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We show that the leading term in the strong-interaction limit of the adiabatic connection that has
as weak-interaction expansion the Mgller-Plesset perturbation theory can be fully determined from
a functional of the Hartree-Fock density. We analyze this functional and highlight similarities and
differences with the strong-interaction limit of the density-fixed adiabatic connection case of Kohn-
Sham density functional theory. Published by AIP Publishing. https://doi.org/10.1063/1.5078565

The adiabatic connection formalism has always been
a powerful theoretical tool to build approximations for the
exchange-correlation (XC) energy in density functional the-
ory (DFT), in particular, for hybrid'=> and double-hybrid
functionals,*’ but also for other kinds of XC function-
als.®=15 In the Kohn-Sham (KS) framework, the density fixed
adiabatic connection can be defined via the A-dependent
hamiltonian'®!7

AT =T+ AV, + Valpl, (1

where T is the kinetic energy operator for the N electrons, V. is
their mutual Coulomb repulsion, and Vl[p] = f\i L oalrs, [
is the one body potential that makes the ground-state wave-
function of Eq. (1), ‘PEFT, yield the density p(r) = p,=1(r) for
all values of A. From Eq. (1), one can derive an exact formula
for the KS DFT XC energy'®!’

1
W plda, 2)
0

EXMp] =

where
WO o] = (PO T [ ol Vo [P T [0]) - Ulpl,  (3)

with U[p] being the Hartree energy. The coupling-constant
integrand of Eq. (3) has the known small-'® and large-A
expansions'”

WRELIp) = BT+ Y n ESL A, (4)
n=2
1
WELlel = W pl + =W pl+--- . (5)
! Va

where EPFT is the exact KS exchange energy [the same expres-
sion as in Hartree-Fock (HF) theory, but using KS orbitals]
and ES is the nth term in the Gorling-Levy perturbation
series.'®20 The expansion for large A of Eq. (5) has as leading
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term the functional W2FT[p], given by the minimum possible
expectation value of the electron-electron repulsion in a given
density p(r)*'-3

W el = inf (PIVee®) - Ulpl, ©)

while the next leading term, determined by Wo’oDF T p], corre-
sponds to the potential energy of zero-point vibrations around
the manifold corresponding to the support of the minimizing
probability density in Eq. (6).!° While for the leading term
there are rigorous proofs,>>?® this next term is only a very
reasonable conjecture that has been confirmed numerically
in simple cases where it was possible to compute the exact
integrand WPFT[p] 2425

Mixing KS DFT with Hartree-Fock (HF) ingredients is
an approximation strategy that has a long history in chemistry,
already starting with hybrids' =2 and double hybrids,*”’
but also by simply inserting the HF density into a given approx-
imate XC density functional.**3> Very recently, it has also
been observed that rather accurate interaction energies,’*3’
particularly for non-covalent complexes,*® can be obtained
from models for W/ll)F T[p] that interpolate between the two
limits of Eq. (4)—retaining only the first term, GL2, in the GL
series—and of Eq. (5), using HF densities and orbitals as input,
i.e., by constructing de facto an approximate resummation of
the Mgller-Plesset (MP) series, a procedure that lacks so far a
theoretical justification. Motivated, in particular, by these last
findings, we analyze in this communication the Hartree-Fock
adiabatic connection [see Eq. (7)] whose Taylor expansion
around A = 0 is the MP series [see Eq. (10)] and show that
the leading term in the 4 — oo expansion is determined by
a functional of the HF density [see Eqs. (14) and (15)]. We
also highlight similarities and differences with the DFT case,
showing that the large A expansion in HF theory has a structure
similar to the one of Eq. (5).

Published by AIP Publishing.
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We keep the notation general, as only few key properties of
the HF operators are important here. We consider the adiabatic
connection (see, e.g., Ref. 39)

B =T+ Ve +J +K + AV, - T - K), (7
with Vey being the (nuclear) external potential and J = J[pHF]
and K = K[{¢!F}] being the standard HF Coulomb and
exchange operators, which are fixed once for all in the ini-
tial HF calculation, and do not depend on A, but only on the
HF density p"'F and occupied HF orbitals {¢!"}. In the ground
state WHF of AP, the density pa(r) changes with A: p—o(r)
is the HF density pHf(r), and p,—i(r) is the exact physical
density p(r). Note that Teale et al.** have analyzed a related
adiabatic connection, in which the external potential is kept
fixed; in that framework in the limit A — oo, all the electrons but
one escape to infinity. From Eq. (7), the Hellmann-Feynman
theorem yields the exact formula

