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of a non-Hermitian Hamiltonian
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We introduce the notion gbseudo-Hermiticityand show that every Hamiltonian
with a real spectrum is pseudo-Hermitian. We point out that allRffesymmetric
non-Hermitian Hamiltonians studied in the literature belong to the class of pseudo-
Hermitian Hamiltonians, and argue that the basic structure responsible for the par-
ticular spectral properties of these Hamiltonians is their pseudo-Hermiticity. We
explore the basic properties of general pseudo-Hermitian Hamiltonians, develop
pseudosupersymmetric quantum mechanécsl study some concrete examples,
namely the Hamiltonian of the two-component Wheeler—DeWitt equation for the
FRW-models coupled to a real massive scalar field and a class of pseudo-Hermitian
Hamiltonians with a real spectrum. ®02 American Institute of Physics.

[DOI: 10.1063/1.1418246

I. INTRODUCTION

The past three years have witnessed a growing interest in non-Hermitian Hamiltonians with
real spectrd-? Based on the results of various numerical studies, Bender and collabbfators
found certain examples of one-dimensional non-Hermitian Hamiltonians that possessed real spec-
tra. Because these Hamiltonians were invariant udetransformation, their spectral properties
were linked with theirP T symmetry. The purpose of this article is to explore the basic structure
responsible for the reality of the spectrum of a non-Hermitian Hamiltonian.

By definition, aP T-symmetric HamiltoniarH satisfies

PTH(PT) '=PTHPT=H, (1)

whereP andT are, respectively, the operators of parity and time-reversal transformations. These
are defined according to

PxP==x, PpP=TpT=-p, TilT=-il, @

wherex, p, and 1 are, respectively, the position, momentum, and identity operators acting on the
Hilbert space=L?%(R) andi:=—1. Note that Eq.2) applies only for the systems whose
classical positiorx and momentunp are real. In this article we shall only be concerned with these
systems.

As we mentioned previously, the only reason for relating the conceptTefymmetry and
non-Hermitian Hamiltonians with a real spectrum is that most of the known examples of the latter
satisfy Eq.(1). Certainly there are Hermitian Hamiltonians with a real spectrum that are not
P T-symmetric and there afeT-symmetric Hamiltonians that do not have a real spectrum. There-
fore, PT-symmetry is neither a necessary nor a sufficient condition for a Hamiltonian to have a
real spectrum. This raises the possibility that ®&-symmetry of a Hamiltonian may have
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nothing to do with the reality of its spectrum. The interesPifi-symmetry seems to be mostly
because of the lack of an alternative framework replacing the Hermiticity of the Hamiltonian in
ordinary (unitary) quantum mechanics. Much of the published work on the subject concerns the
study of various examples and the extension of the concepts developed for Hermitian Hamilto-
nians to the PT-symmetric oned=?° Recently, Znoji?* Japaridzé? and Kretschmer and
SzymanowsK have addressed some of the more fundamental issues regarding the mathematical
structure and the interpretation of tRel-symmetric quantum mechanics.

Among the common properties of all th&ET-symmetric Hamiltonians that have so far been
studied are the following.

(1) Either the spectrum of the Hamiltonian is re@T-symmetry is exagtor there are
complex-conjugate pairs of complex eigenval(@@d-symmetry is brokent41%12

(2) The indefinite inner-producf|)) defined by

(unl o) s=(lPlip),  Vg1), o) e H, ©)

is invariant under the time-translation generated by the Hamiltatigh.

The main motivation for the present investigation is the remarkable fact that there is no evidence
that PT-symmetry is the basic structure responsible for these properties. For example, in Ref. 3,
the authors construct a class of nBfi-symmetric Hamiltonians with a real spectrum. Another
example of a non-Hermitian Hamiltonian with similar properties is the Hamiltonian describing the
evolution of the solutions of the two-component Wheeler—DeWitt equation for FRW-models
coupled with a real massive scalar fiéfdThis Hamiltonian is explicitly “time dependent,”
“parity-invariant,” and non-Hermitian(with respect to the relevarit?-norm on the space of
two-component wave functiopsbut the corresponding invariant indefinite inner-product does not
involve P.

