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Singularities of Moller-Plesset energy functions

Alexey V. Sergeev® and David Z. Goodson®

Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth,
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The convergence behavior of Mgller-Plesset (MP) perturbation series is governed by the singularity
structure of the energy, with the energy treated as a function of the perturbation parameter.
Singularity locations, determined from quadratic approximant analysis of high-order series, are
presented for a variety of atoms and small molecules. These results can be used as benchmarks for
understanding the convergence of low-order methods such as MP4 and for developing and testing
summation methods that model the singularity structure. The positions and types of singularities
confirm previous qualitative predictions based on functional analysis of the Schrodinger
equation. © 2006 American Institute of Physics. [DOIL: 10.1063/1.2173989]

I. INTRODUCTION

Mgller-Plesset (MP) perturbation theory takes the
Hartree-Fock approximation as the zeroth-order solution for
the wave function and then uses Rayleigh-Schrodinger per-
turbation theory to develop a perturbation series to some
specified order for the ground-state energy. The fourth-order
perturbation theory was formerly considered the method of
choice for high-accuracy ab initio computations, but on ac-
count of concerns raised about the convergence of the per-
turbation series' ™’ it has, in recent years, been supplanted by
the popular CCSD(T) coupled-cluster theory. Nevertheless,
the MP theory has the advantage of a relatively straightfor-
ward theoretical foundation. The MP energy can be thought
of as an asymptotic series of a function of a perturbation
parameter, and as such can be analyzed using methods of
functional analysis. Information obtained from this analysis
can be used to interpret the results of both MP and CCSD(T)
calculations.®®

The convergence behavior of the energy series can
largely be explained in terms of singularity analysis of the
energy function in the complex plane of the perturbation
parameter.lo’15 In principle, there exist two classes of
singularities:lz"]5 Class «a singularities are isolated complex-
conjugate pairs of square-root branch points, which corre-
spond to the avoided crossings between the ground state and
an excited state on a path along the real axis, while class 8
singularities lie on or near the real axis and correspond to
critical points at which one or more electrons dissociate from
the nuclei. The behavior of the energy series is determined
by the positions of the singularities, by the relative weights
of the singularities, and by their classes.

Our purpose here is to present accurate characterizations
of the MP singularity structures for a variety of small mol-
ecules and atoms with various basis sets. The singularity
locations are determined from the analysis of high-order MP
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energy series. Many such series are now available in the
literature,>*’ having been computed using a full
configuration-interaction (FCI) methodology.mf18 These sin-
gularity structures are intended as benchmarks for evaluating
the accuracy of low-order methods of singularity analysis
and for validating qualitative principles that have been
developedj’M’15 for predicting the nature of the dominant sin-
gularities.

The various singularity structures found here for differ-
ent systems fully account for the variety of series conver-
gence behaviors observed by other workers. 371920 If the
closest singularity structure to the origin is in the negative
half of the complex plane, then the series coefficients gener-
ally alternate in sign, while if it lies in the positive half plane,
subsequent series coefficients will generally have the same
sign. If the dominant singularity is a complex-conjugate pair
with a relatively large imaginary part, then partial sums of
the series will show a superimposed oscillation. This ac-
counts for the distinctive “ringing” patterns noted by Lein-
inger et al’

Divergent series result from singularity structure within
the wunit circle. However, as we have emphasized
elsewhere,lz*lz"21 the fact that a series diverges does not im-
ply that it is useless. Divergent and slowly convergent MP
series can be summed using approximants that model the
singularities. These approximants can yield very high accu-
racy even if the series coefficients are only available through
fourth order. A system with an isolated complex-conjugate
singularity pair that is much closer to the origin than any
other singularities can be accurately modeled by the approx-
imant at low order, even if the conventional partial sums of
the series diverge, while convergent series with more com-
plicated singularity structures may require a higher-order se-
ries for comparable summation accuracy. The fact that a
given series is divergent or convergent is less significant in
practice than the question of whether or not the underlying
singularity structure is simple enough to be modeled at low
order by a summation approximant.

Section II presents a brief review of the MP perturbation
equations and a summary of what is known in advance, from

© 2006 American Institute of Physics
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functional analysis, about the nature of MP singularities. Our
method for extracting singularity positions from high-order
series coefficients is described in Sec. III and the results are
given in Sec. IV. Then in Sec. V the various systems are
classified according to their singularity structures using the
“a, 8" singularity classes proposed in Refs. 14 and 15. Im-
plications of these classifications are discussed.

Il. BACKGROUND

The Mgller-Plesset partitioning of the Hamiltonian®* can
be written as

H(Z):H0+ZH1, Hl:H

phys — H, 0> (1)
where Hy is the exact Schrodinger Hamiltonian and Hj is
the sum of one-electron Fock operators. z is a continuous
perturbation parameter that extrapolates between H, at z=0
and Hys at z=1. The eigenfunctions WO of H(z) are then
expressed as

Wi(z) ~ > i, ()
k=0

which leads to a power series in z for the ground-state energy
eigenvalue,

E(z) ~ > EZ-. (3)
k=0

The finite integer n is the order of the perturbation theory.
The ¢ are the Hartree-Fock determinants. E, is the sum of

0
the occupied orbital energies for the ground-state electron
configuration. The symbol “~” means that the left-hand side

of the equation is asymptotically equal to the power series in
the z— 0 limit.”’

The formal solutions for the series coefficients E, for k
>0 are

E.= () |H\|42)), (4)

where the w}({o) are determined by the equation
k
(Ho=E)i” =~ Hy2 + 2 Es), (5)
j=1

with <¢,({0)| E)O))=O for k#0. In practice, in order to solve
these equations the ¢, are expressed as linear combinations
of products of one-electron atomic basis functions. Equations
(4) and (5) can then be interpreted as matrix equations and
solved recursively using the quk to construct the matrix H,
to be used to determine 1/1,((0).

