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Observation of parity–time symmetry in optics
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One of the fundamental axioms of quantum mechanics is
associated with the Hermiticity of physical observables1. In
the case of the Hamiltonian operator, this requirement not
only implies real eigenenergies but also guarantees probability
conservation. Interestingly, a wide class of non-Hermitian
Hamiltonians can still show entirely real spectra. Among these
are Hamiltonians respecting parity–time (PT) symmetry2–7.
Even though the Hermiticity of quantum observables was never
in doubt, such concepts have motivated discussions on several
fronts in physics, including quantum field theories8, non-
Hermitian Anderson models9 and open quantum systems10,11,
to mention a few. Although the impact of PT symmetry in
these fields is still debated, it has been recently realized that
optics can provide a fertile ground where PT-related notions
can be implemented and experimentally investigated12–15. In
this letter we report the first observation of the behaviour
of a PT optical coupled system that judiciously involves a
complex index potential. We observe both spontaneous PT
symmetry breaking and power oscillations violating left–right
symmetry. Our results may pave the way towards a new
class of PT-synthetic materials with intriguing and unexpected
properties that rely on non-reciprocal light propagation and
tailored transverse energy flow.

Before we introduce the concept of spacetime reflection in
optics, we first briefly outline some of the basic aspects of this
symmetry within the context of quantum mechanics. In general, a
Hamiltonian Ĥ = p̂2/2m+V (x̂) (where x̂ and p̂ are position and
momentumoperators respectively,m ismass andV is the potential)
is considered to be PT symmetric, PTĤ = ĤPT , provided that it
shares common eigenfunctions with the PT operator1,16–21. This
condition corresponds to an exact or unbroken PT symmetry,
as opposed to that of broken PT symmetry, where, even though
PT Ĥ = ĤPT is still valid, Ĥ and PT (or any other antilinear
operator) possess different eigenvectors22. For the case considered
here, given that the action of the parity P and time T operators
is defined as p̂→ −p̂, x̂ → −x̂ and p̂→ −p̂, x̂ → x̂, i→ −i,
respectively, it then follows that a necessary (but not sufficient)
condition for aHamiltonian to be PT symmetric isV (x̂)=V ∗(−x̂).
In other words, PT symmetry requires that the real part of
the potential V is an even function of position x , whereas the
imaginary part is odd; that is, the Hamiltonian must have the
form Ĥ = p̂2/2m+VR(x̂)+ iεVI(x̂), where VR,I are the symmetric
and antisymmetric components of V , respectively12–14. Clearly, if
ε = 0, this Hamiltonian is Hermitian. It turns out that, even if
the antisymmetric imaginary component is finite, this class of
potentials can still allow for both bound and radiation states, all
with entirely real spectra. This is possible as long as ε is below
some threshold, ε < εth. If, on the other hand, this limit is crossed
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(ε > εth), the spectrum ceases to be real and starts to involve
imaginary eigenvalues. This signifies the onset of a spontaneous PT
symmetry-breaking, that is, a ‘phase transition’ from the exact to
broken-PT phase7,20.

In optics, several physical processes are known to obey equations
that are formally equivalent to that of Schrödinger in quantum
mechanics. Spatial diffraction and temporal dispersion are perhaps
the most prominent examples. In this work we focus our attention
on the spatial domain, for example optical beam propagation
in PT -symmetric complex potentials. In fact, such PT ‘optical
potentials’ can be realized through a judicious inclusion of
index guiding and gain/loss regions7,12–14. Given that the complex
refractive-index distribution n(x)= nR(x)+ inI(x) plays the role of
an optical potential, we can then design a PT -symmetric system by
satisfying the conditions nR(x)=nR(−x) and nI(x)=−nI(−x).

In other words, the refractive-index profile must be an even
function of position x whereas the gain/loss distribution should be
odd. Under these conditions, the electric-field envelope E of the
optical beam is governed by the paraxial equation of diffraction13:
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where k0 = 2π/λ, k = k0n0, λ is the wavelength of light in vacuum
and n0 represents the substrate index.