The organization of the article is as follows. In Sec. Il, we introduce the conceppsédo-
Hermitian operator and derive the basic spectral properties of pseudo-Hermitian Hamiltonians.
These coincide with Properties 1 and(®ith P replaced with a Hermitian invertible linear
operatorz). In Sec. lll, we consider the class of pseudo-Hermitian Hamiltonians that have a
complete biorthonormal eigenbasis and show that the pseudo-Hermiticity is a necessary condition
for having a real spectrum. In Sec. IV, we explore the pseudo-Hermitian Hamiltonian of the
two-component Wheeler—DeWitt equation for FRW-models coupled with a real massive scalar
field. In Sec. V, we develop pseudosupersymmetric quantum mechanics. In Sec. VI, we use
pseudosupersymmetry to construct a large class of pseudo-Hermitian Hamiltonians with a real
spectrum. In Sec. VII, we present our concluding remarks.

II. PSEUDO-HERMITIAN HAMILTONIANS

We first give a few definitions. Throughout this paper we will assume that all the inner product
spaces are complex. The generalization to real inner product spaces is straightforward.

Definition 1: Let V.. be two inner product spaces endowed with Hermitian linear automor-
phisms7-. (invertible operators mappingd-. to itself and satisfying

Ve WeeVe, (0+,7+Wi)e=(9+0+,W+)=,

where (,). stands for the inner product &.) andO:V,—V_ be a linear operator. Then the
7--pseudo-Hermitian adjoir®*:V_—V, of O is defined byO#:=%_*0"%_. In particular, for
V.=V and 7. =7, the operato© is said to bez-pseudo-Hermitian iD*=0.

Definition 2: Let V be an inner product space. Then a linear oper@dr—V is said to be
pseudo-Hermitian, if there is a Hermitian linear automorphignsuch thatO is 7-pseudo-
Hermitian.
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Now, consider a quantum system with a possibly non-Hermitian and time-dependent
HamiltonianH=H(t) and a Hilbert spacé{ which is endowed with a Hermitian linear auto-
morphism.

Proposition 1:The Hermitian indefinite inner produg{)), defined by, i.e.,

(ol b2 y=(l mlp), Y1),y e H, (4)

is invariant under the time-translation generated by the Hamiltorlarf and only if H is
n-pseudo-Hermitian.
Proof: First note that they-pseudo-Hermiticity oH is equivalent to the condition

H'=7nH» L (5

Now, using the Schidinger equation

d
5 #O)=Hlgm), ®)

its adjoint, and Eq(4), one has for any two evolving state vectdys (t)) and|,(t)):

d
[ a<<‘//1(t)| PN, = (Y (D] (pH=HT )| ga(1)).

Therefore ((i1(t)|#2(1))),, is a constant if and only if5) holds. O
Note that choosingy=1 reduces Eq(5) to the condition of the Hermiticity of the Hamil-
tonian. Hencepseudo-Hermiticity is a generalization of Hermiticifyurthermore, observe that a
typical P T-symmetric Hamiltonian defined on a real phase spagepj(E R?) has the formH
=p?/(2m)+ V(x) where the potentiaV(x) =V, (x) +iV_(x) has an even real pavt, (x) and an
odd imaginary partV_(x), i.e., Vo(xx)==xV.(x). It is not difficult to see that such a
PT-symmetric Hamiltonian satisfies
P’ P’
L . L _ ; = _ -1
H 2m+V+(x) iV_(x) 2mJrVJr( X)+iV_(=x)=PHP=PHP -
Hence it isP-pseudo-Hermitian. In contrast, consider the non-Hermitian Hamiltonians
Hy:=p?+x°p, Hy=p?+i(x°p+px?).

Clearly, H, is PT symmetric, but notP-pseudo-Hermitian, whereds$, is P-pseudo-Hermitian
and notP T symmetric. Therefore? T symmetry andP-pseudo-Hermiticity are distinct properties.
Note, however, thaH; may be pseudo-Hermitian with respect to another Hermitian automor-
phism . We shall explore the relationship betwem-symmetry and pseudo-Hermiticity in Sec.
Il

The defining condition(5) may also be expressed as the intertwining relation

nH=H"7. @)

Using this equation together with the eigenvalue equation for the Hamiltonian, naEly
=E|E;), and its adjoint, we can easily show that any two eigenve¢Ejsand|E;) of H satisfy

(Ef —E)(EilE;),=0. ®

A direct implication of this equation is the following Proposition.
Proposition 2:An »-pseudo-Hermitian Hamiltonian has the following properties.
(a) The eigenvectors with a nonreal eigenvalue have vanishisgmi-norm, i.e.,

Ei¢R implies | |E)|%=(E|E),=0. (9)

(b) Any two eigenvectors are-orthogonal unless their eigenvalues are complex conjugates,
ie.,
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Ei#E] implies (EE;),=0. (10

In particular, the eigenvectors with distinct real eigenvalueszaoethogonal.

In the remainder of this section, we list a number of simple but remarkable consequences of
pseudo-Hermiticity.

