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A generalized Epstein—Nesbet type perturbation theory is introduced by a unique, “optimal”
determination of level shift parameters. As a result, a pawitioning emerges in which third order
energies are identically zero, most fifth order terms also vanish, anRlady 4th order corrections

are quite accurate. Moreover, the results are invariant to unitary transformations within the zero
order excited states. Applying the new partitioning to many-body perturbation theory, the perturbed
energies exhibit appealing featur@s:they become orbital invariant if all level shifts are optimized

in an excitation subspace; afid) meet the size-consistency requirement if no artificial truncations

in the excitation space is used. As to the numerical results, low order corrections do better than those
of Mdller—Plesset partitioning. At the second order, if the single determinantal Hartree—Fock
reference state is used, the CEPA=6LCCD) energies are recovered. Higher order corrections
provide a systematic way of improving this scheme, numerical studies showing favorable
convergence properties. The theory is tested on the anharmonic linear oscillator and on the electron
correlation energies of some selected small molecules20@0 American Institute of Physics.
[S0021-960600)31210-1

I. INTRODUCTION A. Perturbation theory

Perturbation theoryPT) offers an efficient tool for esti- On solving the Schidinger equationHW =EW, by PT,
mating energetics of weak interactions, and is widely used imve split the HamiltoniarH into a zero order paii® and a
various areas of physics and chemistry. It is based on sepgaerturbationw:
rating a zero order part of the Hamiltonian from a residual
interaction operator, the perturbation. This separation speci- H=H%+W, (1)
fies thepartitioning in PT.

In a recent Lettet,we proposed a repartitioning of the
Hamiltonian which emerged by “optimizing” the energy de-
nominators in PT, i.e., by introducing appropriate level shifts
fqr Which a Iinear_ algebraic equation has been derived. C)L“i'hen, the exact wavefunctiol and the energ{, assuming
aim in this Paper 1S to present a more elahorate theory, to IOli:tonvergence, can be developed in terms of the zero order
Fhe method into the context of other approaches, an_d to applé{uantities &7
it to a wider range of examples. We shall show, for instance,
that, as applied to the correlation problem in a many-electron %
system with the Hartree—Fock reference state, dbeond |W)=]0)+ >, [R(W—AE)]"|0), (3)
order correction in the new partitioning is the same as that n=1
one would obtain with the LCCD methdtinearized coupled
cluster with doubles® (This particular method has already
been introduced to quantum chemistry under various names:
linearized CPMET* CEPA-0° and D-MBPTc).579
Higher order results will also be resulted demonstrating subwhere the intermediate normalizatig®¥®|¥)=1 is used,
stantial improvements in the convergence properties at ththe reduced resolvent &f° is specified in spectral resolution
first 10—20 orders of the PT series, even though at the vergs
high orders, features of asymptotic convergence were noticed

and suppose that the problemtdf has been fully solved:

HOky=EJk), k=0,1,2,... . 2

©

E=Eg+ X (OJW[R(W-AE)]"0), 4

in some cases. [k)(K]|
The paper is organized as follows. The exposition of the R=— & B0 5)
theory is presented in Sec. Il., while numerical results are ko =0

discussed in Sec. lll. The theoretical section is though prez.q the energy correction ISE=E—ES. The orders of PT
ceded by an introduction collecting our notations and dis—4e gefined by the powers of. At aogiven order, using

cussing some previous results in this field. merely the estimation from the previous ordersAd in Eq.
(4), one arrives at the Rayleigh—ScHioger perturbation
dElectronic mail: surjan@para.chem.elte.hu theory (RSPT).
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B. Level shifts is the same reduced resolvent as introduced in(BQq.An

To achieve a satisfactory convergence of PT, a propeilterative solution of Egs(9) and(10) yields the exact result,
choice ofH is crucial. For any choice dA°, one can, freely while various approximations and strategies cover different
modify the partitioning — without affecting the zero order PT schemegNote that a variety of notations has been intro-

states — by adding/subtracting weighted projectors as ggggg t];‘oc:sg]?m?gggggz%ymﬁg? in literature. Here we

