φ(±)

e

τs + τb

. (14)

Here ω0 is the Larmor frequency of a Rb atom in the bulk,
φs and φ(±)

e are, respectively, the average phase shift of a Rb
atom during its dwell time τs on the surface and during its
interaction with the evanescent σ± pump beam, and τb is the
average time it spends in the bulk between two consecutive
wall collisions. Equation (14) is valid when the spin relaxation
time T1 and the modulation period 2π/� of the rf radiation
are much longer than τs and τb. In the present experiment, T1

and 2π/� are of the order of 10−3 s, whereas τs and τb are of
the order of 10−6 s. Time-weighted averages were previously
used to estimate the frequency shift of hyperfine transitions
of Rb and Cs atoms due to wall collisions [47–49]. Defining
δ = ω

(−)
L − ω

(+)
L and � = ω

(−)
L + ω

(+)
L , we have from Eq. (14)

δ = φ(−)
e − φ(+)

e

τs + τb

= φ(−)
e − φ(+)

e√
3π/2L/v̄ + τs

(15)

� = 2ω0 + 2φs

τs + τb

= 2ω0 + φs√
3π/2L/(2v̄) + τs/2

.

(16)

Here we have used τb = √
3π/2L/v̄ [50]. We have also

used that φ(−)
e = −φ(+)

e because the light shifts by σ−and
σ+ circularly polarized light for 87Rb are equal and opposite
in sign. Equation (15) implies a linear relationship between
the cell length L and 1/δ, which was used to determine
the dwell time of spin polarized Rb atoms on coated glass
surfaces by regression [44]. For an OTS-coated cell at
temperature 103◦C, we plot

√
3π/2 L/v̄ against 1/δ, and the

intercept yields a dwell time τs = 0.56 ± 0.03 µs [Fig. 9(a)].
Substituting this value of τs into Eq. (16) and plotting � versus
1/[

√
3π/2L/(2v̄) + τs/2], the data can be fitted by a straight

line [Fig. 9(b)], whose slope gives φs . From the data we find
φs = −0.058 ± 0.15 mrad. The surface-induced phase shift φs

thus is too small to be determined reliably by this experiment.
It is interesting that Eq. (14) can also be derived from the

Torrey equation subject to the boundary condition (5) [26].
This derivation requires the second derivative term in the
boundary condition (5). In a homogeneous magnetic field the
Torrey equation Eq. (4) becomes(

D
d2

dz2
− iω0 + αn

)
ψn(z) = 0. (17)

The solutions to Eq. (17) are proportional to sin knz and
cos knz, corresponding to eigenvalues αn = iω0 + Dk2

n, where
the wave numbers kn = 2xn/L, determined by the boundary
conditions (5), are solutions of

tan
(
xn − n

π

2

)
= Lµ

2xn

− 2η

L
xn, n = 0, 1, 2, . . . . (18)

To better understand the spectrum implied by Eq. (18),
consider first the case where µ and η are real. As can be seen
in Fig. 10, x0 <∼ xA = L

√
µ/(2L + 4η), where xA is the x co-

ordinate of the intersection between the tangent to tan x at the
origin, and the curve y = µL/(2x) − 2ηx/L. For thin cells,
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FIG. 9. (Color online) Determination of parameters character-
izing the surface interaction of Rb atoms in an OTS-coated cell
of variable length. Data were taken inside a two-layer magnetic
shield. The holding field in units of frequency is 10 kHz. (a) A plot
of

√
3π/2 L/v̄ against 1/δ. The negative of the intercept with the

vertical axis gives the dwell time τs . (b) A plot of � as a function of
1/(

√
3π/2 L/(2v̄) + τs/2). Note that the intercept (125.7 ± 0.1) ×

103 rad/s is equal to 2ω0 in Eq. (16), whence ω0/2π = 10 kHz, in
excellent agreement with the holding magnetic field.

xA is quite small and an excellent approximation to x0. For
example, for L = 0.05 cm, µ ∼ 0.25 cm−1, and η ∼ 0.01 cm
we have that xA = 0.08. Note that the eigenvalue of the next
solution x1 > Lπ/(2L + 4η) = πx2

A/(µL) (estimated by con-
sidering the intersection of y = − 2η

L
x with y = x − π/2). For

physically reasonable surface parameters, x1 in all our exper-
iments is much larger than x0 (x1 > 20x0 for the previous set
of parameters). Contributions to the signal from higher modes
of Eq. (17) thus are small and too broad to be relevant. For a
sufficiently small imaginary part of µ we need consider only
the lowest wave number k0 = 2x0/L solution to Eq. (18). For
|xA| � 1 the lowest eigenvalue is very well approximated by

α0 = iω0 + Dk2
0 � iω0 + 4Dx2

A/L2

= iω0 + ξs + iφs√
3π/2L/v̄ + τs

. (19)

