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Abstract – We introduce and develop a novel approach to extend the ordinary two-flavor neutrino
oscillation formalism in matter using a non-Hermitian PT symmetric effective Hamiltonian. The
condition of PT symmetry is weaker and less mathematical than that of hermicity, but more
physical, and such an extension of the formalism can give rise to sub-leading effects in neutrino
flavor transitions similar to the effects by so-called non-standard neutrino interactions. We derive
the necessary conditions for the spectrum of the effective Hamiltonian to be real as well as the
mappings between the fundamental and effective parameters. We find that the real spectrum of
the effective Hamiltonian will depend on all new fundamental parameters introduced in the non-
Hermitian PT symmetric extension of the usual neutrino oscillation formalism and that either
i) the spectrum is exact and the effective leptonic mixing must always be maximal or ii) the
spectrum is approximate and all new fundamental parameters must be small.

Copyright c© EPLA, 2016

In 1998, the Super-Kamiokande Collaboration [1] re-
ported results that gave a clear indication of neutrino os-
cillations —a quantum-mechanical effect over distances of
thousands of kilometers, and thus the first solid evidence
for physics beyond the Standard Model of particle physics.
Now, it has been firmly established that neutrino oscilla-
tions is the best and leading description of neutrino flavor
transitions and Takaaki Kajita and Arthur B. McDonald
have been awarded the Nobel Prize in Physics 2015 “for
the discovery of neutrino oscillations . . .”. However, other
mechanisms could be responsible for such transitions on
a sub-leading level. Therefore, other “new physics” ef-
fects have been proposed, e.g. so-called non-standard neu-
trino interactions (NSIs). See, e.g., ref. [2] and references
therein.

Nevertheless, in the same year as the Super-
Kamiokande Collaboration reported its results, Bender
and Boettcher [3] presented (based on a conjecture by
Bessis) PT symmetric quantum mechanics, which is
described by non-Hermitian Hamiltonians. In ordinary
quantum mechanics, a Hamiltonian operator H should
be Hermitian (H† = H) in order to have real (and

(a)E-mail: tohlsson@kth.se

measurable) energy eigenvalues. However, using PT sym-
metric quantum mechanics, the requirement of hermic-
ity can be replaced by a weaker, but more physical,
requirement of space-time reflection symmetry (so-called
PT symmetry, i.e. [PT, H ] = 0) without losing any impor-
tant physical aspects of ordinary quantum mechanics [4].
Note that P is parity (space reflection) and T is time rever-
sal. Now, PT is an antiunitary operator [5]. The definition
for any such operator A is that 〈Aφ|Aψ〉 = 〈φ|ψ〉∗, where
|ψ〉 and |φ〉 are arbitrary states. Any antiunitary operator
can be written in the form A = UK, where U is a unitary
operator (e.g., P) and K is a complex conjugation (e.g., T
in position representation). Consider Hamiltonians with
antiunitary symmetry, i.e. [A,H ] = 0, where A2k = 1
(k odd). Note that PT corresponds to k = 1. It has be
shown that for any such A, it is possible to construct a
basis in which the matrix elements of H are real, which
means that the characteristic equation giving the eigen-
values of H is real [6]. This result is a generalization of
applications in quantum chaology [7], which, in turn, was
a generalization of arguments from nuclear physics [5].

In refs. [8–10], it has been shown that two Dirac
fermions coupled by a non-Hermitian PT symmetric mass
matrix describes a single 8-dimensional relativistic particle
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of a fundamentally new type that can appear as two mass-
less particles, despite the mass matrix being non-zero. It
is then evident that a non-Hermitian PT symmetric mass
matrix might lead to a different neutrino oscillation phe-
nomenology, since such a mass matrix could describe neu-
trinos that oscillate between two flavors (given by the two
massless particles) but propagate masslessly. Now, evi-
dence of neutrino oscillations would normally mean that
neutrinos are massive. However, in PT symmetric quan-
tum mechanics, the 8-dimensional solution suggests that
this conclusion might not need to be drawn. Later, in
ref. [11], it has been discussed that interactions between
ordinary light neutrino states and new very light many-
particle states could lead to new physics described by non-
Hermitian Hamiltonians. The idea has been developed
for neutral kaons and can be readily adapted to neutri-
nos, which could interact with and decay into such generic
light states. For neutrinos, there are no constraints from
CPT invariance, whereas for neutral kaons, this is not the
case. Recently, in ref. [12], a non-Hermitian Yukawa the-
ory has been studied that could give an explanation for
the smallness of the masses of light neutrinos. Finally,
connecting PT symmetric quantum mechanics to neutrino
oscillations, Bender et al. have experimentally studied a
simple mechanical system consisting of two coupled pen-
dula, which is the classical analog of the phenomenon of
neutrino oscillations. They have observed a phase tran-
sition that separates the unbroken and broken phases of
the PT symmetry of the quantum-mechanical Hamilto-
nian [13]. Therefore, this simple experiment and its result
provide an intuitive motivation to study non-Hermitian
PT symmetric Hamiltonians for neutrino flavor transitions
in matter.

