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Contrarily to what happens with the Epstein–Nesbet (EN) zeroth-order Hamiltonian, the Møller–Plesset (MP) perturbation
operator has diagonal matrix elements, the expression of which is recalled. It is a balance between hole–hole and particle–
particle repulsions on one hand and of hole–particle attractions on the other hand. For the double excitations, which dominate
the correlation effects, the attractive terms prevail and the second-order MP energy is underestimated, at least for atoms of
the first rows of the periodic table. It will be shown that when the perturbation expansion reaches multiple excitations, the
diagonal terms of the MP perturbation operator may become larger than the zeroth-order MP excitation energy and creates
an oscillating divergence of the series. Several situations of this type will be presented. This divergence is linked to the
non-additivity of excitation energies, while this additivity is an underlying assumption for the linked cluster theorem and
the coupled cluster method. This analysis may also explain why for heavy atoms the second-order MP energies overshoot
the exact correlation energies.

Keywords: Møller–Plesset perturbation theory; Epstein–Nesbet perturbation theory; divergences in perturbation theory;
linked cluster theorem; coupled cluster

1. Introduction

Perturbation Theory is the key tool to understand the
physics of the quantum many-body problem. It has led
to the diagrammatic techniques [1,2] and the fundamen-
tal linked cluster theorem. From this comprehension, the
coupled-cluster (CC) method [3–6] could be conceived.
The theorem rests on a perturbative expansion where the
exact Hamiltonian Ĥ is partitioned in a zeroth-order Ĥ0,
chosen to give an independent-particle description of the
system, and a perturbation operator V̂ ,

Ĥ = Ĥ0 + V̂, (1)

which allows one to build an order-by-order expansion of
the correlated wave function and of the energy. In the most
successful partition, Ĥ0 is the sum of the Fock operator for
the various electrons and it leads to the so-called Møller–
Plesset [7] perturbation theory (MP).

Other definitions of the zeroth-order Hamiltonian are
conceivable, the most natural of which, called Epstein–
Nesbet [8–10], may be defined as the trace of the Hamil-
tonian in the basis of the single determinants or as the
occupation conserving part of the Hamiltonian. In 2000,
we have proposed a partition of the Hamiltonian which is
in some way intermediate between MP and EN [11]. The
advantages and drawbacks of the MP and EN Hamiltonians
will be briefly recalled. This work first focuses on the dif-
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ference between the low orders of the two series. It recalls
why, at least for normal light elements, atoms or molecules,
the Møller–Plesset second-order energies are in general un-
derestimated in absolute value, due to an overestimation of
the excitation energies. But it points out that this under-
estimation of the second order corrections is not uniform,
some doubly excited configurations may be of much higher
energies than estimated by the Møller–Plesset Ĥ0. The pa-
per shows a condition for which the MP perturbation series
will necessarily exhibit a diverging oscillatory behaviour,
at least at high orders of perturbation expansion, as it has
been observed [12–14]. Then, we discuss the situations in
which this condition may be fulfilled, and we show that
they are not exceptional and that in most molecular prob-
lems such a high-order divergence may be expected, at least
if one works with localised orbitals, as necessary to have
linear scaling computational cost. On the contrary, the EN
expansion has no reason to exhibit such a behaviour.

2. Choice of the zeroth-order Hamiltonian and
nature of the diagonal matrix elements of the
Møller–Plesset perturbation operator

The zeroth-order wave function is a single determinant �0,
obtained by a preliminary energy minimisation, in gen-
eral through the Hartree–Fock self-consistent field (SCF)
energy minimisation process. It is an antisymmetrised
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product of N (=2n for a closed shell) occupied spin or-
bitals 1, 1̄, . . . , i, ī, j, j̄ , . . . , n, n̄

�0 =
∥∥∥∥∥

n∏

i

iī

∥∥∥∥∥ . (2)

In second-quantisation �0 can be equivalently defined as

�0 =
n∏

i=1

a
†
ī
a
†
i |0〉 (3)

with |0〉 indicating the vacuum state. An energy εi is at-
tributed to each of these occupied MOs, usually the mean
value of the Fock operator for this orbital

εi = 〈i|F̂ |i〉 = 〈ī|F̂ |ī〉 = 〈i|ĥ|i〉 +
n∑

j=1

[
2〈ij |r−1

12 |ij 〉

−〈ij |r−1
12 |ji〉]. (4)

