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Two formulations for constructing a non-Hermitian
matrix with all real eigenvalues are studied. They
are called PT symmetry and pseudo-Hermiticity
in the literature. Explicit 2 × 2 matrices of both
forms are provided. They are characterized by six
real parameters and are hence more general than
Hermitian matrices. The equivalence of the two
formulations is established. A 2 × 2 matrix with
all real eigenvalues is PT -symmetric and pseudo-
Hermitian at the same time. The application in time-
dependent problems is discussed and a new geometry
phase is obtained.

1. Introduction
Non-Hermitian matrices with all real eigenvalues
often appear in the study of PT -symmetric quantum
mechanics [1,2]. In particular, 2 × 2 matrices are
commonly used [3]. In this paper, we classify all
2 × 2 matrices with all real or complex conjugate pair
eigenvalues. We use two formulations: PT symmetry
and pseudo-Hermiticity.

In both formulations, we allow the Hamiltonian in a
non-dissipative two-level quantum system to take a non-
Hermitian matrix form. ‘Non-dissipative’ means that the
eigenvalues of the Hamiltonian are real. ‘Non-Hermitian
matrix’ is a matrix with H �= H†, where † stands for
complex conjugation and transpose.

The Hilbert space associated with such a (diagonaliza-
ble) Hamiltonian requires a non-trivial metric operator [4]

(·, ·)≡ 〈·|W|·〉, (1.1)

where 〈·| = |·〉† and W is a Hermitian matrix with all
positive eigenvalues. The Hamiltonian H is self-adjoint
with respect to this inner-product,

(·, H·)= (H·, ·). (1.2)
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This condition leads to a matrix equation between H and W,

WH = H†W. (1.3)

One may take this equation as the definition of the metric operator W.1 In general, W depends on
the Hamiltonian H, i.e. it is dynamical. In conventional quantum mechanics, the Hamiltonian is a
Hermitian matrix. In this case, W can be chosen as the unit matrix and it is no longer dynamical.

In §2, we study PT -symmetric matrices by defining the parity operator as a real involution.
A 2 × 2 PT -symmetric matrix is characterized by six real parameters, two more than a Hermitian
matrix with the same dimension. When all the eigenvalues of a PT -symmetric matrix are real, the
eigenstates are also eigenstates of PT .

In §3, we study the P̃-pseudo-Hermitian matrices, where the P̃ operator is a Hermitian
involution. The P̃ operator defines a Pontryagin space with indefinite norms. A 2 × 2 P̃-pseudo-
Hermitian matrix is also characterized by six real parameters. A Hermitian matrix can always be
considered as a special case of P̃-pseudo-Hermitian matrices.

In §4, we discuss the relation between the two formulations. A real-symmetric involution
can serve as the parity in PT symmetry and the P̃ operator in pseudo-Hermiticity. A complex-
symmetric matrix can be PT -symmetric and P-pseudo-Hermitian with the same P . In the case of
2 × 2, a PT -symmetric matrix is always P̃-pseudo-Hermitian with respect to some P̃ operator,
and vice versa, although in general P �= P̃ .

In §5, we apply our parametrization to a time-dependent two-level quantum system. We find
new results in a geometry-phase problem with a tunable fictitious magnetic monopole and a
measurable Dirac string.

Finally, we give some concluding remarks in §6.

2. PT symmetry
To construct PT -symmetric matrices, let us start with the definitions of the parity operator P and
the time reversal operator T . The time reversal operator is an anti-linear operator and it is an
involution. Without loss of generality, we define T simply as the complex conjugation operator

T ≡ ∗ ⇒ T 2 = 1. (2.1)

That is, for a matrix (operator), T AT = A∗, and for a vector (state), T |ψ〉 = |ψ〉∗, where ∗ represents
complex conjugation. We define the parity operator as a real involutory matrix [5]

P =P∗ and P2 = 1. (2.2)

As usual the time reversal and the parity commute: [P , T ] = 0.
A matrix Hamiltonian H is said to have PT symmetry if it commutes with the combination

of PT
[PT , H] = 0 ⇔ PH = H∗P . (2.3)

It is easy to verify that all the eigenvalues of H either are real or form a complex conjugate pair. If a
PT -symmetric matrix Hamiltonian H has an entirely real spectrum, we say that the PT symmetry
is unbroken. In this case, all the eigenstates of H are also eigenstates of PT .