1
ENF = / wiFda ®)
0
for the XC energy in the HF framework, with
Wi = (pHF 0, — T - RIPEEY + UL+ 2E0F. (9)

Equation (9) has been defined to allow for a direct comparison
with the DFT WPFT[p] of Eqgs. (2) and (3), with WHE = EHF,
and for small A

WAE = ENF 4+ 3" n gYP A, (10)
n=2

where EMP” the nth term in the MP series. As is well-known
(see, e.g., Refs. 41 and 42), the radius of convergence of the
MP series is typically smaller than 1. Here we ask the question:
What happens to ‘I’EF and W/Il{F as A — oo? After answering
this theoretical question, we will discuss its actual relevance
for constructing approximations.

When A becomes very large, the term A(V,, —J — K) in
Eq. (7) becomes more and more important, and we argue that
the wavefunction WX should end up minimizing this term
alone, similarly to the DFT case”! of Eq. (6). The difference
here is that the minimizer is not constrained to yield a fixed
density and the operator to be minimized also contains —J — K.
We further argue that the expectation value of K is subleading
with respect to the one of Vee -7, ie., we argue that

(PR IPEEY = 04717 (A—o0). (11)

Before we shall support this conjecture with a variational
argument, we discuss its consequences.

IfEq. (11) holds, then ‘PEIF for A — oo ends up minimizing
the even simpler operator /I(Vee -7 )

lim PiF = arggnncm\?ee -7y, (12)
lim W = min¢¥| Ve, = J1%) + ULp™]
+2EMF L o171/, (13)
The ‘“asymptotic hamiltonian” 7:[?0}: =V, -7 [pHF] s

completely specified by the HF density p"F(r), since
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N = [dr p"F(r) and J[p] = T, vn(r;s [p]), with ou(r; [p])

= l’r’(_rr/,)‘ dr’. Consequently, also the minimizer in Eqgs. (12)

and (13) is specified solely by pHF
lim WHF = @HF[pHF] (14)

A—o00
and the minimum in Eq. (13) is a functional of p"F

lim WY = Eq[p"F]+ 2EHF + 0(171/%). (15)

A—00

The minimizer in Eq. (12) could be not unique, but this does
not affect the value of the minimum, which is the object of
the present investigation. The functional E.|[p] = mqi}n(‘I‘I\A/ee
-7 [pol|'¥) + Ul p] has a simple classical interpretation: Since
He = Ve =l pHF] is a purely multiplicative operator

N

N
~ HF 1 HF
= - i , 1
e ; o a6
Jj>i

i=1

the square modulus |WHF|? of its minimizing wave function is

a distribution in R3" that is zero wherever 7:12}: as a function
of ry, ..., ry does not assume its global minimum (if it were
otherwise, it would not be optimal as we could always lower
the energy by increasing the weight of the wave function in

the global minimum of ﬂ?;). In other words,

N

. ! .
min 457 — > u(xi [pD) + Ulp]

i=1

Eqlp] =

a7

is the minimum total electrostatic energy of N equal classical
point charges (—e) in a positive background with continuous
charge density (+¢) p(r). The term U[ p], inherited from Eq. (9),
represents the background-background repulsion.

Strictly speaking, the minimizer ¥HF is not in the space
of allowed wavefunctions so that the minimum is actually an
infimum, similarly to the DFT case.???343

Equations (14) and (15) comprise a central result of this
work: they show that the strong-interaction limit of the HF adi-
abatic connection can be determined from a functional of the
HF density, providing some theoretical justification for resum-
ming the MP series by using a DFT-like expansion at large A
with functionals of pHF,36-38 although, as we will discuss, there
are still several points to be addressed.

We now analyze the functionals YHF[ b and E,[ p], com-
paring them with the DFT case. As A — oo, HPFT of Eq. (1)

tends to A ’ﬁLZFT[p], with?!

