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In 1998, Bender and Boettcher found that a wide class of Hamiltonians, even though non-Hermitian,

can still exhibit entirely real spectra provided that they obey parity-time requirements or PT symmetry.

Here we demonstrate experimentally passive PT -symmetry breaking within the realm of optics. This

phase transition leads to a loss induced optical transparency in specially designed pseudo-Hermitian

guiding potentials.
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In the Dirac–von Neumann formulation of quantum
mechanics, all physical observables must be represented
by self-adjoint or Hermitian operators on a Hilbert space
[1]. The Hamiltonian of a system is of course no exception.
This last condition not only leads to real energy eigenval-
ues but also guarantees that the wave function norm re-
mains invariant with time. Interestingly, a decade ago,
Bender and colleagues have theoretically shown that a
wide class of non-Hermitian Hamiltonians, the so-called
PT -symmetric Hamiltonians, can also have an entirely

real spectrum [2]. The parity operator P̂, responsible for
spatial reflections, is defined through the operations p̂ !
�p̂, x̂ ! �x̂, while the time reversal operator T̂ leads to
p̂ ! �p̂, x̂ ! x̂ and to complex conjugation i ! �i. In
general, we state that the PT symmetry of a system is
unbroken provided that the eigenfunctions of a complex
Hamiltonian are also eigenfunctions of the PT operator.
In this case, it can be directly shown that a necessary
condition (but not sufficient) for a Hamiltonian to be
PT -symmetric is that the potential associated with it
obeys VðxÞ ¼ V�ð�xÞ. More specifically, PT reflection
requires that the potential energy operator is even in its
real part while odd in its imaginary. One of the most
interesting effects associated with this class of
Hamiltonians is the onset of a phase transition behavior
arising from a spontaneous breakdown of PT symmetry,
beyond which the spectrum becomes complex [2–4].
Pseudo-Hermitian PT symmetry has led to new develop-
ments in diverse areas of theoretical physics, including
quantum field theories [3], Lie algebras [5], and complex
crystals [6,7]. Even though wave propagation in complex
potentials has been studied before [8–11], the emergence

of a PT -phase transition has never been considered. In
this Letter, we provide the first demonstration of a passive
PT -symmetry breaking in optical complex potentials.
Quite recently, the prospect of realizing complex

PT -symmetric potentials within the framework of optics
has been suggested [12–14]. What makes this possible is
the formal equivalence between the quantum mechanical
Schrödinger equation and the optical wave equation. To
appreciate this fact, let us consider a 1D planar inhomoge-
neous configuration with a complex refractive index dis-
tribution n0 þ nRðxÞ þ inIðxÞ, where n0 represents a
constant background index, nRðxÞ is the real index profile
of the structure, and nIðxÞ stands for the gain or loss
component. Note that for the systems discussed here n0 �
nR;I. In this case, the electric field E ¼ �ðx; zÞ exp½ið!t�
kzÞ� of a light wave propagating in this planar weakly
guiding arrangement satisfies a Schrödinger-like equation:

i
@�

@z
¼ Ĥ�; (1a)

where the optical Hamiltonian is given by

Ĥ ¼ 1

2k

@2

@x2
þ VðxÞ; (1b)

where k ¼ k0n0, k0 ¼ 2�=�0, with �0 being the vacuum
wavelength of light. On the other hand, the optical poten-
tial appearing in Eq. (1b) is given by VðxÞ ¼ k0½nRðxÞ þ
inIðxÞ�. Evidently, the Hamiltonian of Eq. (1b) is
PT -symmetric provided that the real index part is an
even function of position nRðxÞ ¼ nRð�xÞwhile the imagi-
nary is odd, i.e., nIðxÞ ¼ �nIð�xÞ, [12]. Thus complex
optical PT potentials can be realized by judiciously in-

PRL 103, 093902 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

28 AUGUST 2009

0031-9007=09=103(9)=093902(4) 093902-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.093902


tegrating an antisymmetric gain and loss profile on an even
index distribution [12]. As in quantum mechanics, the
optical eigenmodes � ¼ �ðxÞ expð�i"zÞ associated with
these potentials can be obtained from the stationary

Schrödinger problem Ĥ� ¼ "�, where the mode propa-
gation constant � is given by � ¼ kþ ".

