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correlation effects and provide a better description of chemical
bonds.
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A method has been developed for calculating energies by full spin projection of unrestricted Moller—Plesset perturbation
theory wave functions. The spin projection technique has been tested on bond dissociation potentials of LiH and HF and
on symmetrically stretched H-_,O In the region where the UHF wave function is more stable than the RHF wave function,
spin projected UMPnr energles of low order (n < 4) have smaller errors than the corresponding spin restricted MPn and
unprOJected UMPn energies, when compared to full configuration interaction calculations. For higher order perturbatlon
theory, spin restricted MPn energies may be more accurate than spin projected UMPn, but only for limited region near the
RHF/UHF instability. An approximate spin projected UMP# formalism developed earlier yields energies that are in good
agreement with the present full spin projected UMPn calculations. A formula for spin projected energies in the coupled
clusters approach is also presented. It is shown that annihilation of any single spin contaminant leaves the CCSD energy

unaltered.

Introduction

For open-shell systems, unrestncted Hartree—Fock (UHF)! and
nth order unrestricted Mpller—Plesset perturbation theory
(UMPn)?? are usually quite reliable and yield satisfactory en-
ergetics and optimized geometries. However, spin unrestricted
wave functions are not eigenfunctions of the S2 operator. This
is normally not a significant problem, unless the contamination
from higher spin states is large. In such cases,.the potential energy
surfaces obtained by spin unrestricted methods, such as UHF and
UMPr, can be significantly distorted, showing anomalously high
barriers for reactions* and bond dissociation potentials that rise
too steeply.” These difficulties are due to the extremely show
convergence of unrestricted Mgller—Plesset perturbation theory
in these regions of the potential energy surface.5® The con-
vergence difficulties, in turn, can be traced to serious spin con-
tamination in the UHF reference determinant. In a previous
paper,’ we outlined a simple, approximate scheme to calculate
UMPh energies with annihilation of the largest spin contaminant.
This method has been used successfully to study some simple bond
dissociations® and a number of radical reactions involving additions
to multiple bonds,**"!! isomerizations,'? and abstractions.’* In
this paper, we present a method for calculating fully spin projected
UMPhx energies and give a number of simple examples.

Method

Projected Hartree~Fock Theory. The equations for the pro-
jected Hartree—Fock energy are well-known!#' and can be written
in terms of the Lowdin spin projection operator.'®

Eproj UHF = <ﬁsq/0|ﬁlps\l’0>/<ﬁs\p;)'ﬁsq(02 = .
(WO HP o) /{Wo| P ¥ (1)

= kgl(gz —k(k+ D)/(s(Gs+ D -k(k+ 1))} (2)
Note that P, is independent and commutes with A. The numerator
can be expanded by inserting the identity operator, / = [¥q) (¥
+ X 1¥;) (¥)|, where the sum extends over all excited determinants.
The projected Hartree—Fock energy and wave function can then
be written as
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Epoj untr = (WolH1Wo) + L (Yol HNW:) (WP {W0) / (Yol P Wo)

3)

Py = Vo + ) (WiPIVo) / (Tl T0) = ¥+ ¥y (4)

Because the UHF wave functions satisfy Brillouin’s theorem and
A contains only one- and two-electron operators, the summation
over ¢; in eq 3 for the projected Hartree—Fock energy can be
restricted to all double excitations (but not in eq 4 for the projected
wave function).

Approximations to Spin Projected Moller—Plesset Perturbation
Theory. Projected Hartree~-Fock potential energy curves are
known to behave quite poorly in some regions, particularly near
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the onset of the RHF/UHF instability.!* As has been demon-
strated earlier,%%%13 the potential energy curves are much improved
when correlation corrections are added to the PUHF results. The
spin projection corrections to the UHF wave function and the
perturbative corrections to the wave function for electron corre-
lation, ¥,, ¥,, etc., both consist of single, double, and higher
excitations. As a first approximation, the spin corrections, ¥,
must be reduced by the amount already contained in the corre-
lation corrections, ¥, ¥,, etc. This leads to the following for-
mulas:'’

Epmpr = Eumpr + AEpunell — (Fo[ W)/ (Fol¥o)} (Sa)
Epmps = Eymps + AEpuurll — (oW + ) /(o[ ¥p)}  (5b)

Eppps = Eumps + AEpuurl — (T ¥, + ¥, + W) / (¥ W)}
(5¢)

It can be shown that this approximation goes to the correct limit
as the perturbed wave function approaches the exact wave function
(‘e (WOI\I,I + ..+ T, )/<\I’OI\I’0> = (P \IIO \IIOI\I’exacl \I,0>/
(P¥, - \I/0|P \I/o Vo) = 1, since P ¥, = Weaee and P, is
idempotent).