~ DFT u
Ho lpl= )

ij=1j>i

N
+ D umlp). (18)
i=1

Ir; — ;]

Comparing ?QZFT[p] with ”Hg}:[p] of Eq. (16), we see that
both hamiltonians consist of the electron-electron repulsion
operator and of an attractive one-body potential. In the HF
case, the attractive potential is —vg(r, [p]), which is, for typi-
cal Hartree-Fock densities, strong enough to create a classical
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bound crystal. To be more precise, —vy(r, [p]) is more attrac-
tive than the one-body potential v.(r, [ p]). In fact, the potential

Uoo(T, [p]), which has been studied in several studies, 214440 ig
generated by a charge that integrates to N — 1214
1
4 [ Pustetppar=n-1. (19)
4r

while the attractive potential —vy(r, [p]) is generated by the
given density p(r), which integrates to N. For finite systems,
the state WHF[ p] is thus more compact than the state ¥2FT[p]:
this is due to the density constraint in the DFT adiabatic con-
nection, which forces W2FT[p] to have the given quantum
mechanical density p(r).>!40

We note in passing that, for given occupied HF orbitals,

we have the chain of inequalities
WS < Ealp™f] < W2 [p™F]. (20)

The first one, WHF < E,[pHF], is trivial since WHF =
E.[p"F1+2 ENF and EFF < 0. The second inequality holds for
any density p(r), E,[p] < WQFT[p]. To prove it, we introduce
the bifunctional W[ p, v]

N

Wip.v] = inf (Ve = 3 () + / PRI dr, 21)

i=1
for which we have
Wlp,valpl]l =
and, from the dual formulation of

WET[p] + Ulp] =

Ealpl+ Ulpl, (22)
WDFT[ 5] 214748

max W] p, v], (23)

which clearly completes the proof.

As promised, we provide a variational argument to support
the assumption of Eq. (11), sketching the main points and leav-
ing a more detailed treatment to a subsequent paper. We start

by considering the global minimum R™" = {rrlnln rﬁm}
of the function ’}A-liF of Eq. (16) and construct the simple trial
wavefunction
N .
Wi ) = [ ] Ga e - 1), 24)
i=1

where Go(r) = &7 /4 re S I with @ being a A-dependent vari-
ational parameter that goes to infinity for large A, @(41) ~
with g > 0. By construction, when @ — oo (i.e., when 4 — o),

we have that
lim P11 = PHEpHE 2, (25)

where WHF was introduced in Eq. (12) (in the case of degen-
eracy, we can select one of the minimizers, since here we only
want to obtain an upper bound to the lowest eigenvalue of
H ?F ). We now analyze, for large «, the expectation value on
1 of each term appearing in AIF of Eq. (7), obtaining

(PNTIPYy = ta, (26)

(PVNAWV e = DIPE) = AE - U) + A(h +o<a—1)) 27)

SHEVI AT /l(g +o(a—1)), (28)
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(P Vexe + T + K1¥Ty ~ 0(a?), (29)

where t, h, and k are all positive numbers. This is obvious for 7,
but it is also true for k because the expectation of —K is positive
for any wavefunction ¥, as K has a negatively definite kernel.
The fact that the expectation value of K on ‘I’; vanishes as
o~ for large « is due to the non-locality of K, which samples
the gaussians in the bra and in the ket in different points of
space, and due to the regularity properties of the HF orbitals
(which have no delta-function singularities). The positivity of
h in Eq. (27) can be proven by expanding ’HZF around R™"
up to the second order, which gives a positive definite hessian
matrix.

Putting together Eqs. (26)—(29) and replacing a with A9,
we find that, for large A, the expectation value of H/I;": on W7
behaves asymptotically as

PTIETF Ty = A(Ey—U)+129+(h+k) A~ +0(2179). (30)

With ¢, h, and k being positive, we see that the best variational
choice to make the next leading term after O(A) increase with
the lowest possible power of A is g = 1/2, as conjectured in
Eq. (11). Although \Pg of Eq. (24) is not antisymmetric, we
can always properly antisymmetrize it, which only leads to cor-
rections O(e~%) in the computation of the expectation values,
similarly to the DFT case.”’

Thus, we have explicitly constructed a variational wave-
function that yields the minimum possible value for the leading
term O(A) in the expectation of H ﬁIF. In fact, since E [ pHF ]
— U[p"'F] is the global minimum of the multiplicative oper-
ator V,, — J, there is no wavefunction that can yield a lower
expectation for this operator. Moreover, since —K is positive
definite, the best we can do is to make its expectation zero
when A4 — oo, which our wavefunction is able to do.