As previously indicated, the condition VðxÞ ¼ V�ð�xÞ is
necessary for PT reflection but not sufficient. This should
be augmented with a requirement of common eigenfunc-

tions for both Ĥ and P̂ T̂ . As the PT operator is not linear,
commutation between the Hamiltonian and the PT op-
erator does not guarantee a real spectrum [15]. Violation of
this property is known as spontaneous PT -symmetry
breaking. Broken PT symmetry typically involves the
unfolding of an eigenfunction into complementary eigen-
functions at the so-called exceptional point [16], previ-
ously studied in several fields of physics [17,18]. After
this point, the spectrum ceases being entirely real and
becomes complex, which marks the onset of a phase
transition. To illustrate this effect, let us consider a
PT -symmetric ridge optical waveguide as shown in
Fig. 1. For demonstration purposes, let the core (n ffi
3:28) and the cladding (n ffi 3:25) substrate of this com-
posite structure be AlGaAs. This symmetric guiding ele-
ment is operated at a wavelength of �0 ¼ 1:55 �m with
one-half of it experiencing gain while the other half an
equal amount of optical loss. The effective index contrast
of this element is approximately �n ¼ 4:6� 10�4

(weakly guided), and the level of gain or loss is varied
between �ð0–70Þ cm�1. Given the imposed complex re-
fractive index distribution, this optical potential satisfies
the aforementioned PT -symmetry requirements. Fig-
ure 1(a) depicts the modal intensity distribution below
the phase transition point �c—the critical optical loss
coefficient. In this range, the mode intensity is symmetric
with respect to the mirror axis, and the spectrum of this
system (including radiation modes) is real. This PT sym-
metry is spontaneously broken once the gain/loss contrast
exceeds �c ffi 50 cm�1, and hence the set of eigenvalues
becomes partly complex. Above this critical point, this
fundamental mode bifurcates into two asymmetric modes,
one residing in the amplifying section [Fig. 1(b)] thus
exhibiting gain, while the other one is loss dominated

[Fig. 1(c)]. In this regime, the propagation constants of
these two new modes are complex conjugates of each
other. The physics below and above this exceptional point
is unique to non-Hermiticity and occurs in many physical
situations such as, for example, in open quantum systems
involving long-lived resonances [19].
PT optical dynamics can also be observed in coupled

wave geometries, where a PT potential is formed through
the interplay of two distinct gain and loss regions [13,20].
This structure is PT -symmetric around its central axis. To
analyze the behavior of this structure, we employ a
coupled-mode formalism where the exact profiles of the
isolated modes were obtained by employing a full vectorial
treatment and subsequently used to evaluate their effective
refractive index and the associated coupling constants via
overlap integrals [21]. To do so, we express the PT
supermodes in terms of the individual isolated modes of
the waveguides which are complex conjugate [13]. If we
express the optical fields in these two channels in terms of
z-dependent amplitudes U1;2ðzÞ, i.e., En ¼ UnðzÞFnðx; yÞ,
with Fnðx; yÞ representing the guided wave distributions in
n ¼ 1; 2, one finds that

i
d

dz

U1

U2

� �
¼ �þ � �

�� �� þ ��
� �

U1

U2

� �
: (2)

In the above equations, � and �� represent the two propa-
gation constants, � is a complex coupling coefficient, and
� is a correction to the wave numbers resulting from the
proximity of adjacent channels. In general, the evolution of

FIG. 1 (color online). A PT -symmetric optical waveguide.
The corresponding symmetric fundamental mode of the structure
exists only below a certain critical value of the imaginary index
of the waveguide (a). Above this threshold, PT symmetry is lost
and the fundamental mode breaks up into 2 modes: one experi-
encing gain (b) while the other loss (c).

