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Quantum canonical transformations and exact solution
of the Schro dinger equation

Ali Mostafazadeh®
Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, T6G 2J1, Canada

(Received 4 December 1996; accepted for publication 25 February 1997

Time-dependent unitary transformations are used to study thé dobes equation

for explicitly time-dependent Hamiltonians of the foti(t) = R(t)-J, whereR is

an arbitrary real vector-valued function of time afids the angular momentum
operator. The solution of the Schiinger equation for the most general Hamil-
tonian of this form is shown to be equivalent to the special dasd€1,0,v(t)).

This corresponds to the problem of a driven two-level atom for the spin half
representation af. It is also shown that by requiring the magnitudeRofo depend

on its direction in a particular way, one can solve the Sdimger equation exactly.

In particular, it is shown that for every Hamiltonian of the fotd{t)=R(t)-J
there is another Hamiltonian with the same eigenstates for which the diichen
equation is exactly solved. The application of the results to the exact solution of the
parallel transport equation and exact holomony calculation fof2g\drincipal
bundles(Yang—Mills gauge theownyis also pointed out. ©1997 American Insti-
tute of Physics[S0022-24887)01107-9

I. INTRODUCTION

In nonrelativistic quantum mechanics the dynamics of pure states is determined by the Schro
dinger equation,

Hy=iy, (1)

whereH is the Hamiltoniany is the state vector representing the state, the dot denotes a time-
derivative, and: is set to unity. In general the Hamiltonian may be explicitly time-dependent, in
which case the exact solution of the Safirmer equation is in general not known. In terms of the
time-evolution operatot =U(t) defined byU(t)(0):=¢(t), the Schrdinger equatior(1) is
written as

H(U)=iU(t), U(0)=1. 2)

An alternative expression for this equatiorligt) =.7 exd —if, H(t")dt'], where.7 denotes the
time-ordering operator. The purpose of this article is to derive some general sufficiency conditions
to obtain the exact solution of ER) for the dipole Hamiltonians as follows:

3
H()= 2 R(t)J,=R-J, 3)

a=1

whereR? are real functions of time which do not simultaneously vanish, Bnare generators of
the group SW2) in some irreducible representation.

Following the same line of reasoning as in the Hamilton—Jacobi theory of classical mechanics,
one can view the inverstl “1(t)=U"(t) of the evolution operatot)(t) as a time-dependent
guantum canonical transformation which sets the Hamiltonian to zero. In order to see this more
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clearly, let us first recall that in guantum mechanics the role of canonical transformations is played
by unitary transformations of the Hilbert space. Now consider an arbitrary time-dependent unitary
transformationy(t) — ¢’ (t) = 24(t) (t). Requiring this transformation to preserve the form of
the Schrdinger equatior(1), one has

H(t)—H' ()= 2Z(H) 2N () —i 240 24 (1), (4)
U(t)—U’ (t)=2(HU(1) %'(0). (5)

Hence,U™(t) induces a particular quantum canonical transformation which renders the trans-
formed Hamiltonian zero. In other words, if one views the effect of a quantum canonical trans-
formation as a change of frame in the Hilbert space, then the transformation indudét(t)y
takes one to a moving frame in which the state vector is stationaryi.e) = ¢’ (0).

As it is manifestly seen from Eq4), quantum canonical transformations also resemble the
non-Abelian gauge transformations of particle physics. Therefore, in a sense solving the Schro
dinger equation2) is equivalent to finding an appropriate gauge in which the state vector is
stationary.[Note however that here there does not exist an analog of a non-Abelian gauge sym-
metry unless one deals with peculiar constraint systems such as those encountered in quantum
cosmology]

In this paper | shall try to demonstrate the utility of this simple observation in solving the
Schralinger equation for a large class of Hamiltonians of the f¢8n The basic idea pursued in
this paper is to find a series of unitatgauge transformations which simplify the form of the
Hamiltonian and yield previously unknown exactly solvable cases. Of caumri there is no
systematic method of choosing appropriate gauge transformations. However, it turns out that at
least for the systems considered here, one is guided by basic group theoretical properties of
angular momentum operators and methods of quantum adiabatic approximation. Probably the
most notable feature of this method which makes it so effective is its nonperturbative nature.