The monoelectronic energies might be defined differently
and the diagrammatic expansion, as well as the linked clus-
ter theorem, would remain valid. In particular the canonicity
of the MOs (i.e. the nullity of the off-diagonal elements of
the Fock operator) is not compulsory to establish these two
fundamental properties. If the size M of the basis set is
larger than n, one gets M − n unoccupied or virtual MOs,
orthogonal to the occupied ones, and hereafter labeled r,
s, t, . . . . One may define energies of these virtual orbitals,
for instance again as mean values of the ground-state Fock
operator

εr = 〈r|F̂ |r〉 = 〈r̄|F̂ |r̄〉 = 〈r|ĥ|r〉 +
n∑

j=1

[
2〈rj |r−1

12 |rj 〉

−〈rj |r−1
12 |jr〉]. (5)

These virtual MOs are used in the definition of excited
determinants, resulting from single, double, multiple sub-
stitutions of occupied MOs by virtual ones (hereafter, the
indices i, j, . . . and r, s, . . . indicate occupied and virtual
spinorbitals, respectively)

�i,r = a†
r ai�0, (6)

�ij,rs = a†
s a

†
r aiaj�0, (7)

�ijk,rst = a
†
t a

†
s a

†
r aiajak�0, (8)

where �0 has been chosen as the vacuum state. Each of
these determinants �I is defined from �0 by its holes and its
particles. If one introduces a purely monoelectronic zeroth-

order Hamiltonian Ĥ0, usually called Møller–Plesset [7],

Ĥ0 =
∑

i=1,2n

εia
†
i ai +

∑

r=2n+1,2M

εra
†
r ar + C, (9)

where C is a constant such that

〈�0|Ĥ0|�0〉 = E
(0)
0 = 〈�0|Ĥ|�0〉, (10)

�0 and all the determinants �I are eigenfunctions of Ĥ0,
and the associated zeroth-order energy E

(0)
I is (except for a

constant term C) the sum of the monoelectronic energies of
the spin orbitals occupied in this determinant. The zeroth-
order energy differences which appear in all the denomina-
tors of the terms of the Rayleigh–Schrödinger perturbation
expansion are

E
(0)
0 − E

(0)
I =

∑

i=1,2n

εi〈�I |aia
†
i |�I 〉

−
∑

r=2n+1,2M

εr〈�I |a†
r ar |�I 〉 =

∑

h(I )

εh −
∑

p(I )

εp, (11)

where h and p are the holes and particles of the �I deter-
minant. An important feature of this choice of Ĥ0 is the
additivity of the zeroth-order excitation energies, namely
the zeroth-order excitation energy to a doubly excited de-
terminant is the sum of the disjoint couples of single excita-
tions that it contains, and similarly the excitation energy to
a quadruply excited determinant is the sum of the excitation
energies of the disjoint couples of double excitations that it
contains, and so on.

With this definition of Ĥ0, the perturbation operator V̂
exhibits non-zero diagonal matrix elements

〈�I |V̂MP|�I 〉 =
∑

h,h′

(
Jhh′ − Khh′δS

hh′
)

+
∑

p,p′

(
Jpp′ − Kpp′δS

pp′
) −

∑

h,p

(
Jhp − KhpδS

hp

)
, (12)

where J and K represent, respectively, the Coulomb and
exchange integrals and the δs symbol is equal to 1 if the
spins of the MOs are the same, zero if they are different.
In Equation (12), the exchange integrals disappear when
p = p′ since the two spins are different and Kpp (which
actually would be a Coulomb integral) is equal to Jpp so it
never appears in the expression. Hereafter, we shall omit
the explicit mention of the exchange integrals. When work-
ing with localised MOs, the Coulomb integrals are anyway
much larger than the exchange ones.

It is worth mentioning that the most natural definition
of a zeroth-order Hamiltonian is not the Møller–Plesset
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[7] one, but the so-called Epstein–Nesbet definition [8–10]
which takes the diagonal part of the Hamiltonian in the
basis of determinants as the zeroth-order one:

〈�I |ĤEN
0 |�I 〉 = 〈�I |Ĥ|�I 〉. (13)

The corresponding perturbation operator, therefore, has
zero diagonal elements

〈�I |V̂EN|�I 〉 = 0. (14)

Notice that the off-diagonal elements of V̂EN and V̂MP are
identical

〈�I |V̂EN|�J 〉 = 〈�I |V̂MP|�J 〉 = 〈�I |Ĥ|�J 〉, I �= J.