A straightforward approach to compute high-order series
is to take advantage of the FCI methodology.m’17 A FCI com-
putation involves the construction of a matrix representation
of H s, which is then diagonalized to determine its eigen-
values. However, if the H, matrix is available then it can
be used to compute the matrix H; for use in Egs. (4) and (5).
The LUCIA FCI program%25 and the PSI software package26
have been modified for this purpose and, as a result, MP
series to very high order for a variety of atoms and molecules
with up to eight correlated electrons are now available. >*7%’
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From first principles,10’14’15’28’29 one can expect two
classes of singular points in the function E(z) in the complex
z plane. Singularities of class « are isolated square-root
branch points corresponding to values of z at which the
ground state becomes degenerate with an excited state of the
same symmetry. These exist in complex-conjugate pairs,
with nonzero imaginary part. Suppose E(z) has class a sin-
gularities at the points z, and ZZ. Following the energy func-
tions for the two eigenstates along the real axis, an avoided
crossing occurs with closest approach at z=Re z,. Singulari-
ties of class B are critical points. They are found on the real
axis and correspond to values of z beyond which the lowest-
energy eigenstate no longer binds all of the electrons.

The expressing of the i, as linear combinations in a
finite-dimension basis set introduces an approximation into
the analysis. The perturbation series, Eq. (3), is no longer the
asymptotic series of the true energy function E(z) but is now
the asymptotic series of the FCI energy function Epci(z),
which is the energy corresponding to the minimum-energy
linear combination of determinants for a given basis, accord-
ing to the variational principle. The functional forms of E(z)
and Epc(z) differ in a key respect: Because the Hamiltonian
has been approximated with a finite-dimension Hermitian
matrix, the eigenvalue functions cannot have singularities on
the real axis.”®*® It was demonstrated in Ref. 15 that in the
vicinity of a critical point of E(z), the corresponding Epcy(z)
will have a grouping of complex-conjugate branch-point
pairs with very small imaginary parts, as long as the basis set
contains functions that are sufficiently diffuse to model the
dissociation.

The behavior of an asymptotic series at high order is
determined by the singularity structure closest to the origin,
called the dominant singularity. A precise statement of this is
provided by a theorem of Darboux:' If a function f(z) has an
algebraic singularity at a point z;, such that in a neighbor-
hood of z; the function behaves according to the functional
form

f2) ~ (1 =2/z)"F(2) + G(2), (6)

where F(z) and G(z) are functions that are nonsingular in the
disk z=<z;, then the coefficients f; of the Taylor series of f
about the point z=0 asymptotically approach the Taylor se-
ries of the function F(z;)(1-z/z;)*. Thus, as the series order
increases, the coefficients will contain less and less informa-
tion about the functional forms of F(z) and G(z) and will be
essentially determined just by the three parameters z;, @, and
F(z;).

MP series have previously been classified according to
patterns in the signs of the series coefficients.>'22 Early
results suggested that all series fell into either of two catego-
ries: either the series coefficients all had the same sign or,
starting at least by fourth order, the coefficients alternated in
sign.Sz‘33 Series with constant sign were designated as be-
longing to “class A” while those with alternating signs were
placed in “class B.” Subsequent studies™"'*% suggested that
the situation is not so simple. While most series seemed to
fall into one of these two classes, some showed more com-
plicated sign patterns.
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An immediate consequence of Eq. (6) is that if z; is on
the negative real axis, then the series coefficients at high
order alternate in sign, and if z; lies on the positive real axis,
they have the same sign. The analysis is more complicated if
the singularity structure consists of a complex-conjugate pair
of singularities, as in Epc(z). Then the high-order coeffi-
cients are given by the Taylor series of the function

¢i(z) = F(z)(1 - 2/z))"* + F(z;)(l - z/z;)”2 (7)

(with exponent @=1/2, for square-root branch points), which
superimposes a sinusoidal oscillation on the sign pattern that
would have resulted if the singularity was on the real axis at
Z=|Zj|.34 The Taylor series of ¢; is

1 (12
¢j(z)~5|F(Zj)|I§)< . )(—1)"|Z,~I"‘ cos(Q-k0®)Z", (8)

where
zj=1zjle®,  F(z) =|F(z))|e. (9)
This implies that the period of the oscillation is
7=2m/|arg(z))|. (10)

If |Im z/Re z| is small, then 7 will be large and the series will
seem to fall into class A or B, with anomolous behavior
evident only at very high order.

Another possible cause of the breakdown of the A/B
classification is a situation in which there are singularities in
both the positive and negative half planes that are approxi-
mately equidistant from the origin. Suppose branch points
exist at 71,7, ,2,, and z, with |z,| slightly smaller than |z,|. At
extremely high order, the E, would be dominated by the
series coefficients implied by Eq. (7) with j=1, but at inter-
mediate orders both singularity pairs could make significant
contributions. In general, a more accurate model for the se-
ries would come from

P(@)=2 ¢2), (11)

summed over all significant singularities z j,z;. The factor of
|z, in Eq. (8) strongly favors the singularities closest to the
origin with increasing k. However, it will be demonstrated in
Sec. IV that MP series often have a branch-point pair in the
negative half plane that is at approximately the same distance
from the origin as a branch-point pair in the positive half
plane.

