PHYSICAL REVIEW E 97,012112 (2018)

Exceptional points near first- and second-order quantum phase transitions
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We study the impact of quantum phase transitions (QPTs) on the distribution of exceptional points (EPs) of
the Hamiltonian in the complex-extended parameter domain. Analyzing first- and second-order QPTs in the
Lipkin-Meshkov-Glick model we find an exponentially and polynomially close approach of EPs to the respective
critical point with increasing size of the system. If the critical Hamiltonian is subject to random perturbations
of various kinds, the averaged distribution of EPs close to the critical point still carries decisive information on
the QPT type. We therefore claim that properties of the EP distribution represent a parametrization-independent

signature of criticality in quantum systems.
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I. INTRODUCTION

Almost all quantum mechanical problems depend on some
parameters: external field strengths, internal coupling con-
stants, etc. Various choices of these parameters may lead to
dramatically different solutions. In some systems, the variation
of solutions with parameters may even have a critical character,
which means that in the infinite-size limit it becomes abrupt,
nonanalytic at some particular parameter values. We encounter
various types of ground-state or excited-state quantum phase
transitions (QPTs) [1-3]. Do we understand the internal mech-
anisms behind this kind of behavior? Can we predict in which
parameter domains it can be expected?

In particular, consider a Hamiltonian A = H (1) depending
linearly on a single real control parameter A:

A = HO)+ V. (1)

Here A (0) is a free Hamiltonian and V an arbitrary interaction,
both associated with Hermitian, in general noncommuting
operators represented by real matrices of a finite dimen-
sion d. Elementary analysis reveals that abrupt variations
of eigenfunctions of an arbitrary operator take place at its
degeneracy points where two (or eventually more) eigenvalues
join. Assuming H()) with no hidden symmetry (i.e., acting
irreducibly in the whole Hilbert space or taken in a single
irreducible subspace), we know that almost all crossings of
energy levels E,()) should be avoided [4]. However, the true
degeneracy points E, = E,, can be found in the plane of
complex A = A + iu, that is, for a non-Hermitian extension
of the Hamiltonian [5].

The non-Hermitian degeneracies, so-called exceptional
points (EPs) [6], have a different character than ordinary degen-
eracies of Hermitian operators. While an ordinary degeneracy
[so-called diabolic point (DP)] in a two-dimensional (or more)
parameter space is just a conical intersection of two Hamilto-
nian eigenvalues [7], a generic EP represents the square-root
type of branch point connecting two Riemann sheets of the
eigenvalue solution in the plane A € C [8-12]. Since any
pair of real energies can be continuously linked up by an
appropriate loopy path encircling various EPs in the complex
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plane, the whole energy spectrum becomes a single entangled
object allowing no strict distinction between different levels.
The eigenvectors at the degeneracy points A} do not form a
complete basis and the single eigenvector associated with the
pair of coalescing levels becomes self-orthogonal [5]. In spite
of these unusual properties (see Appendix A), the locations of
EPs determine the main features of the real energy spectrum
and its evolution with A € R. In particular, the presence of
X}EP near the real axis shows up as a sharp avoided crossing of
the corresponding levels at A & ReAr* and therefore induces
a rapid evolution of the associated eigenstates |1, (1)).

In view of this background, it is not surprising that EPs
play an essential role in the description of QPTs [13-20]. Here
we focus solely on the ground-state QPTs, which are associ-
ated with sudden changes of the ground-state energy E&S =
(WeS|H|pes) (where |¢&%) stands for the ground-state
wave function) and order parameter (O)&% = (1//g's'|(§|1//g's')
(with O standing for an operator associated with a suitable
observable characterizing the ground-state structure) in the
vicinity of a certain critical Hamiltonian H ¢, for instance, at
a particular value A® of the control parameter in Eq. (1). We
stress that the QPTs, similarly to thermal phase transitions,
become truly nonanalytic only in the limit of the system’s
infinite size N — oo. It turns out that as the size increases,
some of the EPs converge to the QPT critical point A° on the
real axis of A, in analogy with the behavior of complex zeros
of the thermodynamic partition function near thermal phase
transitions [15,16,21,22].

In a first-order (discontinuous) QPT, the order parameter
exhibits a discontinuity. Typical examples are systems with
the potential energy dependence V(x) having the form of
a double well. The crossing of both potential minima at a
certain A = A, with H(A¢") = A°' describing a degenerate
double-well system, indicates a jump of the global minimum
from one well to the other. The order parameter, which in this
case can be the average coordinate (x)&%, changes abruptly
at the critical point between the values corresponding to the
momentary localizations of both minima.

On the other hand, in a continuous (second-order or more
general) QPT the order parameter is a continuous function
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of control parameter and the singularity is shifted to the first
or higher derivatives. This typically happens if the poten-
tial energy V(x) develops at A = A°?> a degenerate (higher
than quadratic) global minimum, so the critical Hamiltonian
H(.?) = A exhibits an accumulation of eigenstates near
the lowest energy. An infinitesimal change of A lifts the
degeneracy, transforming the minimum into one or more
quadratic stationary points. The order parameter (x)&* then
varies in a continuous way, but with discontinuous or infinite
derivatives in variable A.

In this paper, we study the distribution of EPs in A € C
for Hamiltonians of the form (1) near critical points A% €
R of generic first-order (k = 1) and second-order (k = 2)
QPTs. We search for the features of the EP distribution and
its dependence on the system’s size that are distinctive for
the transition type. The plan is as follows. In Sec. II, we
present results for specific families of Hamiltonians within
the Lipkin-Meshkov-Glick (LMG) model, making an example
of both of the above QPT types. In Sec. III, we investigate
the EP distributions associated with random perturbations AV
of a critical Hamiltonian H(0) = H taken at the first- and
second-order QPTs . We argue that the critical Hamiltonians
of either type have some general characteristics (reducible to
the associated EP distributions) that go beyond any particular
model-dependent Hamiltonian parametrization. Section IV
summarizes the results.

II. EXCEPTIONAL POINTS FOR CRITICAL
HAMILTONIANS IN THE LMG MODEL

In this section, we illustrate the distribution of EPs around
a first- and second-order QPT in the model of Lipkin et al.
[23]. It was originally introduced as a toy model for nuclear
physics, but recent experimental results [24] induced renewed
attention to this model in the context of cold atoms and general
many-body physics.

A. Hamiltonian and ground-state critical properties

The LMG model can be introduced in several alternative
ways. It was originally formulated as a system of N interacting
fermions on two energy levels, but it can be cast also in terms
of two interacting bosonic species, or through a system of
N interacting spm— particles or two-level atoms. Following
the latter representation, we assign to each (/th) spin or
atom a two-dimensional Hilbert space " and the set 60 =

(6 1(1), Az(l),ég(l)) of Pauli matrices acting on it. The collective spin

operators J = (j],jz,j3) on the full 2V -dimensional Hilbert
3 -
space H = QY H® are defined as J = Y | 6 and satisfy
the usual SU(2) commutatiop rules.
The LMG Hamiltonian H is supposed to be written solely

in terms of the collective spin operators J, or equivalently

fi = fl :I:if2 and fo = f3. It therefore conserves the j’z
quantum number j. The full Hilbert space H splits into a sum
of subspaces with fixed j = {;j™", ..., ™}, where j™" =0
or 5 I for N even or odd, respectively, and j™* = % (the value
2j represents the number of excitable spins). These subspaces,
except the unique one with j = j™*, appear in a large number
of replicas differing by the inherent exchange symmetry of

the state vectors involved (see, e.g., Ref. [3]). Since each of
these (2j + 1)-dimensional subspaces is invariant under the
action of H, the dynamics can be restricted to any of them.
The usual choice, which we also follow here, is the fully
exchange-symmetric subspace with j = j™* and dimension
d=N+1.