FIG. 2 (color online). Calculated supermodes of a
PT -symmetric optical system. (a) Below the critical gain/loss
value, the modal intensity is equally divided between the two
sites. As the non-Hermitian PT potential strength is increased
beyond the PT -symmetry breaking point, the two modes be-
come isolated in each site as shown in (b). Below the phase
transition point of �3:7 cm�1, the spectrum of the dual non-
Hermitian structure is completely real, followed by a pro-
nounced transition to the complex domain where the eigenmodes
become complex conjugates (c),(d). The horizontal axis in (c)
and (d) represents the gain/loss contrast in the PT arrangement.
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the two nonorthogonal supermodes j1i expði�1zÞ and
j2i expði�2zÞ associated with Eq. (2) is given in terms of
sinusoidal or exponential functions depending on whether

the two eigenvalues �1;2¼�Re½�þ��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�j2�ð�=2Þ2p
are real or complex. In the last expression, the term �=2 ¼
�Im½�þ �� leads to either gain or loss in the two chan-
nels. PT -symmetry breaking occurs whenever j�j 	
�c ¼ 2j�j. This marks the onset of a phase transition
beyond which the oscillatory coupling between the two
modes disappears and is replaced by a hyperbolic behavior
(one mode decays and the other grows). The numerically
obtained intensity profile of the first supermode j1i below
and above the transition point in a typical AlGaAs gain/
loss system is shown in Figs. 2(a) and 2(b), respec-
tively. Furthermore, the complex bifurcation of the super-
mode propagation constants around this point is shown in
Figs. 2(c) and 2(d) for the same structure. In Figs. 1 and 2,
for demonstration purposes, we have considered only
purely antisymmetric gain/loss structures.

It is important to note that PT -symmetry breaking can
also occur in entirely passive dual systems where one
channel exhibits loss (�Im½�2� ffi �=2) while the other
is lossless, i.e., Im½�1� ¼ 0. In this new configuration,

PT symmetry can be reestablished through the gauge
transformation: U1;2ðzÞ ¼ V1;2ðzÞ expð��z=4Þ. In this

case, one can readily show that the reduced V1;2ðzÞ ampli-

tudes behave in a PT fashion where the new phase
transition point is now shifted to �c 
 4�. In fact, the
transition from PT to broken symmetry has a significant
effect on the overall transmission behavior of this system.
Normally, one intuitively expects that the transmission
would drop with increasing losses. As we will see, how-
ever, after the phase transition point, this arrangement
becomes anomalously transparent; i.e., its transmission
increases as the loss becomes even higher. This is indeed
characteristic of exceptional point behavior [19]. To ana-
lyze this behavior one can consider the two nonorthogonal
~V eigenvectors of the reduced system [22]. The column
eigenvectors below the phase transition point are given by
j1; 2i ¼ ð1;�e�i�Þ with corresponding eigenvalues being
� cos� where sin� ¼ �=4�. On the other hand, above the
critical point, i.e., for �> 4�, j1; 2i ¼ ð1; � ie��Þ, where
in this range cosh� ¼ �=4� and the two eigenvalues are
�i sinh�. In the case where only the lossless channel is
excited, the total transmission coefficient of this system in
these two regimes is expressed by

T ¼
8<
:

expð�2Z sin�Þ
cos2�

½sin2ðZ cos�Þ þ cos2ðZ cos�� �Þ� for � � 4�;
expð�2Z cosh�Þ

sinh2�
½sinh2ðZ sinh�Þ þ sinh2ðZ sinh�þ �Þ� for � 	 4�;