Another complication comes from the fact that in the
limit Im z; — 0, the function ®(z) of Eq. (11) becomes non-
singular at z;. Class S singularities of Egcp are expected to
have much smaller imaginary parts than are class « singu-
larities. This suggests that the effects at intermediate orders
on the series coefficients of a class « singularity at some
given distance from the origin could be comparable in mag-
nitude to the effects of a class 8 singularity that is consider-
ably closer to the origin.

One way to salvage the A/B classification system is to
add additional classes to describe the variety of possible pat-
terns in the coefficients.”’ However, we prefer the alternative
of classifying the series according to the singularity structure
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responsible for the series behavior.'*!> Let Zn,Z: and zp,Z; be
the positions of the dominant singularity pair in the negative
and positive half planes, respectively. (We refer to the closest
singularity to the origin in a given half plane as the dominant
singularity in that half plane.) Series will be assigned a sin-
gularity class of aa, Ba, af3, or B according to the class of
the dominant singularities; class Sa means that z, is of class
B while z,, is of class a and so on. The full classification will
consist of the singularity class and the values of —|z,| and
|z,|. We will often use the word “singularity,” in the singular,
to refer to a class @ complex-conjugate pair of singularities
or to refer to the whole class S cluster of complex-conjugate
singularity pairs with which Egc; models a single critical
point of E(z).

lll. ANALYSIS OF HIGH-ORDER SERIES

There are two kinds of strategies for extracting informa-
tion about singularity structure of a function f(z) from its
series coefficients fk.31 The first kind includes methods based
directly on Darboux’s theorem. An example is the well-
known D’Alembert ratio test, using |fi_,/f;| in the limit of
large k as an estimate of the dominant singularity position
|z,|. Various other similar but more complicated Darboux-
inspired techniques have also been developed.3 3% A disad-
vantage of these methods is that they can converge quite
slowly if there is more than one significant singularity. An-
other disadvantage is inherent in the Darboux theorem—
these methods only provide information about the singularity
nearest the origin. Conformal mappings can be used to trans-
form an originally nondominant singularity into the domi-
nant one,”’ but with the complicated singularity structures of
MP series we have found Darboux methods with conformal
mappings to be impractical. The maximum orders of the
available MP series are not high enough.

The second kind of strategy for series analysis is to pos-
tulate some functional form, called an “approximant,” con-
taining adjustable parameters. The parameters are then cho-
sen so that the Taylor series of the approximant agrees with
the asymptotic series of the actual function up to some speci-
fied order. An advantage of approximants over Darboux
methods is that it is possible for them to simultaneously
model more than one singularity, even if the singularities are
at different distances from the origin. Another advantage is
that the convergence can be very rapid if the functional form
of the approximant is similar to that of the actual function. A
disadvantage of approximants is that, except in certain spe-
cial cases,35 we lack a rigorous theorem for the rate of con-
vergence.

The use of approximants was pioneered by Padé,*°
who examined rational approximants, Sp;;1=P./ Q) where
P; and Q,, are polynomials of degrees L and M, respec-
tively, with the polynomial coefficients determined by the
linear equation

Ouf—-PL~0. (12)

fin Eq. (12) represents the power series asymptotic to some
function f(z). The polynomial coefficients are determined by
solving the set of simultaneous linear algebraic equations
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obtained by collecting terms proportional to given powers of
the variable.

It is preferable to base the choice of the functional form
on information other than just the series coefficients. In the
case of the function Egc; we know from analysis of the ei-
genvalue equation that its only singularities are square-root
branch points.28 The singularities of the rational Padé ap-
proximant consist of poles, at the roots Q,,. Although these
approximants can model branch points with clusters of poles
and zeros,” it is more efficient to use an approximant that
has the kind of singularities the function is known to contain.

Padé™ also proposed basing approximants on algebraic
equations of higher degree than Eq. (12). Consider the qua-
dratic equation

QMfz—PLf+RN~O» (13)

with three polynomials. This yields the approximant

P, 1 e) (14)

1
S[L/M N = <QM QMVPZ 40yRy |,

which has square-root branch points, at the roots of the dis-
criminant polynomial

D[L/M,N] =P - 40uRy. (15)

We will assume that, with increasing series order, the roots
will converge to branch points of Epc(z). The branch-point
weights in Eq. (7) for each branch point z; can be estimated
as

1
F(z;) = lim ——[ (1 = 2/z)) "' D pg(2) ] (16)
=z M
1
=m[— 2D (2] (17)

The spectrum of FCI eigenvalues for all states with the
same symmetry as the ground state can be thought of as a
single function Epci(z) with a different Riemann sheet for
each eigenvalue. The physical eigenvalues are the value of
Erci(1) on each sheet. Following Epci(z) on a path in the
complex plane that encircles a branch point causes a transi-
tion from one sheet to another.'** Although the number of
branch points in the [L/M ,N] quadratic approximant will be
the greater of 2L and M+ N, the function Sy, x(z) has only
two branches, corresponding to the choice of sign before the
square root in Eq. (14). Therefore, the quadratic approximant
can simultaneously describe at most two eigenvalues of Epcy.
In principle, higher-degree algebraic approximants, from re-
placing Eq. (13) with, for example, a cubic or quartic poly-
nomial equation, would give a more accurate description of
the functional form, but in practice this requires high-
precision series coefficients to higher order than is avalaible
for MP series.”® ™" Because the singularities of Epci(z) are
known to behave as square-root branch points in the neigh-
borhood of a singular point,28 the quadratic approximant
should at least be adequate for describing the ground-state
Riemann sheet.
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Usually, E, and E; are not presented separately in the
literature; only their sum, the Hartree-Fock energy, is given.
Although E; is not difficult to compute, we have chosen
instead simply to analyze the function

€rci(2) = Ey + [ Epci(z) — Eol/z, (18)

which has the asymptotic series

n—1
erai(z) ~ 2 g2, (19)
k=0
where
€=Ey+E;, €=0=E- (20)

€pcr and Excp have identical singularity structure.