An arbitrary LMG Hamiltonian restricted to any of the
fixed-j subspaces represents a system with one degree of
freedom that can be transformed to the coordinate-momentum
form. One can use, e.g., the Holstein-Primakoff mapping [25]
of the collective spin operators

(J_.Jo,Jp) > (J2j = b1b b,b'b — j.bT\2j — btb) (2)

followed by the transformation of boson creation and annihila-
tion operators bt and b to coordinate and momentum operators
X and p:
(b',b) > Vj& —ip.k +ip) 3)

The commutation relation [X,5] =i/2j indicates that the
quantity 1/2j plays the role of an effective Planck constant.
In the limit j — oo (hence also N — 00), the Hamiltonian
A with substitutions (2) and (3) becomes a function H of
commuting variables x and p satisfying x> + p? < 2, which
defines the classical phase space associated with the model.

The LMG model with N, j — oo exhibits several ground-
state phase transitions that show up as nonanalytic changes
of the absolute minimum of function H(x,p) with varying
model control parameters [see, e.g., Refs. [26-29] (and [3] for
an outline)]. To demonstrate these effects, we represent the
Hamiltonian close to the respective QPT in the form (1), i.e.,
as HPTk(), with k = 1,2 and a single control parameter A
passing through a certain critical value A,

A possible Hamiltonian APTI()) with the first-order QPT
has
[QPTI _

n N a . |
H¥T(0) = /5 — ;Jf, —11—2—j(1113+J3J1>,

“
1

where a > 3 is a tunable constant, in the following set to
a = 3. There is an apparent symmetry of the spectrum of
H®T1(3) under the inversion A — —A (the corresponding
Hamiltonians differ just by & rotation around the third axis).
So if A crosses the critical value A°! = 0, the ground-state
expectation value (J)% = (eS| [pres) changes its sign.
The change gets sharper with increasing N and tends to a
sudden flip with N — oo. Indeed, writing down the classical
Hamiltonian associated with HTI(}),

FQPTI 1 —

2 1
= N eI x +K——=, (5

2j 2 2

where K (x, p) is a complicated (position-dependent and quar-
tic in momentum) kinetic term not given explicitly here, we
immediately see that the classical Hamiltonian H°' associated
with the quantum critical Hamiltonian H¢' = AT (31)
corresponds to a degenerate double-well system which is parity
symmetric. The quantity (J;)&% o {(x\/2 — x2 — p?)&S can
be seen as an order parameter characterizing the ground-state
phases in the present QPT.
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The LMG Hamiltonian with a second-order QPT can be
written as HT2()) with

HE20) = J;, VT2 = —l.ff. (6)
2j

The order parameter might be again associated with (J;)&*%,
but a more suitable choice is the ground-state spin inversion
parameter (I)&% = (Y&5|J5 + jlYes) o (x2 4+ p?)&s. For A
below the value A°> = 1 we obtain (/)&% = 0, which means
that all spins point down in the lowest state, while above 1>
we find a nonzero (increasing with 1) value (7)&*, indicating
a measurable fraction of spin-up orientations. The change
of (I)&% is continuous, but for N — oo the first derivative

L% (I)&* varies discontinuously at A°>. The classical Hamilto-
nian
H¥T2 11—, h 2+ , 1
=— - - = 7
2j y Tttty O

corresponding to Eq. (6) shows that the critical Hamiltonian
H®? associated with H2 = H®T2(12) is a pure quartic
oscillator with a position-dependent kinetic term.

The form (6) gives us yet another possibility to create a
first-order QPT. The corresponding Hamiltonian H () is
determined by

~ , N N , 1 . N
AP 0) = J;, v =—2—j[11+c<13+j)]2, (8)

where the interaction term is modified with respect to Eq. (6)
and introduces a new parameter ¢ (in the following fixed
at ¢ = 4). The order parameter characterizing the relevant
phases is again the ground-state spin inversion (/)#%, which
for ¢ # 0 changes from zero to a nonzero value in an abrupt,
discontinuous way at A = A°" = 1/(1 + ¢?). The classical
Hamiltonian corresponding to Eq. (8) is

HETY 1, A Al —
— = —xz—c—x3\/2 —x2+ (

2j 2 2 4 2
©

where K'(x,p) is again a certain kinetic term. We see that
the classical critical Hamiltonian H¢' associated with H¢! =
H®TV (1) corresponds again to a degenerate double-well
system, but is now parity asymmetric, in contrast to the
previous first-order QPT case H°'.

B. Distributions of exceptional points

Prior to discussing the EP distributions associated with
the above critical Hamiltonians, we have to comment on the
general methods for finding the EPs. A straightforward way is
to search roots of a polynomial D(A) obtained by elimination
of the system of equations

det[A(A) — E] =0, %det[ﬁ(k) —E]1=0, (10
where the first equation is the eigenvalue condition and the
second is the degeneracy condition [10-12]. Since the order
of D(A) is d(d — 1) and its coefficients are real for Hamilto-
nians of the form (1), the EPs come as complex-conjugate
pairs (A\PP AFPY) with i = 1,...,Z, where 7 = d(d — 1)/2.
However, this method requires an extremely high evaluation

precision and works (with commonly available computational
platforms) only for moderate dimensions, say, d < 30 [30].

More efficient methods have been proposed (see, e.g.,
Ref. [31] and references therein), but they aim mostly at finding
a single EP inside a limited parameter domain. In contrast, our
task is to find all EPs in a large region of A. To this end, we
use a modification of the loop-integration method proposed
in Ref. [10]. The method makes use of the fact that two
complex energies E,(A) and E, (X) at a small distance § =
A— X}EP from their associated EP behave as E, — E,; & V8
(see Appendix A). Therefore, following a closed loop around
the EP, the energies E, and E,  swap. Note that here we do
not take into account rare but possible cases of multiple EPs
connecting three or more levels [32]. Generalizing the above
conclusion to regions with an arbitrary number L of ordinary
EPs, we observe that after closing a loop around this region,
L energies in the set {Ey, ..., E;} must swap. This makes it
possible to detect large clusters of EPs and by reducing the
loop sizes (while keeping a sufficient precision of movements
along the loops) to iteratively localize individual EPs inside
these clusters.

The distribution of EPs for the LMG model was previously
calculated for the second-order QPT Hamiltonian similar to
that in Eq. (6) [20,33]. On the other hand, the first-order
QPT Hamiltonians (4) and (6) were not studied. We start with
the symmetric case H®T' from Eq. (4). The corresponding
energy spectrum and a pattern of EPs are depicted in Fig. 1.
As explained above, the distribution of EPs is symmetric
under the complex conjugation, so we always show only the
ImA > 0 half plane. The additional symmetry of the pattern in
Fig. 1(b) under the real axis inversion results from the > <> —A
symmetry of the Hamiltonian. We note that the imaginary axis
of A in Fig. 1(b) is logarithmic, so the distances of the closest
EPs to the real axis are indeed very small and differ between
each other by several orders of magnitude. As discussed below,
this is very typical for the first-order QPTs.