Ultimately, it will be of interest to synthesize artificial periodic
optical systems showing unusual features stemming from PT
symmetry13,14. Yet, it is first imperative to understand PT behaviour
at a single-cell level. In integrated optics, such a single PT element
can be realized in the form of a coupled system7,12, with only one of
the two parallel channels being optically pumped to provide gain
γG for the guided light, whereas the neighbour arm experiences
loss γL (Fig. 1a). Under these conditions and by using the coupled-
mode approach, the optical-field dynamics in the two coupled
waveguides are described by
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where E1,2 represent field amplitudes in channels 1 and 2,
κ=π/(2Lc) is the coupling constant with coupling length Lc and the
effective gain coefficient is γGeff= γG−γL. From previous consider-
ations, PT symmetry demands that γGeff = γL = γ . The behaviour
of this non-Hermitian system can be explained by considering the
structure of its eigenvectors, above and below the phase-transition
point γ /(2κ)= 1. Below this threshold the supermodes are given
by |1,2〉 = (1,±exp(±iθ)), with corresponding eigenvalues being
±cosθ , where sinθ = γ /2κ . At phase transition (the ‘exceptional
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Figure 1 | Conventional and PT-symmetric coupled optical systems. a, Real (nR, red line) and imaginary (nI, green line) parts of the complex
refractive-index distribution. b, Supermodes of a conventional system, and of a PT-symmetric arrangement below and above threshold. c, Optical wave
propagation when the system is excited at either channel 1 or channel 2. For the conventional case, wave propagation is known to be reciprocal, whereas in
a PT-symmetric system light propagates in a non-reciprocal manner both below and above threshold.

Signal beam

CCD camera

Amplitude mask

Pump beam

Waveguides

Objective lens

Intensity/phase
distribution

Lithium niobate

Beam splitter

Reference beam

Figure 2 | Experimental set-up. An Ar+ laser beam (wavelength 514.5 nm) is coupled into the arms of the structure fabricated on a photorefractive
LiNbO3 substrate. An amplitude mask blocks the pump beam from entering channel 2, thus enabling two-wave mixing gain only in channel 1. A CCD
camera is used to monitor both the intensity and phases at the output.

point’), the modes coalesce to |1,2〉 = (1,i), where the amplitudes
in the two channels have the samemagnitude23,24. Above threshold,
that is, for γ > 2κ , |1,2〉 = (1,iexp(∓θ)), where in this range
coshθ = γ /2κ and the two eigenvalues are∓isinhθ . We emphasize
that, unlike Hermitian systems, these eigenmodes are no longer
orthogonal. Instead, the basis is now skewed. This in turn has
important implications for optical-beam dynamics including a
non-reciprocal response and power oscillations. For a conventional
Hermitian system (γ =0), any superposition of the two (symmetric
and antisymmetric, see Fig. 1b) eigenmodes leads to reciprocal
wave propagation: obviously, the light distribution in Fig. 1c (top)
obeys left–right symmetry. This situation changes when the coupled
system involves a gain/loss dipole. If the gain increases but is still
below threshold, the relative phase differences ϑ between the two
field components increase from their initial values at 0 and π,
respectively, and finally, at threshold, the two modes coalesce at
ϑ =π/2 (see Fig. 1b). More interestingly, light propagation is now
obviously non-reciprocal: by exchanging the input channel from
1 to 2 in Fig. 1c (middle) we obtain an entirely different output
state. This behaviour is altered drastically above threshold (Fig. 1c,

bottom). In this regime light always leaves the sample from channel
1, irrespective of the input—again in a non-reciprocal fashion.
This can be explained by noting that, above threshold, the system’s
eigenvalues are complex, with the corresponding amplitudes either
exponentially increasing or decaying. Thus only one supermode
effectively survives. Here it is worth noting that any coupled
system with an asymmetric gain–loss profile can be mathematically
transformed into a PT -symmetric one. In particular, this is true
for an asymmetric loss/loss-type potential (coupled states with
low/high losses), showing a ‘passive’ PT system25. Very recently, for
such a system, loss-induced optical transparency was experimen-
tally demonstrated.

Here we observe non-reciprocal wave propagation in an ‘active’
PT -symmetric coupled waveguide system based on Fe-doped
LiNbO3. As such, this structure shows richer dynamics and
enables us to explore a wider range of behaviour not previously
accessible because of fixed losses. We use Ti in-diffusion to
form the symmetric index profile nR(x). Optical gain γG (the
typical magnitude is a few cm−1 in Fe-doped LiNbO3) is provided
through two-wave mixing using the material’s photorefractive
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Figure 3 | Computed and experimentally measured response of a
PT-symmetric coupled system. a, Numerical solution of the coupled
equations (1) describing the PT-symmetric system. The left (right) panel
shows the situation when light is coupled into channel 1 (2). Red dashed
lines mark the symmetry-breaking threshold. Above threshold, light is
predominantly guided in channel 1 experiencing gain, and the intensity of
channels 1 and 2 depends solely on the magnitude of the gain.
b, Experimentally measured (normalized) intensities at the output facet
during the gain build-up as a function of time.

nonlinearity26,27. A mask on top of the sample is used to partially
block the pump light, to provide amplification in only one channel
(see the experimental set-up in Fig. 2). Both the output intensity
and the phase relation between the two channels (using interference
with a plane reference wave) are monitored by a CCD (charge-
coupled device) camera. In our system, losses arise from the optical
excitation of electrons from Fe2+ centres to the conduction band.
On the other hand, the optical two-wave mixing gain (which is
proportional to the concentration of Fe3+ centres) has a finite
response time26. Assuming an exponential temporal build-up,
γG(t ) = γmax[1− exp(−t/τ )] with Maxwell time constant τ , the
evolution of the intensity distribution at the output facet can be
monitored as a function of time t . In other words, the state of the
system below, at and above threshold can be directly observed at
different instants t (refs 7, 13).