Il. DIPOLE HAMILTONIAN AND PARALLEL TRANSPORTATION IN SU(2) BUNDLES
Consider the Dipole Hamiltonia(8),

H=H[R]=R-J=r(sin 6 cos ¢J;+sin 0 sin ¢J,+cos 8J3)=rW(0,¢)IW'(8,¢), (6)

which describes the dynamics of a magnetic dipole in a changing magnetic field. Rdere
=(R',R?,R®) =(r, 6, ¢) corresponds to the magnetic field vector expressed in units in which the
Larmor frequency is set to unityr (6,¢) are spherical coordinates, and

W(6,p):=e #3e™102gi ¢33, 7

Then an arbitrarily changing magnetic field corresponds to a c@\®T]—R3, R=R(t)
=C(1).

An application of the dipole Hamiltoniai®) is in the parallel transportation in $2) principal
fiber bundlesYang—Mills theory. This is easily seen by recalling that parallel transportatisn
defined in terms of a Lie algebra-valued one-faigauge potentiaIA=AZJadx" according to

T.
=,7exp[ —if x“(t)AZ[x(t)]Ja],
0

(7
g[%’]z.’/)exp(—if A)z:”/exp(—if AZJdx*
v 710)
(8

whereZ:[0,T]—M is a curve in the base manifol of the bundle(space—time in Yang—Mills
theory), andt is an arbitrarily chosen parameter of the cut¥elt is very easy to recognize the last
expression on the right-hand side of E8). as the time-evolution operatbk(T) for a Hamiltonian
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of the form(6) with R*=x*(t)A%[x(t)]. Thus an exact solution of the Scinger equation for
Eqg. (6) yields as a special case the solution for the problem of parallel transportation and in
particular the calculation of the holonomy elements and Wilson loop integrals in Yang—Mills
theory.

Let us next recall the basic properties of the most general Hamiltonians of the@nfrit is
not difficult to see that the eigenvaluEg[ R] and eigenvectorfn;R) of H[R] are given by

E [R]=E.(r,0,0)=E,(r,0,0=nr with n=—j,—j+1,..}, (9
[n;R)y=[n;(r,0,0))=In;(ro,0,¢))=W(8,¢)|n;(r,,0,0), 6e[0m), ¢e[0,27), (10)

where| corresponds to the spinrrepresentation of S(@2) and determines the Hilbert space, and
(ro,60,90):=(r(0)),6(0),9(0)). Hence, the Hamiltoniakl is nondegenerate far#0. In order
to avoid the complications caused by the sudden collapse of all the energy eigenvalues which
occurs ar =0, | shall only consider the case where the cuBrdoes not pass through the origin,
i.e., C(t)=R(t) e R®—{0}.

Note that{|n;(t,6,¢))} forms a single-valued orthonormal basis of the Hilbert space for all
¢ €[0,2m) andfe[0,7) and thafn;(r,0,0)) are the eigenvectors ¢f(r,6=0,p=0)=rJ3, i.e.,
J%|n;(r,0,0))=n|n;(r,0,0)). For #=,|n;(t,6,¢)) are not single-valued. This is due to the fact
that the spectral bundle ov&®—{0},% which yields|n;(t,8,¢)) as its local basis sections is not
trivial. In the parametrization ak®—{0} used here the negatiweaxis (¢= ) is not included in
the patch over whichn;(t,6,¢)) are well-defined. To treat the negatizeaxis, one must switch
to new coordinateR’:=(r'=r,0'=m7— 6,9’ = ¢). The eigenvectorm;R’) will then be single-
valued everywhere except on the positivaxis. In the following, | shall assume for simplicity but
without loss of generality that the cur@ does not intersect the negatizeaxis. In the general
case whereC intersects the negativeaxis, one must make appropridtd1) gauge transforma-
tions which relatgn;R) and|n;R’).2

| shall also assume thamn;(0,0)) and thereforgn;R) are eigenvectors of the total angular
momentum operator, i.e., the Casimir operdtﬁl":Eg:l Ji. This is always possible unless
R? are also quantizetiThe latter case will not be considered in the present paper.

lll. ADIABATIC APPROXIMATION AND REDUCTION TO TWO-DIMENSIONS

In order to implement the idea of successive quantum canonical transformations, | shall begin
using the results of the adiabatic approximation. One knows from the standard arguments of Born
and Fock and Kato® that if the time-dependence of the Hamiltonian is adiabatic, then in time the
eigenstates of the initial Hamiltoniad[ R(0)] evolve into the eigenstates of the Hamiltonian
H[R(t)]. This is actually very easy to see if one differentiates both sides of the eigenvalue
equation

HO[nt)=En(t)[n,t), 1

and computes the inner product of both sides of the resulting equation wijth for somem
#n. This yields

(mitH®n;t)
- En(t)_ Em(t) ’

In Egs.(11) and(12), H(t):=H[R(t)], [n;t):=|n;R(t)), andE,(t):=E,[R(t)]. The adiabatic
approximation is valid if and only if the right-hand side of Eq2) is negligible. Now let us
choosey(0)=|n;0), then in view of Eq(12), it is easy to show thap(t) =e'“(|n:t) does solve
the Schrdinger equation provided that

d
Amn:=<m;t|& n;t) (12
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t t

E (tHdt', yn(t):=i fOAnn(t')dt’. (13

(012 850+ yalt),  Sn(t)i=— f

0

The phase angles,(T), 6,(T), andy,(T) for a closed curve& are known as the total, dynami-
cal, and adiabatic geometricderry) phase angle$.