All the parity operators with the same eigenvalues can be linked by a real similarity
transformation:

P = RP0R−1, with R = R∗. (2.4)

Without loss of generality, we start with a simple diagonal parity operator

P0 = σ3 =
(

1 0
0 −1

)
. (2.5)

1In general, there are multiple solutions for W, e.g. W0 in (2.10) and W̃0 in (3.9). Therefore, equation (1.3) defines a set of
possible W.
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A P0T -symmetric matrix Hamiltonian can be parametrized as

H0 = εσ0 + (iρ, γ sin δ, γ cos δ) · σ

=
(
ε + γ cos δ −i(γ sin δ − ρ)

i(γ sin δ + ρ) ε − γ cos δ

)
(2.6)

with four real parameters: ε, γ , ρ, and δ. Here σ = (σ1, σ2, σ3) are Pauli matrices and σ0 is the unit
matrix. The eigenvalues of H0 are

E± = ε ±
√
γ 2 − ρ2. (2.7)

They are real when γ 2 ≥ ρ2. This is the condition for PT symmetry to not be broken. The
corresponding eigenvectors are

|E±〉 = n±

(
γ eiδ − iρ ±

√
γ 2 − ρ2

γ eiδ + iρ ∓
√
γ 2 − ρ2

)
, (2.8)

where n± are the normalization constants. It can be checked that |E±〉 are also eigenvectors of P0T
with the eigenvalues of modulus one:

P0T |E±〉 = eiα± |E±〉. (2.9)

We can always choose the phases of the eigenvectors such that the eigenvalues of P0T are one.
Solving the self-adjoint condition in (1.3), we get the form of the metric operator

W0 = u[γ σ0 + (0, v sin δ − ρ cos δ, v cos δ + ρ sin δ) · σ ]

= u

(
γ + (v cos δ + ρ sin δ) −i(v sin δ − ρ cos δ)

i(v sin δ − ρ cos δ) γ − (v cos δ + ρ sin δ)

)
, (2.10)

where u and v are arbitrary real constants with the constraints uγ > 0 and v2 < γ 2 − ρ2. With this
metric operator, the eigenvectors of H0 are orthogonal

〈E+|W0|E−〉 = 0 = 〈E−|W0|E+〉 (2.11)

and normalized to

N± ≡ 〈E±|W0|E±〉 = 4|n±|2uγ
√
γ 2 − ρ2(

√
γ 2 − ρ2 ± v). (2.12)

Given u and v, one can always normalize the eigenvectors by choosing proper n±. It is also true
in the reversed way: for arbitrary non-vanishing n±, one can always tune u and v in the metric to
normalize the eigenvectors.

The real matrices generating non-trivial parity operators can be parametrized either by

R1(θ ,ϕ)= e−ϕσ3/2e−iθσ2/2 (2.13)

or by
R2(θ ,ϕ)= e−ϕσ3/2e−θσ1/2. (2.14)

Note that they are not equivalent. According to these transformations, a generic parity operator
has the form

P1 = R1(θ ,ϕ)P0R−1
1 (θ ,ϕ)=

(
cos θ sin θ e−ϕ

sin θ eϕ − cos θ

)
(2.15)

or

P2 = R2(θ ,ϕ)P0R−1
2 (θ ,ϕ)=

(
cosh θ sinh θ e−ϕ

− sinh θ eϕ − cosh θ

)
. (2.16)

The same transformation preserves the property of PT symmetry. That is, if H0 is P0T -
symmetric, then

H = RH0R−1 (2.17)
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is PT -symmetric:
P0H0 = H∗