Proposition 3:Let V be an inner product space endowed with a Hermitian linear automor-
phism 5, 1:V—V denote the identity operato®,,0,:V—V be linear operators, arg,z, e C.
Then,

(@ 1%=1;
(b) (0))*#=0y;
(©) (210,+2,0,)* =25 Of + 2505,

wherez® stands for the complex conjugate of
Proof: (a) and(b) are trivial consequences of the definitiontbfind the Hermiticity ofz. (c)

follows from this definition and the linearity of and ™~ *:

(201+2,0,)* = 5~ 2,01+ 2,0,) 'p=2} 'O np+2z5 » *0O)p=2; Of +25 O}
O

Proposition 4:Let V-, with /€{1,2,3}, be inner product spaces endowed with Hermitian
linear automorphisms;, and O;:V;—V, and O,:V,—V; be linear operators. Ther0,O,)*
=0!0}.

Proof: This relation follows from the following simple calculation:

(0,01)* =71 1(0,04) 3= 1y 'Ol 9,7, '0}n;=0}0}.

Corollary: Pseudo-Hermitian conjugatioi©— O*) is a*-operation.

Proof: According to Propositions 3 and 4, has all the properties of &-operation. O

Proposition 5:Let V be an inner product space endowed with a Hermitian linear automor-
phism#, U:V—V be a unitary operator, ard:V—V be a linear operator. Them,:=U"»U is a
Hermitian linear automorphism, an@ is 7-pseudo-Hermitian if and only iDy:=UTOU is
ny-pseudo-Hermitian. In other words, the notion of pseudo-Hermiticity is unitary-invariant.

Proof: First we recall that becaudé is unitary, 5 is both Hermitian and invertible. Further-
more, we have

750l nu=UTy tuuToTuUTyU=UT (5 0" y)U.
O

Proposition 6:Let V be an inner product spacey and n, be Hermitian linear automor-
phisms, and:V—V be a linear operator. Then thg-pseudo-Hermitian adjoint dD coincides
with its 7,-pseudo-Hermitian adjoint if and only i, *%; commutes withO.

Proof: This statement holds becausg *0"7,= 7, '0"7, implies Ot 5,7, 1= 7,7, 0.
Taking the Hermitian adjoint of this relation yiell®, 172’1171]=0. (I

Corollary: If the HamiltonianH of a quantum system is pseudo-Hermitian with respect to two
different Hermitian linear automorphisng and 7, of the Hilbert space, thevyz’lnl is a sym-
metry of the system. Conversely, Igtbe a Hermitian linear automorphism of the Hilbert space,
G be a symmetry group of the system whose elemgntge represented by invertible linear
operators. Themqg is a Hermitian linear automorphism aitlis »g-pseudo-Hermitian provided
thatg™»g= 7.

Proof: This is a direct implication of Proposition 6 and the definition of the symmetry, namely
[g,H]=0 or equivalentlyg *Hg=H.?®
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lll. PSEUDO-HERMITIAN HAMILTONIANS WITH A COMPLETE BIORTHONORNAL
EIGENBASIS

Let H be an 7-pseudo-Hermitian Hamiltonian with a complete biorthonormal eigenbasis
{|n,a),|¢n,a)} and a discrete spectruth Then, by definition,

H|¢n!a>:En|wnva>! HT|¢naa>:E:|¢n7a>7 (11
<¢m1b|¢nva>:5mn5abi (12

dn dn
2 2 [6na)(yn.al=2 2 [on.a)(¢n.al=1, (13

where d,, is the multiplicity (degree of degeneracyf the eigenvalueE,, anda and b are
degeneracy labels.

Proposition 7:Let H be a pseudo-Hermitian Hamiltonian with these properties. Then the
nonreal eigenvalues ¢ come in complex conjugate pairs with the same multiplicity.
Proof: According to Egs(5) and(11),

H(7 én,a2)=7n"*HT¢,a)=E} (7 Y ¢q,a)). 14

Becausep ! is invertible, 7| #,,a)#0 is an eigenvector dfl with eigenvalueE* . More
generally,»~ ! maps the eigensubspace associated &ijttto that associated Witk . Again,
becausey ! is invertible,E,, andE} have the same multiplicity. O

Next, we use the subscript™to denote real eigenvalues and the corresponding basis eigen-
vectors and the subscript.” to denote the complex eigenvalues with imaginary part and the
corresponding basis eigenvectors. Then in view of Etf§—(14), we have

dn, dn.

