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Quantum canonical transformations and exact solution
of the Schro¨dinger equation
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~Received 4 December 1996; accepted for publication 25 February 1997!

Time-dependent unitary transformations are used to study the Schro¨dinger equation
for explicitly time-dependent Hamiltonians of the formH(t)5R(t)–J, whereR is
an arbitrary real vector-valued function of time andJ is the angular momentum
operator. The solution of the Schro¨dinger equation for the most general Hamil-
tonian of this form is shown to be equivalent to the special caseR5(1,0,n(t)).
This corresponds to the problem of a driven two-level atom for the spin half
representation ofJ. It is also shown that by requiring the magnitude ofR to depend
on its direction in a particular way, one can solve the Schro¨dinger equation exactly.
In particular, it is shown that for every Hamiltonian of the formH(t)5R(t)–J
there is another Hamiltonian with the same eigenstates for which the Schro¨dinger
equation is exactly solved. The application of the results to the exact solution of the
parallel transport equation and exact holomony calculation for SU~2! principal
bundles~Yang–Mills gauge theory! is also pointed out. ©1997 American Insti-
tute of Physics.@S0022-2488~97!01107-9#

I. INTRODUCTION

In nonrelativistic quantum mechanics the dynamics of pure states is determined by the Schro¨-
dinger equation,

Hc5 i ċ, ~1!

whereH is the Hamiltonian,c is the state vector representing the state, the dot denotes a time-
derivative, and\ is set to unity. In general the Hamiltonian may be explicitly time-dependent, in
which case the exact solution of the Schro¨dinger equation is in general not known. In terms of the
time-evolution operatorU5U(t) defined byU(t)c(0):5c(t), the Schro¨dinger equation~1! is
written as

H~ t !U~ t !5 iU ~ t !, U~0!51. ~2!

An alternative expression for this equation isU(t)5T exp@2i*0
t H(t8)dt8], whereT denotes the

time-ordering operator. The purpose of this article is to derive some general sufficiency conditions
to obtain the exact solution of Eq.~2! for the dipole Hamiltonians as follows:

H~ t !5 (
a51

3

Ra~ t !Ja5R–J, ~3!

whereRa are real functions of time which do not simultaneously vanish, andJa are generators of
the group SU~2! in some irreducible representation.

Following the same line of reasoning as in the Hamilton–Jacobi theory of classical mechanics,
one can view the inverseU21(t)5U†(t) of the evolution operatorU(t) as a time-dependent
quantum canonical transformation which sets the Hamiltonian to zero. In order to see this more
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clearly, let us first recall that in quantum mechanics the role of canonical transformations is played
by unitary transformations of the Hilbert space. Now consider an arbitrary time-dependent unitary
transformationc(t)→c8(t)5U(t)c(t). Requiring this transformation to preserve the form of
the Schro¨dinger equation~1!, one has

H~ t !→H8~ t !5U~ t !H~ t !U†~ t !2 iU~ t !U̇†~ t !, ~4!

U~ t !→U8~ t !5U~ t !U~ t !U†~0!. ~5!

Hence,U†(t) induces a particular quantum canonical transformation which renders the trans-
formed Hamiltonian zero. In other words, if one views the effect of a quantum canonical trans-
formation as a change of frame in the Hilbert space, then the transformation induced byU†(t)
takes one to a moving frame in which the state vector is stationary, i.e.,c8(t)5c8(0).

As it is manifestly seen from Eq.~4!, quantum canonical transformations also resemble the
non-Abelian gauge transformations of particle physics. Therefore, in a sense solving the Schro¨-
dinger equation~2! is equivalent to finding an appropriate gauge in which the state vector is
stationary.@Note however that here there does not exist an analog of a non-Abelian gauge sym-
metry unless one deals with peculiar constraint systems such as those encountered in quantum
cosmology.#

In this paper I shall try to demonstrate the utility of this simple observation in solving the
Schrödinger equation for a large class of Hamiltonians of the form~3!. The basic idea pursued in
this paper is to find a series of unitary~gauge! transformations which simplify the form of the
Hamiltonian and yield previously unknown exactly solvable cases. Of coursea priori there is no
systematic method of choosing appropriate gauge transformations. However, it turns out that at
least for the systems considered here, one is guided by basic group theoretical properties of
angular momentum operators and methods of quantum adiabatic approximation. Probably the
most notable feature of this method which makes it so effective is its nonperturbative nature.