H= +

HO+ D) Ay JKk)(K|
o

EDS xklk><kl)
k#0
II. THEORY

=H? + W', 6) In this section we determine a set of level shift param-
where the weighting factors, are calledlevel shifts since  eters by imposing an approximate variational condition
they affect the zero order excited energy levels. Several awhich results in a system of linear algebraic equations. The
thors have discussed and used such shifts in PT for accelesolution of these will be shown to be equivalent to eliminat-
ating or ensuring convergence of the series, which is espéng any third-order type terms in the new partitioning defined
cially important in quasi-degenerate situatiohs:*Complex by the level-shifted zero order HamiltoniaH? . Then we
shift parameters were also investigated in some casé5.  show how the second order energy in the new partitioning
Level shift operators as introduced in E@) provide can be obtained as a partial resummation of the initial series.
examples to general operatgkghat are nilpotent when act- The resummation results in a compact formula, which can
ing on the zero order ground sta®0)=0. Such operators, easily be obtained by the projector operator technique. This
which clearly do not affect the zero order ground state enformula, within the framework of many-electron theory as
ergy, but modify the excited levels, were considered a longpplied to the correlation problem, is equivalent to the en-
time ago'®"*°Kutzelnigg’™ presented a many-body represen-ergy expression in the CEPA-0 or LC&Pmethod. Going to
tation of operators like this, and assigned the nagener-  higher orders in the new partitioning appears to be natural
alized EpsteirNesbet perturbation theoryto such a repar- way for a systematic improvement of this latter scheme.
titioning. This name is justified because by a special choice
of the level shift parameterd; one may arrive at the
Epstein—Nesbet partitioniAg?® where all diagonal matrix
elements of the perturbation operatdt are zero. To begin with, let us start from a perturbative splitting of
the Hamiltonian and simultaneously redefine the zero order
and the perturbation operator, as indicated in g. Level
C. Perturbation theory by projectors shift parametersy; , introduced like this, do affect individual

o i . terms of the perturbation series, but not the converged sum.
A unifying formalism for many perturbational treatments This can be expressed by the variational like condition,
is offered by Lavdin’s partitioning techniqué?* In this ap-

A. Optimal level shifts

proach, two Hermitian and orthogonal projecto@sand P, 9 (Y[H[Y) (12 an
are introduced so that Ny —(\I’|‘lf) ) e
O+P=1. In this spirit, one may regard level shifts as variational pa-

rameters and set stationary the Rayleigh quotient taken with

The full Schrafinger equation is partitioned as a trial wavefunction. For example, with the aim of optimiz-

(OHO+OHP)¥=EOQV, (7) ing low order results, one may write
for the O-block, and g (WIH|W)
— =0 k=12,..., (12
(PHO+PHP)V=EPV¥ (8) N (Wl
for the P-block. Specifically, if one chooses where W[t is the first order Ansatz for the wavefunction
having the expansion
0=[0)(0], J P
with |0) being the zero order ground state, and splits the |\If[1]>=|0>—2 Wio 1K) (13)
Hamiltonian according to Ed1), one gets for the energy k=0 Eg— E8+ e
E=(0[H|0)+(0|W|PW¥), (9  Since the total number of level shift parameters can be as

large as the free parametersiti!!, the solution of Eq(12)
may, in some cases, yield even the exact re§litreality,
PW0)+PH°|PW)+PWPW¥)=Eg|PV¥)+AE|PY), however, the situation is a bit more complicated since from
whereAE=E— E8. This latter equation can be rearranged astd- (12) one can only determne thosg values for which
Wq# 0. In electron correlation theory, for example, the so-
|P¥)=RWO0)+RWPWV)-AER|IPY), (100 |ution of Eq. (12) gives CID] As we do not seek exact re-
where, the inverse being taken in tRespace, sults, rather a meaningful approximation to the level shift

0 o1 parameters to be used in PT, we rewrite the Rayleigh-
R=(Eo—PH")""P quotient as

and for theP-component of the wave function,
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<\y[ll|H|qf[ll> o Vo an inhomogeneous linear system of equations. Those shifts,
W:E +E* +E° +E° +0(4). (14 which do not emerge in the expansion of the first order

wavefunction are certainly not defined by Eg1). The sim-
Here and further on, primes refer to the new partitioning.plest choice is to set these parameters to zero.