(15)

If one defines the norm of the operator as the sum of the
absolute values of its matrix elements, the norm of the EN
perturbation operator is necessarily smaller than that of the
Møller–Plesset one. The EN perturbation series of order 2
incorporates an infinite summation of diagrams of the MP
series, as noticed in the 1960s by Kelly [15]. The preference
for the choice of the MP perturbation expansion is based
on several features:

• The demonstration of the linked cluster theorem [1],
which insures the strict separability, and the diagram-
matic representation of the order by order corrections
to the energy and the wave function require the addi-
tivity of the excitation energies, which is not obeyed
by the EN operator.

• The first-order EN wave function is not an eigenfunc-
tion of the Ŝ2 spin operator. This defect could easily
be repaired by taking a unique zeroth order energy
for all the determinants of the same space config-
uration. This would introduce some small diagonal
matrix elements of the new V̂ operator, but these ele-
ments would only involve exchange integrals, while
the MP one implies Coulomb integrals. The norm of
this modified EN perturbation operator would still be
significantly smaller than that of V̂MP.

• As will be discussed below the EN energy denomina-
tors of the doubly excited determinants in molecules
are usually smaller in absolute value than those of the
MP expansion. When one considers a bond breaking
geometry change the perturbation series diverge, due
to a near degeneracy between the closed shell ground
state configuration and a doubly excited determinant
in which the two electrons of the bond are promoted
from the bonding bond MO to the antibonding va-
lence MO. The divergence of the EN energy starts
at shorter bond lengths than that of the MP expan-
sion [16]. This sooner divergence may unduly lower

the vibrational frequency associated with the bond
lengthening.

3. Comparison between low order contributions in
the MP and EN series

Let us consider the effect of the double excitations ij → rs
on �0. In MP expansion, the first order correction to the
wave function is

C
(1,MP)
ij,rs =

〈
rs

∣∣r−1
12

∣∣ ij
〉

εi + εj − εr − εs

, (16)

while in EN series

C
(1,EN)
ij,rs =

〈
rs

∣∣r−1
12

∣∣ ij
〉

εi + εj − εr − εs − 〈�ij,rs |V̂MP|�ij,rs〉
, (17)

where 〈�ij,rs |V̂MP|�ij,rs〉 = Jij + Jrs − Jir − Jis − Jjr −
Jjs . This quantity is negative for the most energy con-
tributing double excitations. Thinking in terms of localised
(bond) orbitals, the largest double excitations concern in-
trabond double excitations from the orbital i of a given
bond to the anti-bonding valence MO i∗ of the same bond.
The two MOs have similar spatial features; therefore, the
four Coulomb integrals are of the same order of mag-
nitude and the term 〈�iī,i∗ ī∗ |V̂MP|�iī,i∗ ī∗ 〉 = Jii + Ji∗i∗ −
4Jii∗ + 2Kii∗ is large and negative. Other large contribu-
tions come from interbond double excitations ij → i∗j∗ for
which

〈�ij̄,i∗ j̄∗ |V̂MP|�ij̄,i∗ j̄∗ 〉 = Jij + Ji∗j∗ − Jii∗ − Jjj∗

−Jij∗ − Jji∗ + Kii∗ + Kjj∗ . (18)

When the two bonds i and j are far from each other, the
largest integrals are Jii∗ and Jjj∗ , imposing a negative sign.
The same type of conclusions can be reached for the ex-
citations from the valence MOs to the non-valence virtual
orbitals which are responsible for the dynamical correla-
tion. The non-valence virtual MOs are oscillating orbitals
but the ij → rs excitations only bring a significant contribu-
tion when r and s are close to the occupied MOs i and j. In
this case again, the six Coulomb integrals are of the same
order of magnitude and the four hole-particle attractions
prevail on the hole–hole and particle–particle repulsions.
One understands therefore that the second-order MP en-
ergy will be underestimated. The third-order correction to
the energy will involve a negative large contribution

�E
(3,MP)
diag =

∑

I

〈�0|V̂MP|�I 〉〈�I |V̂MP|�I 〉〈�I |V̂MP|�0〉
(E(0)

0 − E
(0)
I )2

(19)
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as long as the diagonal term is negative and large. The third-
order MP correction is usually dominated by this term, and
of the same sign as the second-order correction. This has
led in the past to the proposal of an empirical correction to
the MP second-order energies consisting in dividing them
by a factor of about 0.8 [17,18]. One must notice that the
ratio

