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Abstract The nature of the singular behavior of Hartree-Fock (HF) potential
energy surfaces (PESs) that arises in the presence of a spin-preserving instability of the
relevant restricted HF solutions is illustrated by a simple π-electron model of the allyl
radical as described by the Pariser-Parr-Pople (PPP) semi-empirical Hamiltonian.
The simplicity of this three-electron model system stems from a low dimension of the
appropriate variational space which enables an independent direct analytical approach
illustrating the appropriateness of doublet stability conditions for restricted open-
shell HF (ROHF) solutions. At the same time it permits the derivation of explicit
expressions for the energy providing a complete description of swallowtail or Whitney-
fold catastrophe singularities on the corresponding PES that arise with the onset of
a doublet instability. In particular, this simple model enables the computation of the
part of the PES that is associated with unstable ROHF solutions and which would
be difficult if not impossible to generate in full generality via standard self-consistent
field (SCF) iterative procedures in more complex situations.

Keywords Restricted open-shell Hartree-Fock (ROHF) solutions · Doublet in-
stability · Pariser-Parr-Pople Hamiltonian · Allyl radical π-electron model · Symmetry
breaking · Potential energy surfaces · Swallowtail or Whitney-fold singularity
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1. Introduction

The Hartree-Fock (HF) approximation is undoubtedly the most often exploited
version of the independent particle model (IPM) and represents nowadays a standard
tool in investigations of the atomic and molecular electronic structure. Although
such a description is often lacking in accuracy due to an average account of the inter-
electronic Coulomb interactions, it nonetheless provides a useful qualitative – and
even semi-quantitative – description of various molecular properties and serves as a
point of departure for most post-HF correlated methods.

The relevant wave function |Φ〉 has the form of a single anti-symmetrized product
of molecular orbitals (MOs) or spin-orbitals (MSOs) |Ai〉,

|Φ〉 = A |A1A2 · · ·AN〉 , (1)

where A designates an appropriate anti-symmetrizer and distinguishes itself by yield-
ing the “best” IPM energy E[Φ],

E[Φ] = 〈Φ|H|Φ〉 , 〈Φ|Φ〉 = 1 . (2)

The HF equations are then obtained by requiring the first variation of the energy
mean value functional E[Φ], Eq. (2), to vanish, i.e.,

δ(1)E[Φ]|Φ=Φ0
= 0 , 〈Φ0|Φ0〉 = 1 , (3)

where |Φ0〉 designates the desired HF solution.
It is often assumed that this stationary point on the mean energy hyper-surface

E[Φ], Eqs. (2) and (3), represents the global minimum. This is indeed the case in
many instances, at least when investigating standard molecular systems in the vicinity
of their equilibrium geometry. However, when considering entire potential energy
surfaces (PESs) or curves (PECs), even for atoms and diatomics, this is no longer
the case (see, e.g., [1–17]; for reviews see [18–21]). Yet, the fact that E[Φ0] represents
a stationary point on E[Φ] is no guarantee that it represents the absolute minimum
or, in fact, even a local minimum. In order to find out at least the local character of
such a stationary point we have to examine the second variation, δ(2)E[Φ0], leading
to Thouless’ stability conditions [22]. The positive definiteness of δ(2)E[Φ0] then
provides a sufficient condition for a HF solution to represent a local minimum on
E[Φ]. Such solutions are referred to as stable ones in contrast to unstable solutions
in which case δ(2)E[Φ0] < 0 (the case when δ(2)E[Φ0] = 0 is more complex; see,
e.g., [15] and references therein). Such unstable HF solutions are thus characterized by
stationary points representing a maximum or a saddle point on E[Φ]. Consequently,
in the presence of an instability another HF solution having a lower energy than the
unstable one must exist and no potential barrier on E[Φ] will separate it from the
unstable solution. This is clearly warranted by the fact that the energy functional
E[Φ] decreases in some direction in the variational space from the stationary point
characterizing an unstable solution and that any HF solution represents an upper
bound to the exact energy.

Within the standard MSO-based, finite-dimensional, quantum-chemical models
relying on the linear combination of atomic orbitals (LCAO) approximation the Thou-
less’ stability conditions take the form of a corresponding Hessian. In such a case it is
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very important to precisely specify the variational manifold involved. Specifically, for
Hamiltonians that are invariant with respect to various symmetry group operations
(spatial, spin, alternancy, particle number, etc.) we can formulate corresponding
symmetry restricted HF solutions [e.g., restricted HF (RHF) solutions with doubly
occupied MOs or unrestricted HF (UHF) solutions with different spin-up and spin-
down MOs for closed-shell systems or the so-called restricted open-shell HF (ROHF)
solutions for simple open-shells, etc.] and corresponding stability conditions. In the
case of an overall spin symmetry this leads to the so-called singlet and non-singlet

or triplet stability conditions [18, 19, 23–26] for closed-shells, to doublet stability con-
ditions for simple open-shells [27, 28] or, generally, for high-spin HF solutions [14].
These conditions and the issuing broken-symmetry (BS) solutions were explored for
a large number of systems, both at the semi-empirical [12, 13, 23, 25, 26, 29, 30] and
ab initio [1–4,6–11,14,15,17] levels. The other types of symmetry restricted stability
conditions were explored by Fukutome [18, 31–35], providing a general classification
for closed-shell type systems later extended to open-shells [21]. In particular, we
mention several extensive reviews on this topic [18–21].

At this point it is important to emphasize that both stable, symmetry-adapted as
well as BS HF solutions – the latter arising in the presence of an instability of the sym-
metric solution – employ the same symmetry-adapted Hamiltonian. Consequently,
these BS solutions are invariably degenerate (in case of binary symmetry operations
doubly degenerate) and we shall refer to them as BS solutions of the first kind. This
fact is also closely related with the so-called Löwdin symmetry dilemma [36], even
though in this case the symmetric and BS solutions may both be stable in principle
and separated by a potential barrier. The implications and usefulness of BS solutions
will be discussed in greater detail below. Nonetheless, the presence of an instability
implies the existence of a BS HF solution with lower energy and, ultimately, of a BS

solution of the second kind that breaks the symmetry of the Hamiltonian (i.e., of the
nuclear framework) with yet lower energy.