NeglectingO(4) terms, the variational requirement takes the Vanishing of a||EE”S has important consequences for

form higher orders, too. Explicitly, all terms containing the ex-
9 pression
—(E?’+E%)=0, k=12,... . 15
‘”‘k( ) 49 (KI(W" = W) R"W/|0) (23)

Here the zero and first order terms are left out sif®e il be zero for all statek which contribute toE?’, i.e.,

+E"=(0|H|0) is independent of level shifts. Substituting which directly interact with the ground state. In particular, of
the expressions oE? andE®' into Eq. (15), and carrying the fifth order formula,
out the variation, one finds

(O|WR'|K){k|W'R"W|0) — Wy O|WR'|k)(k|R"W|0)
=0, k=1.2,..., (16)
where the resolvent of the shifted zeroth order is

Vi —E3'(0|WR'2W|0), 24
r—_s Il an (] 10) (24)
ETRAY

ES' =(0|WR (W' =Wy R (W' =W R’
X (W' —Wpo)R'W|0)

—2E?'(0|WR 2(W' — W) R'W|0)

the last term is zero due to the vanishinge¥ , while the

with the shifted denominatord;=E°—EJ+\;. Equation Second term is zero due to E@®3). Consequently, merely
(16) defines the level shifts in the new partitioning. the first term may contribute if there are excitations in the

An interesting feature of this partitioning is that the third two middie resolvents, which do appear here, but are absent
order energy is explicitly zero. This fact can be understoodn E* . The fifth order contribution is therefore expected to

by putting down the third order RSPT formula, be very small. It may even be zero in a model where neither
3 S " of the Wy, matrix elements vanish. Similar considerations
E® =(0|[WR'W'R’W|0) — Wy 0| WR'*W|0) apply for higher orders, too.
The fact that there is no third order correction in the new
=> EY, (18)  partitioning remounts to earlier works by Feenberg, Gold-
k#0 hammer and Amo$ 2’ In these studies possibilities for
where, writing out the resolvents explicitly, choosing one single repartitioning parameter were investi-

gated, the redefined splitting written as

3 Wok > WiiWig Wio
k=3 |2 A~ (Woot M)~ - (19 / -1
k \i#0 i k HO :,LL_J'HO, W =W+ HO.
Substituting formulas for the resolve®’ and the shifted K
perturbation operatow’ into Eq. (16), its left hand side Requiring that third order energy term in this new partition-

turns out to be equdE . That is, Eq.(16) is equivalent to  ing vanishes proved to be considerably successfifiHow-

the requirement ever, it may be easily shown that a perturbation series emerg-
iy ing like this does not provide size consistent correction at
Ex =0, k=12,... . finite orders.

Another way of optimizing zero order energies was fol-
lowed by Finleyet al?® Their strategy is to select a relatively
small subspace of the most important zero order eigenfunc-
tions and, within this space, minimize the functional

The above condition implies that, in EQ.9) the expres-
sion in curly brackets should be zero:

Wi Wio Wio
> —(Woot A\)—=0, k=1,2,..., (20
7o A, Ay

|Egs_ E3| + | Egs_ E4|, (25)
which is quite useful for the practical determinationigfs.

This system of equations can be brought to the form with respect to the zero order excited eigenvalues. In this

functional,Eyis full CI ground state energy; andE, are
1 the 3rd and 4th order PT energies, and all the three quantities
2 AkiA_jzl’ k=12,..., (22) are computed within the subspace chosen. Inclusion of the
fourth order term in(25) assures unique determination of the
where selected zero order energies. Test calculations result im-
proved low order estimations and show convergent series
(220 when ordinary partitioning$MP, EN) diverge?*=° Clearly,
the choice for the subspace for optimization is a crucial
This shows that, if matriXA is nonsingular, nonzero energy point, and should be reconsidered for each system, and each
denominator\, are uniquely determined as the solution of basis set.