(3)

where in Eq. (3) Z ¼ �z.
To observe the effects arising from passive

PT -symmetry breaking, we designed a non-Hermitian
passive optical double-well structure. The two waveguides
were fabricated through a multilayer AlxGa1�xAs hetero-
structure of varying concentrations [Fig. 3(a)]. The intro-
duction of loss in the structure was carefully done in order
to maintain the even real refractive index distribution
necessary for PT symmetry. This was achieved through
deposition of a thin 100 nm layer of chromium on one of
the coupler arms [Fig. 3(b)]. Chromium was intentionally
chosen to overcome restrictions from the Kramers-Kronig
relations since at the wavelength of operation (�0 ¼
1:55 �m) this metal leads to heavy losses while the detun-
ing between the two waveguide sites is at a minimum [23].
A number of such structures were fabricated with varying
Cr stripe widths, which allowed us to control the loss
parameter for �> 15 cm�1 [Fig. 3(c)], whereas nonperi-
odic deposition of Cr along the propagation direction
allowed for effective losses below 15 cm�1. The sample
was set to be 16 mm, which is approximately twice the
coupling length (when no loss is present). The losses were
engineered to vary in the range 0–40 cm�1 as is shown in
Fig. 3(c) along with the theoretically calculated losses
using finite element mode solvers.

In our experiments, vertically polarized monochromatic
light at 1550 nm was coupled into the nonlossy waveguide
of this structure. The total power from both channels of this
system was then collected and analyzed as a function of
waveguide loss. The normalized transmission results are
presented in Fig. 4, indicating a strong non-Hermitian
behavior. As the loss in the dual complex potential is
initially increased, a decay of the total output transmission
occurs as one would readily expect. However, past a criti-
cal point (�c 
 4� 
 9 cm�1), namely, the passive

FIG. 3 (color online). Non-Hermitian dual structure.
(a) Design details and complex refractive index distribution.
(b) Scanning electron microscopy picture of the finalized passive
PT device with the Cr stripe shown on the right. (c) Modal loss
of isolated waveguide structure as a function of Cr width.
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PT -symmetry breaking point, the transmission is found to
increase as the loss is increased, as also indicated by
Eq. (3). Loss enhanced transmission is a direct manifesta-
tion of PT non-Hermiticity. Below the transition point,
light is continuously exchanged between both waveguide
arms, and, as such, increasing the loss will lead to a
decreased output. At the transition point the symmetry of
the structure is lost via passive PT -symmetry breaking,
and coupling between the waveguide channels begins to be
reduced. As the losses are increased further the super-
modes become increasingly different; as such, the power
exchange is reduced and the total transmission is increased.
It is important to note that in our experiments the minimum
transmission point differs somewhat from the calculated
theoretical passive PT -symmetry breaking point
(9 cm�1). This result is consistent with the predictions of
Eq. (3), which also imply that the minimum of the intensity
transmission curve does not occur precisely at �c. We note
that this PT route to transparency is closely relevant to
some recent suggestions concerning amplifying metama-
terials. This, for example, can occur in parametric ampli-
fiers using backward propagation in negative index
structures [24,25].

In conclusion, we have demonstrated the onset of pas-
sive PT -symmetry breaking within the context of optics.
This phase transition was found to lead to a loss induced
optical transparency in specially designed pseudo-
Hermitian potentials. This work may pave the way towards
the observation of other PT -related features such as
power oscillations and nonreciprocal wave propagation in
pseudo-Hermitian lattices. The extension of these ideas in
the spatiotemporal domain (e.g., optical cavities and reso-
nators) as well as in the study of open quantum systems can
be another fruitful direction.

The authors thank Vas. P. Kunets and J. H. Lee at
Department of Physics, University of Arkansas for fabri-
cating high quality AlGaAs wafers.
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FIG. 4 (color online). Experimental observation of spontane-
ous passive PT -symmetry breaking. Output transmission of a
passive PT complex system as the loss in the lossy waveguide
arm is increased. The transmission attains a minimum at 6 cm�1.
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