Let us now point out that the symmetry breaking at the IPM level (e.g., for
HF or Brueckner-type solutions [37]) does not necessarily reflect the reality of the
relevant molecular structures implied by BS solutions of the second kind since it
may only indicate the inadequacy of the IPM arising due to the lack of correlation
effects. In such cases the instability and the corresponding BS solutions may disappear
when the correlation effects are properly accounted for and a complete basis set limit
is approached (cf., e.g., [38]). Even when the symmetry breaking persists at the
correlated level, this effect may be extremely small to be verified experimentally (cf.,
e.g., the results for the BNB and N3 species [9, 11]). Nonetheless, even though the
symmetry breaking may not appear at the equilibrium geometry, it will manifest itself
sooner or later away from the equilibrium. This is the case, for example, that arises
even for homonuclear diatomics [14, 15] in which case the symmetry breaking may
lead to asymmetric dissociation products. Yet, in many cases the implied symmetry
breaking is real, leading to the so-called Wigner molecules (Wigner dimerization,
Wigner lattice, crystals, islands, bubbles, stripes or even Wigner necklase). This
is particularly the case for extended systems leading, for example, to bond-length
alternation in polyenic chains (or their cyclic polyene models, see, e.g., [5, 18, 23, 24,
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39–43]). A nice model example which is also clearly understood on physical grounds
is the H6 model system [4].

It is the purpose of this paper to present a simple example involving an open-
shell system which clearly and explicitly displays the nature of a singular behavior of
the relevant PES or PEC that arises in the presence of doublet instability. For this
purpose we employ the Pariser-Parr-Pople (PPP) model of the allyl radical [30]. The
stability of its ROHF solutions was also explored at the ab initio level [1, 2]. This
example will also enable us to compare general doublet stability conditions [24] with
a directly generated analytical result by relying on a simple, one-parametric form of
the energy functional for this model.

2. Broken-symmetry solutions vs. broken-symmetry structures

At this stage it is important to make a clear distinction between two kinds of
HF solutions that are often referred to as BS solutions, namely those obtained with
a fully symmetry-adapted Hamiltonian and those that employ a BS Hamiltonian
based on an appropriately distorted molecular structure, the latter implying a BS
equilibrium geometry or simply a distortion along some vibrational coordinate. We
shall refer to them as BS solutions of the first and second kind, respectively. In the
first instance the BS RHF or ROHF solution arises due to the presence of a spin-
preserving instability (singlet instability in a closed-shell case or doublet instability
in a simple open-shell case). We shall focus here on solutions preserving not only the
total spin component Sz but also the total spin S2, i.e., on RHF or ROHF solutions.
The total-spin-violating solutions that arise in the presence of a triplet or a non-
singlet instability in closed-shell systems lead to UHF solutions that break the S2

invariance and often also the space symmetry (as is, e.g., the case for quantum dots;
see reviews [44, 45]). Clearly, open-shell systems are always unstable to total-spin
breaking in view of spin-polarization due to a different number of spin-up and spin-
down electrons. It is worth noting that the doublet stability for simple open-shells
(or, generally, total-spin preserving high-spin ROHF solutions for general open-shell
systems) are absent in Fukutome’s classification [31–35] that is restricted to closed-
shell systems. A more general classification, including ROHF solutions, was given
in [21].

In view of the nonlinearity of HF equations we can often find several BS solutions of
the first kind (for a general search for multiple HF solutions, see [46]) that arise even in
the case of spin-preserving symmetry breaking (i.e., those arising as a consequence of
singlet or doublet instabilities in the presence of multiple negative roots in the relevant
stability problem; cf. [3]). Such BS solutions are not necessarily stable and thus lead to
new BS solutions. For example, in the case of cyclic polyenes CNHN , N = 2n = 4ν+2,
ν = 1, 2, · · · as described by the semi-empirical PPP Hamiltonian such pure singlet
BS RHF solutions may display two types of charge density waves (CDW) which have
been referred to as the diagonal and off-diagonal CDWs [23–26] (see also [28, 30]).
In the former case these solutions display alternating atomic charges but possess
identical bond-orders while the latter case is characterized by alternating bond-orders
and standard uniform unit atomic charges. The BS solutions with diagonal CDWs
are again singlet unstable and lead to stable bond-order alternating solutions with
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off-diagonal CDWs. Similarly, in the atomic case of a doubly negative oxygen O2− we
can generate two closed-shell BS solutions having the symmetry of an oblate and a
prolate symmetric top, the former one being again singlet unstable [6] (note that these
solutions arise because of the “confinement” due to the use of finite basis sets; more
information in this regard may be found in [6,10]). In general, multiple BS solutions
are found whenever the HF stability problem yields several negative roots λi, the
corresponding eigenvectors pointing to various stationary points or HF solutions on
the mean energy hyper-surface E[Φ] (see, e.g., [14, 15] for more detail). The stable
BS solution usually corresponds to the lowest eigenvalue λi.

Now, when a BS solution of the first kind breaks the spatial symmetry of the
symmetry-adapted Hamiltonian by displaying a symmetry-breaking (e.g., off-diagonal)
CDW, we can actually arrive to BS solutions of the second kind by correspondingly
distorting the molecular geometry to an appropriate subgroup of the original fully-
symmetric point group. For example, in the case of cyclic polyenes, the distorted
geometry will be characterized by the Dnh point group in lieu of the DNh group.
Clearly, such BS solutions of the first kind are degenerate being related via the sym-
metry group operation that is missing in the subgroup (in the CNHN case this will
be the CN rotation so that the BS solution displays the bond-order alternation along
the chain).

Thus, when we consider an electronic Hamiltonian that is associated with a dis-
torted geometry of the nuclear framework (alternating bond-lengths in the CNHN

case) the BS solutions of the second kind will arise splitting the degeneracy of the BS
solutions of the first kind. Generally, the in-phase deformation (shorter bond-length
for larger bond-orders and vice versa) will lower the energy while the out-of-phase
deformation will increase it (see, e.g., [5]). It can be shown that the potential energy
curves as a function of the distortion parameter (e.g., the difference or the ratio of
longer and shorter bond lengths in CNHN) will cross at a finite angle precisely at
the energy of the degenerate BS solutions associated with the undistorted geometry
(cf. [4, 5, 19, 20, 39]). Yet, the potential associated with the out-of-phase deformation
will generally exist in only a limited range of small deformations.

