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Abstract 

This paper serves two purposes. The first is to describe an implementation of the coupled cluster 
theory with double substitutions (CCD) previously developed by Cizek. The second is 10 apply this 
method and closely related fourth-order perturbation methods to some simple molecules and reaction 
potential surfaces. These studies show that CCD theory gives results close to those of a Mdler-Plesset 
perturbation treatment to fourth order in the space of double and quadruple substitutions MP4(DQ). 

Addition of contributions from single substitutions at fourth order makes little change in predicted 
relative energies. Preliminary results on the potential surfaces for 1 ,I-hydrogen shifts in CzH2, HCN, 
CH20,  and N2H2 are discussed and compared with previous studies. 

1. Introduction 

It is well recognized that refinement of molecular-orbital (MO) techniques 
proceeds in two distinct directions. One is extension of the set of basis functions 
used for expansion of the MOS and the other is the development of methods for 
taking account of correlation between electron motions that are neglected in the 
simplest, single-configuration Hartree-Fock (HF) treatment. In this second area, a 
wide variety of methods have been proposed and some are now widely used in 
practical applications. However, there are very few studies that compare the 
effectiveness of these methods in a systematic manner. 

To be satisfactory as a general computational technique, a MO theory of 
electronic energy should ideally have the following features: 

(a) It should be size consistent. This means that when applied to an assembly of 
isolated molecules, the results should be the sum of the energies calculated by 
applying the same method to the molecules individually. I f  this condition is not 
satisfied, the theory is unlikely to give a good description of the relative energies of 
molecules of different sizes. 

(b) It should be invariant under transformations within a set of degenerate 
MOS. Since the specific forms of degenerate orbitals are usually partly arbitrary in 
molecules of high symmetry, clearly the results of an energy calculation should be 
independent of such choices. 

(c) It should have the variational property of giving an upper bound to the 
energy that would be obtained by exact solution of the electronic Schrodinger 
equation. 
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Few theories satisfy all three of these conditions, even for molecular ground 
states. HF theory, in its spin-unrestricted form (UHF) with an atom-centered set of 
basis functions, usually satisfies all three but takes no account of the correlation 
between electrons of opposite spin. Complete configuration interaction (CI) 

within a given basis would satisfy all three but this is only practicable for the very 
smallest systems. There is a clear need for practical theories at an intermediate 
level that take some account of electron correlation. 

One possible approach is truncated configuration interaction. If the HF single 
determinant qo is used as a startingpoint, this is conveniently done by limiting the 
many-electron basis to To and those determinants that are obtained from qo by 
double substitutions of occupied spin orbitals by unoccupied (virtual) spin orbi- 
tals. (Single substitutions are usually unimportant if the HF orbitals are properly 
optimized.) This method of configuration interaction with double substitutions 
(CID) is practical and satisfies conditions b and c. However, it fails to satisfy the 
important size-consistency condition (a), since it fails to account for simultaneous 
double substitutions in different molecules. 

A second approach is the perturbation method, initiated by Meller and Plesset 
[l]. Here the HF problem is treated as the unperturbed wave function and the 
residual part of the Hamiltonian is treated as a perturbation. Expansion in a 
perturbation series can then be truncated at any order. These methods are 
practical to third order [2 ,3]  or partial fourth order [4 ,5 ]  and have been applied 
quite extensively. They satisfy conditions a and b but not c. Their principal 
deficiency is that the rate of convergence of the perturbation series may be 
inadequate in systems where the effects of electron correlation are large. 

A third possible approach is the coupled cluster (cc) method. First introduced 
in nuclear physics [6], this approach has been formulated in molecular terms by 
Cizek and others [7,8].  The coupled cluster method with double substitutions (CCD) 

uses a wave function that allows for all double substitutions, including the 
simultaneous substitutions that are omitted in CID theory. Cizek refers to this 
method as the coupled pair many-electron theory (CPMET). It satisfies size- 
consistency condition (a) and also the invariance condition (b). However, it does 
not have the variational property (c). Further, it can be applied more reasonably 
than perturbation theory if the correlation energy correction is large. For a 
two-electron system, it becomes equivalent to CID. 