II. DIPOLE HAMILTONIAN AND PARALLEL TRANSPORTATION IN SU(2) BUNDLES

Consider the Dipole Hamiltonian~3!,

H5H@R#5R–J5r ~sin u coswJ11sin u sin wJ21cosuJ3!5rW~u,w!J3W
†~u,w!, ~6!

which describes the dynamics of a magnetic dipole in a changing magnetic field. HereR:
5(R1,R2,R3)5(r ,u,w) corresponds to the magnetic field vector expressed in units in which the
Larmor frequency is set to unity, (r ,u,w) are spherical coordinates, and

W~u,w!:5e2wJ3e2 iuJ2eiwJ3. ~7!

Then an arbitrarily changing magnetic field corresponds to a curveC:@0,T#→R3, R5R(t)
5C(t).

An application of the dipole Hamiltonian~6! is in the parallel transportation in SU~2! principal
fiber bundles~Yang–Mills theory!. This is easily seen by recalling that parallel transportation1 is
defined in terms of a Lie algebra-valued one-form~gauge potential! A5Am

a Jadx
m according to

g@C #5P expS 2 i E
C

AD 5P expS 2 i E
C ~0!

C ~T !

Am
a Jadx

mD 5T expH 2 i E
0

T

ẋm~ t !Am
a @x~ t !#JaJ ,

~8!

whereC :@0,T#→M is a curve in the base manifoldM of the bundle~space–time in Yang–Mills
theory!, andt is an arbitrarily chosen parameter of the curveC . It is very easy to recognize the last
expression on the right-hand side of Eq.~8! as the time-evolution operatorU(T) for a Hamiltonian
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of the form~6! with Ra5 ẋm(t)Am
a @x(t)#. Thus an exact solution of the Schro¨dinger equation for

Eq. ~6! yields as a special case the solution for the problem of parallel transportation and in
particular the calculation of the holonomy elements and Wilson loop integrals in Yang–Mills
theory.

Let us next recall the basic properties of the most general Hamiltonians of the form~6!.2 It is
not difficult to see that the eigenvaluesEn@R# and eigenvectorsun;R& of H@R# are given by

En@R#5En~r ,u,w!5En~r ,0,0!5nr with n52 j ,2 j11,...,j , ~9!

un;R&5un;~r ,u,w!&5un;~r 0 ,u,w!&5W~u,w!un;~r 0,0,0!&, uP@0,p!, wP@0,2p!, ~10!

where j corresponds to the spinj -representation of SU~2! and determines the Hilbert space, and
(r 0 ,u0 ,w0):5(r (0)),u(0),w(0)). Hence, the HamiltonianH is nondegenerate forrÞ0. In order
to avoid the complications caused by the sudden collapse of all the energy eigenvalues which
occurs atr50, I shall only consider the case where the curveC does not pass through the origin,
i.e., C(t)5R(t)PR32$0%.

Note that$un;(t,u,w)&% forms a single-valued orthonormal basis of the Hilbert space for all
wP@0,2p) anduP@0,p) and thatun;(r ,0,0)& are the eigenvectors ofH(r ,u50,w50)5rJ3 , i.e.,
J3un;(r ,0,0)&5nun;(r ,0,0)&. For u5p,un;(t,u,w)& are not single-valued. This is due to the fact
that the spectral bundle overR32$0%,3 which yieldsun;(t,u,w)& as its local basis sections is not
trivial. In the parametrization ofR32$0% used here the negativez-axis (u5p) is not included in
the patch over whichun;(t,u,w)& are well-defined. To treat the negativez-axis, one must switch
to new coordinatesR8:5(r 85r ,u85p2u,w85w). The eigenvectorsun;R8& will then be single-
valued everywhere except on the positivez-axis. In the following, I shall assume for simplicity but
without loss of generality that the curveC does not intersect the negativez-axis. In the general
case whereC intersects the negativez-axis, one must make appropriateU(1) gauge transforma-
tions which relateun;R& and un;R8&.2

I shall also assume thatun;(0,0)& and thereforeun;R& are eigenvectors of the total angular
momentum operator, i.e., the Casimir operatoruJu25(a51

3 Ja
2. This is always possible unless

Ra are also quantized.2 The latter case will not be considered in the present paper.

III. ADIABATIC APPROXIMATION AND REDUCTION TO TWO-DIMENSIONS

In order to implement the idea of successive quantum canonical transformations, I shall begin
using the results of the adiabatic approximation. One knows from the standard arguments of Born
and Fock4 and Kato,5 that if the time-dependence of the Hamiltonian is adiabatic, then in time the
eigenstates of the initial HamiltonianH@R(0)# evolve into the eigenstates of the Hamiltonian
H@R(t)#. This is actually very easy to see if one differentiates both sides of the eigenvalue
equation

H~ t !un;t&5En~ t !un,t&, ~11!

and computes the inner product of both sides of the resulting equation withum;t& for somem
Þn. This yields

Amn :5^m;tu
d

dt
un;t&5

^m;tuḢ~ t !un;t&
En~ t !2Em~ t !