An unstable, symmetry-adapted solution may also be, in principle, extended to
broken-symmetry geometries. Yet, the actual computation of such solutions via care-
ful “analytic continuation” can only be achieved in a very small interval of distorted
geometries even though such a solution must exist within the above mentioned range
given by the out-of-phase type potentials with higher energy than the BS solution of
the first kind. This is of course associated with the fact that these unstable solutions
correspond to a maximum or a saddle point on the mean energy hyper-surface E[Φ] in
which case the iterative self-consistent field (SCF) procedure will invariably collapse
to a stable, lower-lying solution.

The general nature of PESs or PECs of the kind arising in the presence of a spin-
preserving symmetry breaking has been briefly pointed out earlier [4, 5, 9, 17] but,
due to the above explained difficulties, these potentials have never been explicitly
generated in full detail. In the closed-shell case the general form of this type of a
singular behavior was described by Mestechkin (see Fig. 1 of [20]) using perturbation
theory with distortions along the symmetric and asymmetric vibrational coordinates
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employing a rather formidable formalism. In either case it can be shown that the re-
sulting PES or PEC displays what is known in the catastrophe theory as a swallowtail
or Whitney-fold singularity. Yet, as already pointed out it is very difficult to generate
such a PES computationally. We thus present a simple model system in which case
the nature and the origin of such a singular behavior can be easily generated and
displayed.

3. Stability conditions

3.1 General Thouless stability conditions

The Thouless stability conditions [22] in a spin-orbital form may be easily derived
by considering the second variation of the mean energy functional E[Φ] at the HF
solution |Φ〉 = |Φ0〉 which can be expressed as a Hermitian quadratic form (see,
e.g., [19, 21, 23])

δ(2)E = 1
2

[

C

C̄

]† [

A B

B̄ Ā

] [

C

C̄

]

, (4)

with A† = A and B† = B̄. Here C is a column matrix of coefficients cAi→Ai that are
associated with mono-excitations Ai → Ai. The subscripts and superscripts indicate
MSOs that are, respectively, occupied and unoccupied in the HF wave function |Φ0〉 =
A|A1, A2, · · · , AN〉. A dagger indicates the Hermitian conjugate quantity and a bar
the complex conjugation. Further, A represents the CI submatrix within the manifold
of monoexcitations and B the block between the ground and biexcited states, i.e.,

AAi→Ai,Aj→Aj = fAi,AjδAj ,Ai
fAj ,Ai

δAi,Aj + 〈AiAj|v|AiA
j〉A ,

B̄Ai→Ai,Aj→Aj = 〈AiAj|v|AiAj〉A . (5)

Finally, fA,B designates matrix elements of the Fock operator fA,B = 〈A|f |B〉 and
〈AB|v|CD〉A labels anti-symmetrized two-electron matrix elements 〈AB|v|CD〉A =
〈AB|v|CD〉 − 〈AB|v|DC〉 in the Dirac notation.

The positive definiteness of δ(2)E[Φ0] then requires all the eigenvalues λi of the
characteristic problem

[

A B

B̄ Ā

] [

Di

D̄i

]

= λi

[

Di

D̄i

]

(6)

to be positive. When A and B are real, this problem may be factorized into the two
subproblems for matrices (A+B) and (A−B) of half the dimension. It can also be
shown [23] that in the presence of the instability (or instabilities in the presence of sev-
eral negative roots λi) the eigenvector associated with the lowest negative eigenvalue
gives the direction of the steepest descent on the energy hypersurface E[Φ] at Φ = Φ0.
This fact can be conveniently exploited when searching for BS HF solutions [23].

3.2 Spin-adapted stability conditions

In molecular electronic structure investigations one generally employs a spin-free
electronic Hamiltonian that commutes with both total spin operators S2 and Sz and
one relies on simple MSOs given by a product of orbital and pure-spin parts, i.e.,
|A〉 = |a〉|σ〉 with σ = α or β (or ±1

2
). In the closed-shell case the MOs |a〉 are
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doubly occupied so that the relevant wave function represents a pure singlet state with
Sz = S = 0. One can thus formulate spin-symmetry restricted stability conditions
[19, 23] by carrying out projections onto the singlet- and triplet-coupled manifolds
of monoexcitations Ai → Ai. This yields the so-called singlet and triplet (or non-

singlet) stability conditions [23, 29]. The former ones preserve the zero total spin
and in the presence of instability lead to closed-shell type BS solutions with doubly
occupied MOs while the triplet instability implies the existence of spin-BS solutions,
referred to as unrestricted HF (UHF) solutions of the DODS (i.e., different orbitals
for different spins) type.

Distinguishing the corresponding A and B matrices and their matrix elements by
the superscripts s and t for the singlet and triplet stability problem, respectively, we
then obtain

As,t

ai→ai,aj→aj
= fai,ajδaj ,ai − faj ,aiδai,aj + 2τ〈aiaj|v|aiaj〉 − 〈aiaj|v|ajai〉 , (7)

Bs,t

ai→ai,aj→aj
= 2τ〈aiaj|v|aiaj〉 − 〈aiaj|v|ajai〉 ,

where τ = 1 in the singlet case and τ = 0 in the triplet case. Here we must note
that more complex stability problems will be encountered if one relies on general
MSOs given as a linear combination of spin-up and spin-down components (for details
see [18, 21]).