1:n2 azl |¢noaa><¢n01a|+nz Zl (|¢n+1a><¢n+-a’|+|¢n_!a><¢n_1a|)v (15

dno dn+
=E El En0|'/’n01a><d’n0aa|+2 El (En+|‘r/fn+va><¢n+:a|+E:+|l/fn,1a><¢n7aa|)-
ng a-= n, a-

(16)
Repeating the calculation leading to Ed4), we find
7Y ) = Z c?| o, b),  c=( @l Y ¢ b), 17
dn.,
7 Hgna)= 2 © i ln B), U =(dn aln Y bn, . B), (18)
dn,
7 oo @)= 2 g 1n, B) Cupl=(dn sl b B, (19
wherecg:f) and cfy”i) are complex coefficients. The latter may be viewed as entries of complex

matricesc("® andc("+), respectively. Becausg and consequentlyy * are Hermitian operators,

so are the matrices™ andc("+). In particular, we can make a unitary transformation of the
Hilbert space to map the biorthonormal system of eigenbasis vectors of the Hamiltonian to a new
system in which these matrices are diagonal. We can further rescale the basis vectors§e that
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andc("+) become identity matrices. In the following we shall assume, without loss of generality,
that such a transformation has been performed. Then, (E@s-(19) take the form

| ng@)=1l¢n,2), [ bn, @)= 7l . a). (20

In particular, combining this result with E¢12), we have the followingy-orthonormalization of
the eigenvectors off

<<¢noua| lﬂmoab»n: 5n0,m05abv <<¢ni:a| wm:’B>>7]: 5”1 M- 501,8 . (22)

F

Next, we solve Eq(20) for |zpno> and| ‘/’ni> and substitute the result in E@5). This leads to
an explicit expression fop that can be easily inverted to yielg 1. The result is

d

dno n,
7= 2 [bngaldngal+ 2 2 (16 a)dn, altldn a)(gnal) (@2

d d

7/_1:2 Zl |¢nora><¢n0’a|+2 21 (|¢n_’a><¢n+ia|+|¢n+ia><¢n_1a’|)- (23
ng a-= n, a=

One can easily check that the Hamiltonidrand the operatorg and ! as given by Eqs(16),
(22), and(23) satisfy thez-pseudo-Hermiticity conditior5).

The above-mentioned analysis provides the following necessary and sufficient condition for
pseudo-Hermiticity.

Theorem: Let H be a non-Hermitian Hamiltonian with a discrete spectrum and a complete
biorthonormal system of eigenbasis vectfjig, ,a),| ¢, ,a)}. ThenH is pseudo-Hermitian if and
only if one of the following conditions hold

(1) The spectrum ofd is real.
(2) The complex eigenvalues come in complex conjugate pairs and the multiplicity of complex
conjugate eigenvalues are the same.

Proof: We have already shown in Proposition 7 that pseudo-Hermiticity ahplies at least
one of these conditions. To prove that these conditions are sufficient for the pseudo-Hermiticity of
H, we use{|¢,,a),|¢,,a)} to expresH in the form(16) and construct; according to Eq(22).

Then, by constructiontl and 7 satisfy (5). O

This theorem reveals the relevance of the concept of pseudo-Hermiticity to the spectral prop-
erties of theP T-symmetric Hamiltonians considered in the literature. To the best of our knowl-
edge, an analogue of this theorem that would apply to arbiPdnsymmetric Hamiltonians does
not exist. A direct implication of this theorem is the following corollary.

Corollary 1: Every non-Hermitian Hamiltonian with a discrete real spectrum and a complete
biorthonormal system of eigenbasis vectors is pseudo-Hermitian.

Note that, in general, a non-Hermitian Hamiltonian may not admit a complete biorthonormal
system of eigenvectors. The preceding Theorem and Corollary 1 may not apply for these non-
Hermitian Hamiltonians.

Corollary 2: Every PT-symmetric Hamiltonian with a discrete spectrum and a complete
biorthonormal system of eigenbasis vectors is pseudo-Hermitian.

Proof: This statement follows from the above-presented Theorem and fact that the eigenvalues
of everyP T-symmetric Hamiltonian with a complete biorthonormal system of eigenbasis vectors
come in complex conjugate pairs. To see this|8t be an eigenvector dfi with eigenvalueE,

i.e., HIE)=E|E), and|E)':=PT|E). Then
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HIE)' =H(PT)|E)=(PT)H|E)=(PT)E|E)=E*(PT)|E)=E*[E)’,

where we have made use of the linearlity®fand the antilinearlity ofT. O

IV. PSEUDO-HERMITICITY IN MINISUPERSPACE QUANTUM COSMOLOGY

The Wheeler—DeWitt equatiofwith a particularly simple factor ordering prescriptjdior a
Freedman—Robertson—-Walk@tRW) model coupled to a massive real scalar field has the form