We will compute a sequence of approximants corre-
sponding to increasing order n according to the [L/M,N]
index sequence

[0/0,01,[0/0,11,[1/0,11,[1/1,11,[1/1,2], ... (21)

Since multiplication of both sides of Eq. (13) by a constant
leaves the solutions for P;,Q,,, and Ry unchanged, a nor-
malization condition is needed, which we choose as Q,,(0)
=1. The other parameters of the three polynomials are deter-
mined from the solution of the n linear equations implied by
Eq. (13), with the asymptotic series of gy substituted for f.
The index for given order n is determined by

L+M+N+2=n. (22)

IV. RESULTS

Table I shows the convergence of the singularity posi-
tions of the quadratic approximants for the MP series of the
C, molecule with increasing order n. The basis set is the
correlation-consistent polarization valence double-zeta (cc-
pVDZ) set.*! This basis is compact, lacking diffuse func-
tions, and the molecule is nonpolar. This implies, according
to criteria in Ref. 15, that the dominant singularity in the
negative half plane will be of class «. The fact that C, is
known to have a low- lymg exited state of the same E+ sym-
metry as the ground state” suggests that the dommant singu-
larity in the positive half plane will also be of class a. These
expectations are consistent with the quadratic approximant
analysis, which shows in each half plane isolated complex-
conjugate branch-point pairs with significant imaginary
parts, confirming the classification of this system as aa.

The convergence is reasonably steady for the dominant
singularity in each half plane, and the branch-point pair clos-
est to the origin shows the fastest convergence. At low orders
the approximant ignores the imaginary part and places the
singularity on the real axis at a point approximately equal to
the actual singularity’s real part. As the order increases the
imaginary part appears and soon shows convergence to ap-
proximately the same decimal place as the real part. The
table omits branch points that are much farther from the ori-
gin than the convergent points. The positions of such points
are highly unstable.

Ultimately, accuracy is limited by effects of the finite
precision of the series coefficients. The coefficients, which
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TABLE 1. Convergence of branch-point locations for C, (cc-pVDZ) from
quadratic approximants, as function of the order of the perturbation series. A
bar over a digit indicates that that digit is uncertain due to roundoff error in
the series coefficients. Entries in boldface are the best estimates of the sin-
gularity positions, as discussed in the text.

Order Branch points
5 —-0.773 156 1.697 437
10 —0.829 694+0.402 640i 1.166 929

—1.203 496+0.455 615i

15 —0.885410+0.217 481i 1.203 357+0.381 290i
—1.084 372+0.581 316i 2.754 408
—1.093 789
20 —0.959 079+0.328 454i 1.116 688+1.037 421
—1.528 061+0.345 549i 1.166 531+0.989 774
1.216 608+0.335 380i
25 —0.954 785+0.327 867i 1.06756,1.072 41
—1.50586+0.259 07 1.169 639+0.333 424
-1.65337 1.522 46+0.968 74i
30 —0.955319+0.328 176i 1.18723+0.326 70i
—1.422,-1.461 1.776+0.610i
~1.6201+0.3969i
31 -0.955234+0.328 262i 1.186 417+£0.326 226i
—1.264,-1.268 1.7759+0.6728i
-1.6186+0.3689i
32 —0.955306+0.328 227i 1.18577+0.325 39i
-1.399,-1.425 1.727+0.827i
~1.6220+0.3946i
33 -0.955302+0.328 227i 1.185 72+0.325 26i
-1.3852,-1.409 1.67+0.84i
-1.6201+0.3913i
34 —0.9551 98+0.328 339; 1.186 50+0.326 43;
—1.228+0.003i 1.762£0.654i
—1.6277+0.3635i
35 —0.955381+0.328 114i 1.023.1.024
—1.6044 1.1926+0.3316i
—1.6643+0.4607i 1.70+0.13i
36 —0.955 403+0.328 100 1.159+0.355;
—1.833+0.552i 1.163+0.386i
1.165+0.302i
37 —0.955432+0.328 037i 1.034+0.0003i
~1.5818+0.5061i 1.1935+0.3253i
-1.5891 1.747+0.427i
—1.813+0.484i
38 —0.955 441 +0.328 046i
-1.572+0.525i
-1.630
—1.711+0.548i
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TABLE 1. (Continued.)

Order Branch points

39 —-0.714 599+0.060 227i
—-0.714 608+0.060 229i

~0.956 12+0.327 67i
—1.541+0.342;

40 —0.932+0.770i
—0.933+0.772i

—0.95550+0.328 29i
—1.590+0.314i

were computed by Leininger et al.”*" with the PsI software
package,26 have 12 digits past the decimal (in units of Ej,).
To estimate the effect on the branch-point positions in the
approximants of this level of precision in the series co-
efficients, the approximant analysis was performed ten times
with random error of magnitude no greater than
1 X 107! E, added to each coefficient and the average devia-
tion in each branch-point position was determined. Digits in
Table I with average deviation of at least +1 are indicated
with a bar.