, mÞn. ~12!

In Eqs.~11! and ~12!, H(t):5H@R(t)#, un;t&:5un;R(t)&, andEn(t):5En@R(t)#. The adiabatic
approximation is valid if and only if the right-hand side of Eq.~12! is negligible. Now let us
choosec(0)5un;0&, then in view of Eq.~12!, it is easy to show thatc(t)5eian(t)un;t& does solve
the Schro¨dinger equation provided that
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an~ t !:5dn~ t !1gn~ t !, dn~ t !:52E
0

t

En~ t8!dt8, gn~ t !:5 i E
0

t

Ann~ t8!dt8. ~13!

The phase anglesan(T), dn(T), andgn(T) for a closed curveC are known as the total, dynami-
cal, and adiabatic geometrical~Berry! phase angles.6

The adiabatic approximation which also includes the geometric phase effects corresponds to
approximating the time-evolution operatorU(t) with

U0~ t !:5(
n

eianun;t&^n;0u. ~14!

In general the approximationU'U0 is not valid. However, one can computeU0 in terms of the
eigenvalues and eigenvectors of the Hamiltonian and useU0

† to perform a quantum canonical
transformation. In the remainder of this section, I shall show that indeed this canonical transfor-
mation simplifies the form of the Hamiltonian considerably.

In order to do this one must first calculate the matrix elementsAmnwhich enter the calculation
of an and especially the termUU̇

† in Eq. ~4! with U5U0
† . This rather lengthy calculation leads

to

Amn5 i @m~12cosu!dmn1
1
2 sin u~eiwCmdmn211e2 iwCndm21n!#ẇ

1 1
2~e

iwCmdmn212e2 iwCndm21n!u̇, ~15!

whereCm :5A( j2m)( j1m11)5C2m21 , and extensive use is made of the properties ofJa and
J6 :5J16 iJ2 , particularly

e2 ibJaJbe
ibJa5cosbJb1eabc sin bJc , aÞb,

J6um;~r ,0,0!&5\C6mum61;~r ,0,0!&,

whereeabc are components of the totally antisymmetric Levi-Civita symbol, withe12351. Fur-
thermore, one can easily show thatan5na, dn5nd, gn5ng, wherea5d1g, and

d52E
0

t

r ~ t8!dt8, g52E
0

t

@12cosu~ t8!#ẇ~ t8!dt8. ~16!

These relations are then used to write down the expression forU0 , namely,

U0~ t !5W~u~ t !,w~ t !!eia~ t !J3W†~u0 ,w0!, ~17!

whereW is defined in Eq.~7!.
Next let us setU5U0

† in Eq. ~4!. Then using Eq.~15!, one finds the expression for the
transformed Hamiltonian

H0~ t !5 1
2W~u0 ,w0!@V~ t !J11V* ~ t !J2#W†~u0 ,w0!, ~18!

where

V~ t !:5e2 i @a~ t !1w~ t !#@sin u~ t !ẇ~ t !1 i u̇~ t !#. ~19!

One can easily see that ifu05w050, thenW(u0 ,w0)51 and the expression~18! for the
transformed Hamiltonian simplifies considerably. Hence, it is convenient to choose the coordinate
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system in such a way thatu05w050, i.e.,R(0)5(0,0,r 0), or alternatively make a further con-
stant unitary transformation usingU5W†(u0 ,w0) which leads to the Hamiltonian

H1~ t !5v~ t !@coss~ t !J12sin s~ t !J2#, ~20!

whereV5:veis, i.e.,

v~ t !:5Au̇21sin2 uẇ2, s~ t !:52a2w1j mod 2p,

cosj:5
sin uẇ

v
, sin j:5

u̇

v
.

One can also combine the two unitary transformations by transformingH by U5U1
†(t) with

U1(t):5U0(t)W(u0 ,w0).
The Hamiltonian~20! describes the dynamics of a magnetic dipole in a time-dependent mag-

netic field which is confined to thex–y plane, i.e., a Hamiltonian of the form~6! corresponding
to a planar curveC1 :@0,T#→R22$0%. Hence, the canonical transformation induced byU1 re-
duces the three-dimensional problem to a two-dimensional one.