If the largest contribution to the spin contamination comes from
only the next highest spin, i.e., s + 1, it is reasonable to ap-
proximate the full projection operator by the first factor in eq 2,
k =5+ 1. However, the resulting operator is no longer a projector
(not idempotent) but an annihilation operator, A,,. The operator
that destroys all states with spin s + #n is given by

-

As+n =
§2+ (s + n)(s + n+ DY/ {TISHT,) — (s + n)(s + n + 1)}
6)

where the denominator is chosen to ensure intermediate nor-
malization of A,...,,\I/o Since a single annihilator contains only
one- and two-electron operators, the approximation P, = A, yields
a spin correction term, ¥, in eq 4, that contains only single and
double excitations. This greatly simplifies the computation of the
approximate spin projected energies based on eq 5.

Spin Projected Moller-Plesset Perturbation Theory. The
approximate spin projected formulas in eq 5 result from the
projector or annihilator operating on ¥, only, followed by a
correction to avoid double counting of excited configurations
already in ¥,, ¥,, etc. Full spin projection would apply the
projector to the correlation corrections as well as to ¥,. For UMPr
wave functions, the projected energies can be written

Eproj mp2 = (AP + Py / (Wo|P¥, + PV (7a)

Eyo mp3 =
(\I’0|H|P ¥, + P v, + P \Ilz)/(‘I/O|P Y, + P\Ifl + P W)
(7o)

The only components of P,¥,, ¥, etc., contributing to the energy
are ¥, and the double excitations. This simplifies the computations
considerably, and the projected MP#n energices can be expressed
as

E o MP2 = ) . .
(ol HIWo) + ZAWlHW,) (WilP ¥y + X)) /(Lo|P ¥, + ¥))
(8a)
Epoj mpy = (VoY) +

ZAWAN) (U)PIT + ¥y + y) /(WP ¥, + ;) (8b)

where {; includes all double excitations (ea, af, 38). To evaluate

(19) In previous applications the contribution of ¥; to Epyps was omitted
for practical reasons. Furthermore, ¥ was restricted to single and double
excitations even when the full projector was used. The present calculations
indicate that these approximations change the energy by less than 10 -3 ay,
except in the immediate vicinity of the RHF/UHF instability.
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(VP ¥,), one needs matrix elements of the type (¥ IS’Z"‘M]),
where ; and ¢; include all double excitations; for (Y|P |¥,),
(VAR T), ete., ¥, must also include higher excitations. For m
= | the matrix is relatively sparse, but for 72 > 1 there are of the
order of n*N* nonzero elements between doubly excited deter-
minants, where # is the number of occupied orbitals and N the
number of unoccupied orbitals.

A different set of equations for the projected MPn energies can
be obtained by taking advantage of the fact that P, and H com-
mute.

Eproj Mp2 = [(‘I’olpsl‘l’o><‘lio|ﬂ|‘1’o + ) + i
2Pl (Wil HI G + I))]/ (Wo|P| W + ¥y) (92)

Epeoj Mp3s = [(Wol P o) (WolHY + T, + W) +
AP (WY + )+ U) ] /(F|P W + ¥y + Ty)

(9b)

The ¥;’s run over all single, double, triple, and quadruple exci-
tations in eq 9a, and additionally quintuple and hextuple excitations
for eq 9b. The matrix elements (| A]¥,) are Cclosely related to
{¥,) and the MP3 energy; likewise, the (y;\H]¥,) are closely
related to |¥;) and the MP4 energy. In both approaches con-
siderable factoring should be possible to reduce the work to below
n*N*, Equation 8 would, at first glance, seem to be more practical,
but eq 9 is more amenable to approximations such as limiting the
number of spin contaminants to be annihilated or limiting the
excited states that appear in the summation. For example, if only
the largest spin contaminant is annihilated, i.e., P, ~ 4,4, then
¥; runs over single and a8 type double excitations only.

An alternative formulation of spin projected Mgller—Plesset
perturbation theory is presented by Knowles and Handy? else-
where in this issue. It can be easily shown that the two methods
are closely related. If the denominator in eq 7 of the present paper
is cxpanded in a Taylor series, (Wo|Py| ¥, + U+, +.)7" =
(Wl | W)™ (1 - (‘I’olpsl‘l’l + ¥, + )/(‘I’olp o) + . ) and
terms of the same order in A, are collected then eq 11 of Knowles
and Handy is obtained. For the examples discussed below, the
two methods differ in energy by 107> au or less.