]#0

WijWio

Axj= 8 Ef — Eg— Wio) + »
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B. Resummation of RS-PT series The last equality can be seen by subtracting and adding the
term (O|W(1—RW)~10). It is of course also possible to
express the resolve®R’ of the shifted zero order in terms of
the initial resolvenR. Comparing Eq(34) to Eq.(27), since

A useful transformation of formulé20), suitable for an
iterative treatment, is given by

0 Wi . the latter can be rewritten with the shifted resolv&itas
Ai:Ai (l?EO), (26) 2! ,
Woi— =0 (Wi Wio/4,) E2'=(0|WR'W|0)
where A’=E°—EJ is the unshifted denominator. Equation ~ R’'=(1—RW) 'R. (35)

(26) is fully equivalent to Eq(20) if Wyq is zero, which can
be set in the initial partitioning without loss of generality. It
is not difficult to see that the second order guess to the e

To accelerate convergence of the PT series, Dietz
et al>*34 have proposed introducing a damping operator
NWhen solving Eq(31) iteratively. Besides a simple diagonal

ery. approximation toA, they applied the formula
: |Woil?
== @n - _RW
i#0 i RW-—1

is equivalent to an infinite order partial resummation of thegg well. Comparing Eq(35) with this expression, the rela-
original partitioning. Substituting Eq26) into (27) we get oy petween their damping operator and our shifted resol-
I |Wo|2 N Wo, Wi Wi vent is found to be
70 AY ikFo  APA A=-R'W.
Besides the apparent similarity of the formulation of the
theory, the procedure followed by Dietz et al. and the present
Here the first term is the original second order energy. Thdevel shift technique differ in two major features. One con-
second term is of order 3, and it can be further expanded bgerns the subspace, in which the matRk or A is essen-
substituting Eq(26) repeatedly to yield tially constructed. The above authors study several different
o ways of choosing a model space, while in our case only
E* =(0|WRWO)+(0]WRWRWO) those levels contribute t&’, which directly interact with the
+(0|WRWRWR\D) + . . . ground state. The other important point is that, in the case of
an RS expansion, we completely neglect terms originating
” N from the second term of E@10), as shown in the next sec-
:nzl (O[W(RW)"0), 29 fion. Though these terms are kept in Refs. 33,34, without

eliminating them in our case, size consistency of the RS
which is clearly a part of the infinite ordéexac) PT energy; scheme would be broken.

cf. Eq. (4). More precisely, we see that all type of terms of
the PT series have been summed up which would emerge
also in Brillouin—Wigner (BW) theory3'*2 We may call

these contributions BW type terms, which differ only from

=(0|WRWO)+(0|WRWRW]0). (28

C. Derivation by projection operator technique

true BW results in that the resolveRtis constructed from In the spirit of the partitioning technique, the
zeroth order excitation energieE&— Eg), and not from BW  P-component of the wavefunction is defined by EtQ). If
denominators EE—EO) containing the exact enerdy;. we neglect the last term in this equatiomhich can be nu-
Writing this result more compactly becomes possible bymerically justified only if the energy correction is a second
introducing the reaction operatdr order quantity, we have
(0[T|0) =Woo+E*, (30) [PW)=RWO)+RWPWY), (36)
where, from(29), having the formal solution
T=W+WRW+WRWRW. . (31) |P¥)=(1-RW) *RWO). (37)
that satisfies an equation of the Lippman-Schwinger type, lteration of Eq.(36), or the expansion of the inverse (&7),
ields
T=W+WRT, (32 Y
) ) ) ) _ ) |P¥)=RWO0)+RWRWO0)+---=RT|0). (39
since the iteration 0f32) with T(©'=0 leads immediately to o _ _
(31). The formal solution of32) is On substituting this result into the energy formu we
find
T=(1-WR) 1w, (33
o . - E=(0|H|0)+(0]WRT0)=(0|H[0)+(0|WRWO0)
indicating that the second order energy in the optimized par-
titioning can be compactly expressed as +(0|WRWRWO)---, (39
E2 = (0](1— WR)~*W]0) — Wi, in perfect agreement witfR9).