λI = 〈�I |V̂MP|�I 〉
E

(0)
0 − E

(0)
I

(20)

has no reason to be the same for all double excitations.
Let us consider for instance an excitation of two electrons
occupying the same orbital i to a virtual orbital r situated
very far from i. Then the term

〈�iī,rr̄ |V̂MP|�iī,rr̄〉 ∼= Jii + Jrr > 0 (21)

becomes clearly positive. Of course the first order coeffi-
cient of such a long range double charge transfer excitation
is negligible

C
(1,MP)
ii,rr =

〈
rr

∣∣r−1
12

∣∣ ii
〉

2 (εi − εr )
= Kir

2 (εi − εr )
, (22)

since the integral in the numerator is negligible. The
third-order diagonal correction relative to this excitation
would no longer be negative but positive, but it remains
negligible.

The ratio between the MP2 and exact correlation ener-
gies is not universal. McCarthy and Thakkar [19,20] have
recently observed that the MP2 energies of heavy atoms
are too large, compared to more accurate non-perturbative
evaluations of the correlation energies. Actually if one con-
siders the excitations from inner shells, which are spatially
very compact, their correlation involves excitations to non-
valence orbitals. These orbitals must have non-negligible
amplitudes in the regions of space where the inner orbitals
have their large amplitudes, but they have to be orthogo-
nal to the valence orbitals and may be much more diffuse
than the core orbitals. Then in the expression of the term
〈�iī,rr̄ |V̂MP|�iī,rr̄〉 the hole–hole repulsion Jii may be the
largest one, especially for the numerous inner core orbitals,
which are spatially very compact, and impose a positive
sign. This would explain why the third-order diagonal cor-
rection would become positive, and the second-order MP
correlation energy appears to be too large in absolute value.
In order to validate this explanation, we have calculated,
starting from the SCF determinant and using a ANO-RCC
(10s9p8d) basis set, the excitation energies relative to dou-
ble excitations from various occupied ns (n = 2, 3, 4, 5)
orbitals of the Xe atom. It appears from Table 1 that all dou-
ble excitations except that from the highest occupied orbital
have positive diagonal elements of the Møller–Plesset per-
turbation operator, which will contribute positively to the

MP3 energy. The ratio λI = 〈�I |V̂MP|�I 〉
E

(0)
0 −E

(0)
I

is not large (be-

tween 2% and 4%) but it does not decrease when the holes
go from the 2s to the 4s orbitals. Actually the overestima-
tion of the MP2 energies begins to occur for the Xe atom
[19,20].

4. Possible divergence of the MP series

A perturbation expansion may diverge for several reasons,
but it is possible to identify a case where it will necessarily
diverge, and in an oscillating mode. This will occur as soon
as for a perturbing vector the ratio λI is smaller than −1,
i.e. when

〈�I |V̂MP|�I 〉 > E
(0)
I − E

(0)
0 , (23)

which means that

〈�I |H |�I 〉 − 〈�0|H |�0〉 > 2
(
E

(0)
I − E

(0)
0

)
. (24)

Actually, suppose that these inequalities are satisfied
for at least one perturber, which appears at order p of
perturbation (for the wavefunction), for instance if it is
a 2p-time excited determinant (at order 3 for a sextuply
excited determinant). Let call C

(p)
I its coefficient at this

order.
Then, when calculating the wave function at order p +

1, a contribution appears which is written

〈�I |V̂MP|�I 〉
E

(0)
I − E

(0)
0

C
(p)
I = λIC

(p)
I . (25)

At order p + 2 one has a contribution equal to λ2
IC

(p)
I ,

and at the order p + n a contribution equal to λn
IC

(p)
I .

Hence, as soon as λI < −1, whatever the smallness of the
coefficient of the determinant when it appears for the first
time in the perturbative development, the series will diverge
in an oscillatory mode. This unduly large coefficient of a
multiply excited determinant will contaminate the coeffi-
cients of the less excited determinants, as evident from the
order by order expansion of the wave function. The coeffi-
cients of the doubly excited determinants will be affected
at the order 2p + n, p + n being the order at which the
coefficient of �I becomes meaningless. C(p+1)

I contains the

contribution C
(p)
I (1 + λI ) and in C

(p+n)
I the contribution

C
(p)
I

(
1 + ∑n

k=1 λk
I

)
. When the impact of the divergence

on the coefficients of the doubly excited determinants be-
comes manifest, the energy corrections exhibit the same
oscillatory behaviour.