A comparison of the EP pattern in Fig. 1(b) with the
spectrum in Fig. 1(a) demonstrates a one-to-one correspon-
dence of a large subset of EPs with avoided crossings of
real energy levels. This is visualized by using the same dot
type for the EP and its associated avoided crossing. The
assignment can be done by tracing the evolution of energies
E,(X) from the avoided crossing on ImA = 0 along a straight
path perpendicular to the real axis. In Figs. 1(c) and 1(d) we
select the line starting at A = 0, where the spectrum shows
several avoided crossings. As ImA increases and the path
crosses locations of individual EPs, we observe that real parts
of selected energies merge and imaginary parts diverge. This
indicates a connection of the given pair of levels with the
particular EP. As shown in Appendix A, for an isolated pair of
EPs located at XFP and XFP* not far from the real axis, the real
energies E, and E, corresponding to levels n and n’ associated
with the EP satisfy the relation

Ex(A) = Ey () = 2Fu (M)A = 71, (1n
where F,,,v(}) is a certain regular function. This relation holds
for |1 — )»Fpl less than the radius of convergence R of the
Puiseux expansion [distance of the given EP to the closest
EP involving any of the levels n and n’ (see Appendix A)],
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FIG. 1. Energy spectrum and EPs for the first-order QPT LMG
Hamiltonian (4) with N = 15. (a) The A <+ —X\ symmetric energy
spectrum with the avoided crossings of levels demarcated by dots.
(b) The EP pattern, in which selected EPs are assigned to the
corresponding avoided crossing in (a) by the dot types. (c) and (d)
Evolution of real and imaginary parts of individual level energies
E,(A) along a path A =0+ iu. (c) The real parts merge and (d)
the imaginary parts diverge as the path crosses individual EPs in (b)
[mergers in (c) are invisible due to very small energy differences,
while in (d) they are emphasized by 1/ImA scaling of ImE].

that is, within an interval |A — ReAEP| < (R? — Im?AEP)1/2,
Assuming that F,, varies slowly on this interval, we see that
the minimal spacing between the two levels is reached at A ~
ReA’ and takes a value |E, — E,/| & 2F,,(ReAr")| ImALF|
proportional to the imaginary coordinate of the EP. Indeed, a

E (a)

1°'V
0_
_10_
_20_
o 5 1
Im A% (b)
10+
54 :
”0":’0.0 . ° '
. ..‘;.;’v; > . * Re 7\‘EP
0 5 10

FIG. 2. (a) Energy spectrum and (b) EPs for the second-order
QPT LMG Hamiltonian (6) with N = 15. Only the EPs closest to the
real axis are assigned to the corresponding avoided crossings.

highly magnified view of the spectrum in Fig. 1(a) would show
that the sharpness of avoided crossings changes proportionally
to the distance of the corresponding EPs from the real axis.

However, an unambiguous link between the EPs and
avoided crossings of individual levels, as outlined above, holds
only to a limited extent. As the EPs represent square-root
branch points in the system of d interconnected Riemann sheets
of the complex function E (L), the assignment of a given EPtoa
certain pair of real energy levels is not unique. More precisely,
it can be done only if ImlFP < R (the radius of convergence
of the Puiseux expansion); otherwise it depends on the path we
choose between the real axis and the selected EP. There is a
large number of EPs in Fig. 1(b) (those demarcated by smaller,
gray dots) whose assignment to the real energy levels via the
path perpendicular to the real axis would not correspond to
any visible avoided crossing. The effect of these EPs on the
real spectrum is apparently eliminated by the presence of EPs
with smaller values of ImXiEP. In this sense, we speak about a
screening phenomenon.

Figure 2 displays the energy spectrum and a distribution
of EPs for the second-order QPT Hamiltonian (6). The as-
signment of EPs to real avoided crossings is now performed
only for the first row of EPs close to the real axis. The pattern
of EPs in Fig. 2(b) is well known from Refs. [20,33]. Note
that if presented also for ReA < 0, the pattern would be mirror
symmetric with respect to ReA = 0; this is due to an accidental
unitary relation between HT2(41) and —H T2 (—1). We
stress that the imaginary axis of A in Fig. 2(b), in contrast to
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FIG. 3. (a) Energy spectrum and (b) EPs for the first-order QPT
LMG Hamiltonian (8) with N = 15.

Fig. 1, is linear. This indicates much larger distances of EPs
from the real axis for the second-order QPT in comparison
with the first-order QPTand simultaneously much smaller
relative differences in these distances between individual EPs.
Based on Eq. (11), analogous statements can be formulated
for spacings between individual real energy levels undergoing
avoided crossings near the QPT critical point. These features
are not restricted just to the present particular cases, but
constitute a general distinction between the two QPT types.
The preceding sentence is supported by Fig. 3, which
depicts the energy spectrum and the pattern of EPs for the
parity-asymmetric version of the first-order QPT Hamiltonian
[see Eq. (8)]. The main features of the EP distribution, in
particular the very close approach of the nearest EPs to the
real axis, are qualitatively similar to the previous first-order
QPT case in Fig. 1. Note, however, that in contrast to the
previous case, the present EP distribution lacks the mirror
symmetry around the Rei = A°"" = 0.059 line (there is no
unitary relation between the A = A°!" & § Hamiltonians) and
the exact centering of some EPs at the critical point (the double-
well system at A = A°!" is degenerate but not symmetric).
The EP-based distinction between the first- and second-
order QPTs can be formulated in a quantitative way by tracing
the convergence of the nearest EP to the critical point on the
real axis with increasing size of the system. This is presented in
Fig. 4 for the above-studied LMG Hamiltonians. We show the
logarithm of ImAEP (where index 1 is assigned to the closest

.........

,‘*”**,(* 06 T T
*""'*'m 10 100 1000 10000

10 100

FIG. 4. Evolution of the single EP located closest to the QPT
critical point with increasing size N. (a) First-order QPT LMG
Hamiltonians (4) and (8) showing an exponential decrease of Iml',sp.
(b) Second-order QPT LMG Hamiltonian (6) with an algebraic
decrease of Imk'fp. A linear fit of the lin-log dependences in (a)
yields ImAF? oc N=¢e="V, where (¢,1) = (0.52,1.49) for AT and
(0.56,1.12) for AT, The log-log dependence in (b) is consistent
with ImAEP o« N =) the evolution of x (N) being shown in the inset
(an estimated asymptotic value deduced from the calculation up to
N =~ 5400 is k = 0.666; the tilted line in the main graph is a linear
fit through the last three points).

EP) as a function of N. The horizontal scale is linear for the two
first-order QPTs in Fig. 4(a) and logarithmic for the second-
order QPT in Fig. 4(b), implying an exponential and roughly
algebraic convergence of the nearest EP to the critical point for
the first- and second-order QPT, respectively. This means

exp(—mN — ¢InN) for QPT 1

N—* forQpT2, (12

ImAf? o {
where 7, ¢, and « are some positive constants. We note that
the log-log dependence in Fig. 4(b) indicates a relatively slow
convergence to the algebraic formula in Eq. (12). The exponent
k exhibits a secondary dependence on N, but this dependence
seems to have an asymptotic value limy_, o k & % (see the
inset of the figure and the line fitting the highest-N points).