The equivalence of these results can also be seen on the
=(0|W(1—RW)RWO0). (349  compact formulas. Insertin@?) into Eq.(9),
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E=(0|H|0)+(0|W(1— R\N)*lRV\AO) resolvents. In the optimized partitioning the same second or-
0 . der formula(27) gives the same result whatever orbitada-
=Eo+(0|W+W(1-RW) *RWO), (400 nonical or localizeflare used.

which agrees wit{34). This derivation, of course, does not We note that the equivalence betwe&3 and the
contribute to any new result as compared to the formulas 0€EEPA-0 (or LCCD) energy holds only if one uses the
the previous section, but it makes transparent how the BWHartree—Fock wavefunction as the reference sfaje The
type terms, accounted for B2, emerge by neglectingE  OPtimization of the partitioning by level shifts is, therefore, a
in Eq. (10). more general procedure, with a possibility of a wider range
of applications. These may include truly one-electron prob-
lems (an example for this will be shown in Sec. ll)Aor
multi-configurational reference states in the many-body
An interesting feature of the optimized partitioning is problem.
that, as applied to the correlation problem in many-electron  To investigate size extensivity of finite order contribu-
theory, the well known CEPA-0 energy formula is recoveredtions in the optimized partitioning in general, let us consider
at the second order. This can be demonstrated in severalo noninteracting subsystemsandB, characterized by the
ways, since the very same method has been described in teguationsH®= H2+ HS, W=W,+Wg, |0)=|0,0g). As-
literature in different manners. The CEPA-0 equatidns, suming that eigenvectors tbfg are not mixed with those of
ab U systemB if they belong to a degenerate subspace, it is
(¢ 1H—(0[H|0)[¥T)=0 (41 enough to show that in the noninteracting situation level
(d)ﬁb denoting doubly excited configurationsriginate from  shifts can be assigned to subsysténor B. Regarding the
the variational problem of the functional, structure of matripA in Eq.(22), it is apparent that a nonzero
T 1] intersystem element may only emerge in the case where
F=(UHH=(O[H|O)[ ¥, 42 (k| =(kaOg| and |i)=|ig0a). (This is because matrix ele-
which upon substituting the first order Ansatz with shiftedments of type(kaig|W|0g0,) are all zero. In the former

D. Connection to CEPA-0

denominators, can be expanded as special case, since
F=(0l(L+WR)(H=(O[H|0)(R"W+1)[0) Wi = (Ka|Wa| 00)(alis) + (05| Wlis) (kal0a) =0,
= (0|WR'W]|0) + (0| WR W' R’ W/|0) (44)
— Wi O] WR'2W|0) = E2' +E'. (43) Ay again proves to be zero. This means that mafrixs

blockdiagonal if subsystem8 and B are infinitely apart,

This was just the functional we used in H35) to get the  consequently level shifts are determined solely by expres-
level shifts, which, if only doubles are taken into account, aresjgns of one subsystem or another. If, however, mixing be-
just the free parameters M. tween degenerate eigenvectors of sysfeandB may occur,

Equivalence ofE?’ and the CEPA-O correlation energy sjze consistency of finite order corrections is violated only if
can also be inferred from the energy form(#), which is  pT expressions are not invariant to unitary transformations
clearly the same as the energy formula in the LCCDyjthin a degenerate subspace. The Epstein—Nesbet partition-
method;° the latter being known to be equivalent to jng represents such an example. In our case, however, owing
CEPA-0. The analogy between the resummation discussed {3 the invariance of the optimized partitioning to unitary

Sec. 1B and the D-MBPT¢) method (another variant of  transformation of zeroth order excited states, the size consis-

deriving the same enery) is also obvious. tency requirement is fulfilled at second order, even if degen-
erate eigenvectors belonging to different subsystems are
E. Properties of the optimized partitioning mixed. As to fourth and higher orders, size consistency is