The most significant effect of random error in the coef-
ficients in this case is not the loss of precision in the conver-
gent branch points but rather the generation of spurious
branch points, which decrease the accuracy of nearby con-
vergent points. Spurious points are usually easy to identify.
They are more sensitive to the random error than are conver-
gent points and they typically appear as nearly coincident
pairs. Exactly coincident points are a double root of Dy
and therefore are not singular. Due to the finite order of the
perturbation series and the finite numerical precision of the
series coefficients, there is sometimes a small separation be-
tween the two points. This creates a pair of singular points in
the approximant where none should exist. Above 20th order
most of the spurious branch points for this case are in nearly
coincident pairs. Four actual branch-point pairs of the energy
function are being modeled by a sequence of approximants
in which the number of branch points is steadily increasing,
as the degree of the discriminant polynomial increases with
order. These nearly double roots are the approximants’ way
of using surplus branch points.

The closer these spurious points are to the origin, the
stronger their effect on the convergent point. For example, at
39th order the spurious points —0.71+0.06i are closer to the
origin than is the convergent branch-point pair and “push”
the convergent pair farther out than it should be. At 34th
order the spurious pair —1.228+0.003:, which is farther from
the origin than the convergent pair, pushes the convergent
pair in. Thus, the convergence patterns of the dominant sin-
gularities can be explained, as illustrated by Fig. 1. The dis-
tance of the converging points from the optimally converged
results is plotted as a function of order. There is reasonably
steady exponential convergence of results from approximants
with no spurious branch points in the region of the branch
point in question. At very high orders, significant spurious
points become so prevalent that the approximants become
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FIG. 1. Error in branch-point convergence, defined as the distance in the
complex plane between the dominant branch point of the 38th-order qua-
dratic approximant and the position of the corresponding branch point in the
approximant of given order for C, (cc-pVDZ). Filled circles are from ap-
proximants with no spurious branch points in the region in question. Un-
filled circles indicate the presence of spurious branch points in the negative
half plane with distance from the origin of less than 1.0 (empty circles),
between 1.0 and 1.3 (half filled), and between 1.3 and 1.6 (three-fourths
filled). The line shows an exponential fit to the filled circles.

useless. For example, Fig. 2 shows the singularity structure
of the approximant at order 47. It is characteristic of these
approximants at very high orders that the spurious points are
arranged along the unit circle. The highest-order results
whose convergence is not affected, indirectly, by spurious
branch points or directly by loss of precision are shown in
boldface in the table.

Spurious branch points can appear at lower orders due to
other causes. In this case, orders 9—15 mark a transition from
having one stable branch point in the negative half plane to
having two of them, and five of the seven approximants in
this range have a spurious branch point. These are isolated
points whose positions are unstable from order to order.
Once the approximant decides that there is a second, more
distant, branch-point pair the spurious singularities disap-
pear.

Table II shows series analysis for CI~ with the aug-cc-
pVDZ basis.*” Because the basis is augmented with diffuse
functions, this case is predicted to have a class § singularity
in the negative half plane. Because chlorine is a highly elec-
tronegative element, this singularity is predicted to be the
dominant one."> The results are as expected. The approxi-
mant models a class B singularity with a group of closely
spaced branch points on or near the negative real axis, which
together presumably models a critical point singularity of
E(z) on the real axis. The MP series models Epc(z), not E(z),
and the singularities of Epcyp cannot lie on the real axis, al-
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FIG. 2. Branch points of 47th-order quadratic approximant, [15/15,15], for
C, (cc-pVDZ). The positions of almost double roots (diamonds) and isolated
single roots (circles) of the discriminant polynomial are compared with the
converged results (X) from Table I.

though for class S singularities the imaginary parts are ex-
pected to be very small. The loss of the imaginary part in the
dominant class S singularity at order 24 is presumably a
result of the loss of precision in the series coefficients. In
addition, there is a class « singularity in the negative half
plane and two class « singularities in the positive half plane,
all of which are much farther from the origin than is the class
B singularity.

For this system what ultimately limits the convergence
of the singularity structure is the loss of precision in the
branch-point positions. Spurious branch points are less of a
problem. The class S singularity structure consists of a clus-
ter of many square-root branch points. Surplus branch points
can be utilized productively by modeling this cluster. Fur-
thermore, the propagation of error from the series coeffi-
cients to the computed branch points is more severe for
branch points that are nearly degenerate. The branch-point
positions are determined from the equation D(z;)=0, where
D is the computed discriminant polynomial, containing
roundoff error 8D, and z; is the computed branch-point po-
sition. The error in z; is

If there is another point very close to z; that is also a root of
D, then D'(z;) will be small and &z; will be large. This is
consistent with the observed error propagation in Tables I
and II. The dominant singularities in the negative half plane
for CI” and C, are at comparable distance from the origin,
but CI~, with singularity of class 3, shows roundoff error in
the third decimal place by order 24 while the C, singularity,
of class a, shows roundoff error in the seventh decimal place
at that order.

Table III summarizes the results for a variety of atoms
and small molecules for which high-order MP series are
available. Only our best estimates of the dominant singular-
ity positions are presented, with the last digit uncertain. The
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TABLE II. Convergence of branch-point locations for CI~ (aug-cc-pVDZ)
from quadratic approximants, as function of the order of the perturbation
series. A bar over a digit indicates that that digit is uncertain due to roundoff
error in the series coefficients. Entries in boldface are the best estimates of
the singularity positions, as discussed in the text.