An area in which inclusion of electron correlation is likely to be important is in 
the study of reaction potential surfaces. It is well known that correlation makes a 
major contribution to the strength of electron-pair bonds, so it is probable that the 
theoretical energies predicted for partial bond breaking, as in the transition states 
(or transition structures) of simple reactions, will be influenced by the level of 
correlation theory. It is also reasonable to expect that the truncated CI methods, 
such as CID, will have deficiencies in describing some reaction potential surfaces 
because of the lack of size consistency. However, both the perturbation and cc 
methods are free from such criticism and merit serious comparison. 

This paper has two objectives. The first is to report on an implementation of 
the CCD method completed recently by Krishnan. The second is to apply this 
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method and perturbation methods (up to partial fourth order) to certain simple 
unimolecular reactions, seeking both the energy change from reactant to product 
and the activation energy. The reactions we examine are the 1,2 proton transfers: 

HCCH -+ H2CC 
HCN + CNH 

H2CO + HCOH 
HNNH + H2NN 

The first two have been the subject of previous ab initio studies, with which we will 
make comparisons [9, 101. 

In Sec. 2, we give a brief presentation of the CCD theory following Hurley [l 13  
and its relation to the perturbation method. This is followed in Sec. 3 by 
preliminary application of the CCD techniques to simple AH,, molecules (A being 
a first-row atom) using a large uncontracted basis. This parallels previous studies 
using perturbation [ 3 , 5 ]  and CI [12] methods. Section 4 then gives the results and 
discussion of applications to the proton-shift reactions listed above. 

2. CCD Theory and Its Relation to Perturbation Theory 

Let qo be the HF determinantal wave function, 

where x1 . . . x,, are spin orbitals occupied by n electrons. These are eigen- 
functions of the Fock operator, the corresponding eigenvalues being E 1 . + . e,. For 
a finite basis, there will be a finite number of unoccupied (virtual) spin orbitals 
,yncl, etc. We shall use labels i, j ,  k, 1, . . . , to denote occupied spin orbitals and a, b, 
c, d, . . . , for virtual ones. 

Now introduce a double substitution operator f : b  such that f : b q o  is a single 
determinant function qib in which xi is replaced by xa and x, is replaced by X b .  

Clearly f:b is antisymmetric in both pairs ( i j )  and (ab).  Then a complete double 
substitution operator can be set up as 

where a:b is an array (antisymmetric in occupied and virtual indices) with 
elements to be determined. 

The CID method uses an unnormalized trial wave function 
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and treats the 
uses a trial function q c c D  defined by 

q C c D = e  *q0 

as variational parameters. The CCD theory, on the other hand, 

P 

i a b i c d  The product of operators f ;, t kl is treated as zero if there are any coincidences 
among the eight labels. If not, it leads to a quadruple substitution and Eq. (4) 
becomes 

The explicit equations for the a coefficients are obtained by taking the function 

(x- %)*CCD (6) 

which would be identically zero if q c c D  were the exact wave function, and 
requiring that its projection on qo and all 9:b is zero. Thus 

( q O 1 ' o J x -  % I q C C D )  = 0 

(q:bl'oJx -8 I q C C D )  = 0 

(7 1 
(8) 

These equations suffice to determine the energy 8 and the unknown coefficients 
a i j  . 

If the full expression [Eq. ( 5 ) ]  is substituted for q c c D  the matrix elements can 
be reduced to integrals involving one or two electrons. Thus Eq. (7) becomes 

ab 

where %HI: is the HF energy (q\~IX/\vo)  and we have adopted the integral notation 

(P4Ib)= [ [ x m x m  (l/T1Z)[Xr(l)xs(2)-Xs(l)*r(2)1 dT1 dT* (10) 

integration being over all coordinates of electrons 1 and 2. Substitution of Eq. (5) 
in Eq. (8) leads to the more complex equations given by Hurley [ll], 