The adiabatic approximation which also includes the geometric phase effects corresponds to
approximating the time-evolution operatd(t) with

uo(t):=; e'“n|n;t)(n;0]. (14)

In general the approximatiod ~ U, is not valid. However, one can computk in terms of the
eigenvalues and eigenvectors of the Hamiltonian andUL@&o perform a quantum canonical
transformation. In the remainder of this section, | shall show that indeed this canonical transfor-
mation simplifies the form of the Hamiltonian considerably.

In order to do this one must first calculate the matrix elem@ggswhich enter the calculation
of a,, and especially the termv7/" in Eq. (4) with Z=U]. This rather lengthy calculation leads
to

Amn=i[M(1—c0S 0) Spnt 3 sin 0(€'°Crndmn-1+€ ' *Crndm—1n) 1@

+4(€°Crbmn-1— € *Cpdm_1n) 6, (15)

whereCp,:=+(j—m)(j+ m+1)=C_,,_;, and extensive use is made of the propertie3,aind
J. :=J,%id,, particularly

e 'PlaJ eiPla=cos BIy+ €qpc SIN BI., a#b,
J.[m;(r,0,0)=%C.;/m=1;(r,0,0),

where €, are components of the totally antisymmetric Levi-Civita symbol, wéth;=1. Fur-
thermore, one can easily show thgt=ne«a, 8,=n6, y,=ny, wherea= 5+ vy, and

o= [rrar, = [ n-cosaeanar. (16
0 0

These relations are then used to write down the expressiod fomamely,
Uo(t) =W( (1), (1)) €' “2W (6, ), (17)
whereW is defined in Eq(7).
Next let us set%ézug in Eq. (4). Then using Eq(15), one finds the expression for the
transformed Hamiltonian
Ho(t) = 3W( 6o, 00)[ (1) I+ +Q* (1)I_TW' (85, 00), (18
where
Q(t): =e O+ gin g(t) (1) +i O()]. (19

One can easily see that &= ¢,=0, thenW(68,,¢) =1 and the expressiofil8) for the
transformed Hamiltonian simplifies considerably. Hence, it is convenient to choose the coordinate
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system in such a way th#y=¢o=0, i.e.,R(0)=(0,0r,), or alternatively make a further con-
stant unitary transformation using'=W1t(6,,¢) Which leads to the Hamiltonian

H(t) = w(t)[coso(t)I;—sin o(t)I5], (20
whereQ=:we'’, i.e.,

w(t):=\0°+sir? 0¢°, o(t):=—a— ¢+ & mod 2r,

sin A _ 0
cosé = , Siné&=—.
w w

One can also combine the two unitary transformations by transfortdirtmy f%/'dzUJ{(t) with
Uy (t):=Uo(t) W( 6o, ¢0)-

The Hamiltonian(20) describes the dynamics of a magnetic dipole in a time-dependent mag-
netic field which is confined to the—y plane, i.e., a Hamiltonian of the forii®) corresponding
to a planar curveC,:[0,T]—R2—{0}. Hence, the canonical transformation inducedUby re-
duces the three-dimensional problem to a two-dimensional one.

IV. EXACTLY SOLVABLE CASES

Consider the Schabinger equation for the Hamiltonidd, . If the angular variabler happens
to be constant, then this equation can be easily integrated. This is simply because in this case
H, at different times commute and the transformed evolution operator is obtained by its exponen-
tiation, i.e.,

Ur(t):e—il(t)[COSUOJl—Sin U'OJZ]' (21)
wherel (t): = [Lo(t')dt,

0(0)

- . (22
sin 6(0) ¢(0)

00:=0(0)=— o+ &(0)=—pp+tan

:—(P +tan_1 M
sin 6( o)

and@’':=dé/de.
Having found the evolution operatdd’ for H;, one can use Eq5) to write down the
solution of the original Schidinger equatior(2). This yields

U(t)=U, (U ’(t)UI(O) =Uo(H)W( b, @0)U ’(t)WT( 0o,¢0) for o(t)=o0y. (23

Note that the parametersy andl which enter the expression faf(t) are geometric quantities
associated with the projectio@’ of the curveC onto the unit sphere centered at the origin. In
particular,| is the length ofC’. Furthermore for those portions of the cu@ewhich project to a
single point for an extended period of timeand consequentliy; vanish. This is reminiscent of
the known fact that the adiabatic approximation is exact when the eigenvectors of the Hamiltonian
are stationary.