0P0 ⇔ PH = H∗P . (2.18)

Two parametrizations of PT -symmetric matrix Hamiltonians can be obtained by the
corresponding transformations [5]:

H1 = R1(θ ,ϕ)H0R−1
1 (θ ,ϕ)

=
(

ε + γ cos δ cos θ − iρ sin θ (γ cos δ sin θ − iγ sin δ + iρ cos θ)e−ϕ
(γ cos δ sin θ + iγ sin δ + iρ cos θ)eϕ ε − γ cos δ cos θ + iρ sin θ

)
(2.19)

and

H2 = R2(θ ,ϕ)H0R−1
2 (θ ,ϕ)

=
(

ε + γ cos(δ + iθ) −i[γ sin(δ + iθ)− ρ]e−ϕ
i[γ sin(δ + iθ)+ ρ]eϕ ε − γ cos(δ + iθ)

)
. (2.20)

Note that either parametrization has six parameters, four from the original H0 and two from
the transformation R1 or R2. When the parity is transformed to P = RP0R−1, the Hamiltonian
changes to H = RH0R−1. The metric operator transforms accordingly,

W = (R−1)†W0R−1. (2.21)

3. Pseudo-Hermiticity
Pseudo-Hermiticity is another formulation for constructing non-Hermitian matrices with all real
eigenvalues [6]. This time, let us start with a Hermitian involutory, i.e. unitary operator P̃

P̃ = P̃† and P̃2 = 1. (3.1)

A P̃-pseudo-Hermitian matrix Hamiltonian H̃ satisfies

P̃H̃P̃ = H̃† ⇔ P̃H̃ = H̃†P̃ . (3.2)

Clearly, in this formulation, the P̃ operator plays the role of the metric operator except that P̃
may have negative eigenvalues. The linear vector space associated with an inner-product defined
by an indefinite metric operator is called a Pontryagin space. It is a finite-dimensional version
of the Krein space.

A unitary transformation preserves the property of the P̃ operator defined in (3.1)

P̃ = UP0U†, with U−1 = U†. (3.3)

The same transformation transforms the Hamiltonian and the metric operator properly

H = UH0U† and W = UW0U†. (3.4)

Just like the method used in §2, we may start with a simple operator P̃0 = σ3. A P̃0-pseudo-
Hermitian Hamiltonian has the form

H̃0 = εσ0 + (iρ sin δ, iρ cos δ, γ ) · σ =
(
ε + γ ρeiδ

−ρe−iδ ε − γ

)
. (3.5)

The eigenvalues of H̃0 are

E± = ε ±
√
γ 2 − ρ2. (3.6)

They are real when γ 2 ≥ ρ2. The eigenvectors are

|E±〉 = n±

(
γ ±

√
γ 2 − ρ2

−ρe−iδ

)
, (3.7)
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where n± are the normalization constants. The two eigenvectors are orthogonal with respect to
the P̃0-inner-product

〈E+|P̃0|E−〉 = 0 = 〈E−|P̃0|E+〉. (3.8)

However, one of the P̃0-norms is negative. To define the Hilbert space, one needs to solve the
self-adjoint condition in (1.3) to get the positive definite metric operator W̃0. The solution is

W̃0 = u[γ σ0 + (ρ cos δ, −ρ sin δ, v) · σ ] = u

(
γ + v ρeiδ

ρe−iδ γ − v

)
, (3.9)

where u and v are arbitrary constants with the constraints uγ > 0 and v2 < γ 2 − ρ2. The
eigenvalues of W̃0 are

ω± = u(γ ±
√
ρ2 + v2). (3.10)

They are always positive. With this metric operator, the eigenvectors of H̃0 with different
eigenvalues are orthogonal

〈E+|W̃0|E−〉 = 0 = 〈E−|W̃0|E+〉 (3.11)

and the norms are

N± ≡ 〈E±|W̃0|E±〉 = 2|n±|2u
√
γ 2 − ρ2(γ ±

√
γ 2 − ρ2)(

√
γ 2 − ρ2 ± v). (3.12)

Given u and v, one can always normalize the eigenvectors by choosing n± properly. It is also
true that for arbitrary non-vanishing n±, one can always tune u and v in the metric to normalize
the eigenvectors.