In this paper we shall require spin-preserving stability conditions for a simple open-
shell case, i.e., for the ROHF solutions. These so-called doublet stability conditions
(recall that the ROHF solutions are always non-doublet unstable) that preserve the
ROHF wave function form |Φ0〉 = A|a1, ā1, a2, ā2, · · · , an, ān, a0〉, where an overbar
indicates the down spin, take a more complex form since we have to distinguish
different types of monoexcitations (namely, occupied to open-shell ai → a0, occupied
to virtual ai → ai, and open-shell to virtual a0 → ai excitations). We thus have [27,28]

Ad
a0→ai,a0→aj = fai,aj − fa0,a0δai,aj ,

Ad
a0→ai,ai→a = −fai,a0δai,a + 〈aiai|v|a0a〉 ,

Ad
ai→a,aj→a′ = δai,aj(2δa,a′fa0,a0 − δa,a0fa0,a′)− 2δa,a′faj ,ai + δa0,a′δa,a0faj ,ai

+δaj ,ai(2fa,a′ − δa0,a′fa,a0) + 2〈aja|v|a′ai〉a
+δaj ,ai〈aa0|v|a′a0〉a − δa,a′〈aja0|v|aia0〉a − δa,a0〈aja0|v|a′ai〉a
−δa0,a′〈aja|v|a0ai〉a − (2− δa,a0)δa,a′δai,ajfa0,a0 , (8)

and

Bd
a0→ai,a0→aj = 0 ,

Bd
a0→ai,ai→a = −δa0,afai,ai + 〈aia0|v|aai〉a = Bd

ai→a,a0→ai ,

Bd
ai→a,aj→a′ = 2〈aiaj|v|aa′〉a − δa0,a〈aiaj|v|a0a′〉a − δa0,a′〈aiaj|v|aa0〉a , (9)

where non-indexed orbital labels a and a′ designate either the open-shell orbital a0 or
the virtual orbital ak. The anti-symmetrized two-electron integrals are now defined
as follows

〈ab|v|cd〉a ≡ 2 〈ab|v|cd〉 − 〈ab|v|dc〉 . (10)
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4. Model description

We employ a simple π-electron model of the allyl radical as described by the PPP
electronic Hamiltonian HPPP,

HPPP =
∑

i,j

zijEij +
1
2

∑

i,j

γij(EiiEjj − δijEii) , (11)

where Eij are the generators of the orbital unitary group U(n), Eij =
∑

σ X
†
iσXjσ,

with X†
iσ and Xiσ representing, respectively, the creation and annihilation operators

defined on a hypothetical basis of symmetrically-orthonormalized set of 2pz carbon
atomic spin-orbitals |iσ〉 = |i〉|σ〉, σ = ±1

2
. The one-particle matrix elements zij have

the form

zij =







αi −
∑

j( 6=i) Zjγij if i = j,

βij if i, j are nearest neighbors,
0 otherwise,

(12)

where αi is the so-called Coulomb integral and Zi designates the number of π-electrons
contributed by the i-th atomic site. For off-diagonal one-body matrix elements zij one
generally invokes the tight-binding approximation so that only resonance integrals (or
hopping terms) βij between the nearest-neighbor sites i and j are accounted for. The
two-body terms γij then represent two-electron Coulomb integrals γij = 〈ij|v|ij〉.
All other two-electron integrals are neglected in view of the zero-differential overlap
approximation. In the case of neutral, unsaturated hydrocarbons when Zi = 1 the
above Hamiltonian is often written in the form (see, e.g., Eq. (6.19) of [47])

H ′
PPP = HPPP +Hnucl =

∑

i,j

′

βijEij +
1
2

∑

i,j

γij(Eii − 1)(Ejj − 1) , (13)

where we assumed all one-center integrals to be equivalent so that αi = α ≡ 0 and
γii = γ11 and where we added the nuclear repulsion energy Hnucl as given by the
Goeppert-Mayer and Sklar approximation [48], Hnucl =

∑

ij ZiZjγij. The prime on
the first summation symbol implies that only nearest-neighbor resonance integrals
are to be accounted for.

For the studied π-electron model of the allyl radical we assume the three carbon

centers to form the vertices of a triangle with a fixed ĈCC angle of 2π/3 and, gener-
ally, different C–C bond-lengths d1 and d2 (cf. Fig. 1a). For non-symmetric structures
with d1 6= d2 we assume that d1+d2 = 2d, representing a cut through the π-electronic
PES that is perpendicular to the line d1 = d2 characterizing symmetric structures (cf.,
e.g., [5]). The π-electron distribution for the symmetric and asymmetric geometries
is then schematically indicated in Fig. 1b. For symmetric structures the SA solution
occurs always at ω = π/4. In the fully correlated limit (β = 0) the (BS) solutions
occur at ω = 0 and π/2. The diagrams in Fig. 1b may also be regarded as the
valence bond (VB) structures related by blue double arrows, the red double arrows
implying the relationship of stable solutions for distorted structures with BS ones for
symmetric structures. For a symmetric system with equal bond-lengths, d1 = d2 = d,
we choose the standard C-C bond length d = 1.4 Å and we also set βµν = β in
which case the only semi-empirical parameters are the resonance integral β (whose
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(a)

(b)

d d d1 d2

ω : π /40 π /2

d1 + d2 = 2d

Figure 1: Schematic representation of the studied π-electron model of the allyl radi-
cal. (a) Structure of the carbon nuclear framework for the symmetric and distorted,
broken-symmetry situations. (b) Schematic π-electron distribution in the symmetry-
adapted (SA) and broken-symmetry (BS) solutions.

spectroscopic value is usually set equal to −2.4 eV) and the two-electron Coulomb
integrals γµν that are evaluated using various approximations (see, e.g., [49]). For
the sake of simplicity we employ a modified, simple point-charge approximation so
as to obtain a finite on-site self-interaction for γµµ ≡ γ11 which is referred to as the
Mataga-Nishimoto approximation [50], i.e.,

γµν = e2/(Rµν + a) , (14)

where Rµν is the distance between the centers µ and ν. For the one-center integral γ11
one then employs the so-called (I −A) approximation [48] with I and A designating,
respectively, the 2pz atomic orbital, valence state ionization potential and electron
affinity, γ11 = I − A. The generally accepted value for γ11 is γ11 = e2/a = 10.84 eV,
which in turn determines the parameter a in Eq. (14).