As follows from Eq. (11), there is a direct relation between
the distance ImAEP of the first EP from the real axis and
a spacing A, = E, — E| between the two lowest states at
A= Reklfp. Indeed, the formula (12) is consistent with the
scaling of the critical spectra at the first- and second-order QPT
described in Appendix B and in Egs. (14) and (15) below with
a substitution d ~ N. We have checked that for the first-order

QPT the relation between the exponential dependences in
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Egs. (12) and (14) is quantitative, yielding the same constants
in the exponential. This holds not only for the binary avoided
crossing of the lowest levels, but also for higher ones.

In contrast, the algebraic dependences in Egs. (12) and (14),
associated with the second-order QPT, are related only in a
qualitative sense. The exponent x ~ % characterizing large-N

scaling of ImA® differs from the value } that describes the
scaling of the energy spacing Aj; between the lowest levels.
This discrepancy can be attributed to the proximity of several
EPs involving the lowest energy levels to the second-order QPT
critical point [see Fig. 2(b)]. The function F,, (A) in Eq. (11),
which hides the influence of the neighboring EPs, cannot be
assumed to vary slowly on the real axis, and the minimal
spacing A,; is located at a certain Ao shifted away from
A = ReAEP. Rewriting Eq. (11) as Aj;(h) = 2F21 (ho)[(ho —
ReAfP)? + Im?AfP]1/2) we see that the large-N scalings of
Ar1(Ao) and Im}fp need not be the same.

III. EXCEPTIONAL POINTS FOR RANDOMLY
PERTURBED CRITICAL HAMILTONIANS

In this section, the linear Hamiltonian form (1) is studied
from a different perspective. The free term H (0) is associated
with the critical-point Hamiltonian H°' or H? of a first- or
second-order QPT taken from the model of Sec. II, while
the interaction term V is considered as a random matrix. We
want to study to what extent the criticality of H°* represents a
property independent of a particular model-specific Hamilto-
nian trajectory. Will the critical properties of H* be preserved
even in this setup? Does an arbitrary perturbation of a critical
Hamiltonian show some universal features in the distribution of
EPs? Note that analyses of linear Hamiltonians with a random
interaction term were presented in Refs. [10,34], but only with
a noncritical Hamiltonian H (0). Here we extend these studies
by considering various forms of the free Hamiltonian and also
different classes of random perturbations.

A. Hamiltonian forms

The full Hamiltonian H (1) is expressed in the unperturbed
eigenbasis, so the free Hamiltonian is represented by a diagonal
matrix

H(0) = diag{E(0),E>(0), ..., E40)} =

I:Icl
I:ICZ
710, (13)

where d is the dimension. For A ) = HA°¢!, that s, for the crit-
ical Hamiltonian of the first-order QPT, the energies E,(0) =
EC! are those of a parity-symmetric degenerate double-well
Hamiltonian in one degree of freedom. We employ a numerical
spectrum of the LMG Hamiltonian (4) with A = A°'. The
spectrum inside the wells consists of parity doublets, the
separation of levels inside the doublet quickly decreasing with
increasing 7i~' o d. As shown in Appendix B, the spacings
between neighboring levels for d > 1 and n <« d can be
semiclassically approximated as

2w for n even
ESL, —E! ~ { (14)

A, exp(—B,d — C,Ind) forn odd,

where w is an average spacing and A,, B,, and C, are some
positive constants. For H 0 = A 2 that is, for a second-order
QPT, which is for one degree of freedom associated with the
pure quartic oscillator, we use a numerical spectrum of the
LMG Hamiltonian (6) at A = A>. This spectrum for d > 1
can be approximated by an explicit formula E,(0) = ES* ~
wn*3d=13 (see Appendix B), so

4w rn\1/3
—E?~ _<—> . (15)
3 \d

Finally, to provide a comparison of the above critical cases
with a noncritical one and to keep a link to the results of
Refs. [10,34], we consider also the third choice of the free
Hamiltonian H(0) = AH° « J5, which has an equidistant
spectrum in the manner of the harmonic oscillator, hence
E,(0) = EFO = wn and

c2
En+1

EC2

2 - E? =o. (16)

The random interaction term V will be associated with three
different classes of random matrix ensembles:

v — pdiae
— Vfull
— "}off—diag. (17)

The first choice Vdiag represents purely diagonal matrices with
elements V% = 0 for n #n’ and Vnd,iag being independent

nn’
random variables with zero expectation value and variance
o2. We consider either the normal distribution N(0,0%) with
Vg ¢ (—o0, + 00) or the rectangular distribution R(0,02)

on the interval V3% ¢ [—/30, + v/30]. That is,

~ {R(O’Gz) } forn =n’'

Von'® = N(0,0?)
forn #n’,

nn' -

(18)

where ~ means “taken from.”

The second choice of V corresponds to the classical
Gaussian orthogonal ensemble (GOE) [35]. As the whole
interaction matrix is completely filled, we call this case VI,
The matrix elements are normally distributed independent
random variables generated via the following prescription:

{NN(O,Zaz) forn =n'

phull .
~N(0,6%) forn #n'.

o (19)

The third choice, named V°di4¢ js similar to the previous
one except that the diagonal matrix elements of the GOE
interaction are fully erased. So we have strictly off-diagonal
matrices generated as

yoff-diag . _ 0 forn =n'

'—{~N(o,a2) for n # . (20)

Note that this ensemble of interaction matrices is expected
to yield results partly similar to the matrices taken from the
Gaussian unitary ensemble (GUE); see Ref. [34] where the
analysis is done for A 0 = AMYO_ This is due to the fact that
the absolute size of the diagonal matrix elements in a complex-
valued GUE matrix is suppressed relative to the off-diagonal
ones, in analogy to the extreme off-diagonal case studied here.
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The above three classes of random ensemble can be seen
as some representative scenarios of perturbing the free Hamil-
tonian and breaking its symmetries. The diagonal ensemble
(18) corresponds to perturbations preserving all the symmetries
of the original Hamiltonian. As we assume a nondegenerate
spectrum, the interaction term must be diagonalized in the same
basisas H (0). For the full-matrix ensemble (19), the eigenbasis
of the interaction Hamiltonian is identified with a random
rotation of the unperturbed basis. Indeed, the GOE is built in
such a way that any eigenbasis rotation has an equal probability,
so the information on initial symmetries is completely lost.
Finally, the off-diagonal ensemble (20) captures the situations
in which the initial symmetries are violated in a maximal way
so that the probability of conserving the unperturbed basis is
zero. Null diagonal matrix elements of the interaction indicate
that the result of V acting on any unperturbed eigenvector
is perpendicular to this eigenvector; imagine as an example
H(0)  J5 (an initial magnetic field in the z direction) and
V o (Jy 4+ J_) o< J; (a perturbing magnetic field in the x
direction).