Based on the derivation by proiector operator techni uerecovered only if terms including unaffected levels are also
Y Proj P S variant to unitary transformation of degenerate eigenvec-
and as suggested by the equivalence of the second ordgr

) , , , fors. Therefore, MP partitioning is preferred to EN, for these
result and LCCD, a few properties & are immediately levels.
evident. Namely, we get an energy which is, though not  Ap important advantage of this reformulation is that,
variational, size extensive, and invariant to unitary trar]sfor-Once the new partitioning is defined, one may go beyond the
mations among zeroth order excited states. In particEfar, ~second order in a straightforward manner. A few preliminary
(more generaIIyE”/ if computed in the subspace present in higher order results in the new partitioning will be presented
W is invariant to orbital rotations within the occupied in the following section. The convergence properties of PT
MOs (and also to those within virtuglsThis is an especially in the new partitioning will also be studied.
appealing feature as this makes it possible to perform the Since, as the linear nature of EQ1), or the equivalence
calculations, e.g., in terms of localized orbitals without af-with LCCD shows, the optimized partitioning is unique, it
fecting the PT formulas. This property markedly distincts thecan be found by starting from any initial partitioning. One
optimized partitioning from that of Epstéand Nesbet?  has to recall, however, that only levels of those states will be
as well as from that of Miter and Plesseft since the former determined which directly interact with the reference state.
is not orbital invariant at all, while the orbital invariant for- Accordingly, when 4th and higher order results for the cor-
mulation of the latte¥3® requires the use of nondiagonal relation energy are computed, the singles, triples, and qua-
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druples are treated in the original partitioning. This problem -1.145
could be, in principle, circumvented by using a more accu- 45 L
rate Ansatz instead oF X1, but this method does not seem to _ 5
yield equations that are easily tractable. 3 ISR
g e
w
-1.165
lll. EXAMPLES 117 . "
A. Anharmonic oscillator 06 065 0.7 0.75 0.8 0.85 0.9 095 1
The eigenvalue problem of a perturbed one dimensional @ R/ Angstrom
harmonic oscillator is one of the most simple study cases. T
Considering a perturbation proportional to the fourth power . o008 — g B WP
of the coordinatey, the Hamiltonian can be written in arbi- p RO DRt
trary units as 5 oo0eF T
L"% 0.004 -
T -0 T MRS
H=3(p*+ 9%+ yg*=H"+W, (45) L0002p goemmen OO sk
1 TR Sertiy e Sy X _portd
. . . 0 ll-—-—-I—»—-—l»—-—l»—-—-l—-—»—i-—-—ﬁ_.,._J?.F’I‘l"
with p being the operator of momentum and the scatar -0.002 S SR S SR S <
measuring the strength of the perturbation. Most easily one b) 06 065 07 OgﬁAgé%trgf 0.9 095 1

may start off with the partitioning suggested by the physics
of the problem, as indicated in EG45), consideringyq® as ~ FIG. 2. Absolute energya) and deviation from full Cl(b) at around the

the perturbation, with the solution of the zeroth order of theequilibrium on the potential curve of the,tholecule in thg 3s2p1d] basis
well known form set(Ref. 42, in MP and optimized partitioning.

H0|n)=(n+ %)|n>. (46)

_Y 2 2
In this case there are only two levels that interact with the WOk_4(2+5k+4k F(kH1)%) do

ground state, for the corresponding matrix elemeni\as

+ %\/k(k— 1) (Kt 1)26,,

0.8 )
+ k(= 1) (k= 2)(k=3) 8. @)
0.75 |
0.7
>
=
@ 065
] 117 N —
0.6
-1.1705 i
0.55
5 1471 1
0.5 3
> -11715 i
(@) 3
u 1172 - A
o | I | I -1.1725 il a
30 | i
E04+7~4 -1.173 1 | | | | .
20 - 10 15 20 25 30 35 40
@ order
. 1R/ i
- I
g oFr E®, + | 280078 | |
i
] 1 -2.8998 i
o ] S -2.89985 i
-30 | 3
= -2.8999 i
-40 1 1 \ | 5
0 0.2 0.4 0.6 0.8 1 ur -2.89995 i
(b) v
-29 .
FIG. 1. Ground state energy of the anharmonic oscillérand shifted I I
| - i in arbi -2.90005
zeroth order energigb) as a function of the coupling strengthin arbitrary h —