In this letter, we will introduce and investigate two-
flavor neutrino oscillations in matter (of constant density)
based on non-Hermitian, but PT symmetric, Hamiltonians
that could give rise to sub-leading effects in neutrino flavor
transitions. Based on the physical motivation of earlier re-
sults [8–13], and especially the result of ref. [13], such an
extension of ordinary neutrino oscillations will therefore
open up the possibility for new physics beyond the Stan-
dard Model. In general, non-Hermitian extensions relax
assumptions about constraints made on Hermitian models
(such as the requirement of hermicity) rather than adding
new dynamical degrees of freedom. Thus, they constitute
a different paradigm of new physics compared to tradi-
tional model building.

Assuming two lepton flavors (for generality, they will
be denoted α and β), the time evolution of the neu-
trino vector of state ν =

(
να νβ

)T describing neu-
trino oscillations is given by a Schrödinger-like equation
with a time-independent Hermitian Hamiltonian Hosc,
namely

i
dν(t)

dt
=

1
2E

[
O

(
m2

1 0
0 m2

2

)
OT +

(
A 0
0 0

)]
ν(t)

≡ Hoscν(t), (1)

where E is the neutrino energy and A = 2
√

2EGFNe

is the effective matter potential induced by ordinary
charged-current weak interactions with electrons [14,15].
Here, m1 and m2 are the definite masses of the neutrino
mass eigenstates, ν1 and ν2, respectively, that are related
to the weak-interaction eigenstates, να and νβ , through
the leptonic mixing matrix O such that

(
να νβ

)T =

O
(
ν1 ν2

)T, GF is the Fermi coupling constant, and Ne

is the electron density of matter along the neutrino trajec-
tory. Furthermore, the two-flavor leptonic mixing matrix
(parametrized by the leptonic mixing angle θ, i.e. one real
parameter) can be written as

O =
(

c s

−s c

)
∈ SO(2), (2)

where c ≡ cos θ and s ≡ sin θ. Using the formalism of
neutrino oscillations, the quantum-mechanical transition
probability amplitudes are given as overlaps of different
neutrino states, and eventually, neutrino oscillation proba-
bilities are defined as squared absolute values of the ampli-
tudes. Thus, neutrino flavor transitions occur during the
evolution of neutrinos. In vacuum (i.e. assuming Ne = 0
(or A = 0)), using conservation of probability (i.e. unitar-
ity), the well-known two-flavor neutrino oscillations prob-
ability formulas are given by (see, e.g., ref. [16])

P (να → νβ ;L) = sin2(2θ) sin2
(

Δm2L

4E

)
, (3)

P (να → να;L) = 1 − P (να → νβ ;L)
= 1 − P (νβ → να;L) = P (νβ → νβ ;L), (4)

where L is the (propagation) path length of the neu-
trinos and Δm2 ≡ m2

2 − m2
1 is the mass-squared dif-

ference between the masses of the two neutrino mass
eigenstates. Note that θ corresponds to the amplitude
of the oscillations, whereas Δm2 corresponds to the fre-
quency. Indeed, in matter of constant density (i.e. assum-
ing Ne = const �= 0) as well as in the case of NSIs, the
probability formulas are obtained by replacing the vac-
uum parameters with effective matter or NSI parameters
in eqs. (3) and (4). (Note that if Ne = const, A ∝ E, and
hence, A is only constant for a fixed E.) Thus, we have
the transition probability