IV. EXACTLY SOLVABLE CASES

Consider the Schro¨dinger equation for the HamiltonianH1 . If the angular variables happens
to be constant, then this equation can be easily integrated. This is simply because in this case
H1 at different times commute and the transformed evolution operator is obtained by its exponen-
tiation, i.e.,

U8~ t !5e2 i l ~ t !@coss0J12sin s0J2#, ~21!

where l (t):5*0
t v(t8)dt8,

s0 :5s~0!52w01j~0!52w01tan21F u̇~0!

sin u~0!ẇ~0!
G52w01tan21F u8~w0!

sin u~w0!
G , ~22!

andu8:5du/dw.
Having found the evolution operatorU8 for H1 , one can use Eq.~5! to write down the

solution of the original Schro¨dinger equation~2!. This yields

U~ t !5U1~ t !U8~ t !U1
†~0!5U0~ t !W~u0 ,w0!U8~ t !W†~u0 ,w0! for s~ t !5s0 . ~23!

Note that the parameterss0 and l which enter the expression forU(t) are geometric quantities
associated with the projectionC8 of the curveC onto the unit sphere centered at the origin. In
particular,l is the length ofC8. Furthermore for those portions of the curveC which project to a
single point for an extended period of time,v and consequentlyH1 vanish. This is reminiscent of
the known fact that the adiabatic approximation is exact when the eigenvectors of the Hamiltonian
are stationary.

Another way of arriving at the same conclusion is by performing another quantum canonical
transformation withU5U2

† :5e2 is(t)J3. This leads to the transformed Hamiltonian

H25v~ t !J11ṡ~ t !J3 . ~24!

Clearly for s5const the Schro¨dinger equation forH2 is exactly solvable. Making a further
canonical transformation withU5U3

† :5eil (t)J1, one obtains
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H35ṡ@cos l ~ t !J31sin l ~ t !J2# ~25!

which vanishes identically fors5const. Therefore, as expected the combined transformationU

5(U1U2U3)
† leads to a frame in which the Hamiltonian vanishes and the state vector is station-

ary. Hence, the original time-evolution operator is given byU5U1U2U3 .
Let us next re-express the conditions5const. in terms of the original variables. Requiring

ṡ50, one finds the equivalent condition:r (t)5r * (t), where

r * ~ t !:5cosuẇ2
d

dt S u̇

sin uẇ
D /S 11S u̇

sin uẇ
D 2D 5Fcosu2

d

dw S u8

sin u D /S 11S u8

sin u D 2D G ẇ.
~26!

Therefore, one has:
Lemma 1: The exact solution of the Schro¨dinger equation (2) is given by Eq. (23) provided

that the magnitude of the magnetic field depends on its direction according to r(t)5r * (t).
This is quite remarkable, for it indicates that for every Hamiltonian of the form~6! for which

r * does not vanish for extended periods of time, there exists another Hamiltonian with the same
eigenvectors@note that the eigenvectors only depend on the direction of the magnetic field# whose
Schrödinger equation is exactly solvable. Note that for time intervals during whichr *,0, one can
consider the time-reversed system wherer *.0. The evolution operator obtained for the time-
reversed system yields the original time-evolution operator upon inversion. This leaves only the
cases wherer * vanishes, i.e., eitherẇ50 or u85sinu tan@sinu1c# for some constantc. A
simple case where the latter equation is satisfied isu5p/2 andc521. This means that for the
planar curves withu5p/2 such asC1 , one cannot enforce the conditionr5r * and the exact
solution cannot be obtained in this way. Therefore a direct repetition of the same procedure for the
HamiltonianH1 will not lead to the exact solution. In the remainder of this section I shall
demonstrate, however, that by a straightforward redefinition of the time one can generalize
Lemma 1 further.

Let us first note that for the case wherev50 the exact solution is given by the adiabatic
approximation. Hence, without loss of generality one can restrict to the casevÞ0. In this case the
length l of the projectionC8 of the curveC is a monotonically increasing function of timet.
Therefore it can be used to parametrize the evolution of the system, i.e., replacet. Changing
variables fromt to l in the Schro¨dinger equation for the HamiltonianH1 and making use ofv
Þ0, one has

H̄1~ l !Ū1~ l !5 i
d

dl
Ū1~ l !, ~27!

where

H̄1~ l !:5coss~ l !J12sin s~ l !J25eis~ l !J3J1e
2 is~ l !J3. ~28!