(1 1)  
(abIlij)+Aij ab a i j  ab + U ~ ~ + V : ~ = O  

where 

A;b= 8,  + & b  - &i -&, 

u;b is the linear array 
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and vGb the quadratic array 

v;"i 2 ( k E ( I C d ) ( U i j U k l  cd a b  -2(ap;;'+aij bd a & [ )  ac 

Llcd 

(14) 
ac bd bd ac 

- 2(a ::aft f a;;a$') + 4(aika jl + a ik ail )} 

In the linearized CCD method, the u array is omitted. The procedure then 
remains size consistent but fails to coincide with the CID method for a two-electron 
system. We may note that the CID method itself replaces Eq. (11) by 

(abl lij)+ (Atb+  gHF- %)a;' + uGb = 0 (15) 

Equations (1 1) may be solved iteratively in the form 

(16) 
aGb= -(Aii) ab -1  { ( ~ b l l i j ) + u ; ~ + u ; ~ }  

using u and u arrays from the previous iteration, starting with u = u = 0. The main 
computational effort is required for evaluation of u t b  and u:b at each iteration. 
Methods of handling u tb  have been discussed previously 1121. If N is the size of 
the basis, the three parts of Eq. (13) require O(n2N4) ,  O ( n 4 N 2 ) ,  and O(n3N3)  
steps, respectively. 

All of the parts of the expression [Eq. (14)] for uGb can be evaluated efficiently 
by using intermediate arrays. If we define 

then Eq. (14) can be written 

Evaluation of the contributions of XI, X2, X3 ,  and X4 involves O(n4N2) ,  
O(n2N3) ,  O ( n 3 N 2 ) ,  and O ( n 3 N 3 )  steps, respectively. In line with this, the X4 
execution is the most time-consuming part of our program for evaluation of the u 
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array. Nevertheless, the whole operation [Eqs. (17)-(2 l)] involves slightly less 
time than the evaluation of the u array [Eq. (13)]. Hence each iteration in the CCD 

method can be performed involving computer times approximately twice that of a 
CID iteration, However, this is efficient enough for reasonably extensive appli- 
cations. 

It is illustrative to consider the relation between the CCD method and the 
Mdler-Plesset perturbation expansion. In the latter technique, the full Hamil- 
tonian X is replaced by 

XA = Xo+A V = 1 Fp + A  V 
P 

where Fp is the one-electron Fock operator and V is the remaining part (X- Xo). 
A is an expansion parameter so that A = 0 gives the many-electron Fock Hamil- 
tonian X o  and A = 1 gives the correct Hamiltonian 2. The M~ller-Plesset 
procedure is to expand the lowest eigenvalue of X A  in powers of A ,  

gA = g ( O ) + ~ g ( 1 ) + ~ 2 @ 2 ) + .  . . ( 2 3 )  

terminate this series at some finite order, and then put A = 1 .  The resulting 
expressions for @*), 8"), 8'2), etc., show that up to third order, only double- 
substitution determinants are involved. At fourth order, single ( S ) ,  double (D), 
triple (T), and quadruple (Q) substitutions contribute. 

We may now enquire about the corresponding perturbation series for the CCD 

method. How far does the corresponding CCD expansion agree with the full 
expansion [Eq. (23)]? In other words, to what order in A is 55' (CCD) correct? This 
point is examined in the Appendix where it is shown that the CCD expansion is 
correct to third order but for fourth order includes only correct contributions from 
double (D) and quadruple (Q) substitutions. Thus, in fourth order, the energy is 
equivalent to the M~ller-Plesset fourth-order energy in the limited subspace of 
double and quadruple substitutions, which we may denote by 8 (MP~(DQ))  rather 
than the full energy to fourth order which would be ~ ( M P ~ ( S D T Q ) ) .  Thus, no 
account is taken of single or triple substitutions. 

3. Preliminary Applications 

As a first study of the CCD method and its performance relative to the 
perturbation technique, we have carried out calculations on a series of AH,, 
molecules (n  = 0, 1 , 2 )  that has been studied previously with several electron 
correlation techniques. These computations use a moderately large uncontracted 
Gaussian basis (841/41) and molecular geometries optimized with this same basis 
at the second-order Mdler-Plesset level [ 3 ] .  Table I gives the resulting cor- 
relation energies at the fourth-order M P ~ ( D Q )  level, the truncated configuration 
interaction CID level, and the linear and full CCD levels. 