P (να → νβ ;L) = sin2(2θ′) sin2

(
Δm′2L

4E

)
, (5)

where θ′ is the effective mixing angle and Δm′2 is the ef-
fective mass-squared difference. Therefore, there are non-
trivial mappings between the vacuum parameters θ and
Δm2 and the corresponding effective (matter or NSI) pa-
rameters θ′ and Δm′2. The key point will be the diagonal-
ization of a given effective Hamiltonian Heff and obtaining
the explicit relations of the effective parameters in terms
of the fundamental (vacuum) parameters [17].
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In the case of matter of constant density, the mappings
are given by

sin2(2θ′) =
sin2(2θ)

sin2(2θ) + (cos(2θ) −A/Δm2)2
, (6)

Δm′2 =
√

(Δm2)2 sin2(2θ) + (Δm2 cos(2θ) −A)2.

(7)

Note that the effective matter mixing angle in eq. (6) ob-
tains its maximal value sin2(2θ′) = 1 when the condition

A = Δm2 cos(2θ) (8)

is fulfilled. This condition is the famous Mikheyev-
Smirnov-Wolfenstein (MSW) resonance condition [15,18].
If the MSW condition is satisfied, then the effective matter
mixing angle θ′ is maximal (θ′ = 45◦) independently of the
value of the fundamental vacuum mixing angle θ. Thus,
the transition probability in eq. (5) can be very large even
if θ is very small. In the vacuum limit, i.e. the limit of
vanishing A, the effective parameters are replaced by the
fundamental vacuum parameters as well as eqs. (3) and (5)
are identical to each other and the mappings (6) and (7)
are reduced to θ′ = θ and Δm′2 =

∣∣Δm2
∣∣, respectively.

In order to study the features of adding a non-
Hermitian, but PT symmetric, Hamiltonian to the
ordinary formalism of neutrino oscillations in matter, we
consider for illustration the following general complex
Hamiltonian [4,12]:

H ′ =
A

2E

(
ρeiϕ σ

σ ρe−iϕ

)
, (9)

where ρ, σ, and ϕ are three real parameters. The physical
meaning of ρ, σ, and ϕ is similar to other phenomeno-
logical parameters for “new physics” (e.g., NSI parame-
ters). The Hamiltonian H ′ is not Hermitian, but it is
PT symmetric. However, note that if ϕ = 0, π, then H ′

becomes Hermitian. Using the characteristic equation of
this Hamiltonian, i.e. det(2EH ′ − λ12) = 0, we find the
two eigenvalues λ = Aρ cosϕ ± A

√
σ2 − ρ2 sin2 ϕ. Thus,

there are two parametric regions. If σ2 < ρ2 sin2 ϕ, the
two eigenvalues form a complex conjugate pair and the
PT symmetry is broken, whereas if σ2 > ρ2 sin2 ϕ, the two
eigenvalues are real and the PT symmetry is unbroken.
At the point between the two regions, i.e. σ2 = ρ2 sin2 ϕ,
there is only one eigenvalue and it is called an exceptional
point. The interesting region to consider is the unbroken
region with conservation of PT symmetry and two real
eigenvalues. Note that complex Hamiltonians may be ei-
ther Hermitian or PT symmetric, but not both, whereas
real symmetric Hamiltonians may be both Hermitian and
PT symmetric [4]. Another way of introducing a complex
non-Hermitian Hamiltonian in a different context has been
performed for high-energy two-flavor neutrino oscillations
in matter with absorption leading to complex indices of
refraction [19].

Now, constructing the effective Hamiltonian Heff by
adding the non-Hermitian PT symmetric Hamiltonian H ′

to the ordinary neutrino oscillation Hamiltonian in mat-
ter Hosc and following refs. [16,20], we obtain the total
Hamiltonian, which is complex symmetric, as

Heff = Hosc +H ′

=
1

2E

[
O

(
m2

1 0
0 m2

2

)
OT +

(
A 0
0 0

)

+A

(
ρeiϕ σ

σ ρe−iϕ

)]

=
1

2E
Ũ

(
m̃2

1 0
0 m̃2

2

)
ŨT, (10)

where Ũ is the effective leptonic mixing matrix and m̃1
and m̃2 are the two effective neutrino masses, which are
assumed to be non-degenerate, otherwise there would not
be any oscillations. SinceHeff is a 2×2 complex symmetric
matrix, Ũ must be a 2 × 2 unitary matrix such that

