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Phases of wave functions and level repulsion

W.D. Heiss*

Centre for Nonlinear Studies and Department of Physics, University of the Witwatersrand, PO Wits 2050, Johannesburg

South Africa

Received: 7 January 1999 / Received in final form: 15 March 1999

Abstract. Avoided level crossings are associated with exceptional points which are the singularities of the
spectrum and eigenfunctions, when considered as functions of a complex coupling parameter. It is shown
that the wave function of one state changes sign but not the other, if the exceptional point is encircled in
the complex plane. An experimental setup is suggested where this peculiar phase change could be observed.
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The phase of the wave function changes in a charac-
teristic way, if a self-adjoint Hamiltonian has an energy
degeneracy at specific values in some parameter space and
if a loop around the point of degeneracy is described in
parameter space [1]. In the simple case of a real symmetric
Hamiltonian two parameters are needed to get a diabolic
point. In this case Berry’s phase is 7 when looping around
the degeneracy in the two-dimensional parameter space.

If a self-adjoint Hamiltonian depends only on one pa-
rameter, its variation will in general give rise to level re-
pulsion [2]. Associated with a level repulsion is a pair of
exceptional points [3] which are the points where the two
levels actually coalesce when continued analytically into
the complex plane of the parameter [4]. In the present let-
ter we discuss the behaviour of the wave functions and
their phases when an exceptional point is encircled. We
suggest an experimental situation where such behaviour
could be measured. It is distinctly different from a dia-
bolic point where Berry’s phase occurs. In particular, an
exceptional point must not be confused with a coinciden-
tal degeneracy of resonance states, considered in [5] as a
generalization of Berry’s phase.

The difference between a diabolic point and an excep-
tional point is due to the self-adjointness of the Hamilto-
nian in the former and the lack of it in the latter case.
Also, when continuing into the complex parameter plane
we are faced with analytic functions of a complex vari-
able implying a more rigid mathematical structure. In the
references quoted above a thorough discussion is given
of the spectrum and eigenfunctions, when one parameter
of the Hamiltonian is continued into the complex plane.
The parameter chosen can be an interaction strength, but
other choices are possible [6]. In the present paper we
consider the problem of the form Hy + AH; (with Hy
and H; symmetric) and analytically continue the spec-
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trum and the eigenfunctions into the complex A-plane
where the exceptional points occur. Generically, an N-
dimensional matrix problem yields N(N — 1) exceptional
points. For an infinite-dimensional problem, an infinite
number usually occurs [7]. [Depending on the particular
structure of Hy, this infinite number of exceptional points

can have an accumulation point in the finite A-plane which
may be associated with a phase transition occurring at
RN &~ Aaccum [8]- In very special cases like the single-
particle spectrum of the Hulthen potential [9] the excep-
tional points may be absent altogether.

All essential aspects of exceptional points can be il-
lustrated on an elementary level with a two-level model.
In fact, for finite or infinite-dimensional problems an iso-
lated exceptional point can be described locally by a two-
dimensional problem [10]. In other words, even though a
high or infinite-dimensional problem is globally more com-
plex than the two-dimensional problem, we do not loose
generality for our specific purpose when the restriction to
a two-dimensional problem is made. For easy illustration
we therefore confine ourselves to the discussion of
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This is, up to a similarity transformation, the most gen-
eral form of a real two-dimensional Hamilton matrix of the
type Ho + AH;. The particular dependence on the param-
eter \ has been chosen as it is of a nature widely used in
physical applications. We emphasize that our aim is not in
particular directed at a physical model that is describable
by a two-dimensional problem although there may exist
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Fig. 1. Level repulsion using in equation (3) 1 = 1, €2 = 2,
w1 =2, wp = —1 and ¢ = 7/25.

interesting problems in our special context. The example
has been chosen for illustration, while the physical ap-
plication that we have in mind is an infinite-dimensional
situation.