Here Eq. (6) and D = λv̄/3 have been used to express the
lowest eigenvalue in terms of the physical surface parameters
and average thermal velocity. Note that in thin cells α0 does
not depend on the mean free path and therefore does not
depend on the buffer gas pressure. The imaginary part of α0

is the ensemble averaged Larmor frequency of the Rb atoms.
The imaginary part of Eq. (19), which represents the shifted
frequency, is identical to Eq. (14) if we include the light shift

FIG. 10. (Color online) Graph illustrating the first two solutions
x0 and x1 to Eq. (18). The solid black curves are y = tan(x) and
y = tan(x − π/2) = − cot(x). The tangents (red) to these curves
at x = 0 and x = π/2 are also shown. We use unrealistic values
µL = 1.3 and η/L = 0.16 to clearly resolve the bounds x0 < xA

and x1 > xB for the intercepts with the (blue) curve y = µL/(2x) −
2ηx/L. Thus the depicted (blue) curve is y = 0.65/x − 0.32x. In
the present experiments µL is of order 10−2 and the intercept occurs
too close to the origin to be seen on this plot. Note that xA, the
point where the curve y = x intersects with y = µL/(2x) − 2ηx/L

(blue) gives an upper bound for x0. A lower bound xB for x1 is
given by the intersection of the tangent y = x − π/2 with the line
y = −2ηx/L (green) through the origin that is asymptotic to the
curve y = µL/(2x) − 2ηx/L (blue).

φe due to the evanescent pump beam in the surface phase shift
φs , i.e., replace φs in Eq. (19) by φs + φe.

Note that in deriving ω
(±)
L in Eq. (14) one has to average

over the average Larmor frequencies of the individual atoms in
the ensemble. The average Larmor frequency of an individual
atom is also given by Eq. (14) with τs and τb denoting the
average dwell and bulk times of that atom. In obtaining Eq. (14)
the width of the distribution of the individual averages for
the atoms in the ensemble is neglected and τs and τb are
replaced by ensemble averaged quantities. As we have now
seen, this approximation is justified if higher modes of the
Torrey equation can be ignored. The contribution from the
lowest mode of Eq. (17) already reproduces Eq. (14). However,
contrary to Eq. (14), Eq. (17) with boundary conditions (5)
continues to describe the observed Larmor frequency even
when higher modes become significant and Eq. (19) is no
longer sufficient in describing the response. In this case the
width of the ensemble distribution cannot be ignored and
Eq. (14) does not give the correct frequency shift.

V. CONCLUSION

We observed edge enhancement in the magnetic resonance
response of optically pumped Rb vapor and studied the line
shape both experimentally and theoretically. The experiments
were performed with coated cells in the presence of magnetic
field gradients. The excellent signal-to-noise ratio allowed a
detailed study of the line shape, including its dependence on
cell length, field gradient, buffer gas pressure, rf modulation
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frequency and surface interactions. Edge enhancement in
optically pumped Rb vapor is more sensitive to surface
depolarization effects than edge enhancement in NMR because
the surface interaction of spin polarized electrons is much
stronger than that of spin-polarized nuclei. A unique feature
of our experiments is that Rb atoms are optically pumped
and probed in the vicinity (∼10−4 cm) of the cell surface by
evanescent waves. The evanescent wave probing at the front
surface of the cell leads to an asymmetric edge enhancement,
the localized peak near the back surface being suppressed due
to the longer diffusion path back to the front surface, where
the polarization of the Rb atoms is probed. A systematic study
of the dependence of the line shape on the cell length for cells
whose length could be varied from several tens to several
hundred microns allowed us to extract the depolarization
probability, average surface phase shift and average dwell time
for Rb atoms interacting with the coated surface. For a cell
surface temperature of 103◦C we found surface depolarization
probabilities of ξs ∼ 0.015(4) and average surface dwell
times of τs ∼ 1.8(2)µs for Surfasil-coated cells, whereas
the corresponding values for OTS-coated cells were ξs ∼
0.0016(5) and τs ∼ 0.53(3)µs. Although average dwell times
and surface depolarization probabilities can be determined
reliably in this manner, we obtain only an upper bound for
the average intrinsic phase shift due to surface interactions of
|φs | < 0.2 mrad for both OTS and Surfasil coatings.

We developed a detailed theoretical understanding of edge
enhancement in optically pumped Rb vapor. The theory quanti-
tatively reproduces the resonance lines for all the experimental
conditions we investigated. In contrast to previous theoretical
studies of edge enhancement, the theory we developed includes
surface interactions. Assuming a Poisson process for the dwell
times, their effect on the magnetization is described by a term in
the boundary conditions for the Torrey equation governing the
(transverse) magnetization. The term depends on the second
derivative of the magnetization. We confirmed the presence of
this term by studying the dependence of the Zeeman frequency
shift in thin cells whose length was adjustable. We also show
that this term does not depend on the mean free path. For
our experimental conditions, surface effects in very thin cells
are mainly due to the lowest mode of the Torrey equation.
In this approximation, the frequency shift by surface interac-
tions is given by the time weighted average used in earlier
studies.
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