The following features of the results are noteworthy: 
(1) The full CCD values are always lower in energy than CID. This is clearly due 

to neglect of simultaneous double substitutions in the CID method. The absolute 
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TABLE I. Correlation energies (mH) using the (841/41) basis. 

Mole c u l  ea MP4 09) CID Linear ized  CCD 
CCD 

L i  -32.7 -32.8 -32.9 -32.8 

Be(lS)  -74.7 -75.3 -82.6 -77.7 

B(2P) -93.2 -93.6 -100.2 -95.5 

Be (3P) -38.1 -38.2 -38.5 -38.3 

B ("1 -48.3 -48.4 -48.8 -40.6 

c ('PI -112.8 -112.3 -117.6 -114.1 

c (5s) -65.1 -64.9 -65.7 -65.3 

N -132.6 -130.9 -134.8 -132.6 

0 -168.9 -166.2 -171.0 -169.1 

F -210.4 -206.4 -212.1 -210.6 

Ne 

HZ 
LiH 

B e H  

BH 

CH(2n) 

CH(% 

NH 

OH 

FH 

BeH2 

NH2 

OH2 

-256.0 

-35.3 

-62.5 

-72.2 

-122.4 

-145.4 

-117.2 

-169.6 

-216.0 

-265.9 

-102.3 

-124.7 

-155.4 

-179.0 

-210.7 

-265.3 

-250.4 

-35.8 

-62.3 

-72.0 

-120.5 

-142.8 

-115.6 

-166.0 

-210.4 

-251.8 

- 100.6 

- 1 2 2 . 2  

-151.7 

-173.6 

-203.9 

-255.2 

-257.0 

-36.4 

-64.0 

-74.2 

-131.3 

-151.9 

-119.7 

-173.1 

-219.3. 

-268.1 

- 104.8 

-128.0 

-159.0 

-187.7 

-215.2 

-269.0 

-256.1 

-35.8 

-63.1 

-72.9 

-125.3 

-147.2 

-117.5 

-170.0 

-216.4 

-266.0 

-103.0 

-125.3 

-155. a 
-181.1 

- 2 1 1 . 1  

-265.5 

* Electronic ground state unless otherwise specified. 

energy difference between these levels is greatest in the ten-electron systems 
(10.3 mH for water) and should increase further for systems with more electrons. 

(2) The linearized CCD method appears to overestimate the correlation 
energy in all these cases (the maximum difference being 6.6mH for singlet 
methylene). This parallels the finding of Cizek, who gave an example with a 
semiempirical Hamiltonian in his original paper. 

(3) The fourth-order perturbation results (MP~(DQ)) are close to the full CCD 

numbers. The maximum difference is 3.0 mH for ground-state beryllium, but 
agreement is much closer for the rest of the atoms and molecules. Since MP~(DQ) 
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is the result of a Maller-Plesset expansion of CCD to fourth order, this indicates 
rapid convergence and suggests that not too much change is to be anticipated if we 
proceed from the fourth-order theory into the full CCD treatment. 

4. Applications to 1,2-Hydrogen-Shift Reaction Potential Surfaces 

As indicated in Sec. 1, these methods have been applied to several surfaces 
involving hydrogen shifts of the type 

HmABH, -+ Hm-lABHn+I (24) 
The systems considered are C2Hz, HCN, HzCO, and N2H2. In all four cases, we 
have found local minima corresponding to structures on the left- and right-hand 
sides of Eq. (24) together with an intermediate saddle point corresponding to the 
transition structure connecting them. The geometries of these structures were 
determined at the HF level using programs that explicitly calculate the energy 
derivative with respect to nuclear coordinates. 