Ũ =
(

c̃eiϕ̃1 s̃eiϕ̃2

−s̃e−iϕ̃2 c̃e−iϕ̃1

)
∈ SU(2), (11)

where c̃ ≡ cos θ̃, s̃ ≡ sin θ̃, θ̃ being the effective mix-
ing angle, and ϕ̃1 and ϕ̃2 are two phases, i.e. in total
three real parameters. Note that the total Hamiltonian
can be expressed in three different useful and relevant
bases of the same Hilbert space, namely the flavor, mass,
and effective bases. Thus, we have Heff = ŨHeŨ

T =
OHmO

−1, where He and Hm are the total Hamiltonian
in effective basis and mass basis, respectively. In the
case of two lepton flavors, O is orthogonal, and there-
fore, O−1 = OT. Thus, diagonalizing the effective total
Hamiltonian Heff in eq. (10), we have the following six
relations:

c2m2
1 + s2m2

2 +A+Aρ cosϕ = c̃2 cos(2ϕ̃1)m̃2
1

+ s̃2 cos(2ϕ̃2)m̃2
2, (12)

Aρ sinϕ = c̃2 sin(2ϕ̃1)m̃2
1

+ s̃2 sin(2ϕ̃2)m̃2
2, (13)

scΔm2 +Aσ = s̃c̃ cos(ϕ̃1 − ϕ̃2)Δm̃2, (14)
0 = s̃c̃ sin(ϕ̃1 − ϕ̃2)Δm̃2, (15)

s2m2
1 + c2m2

2 +Aρ cosϕ = s̃2 cos(2ϕ̃2)m̃2
1

+ c̃2 cos(2ϕ̃1)m̃2
2, (16)

Aρ sinϕ = s̃2 sin(2ϕ̃2)m̃2
1

+ c̃2 sin(2ϕ̃1)m̃2
2, (17)

where Δm̃2 ≡ m̃2
2 − m̃2

1. Note that eq. (15) immedi-
ately implies that ϕ̃1 = ϕ̃2. Solving eqs. (12)–(17) for
the effective amplitude and frequency, we find the possible

61001-p3



Tommy Ohlsson

mappings

sin2(2θ̃) =

(
Δm2 sin(2θ)+2Aσ

)2

(Δm2 sin(2θ)+2Aσ)2+(Δm2 cos(2θ)−A)2
,

(18)

Δm̃2 =
√

(Δm2 sin(2θ)+2Aσ)2+(Δm2 cos(2θ)−A)2.

(19)

In addition, we obtain two auxiliary mappings

tan(2ϕ̃) =
2Aρ sinϕ

m2
1 +m2

2 +A+ 2Aρ cosϕ
, (20)

m̃2
1 + m̃2

2 =√
(m2

1 +m2
2 +A+ 2Aρ cosϕ)2 + 4A2ρ2 sin2 ϕ, (21)

where ϕ̃ ≡ ϕ̃1 = ϕ̃2. In the vacuum limit (i.e. A → 0), for
eqs. (18)–(21), we have θ̃ = θ, Δm̃2 =

∣∣Δm2
∣∣, ϕ̃ = 0, and

m̃2
1 +m̃2

2 =
∣∣m2

1 +m2
2

∣∣. In this case, note that the effective
phase ϕ̃ naturally becomes equal to zero, since it does
not have a correspondence in ordinary vacuum neutrino
oscillations.

Does the effective total Hamiltonian Heff have a region
of unbroken PT symmetry? In order to answer this ques-
tion, we need to consider the characteristic equation of
this Hamiltonian, i.e. det(2EHeff − λ12) = 0, which leads
to a quadratic equation

λ2 − (m2
1 +m2

2 +A+ 2Aρ cosϕ)λ
+ (c2m2

1 + s2m2
2 +A)(s2m2

1 + c2m2
2)

+A2ρ2 − (scΔm2 +Aσ)2

+ (s2m2
1 + c2m2

2)Aρe
iϕ

+ (c2m2
1 + s2m2

2 +A)Aρe−iϕ = 0, (22)

where the last two terms on the left-hand side of this
equation contain imaginary parts. The condition for
the equation to have real roots is that the imaginary
parts equal zero, see, e.g., ref. [21], pp. 91–92. It turns
out that the imaginary parts can be reduced to 
 =
Aρ sinϕ(Δm2 cos(2θ) − A), which means that 
 = 0 if
the MSW condition in eq. (8) is fulfilled. Of course, 
 = 0
when either ρ = 0 or ϕ = 0, π, but these are trivial cases
and, therefore, not interesting. (Later, we will investigate
another non-trivial, but approximate, case.) Thus, the
MSW condition is a necessary constraint for having two
potential real exact eigenvalues of Heff.