The eigenvalues of H are given by

€1+ €2+ )\(wl + wg)
2

E1p(A) = R, (3)

+(M>2+%)‘(61 — €)(wy — wy) cos 2¢}1/2. (4)

Clearly, when ¢ = 0 the spectrum is given by the two lines

EYN) = e+ g, k=1,2
which intersect at the point of degeneracy A = —(e; —
€2) /(w1 —wsy). When the coupling between the two levels is
turned on by switching on ¢, the degeneracy is lifted and
an avoided level crossing occurs as is illustrated in Fig-
ure 1. Now the two levels coalesce in the complex A-plane
where R vanishes. This happens at the complex conjugate
points

€1

LT o (£2i0). (5)

w1 — w2

Ac =

At these points, the two levels Ei()) are connected by

a square root branch point; in fact the two levels are the
values of one analytic function on two different Riemann
sheets. In Figure 2a we display contours in the complex en-
ergy plane for each level, obtained if a loop in the complex
A-plane does not encircle the exceptional point. Accord-
ingly, Figure 2b shows the corresponding contours, if the
exceptional point is encircled. In this case only a double
loop in the A-plane yields a closed loop in the energy plane.
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Fig. 2. Contours in the complex energy plane. The top illus-
trates contours for each level, if a closed loop is described in the
A-plane without encircling the exceptional point. The bottom
illustrates the energy contour produced by two (equal) closed
loops in the A-plane, which encircle the exceptional point. The
solid line corresponds to the first closed loop in the A-plane and
the dotted line to the subsequent loop. The solid dot is the po-
sition where the contours would meet, if the loops crossed the
exceptional point in the A-plane.

Obviously, this connection is not of the type encountered
at a genuine diabolic point.

The difference has a bearing also on the scattering
matrix [11] and on the wave functions 11 (\) and ¥9(A).
In [11], although the notion ezceptional points is not used,
the pertinent distinction between a genuine degeneracy of
two resonances and the analytic coalescence (exceptional
point) of two (complex) eigenvalues is nicely discussed.
A usual degeneracy of two resonances still gives rise to a
simple pole in the scattering matrix or Green’s function,
while an exceptional point produces a double pole. With
regard to the eigenfunctions, we recall that for complex A
the Hamiltonian is no longer self-adjoint. This means that
the eigenfunctions are no longer orthogonal. We rather
have a bi-orthogonal system which can be normalized as

(D1 (N2(A) = b1z, (6)

where |¢) and (3| are the right-hand and left-hand
eigenvectors of H, respectively. Note that equation (6)
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causes problems at the exceptional point, since it is ex-
actly at this point where two linearly independent eigen-
fuctions no longer exist. This is in contrast to a genuine
degeneracy of a self-adjoint operator where a k-fold de-
generacy always gives rise to a k-dimensional eigenspace.
At the exceptional point not only the eigenvalues but also
the eigenfunctions coalesce. As a consequence the orthog-
onality conflicts with the normalization. In other words, if
equation (6) is enforced globally (i.e. also at A = A.), the
components of the wave function have to blow up. This
can be made explicit by parametrizing the wave functions
by the complex angle 6, viz.

aw=(Gg). sw=() o

with

tan?9(\) =
Er(A) — E2(\) — (61 — €2) — A(w1 — wg) cos 2¢
E1(\) — Ex(\) + (€1 — €2) + AMw1 — wa) cos2¢

At A = A\ we have F; = F5 and hence tan?6 = —1
implying | cos 8| = |sinf| = oo, that is the components of
the wave functions blow up. (Note that tan? @ = 0 in the
trivial case ¢ = 0.) The increase of the components of the
wave functions while approaching exceptional points has
been used in similar context as a theoretical signature of
a phase transition [8], but we do not believe that it has
observational consequences.

We now study the behaviour of the wave functions in
more detail for two contours in the A-plane which start,
say, at A = 0 and end at large real values of A, but enclose
an exceptional point between the two contours. For the
complex angle 6§ we choose an expression which is more
convenient for this purpose, viz.

(8)

tan@(\) =
Mwi — wo) sin 2¢
Ey(A) = E2(A) +e1 — 2 + A(wr — wg) cos2¢

(9)

The first path can be taken along the real \-axis. From
equation (9) we read off the expected result that 6(0) = 0
and 0(\) — ¢ for A > |(e1 — €2)/(w1 — w2)|. In obtaining
this result use is made of F1 — Fy = 2R — Aw; — wa)
for A > |(e1 — €2)/(w1 — wa)|. For the second path we
move into the upper A-plane in order to pass above the
exceptional point before returning down to the real axis
again. Using again equation (9) we now have to ob-
serve that we crossed into the other sheet which means
E, — E3 = —2R — —A(w; — w2). As a consequence we
find this time tan® = — cot ¢ = tan(¢ + 7/2). Surely we
would expect the wave functions to interchange just like
the energies, if an exceptional point is encircled. But our
finding indicates that one wave function has changed its
sign. In fact, we obtain along the second path

Y1 — Y2, P2 — —Y1.