Two basis sets were used. The first is the split-valence 4-31G set and the 
second is 6-31G*, which also includes d-type polarization functions on non- 
hydrogen atoms. The resulting geometries are summarized in Tables I1 and I11 
(geometrical specifications are given in Fig. 1). The calculations including cor- 
relation were carried out at these HF geometries. With the smaller 4-31G basis, 

H' 

Figure 1 .  Geometrical specifications. 

these were taken to the full CCD level. With the 6-31G* basis, they were 
terminated at fourth order, although the effects of single substitutions, (S) were 
also included giving both MP~(DQ) and MP~(SDQ) energies. The total energies 
are given in Tables IV and V, followed by computed relative energies in Tables VI 
and VII. Only the valence electron correlation was used in these studies (frozen- 
core approximation). 

Results at the 4-31G level again indicate that the full CCD method gives results 
close to its fourth-order equivalent MP~(DQ).  The relative energies listed in Table 
VI change by no more than 1 kcal/mol in this comparison. This suggests that the 
use of fourth-order energy is a good approximation in studies of this sort. The 
more time-consuming 6-3 1 G" studies were therefore limited to fourth order. 
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TABLE 11. H F  structures (4-31G basis).a 

A B  A H '  BH'  AH" BH" '  a P Y 

HCCH 

H C ( H ) C  

H2CC 

H CN 

C ( H ) N  

CNH 

H 2 C 0  

HC (H)  0 

HCOH (trans ) 

HCOH ( c i s  ) 

H " H ( t r a n s )  

HNNH ( c i s  ) 

HN ( H ) N  

H2" 

1 .190 

1.247 

1.296 

1.140 

1.183 

1.162 

1.206 

1.305 

1.329 

1.326 

1.225 

1.224 

1.279 

1.242 

1 .051  - 
1.423 1.220 

1.074 - 

1.051 - 
1.210 1.394 

1.081 

1.260 1.187 

1.098 

1.012 

1.158 1.28 4 

1.002 

1.056 

1.074 

1 .081  

1.086 

1.112 

1.019 

1.008 

1.002 

1.051 

0.979 

0.952 

0.957 

1.012 

1.019 

180.0 

120.8 

180.0 

121 .8  

103.4 

110.5 

122.5 

177.8 

120.8 

121.8 

116.7 

107.5 

116.1 

121.8  

122.5 

180.0 

180.0 

114.2 

121.5 

110.5 

116.1 

a Refer to Figure 1 for geometrical specifications. 

Here the relative energies (Table VII) suggest fairly good convergence of the 
perturbation sequence probably to within 2 kcal/mol. 

Turning to the individual molecular systems, the results may be compared with 
previous work by Pearson et al. [9]. They used CI with a somewhat larger basis and 
obtained 14.6 kcal/mol for the energy of HNC relative to HCN and 
34.9 kcal/mol for the activation energy from HNC. These are in reasonable 
agreement with our M P ~ ( S D Q ) / ~ - ~ ~ G *  values of 16.8 and 34.4 kcal/mol, 
respectively. The convergence from left to right in Table VII indicates that 
second-order theory overestimates the change in the isomerization energy from 
HF theory. This "overshoot" at second order and subsequent correction at third 
and fourth is a common feature of most entries in Table VII. 

The final results for the acetylene-vinylidene system also show good 
agreement with a previous theoretical study by Dykstra and Schaefer. Using the 
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TABLE 111. HF structures (6-31G* basis)" 

AB AH' BH' AH" B H ' "  a P Y 
~~ 

HCCH 1.185 1.057 - 1.057 180.0 180.0 

HC(H)C 1.237 1.459 1.170 1.062 - 180.4 - 
H2CC 1.294 1.078 - 1.078 - 120.2 120.2 

HCN 1.133 1.059 - - 180.0 

C(H)N 1.169 1.155 1.454 - - 
CNH 1.154 - - 0.985 - - 180.0 

H2C0 1.184 1.092 - 1.092 - 122.2 122.2 - 
HC(H)O 1.270 1.219 1.175 1.095 - 115.9 

HCOH(trans) 1.300 1.099 - - 0.951 103.0 - 109.4 

HCOH(cis) 1.298 - - 1.107 0.953 - 107.1 116.1 

=(trans) 1.216 1.015 - - 1.015 107.6 107.6 

H " H ( c i s )  1.215 - - 1.018 1.018 - 113.1 113.1 

HN(H)N 1.251 1.113 1.286 1.021 - 120.2 

1.216 1.015 - 1.015 - 122.8 122.8 H2m 

a Refer to Figure 1 for geometrical specifications. 

self-consistent electron-pairs method, they obtain 40.0 kcal/mol for the viny- 
lidene-acetylene energy difference and 8.6 kcal/mol for the activation energy 
from vinylidene. Our values are 42.0 and 8.1 kcal/mol respectively. 