Spin Projected Coupled Cluster Theory. Unrestricted coupled
cluster wave functions appear to have less spin contamination than
their many-body perturbation theory counterparts.’!*> Fur-
thermore, the coupled cluster calculations with singles and doubles
(CCSD) describe single bond dissociation potentials quite well 2!~
The QCISD method®* seems to have similar properties. This
suggests that the CCSD approach and related methods overcome
some of the spin contamination problems encountered by un-
restricted Moller—Plesset perturbation theory. Analogous to eq
9, the spin projected coupled clusters energy can be written as

Epnoj cc = [(WalPf¥o) (¥l H ¥ cc) +
TP ) (YilB¥ec))/

[(WolP o) + ;waﬁ,wpwccn (10)

The CCSD equations require that (¥olHl¥cesp) = Ecesp and
(\P IHI\IlCCSD) = ECCSD(w I\IJCCSD) for all smgle and double ex-
citations.> Hence, if the summations in the numerator and de-
nominator are restricted to single and double excitations or if P,
is restricted to annihilate only one spin contaminant (i.e., if P,
is approximated by Ay, forany n = 0, (\I/0|Ps|¢,) is nonzero only
for single and double excitations), then the factors in the numerator
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Figure 1. Comparison of convergence rates for restricted, unrestricted,
and spin projected unrestricted Moller-Plesset perturbation theory for
LiH at R = 3.0 A (STO-3G basis).

that depend on the projector cancel with the denominator and the
coupled cluster energy with single annihilation is identical with
the unprojected energy. Thus, CCSD calculations will be sat-

Eccsptsa = [(‘I’ol-'aﬁnl‘{’o)(‘I’olﬂl‘l’gcsw +
2 Aol Agrnl¥i) (Wil HI ¥ cesp) 1/

[(¥oldoin ¥} + >j:<%|ﬁs+,,|¢,-><¢,-|wccso>1 (11a)

= [(¥olAe4n¥o) Eccsp +
2 WolAgrnlts) (Yl ¥ccsp) Ecespl /

[(Woldgal o) + §<%|As+,,|¢,~><w,-lwccsn>] (11b)

= Eccsp (1)

isfactory for problems in which the UHF determinant has only
one major spin contaminant, e.g., single-bond dissociation po-
tentials, etc. By the same arguments, processes involving two spin
contaminants, e.g., the breaking of two single bonds or the breaking
of a double bond, will be treated very well by CCSDTQ. Because
of the exponential nature of the coupled clusters wave function,
CCSD may be adequate for the breaking of two single bonds,
provided they do not interact significantly. A similar approach
can be used to show that the QCISD method?* should also be
satisfactory for cases with one major spin contaminant.

Results and Discussion

The spin projected UMPr method presented above was tested
in the context of a full configuration interaction program. The
code for the full CI calculation and the nth-order Moller-Plesset
pertutbation theory was written by using the approach outlined
by Handy et al.?’ with the formula list organized as suggested
by Siegbahn.?6 Details will be published elsewhere. A number
of simple examples have been studied to compare RMPn, UMPn,
and projected UMP# with full configuration interaction calcu-
lations and to test various approximations. The spin projected
UMPn energies were calculated according to eq 9 and the PMPn
energies according to eq 5. The full spin projector, P, was used
throughout, and no restrictions were placed on the -sums over
excited states.

In the first example, the bond dissociation curve for LiH has
been computed with the STO-3G basis set. Calculations were
performed with restricted, unrestricted, and spin projected un-
restricted Moller—Plesset perturbation theory up to 20th order
and with full configuration interaction (six active orbitals). Figure
1 shows the rate of convergence of the various levels at a bond

(25) Knowles, P. J.; Handy, N. C. Chem. Phys. Lett. 1984, 111, 315.
(26) Siegbahn, P. E. M. Chem. Phys. Lett. 1984, 109, 417.
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Figure 2. Bond dissociation potential for LiH at the MP4 level (STO-3G
basis).
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Figure 3. Energy difference between MP4, MP8, and full CI as a
function of bond length for LiH (STO-3G basis).