A generic unitary matrix for generating a non-trivial P̃ operator can be parametrized as

U(θ ,ϕ)= e−iϕσ3/2e−iθσ2/2. (3.13)

It transforms P̃0 to

P̃ = U(θ ,ϕ)P̃0U†(θ ,ϕ)= nr · σ =
(

cos θ sin θ e−iϕ

sin θ eiϕ − cos θ

)
, (3.14)

where nr ≡ (sin θ cosϕ, sin θ sinϕ, cos θ) is a unit vector. The P̃-pseudo-Hermitian Hamiltonian
can be obtained by the same unitary transformation

H̃ = U(θ ,ϕ)H̃0U†(θ ,ϕ)= εσ0 + (γ nr + iρ sin δ nθ + iρ cos δ nϕ) · σ , (3.15)

where nθ ≡ (cos θ cosϕ, cos θ sinϕ, − sin θ) and nϕ ≡ (− sinϕ, cosϕ, 0) are two unit vectors
perpendicular to nr. The essentially same parametrization was first introduced in [7].2 There are
again six parameters, four from the H̃0 and two from the U. Note that all 2 × 2 Hermitian matrices
are special cases of this P̃-pseudo-Hermitian matrix H̃ with ρ = 0.

The metric operator W̃ transforms the same way when one applies the unitary transformation
to a P̃-pseudo-Hermitian matrix Hamiltonian H̃

W̃ = U(θ ,ϕ)W̃0U†(θ ,ϕ)= u[γ σ0 + (v nr + ρ cos δ nθ − ρ sin δ nϕ) · σ ]. (3.16)

4. Relation betweenPT symmetry and pseudo-Hermiticity
Obviously a real-symmetric parity operator is also Hermitian. It can serve both as the parity in PT
symmetry and as the indefinite metric in pseudo-Hermiticity. The intersection set between real
similarity transformations and unitary transformations is the set of orthogonal transformations.
The resulting PT -symmetric and P-pseudo-Hermitian (with the same P) matrix is complex-
symmetric. This narrow intersection is studied in [8].

2It was called the general PT -symmetric matrix Hamiltonian in [7]. Here, we follow the terminology used in [6] and call it a
pseudo-Hermitian Hamiltonian.
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Now we have a more general parity operator and more parameters in matrix Hamiltonians.
One may ask a slightly different question: Whether a PT -symmetric matrix is P̃-pseudo-
Hermitian with respect to a different P̃? Or the reversed question: Whether a P̃-pseudo-Hermitian
matrix is PT -symmetric? In the case of 2 × 2, the answer to both questions is yes. The two
formulations are equivalent: for any PT -symmetric matrix H, one can always find a P̃ operator
such that H is P̃-pseudo-Hermitian; for any P̃-pseudo-Hermitian matrix H̃, one can always find
a parity operator P such that H̃ is PT -symmetric.

For example, the P0T -symmetric H0 in (2.6) is P̃-pseudo-Hermitian with respect to

P̃ = ±(0, sin δ, cos δ) · σ = ±
(

cos δ −i sin δ
i sin δ − cos δ

)
. (4.1)

The P̃0-pseudo-Hermitian H̃0 in (3.5) is PT -symmetric with

P = ±1√
γ 2 − ρ2 cos2 δ

(
γ ρ cos δ

−ρ cos δ −γ

)
. (4.2)

The generic mapping between the parity P in PT symmetry and the P̃ operator in
pseudo-Hermiticity for a given matrix Hamiltonian can be found in [5].