This reduces the problem to the case of a magnetic field which traces a circular path in thex–y
plane with an angular frequency,n:5ds/dl5(r2r * )/v. Note that the presence ofv(t) on the
right-hand side of Eq.~20! is quite essential in the redefinition of time.

Let us next transform to the rotating frame defined byU5Ū2
†( l ):5e2 is( l )J3. In view of Eq.

~4!, this leads to the transformed Hamiltonian

H̄2~ l !5J11n~ l !J3 , ~29!
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which describes a magnetic field with a constantx-component and a variablez-component. Such
systems are widely encountered in the study of nuclear and optical magnetic resonance. For a
recent study of an iterative solution of the Schro¨dinger equation for this Hamiltonian see Refs. 7
and 8.

Note that forn5n05const.,H̄2 is constant. Hence, the transformed time-evolution operator is
given by Ū3( l ):5exp@2il (J11n0 J3)#, and one has

U~ t !5U1~ t !Ū2~ l ~ t !!Ū3~ l ~ t !!Ū2
†~0!U1

†~0!

5U0~ t !W~u0 ,w0!Ū2~ l ~ t !!Ū3~ l ~ t !!Ū2
†~0!W†~u0 ,w0!. ~30!

This concludes the derivation of the exact solution of the Schro¨dinger equation for the case where
s( l )5s01n0l , alternatively,r (t)5r * (t)1n0v(t). This is a generalization of Lemma 1. It states
that even for the time periods during whichr *50, the above procedure still leads to exactly
solvable Schro¨dinger equations. More precisely, the following lemma holds.

Lemma 2: The exact solution of the Schro¨dinger equation (2) is given by Eq. (30), provided
that the magnitude of the magnetic field depends on its direction according to r(t)5r * (t)
1n0v(t), for some constantn0 .

A direct consequence of this result is
Corollary: For every Hamiltonian of the form (6), there exists another Hamiltonian with the

same eigenvectors for which the Schro¨dinger equation is exactly solvable.

V. CONCLUSION

In this paper, I have used a variety of time-dependent unitary transformations of the Hilbert
space to obtain the exact solution of the Schro¨dinger equation for a large class of explicitly
time-dependent dipole Hamiltonians. This involved redefinition of the time variable which was a
consequence of transforming to a moving frame via the inverse of the adiabatically approximate
time-evolution operator. In this frame the natural choice for the evolution parameter turned out to
be the length of the projection of the curveC traced by the tip of the magnetic field onto the unit
sphere centered at the origin.

The reduction of the general problem to that of the HamiltonianH̄25J11n( l )J3 may also be
used to set up an approximation scheme for largev. This is due to the fact thatn5(r2r * )/v may
be neglected for largev, in which case Lemma 2 provides the solution.

This is particularly effective for the dipole Hamiltonians which correspond to a planar curve
C, for which r *50, e.g.,H̄1 . For these Hamiltonians, the approximation is valid if the parameter
r (t)/v(t) is negligible. Note also that for such Hamiltonians ifr (t) andv(t) are proportional,
then Lemma 2 yields the exact solution to the Schro¨dinger equation.

Moreover, by successive application of the method used in this reduction, i.e., by replacing
the original HamiltonianH by H̄1 and repeating the same analysis, one obtains an iterative
solution of the Schro¨dinger equation which yields a product expansion of the time-evolution
operator. The condition of the termination of this expansion after a finite number of iterations may
seem to lead to~possibly! more general exactly solvable cases. It turns out that this is in fact not
the case. This is because enforcing the condition that the above expansion be terminated after the
second iteration leads tov5const., which is certainly not more general than the conditions of
Lemma 1 and Lemma 2. This marks a unique property of the Hamiltonians of typeH(t)5J1
1R3(t)J3 .

The results of this paper have direct applications in the computation of the holonomy elements
and Wilson loop integrals in Yang–Mills theory where the gauge group is SU~2!. @Clearly the
U~2! case can also be handled similarly.# In this case the original parametersRa of the Hamil-
tonian ~6! are identified withẋmAm

a , where (Am
a ) corresponds to the local connection one-form

~gauge potential! and the gauge transformations correspond to quantum canonical transformations
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of the associated Hamiltonian. Another area of application of the results of this paper is in the
calculation of non-Abelian U~2! geometric phases9 such as those encountered in the study of the
three-level systems.10

Note added.In Ref. 11, Berry has introduced an iterative procedure to compute corrections to
the adiabatic geometric phase. Although this procedure also makes use of quantum canonical
transformations, unlike the method described in this paper it is perturbative in nature. In particular,
it cannot be used to yield exact solutions of the Schro¨dinger equation.
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