Each of the matrix ensembles Vdiag, Piull gnq yoff-diag hag
a free parameter, the variance o2 in Eqs. (18)—(20). This
parameter determines the dispersion of diagonal and/or off-
diagonal matrix elements and also the overall size of the
interaction term averaged over the ensemble. Therefore, it
competes with the outer control parameter A of the whole
Hamiltonian (1). To avoid this ambiguity, we normalize o>
to make the average size of V equal to the fixed size of H(0).
We use a quadratic spread Dg of the spectrum {En}gzl, here
for the sake of generality taken to be complex:

d

— _ 2 _
Dp=——) B~ M|’ =

n=1

TrHH! TrATrAT
d—1 dd—-1)"
21

Operator H, not necessarily Hermitian, represents the spec-
trum generating Hamiltonian and

TrH
E,=— 22
> y (22)

is the mean value, a center of mass of the spectrum. Note that
/D quantifies the size (an average diameter) of the cloud
of complex eigenvalues {E,}?_, and plays a role similar to
an operator norm of H-M g. For instance, H = g° yields
Dg ~ wd /12 for d >> 1, while a pure quartic oscillator
H = A has «/Dg ~ wd/~/11.23.

The quadratic spread (21) can be evaluated for the spectra
of both the free and interaction terms of the Hamiltonian. The
adjustment of parameter o is therefore performed so that an
expectation value (Dy) of the quadratic spread

T2V
d—1 dd-1)

Trv2
Dy =

(23)

of the spectrum of the random perturbation V is set equal to the
quadratic spread D g(0) of the spectrum of the free Hamiltonian
H(0). For the above classes of perturbation ensembles this

means

Dg(0) for Vdiag
o2 ={Dg(0)/(d+2) for Vil (24)
Dg(0)/d for Voff-diag

Note that o% in the full and off-diagonal cases is reduced
by a factor ~1/d with respect to the diagonal case; this is
caused by widening of the spectrum of a nondiagonal matrix
due to level repulsion. The normalization (24) implies that the
strongest competition between the free and interaction terms
of Hamiltonian (1) is expected in the vicinity of A = 1.

This overall expectation is supported by an analysis of
the global spectral measures (21) and (22) for Hamiltonians
with running parameter A. Their evaluation is performed in
Appendix C. It turns out that a perturbation of an arbitrary free
Hamiltonian by a single random matrix from either of the above
ensembles induces immediate spectral redistributions within
aninterval, which is placed nearly symmetrically around A = 0
and whose width is of the order of unity. Most of the avoided
level crossings should take place within this interval of A
and the associated complex EPs should be located nearby.
This bulk expectation was for the V! ensemble confirmed
in Ref. [10], where the EP distribution of a GOE-perturbed
regular Hamiltonian was first studied. In the following, we
analyze the actual EP distributions in the complex A plane for
various choices of V and H(0).

B. Distributions of exceptional points

Let us study the distributions of EPs associated with the
three types of free Hamiltonian (13) and the three classes of
random interaction (17). It is clear that each sample matrix
V taken from any ensemble gives a particular arrangement of
discrete EPs in the plane A € C. We are however interested
in smoothed distributions of EPs, which are obtained by
averaging over the whole ensemble of interaction terms of the
given class (or, if performed numerically, over a sufficiently
large number of samples).

We will see that the three random interaction ensembles
pdiag plull ang poftdiag exhibit crucially different average
distributions of EPs. For the diagonal ensemble V942, all
degeneracies must be trivially located along the line A = A +
i0. They represent unavoided level crossings, ordinary diabolic
points, that arise from a fusion of complex-conjugate pairs A}
and AP of EPs at a point APP on the real axis (fusion of a pair
of EPs can in general produce either a DP or a higher-order
type of singularity). For the full-matrix ensemble V™", the EPs
are scattered in the whole complex plane. It turns out that the
ensemble-averaged EP distribution for the GOE perturbation
is rotationally symmetric, depending just on |A| after the full
averaging [34]. Finally, for the off-diagonal ensemble V°ff-dia
the distribution of EPs is located in regions closer to the
imaginary axis. So the succession Vg — pfull _ off-diag
captures a sampled view of a gradual move of EPs in the
complex A plane from the real axis towards the imaginary axis.

We start with the simplest diagonal case (18). It can be
shown (see Appendix D) that the distribution of crossings A"
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along the real axis A = A > 0 is given by the formula
p SR A 2Vp
PA) == F{A . 25
( ) z Z Z Ann’(o) ( Ann’(o)> ( )

n=1 n'=n+1

Here A,,,/(0) = E,(0) — E,(0) are differences of unperturbed
energies of the Hamiltonian H (0), and F(}) is a certain
function derived from the distribution p(v,) of the diagonal
matrix elements v, = Vnd,:ag / Vo. The latter distribution is ex-
pressed with respect to an arbitrary interaction energy scale
Vo. Information on a particular level pair n,n” in each term of
Eq. (25) is then reduced just to a dimensionless form factor
U = 2V / A (0). We choose a value

Vo = /30 = /3Dg(0), (26)

which, e.g., for a harmonic oscillator yields 2V = wd. This
setting guarantees that the interval V,,, € [V}, + Vp] covers
100% of the available values for the rectangular distribution
R(0,0) and approximately 92% of all values for the normal
distribution N(0,o2). For both these distributions the function
F () can be written explicitly

G — DA3G - 1) for R(0,02)

FO) = _ _ 27
3/m)2h 2 exp(=3172) for N(0,0?),

where ®(x) stands for a step function (® = 0 for x < 1 and
® =1 for x > 1). These dependences are displayed in the
insets of Fig. 5. The form of F(X) for a general distribution
of diagonal matrix elements and the derivation of the above
formulas is presented in Appendix D.

The formula (25) is normalized to yield a unit integral
over the range A € [0, 4+ 00), as can be checked for both
specific functions in Eq. (27). The crossings are distributed
symmetrically with respect to A = 0, so we can replace P(})
by P(|A]). As the whole range A € (—oo, + 00) contains a
total number of Z = d(d — 1)/2 crossings, the dimension-
dependent density of crossings D(|A|) is given by Eq. (25)
without the prefactor.

The ensemble-averaged distributions of crossings obtained
from the formula (25) for H(0) = H¢', A2, and A" are
displayed in the main panels of Fig. 5 for a moderate dimension
d = 16. Figure 5(a) corresponds to the rectangular distribution
of diagonal matrix elements, Fig. 5(b) to the normal distri-
bution. Although the rectangular distribution yields a sharper
form of the function F than the normal distribution (see
the insets), both cases result in similar overall dependences
P(A]). We observe that if the free Hamiltonian is taken at
the first-order QPT, H(0) = H°!, the distribution has a sharp
peak at very small values of |A|. This is a direct conse-
quence of the nearly degenerate parity doublets associated
with the reflection-symmetric critical Hamiltonian resulting
from Eq. (4). As the spacings A, /(0) between the doublet
states decrease exponentially with dimension d [see Eq. (14)],
the peak quickly converges to || = 0 with d — oo. In this
limit, the width of the peak vanishes and its height diverges.
Such an effect is not present if H (0) is associated with the
critical Hamiltonian H°? or with a harmonic oscillator HHO.
Nevertheless, the second-order QPT Hamiltonian H<? siill
shows a clearly distinguished shift of P(|1|) towards smaller
values of |A| in comparison with HHO. This is obviously a

0.3+

0.0+4— T T T T T T y y 1 |}\,|

0.0 0.5 1.0

FIG. 5. Ensemble-averaged distributions of DPs (real crossings)
along |A| = |ReA| for Hamiltonian (1) with the diagonal random
interaction V = V2 from Eq. (18) for d = 16 (N = 15). The
calculation was done via formula (25). (a) Rectangular distribution
and (b) normal distribution of diagonal matrix elements; the functions
F from Eq. (27) are shown in the respective insets. Individual curves
show results for three unperturbed Hamiltonians H(0) = H¢', A2,
and MO,

consequence of the cumulation of levels in the pure quartic
oscillator near the ground state [see Eq. (15)].