5. Applications
In conventional quantum mechanics, the simple 2 × 2 matrices serve as important toy models
to study various quantum properties. We expect the same things in PT -symmetric non-
Hermitian quantum mechanics. The first 2 × 2 PT -symmetric matrix Hamiltonian introduced
in [3] was used to construct a proper inner-product with positive-definite norms. The same matrix
was also used to discuss quantum entanglement [9,10]. A more general 2 × 2 matrix constructed
in [8] was used to demonstrate the quantum brachistochrone phenomenon in a non-Hermitian
system, which later caused a heated debate [11–13]. The most general 2 × 2 P̃-pseudo-Hermitian
matrix in (3.15) was introduced in [7]. It was used in the study of random matrix theory [14].
Here, we review another application of it in time-dependent PT -symmetric quantum mechanics.
We find that there is a non-conventional geometry phase in a time-dependent 2 × 2 system [15].

Suppose that a PT -symmetric (or equivalently P̃-pseudo-Hermitian) Hamiltonian H is
parametrized by a multi-dimensional vector X, which may slowly change in time X = X(t).
Because the metric operator depends on the Hamiltonian, in general it is also time-dependent:

W[X(t)]H[X(t)] = H†[X(t)]W[X(t)]. (5.1)

One consequence of the time-dependent metric is that the evolution equation may not be the
Schrödinger equation. Instead, in PT -symmetric quantum mechanics, the time evolution is
governed by the following equation (setting h̄ = 1 throughout) [15]:

i
d
dt

|Ψ (t)〉 =Λ(t)|Ψ (t)〉, with Λ(t)≡ H[X(t)] − iK[X(t)]. (5.2)

Imposing the unitary condition, we get the following equation for K[X(t)]:

∇W[X(t)] · dX
dt

= K†[X(t)]W[X(t)] + W[X(t)]K[X(t)], (5.3)

where ∇ is the gradient in the X-space.
To find an interesting sample solution to (5.3), we put forward below an additional condition

K[X(t)] = K†[X(t)]. We rewrite K as K[X(t)] = M[X(t)] · (dX/dt), with

∇W(X)= M(X)W(X)+ W(X)M(X) (5.4)

and M(X)= M†(X).
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The instantaneous eigenstates of H[X(t)] satisfy

H[X(t)]|ψn[X(t)]〉 = En[X(t)]|ψn[X(t)]〉, (5.5)

with the orthonormal condition 〈ψn[X(t)]|W[X(t)]|ψm[X(t)]〉 = δmn. We can expand |Ψ (t)〉 as

|Ψ (t)〉 =
∑

n
cn(t)eiαn(t)|ψn[X(t)]〉, (5.6)

where cn is the expansion coefficient, and αn is a dynamical phase defined as the time-integral of
the instantaneous real energy eigenvalue En[X(t)], i.e. αn(t)≡ − ∫t

0 En[X(t′)]dt′. Substituting (5.6)
into (5.2), one obtains

ċm(t)= −cm(t)Gm(t)−
∑
n �=m

cn(t)ei[αn(t)−αm(t)]Tmn, (5.7)

where

Gm(t)≡ {〈ψm(X)|W(X)|∇ψm(X)〉 + 〈ψm(X)|W(X)M(X)|ψm(X)〉} · dX
dt

(5.8)

and

Tmn(t)≡
{
〈ψm(X)|W(X)

[ ∇H(X)
En(X)− Em(X)

]
|ψn(X)〉 + 〈ψm(X)|W(X)M(X)|ψn(X)〉

}
· dX

dt
(5.9)

with X = X(t). Now suppose X(t) varies very slowly in time, such that the following adiabatic
conditions hold:

∇H(X)
[En(X)− Em(X)]2 · dX

dt
� 1 and

M(X)
En(X)− Em(X)

· dX
dt

� 1. (5.10)

Then under an adiabatic approximation, the Gm term in (5.7) gives the solution cm(t)= cm(0)eiβ(t).
Because β(t) is solely determined by the geometry of a navigation path in the X-space and does
not depend on the duration of the adiabatic process, it is of a geometric origin. In particular, for a
cyclic path, this geometric phase becomes a Berry-like phase βB, i.e.