Another way of arriving at the same conclusion is by performing another quantum canonical
transformation withzz=UJ:=e (0%, This leads to the transformed Hamiltonian

Hy=w(t)Jy+ o(t)Js. (24)

Clearly for o=const the Schidinger equation forH, is exactly solvable. Making a further
canonical transformation with/=UJ}:=¢' (1 one obtains
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Hz=o[cosl(t)Jz+sinl(t)Jd;] (25

which vanishes identically foo-=const. Therefore, as expected the combined transformation
=(U,U,U,)" leads to a frame in which the Hamiltonian vanishes and the state vector is station-
ary. Hence, the original time-evolution operator is givenlby U,U,U5.

Let us next re-express the conditior= const. in terms of the original variables. Requiring
o=0, one finds the equivalent conditiont)=r, (t), where

0 d —0’ /1+—6’ ;
COSO™dg | sing sing) ||%

(26)

1):= ¢ d 0 )/ 1+ 0 i =
M (1):=cos b~ sin 6¢ sinfg/ |

Therefore, one has:

Lemma 1: The exact solution of the Safirmer equation (2) is given by Eq. (23) provided
that the magnitude of the magnetic field depends on its direction according@)te rr, (t).

This is quite remarkable, for it indicates that for every Hamiltonian of the f@nior which
r, does not vanish for extended periods of time, there exists another Hamiltonian with the same
eigenvectorgnote that the eigenvectors only depend on the direction of the magneticwietde
Schralinger equation is exactly solvable. Note that for time intervals during whjeh0, one can
consider the time-reversed system whege>0. The evolution operator obtained for the time-
reversed system yields the original time-evolution operator upon inversion. This leaves only the
cases where, vanishes, i.e., eithep=0 or ¢’ =sin #tar{sin #+c] for some constant. A
simple case where the latter equation is satisfied=isr/2 andc=— 1. This means that for the
planar curves withd= /2 such asC;, one cannot enforce the condition-r, and the exact
solution cannot be obtained in this way. Therefore a direct repetition of the same procedure for the
Hamiltonian H; will not lead to the exact solution. In the remainder of this section | shall
demonstrate, however, that by a straightforward redefinition of the time one can generalize
Lemma 1 further.

Let us first note that for the case whawe=0 the exact solution is given by the adiabatic
approximation. Hence, without loss of generality one can restrict to thesg@€® In this case the
length| of the projectionC’ of the curveC is a monotonically increasing function of time
Therefore it can be used to parametrize the evolution of the system, i.e., répl@®nging
variables fromt to | in the Schrdinger equation for the Hamiltoniad, and making use of
#0, one has

- d —
Hi(DU (D=1 5 Ua(D), (27)

where

H(1):=cosa(1)J;—sin o(1)J,=e' 73], e 1033, (29

This reduces the problem to the case of a magnetic field which traces a circular pathxinythe
plane with an angular frequency;=do/dl=(r —r,)/w. Note that the presence af(t) on the
right-hand side of Eq(20) is quite essential in the redefinition of time.

Let us next transform to the rotating frame defined/sy=U}(1): =e~ "%, In view of Eq.
(4), this leads to the transformed Hamiltonian

Ho(1)=3+v(1)J3, (29
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which describes a magnetic field with a constatomponent and a variabiecomponent. Such
systems are widely encountered in the study of nuclear and optical magnetic resonance. For a
recent study of an iterative solution of the Satirger equation for this Hamiltonian see Refs. 7
and 8. L

Note that forv=vy,=const.,H, is constant. Hence, the transformed time-evolution operator is
given byU;(l):=exd —il(J;+v5 J3)], and one has

U(t) = U4 (H)U(1(1)U3(1 (1)) UL(0)U(0)
= Uo(t)W( g, 0)U(1(1))U(1 (1)) US(0)WT( 8y, ¢o). (30)

This concludes the derivation of the exact solution of the Stihger equation for the case where
o(l)=og+ vgl, alternativelyy(t)=r, (t) + vow(t). This is a generalization of Lemma 1. It states
that even for the time periods during which =0, the above procedure still leads to exactly
solvable Schrdinger equations. More precisely, the following lemma holds.