For the 16-electron systems CHzO and N2H2, some new features are found. 
The 1,2-forms are nonlinear and exist as cis and trans isomers. For both systems, 
the trans forms are predicted to be most stable. For CH20,  the theory predicts 
trans-hydroxy methylene to be 56.6 kcal/mol less stable than formaldehyde, with 
an activation barrier of 31.6 kcal/mol toward rearrangement. For N2H2, the 
HzNN form is predicted tO be 25.4 kcal/mol less stable than trans-diazene, 
HNNH, the activation barrier being as high as 57.6 kcal/mol. 
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TABLE IV. Total energies (H) (4-31G basis) 

CCD a m4(DQ) a HF MP2 a MP3 a 

HCCH -76.71141 -76.89365 -76.89833 -76.90360 -76.90615 

HC(H)C -76.61001 -76.78717 -76.79357 -76.79837 -76.79948 

H CC -76.65171 -76.80566 -76.82110 -76.82604 -76.82872 2 

-92.93291 -92.94061 -92.94168 -92.94194 HCN -92.73193 

C(H)N -92.62502 -92.82885 -92.82313 -92.83030 -92.83030 

CNH -92.71678 -92.90629 -92.90374 -92.90980 -92.91046 

H2C0 -113.69262 -113.91077 -113.90989 -113.91677 -113.91761 

HC (H) 0 -113.51697 -113.75162 -113.74140 -113.75151 -113.75143 

HCOH(trans) -113.61107 -113.80714 -113.81228 -113.81888 -113.82054 

HCOH(cis) -113.60005 -113.79707 -113.80248 -113.80915 -113.81097 

H"H(trans) -109.81269 -110.03537 -110.03912 -110.04504 -110.04648 

H " H ( c i s )  -109.79884 -110.02416 -110.02771 -110.03379 -110.03526 

HN (H)N -109.66670 -109.90882 -109.90176 -109.91037 -110.91056 

H2NN -109.79981 -110.00296 -110.00937 -110.01464 -110.01584 

- 

a With frozen-core. 

The energies of'the saddle-point structures for C H 2 0  and N2H2 are so high 
that some doubt must be expressed as to whether they represent the true 
transition structures. At the ~ ~ / 4 - 3 1 G  level, the total energy of HC(H)O, given in 
Table V, is higher than that of HCO + H, provided that UHF theory is used for the 
radicals. This suggests that a lower-energy rearrangement path exists in which a 
hydrogen atom is removed from one end of the molecule, taken to large distances, 
and then returned to the other end. A similar situation arises for N2H2 where the 
HN(H)N energy at the ~ ~ / 4 - 3 1 G  level is higher than N2H+H.  Clearly, more 
work on  the location of the true transition structures is needed in both these 
svstems. 
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TABLE V. Total energies (H) (6-31G* basis) 

HF MP2 a MP3 a MP4(DQ)a m4(sDQ) a 

HCCH - 76.81783 - 77.06457 - 77.07502 -77.07652 - 77.07995 
HC(H)C - 76.73717 - 76.98034 - 76.99381 - 76.99541 - 77.00009 
H2CC - 76.76340 - 76.98518 - 77.00704 - 77.00983 - 77.01299 

HCN - 92.87520 - 93.15461 - 93.15701 -93.15980 - 93.16376 
C(H)N - 92.79195 - 93.06709 - 93.07371 - 93.07639 - 93.08213 
CNH - 92.85533 - 93.12306 - 93.13082 - 93.13301 - 93.13707 