Although equations (1) can be solved analytically, we here
obtain the output intensities I1 ∼ |E1|

2, I2 ∼ |E2|
2 as a function

of gain γG(t ) by numerical integration. Figure 3a shows results
of two such simulations when γL = 2κ , γmax = 2.5γL, where
channel 1 (Fig. 3a, left-hand side) or channel 2 (Fig. 3a, right-
hand side) has been excited. At t = 0 the system starts from
γG = 0 and shows a reciprocal response. However, as the gain
builds up at t > 0 and the PT structure is tuned below threshold
(which is reached for t/τ ≈ 1.6), wave propagation becomes
strongly non-reciprocal (with different numbers of zero-crossings,
depending on the ratio L/Lc; see Fig. 3a). At the threshold the
two supermodes become degenerate; however, the intensities
of the two fields are slightly different. The reason lies in the
limited length L of our sample: at threshold, the pure coalesced
eigenstate |1,2〉 = (1,i) of our system (excited by an input state
(1, 0) or (0, 1), respectively) is approached adiabatically only
for infinitely long propagation, L/Lc → ∞. Above threshold
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Figure 4 | PT supermode phase measurements. a–d, Intensity distribution
(upper panels) and phase relation (lower panels) of conventional (a,b) and
PT-symmetric (c,d) systems. a,b, Measured relative phases of an even (a)
and odd (b) eigenstate associated with a conventional system. c,d, Phase
relation corresponding to a PT-symmetric system below (c) and above (d)
threshold. Although below threshold (c) the phase difference lies in the
interval [0,π], depending on the magnitude of gain, above threshold this
value is fixed at π/2, as shown in d.

the output of the PT system is no longer sensitive to the
input conditions. In this regime, one supermode is exponentially
amplified whereas the other decays.

The experimental response of this LiNbO3 PT -symmetric optical
system (with κ = 1.9 cm−1 and L= 2 cm) is shown in Fig. 3b. In
all our experiments we used low input power levels (signal power
∼ 25 nW and pump intensity Ip = 0.5mWcm−2 when exciting
channel 2, and twice these values when exciting channel 1) to avoid
any index perturbations (including the situation above threshold,
where intensity increases rapidly), which may in turn spoil the
symmetry in nR(x) (refs 28, 29). Figure 3b (left-hand side and
right-hand side) depicts the temporal behaviour of the output
intensity distribution when channel 1 and 2 is excited, respectively.
We note that the build-up time constants τ in these two situations
are different owing to different intensities used during excitation.
As a result, the threshold is reached faster (tth,1≈10min) in the first
case as compared with the latter (tth,2≈ 70min). By taking this into
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account, we find an excellent agreement between our experiments
and numerical simulations.

Another manifestation of PT symmetry is the relative phase dif-
ferenceϑ between the two elements of the same eigenmode—which
can be measured at the output facet of the sample. These results are
depicted in Fig. 4. For γG= 0, the phases corresponding to the even
and odd supermodes areϑ=0 andϑ=π, respectively, as in conven-
tional arrangements (Fig. 4a,b). When the gain is further increased
and the system is below threshold, the two eigenstates are not
orthogonal and their phases can be anywhere (depending on γ /2κ)
in the interval [0,π]. An example is given in Fig. 4c, where a phase
difference of ϑ ≈ 2π/3 was estimated from our measurements.
Finally, Fig. 4d illustrates the situation slightly above the exceptional
point. In this case the phase is fixed atϑ=π/2, irrespective of γ /2κ ,
again in good agreement with theoretical predictions.

Our results can be easily extended to transversely periodic
media, enabling new intriguing effects such as PT solitons, double-
refraction or synthetic systems with tailored transverse flow of
optical energy, and thus pave the way for developing new non-
reciprocal optical components, where light is propagating forward
and backward in a different fashion. This letter has made the
simplest demonstration of PT effects: just a coupled two-channel
system. However, the vision is to incorporate nonlinearities and
construct sophisticated PT systems, such as PT optical lattices,
PT -based solitons and so on. Last but not least, the phase-transition
or exceptional point has been intriguing researchers for a long
time, because the eigenmodes associated with that point are self-
orthogonal, and as such their amplitudes should diverge7. In
addition, in optical PT lattices, anomalous transport or discrete
diffraction can occur in the neighbourhoods of such points, as
indicated in ref. 13. Is this self-orthogonality a physical property
with truly unique and experimentally observable quantities? This
and related questions are nowwithin experimental reach.
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