Order Branch points
5 —2.990 270 7.568 483
10 —0.985979 3.817 953
—1.280 154+1.394 014
15 -0.932912 1.319 814+ 1.350 375i
-1.531289 1.453 106+ 1.109 123;
-0.893462+1.914513i
20 —0.957 97+0.043 60i 2.176 51+0.613 04i
-1.03450
—0.8058+3.5872i
21 —-0.974 41+0.025 63i 1.9711+0.7773i
-1.07693 2.5659
—0.743+2.927i
22 -0.974 37+0.025 34i 1.865+0.662i
-1.076 57 2.23+0.18i
—0.636+3.007i
23 —0.9802+0.0152i 2.017+0.755i
-1.096 3.13+0.50i
24 -0.963 1.980+0.764i
-1.06 2.68
-1.07
~1.11+0.08i
—0.78+3.23i
25 -0.982 1.99+0.70i
-0.985 2.5+0.3;
—1.111
26 -0.977 1.3
-0.991 1.3
—1.115 1.99+0.60i

weight factor for each singularity was calculated using Eq.
(17). All of the molecules are at their equilibrium internu-
clear distances.

V. DISCUSSION
A. Accuracy of results

The singularity locations given in Table III can serve as
benchmarks for future studies of MP series summation. In
Ref. 15 we presented results for a few of the systems con-
sidered here (Ne, Ar, and HF) and compared them to the
results of direct computations of the corresponding avoided
crossings. For the direct computations, we carried out many
FCI computations at different values of z in the neighbor-
hood of the closest approach of the lowest two energy levels
and then fitted the cubic approximants to the two energy
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curves. This procedure is more laborious than the MP series
analysis, which requires only a single FCI computation, but
it is presumably more accurate. The results from both meth-
ods were in excellent agreement. For class « singularities
any disagreement was only in the last digit, while for some
of the class (B singularities the direct result was slightly
closer to the origin than that from the series analysis. The
worst case was Ar (cc-pVDZ), for which the direct results
was 2.8+0.02i compared to our present result of 3.3.

In general, the closer a singularity is to the origin of the
complex plane, the faster the convergence of its position in
the quadratic approximants of the MP series. The rate of
convergence is sometimes unsteady, with sudden jumps to
higher accuracy. When there is a pair of nearby singularities
the tendency is for the approximant to at first model the two
singularities with a single branch point between them. In
particular, a complex-conjugate pair will at first be modeled
with a branch point on the real axis with an approximately
correct real part. The jump in accuracy occurs when the ap-
proximant “decides” to use two separate branch points to
model the singularity structure instead of just one. In practice
the accuracy of the results was in most cases ultimately lim-
ited by the finite precision of the series coefficients. Once the
increasing effects of this propagation of roundoff error
matched the decreasing convergence error, it was useless to
continue the analysis to higher orders.

For a given distance from the origin, a dominant class 3
singularity position will converge more slowly than the po-
sition of a dominant class « singularity. This is because an
isolated singularity can be modeled by the approximant even
at rather low order while two nearby singularities can be
distinguished from each other only at higher order. A class 8
singularity is inherently close to its complex-conjugate part-
ner, because of its small imaginary part, and close to other
class B singularities in the cluster that is needed to model a
critical point.

In Table III the convergence of the singularity positions
is indicated by the number of digits. The last digit in the real
part and in the imaginary part of each branch-point position
is uncertain. The convergence of the weight factor F(z;) is
somewhat less steady than that of the corresponding singu-
larity position z;. In most cases we have given the F(z;) value
from the same order as used for the z; value. In a few cases
the effect at this order of roundoff error in the series coeffi-
cients caused all digits of F(z;) to be insignificant. In such
cases, the F(z;) value was taken from a lower-order approx-
imant.

B. Effect of singularities on perturbation series

Convergent results for singularities in both half planes
were found for all but two systems. (With the cc-pVDZ ba-
sis, the singularities in the negative half plane for C1~ and Ar
are so distant that the convergence is suspect.) The closest
singularity to the origin completely determines the high-
order series behavior, but singularities more distant from the
origin can have an effect at lower orders. This is illustrated
by Fig. 3 for the C, molecule with the cc-pVDZ basis set.
The convergence of partial summation of the energy, from
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TABLE III. Branch-point locations from analysis of quadratic approximants. If all the available series coefficients were used, then the order is given in
parentheses. When two orders are given, the first corresponds to the singularity position while the second corresponds to the weight. The basis sets are from

the cc-pVXZ and aug-cc-pVXZ correlation-consistent families. (Refs. 41-43).