When is the critical inequality (23) satisfied? The condi-
tion implies that the energy difference between the excited
determinant and the reference one is more than two times
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Table 1. Analysis of the zeroth-order excitation energies of the Xe atom in the MP and EN partitions for the excitation of two electrons
from a ns (n = 2, 3, 4, 5) orbital to the lowest empty orbital ϕ′ of s symmetry with orbital energy εϕ′ = 0.0868 hartrees. The zeroth order
description of the ground state, �0, is the HF-SCF determinant, with energy −7441.4758 hartrees. All energies are in hartrees.

Excitation 〈�I |Ĥ|�I 〉 E(�I) − E(�0) εns 2(εϕ′ − εns) 〈�I |V̂MP|�I 〉
(2s)2 → −7029.5146 411.9612 −202.2517 404.6769 7.2844
(3s)2 → −7353.0615 88.4143 −42.9735 86.1205 2.2938
(4s)2 → −7423.8466 17.6292 −8.4236 17.0208 0.6085
(5s)2 → −7439.4154 2.0604 −1.0092 2.1919 −0.1315

the MP energy difference. This means that the bielectronic
interactions between the holes and the particles are larger
than the sum of the monoelectronic energy differences. In
view of the fact that the number of hole-particle attractions
is larger than the number of repulsions between the holes
and between the particles, this seems unlikely at the first
glance, but one may perfectly identify the possible occur-
rence of such a situation. Let us consider first an atomic
problem. One must remember the physical meaning of the
monoelectronic energies. According to Koopmans’ theo-
rem the monoelectronic energy εi represents the energy
required to extract one electron from the occupied orbital
i, i.e. a ionisation potential, while the energy εr of a virtual
MO r is the energy gained when one electron is added in
this MO, i.e. close to an electroaffinity. If one considers the
process which sends the six outermost 2p electrons of Ne
or Cl− to six virtual very diffuse orbitals of energy near to
zero, far from each other and far from the atom, (as can
occur in a large basis set), one may calculate the hole–hole
repulsion to be

〈�I |V̂|�I 〉 = 15Jpp′ , (26)

where Jpp′ is the Coulomb integral between two 2p orbitals
of different Lz values. The factor 15 comes from the num-
bering of the (6 × 5)/2 bielectronic repulsions between
the six electrons of the p shell. This quantity is to be com-
pared with six times the first ionisation potential of the
atom. If

15Jpp′ > 6εp, (27)

the series will diverge. Actually one understands easily that
extracting six electrons from the same atom demands much
more energy than six times the energy required to extract
the first electron since the remaining electrons are subjected
to the same nuclear attraction but they are no longer re-
pelled by the already removed electrons. In other words,
as the positive charge of the atom increases, the effec-
tive nuclear charge affecting the electrons also increases.
Looking at Moore’s tables [21], one sees that ionising the
Ne atom requires 21.6 eV, while ionising it six times, to
Ne6 + , requires 503 eV, to be compared with six times
the first ionisation potential (130 eV). We have calculated

the MP and EN excitation energy for the sextuply excited
determinant sending the six 2p electrons to the lowest p
virtual orbitals in an aug-cc-pVQZ basis set. The MP ex-
citation energy is 6.3422 hartrees, while the EN one is
13.8546 hartrees, i.e. more than twice the MP excitation
energy. The ratio λI is equal to −1.1845 hartrees. The
first-order coefficient of a (2p → 3p)2 double excitation
is 0.0153/2.114 = 0.0072. The order of magnitude of the
sextuply excited determinant is 0.00723 and the sign of di-
vergence of the wave function will be manifest at a very high
order.

From the preceding analysis one understands that the
hole–hole repulsion plays a key role and that the divergence
will preferably affect atoms and molecules presenting a
high electron density, as it is the case in Ne and HF, as
observed in previous studies [11–13]. The behaviour of the
MP expansion for an heavy element would of course be
worse, the divergence appearing sooner than for Ne, since
the hole–hole repulsions will be very large for inner-shell
excitations.