This variational argument also shows that the next leading
term in W should be order A~'/2, similarly to the DFT case of
Eq. (5). A quantitative estimate of this next leading term could
be in prmmple obtained by using the normal modes around the
minimum of V,,—J: a unitary transformation from the r; — rmlrl
to the normal mode coordinates &1, .. ., &3y that dlagonahze

. ~ HF - .
the hessian of H, at R™" leads to a set of uncoupled harmonic
oscillators whose spring constants scale with A4

1 3N )
P = 22% SN (31

a=1
. 2 . . . ¢ HF min
with w}, being the eigenvalues of the hessian of H,, at R™".
The ground-state of H%P is obtained by occupying the lowest
state of each oscillator, with the product state

/4
LEw) = ]_[(w“\/—) ERCTIE N

Yi' &, . 174
This wavefunction should provide the minimum possible
expectation, to order A2, of 7'+ A(V,, — J). However, since
—AK is of the same order 172, we cannot exclude at this point
that the minimization of the full ?+/l(‘7€e -J-K ) could lead to
a different set of occupied oscillator states. This investigation
will be the object of future studies. From our present treatment,
we have so far
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1
wiE —wHF —wHE (33)
* Va
with
WEF = E. (o' + 2 EFF, (34)
3N HF
1 O walp™]
/HF _ 1 /HF
L R (35)

where W/ is due to the effect of —AK at orders 1'% in AYF
and is a functional of the occupied HF orbitals. Equation (34)
should be exact while Eq. (35) is for now a conjecture. We
also see that both WHF and W/HF have a part that is a func-
tional of the HF density only and a part that is a functional
of the occupied HF orbitals. In both cases, the part that is a
density functional has an origin similar to the one of the DFT
functionals of Eq. (5), being, respectively, a classical electro-
static energy and the potential energy of zero-point oscillations
around a classical minimum. The parts that need the knowl-
edge of the occupied HF orbitals do not appear in the DFT
case. This structure should be exact, although the detailed form
of WHF might include a different set of occupied oscillator
states.

Although the A — oo limit of WYF has a structure similar
to the one of DFT, there are many differences that need to be
kept in mind. Both WPFT[p] and W}!F are decreasing functions
of 1
d WPFT[ 51 < 0
7 [p] <0,
but W/?FT [p] for A > Ois believed to be convex or at least piece-
wise convex (if there are crossings of states), while W/I{IF is for
sure not always convex. In fact, the MP2 correlation energy
usually underestimates (in absolute value) the total correlation
energy EXF, implying that WHF for 0 < A < 1 must run below
its tangent; thus, W/Il{F usually starts concave for small A and
then needs to change convexity to tend to the finite asymptotic
value WHF for large 1. Moreover, while the density constraint
of the DFT adiabatic connection usually mitigates the cross-
ing of states, the HF adiabatic connection might have jumps
or kinks as A is increased. A simple example is the N =1 case,
for which WHF = —U[pHF] for 0 < 4 < 1, while for 4 > 1,
the curve starts to decrease, tending, as 4 — oo to a well defined
value, with the electrostatic energy determined by the con-
figuration in which the electron is sitting in the minimum of
—un(r, [p]).

In conclusion, we have shown that by looking at the
A — oo limit of the HF adiabatic connection, we recover func-
tionals of the HF density, revealing a new intriguing formal
link between HF and DFT. However, we should also stress
that the use of models for W!F taken from DFT, although
somehow justified by our analysis, should at this stage still be
taken with some caution. The empirical observation so far37-3
is that these models are not accurate for total energies, but work
rather well for interaction energies, with a small variance, par-
ticularly for non-covalent complexes.?”-*® This point requires
further investigation, which will be the object of a paper in
preparation, where W/{IF will be computed and analyzed for
various systems, and will be compared against various mod-
els. We will also evaluate and further analyze WHF and w/AF,

d
EW?F <0, (36)
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making a detailed numerical comparison with the correspond-
ing DFT functionals. We can already remark that the difference
between WHF and WDFT can be big. For example, for the He
atom, we have WHF ~ —4.347 Ha, while WPFT ~ —1.50 Ha.
We will also study whether it is possible to extract a model
for the self-energy in the strong-coupling limit, to be used in
the context of Green’s function approaches,**~? and to ana-
lyze in the same spirit adiabatic connections appearing in other
theories.?%3
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