Lemma 2: The exact solution of the Safirmer equation (2) is given by Eqg. (30), provided
that the magnitude of the magnetic field depends on its direction accordingt}e-r, (t)
+ vow(t), for some constanty.

A direct consequence of this result is

Corollary: For every Hamiltonian of the form (6), there exists another Hamiltonian with the
same eigenvectors for which the Safirmer equation is exactly solvable

V. CONCLUSION

In this paper, | have used a variety of time-dependent unitary transformations of the Hilbert
space to obtain the exact solution of the Sclimger equation for a large class of explicitly
time-dependent dipole Hamiltonians. This involved redefinition of the time variable which was a
consequence of transforming to a moving frame via the inverse of the adiabatically approximate
time-evolution operator. In this frame the natural choice for the evolution parameter turned out to
be the length of the projection of the cur@traced by the tip of the magnetic field onto the unit
sphere centered at the origin. .

The reduction of the general problem to that of the Hamiltotars J, + »(1)J; may also be
used to set up an approximation scheme for lasg&his is due to the fact that=(r —r,)/w may
be neglected for large, in which case Lemma 2 provides the solution.

This is particularly effective for the dipole Hamiltonians which correspond to a planar curve
C, for whichr, =0, e.g.,H;. For these Hamiltonians, the approximation is valid if the parameter
r(t)/o(t) is negligible. Note also that for such Hamiltonians {t) and «(t) are proportional,
then Lemma 2 yields the exact solution to the Sdimger equation.

Moreover, by successive application of the method used in this reduction, i.e., by replacing
the original HamiltonianH by H; and repeating the same analysis, one obtains an iterative
solution of the Schidinger equation which yields a product expansion of the time-evolution
operator. The condition of the termination of this expansion after a finite number of iterations may
seem to lead t@possibly more general exactly solvable cases. It turns out that this is in fact not
the case. This is because enforcing the condition that the above expansion be terminated after the
second iteration leads t@=const., which is certainly not more general than the conditions of
Lemma 1 and Lemma 2. This marks a unique property of the Hamiltonians ofHype=J;
+R3(1)J;.

The results of this paper have direct applications in the computation of the holonomy elements
and Wilson loop integrals in Yang—Mills theory where the gauge group iS[Clearly the
U(2) case can also be handled similaflin this case the original paramete®8 of the Hamil-
tonian (6) are identified withx*A2 , where @\Z) corresponds to the local connection one-form
(gauge potentialand the gauge transformations correspond to quantum canonical transformations

J. Math. Phys., Vol. 38, No. 7, July 1997



3496 Ali Mostafazadeh: Exact solution of the Schrodinger equation

of the associated Hamiltonian. Another area of application of the results of this paper is in the
calculation of non-Abelian (2) geometric phasésuch as those encountered in the study of the
three-level system¥.

Note addedIn Ref. 11, Berry has introduced an iterative procedure to compute corrections to
the adiabatic geometric phase. Although this procedure also makes use of quantum canonical
transformations, unlike the method described in this paper it is perturbative in nature. In particular,
it cannot be used to yield exact solutions of the Sdhrger equation.

ACKNOWLEDGMENTS

I would like to thank Dr. M. Razavi for invaluable comments and suggestions and acknowl-
edge the financial support of the Killam Foundation of Canada.

IM. NakaharaGeometry, Topology and Physigdilger, London, 1990

2A. Bohm, Quantum Mechanics: Foundations and ApplicatioBsl ed.(Springer, New York, 1998 Chaps. 22 and 23;
see also Ref. 12.

3B. Simon, Phys. Rev. Let61, 2167(1983; see also Ref. 12.

4M. Born and V. Fock, Z. Phys51, 165(1928.

5T. Kato, J. Phys. Soc. JpB, 435(1950.

5M. V. Berry, Proc. Soc. London, Ser. 392, 45 (1984).

"A. Muriel, Phys. Rev. A50, 4286(1994.

8A. Royer, Phys. Rev. /4, 3685(1996.

°F. Wilczek and A. Zee, Phys. Rev. Lef2, 2111(1984.

10A. Mostafazadeh, University of Alberta Preprint No. THY 29-96, quant-ph/9608031.

M. V. Berry, Proc. R. Soc. London, Ser. 414, 31 (1987.

127, Bohm, A. Mostafazadeh, and J. ZwanzigByantum Geometric Phase: Theory and ExperiniSpringer, Berlin, in

press.

J. Math. Phys., Vol. 38, No. 7, July 1997