Inserting the MSW condtion (8) into eq. (22), we obtain

λ = s2m2
1 + c2m2

2 +Aρ cosϕ

±
√

(scΔm2 +Aσ)2 −A2ρ2 sin2 ϕ. (23)

In order for eq. (23) to have two real eigenvalues, the
quadratic form (scΔm2+Aσ)2−A2ρ2 sin2 ϕ must be posi-
tive definite, which consecutively means that the following
condition needs to be fulfilled:∣∣Δm2 sin(2θ) + 2Aσ

∣∣ > |2Aρ sinϕ| . (24)

Thus, Heff has a region of unbroken PT symmetry if the
two conditions in eqs. (8) and (24) are satisfied. In this
case, using eqs. (18) and (19), the mappings for the ef-
fective mixing angle and the effective mass-squared differ-
ence, respectively, are reduced to

sin2(2θ̃) = 1, (25)
Δm̃2 =

∣∣Δm2 sin(2θ) + 2Aσ
∣∣ > |2Aρ sinϕ|. (26)

We observe that the value of the effective mixing angle
is always maximal (θ̃ = 45◦) independently of the values
of the three parameters ρ, σ, and ϕ describing H ′. The
reason is that the MSW condition has to be satisfied in
eq. (18). Furthermore, we note that the effective mass-
squared difference is always positive and only linearly de-
pendent on the parameter σ.

The effects of a non-Hermitian PT symmetric Hamilto-
nian on neutrino flavor transitions must be sub-leading,
and, therefore, the parameters describing H ′ in eq. (9)
have to be small. Thus, we series expand the two aux-
iliary mappings (20) and (21) up to second order in the
small parameter ρ (note that the parameter ϕ is a phase):

ϕ̃ =
A sinϕ

m2
1 +m2

2 +A
ρ+ O(ρ2), (27)

m̃2
1 + m̃2

2 =
∣∣m2

1 +m2
2 +A

∣∣
+ 2sgn(m2

1 +m2
2 +A)Aρ cosϕ+ O(ρ2), (28)

which are both directly independent of the parameter σ.
Indeed, we observe that the effective phase in eq. (27) has
a sinusoidal dependence on ϕ for small ρ. In addition,
using eqs. (26) and (28), we obtain the series expansions
of the two real eigenvalues of Heff as

m̃2
1 =

1
2
(
∣∣m2

1 +m2
2 +A

∣∣ − ∣∣Δm2 sin(2θ) + 2Aσ
∣∣)

+ sgn(m2
1 +m2

2 +A)Aρ cosϕ+ O(ρ2), (29)

m̃2
2 =

1
2
(
∣∣m2

1 +m2
2 +A

∣∣ +
∣∣Δm2 sin(2θ) + 2Aσ

∣∣)
+ sgn(m2

1 +m2
2 +A)Aρ cosϕ+ O(ρ2). (30)

Now, combining the MSW condition (8) and the PT
inequality (24), we obtain a single inequality among the
fundamental parameters in order to have a non-Hermitian
PT symmetric effective total Hamiltonian with a real exact
spectrum, namely

A2 [
4(ρ sinϕ− σ)2 + 1

]
< (Δm2)2, (31)

which holds if both Δm2 sin(2θ) + 2Aσ and Aρ sinϕ are
positive or negative. In the case in which one of these two
expressions is positive and the other one is negative or vice
versa, the corresponding inequality is

A2 [
4(ρ sinϕ+ σ)2 + 1

]
< (Δm2)2. (32)

Since Δm2 (or equivalently, θ via cos(2θ) = A/Δm2 =
2
√

2GFNeEres/Δm2, where Eres is the resonance energy)
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Fig. 1: (Colour online) The spectrum of the effective mass-
squareds m̃2

1 and m̃2
2 as functions of ϕ ∈ [0, 2π) with σ = 0 and

m2
1 = 10−3 eV2. The solid curves show the case of atmospheric

neutrinos (ρ = 0.1), whereas the dashed curves show the case
of solar neutrinos (ρ = 1). The red curve depicts m̃2