βB = i
∮

[〈ψm(X)|W(X)|∇ψm(X)〉 + 〈ψm(X)|W(X)M(X)|ψm(X)〉] · dX. (5.11)

Let us now apply these general considerations to a two-dimensional Hilbert space. Because
PT symmetry is equivalent to P̃ pseudo-Hermiticity, we use the generic matrix Hamiltonian H̃
in (3.15). For simplicity, we only let parameters θ and ϕ vary in time and keep others fixed. In the
metric operator in (3.16), we choose u = sign(γ )/

√
γ 2 − ρ2 and v = 0.

In the (θ ,φ) manifold, ε, γ , ρ and δ are constants and we obtain a simple Hermitian solution
to (5.4):

M2×2(X)= 1
2 ∇ξ(X) · σ , (5.12)

where

ξ ≡ ρ

γ
(sin δ nθ − cos δ nϕ). (5.13)

After a lengthy calculation, we arrive at a rather compact expression for the geometric phase.
For example, associated with |E+〉, the Berry-like phase denoted β+

B is found to be

β+
B =

∮
[Fθ (X)dθ + Fϕ(X)dϕ], (5.14)

where

Fθ (X)= ρ cos δ

2[γ + ρ sin δ sin θ −
√
γ 2 − ρ2 cos θ ]

(5.15)
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and
Fϕ(X)= 1

2γ
(γ +

√
γ 2 − ρ2 cos θ). (5.16)

To better understand γ+
B we now treat θ and ϕ as two angular coordinates on a sphere defined

by r ≡ rnr. If we define

A ≡ Fθ (X)
r

nθ + Fϕ(X)
r sin θ

nϕ , (5.17)

then because Fθ (X)dθ + Fϕ(X)dϕ = A · dr, equation (5.14) becomes

β+
B =

∮
A · dr. (5.18)

Thus, we may regard A as a three-dimensional vector potential in the r-space. With a fictitious
magnetic field denoted Beff, β

+
B for an arbitrary closed path on the sphere can now be expressed

as a magnetic flux through a surface enclosed by the closed path, i.e. β+
B = ∫ ∫

Beff · dS, where

Beff =
(

1 +
√
γ 2 − ρ2

γ

)
π δ(x)δ(y)nz −

√
γ 2 − ρ2

2γ
r
r3 , (5.19)

with nz ≡ nr(θ = 0). Beff represents a fictitious singular field pointing at the north pole, plus
a virtual magnetic monopole. The magnitude of the charge of such a virtual monopole is
continuously tunable: it is given by a unit charge g0 = − 1

2 multiplied by the factor
√
γ 2 − ρ2/γ ∈

(0, 1] for γ > 0 or
√
γ 2 − ρ2/γ ∈ [−1, 0) for γ < 0. The singular nz component of (5.19) is analogous

to the so-called Dirac string. In the PT -symmetric quantum system studied here, it generates a
flux in the range of [0,π) or (π , 2π]; therefore, this string is measurable. Note that the results in
(5.19) are based on the choice of K = K†. The unitary time evolution does not uniquely specify the
operator K. One may choose a different K and may get different results in (5.19). For example, in
[16] a different evolution equation was proposed and different results were obtained.

6. Conclusions
In this paper, we give explicit parametrizations of general 2 × 2 PT -symmetric and P̃-
pseudo-Hermitian matrix Hamiltonians and the associated metric operators. We also show the
equivalence of these two formulations in two dimensions. We review the application of these
matrices in time-dependent quantum mechanics. For a PT -symmetric two-level system, a Berry-
like phase is found to display unusual features when compared with the conventional Hermitian
magnetic monopole and Dirac string. There are many other applications to study and more
unexpected results in PT -symmetric quantum mechanics to explore.

Q.-h.W. would like to thank Prof. Jiangbin Gong for helpful discussions and also greatly appreciates an
anonymous referee’s help for clarifications and grammatical improvements.
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