Dominant Dominant
negative positive
Class System (basis) singularity Weight Order singularity Weight Order
aa CN* (cc-pVDZ) —-0.68+0.13i 0.40+0.25i (13) 1.07+0.22i 0.038+0.264i (13)
C, (cc-pVDZ) —0.955 44+0.328 05i 0.573+0.602i 38 1.1865+0.3264i 0.303+0.163i 34
-1.57+0.53i 1.2350.48i 38 1.76+0.65i 0.010£0.137i 34
N, (cc-pVDZ) —1.505+0.638i 0.057+0.727i 18 1.66+0.32i 0.114%0.129¢ 17
Ne (cc-pVDZ) -2.62+0.90i 0.4+0.5i 19 3.14+0.51i 0.06+0.62i 18
aB ClI” (cc-pVDZ) —2+5i 0.2+0.2i 17 2.6+0.1i 0.077*0.036i 18
-5.6 0.037 15
Ar (cc-pVDZ) -2+8i 0.750.1i 15 33 28 14
1.2+4.0i 0.41¥0.01: 15
Ba BO* (cc-pVDZ) -0.5227+0.0131i 0.142+0.486i 22 1.24+0.26i 0.078+0.021¢ (23)
-1.2+0.3i 0.02+0.14i (23)
OH™ (aug-cc-pVDZ) —-0.566+0.002i 0.003 28+0.003 42i 25 1.774+0.873i 0.0272 + 0.0289i 27)
-2.0+0.4i 0.07*0.11i 25 1.863+0.718i 0.0355+0.0203 (27)
F~ (aug-cc-pVDZ) —0.639+0.008i 0.295*0.445i (21) 1.98+1.02i 0.153 % 0.056i (21)
HF (aug-cc-pVDZ) -0.7595+0.0149i 0.000 196+0.000 359i 26 1.94+1.04i 0.0134 5 0.0074i 25
Ne (aug-cc-pVDZ) —0.824+0.007i 0.0032+0.0102i 35 3.0+0.6i 0.40+0.56i 21
ClI” (aug-cc-pVDZ) —0.980+0.015: 0.0018+0.0272i 23,22 1.980+0.764i 0.0432 % 0.0022i 24
—0.78+3.23i 0.046 = 0.020i 24,22 2.5+0.3i 0.12+0.03i 25
HCI (aug-cc-pVDZ) —-1.13%£0.02i 0.000 44+0.000 50i 24,21 2.20+0.29i 0.053 +0.004i 23
HF (cc-pVDZ) —-1.28+0.02i 0.001+0.001: 21,19 2.4+0.3i 0.2+0.6i 22,19
HCI (cc-pVDZ) —-1.49+0.05i 0.0012+0.0017i 22 2.2+0.8i 0.1+0.02i 20
BB SH™ (aug-cc-pVDZ) —0.968+0.016i 0.000 52+0.000 56i 24 1.86 0.016 24
Ar (aug-cc-pVDZ) —-1.244+0.014 0.000 84+0.000 89i 20 2.576 0.23 21
BH (cc-pVDZ) -4.0 0.0015 17 1.45 0.0105 (29)
1.58+0.25i 0.048+0.036i (29)
BH (aug-cc-pVQZ) —2.03+0.04i 0.001 89+0.001 87i 19 1.387 0.028 25
1.67+0.53i 0.016 + 0.064i 25
BH (aug-cc-pVTZ) -2.97 0.0052 19 1.42 0.024 24
1.56+0.63i 0.006*0.015¢ 24,23
BH (cc-pVQZ) -3.06+0.07i 0.017+0.017i 18 1.39+0.04i 0.034 %+ 0.030i 18
1.73+0.46i 0.29+0.18i 18,17
BH (aug-cc-pVDZ) -3.03 0.025 18 1.60 0.19 19
1.57+0.48i 0.11+0.04i 19
BH (cc-pVTZ) -3.80+0.08i 0.10+0.10i 16 1.43+0.05i 0.038+0.031i 18
1.70+0.45i 0.07+0.34i 17,16

Eq. (3) with z=1, is compared with the convergence at z
=1 of the Taylor series of the model function ®(z) of Egq.
(11) with one, two, or three complex-conjugate singularity
pairs.

The high-order behavior in this case is completely
accounted for by just the singularity pair at
—0.955 44+0.328 05i, using only the singularity location and
the value of the prefactor. Note the periodic oscillation, con-
sistent with the value 7=19.0 predicted by Eq. (10). Includ-
ing in addition the singularities at 1.1865+0.3264i signifi-
cantly improves the model at orders 4, 5, and 6, as shown in
Fig. 4, but not at higher orders. Including the singularities at
—1.57+0.53i only improves the model at fourth order. There
is no significant contribution from the singularities at
1.76+0.65i. Of course, practical applications usually use se-
ries at only fourth or fifth order. Figure 4 suggests that accu-
rate summation at fourth order will require modeling of sin-

gularities in both the positive and negative half planes.
Below fourth order, it is clear that nonsingular contributions
must also be taken into account to accurately describe the
series behavior.

Figure 5 compares the high-order behavior for Cl~ (aug-
cc-pVDZ) with that predicted by the dominant singularity at
—0.980+0.015i. The singularity structure for this system is
clearly dominated by a class B singularity in the negative
half plane, which is much closer to the origin than any other
singularities. The series shows the expected alternation in
signs of the series coefficients, which is modeled quite well
by this one singularity pair. Figure 6 shows the results at low
orders. The singularity appears to have essentially no effect
on the series at orders 2 and 3 and only a small effect at
fourth order.

In principle, the fact that singularity effects are relatively
insignificant at very low orders might suggest that MP2
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FIG. 3. High-order convergence of C, (cc-pVDZ) energy series compared
with convergence of model functions consisting only of singularities. Open
circles show the error in the MP energy sum, defined as the difference
between the partial sum and the FCI energy. The corresponding summation
error for the model function for one, two, and three singularities, respec-
tively, is indicated by +, X, and filled circles.

could give reasonable results even in cases where the series
is strongly divergent. An extreme example of this is F~ with
the aug-cc-pVDZ basis, which has a class 3 singularity
rather close to the origin and a relatively large value for the
real part of the corresponding weight factor. MP4 in this case
is less accurate than MP2. The MP4 partial sums differ from
the FCI energy by 5.5 mE;,, while MP2 is in error by only
3.4 mE,

C. Singularity classes

Based on the theoretical expectations summarized in
Sec. II and the computed results in Table III, the following
generalizations can be inferred for atoms and diatomic mol-
ecules.

(1) The dominant singularity in the negative half plane for
atoms and for homonuclear diatomics will be of class «
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FIG. 4. Low-order convergence of C, (cc-pVDZ) energy series compared
with convergence of model functions consisting only of singularities. Open
circles show the error in the MP energy sum, defined as the difference
between the partial sum and the FCI energy. The corresponding summation
error for the model function for one, two, and three singularities, respec-
tively, is indicated by +, X, and filled circles.
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FIG. 5. High-order convergence of CI~ (aug-cc-pVDZ) energy series com-
pared with convergence of a model functions consisting only of the domi-
nant singularity. Open circles show the error in the MP energy sum, defined
as the difference between the partial sum and the FCI energy. The corre-
sponding summation error for the model function is indicated by the filled
circles.

if the basis set lacks diffuse functions and of class 8 if
it includes diffuse functions.