length of 3 A. As has been pointed out previously,®® the UMPn
series is very slow to converge. The RMPn series converges more
rapidly than the unprojected UMPn series but undergoes oscil-
lations that become quite severe at longer bond lengths. Since
the practical limit for larger molecules is MP4, it is instructive
to examine the behavior of the dissociation curve computed with
the various approaches at fourth order. Figure 2 illustrates the
potential energy curves at the various levels, and Figure 3 shows
the difference between the restricted, unrestricted, and spin
projected MP4 and MP8 energies and the full CI energy. The
UMP4 curve rises too steeply in the intermediate region, and the
RMP4 curve turns over beyond 3 A. The difference between the
projected UMP4 and the full CI energies is largest (ca. 1.5
kcal/mol) near the onset of the RHF/UHF instability but di-
minishes rapidly for increasing bond lengths. Beyond the
RHF/UHF instability (R > 2.0334 A), the difference between
the projected UMP4 and full CI energies is less than the difference
between RMP4 and full CI. The approximate projected UMP4
approach (PMP4) used earlier is in very good agreement with the
fully projected UMP4 energies at all bond lengths. For eighth-
order perturbation theory, the restricted MP curve is more accurate
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Figure 4. Comparison of convergence rates for restricted, unrestricted,
and spin projected unrestricted Moller-Plesset perturbation theory for
symmetrically stretched H,O at R = 1.934 A (STO-3G basis).
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Figure 5. Comparison of convergence rates for restricted, unrestricted,
and spin projected unrestricted Moller-Plesset perturbation theory for
HF at R = 2.0 A (6-31G basis).

up to ca. 2.75 A; however, for longer distances the spin projected
UMP is superior.

The second example considered is H,O with both bonds
stretched to twice the equilibrium value (R = 1.934 A). Calcu-
lations were performed with the STO-3G basis set using restricted,
unrestricted, and spin projected unrestricted Mgller-Plesset
perturbation theory up to 40th order, as well as full configuration
interaction (frozen core). Spin contamination from both the triplet
and quintet?” must be removed for meaningful results with eq 5,
8, or 9. Figure 4 shows the rate of convergence of the various
levels. Similar to LiH, the RMPn series oscillates and UMPx
series converges very slowly. The projected UMPn series lies much
closer to the full CI result but retains a small, slowly converging
component. The approximate PMPn energies are in very good
agreement with the fully projected UMPn energies.

In the third example, the bond dissociation curve for HF has
been calculated with the 6-31G basis set using Moller—Plesset
perturbation theory up to 10th order and full configuration in-
teraction (frozen core). Contamination from spin states higher
than the quintet contribute less than 2 X 107 au to the energy.
As shown in Figure 5, the rate of convergence of the RMPn series
at R(HF) = 2,0 A is considerably more erratic than for the
minimal basis set calculations discussed above. Similar erratic
behavior has been noted for double-{ basis set RMP# calculations
on symmetrically stretched H,0.2! The convergence of the UMPn
series is slow but monotonic. Up to fourth order, the projected
UMPn series converges rapidly to within 0.002 au of the full CI
result; beyond fourth order the rate of convergence is considerably
slower. The approximate PMPn values are in good agreement
with the results of full spin projection. Figure 6 illustrates the
HF bond dissociation petential calculated at the RMP4, UMP4,
projected UMP4, PMP4, and full CI levels; differences between
the MP4, MP8, and full CI energies are given in Figure 7. The
behavior is very similar to LiH. The difference between the

(27) Higher spin states are not possible because of the basis set size.
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Figure 6. Bond dissociation potential for HF at the MP4 level (6-31G
basis).
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Figure 7. Energy difference between MP4, MPS8, and full CI as a
function of bond length for HF (6-31G basis).

projected UMP4 and full CI energies is largest near the RHF/
UHF instability (R = 1.2771 A). At eighth order, the RMP
energy is better than the projected UMP energy up to R = 1.75
A. However, for longer bond lengths, the error in the projected
UMPn energies is less than the error for RMPn. The approximate
PMP4 energies are in good agreement with the projected UMP4
energies, especially at larger distances.

Conclusions

A formalism for calculating spin projected UMPn energies has
been proposed, and test calculations were carried out for LiH,
H,0, and HF. For low orders (n < 4), spin projected UMPr
energies are better than RMPrn and unprojected UMPn energies.
Higher order RMPn energies may be more accurate than spin
projected UMPn, but only for a short distance beyond the onset
of the RHF/UHF instability. The approximate spin projected
UMPn (PMPn) method used in earlier calculations is in good
agreement with the full spin projected UMPn computations. Spin
projection can also been applied to the spin unrestricted coupled
clusters method. It is shown that the CCSD energy is unaltered
by the annihilation of any single spin contaminant.
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