units. Results of the standard partitioning, i.e., considering the anharmonic (b)
term as a perturbation, are identified by STNDn. Optimized partitioning is

referred to as OPT; for details see the text. An exact résalid line) was FIG. 3. lllustration of the convergence of perturbation series estimating the
obtained by solving the Schidinger equation numerically. Labels @) are total energy of the limolecule in thg 3s2p1d] basis setRef. 42 (a) and
those used in text. the He atom in the 1¥2p1d basis setRef. 49 (b).
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TABLE |. Errors of PT estimates for the total energy of the iHolecule TABLE Il. The same as Table | for the He atomsPp1d basis set.
(R=0.75 A), as compared to the limit of the series, FCI or ClI with doubles
(CID). Prefix D refers to the inclusion of doubles only. Atomic energy units Order MP-FCI OPT-FCI D MP-CID D_OPT-CID
are used.

2 6.0941x10°° —2.911x10°* 6.0719<10°% —3.134x10°*

Order MP-FCI  OPT-FCI D_MP-CID D_OPT-CID 3 1061%10°° -2911x10°" 1.0396<10 * -3.134<10*
4 1.949< 104 52x10°% 1.812x10°* 5.9x107°8

2 7.765%10°% —5.953x107*4 7.6229<10°% —7.383x107* 5 3.75¢10°° 45%x10°8 3.01x10° 5 5.9x10°°
3 2111Xx10°% -5953x10 % 1.9682x10 % —7.383x10 * 6 7.7¢10°© —1x1077 4.3x10°° —-1x107
4 6.220<10°* 2.89x10°° 5.564x10°*4 3.25<10°° 7 1.7x10°° —1x1077 4x1077 —2x1077
5 1.873<10°* 2.62x10°°  1.587x 1074 3.25x10°° 8 4x10°7 0 0 0
6 5.73<10°° —6x1077 4.45<10°° —1.2x10°° 9 1x 1077 0 0 0
7 1.77x10°° —8x1077 1.21x10°° -1.6x10°6 10 0 0 0 0
8 5.5<10°° 3x10°7 3.1x10°° 0
9 1.7x10°¢ 4x1077 7x1077 1x10°7
10 5107 4x1077 1x10°7 0
11 1x1077 5x10°7 0 0 ) o _
12 0 61077 0 0 tained by the latter one, “R” indicating “restricted.” Com-

paring the performance of the different fourth order schemes,
one can see that, in the case of weak or moderate perturba-
tion, OPT4 lies closer to the exact result. Increasing the
strength of perturbation to a relatively large value, it is OPT4
that first starts to deviate significantly from the exact curve

This leads to the expansion of the first order wavefunction
Eq. (13), to become

(318 ()24 (at y~0.5), but it remains still better than OPT2 up 4o
|wit)y=]0)— 12)— |4). (48)  ~0.7. The R-OPT4 results remain quite close to the exact
24N, ESY) IR s rer
line within the full range investigated.
Level shiftsk, and\, can be determined using E@QO) in a We may therefore conclude that, for the problem of an

straightforward way. Sums appearing in these equations exanharmonic oscillator, the optimization of the partitioning in

tend only for a few terms, because the matrinéis sparse  Rayleigh—Schrdinger PT extends its applicability to very

on the basis of the zeroth order eigenvectors. strong perturbations. In the next section we address the more
Perturbative results up to fourth order, calculated in thedifficult problem of electron correlation.

partitioning of Eq.(45) and in the optimized splitting are

plotted in Fig. 1a) as a function of the strength of the per-

turbation. Standard partitioning of E@45) is labeled by B. Electron correlation energies