HZCO -113.86633 -114.16523 -114.17168 -114,17529 -114.17947 

HC(H)O -113.69964 -114.01801 -114.01823 -114.02333 -114.03024 

HCOH(trans) -113.78351 -114.06882 -114.08153 -114.08553 -114.08925 

HCOH(cis) -113.77449 -114.05987 -114.07280 -114.07683 -114.0805C 

HNNH(trans) -109.99476 -110.31108 -110.32275 -110.32576 -110.32863 

HNNH(cis) -109.98350 -110.30097 -110.31267 -110.31571 -110.31873 

HN(H)N -109.84629 -110.18300 -110.18641 -110.19048 -110.19641 

-109.96357 -110.26728 -110.28098 -110.28401 -110.28817 H2" 

a With frozen-core. 

5. Conclusions 

The conclusions from this work are as follows: 
(1) The cc method with double substitutions (CCD) is a feasible computational 

scheme using an iterative procedure. At the, end of the first such iteration, the 
results are sufficient to obtain the Moller-Plesset fourth-order result in the space 
of double and quadruple substitutions (MP~(DQ)).  

(2) Preliminary applications to systems AH, with one heavy (nonhydrogen) 
atom indicate that total correlation energies calculated by these two methods are 
close. Similar conclusions follow from studies on some two-heavy-atom systems 
with the smaller 4-31G basis. It therefore appears that fourth-order theory is an 
adequate approximation for many purposes. 
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TABLE VI. Relative energies (kcal/mol) (4-3 1G basis) 

HF MP2 a MP3 a )@4(DQ) a CCDa 

HCCH 0.0 0 .o 0.0 0.0 0.0 

H C ( H ) C  63.6 66 .8  65 .7  66 .O 67 .O 

H2CC 37.5 55.2 48.5 48.7 48.6 

HCN 0.0 0.0 0.0 0.0 0.0 

C ( H ) N  67 .1  71.0 68.9  69 .2  69 .9  

CNH 9.5 22.4 18.3 19 .3  19.6 

H 2 C 0  0.0 0.0 0.0 0 .o 0.0 

H C ( H ) O  110.2 99 .9  105.7 103 .? 104.3  

HCOH (t r a n s  1) 51.2 65.0 61 .3  61 .4  60 .9  

HCOH ( c  i s )  58.1  71 .4  67 .4  67.5 66 .9  

HNNH ( t  rans  1 0.0 0 .0  0.0 0.0 0.0 

HNNH ( c  i s  ) 8.7  7 .0  7.2 7 .1  7 .O 

HN(H)N 91.6 79.4 a6 .2 84.5 85.3 

8 .1  20.3 18.7 19 .1  19.2 H2" 

a With frozen-core. 

(3) Some applications to 1,2-hydrogen-shift reactions using the 6-31G* basis 
show good convergence at the fourth-order level MP~(DQ). Relative energies of 
stationary points (isomerization and activation energies) are not much changed by 
the inclusion of single substitutions to give MP~(SDQ) theory. Results for C2H2 
and HCN are in good agreement with previous studies. 

(4) Preliminary results for CH20 and N2H2 suggest that stationary saddle 
points on the HF potential surface may not give the true activation energy since 
calculated energies relative to the minimum are higher than those of dissociated 
radicals at the same level of theory. 
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TABLE VII. Relative energies (kcal/mol) (6-31G* basis). 

HF MP2 a MP3 a kfPh(D&)* blP4(SDQ)a 

HCCH 0.0 0.0 0.0 0.0 0.0 

HC (H)C 50.6 52.9 51  .O 50.9 50.1 

H2CC 34.2 49.8 42.7 41.9 42 .O 

HCN 0.0 0.0 0.0 0.0 0.0 

C(H)N 52.2 54.9 52.3 52.3 51.2 

CNH 12.5 19.8 16.4 16.8 16.7 

H2C0 0 .o 0.0 0.0 0.0 0 .o 

HC(H)O 104.6 32.4 96.3 95.4 93.7 

HCOH (t rans) 52 .O 60.5 56.6 56.3 56.6 

HCOH (cis ) 57.6 66.1 62.1 61.8 62.1 

H"H( trans) 0.0 0.0 0 .o 0.0 0 .o 

H"H(cis) 7.1 6.3 6 .3  6.3 6.2 

HN(H)N 93.2 80.4 85.6 84.9 83.0 

19.6 27.5 26.2 26.2 25.4 H2m 

a With frozen-core. 