We note in passing that by considering only the on-site integrals γ11 ≡ γ0 by
setting γµν = γ0δµν we obtain the Hubbard Hamiltonian in which case the hopping
integral β is usually designated as β ≡ −t and the on-site Coulomb integral as
γ0 ≡ U . This makes it possible to explore the entire correlation range in terms of a
single parameter U/t representing the so-called coupling constant. Although the PPP
Hamiltonian handles the electron repulsion in a more realistic way (which is essential
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for spectroscopic purposes, see, e.g. [51]) we can still employ the inverse value of the
resonance integral β as a coupling constant while keeping the Coulomb integrals fixed
at their values given by Eq. (14) and thus explore the entire correlation regime. This
is straightforward not only when we can regard the C–C bonds as equivalent, so that
βµν = β with µ and ν being nearest neighbors, but also when different resonance
integrals must be employed as in the case of asymmetric, distorted geometries when
we explore the entire PES. We then associate a fixed value of β with a standard C–C
bond (Re = 1.4 Å) and evaluate the resonance integrals β(R) for stretched bonds with
bond-length R by relying on the so-called Mulliken “magic” formula (see, e.g., [5])
which assumes proportionality of the resonance integrals to the corresponding overlap
integrals S(R), i.e.,

β(R)

β(Re)
=

S(R)

S(Re)
. (15)

For 2pz carbon atomic orbitals in π-orientation which are R(Å) apart we have then

S(R) =
1

15
exp(−ρ)[ρ3 + 6ρ2 + 15ρ+ 15] , ρ = ξR/a0 , (16)

where ξ = 1.625 and a0 is the Bohr radius (a0 = 0.52917 Å). We note that when
β → 0 we reach the fully correlated limit while β → ∞ (for practical purposes β ≈ 5
eV) corresponds to the uncorrelated (Hückel) limit.

5. Stability conditions for the symmetric model

We first apply the doublet stability conditions of Sec. 3.2 to a standard symmetric
case having equivalent C–C bonds. Numbering sequentially carbon atomic sites in
Fig. 1a we designate one- and two-electron atomic integrals as follows: β12 = β23 ≡ β
and γ11 ≡ γ0, γ12 = γ23 ≡ γ1, γ13 ≡ γ2, respectively. The LCAO MOs (labeled as |1〉,
|0〉, and | − 1〉) are in this case fully determined by the symmetry of the model, so
that





|1〉
|0〉
| − 1〉



 = 1
2





1
√
2 1√

2 0 −
√
2

1 −
√
2 1









|χ1〉
|χ2〉
|χ3〉



 , (17)

where |χi〉 designate the effective orthonormal AOs of the PPP model. In the following
we specify the MOs by their labels 1, 0, and −1, so that the ground state ROHF wave
function may be simply written as |Φ0〉 = A|11̄0〉, the bar indicating again the down
spin.

We can now easily evaluate the one- and two-electron integrals over the MOs,
Eq. (17), recalling that the one-electron matrix z = [zµν ] has the form

z =





−(γ1 + γ2) β 0
β −2γ1 β
0 β −(γ1 + γ2)



 . (18)

We next evaluate the relevant matrix elements of the doublet stability problem,
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Eqs. (8) and (9), obtaining

Ad
1→0,1→0 = −

√
2β + (γ0 − γ2)/8 = Ad

0→−1,0→−1 ,

Ad
1→0,0→−1 = (γ0 − γ2)/4 ,

Ad
1→0,1→−1 = 0 = Ad

0→−1,1→−1 ,

Ad
1→−1,1→−1 = −4

√
2β − (γ0 − γ2)/8 + (γ0 + γ1)/2 , (19)

and

Bd
1→0,1→0 = Bd

1→0,1→−1 = Bd
0→−1,0→−1 = Bd

0→−1,1→−1 = 0 ,

Bd
1→0,0→−1 = Bd

0→−1,1→0 = 3(γ0 − γ2)/8 ,

Bd
1→−1,1→−1 = γ0 − γ1 − (γ0 − γ2)/4 . (20)

The 3 × 3 stability matrices Ad ± Bd factorize into a 2 × 2 and 1 × 1 blocks
since the doubly occupied MO |1〉 and the virtual MO | − 1〉 are symmetric while the
singly occupied MO |0〉 is antisymmetric with respect to the interchange |χ1〉 ⇄ |χ3〉,
so that (Ad ± Bd)1→0,1→−1 = (Ad ± Bd)0→−1,1→−1 = 0. The relevant 2 × 2 stability
block that yields the lowest lying root is then

Ad +Bd =

[

κ− λ 5(γ0 − γ2)/8
5(γ0 − γ2)/8 κ− λ

]

, κ = −
√
2β + (γ0 − γ2)/8 , (21)

so that

λ± = κ± 5(γ0 − γ2)/8 = −
√
2β + (γ0 − γ2)/8± 5(γ0 − γ2)/8 . (22)

Thus the lowest root λ− ,

λ− = −
√
2β − (γ0 − γ2)/2 , (23)

leads to the stability condition

|β| > (γ0 − γ2)/(2
√
2) ≈ 2.48eV . (24)

We thus see that the ROHF instability onset occurs in the vicinity of the spectroscopic
value for the resonance integral. This agrees well with an earlier ab initio result [1,2]
for the allyl radical where only a minimal symmetric stretch of the C–C bonds was
required in order to reach the instability range of geometries.

6. Direct analytical approach

In view of the simplicity of our model we can explore the stability of its ROHF
solutions directly since the appropriate variational space for the mean energy func-
tional E[Φ] is one-dimensional and can thus be parametrized by a single parameter
designated below by ω (for more general parametrizations which allow breaking of
other than spatial symmetries, see [52]). We thus generalize the MOs of Eq. (17) via
ω-dependent orthonormal MOs





|1〉
|0〉
| − 1〉



 =
1√
2





s 1 c√
2c 0 −

√
2s

s −1 c









|χ1〉
|χ2〉
|χ3〉



 , (25)
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where
c ≡ cosω and s ≡ sinω . (26)

In this way we can cover the entire region of BS solutions with ω = π/4 representing
the symmetric MOs (17) while ω = 0 and ω = π/2 yield fully localized orbitals in
one of the C–C bonds (cf. Fig. 1b). Note that here we have exploited the alternancy
symmetry of our PPP Hamiltonian (see, e.g., [53]) which implies that the MOs |1〉 and
|−1〉 form an alternantly-conjugate pair while the MO |0〉 is self-conjugate. Moreover,
the AOs are orthonormal by definition so that the matrix relating the MOs with the
atomic ones must be orthogonal.