STND; OPT refers to the optimal repartitioning. A third or- n thi . v th tioned PT to the el
der correction of the optimal partitioning is not shown, for n this sgctlon we apply the repartitione to the elec-
tron correlation problem for the He atom and the iol-

there is no third order contribution in this series. Figu¢a) 1 | . | I he B
shows, that as compared to the optimal partitioning, standargeU® representing two electron systems, as well as the Be

splitting gives meaningful results only in the range of a weak
perturbation. Repartitioning by optimal level shifts drasti-
cally improves the results even at a relatively large perturba- 146125
tion. 14.613
It might be interesting to see, how shifted zeroth order
eigenvalues vary with the strength of perturbation. These
curves are plotted in Fig.(fh). It is apparent that the shifted 14.614
zeroth order energy of the second level is a slowly varying 146145
function of v, while level 4 runs across a singularity at
=1/6, eliminating the corresponding term in the perturbation
expansion at that point. After the pole the shifted denomina- (@ order
tor even becomes negative. However, one would beware of

-14.6135 |

3
@
Ay
s
<
ui

-14.615 ““")fil 1 1 1 1 1 L

. . . . -8.006 T T T T
assigning any physical interpretation to these values, as they 8.0062 | ]
are results of a purely mathematical consideration. -8.0064 | MP i

Computing higher than third order of PT, one faces the 5 -8.0066 | .
question of determining shifts, that are not set by optimiza- ¢ -8.0068 - 1
tion, but appear due to the interaction with an excited zeroth LU‘E -9:8623; oo i
order state. These ame; and \g, in this special case, at 80074 | S ]
fourth order. One choice is to set these shifts zero; this cor- 80076 b ru e, o
responds to keeping the original partitioning for these diag- -8.0078 ' ' ' '
onal matrix elements. Another possibility is to perform PT in (b) S S S

the subspace determined by the levels appearing in the opti-

P . . . _FIG. 4. The same as Fig. 3 for the Be atom in tied @ basis(Ref. 49 (a)
mization, that. s, to Eeglect at every order terms 'UC'UQ'”gand the LiH moleculeb) using the[3slp/2s] basis set(Ref. 44. The
levels for whichWg;=0. The curve labeled OPT4 in Fig. gistance between the Li and the H atom is set to the SCF optimized value

1(a) is calculated using the former choice, R-OPT4 is ob-1.607 A.
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TABLE Ill. Inversion barriers(a.u) of the NH; molecule. sented in Tables | and Il, where we also included PT series
AE obtained using double substitutions exclusively.
Method STO3-G 6-31G** 63116~ InFig. 4, the PT convergence on four-electron systems
is depicted. Again, both series is converging, and neither
MP2 0.052.40 0.02372 002027 ghows features of asymptotic convergeiwe followed the
MP3 0.053 06 0.024 15 0.02075 . ) 0 ord b v the first d
MP4 0.053 23 0.024 36 002087 Iterations up to 50 orders, but only the |rst' ozen are
shown). The accelerated convergence of the optimized parti-
OPT2 0.053 60 0.024 25 0.02083 tioning is apparent.
D_OPT4 0.05331 0.024 22 0.02078 Estimates for the inversion barrier of Nkire shown in
cesp 0.053 61 0.024 14 0.02074 Tf:_lbl((aj 1. (;eosnée;r?/ of Ithe pyr'ﬁnglda_l arrange(rjnehnt was OE'{I- .
ccsom) 0.053 46 0,024 32 002097 Mized at the evel in each basis set, and the same bon
CCSDT 0.053 39 0.024 33 0.02098 lengths were used for the planar geometry. In the minimal
QCISD(TQ) 0.05343 0.024 29 0.02081  basis the FCI value is shown for a comparison, CCSD
Full-Cl 0.05341 (Coupled Cluster with Singles and Doublesand

QCISD(TQ), with an approximate account for triple and qua-
druple excitations is calculated as a reference in each case.

atom and the LiH molecule possessing four electrons. Th gain s_econd order of the optimized partitioning, that is
inversion barrier of ammonia will be presented as an ex- CCD, IS comparable to MP4 in its accuracy. Fqgrth order
ample for energy difference results with doubles do not alter the picture significantly.
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