Note that this result is equally obtained, if a closed con-
tour surrounding the exceptional point is described in the

(10)

A-plane. Of interest is the result of a double loop in the
A-plane. This yields

1 — =1, P2 — —ho (11)

which is, in accordance with the corresponding single loop
in the energy plane, just Berry’s phase retrieved. We
mention that this implies that, if the wave functions are
parametrized as in equation (7), then they have an alge-
braic singularity that is determined by a fourth root at the
exceptional point; only a four-fold loop in the A-plane re-
stores completely the original situation as far as the wave
functions are concerned.

Next we address the question concerning the physical
significance of these findings. It boils down to the prob-
lem of varying a complex interaction parameter in the
laboratory. Problems of a similar nature have been dis-
cussed in connection with Berry’s phase for dissipative
systems [12], but not as yet for exceptional points. We are
guided by the phenomenological description of open quan-
tum systems [8] and submit as one suggestion a strongly
absorptive system, where the parameter A in equation (1)
is traditionally replaced by —iG with real absorption pa-
rameter GG. With the replacement the eigenvalues acquire
imaginary parts which are related to the inverse life times
of the states of the open system. The exceptional points
appear now in the complex G-plane at

Ge= — 272 oxp(£2i¢ + in/2). (12)
2

w1 — W

If the coupling of the two channels is equal, that is if ¢ =
/4, the two exceptional points lie on the real G-axis at
€1 — €2

G.==

w1 — w2

If the coupling is nearly equal, they lie just above or be-
low the real axis depending on the coupling being slightly
weaker or stronger (¢ < w/4 or ¢ > 7/4). Controlling the
absorption parameter G and the relative coupling enables
one to pass the exceptional point on a path below and
above, which is the situation described above. The wave
functions will change according to equation (10).

A setup similar to the one proposed by Berry [1] and
implemented in [13] provides a further possibility for ex-
perimental verification. In a two-dimensional electromag-
netic resonator consider two suitable levels which display
level repulsion under variation of a judiciously chosen con-
trol parameter, such as a change of the geometry of the
resonator [13,14]. The absorption can be controlled by ra-
diation losses, regulated by an absorber used in the res-
onator or by suitable antennas. For the final analysis it
is immaterial whether the description uses a complex pa-
rameter A (as discussed in the previous paragraph) or phe-
nomenological widths for the unperturbed energies €. In
fact, equation (5) can also be used with the replacement
€r — €, — 11}, which results in a shift of one of the excep-
tional points towards the real axis or beyond (the other
exceptional point moves further away into the A-plane).
Variation of the parameter A, achieved by changing the
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geometry of the resonator, and the use of different values
of the absorption allows the experimenter to pass the ex-
ceptional point on its left- or right-hand side. Fortuitously,
in the spirit of the experiment performed by [13] the adi-
abatic change of the parameters is not essential, since it
is the movement of the nodes of the wave functions (the
electric field in the case considered) that are being ob-
served under parameter variation [14]. Possible jumps of
the phases do therefore not affect the result of interest.
Again we stress that the exceptional point which is asso-
ciated with the level repulsion under consideration is not
to be confused with a genuine degeneracy of resonances:
the latter has no effect upon the wave functions whereas
the former is a singular point of the spectrum and can be
discerned by equations (10). Note that, for large values of
the absorption, one state may be much broader than the
other [8].

We emphasize again that the occurrence of exceptional
points is a generic mathematical feature associated with
any system that has avoided level crossing. While this pre-
sentation used a two-dimensional illustration, the results
can be immediately generalized. In fact, if more than one
exceptional point is encircled, the resulting phase change
is simply a combination of several two-dimensional cases.
The findings presented in this paper therefore appear to
have universal significance.
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