If one considers a heterogeneous system, where the or-
bitals are atom-, bond- or fragment-centred, or if one works
with localised SCF MOs, some of the multiple excitations
may send several electrons from the occupied orbitals on a
region of space to the virtual orbitals of a remote region of
space. In such a case, the hole-particle interactions is very
small, and the term 〈�I |V̂MP|�I 〉 will be positive and large
since it reduces to

〈�I |V̂MP|�I 〉 =
∑

h,h′
Jhh′ +

∑

p,p′
Jpp′ . (28)

As an example of a similar situation one may imagine the
interaction between distant Ne (or Cl−) and Be atoms and
consider the sextuple excitations of the six 2p electrons
from the orbitals of the heavy atom to the six 2p orbitals
of the Be atom. This determinant appears in the wave-
function at order 3 of perturbation, with a small coeffi-
cient, which becomes exponentially small when the inter-
atomic distance increases. For close interatomic distances
the quantity 〈�I |V̂MP|�I 〉 will be negative due to the im-
portance of the hole-particle attractions, but when the dis-
tance increases it will become positive and finally will tend
to be larger than 6(IPNe-EABe). Since in most molecular
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Table 2. Comparison of the zeroth order excitation energies in the MP and EN partitions for the excitation of six or four electrons from
the 2p orbitals of the Ne atom to the 2p empty orbitals of the Be atom as a function of the internuclear distance R. Energies in hartrees,
distances in bohrs.

Six p electrons Four p electrons

R E (HF) �E (MP) �E (EN) −λI �E (MP) �E (EN) −λI

2.5 −142.974421 7.1665 14.9244 1.0825 4.6572 7.7036 0.6541
3.0 −143.040230 6.6496 14.8360 1.2311 4.3216 7.6639 0.7734
4.0 −143.091397 5.9298 15.4119 1.5991 3.8878 7.7727 0.9993
6.0 −143.116424 5.5638 17.2489 2.1002 3.6965 8.4057 1.2740
8.0 −143.118335 5.5272 18.5607 2.3580 3.6830 8.9230 1.4227
10.0 −143.118438 5.5241 19.4388 2.5189 3.6826 9.2725 1.5180
15.0 −143.118443 5.5239 20.6367 2.7359 3.6826 9.7683 1.6526

problems such inter-regions multiple excitations belong to
the configuration interaction space, one may assess that the
divergence of the MP series at high orders is not an excep-
tion but a general feature.

This analysis has been numerically tested on the Ne-Be
diatomic problem, using a double zeta basis set for simplic-
ity. Table 2 shows the evolution of the MP and EN zeroth-
order excitation energies relative to the sextuple excitation
(2pNe)6 → (2pBe)6, from interatomic distances between 2.5
and 15 bohr. The corresponding λ ratio is always smaller
than −1.

Moreover, from Table 2 one sees that the quadruple
excitation (2pNe)4 → (2pBe)4 also leads to a λ < −1 ratio
when the interatomic distance is larger than 4 bohr.

As a rather funny remark one may add that the EN
perturbation series, usually considered as less robust than
the MP one, due to its smaller energy denominators (in
absolute values) for the double excitations in light atoms and
normal element molecules, will not present such diverging
behaviours.

5. Conclusion

The present work was motivated by the exotic problem of
the observed very high-order oscillatory divergence of the
MP series on the Ne atom and the stretched HF molecule
[12–14]. The here-studied divergences can be called as
due to ‘back-door intruders’ according to the analysis per-
formed in Ref. [12–14] on the basis of an extension in the
complex plane. The divergence is due to a dramatic un-
derestimation of some excitation energies by the Møller–
Plesset zeroth order operator. The logical origin of the phe-
nomenon was already correctly understood as due to a ratio
between an off-diagonal matrix element of the perturba-
tion operator and the MP energy denominator lower than
−1, resulting in the divergent power expansion reported in
Equation (14.5.39) at page 778 of Ref. [14]. The sign of
the diagonal matrix elements of the MP perturbation oper-
ator is usually negative for the double excitations and light
atoms, resulting in an underestimation of the correlation

energies at the MP2 level. As discussed here this sign will
change when one goes to heavy atoms, which explains the
observed underestimation of the MP2 correlation energies
(in absolute value) for heavy elements [19,20], the corre-
lation energy of which comes mainly from the numerous
inner shell excitations. This sign also changes when one
goes to multiple excitations proceeding from occupied or-
bitals in the same region of space to either diffuse or remote
virtual orbitals, due to the prevalence of the hole–hole re-
pulsion (and possibly particle–particle repulsion) over the
hole–particle attractions. We have shown that the high-order
divergence of the MP series may be expected to be a non-
exceptional phenomenon. Of course the most problematic
〈�I |V̂MP|�I 〉 terms will not affect the reliability of the low-
order energies, since they concern either multiply excited
determinants or long range double excitations. Indeed, to
the second order these double excitations are associated
with very small 〈�0|Ĥ|�I 〉 matrix elements and do not
contribute significantly to the energy.