Let us proceed to the analysis of full and off-diagonal
interaction matrices (19) and (20). The ensemble-averaged dis-
tributions of A" in the complex plane for these Hamiltonians
are shown in Figs. 6 and 7, respectively. They display results
for A (0) associated with the first-order QPT Hamiltonian
A¢! [Figs. 6(b) and 7(b)], the second-order QPT Hamiltonian
A< [Figs. 6(c) and 7(c)], and the harmonic oscillator AHO
[Figs. 6(d) and 7(d)]. Figures 6(a) and 7(a) depict the distri-
butions P(|A]) of the absolute values |)~?P| connected with the
complex X}EP distributions in Figs. 6(b)-6(d) and 7(b)-7(d).
The distributions in Figs. 6(a) and 7(a) are normalized in the
same way as those in Fig. 5, i.e., to a unit integral over the
whole range |A| € [0,00).

As can be seen in Figs. 6(b)-6(d), the ensemble-averaged
distributions of EPs for the full GOE interaction matrix V!
show a perfect rotational symmetry around the origin of the A
plane for any choice of A(0). This feature, which is violated
for any departure from the GOE class of perturbation, was
recently discussed in Ref. [34], noting that no obvious source
of the symmetry has been identified so far. In contrast, all EP
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-1 -1

TRe A

FIG. 6. Ensemble-averaged distributions of EPs for the Hamilto-
nian (1) with the GOE random interaction V = V™' from Eq. (19)
for d = 16 (N = 15). (a) The EP distribution as a function of the
absolute value |A|; the three curves correspond to the three choices
of the free Hamiltonians (13). Also shown are the EP distributions
in the whole complex plane for (b) H(0) = H¢', (c) H(0) = H?,
and (d) H(0) = H"°. The distribution was calculated from ~8400
random-matrix realizations (~10° complex-conjugate pairs of EPs).

distributions for the off-diagonal interaction ensemble V°-diag
in Figs. 7(b)-7(d) show a strong redistribution of EPs towards
the imaginary axis in the A plane. A similar but less pronounced
feature was observed for complex GUE interaction matrices
[34]; see the discussion below Eq. (20).

Despite the significant differences between the entire AFP
distributions for V = Vdiag yhull apq yoff-diag he correspond-
ing distributions P(|A|) of absolute values [AFF| for a fixed
H (0) do not differ too much [see Figs. 6(a) and 7(a) and
Figs. 5(a) and 5(b)]. One may notice that the nondiagonal
ensembles in Figs. 6(a) and 7(a) in comparison with the diag-
onal ensembles in Fig. 5 yield the peak area of P(|A|) slightly
shifted to larger values of |A| and simultaneously suppress the
long-range tail of P(]A|). This is a consequence of correlations
caused by nondiagonal matrix elements in both nondiagonal
ensembles. The uncorrelated diagonal elements of V422 show
no repulsion and therefore lead to undelayed crossings of
fast-converging levels as well as to very late crossings of levels
with similar slopes. In contrast, the nondiagonal ensembles
Vil apd Voffdiaz gyppress crossings with both small and
large values of |A|. Except for these differences, the P(|A|)
distributions for various interaction classes look qualitatively
similar.

On the other hand, the P(|A|) distributions differ consider-
ably for various choices of the free Hamiltonian H(0). Taking
the harmonic-oscillator case H(0) = HHO as a reference,
we see that both QPT critical Hamiltonians A¢! and H<

-1 0 1 Re A
FIG. 7. Same as in Fig. 6, but for the off-diagonal random
interaction ensemble V = Vo422 from Eq. (20).

shift the distributions towards lower values of |A|. While the
second-order critical Hamiltonian H°? leads only to a small
but noticeable shift, the first-order critical Hamiltonian Ae!
creates a sharp peak of P(]A|) at nearly zero values of |A|.
These conclusions hold for all interaction ensembles.

The explanation of this phenomenon is the same as for
the diagonal ensemble: The critical Hamiltonians A°' and
H*<? contain pairs or clusters of mutually close energy levels,
therefore some of their EPs (or DPs) are located close to the
origin A = 0. For the first-order QPT this results in the peak
exponentially approaching the origin with increasing d; for the
second-order QPT there is only a certain shift in comparison
with noncritical free Hamiltonians.

To illustrate the latter difference in a more qualitative way,
we follow in Fig. 8 the evolution of EPs located nearest the
origin A = 0 with dimension d ranging from 8§ to 64. Only
two free Hamiltonians are compared, H2 and A"°, while the
interaction is taken as V™', The main panel shows the quantity
(|k]15P|), which is the absolute value of the closest-to-origin EP
at A" averaged over the whole interaction ensemble. Clearly,
the average distance of the closest EP from A = 0 decreases
with d faster for the second-order QPT Hamiltonian than for
the harmonic-oscillator Hamiltonian. Linear fits of the log-log
dependences result in the estimates ([ASF|) ~ d=0 for A
and ~ d~°7 for HHO. We note that the dispersions of the
|X]15P| distributions in the ensemble of random interactions are
relatively large for low dimensions, but they quickly decrease
with increasing d.

An even stronger effect can be seen in the inset of Fig. 8,
where we show a threshold value A" obtained as the closest-
to-origin EP in the whole sample of all generated EPs. Though
this quantity depends on the size of the sample, its scaling
with d captures the behavior of the low edge of the P(|A])
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log,A
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FIG. 8. Behavior of EPs near A = 0 for A(0) = A, A", and
V = V™ with increasing dimension (d = 8,16,32,64). The main
panel shows the ensemble average (|X]15P|) of the deviation of the
closest EP from the origin. The inset shows the value A™" determined
as the lowest value [AF"| in a sample of approximately 10° generated
EPs. Linear fits (lines) indicate a faster convergence of both (|)»],EP|)
and A™ to zero for A? than for AHO.

distributions in Fig. 6. The fits indicate that A" ~ 4 =934 for
H and ~ d =035 for AYO,

A similar quantitative treatment of the first-order QPT
Hamiltonian H°' is hindered by some numerical problems
in manipulation with nearly degenerate energy doublets for
large dimensions in the nondiagonal setting. Nevertheless, the
insight gained from the diagonal crossing formula (25) leads
us to anticipate that for V = V!l and Vodi2¢ in analogy with
Vg the low-|A| peak of P(|A|) associated with A°! tends to
form a §-function type of singularity at A = 0 in the asymptotic
regime d — oo.

IV. CONCLUSION

We have studied distributions of exceptional points near
quantum phase transitions of first and second order. Initially,
we focused on some examples of QPTs of both types in the
simple LMG model. We have seen that as the size parameter
of the model increases, some EPs converge to the critical point
on the real axis of the complex A plane. The convergence
is exponential and algebraic for the first- and second-order
QPTs, respectively. This reflects, on one side, an exponential
decrease of the tunneling probability between two wells of the
first-order critical Hamiltonian and, on the other, an algebraic
accumulation of energy levels near the ground state for the
second-order critical Hamiltonian. The first-order QPT is
connected with a single pair of EPs that gets much closer to the
real axis than the others, so that for a finite size it shows up as
a sharp avoided crossing of a single pair of levels. In contrast,
the second-order QPT is a more collective phenomenon in the
sense that the properties of the ground state are simultaneously
affected by several EPs located at comparable distances from
the real axis.