Appendix: Expansion of the CCD Energy in Powers of the Mdler-Plesset 
Perturbation Parameter 

The Hamiltonian [Eq. (22) ]  is 

The CCD energy can be expanded in powers of the perturbation parameter A .  By 
truncating at a given order and putting A = 1, we then get the various contribu- 
tions. The energy expression [Eq. (9)] can now be written 

A 
8=  $ ' O ' + A ~ ( I ) + -  c (ijllab)a;b 

4 ijab 

Note that the HF energy itself is correct to first order 

gHF = @O) + g(1) 
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The expression for the coefficients [Eq. (16)] becomes 

a ;b = - (A:b)-lA {(ab I l i j) + u :b + v z b ]  (27) 

Matrix notation can be used to simplify the equations. Let c, u, and v represent 
the column vectors (abl lij), u : ~ ,  and v : ~ .  These vectors can be very large and have 
the same number of elements as the number of double sustitutions. Let a denote 
the coefficients Equations (27) and (25) can now be written 

a =  -AA-'(c+u+v) (28) 

8 = 8'(o)+A8(')+Acta (29) 

Substituting Eq. (28) into Eq. (29) 

g = %(')+A A 2 ~ t A - ' ~  - A 'ctA-'u - A  2c'A- '~  

(30) 

u = T a  (31) 

= @ O ) + ~ g ( l ) +  A 2 g ( 2 ) - ~ 2 ~ + ~ - 1 , ,  - A z C + ~ - I V  

The expression for u t b  [Eq. (13)] can be represented as 

where T represents a square matrix of the same dimension as a. 
Equation (30) now gives 

8 = g(O)+ A%(')+ A *g(2)- A 2 C t ~ - ' 3 a  - A ~ ~ + A - ' ~  (32) 
Substituting Eq. (28) into Eq. (32) we get, 

8 = g(0) + A g(1) + A 2g(2)  + A 3ctA-"3A-'c + A 3CtA-''3A-'U 

+ h 3 ~ t A - ' V A - ' ~ -  A2ctA-'v (33) 
This expression is sufficient to get the contributions to CCD up to fourth-order 
after just one iteration. 

We start with u = v = 0. Equation (28) gives 

a =  -AA-'c=Aa"' (34) 

where a"] represents the vector of the first-order wave function coefficients. 
u and v may now be given 

u = A uf11 = A va['l 

Here u[lJ and v''' can be calculated by substituting a"] in Eqs. (13) and (14). 

energy up to fourth-order [ 5 ] .  
Using Eqs. (34) and (35) in Eq. (33) we get all the terms that contribute to the 

8 = g[O)+ AC&(')+A 2 8 ( 2 ) +  A 3[a[11tu['l] + A4[ -U[lltA-'U['l +a[lltv[ll] 

+ (higher order terms) 

(36) = g(o)+ ~ g ( ' ) + h  2 8 ( 2 ) + A  3g(3)+ A4[ -U[lltA-lU['l +a[']'v~'I] 
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From Eq. (36) it is seen that the CCD energy is correct to third order. The 
fourth-order contribution to the CCD energy is given by 

(37) ggLD = -u[llrA-lU[ll+a[lltV['l 

It has been shown previously [5] that the expression for the full @4) may be 
given as 

(38) g(4) = gk"' + gk4) + gg) + gp + gb"' 

%'$) is the renormalization term and the other terms are the contributions of 
single, double, triple, and quadruple substitutions to @4). 

It is easily seen that the first term on  the right-hand side of Eq. (37) is the same 
as $$? and the second term is equal to the sum %$) + %$'. Comparing Eq. (37) and 
(38) it is seen that we get all the contributions to 8'4'except %'?) and %'$?). Hence 
the CCD energy is correct to fourth order in the space of double and quadruple 
substitutions. 
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