1, whereas
the green curve depicts m̃2

2. In addition, the blue curve displays
Δm̃2 = m̃2

2−m̃2
1. The fundamental neutrino oscillation param-

eters used are Δm2
31 = 2.5 · 10−3 eV2, Δm2

21 = 7.5 · 10−5 eV2,
θ13 = 8.5◦, θ12 = 33◦.

is the considered two-flavor neutrino mass-squared dif-
ference (given by Nature) and A is the effective mat-
ter potential for the chosen experimental setup (e.g., a
specific neutrino oscillation experiment), the model pa-
rameters ρ, σ, and ϕ have to be restricted such that
eq. (31) (or eq. (32)) is fulfilled. Thus, the important
inequality (31) sets the bound on the new fundamental
parameters that still allows the effective total Hamilto-
nian (10) to have an unbroken PT symmetry with real
exact eigenvalues.

For example, in the case of atmospheric neutrinos, we
have the parameter values θ � θ13 = 8.5◦, Δm2 �
Δm2

31 = 2.5 · 10−3 eV2, and Eatm
res � 11 GeV, whereas in

the case of solar neutrinos, we have θ � θ12 = 33◦, Δm2 �
Δm2

21 = 7.5 · 10−5 eV2, and E�
res � 0.13 GeV [22,23].

Thus, inserting the two sets of parameter values into
eq. (31), we find the following estimates of the upper
bounds on the model parameters: ρ sinϕ − σ � 0.15 (for
atmospheric neutrinos) and ρ sinϕ − σ � 1.1 (for solar
neutrinos).

In fig. 1, using eqs. (21) and (26) as well as the fact that
m2

1+m2
2+A = 2(m2

1+c2Δm2), we present an illustration of
the effective mass-squareds m̃2

1 and m̃2
2, which constitute

the spectrum ofHeff, for the cases of atmospheric and solar
neutrino oscillations. For completeness, we also display for
the two cases the effective mass-squared difference given
in eq. (26), which is independent of ϕ, and are therefore
shown as straight lines in the figure.

We have shown that eqs. (23)–(26) and (29)–(32) are
only valid at the MSW resonance described by the MSW
condition (8). However, note that eqs. (27) and (28) do
not assume this condition and are therefore valid away

from this resonance. What happens for an experimen-
tal setup that does not fulfill eq. (31) or (32)? Which
Hamiltonian should be used away from (or at least not
close to) the MSW resonance? In fact, the same Hamil-
tonian, i.e. eq. (10), should be used everywhere, but, as
mentioned above, the effects of a non-Hermitian PT sym-
metric Hamiltonian on neutrino flavor transitions must
be sub-leading, and, therefore, the new fundamental pa-
rameters must be small. Assuming the three fundamental
parameters ρ, σ, and ϕ to be small (i.e. ρ, σ, ϕ � 1) and
keeping only terms up to first order in perturbation theory,
the imaginary parts in eq. (22) also equal zero, since


 = Aρ sinϕ(Δm2 cos(2θ) −A)
= Aρϕ(Δm2 cos(2θ) −A) + O(ρϕ3) � 0, (33)

where the factor ρϕ is second order in the small parame-
ters. This is the other non-trivial case of obtaining a re-
gion of unbroken PT symmetry with two real eigenvalues
of Heff. Therefore, in this case, eq. (22) reduces to

λ2 − (m2
1 +m2

2 +A+ 2Aρ)λ
+ (c2m2

1 + s2m2
2 +A)(s2m2

1 + c2m2
2)

− (scΔm2)(scΔm2 + 2Aσ) � 0. (34)

Note that this case is only approximate, whereas the other
case described by eq. (31) or (32) is exact. However, in-
stead of solving eq. (34) directly, we will perform the same
approximations in eqs. (12)–(21), which will lead to the de-
sired results in a less tedious way. Now, using eq. (20) to
observe that ϕ̃ � 0, since ρ sinϕ = ρϕ+ O(ρϕ3) � 0, and
series expanding eqs. (12) and (16) in the small parameters
ρ and ϕ, we obtain

c2m2
1 + s2m2

2 +A+Aρ � c̃2m̃2
1 + s̃2m̃2

2, (35)
s2m2

1 + c2m2
2 +Aρ � s̃2m̃2

1 + c̃2m̃2
2, (36)

which, combined, lead to

m̃2
1 + m̃2

2 � m2
1 +m2

2 +A+ 2Aρ. (37)