We extended our analysis beyond the LMG model, consid-
ering critical first- and second-order QPT Hamiltonians per-
turbed by various classes of random interactions (interaction
ensembles). We have seen that after a convenient normaliza-
tion, the interaction term of any kind causes immediate [taking
place for A < O(1), independently of dimension] dispersion
of the spectrum regardless of the unperturbed Hamiltonian.

However, it turned out that the initial stage of the dispersion
process, governed by the ensemble-averaged distribution of
EPs close to A = 0, carries decisive information on the QPT
type. In particular, for the first- and second-order QPTs, re-
spectively, some of the EPs either exponentially accumulate at
or algebraically converge to the A = 0 point associated with the
unperturbed critical Hamiltonian. These findings make us con-
clude that the distribution of EPs represents a strong signature
of quantum criticality that enables an unambiguous discrimi-
nation between the first- and higher-order critical Hamiltonians
independently of a particular model parametrization.

Based on the EP-related studies presented in Refs. [16,20],
an analysis similar to ours here can be performed also for
excited-state QPTs, i.e., nonanalyticities affecting higher en-
ergy levels in the spectrum [36,37]. As the classification of
those transitions is entirely different from the classification
of the ground-state QPTs [38], the present results cannot be
directly extrapolated to them.

Properties of the EP distributions near the ground- or
excited-state QPTs may have important consequences for
the superradiance phenomenon in open quantum systems, a
sudden separation of short- and long-living states with an in-
creasing transition rate into a common decay channel [39—41].
This phenomenon is intimately connected with the location of
EPs in the non-Hermitian extension of the Hamiltonian and
hence will be sensitive to the above-studied properties.
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APPENDIX A: NON-HERMITIAN EXTENSION
AND EXCEPTIONAL POINTS

Here we outline some elementary properties of the eigenso-
lutions of the Hamiltonian (1) with the parameter A extended
toAd € C. We assume H(0) and V to be incompatible real sym-
metric matrices of dimension d. For ReA # 0, the Hamiltonian
H()) is represented by a non-Hermitian complex symmetric
matrix satisfying [H (L), H(A)] % 0, which means that it
is not unitarily diagonalizable [42]. There exist d complex
eigenvalues {En()‘)}ff:1 found as roots of the characteristic
polynomial (due to the above constraints symmetric under the
complex conjugation of X). If all eigenvalues are mutually
different, the Hamiltonian is diagonalized with the aid of a
biorthogonal system of left and right eigenvectors (¥-(1)| and
|1ﬂf(l)), which are related by matrix transposition (instead of
full Hermitian conjugation). If SL(1) is a matrix whose rows
are the left eigenvectors, S'R(X) a matrix with columns formed
by the right eigenvectors, and D(X) = diag{E{(XA), ..., E;(V)},
the diagonalization can be expressed as

SEMAMSRR) = S W)SRA)DO). (A1)

Since the biorthogonality (y/X(X)|¥R(X)) = 8, implies that
SL(A)8R(A) = I, with I denoting the identity, Eq. (A1) repre-
sents an ordinary (though nonunitary) similarity transforma-
tion of H(X) to the diagonal form.
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A more difficult situation is encountered if m > 2 of the
eigenvalues {E, (k)}” , coincide. Consider for the sake of
simplicity a single m = 2 degeneracy E,(A) = E, (L) at a
particular value of A (the same degeneracy appears also at the
complex-conjugate value). The degeneracy may be a diabolic
point, in which the complex dependences E,(A) and E, (X)
form a conical intersection just as in the Hermitian case with
two real parameters [7]. This would leave the above-outlined
diagonalization procedure intact, preserving two left-right
pairs biorthogonal eigenvectors associated with both levels
at the degeneracy point. However, a more natural scenario is
that the degeneracy represents a true branch point in the sense
of complex analysis; that is an exceptional point AF? in the
terminology initiated in Ref. [6]. At this point, two Riemann
sheets of a multivalued function E(A) containing eigenvalues
of H()) are interconnected. In that case, the diagonalization
(A1) fails since at the EP both levels have only a single
pair of eigenvectors satisfying the self-orthogonality condition
(Y, (XEP)WR(XEP)) = 0. A similarity transformation turns the
Hamiltonian into the Jordan form with a nontrivial block

S (MEP) = <E (g? ") . (;FP))

on the diagonal [42].

The behavior of complex energies E,(A) near an EP is
described by the so-called Puiseux expansion [6,43]. For an
m-fold EP, the expansion is written in terms of fractional
powers (A — AFP)¥/™ - with k= 1,2, .... It holds for |§| =
A — X?P| < R,where R is the distance to the nearest EP related
to any of the m levels involved in the EP studied. Starting at
the Riemann sheet associated with an arbitrary level involved
in the degeneracy and completing m loops around AFF, one
returns to the original point after visiting Riemann sheets of
all the other levels. Therefore, an enumeration of levels in the
complex spectrum is possible only locally. We note that almost
all non-Hermitian degeneracies of a generic Hamiltonian (1)
are of the m = 2 EP type. While the unlikeliness of the DP
degeneracies in the complex-parameter domain is connected
with the necessity to delete all fractional-power terms in the
Puiseux expansion, the suppression of m > 2 EPs follows from
a higher number of constraints needed for their occurrence.

Near an m = 2 EP involving general levels n and n’ the
Puiseux expansion reads

E,(\FF) + Z
(A3)

B (1) + 3 a1~ 1872,
k=1

(A2)

E,(\) = (A —AF)2,

Ey(A) =

where En(kfp) = E,lr()fp) and a; € C stand for expansion
coefficients. Very close to the EP, the lowest term dominates,
yielding (E, — E,) =~ 2a, /8, which is not analytic. However,
one can introduce a function [12]

E,(\) — E, > A — AR
]_-n”/()\') — n(x) n ()‘-) — Z ( i )

2/ (=AY (A - RN

(A4)

which is regular within the whole disk of radius R around
AFPIf the real axis of A intersects this disk, the function (A4)
describes the real energy dependences E,(A) and E, (1) on
the corresponding interval. In this way we derive the avoided-
crossing formula (11).

APPENDIX B: SEMICLASSICAL APPROXIMATIONS
OF CRITICAL SPECTRA

We sketch the derivation of the approximate level spacing
formulas (14) and (15) for critical Hamiltonians A¢! and H2.
They are based on the semiclassical quantization condition

1
S(E,,)Ef dxp=2nh<n—§>,
E=E,

where p is the momentum at coordinate x for a given energy
level E, enumerated by n = 1,2, ... [44]. The second-order
critical Hamiltonian following from Eq. (7) is approximated for
low energies by a pure quartic oscillator H> ~ Ap® 4+ Bx*,
where A and B are constants. The integral in Eq. (B1) then
reads S(E,) = 21 A~2 B4 E* with I = [1 dx/T— 2%,
Hence we get E, ~ Cn*3, where the constant C can be
expressed through an average spacing w ~ E;/d as C =
wd~'/3. This yields Eq. (15).