Clearly, the MOs (25) also describe asymmetrically distorted models with unequal
C–C bonds (see the bottom part of Fig. 1b). For this reason we will thus distinguish
the resonance and two-electron Coulomb integrals for distorted structures by relying
on the following shorthand notation

β ≡ β12 , β′ ≡ β23

γ0 ≡ γ11 , γ1 ≡ γ12 , γ′
1 ≡ γ23 , γ2 ≡ γ13 , (27)

so that the z matrix takes the form

z =





−(γ1 + γ2) β 0
β −(γ1 + γ′

1) β′

0 β′ −(γ′
1 + γ2)



 . (28)

The total energy E(ω) that is associated with the wave function |Φ(ω)〉 = A|11̄0〉
is given by

E(ω) = 2 〈1|z|1〉+ 〈0|z|0〉+ 〈1 1|v|1 1〉+ 〈1 0|v|1 0〉a . (29)

The required integrals are easily evaluated (see Appendix A) yielding the following
explicit expression for the energy

E(ω) = 2 (βs+β′c)+ 1
2
γ0(1+ s2c2)− γ1(1+

1
2
s2)− γ′

1(1+
1
2
c2)− γ2(1+

1
2
s2c2) . (30)

For the symmetric case (ω = π/4) we thus obtain the energy

E(π/4) =
√
2β + 5

8
γ0 − 5

2
γ1 − 9

8
γ2 , (31)

and, in general, identifying primed and unprimed parameters (e.g., setting β = β′

and γ1 = γ′
1) we get

Esym(ω) ≡ E(ω) = 2 β(s+ c) + 1
2
γ0(1 + s2c2)− 5

2
γ1 − γ2(1 +

1
2
s2c2) . (32)

Differentiating with respect to ω we get

E ′(ω) = 2 β(c− s) + 1
4
(γ0 − γ2) sin(4ω) ,

= (c− s)[2 β + (γ0 − γ2)sc(c+ s)] , (33)

so that E ′(π/4) = 0 for whichever parametrization is employed, as expected.
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In order to derive the stability condition for this ROHF solution we calculate the
second derivative, obtaining

E ′′(ω) = −2 β(s+ c) + (γ0 − γ2) cos(4ω) , (34)

so that for the stability of our ROHF wave function we require that

E ′′(π/4) = −2
√
2β − (γ0 − γ2) > 0 , (35)

which is identical to the condition (24) derived earlier by relying on general stability
conditions for a simple open-shell case, Sec. 5. We note that for ω = 0 or π/2 we
have E ′(0) = −E ′(π/2) = 2 β, so that for β = 0 we have again a HF solution (i.e.,
a stationary point) with E ′′(0) = E ′′(π/2) = γ0 − γ2 > 0, implying stable BS HF
solutions.

In general, for a fixed geometry the symmetry-adapted HF solutions are unstable
for the coupling constants – given as the reciprocal value of the resonance integral β
– in the interval 0 ≥ β > βcrit, where βcrit = −(γ0 − γ2)/(2

√
2). To each such β value

corresponds an ω value ωopt yielding a BS HF solution given by the vanishing of the
square bracket in the expression (33) for the first derivative of the energy mean value,
namely

β = −1
2
(γ0 − γ2)f(ω) with f(ω) ≡ f = sc(c+ s) . (36)

Note that f(ω) is symmetric about ω = π/4, i.e., f(ω) = f(π/2−ω), where it reaches
its maximum value f(π/4) = 1/

√
2, so that we always obtain two degenerate BS

solutions related via the reflection in the plane passing through the central C2 atom
and perpendicular to the molecular plane. Thus, 1 < f < 1/

√
2 for 0 < ω < π/2,

so that a BS HF solution exists for all β values in the interval 0 ≥ β > βcrit as also
implied by the plot of β vs. ωopt shown in Fig. 2.

The inverse relationship to (36), i.e., ωopt = f−1(βopt/K); K = −1
2
(γ0 − γ2) is

clearly multiply (i.e., doubly) valued, each branch corresponding to one degenerate
BS solution. For each β in the interval 0 ≥ β > βcrit, βcrit = −(γ0 − γ2)/(2

√
2),

we find two values of ωopt yielding the corresponding BS ROHF solutions. The rela-
tionship (36) thus defines pairs (βopt, ωopt) ≡ (β(ωopt), ωopt) of β and ω values which
characterize stable, degenerate BS HF solutions given by the minima on the mean
energy functional Esym(ω) or E(ω) curves for 0 ≤ |β| < |βcrit| as shown in Fig. 3.
The stable, doubly degenerate BS ROHF solutions for |β| < |βcrit| correspond to lo-
cal minima and the unstable one to a maximum which turns into a minimum once
|β| > |βcrit|, in which case only a stable symmetry-adapted ROHF solution exists.
The entire mean energy variational (hyper-)surface E as a function of β and ω is il-
lustrated in Fig. 4. The cut (red curve online) at β = βcrit ≈ −2.48 separates regions
of stable and unstable ROHF solutions for ω = π/4. At this β value the minima for
β < βcrit turn into maxima for β > βcrit at ω = π/4.

Another clear indication of a singular behavior of the HF solutions at β = βcrit

is provided by the first-order density (bond-order) matrix ||pµν ||. For the considered
case of symmetric geometries we have that

p12 ≡ s = sinω, p23 ≡ c = cosω, p13 = 0, pµµ = 1, µ = 1, 2, 3, (37)

14



0

1

2

3

0 /4 /2π π

β| |

ωopt

βcrit| |

Figure 2: Dependence of the optimal values ωopt of the variation parameter ω defining
the BS ROHF solution vs. the corresponding resonance integral β.

as implied by the MOs (25) and (26). Thus, for |β| ≥ |βcrit|, where the symmetric
solutions are stable, we have that

p12 = p23 = 1/
√
2, p13 = 0, pµµ = 1, µ = 1, 2, 3, (38)

while for |β| ≤ |βcrit| the bond orders p12 and p23 bifurcate as shown in Fig. 5 for
the BS solutions with π/4 ≤ ω ≤ π/2. For 0 ≤ ω ≤ π/4 the role of p12 and p23 is
interchanged (cf. also Fig. 2 of [26] for an analogous result in the closed-shell case of
benzene).