Nevertheless, these remarks are not purely academic,
nor teratologic. They call the attention on the limits of
validity of monoelectronic zeroth-order operators, which
are a reference tool in many-body theories. As soon as
the excitation energy to a quadruply excited determinant
is not the sum of the complementary double excitations
that it contains, the coefficient of this determinant can-
not be obtained as sum of products of the coefficients of
these double excitations, which is the basic assumption of
the coupled cluster of doubles. The quadruple excitation
energy to T +

l T +
m |�0〉 introduces some new Coulomb and

exchange integrals between the holes and particles which
were not involved in the double excitations T +

l |�0〉 and
T +

m |�0〉. The additivity of excitation energies only con-
cerns non-interacting couples of pairs of electrons, i.e. sit-
uations where T +

l and T +
m imply non-interacting subsys-

tems. But in this case, the EN energy denominators also are
additive and the EN series also provide a strict separabil-
ity, as soon as localised MOs are used. The appearance of
non-additive 〈�I |V̂MP|�I 〉 terms can only be managed by
four-body operators T(4). The non-additivity of excitation
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energies is especially dramatic in low-dimensional spin sys-
tems [22–29]. In order to avoid the introduction of many-
body operators in the cluster expansion [30–33], one of
us (JPM) and co-workers have suggested the following
modification [22–29] of the estimate of the coefficients of
quadruples

CT +
l T +

m �0
=

∑

<p,q>,T +
p T +

q �0=T +
l T +

m �0

CpCq

�Ep + �Eq

�Ep+q

,

(29)
where

Cp = CT +
p �0

, (30)

�Ep = 〈�0|Ĥ|�0〉 − 〈T +
p �0|Ĥ|T +

p �0〉, (31)

�Ep+q = 〈�0|Ĥ|�0〉 − 〈T +
p T +

q �0|Ĥ|T +
p T +

q �0〉. (32)

This modified coupled cluster of doubles formulation sat-
isfies the strict separability condition and happens to give
very satisfactory results in the spin lattices studies [22–29].
It would be worth testing its efficiency in ab initio quantum
chemical problems, in order to see whether it reduces the
need for T(4) operators.

The present work focused on the single reference prob-
lem. The question of the choice of an appropriate zeroth-
order Hamiltonian for multireference problems is much
more complex (see for example the discussion in Ref. [34]
for the problems related to the extension of the MP and
EN partitions to multireference problems). The conditions
to establish the generalised linked cluster theorem [2] in
the quasi degenerate perturbation theory context are ex-
tremely severe: the reference (or model) space must be a
complete active space (of dimension N) and the zeroth-
order Hamiltonian must again be monoelectronic. Under
these conditions not only the QDPT would not converge
for most of the chemical problems, but it will be in general
impossible to identify N eigenvectors which have large pro-
jections on the model space. In practice, the perturbation
may face severe intruder state problems. These intruders
will in general be ‘front-door intruders’, having lower en-
ergies than some of the model space determinants, what-
ever the choice of Ĥ0, MP or EN. If one alternatively de-
fines a state-specific perturbation from a multi-reference
zeroth-order wave function, which is now solution of a bi-
electronic Hamiltonian, one may either use single determi-
nants or multiconfigurational vectors as perturbers. In the
first case, the separability condition can only be satisfied
if one uses a complex bielectronic zeroth-order Hamilto-
nian [35]. In the case of contracted formalisms, the use of
the Møller–Plesset Hamiltonian to define the zeroth-order
energies of the contracted vectors, which is adopted in the
CASPT2 method [36,37], faces severe intruder state prob-
lems, which are in practice managed through empirical level

shifts [38,39]. This intruder state problem is avoided in the
NEVPT method [40–43], which is also strictly separable.
This method uses the bielectronic Dyall Hamiltonian [44]
to define the zeroth-order energies of the contracted per-
turbers, as does, in some sense, the EN Hamiltonian for the
single reference problem.
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