In order to find the two real approximate eigenvalues,
i.e. the effective neutrino mass-squareds m̃2

1 = 1
2 (m̃2

1 +
m̃2

2 − Δm̃2) and m̃2
2 = 1

2 (m̃2
1 + m̃2

2 + Δm̃2), we need to
compute Δm̃2, which can be achieved by eq. (19). Series
expanding eq. (19) in the small parameter σ, we obtain

Δm̃2 =
√
A2 + (Δm2)2 − 2AΔm2 cos(2θ)

+
2AΔm2 sin(2θ)√

A2 + (Δm2)2 − 2AΔm2 cos(2θ)
σ + O(σ2).

(38)

Observing that A2 + (Δm2)2 − 2AΔm2 cos(2θ) =
(Δm2 sin(2θ))2 + (Δm2 cos(2θ) − A)2 and using eqs. (6)
and (7), we can therefore write eq. (38) as

Δm̃2 = Δm′2 + 2A sin(2θ′)σ + O(σ2). (39)
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Thus, using eqs. (37) and (39), we find the two real
approximate eigenvalues of Heff,

m̃2
1 � 1

2
(m2

1 +m2
2 +A− Δm′2) +Aρ−A sin(2θ′)σ, (40)

m̃2
2 � 1

2
(m2

1 +m2
2 +A+ Δm′2) +Aρ+A sin(2θ′)σ. (41)

Furthermore, series expanding eq. (18), we obtain the ef-
fective mixing angle,

sin2(2θ̃) = sin2(2θ′)

+
4A(A− Δm2 cos(2θ))2 sin(2θ′)

(Δm′2)3
σ + O(σ2), (42)

which is consistent with eq. (25) if the MSW condition (8)
is satisfied. Indeed, eqs. (40) and (41) are also consistent
with eqs. (29) and (30), since Δm′2 sin(2θ′) = Δm2 sin(2θ)
always holds. In the vacuum limit, we of course have
m̃2

1 = m2
1, m̃

2
2 = m2

2, and θ̃ = θ. Thus, when A for an
experimental setup is not close to the MSW resonance,
we cannot use the results in eqs. (23)–(26) and (29)–(32).
In this case, we need to use perturbation theory in the
small parameters ρ, σ, and ϕ in order to find two real ap-
proximate eigenvalues of Heff, which are given by eqs. (40)
and (41).

Naturally, the novelty of using a non-Hermitian PT
symmetric effective Hamiltonian can be readily extended
to more than two lepton flavors as well as other classes of
the effective Hamiltonian itself. It is also beyond the scope
of this letter to investigate the phenomenology of the pre-
sented non-Hermitian PT symmetric two-flavor neutrino
oscillation formalism, but it would certainly be interest-
ing to perform such investigations for present and future
neutrino oscillation experiments. Furthermore, it is ob-
vious that the new model parameters (introduced by the
non-Hermitian PT symmetric Hamiltonian) will mimick
(or “fake”) effects of the old and ordinary fundamental
neutrino oscillation parameters [24], and such mimicking
effects could also be explored in future works.

In summary, we have shown that a model for two-flavor
neutrino oscillations in matter based on a non-Hermitian
PT symmetric Hamiltonian described by three real param-
eters ρ, σ, and ϕ has a real spectrum if either the condition
A2[4(ρ sinϕ∓σ)2 +1] < (Δm2)2 is fulfilled or ρ, σ, and ϕ
are small. In the first case, the spectrum is exact and the
amplitude of the neutrino transition probability is maxi-
mal, since the effective leptonic mixing is always maximal
due to the fact that the ordinary MSW condition has to
be “automatically” satisfied, whereas in the second case,
the spectrum is approximate. In conclusion, a PT sym-
metric model opens up the window to “new physics”, but
the additional parameters need to be small in order for the

effects to be sub-leading only, since neutrino oscillations
are considered to be the most plausible description of neu-
trino flavor transitions.

∗ ∗ ∗

I am grateful to Avadh Saxena for bringing the semi-
nal work on PT symmetric quantum mechanics by Bender
and Boettcher to my attention.
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