The semiclassical spectrum for the first-order critical
Hamiltonian is derived for a parity-symmetric double-well
system, e.g., that from Eq. (5). The formula (B1) is applied
in both wells separately, yielding each level E, twofold
degenerate (for energies bellow the barrier). The eigenstates
Y+ (x) with parity & are obtained by imposing the conditions
Y+ (0) =0 and %1//,,_(0) = 0. This leads to the following
approximate expression for the corresponding energies E,, . :

(B1)

8hiexp(— 1)

E,_ —E,  ~ , (B2)

I
S E=E,

where T = [ dx|p| (integral taken across the barrier separating
both wells) is related to the semiclassical tunneling probability
P =~ exp(—2T/h), while §' = aiES [44]. Hence we obtain the
second line of Eq. (14). The first line results from a harmonic
approximation of states inside the wells and from the neglect of
the parity-doublet spacings (B2) relative to spacings of equal-
parity states.

APPENDIX C: GLOBAL PROPERTIES OF THE
H()) SPECTRUM

We look at the mean value (22) and the quadratic spread
(gl) of the entire spectrum of H (L) with a general interaction
V' and particularly at the statistical features of these quantities
if V is taken from the random ensembles (17). Assuming an
arbitrary Hamiltonian of the form (1), the spectral mean value
is trivially given by

Meg(X) = Mg(0) +AMy, (CH
where My = TrV /d. This demonstrates a linear dependence
of the center of mass of the spectrum on A € C. Similarly, for
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the quadratic spread we obtain

2d
Dg(h) = Dg(0) + ReA 7

N Mgy (0) — Mp(0)My]

K

+[AI*Dy, (C2)

where Myy(0) = Tr[H(0)V1/d is the spectral mean value
of a Hermitian operator [I:I(O)V + Vﬁ(O)]/2 and Dy is
defined in Eq. (23). This shows a quadratic dependence of
the quadratic spread of the spectrum on A [17]. For ImA =
0, the formula (C2) defines a parabola with a minimum at
A = —K/2Dy. At this point, the real spectrum becomes
maximally compressed, its quadratic spread being equal to
Dg(Lo) = Dg(0) — K2/4DV. Main structural changes in the
Hamiltonian eigenstates due to the competition between free
and interaction terms take place in the AL & /Dg(Xy)/Dy
vicinity of Ag. In contrast, for | — Ag| much larger, the inter-
action term becomes dominant, so the spectrum just linearly
expands and the eigenvectors freeze up (for a fixed realization
of V).

For V associated with any of the ensembles (18), (19), or
(20), the coefficients My, Dy, and K in Egs. (C1) and (C2)
are statistical variables. Their expectation values are easy to
calculate,

(My) =0, (Dy)= Dg(0), (K)=0, (C3)

which holds for all three ensembles. With a little more effort we
can evaluate also the variances (X2)) = (X?) — (X)? of these
coefficients. Assuming d >> 1 and taking o2 from Eq. (24), we
obtain

Dg(0)/d  for Vdiag
(M) ~ {2Dg(0)/a* for Vil (C4)
0 for "}off—diag’
i kD%(0)/d  for x:/éiag
(Dy) ~ { D%(0) for Viul (C5)
2D3(0)/d? for Voldiag,
4D%(0)/d  for Vdiae
(K?) ~ {8D2%(0)/d> for Vil (C6)
0 for "}off—diag7

where k¥ = 2 for a Gaussian and « = 0.8 for a rectangular
distribution of diagonal matrix elements in the ensemble V %€,
In these formulas we consider only the leading terms in
dimension d.

Equations (C3)—(C6) have the following implications: The
average slope My of the spectrum for all random interaction
ensembles has a zero expectation value and its expected
deviation to the up or down direction for a single realization of
V has a typical value |§My | o< d—'/2 for V942 |§My | oc d~!
for VUl and |§My| = 0 for Vg The point Aq, where the
spectrum becomes maximally compressed, is also centered at
a zero expectation value and its typical deviation to either
side for a single random matrix is [SAg| oc d~1/2 for Vdieg,
|820] o< d~! for VUl and |§ig| = O for Voff-diag | A half-width
of the minimum of the quadratic spread dependence, i.e.,
a value A; such that D(Ag £ A1) = 2D()g), is centered at
A1 & 1 irrespective of dimension and class of perturbation,
but a typical fluctuation in a single realization behaves as

1821 oc d=1/2 for Va2 |54,] o< d° for VU and |84 oc d ™!
for Voff»diag.

APPENDIX D: LEVEL CROSSING FORMULA
FOR DIAGONAL HAMILTONIANS

Here we deriAve thg formula (25) fpr the distrjbution of level
crossings for V = ydisg 1f Aboth H(0) and V are diagonal
matrices, the eigenvalues of H (1) are linear functions E, (1) =

E,(0)+ AV Consider first just a single pair of levels with
unperturbed energies £ and E' = E 4+ A (where A > 0) and
with random slopes V and V' described by probability densities
P(V) and P(V’). The probability to find the crossing of both
levels within an interval A € [0,A] is trivially determined
by

+00 V—A/A
N(A):/ dV/ dV'P(VY)P(V). (D1

We see that lima . N (A) = 1/2, which expresses the 50%
chance to find the crossing at A > O or A < 0.

This derivation can be easily extended to a general dimen-
siond. Let p(E) = ZZ:I 3(E — E,(0)) be the level density of
H(0). The expected number of crossings contained between
A=0and A is

400 +00 +o00 V-A/A
/\/(A):/ dE/ dA/ dV/ av’
—00 0 —00 —00

x p(E)p(E + A)P(V)P(V), (D2)
so the density of crossing D(A) = %N(A)M:x reads

+0oo +0oo +00
D(A):/ dE/ dA/ av
—00 0 —00
A E)o(E+ AN)P(V)P(V A D3
X 7 P(E)p(E + )()( —7>, (D3)

or after the insertion of the discrete expression for p(E),

4L A (0) [F A (0
D(A):Z Z ﬂ( )/ dv P(V)P(V—%),

n=1n'=n+1 o

Dy ()
(D4)
with A,,/(0) = E,(0) — E,(0). Introducing a distribution
p(v) = Vo P(vVj) of dimensionless slopes v = V/Vy, where

Vi is a characteristic scale of matrix elements Vnd,iag, the
summed terms in Eq. (D4) are transformed to

+o0
Vo 2 f dvp(v)p(v—%), (D5)

Ann’(o) 1_2 —00
N ——’

Dnn’ ()‘-) =

! F())

with A = auA. Thus the contribution to Eq. (D4) from
each level pair is given by a scaled expression D, (1) =
O F (@ )), where F() is a universal dependence derived
from the distribution p(v) and «,, a scaling factor inversely
proportional to the spacing A, (0).

Finally, as the integration of D(A) over A € [0,00) gives
a half of the total number Z =d(d — 1)/2 of all cross-
ings, we define a d-independent distribution of crossings

012112-12
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P(A) = 2D(A)/Z normalized to a unit integral over the positive
axis (the distribution of A < 0 crossings is mirror symmetric).
We therefore arrive at Eq. (25). The validity of this formula was

tested numerically. The particular forms (27) of the function F
can be easily derived from Eq. (D5) by inserting the rectangular
and normal distributions p(v) with V) = J3o.
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