7. Breaking of a nuclear framework symmetry

As already pointed out above the presence of a spin-preserving instability of a
symmetry-adapted RHF or ROHF solution implies the existence of degenerate BS so-
lutions of the first kind. This in turn implies the “instability” of the system towards a
de facto symmetry breaking or distortion of the system as described by a Hamiltonian
that is no longer invariant to symmetry operation(s) inter-relating degenerate BS so-
lutions and yields HF solutions of the second kind. In the molecular case this entails
an appropriate distortion of the nuclear framework along some symmetry-breaking
coordinate (designated in the following by ∆ or γ) characterizing such asymmetric
geometries. It is thus important to distinguish BS solutions that are associated with
a fully symmetric Hamiltonian or nuclear framework geometry (BS solutions of the
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Figure 3: Mean energy value functional Esym(ω), Eq. (32), dependence on the
variational parameter ω for several values of the resonance integral β (β =
0,−1,−1.5, βcrit ≈ −2.48, and −3 eV). These plots are shifted to coincide at ω = π/4.

first kind) from those that are based on a correspondingly distorted geometry (BS
solutions of the second kind). This distinction is not always sufficiently clear in the
literature but it should be clear in the following from the context.

In the case of our simple model we can define ∆ as the difference between the
C1–C2 and C2–C3 bond lengths, i.e., ∆ = d1 − d2, with ∆ = 0 characterizing the
undistorted symmetric structure (cf. Fig. 1a). Considering the bond lengths d1
and d2 as independent distortion (or vibrational) coordinates we can best explore the
relevant PES by considering a PEC cut along the line d1+d2 = 2d for d designating the
standard C–C bond length d = 1.4 Å. We can equivalently characterize the distorted
structures by the ratio of the d1 and d2 bond lengths, namely by the parameter
γ = d1/d2 that is simply related to ∆, i.e.,

∆ = d1 − d2 = 2d
γ − 1

γ + 1
, (39)

γ =
d1
d2

=
2d+∆

2d−∆
, (40)

where we assume that d1 + d2 = 2d.
Such a distortion of the nuclear framework will resolve the degeneracy of BS

solutions at ∆ = 0 or γ = 1, yielding two solutions for the distorted structure, one
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Figure 4: A 3D plot of the variational mean energy (hyper)surface E(β, ω) as a
function of both the resonance integral β and the variational parameter ω relative to
the energy associated with the symmetric MOs defined by ω = π/4 ≈ 0.785 rad, c.f.,
Eqn. (31)

having a lower and the other one a higher energy than the degenerate BS solutions
depending on whether the distortion is “in” or “out” of phase with the CDW of the
∆ = 0 BS solution, respectively. This is illustrated in Fig. 6 where we plot the mean
energy value functional Etot(ω), Eq. (41), as a function of the variational parameter
ω for several asymmetric structures characterized by the distortion parameter γ,
Eq. (40), including that for the corresponding symmetric structure (γ = 1) for the
resonance integral value β = −1.5 eV. The stable ROHF solutions correspond to the
local minima while the unstable solution is associated with the midlocated maximum.
Note that an “in-phase” distortion lowers the energy of the γ = 1 degenerate BS
solution while the “out-of-phase” distortion raises this energy. For sufficiently large
distortions the higher-lying minimum merges with the intermediate maximum into
an inflexion point at γ = γcrit or ∆ = ∆crit. It is not difficult to see that, in general,
the two resulting PECs will cross (with a finite angle of crossing) at the symmetric
geometry ∆ = 0 (for a schematic representation, see, e.g., Fig. 6 of [19] or Fig. 1(c)
of [17]). However, a detailed shape of the entire PEC or PES, particularly in the
neighborhood of the crossing, is not immediately apparent and difficult to compute
in general situations.

In the studied simple example we can easily find all the HF solutions (both stable
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Figure 5: Plot of the first-order density (bond order) matrix off-diagonal elements p12
and p23 for the SA (|β| ≥ |βcrit|) and BS (|β| ≤ |βcrit|) HF solutions as a function of
the resonance integral β (βcrit = −2.48 eV).

and unstable ones) for any geometry since our variational space is one dimensional.
For this purpose it is useful to rewrite the total energy expression of Eq. (30) by adding
the nuclear energy (in the Goeppert-Mayer and Sklar sense) Enucl = γ1 + γ′

1 + γ2 and
define the total energy as follows

Etot(ω) ≡ E(ω)+Enucl− 1
2
γ0 = 2 (βs+β′c)+ 1

8
(γ0−γ2) sin

2(2ω)− 1
2
(γ1s

2+γ′
1c

2) . (41)

We then have

E ′
tot(ω) = 2 (βc− β′s) + 1

4
(γ0 − γ2) sin(4ω)− 1

2
(γ1 − γ′

1) sin(2ω) , (42)

and
E ′′

tot(ω) = 2 (βs+ β′c) + (γ0 − γ2) cos(4ω)− (γ1 − γ′
1) cos(2ω) . (43)

Using the above expressions we can now easily compute ROHF energies for any
β and γ (or ∆) values. We are particularly interested in the range of a coupling
constant that yields unstable symmetry-adapted ROHF solutions in which case we
can generate three solutions for each distorted structure with γ 6= 1 (or ∆ 6= 0),
namely two stable ones associated with the minima on the Etot(ω) curve and an
unstable one associated with a maximum as is apparent from the plots of Etot(ω) on
ω in Fig. 6. We simply have to find the respective ωopt values given by the roots in the
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Figure 6: Mean energy value functional Etot(ω), Eq. (41), dependence on the vari-
ational parameter ω for several values of the distortion parameter γ, Eq. (40), and
β = −1.5 eV. The plots are shifted to coincide at ω = π/4. Clearly, for γ < 1 we
obtain identical plots that are reflected about the ω = π/4 axis (cf. also Fig. 7).

derivative E ′
tot(ω) dependence by locating the sign changes in the appropriate list or

plot. To get a precise value we can interpolate between a few points surrounding these
roots. The second derivative E ′′

tot(ωopt) then verifies the nature of the extremum, a
positive value for a minimum and a negative one for a maximum. In the critical case
for ∆ = ∆crit it will identify the inflexion point.
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8. Discussion and Conclusions

Using a simple π-electron model of the allyl radical as described by the PPP
Hamiltonian we were able to test the HF doublet-stability conditions by comparing the
resulting critical value for the resonance integral β, βcrit = −(γ0−γ2)/(2

√
2) = −2.48

eV, with the result obtained by direct analytical derivation of the explicit expressions
for the mean energy value and its derivatives [cf. Eqs. (24) and (35)]. Moreover
a similar explicit description was possible for HF solutions that are associated with
distorted structures of our model. These solutions are of particular interest for the
region of a coupling constant in which the symmetry adapted HF solution is doublet
unstable implying the existence of lower-lying BS HF solutions of both the first and
the second kind (the latter for correspondingly distorted structures).
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Figure 7: Variational surface Etot(ω), Eq. (41), for distorted structures as a function
of both the ω and ∆ parameters for β = −1.5 eV.