(2) For heteronuclear diatomics the dominant singularity in
the negative half plane will be of class B; adding dif-
fuse functions to the basis moves this singularity closer
to the origin.

(3) Systems with a low-lying excited state that mixes
strongly with the ground state, such that a single-
reference Hartree-Fock determinant gives a poor de-
scription of the wave function, will have a class « sin-
gularity in the positive half plane slightly beyond the
physical point z=1 and a class « singularity in the
negative half plane relatively close to the origin.

Class B singularities can be thought of as critical points
in an (E,z) phase diagram.'®'>* The system can bind all the
electrons only over a certain range of z. As z passes beyond
the singularity, it becomes possible for electrons to tunnel out
of the confining potential energy well. If the basis set is of
the aug-cc-pVXZ type, which is augmented with diffuse
functions, then at the critical point all of the valence elec-
trons dissociate from the system. The cc-pVXZ sets, which
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FIG. 6. Low-order convergence of Cl~ (aug-cc-pVDZ) energy series com-
pared with convergence of a model functions consisting only of the domi-
nant singularity. Open circles show the error in the MP energy sum, defined
as the difference between the partial sum and the FCI energy. The corre-
sponding summation error for the model function is indicated by the filled
circles.
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lack diffuse functions, are too compact to model the free
valence electrons. However, for heteronuclear diatomic mol-
ecules, basis functions centered on the less electronegative
atom can model a sudden migration of electrons from one
atom to the other.”® In Table III all the systems with aug-
mented basis sets and almost all the heteronuclear diatomics
with compact basis sets have a class B singularity as the
dominant singularity in the negative half plane. CN* (cc-
pVDZ) is apparently the only exception. This may be due to
the relatively small electronegativity difference between C
and N causing the critical point to be farther from the origin
than a class « avoided crossing.

Some of the systems considered here also show a class 8
singularity in the positive half plane, which represents a
sharp curve crossing of the ground state with either a singly
ionized state or a highly excited Rydberg state. The existence
of such singularities was conjectured in Ref. 15. Systems
with the second-row elements S, Cl, and Ar seem to have
such singularities at z>1.8. These are sufficiently distant
from the origin that they will have little effect on MP energy
series summation. However, BH has a class 8 singularity in
the positive half plane that is relatively close to the origin
and is responsible for the slow convergence7 of the energy
series for this system. This singularity was missed in our
previous analysis of the BH series'* because it is masked at
lower orders by a nearby class « singularity.

A class « singularity in the positive half plane represents
a qualitative change in the nature of the wave function. Con-
sider a case in which the Hartree-Fock (z=0) ground-state
wave function is a singlet state with all electrons in doubly
occupied orbitals while the first excited singlet state has two
singly occupied orbitals. As z increases past 1 on the real
axis, the perturbation operator, which includes dynamic elec-
tron correlation, increases in importance, according to Eq.
(1). Because the correlation is more important for a pair of
electrons in the same orbital, the ground-state energy will
increase relative to that of the excited state, leading to an
avoided crossing and a corresponding complex-conjugate
branch-point pair with real part at the point of closest ap-
proach. The presence of a class « singularity close to the
physical point z=1 implies that the Hartree-Fock reference
determinant is a qualitatively inaccurate model for the physi-
cal wave function. Thus, the position of this singularity can
serve as a diagnostic for any method that interpolates be-
tween the Hartree-Fock approximation and the FCI solution,
including coupled-cluster methods.

A few systems do not fit well into this singularity clas-
sification system. With the cc-pVDZ basis, Ne, CI7, and Ar
have all their singularities so far from the origin that the
singularity structure is of little practical significance. For
these systems the MP series are rapidly convergent. For ex-
ample, the MP4 energy for Ne (cc-pVDZ) differs from the
FCI energy by only 0.025 mE,. This is more accurate than
CCSD(T) and it is not improved by summation methods that
model the singularity structure.® For BH the singularity
structure in the negative half plane is significantly farther
from the origin than that in the positive half plane. Although
classed as 88 in Table III, the negative B singularity is less
important for summation purposes than is the subdominant «
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singularity in the positive half plane. These systems could be
better described with a designation such as class xx for Ne
(cc-pVDZ) and class x|Ba for BH, where x indicates the
absence of significant singularity structure.

The relation between MP singularity structure and the
accuracy of summation approximants for MP4 will be exam-
ined in detail in a future publication. As an example, we note
that for BH the partial summation of the MP series (i.e.,
simply adding together the series coefficients, in the conven-
tional manner) gives an error of 5 mE}, at fourth order, while
the MP4-g\ quadratic approximantg’21 is very accurate, with
summation error on the order of 0.1 mE,. This is because the
singularity structure of the MP4-g\ approximant consists of
a single square-root branch point on the real axis. Thus it
accurately models the dominant singularity of BH. The ap-
proximant has no singularity structure in the negative half
plane, but because the true singularities of BH in the nega-
tive half plane are so much farther from the origin than are
those in the positive half plane, this is not a problem. By
fitting a single parameter, the pure real position of the one
important class S singularity, the approximant accurately
characterizes the energy function. In contrast, N, is problem-
atic for fourth-order summation approximants, even though
its dominant singularity is at about the same distance from
the origin as that of BH. To characterize the N, energy func-
tion the approximant must fit four parameters, the real and
imaginary parts of two equally important singularities in
both half planes. This requires more information than is
available at just fourth order.
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