Using the explicit energy expressions for the total energy and its derivatives,
Eqs. (41) to (43), we were thus able to find easily relevant HF solutions for any
set of parameters defining our PPP Hamiltonian as is apparent from the plots of the
mean energy values Etot(ω) as a function of the variational parameter ω (cf. Fig. 6).
The entire energy surface as a function of both the distortion parameter ∆ and the
variational parameter ω for a typical value of the resonance integral β = −1.5 eV is
displayed in Fig. 7. The same surface for resonance integral values of −2 and −1 eV
is also shown, respectively, in Figs. 8 and 9 as an iso-energy plot. Based on these
results we can generate the required PES or its various cuts.
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Figure 8: Energy levels representing the surface shown in Fig. 7 for β = −2 eV.

A particularly revealing cut of the PES is along the line d1 + d2 = 2d which is
perpendicular to the “breezing mode” coordinate given by the line d1 = d2 represent-
ing symmetric structures (cf. Fig. 3 of [5]). Several of such PES cuts for different
values of the resonance integral are shown in Fig. 10 revealing a typical swallowtail
shape characterizing the singular nature of this part of the PES. In this figure the
dots indicate the energy of unstable symmetry-adapted ROHF solutions while the
PECs intersect at the energy of the degenerate BS ROHF solutions for ∆ = 0. The
dotted lines indicate the energy of unstable ROHF solutions as given by the maxima
on the mean energy value plots (cf. Fig. 6).

A 3D plot of the relevant part of the PES displaying its singular behavior in the
vicinity of the critical β value (−3.5 eV 6 β 6 −1.0 eV) is shown in Fig. 11 as a
function of β and ∆. To achieve a more conspicuous representation we have shifted the
energies relative to the energy of BS solutions at ∆ = 0. The parts of the PES lying,
respectively, below and above (the latter for β > βcrit) the E(∆ = 0) energy (orange
and violet online) are associated with stable ROHF solutions, while the part that is
associated with unstable ROHF solutions is represented by the topmost, triangular-
shaped surface (green online) joining the stable solution surfaces situated above the
E(∆ = 0) energy reference. The figure also displays the cuts across the PES for the
limiting values of β, namely β = −1 and −3.5 eV, as well as for the critical β value
at β = βcrit ≈ −2.48 eV. The latter delineates the region of the existence of unstable
HF solutions. Note that the cut at β = −1 eV is identical with that displayed in
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Figure 9: Energy levels representing the surface shown in Fig. 7 for β = −1 eV.

Fig. 10 for the same β value. It should be noted that in the case of our simple model
we can just as easily determine the energies of unstable HF solutions for distorted
structures as for the stable ones. These unstable solutions exist within the interval
of distortion parameters ∆ ∈ [−∆crit,∆crit], with ∆crit defined by the distortion for
which the maximum and one of the minima on the Etot(ω) plot merge into an inflexion
point (cf. Fig. 6).

Note also that PESs in Fig. 11 that are associated with stable ROHF solutions
intersect in a line corresponding to degenerate BS solutions at ∆ = 0 or γ = 1 and
their extensions beyond this point eventually disappear at ∆ = ±∆crit where they
join with those associated with unstable solutions, thus yielding a complete represen-
tation of the relevant swallow-tail singularity. In other more complex situations it is
extremely difficult, if not impossible, to generate that part of the PES that is associ-
ated with unstable solutions. Even a very careful “analytic continuation” starting at
the doubly degenerate BS solution soon breaks down.

We can conclude that the studied simple model of the allyl radical demonstrates
both the appropriateness of the doublet-stability conditions for ROHF solutions and
enables a full description of the singular nature of the resulting ROHF PESs.
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Appendix: One- and two-electron integrals

We present below the expressions for the required one- and two-electron integrals
over the MOs (25) for general distorted structures. The corresponding expressions
for the symmetric structures are obtained by identifying primed and unprimed pa-
rameters, i.e., by setting β = β′ and γ1 = γ′

1.

〈1|z|1〉 = βs+ β′c− 1
2
γ1(1 + s2)− 1

2
γ′
1(1 + c2)− 1

2
γ2 ,

〈0|z|0〉 = −γ1c
2 − γ′

1s
2 − γ2 ,

〈11|v|11〉 = 1
4
γ0(1 + s4 + c4) + 1

2
(γ1s

2 + γ′
1c

2 + γ2s
2c2) ,

〈10|v|10〉 = γ0s
2c2 + 1

2
[γ1c

2 + γ′
1s

2 + γ2(s
4 + c4)] ,

〈10|v|01〉 = (γ0 − γ2)s
2c2 .
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[13] G. Thiamová, J. Paldus, Eur. Phys. J. D 46, 453 (2008)

[14] X. Li, J. Paldus, Int. J. Quantum. Chem. 109, 1756 (2009)

[15] X. Li, J. Paldus, J. Chem. Phys. 130, 084110 (2009)

[16] X. Li, J. Paldus, Phys. Chem. Chem. Phys. 11, 5281 (2009)

[17] X. Li, J. Paldus, J. Chem. Phys. 130, 164116 (2009)

[18] H. Fukutome, Int. J. Quantum. Chem. 20, 955 (1981)

[19] J. Paldus, in Self-Consistent Field: Theory and Applications, ed. by R. Carbó,
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[25] J. Paldus, J. Č́ıžek, Phys. Rev. A 2, 2268 (1970)
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[27] J. Paldus, J. Č́ıžek, Chem. Phys. Lett. 3, 1 (1969)
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