P &
_ W—i_ W+Ke4a_m2e6a¢2

(e, ¢)=0, (29)

wherea=Ina, a is the scale factorg is the scalar fieldm is the mass ofp, andk=—1,0, or 1
depending on whether the universe is open, flat, or cléS&dthe two-component representation
developed in Ref. 24, this equation takes the form of the @ihger equationi WV =H(a)¥
where a dot stands for a derivative with respectrtand

1 ytiy 114D -1+D
“wvzly-ig)t T 2{1-D —1-Df ~
(92
Di== g tV(dia), V(,a)=mPetrg?- et (26

As seen from these equatio®2, up to an unimportant additive scalar, is the Hamiltonian of a
“time-dependent” simple harmonic oscillator with unit “mass” and “frequencyy=m €>¢,
wherea and ¢ play the roles of time and positionx, respectively.

It is not difficult to check that the two-component Hamiltonighis not Hermitian with
respect to the_2-inner product on the space of two-component state veclorsiowever, its
eigenvalue problem can be solved exaétifFor an open or flat FRW universec€ —1,0) the
eigenvalues of are real. For a closed FRW model, there is a range of valuesfoif which all
the eigenvalues are real. Outside this range they come in complex conjugate imaginary pairs. This
suggests thaH is a pseudo-Hermitian Hamiltonian. In fact, we can easily check khag an
n-pseudo Hermitian Hamiltonian for

1 0
77=( ) (27)

0 -1

The indefinite inner product corresponding(&Y) is nothing but the Klein—Gordon inner product
that is invariant under the “time-translation” generated Hy

V. PSEUDOSUPERSYMMETRIC QUANTUM MECHANICS

The application of the ideas of supersymmetric quantum mecHanitsonstructing non-
Hermitian P T-symmetric Hamiltonians has been considered in Refs. 3, 7, 13, 17, and 19 and a
formulation of P T-symmetric supersymmetry has been outlined in Refs. 14 and 20. In this section,
we develop a straightforward generalization of supersymmetric quantum mechanics that applies
for pseudo-Hermitian Hamiltonians.

Definition 3: Consider &,-graded quantum systéfwith the Hilbert spacé{, ®H_ and the
involution or grading operator satisfying

r=7=71 and VigoyeHe, 7lgp)y==|¢s). (28)
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Let » be an even Hermitian linear automorphigie., [ »,7]=0) and suppose that the Hamil-
tonianH of the system isy-pseudo-Hermitian. TheH (alternatively the systejris said to have
a pseudo-supersymmetry generated by an odd linear opegat@re.,{Q,7}=0) if H and Q
satisfy the pseudosuperalgebra

Q?=Q*=0, {Q,Q%}=2H. (29

A simple realization of pseudosupersymmetry is obtained using the two-component represen-
tation of the Hilbert space where the state vectgrsare identified by the column vectoIfj/())

of their component$y..) belonging tof-. . In this representation, one can satisfy tp@seudo-
Hermiticity of the HamiltoniarH, [i.e., Eq.(5)] and the pseudosuperalgelig®) by setting

1 0 7. O
o -1)r "lo 4

0 0 H, o)
Q:(D o)’ H:(o H_|’ (3Y)

where .. is a Hermitian linear automorphism &f.., D:’H, —H_ is a linear operator, and

; (30

H.,:=iD*D, H_:=iDD?. (32
Note that, by definitionQ #=2"1Q",
Df=7.'D'y_, (33)

and thatH . :H. —H. are n.-pseudo-Hermitian Hamiltonians satisfying the intertwining rela-
tions

DH,=H_D, D*H_=H,D* (34)

As a consequencé] , andH _ are isospectral) maps the eigenvectors éf, to those ofH _,

andD* does the converse, except for those eigenvectors that are eliminated by these operators.
More specifically, suppose thét. has a complete biorthonormal eigenbagig, ,a),| ¢, ,a)}
satisfying

Helyn a)=Erlyn ), Hlley.a)=E *|4; a).

Then,D| ;. ,a) is either zero in which casg, =0, or it is an eigenvector dfi _ with eigenvalue
E, ; D*|y, ,a) is either zero in which casg, =0, or it is an eigenvector dfl , with eigenvalue
E. . Similarly DT andD#" relate the eigenvectots; ,a) of H .

An interesting situation arises when one of the automorphigmss trivial, e.g.,7»,.=1. In
this caseH . is a Hermitian Hamiltonian with a real spectrum, and pseudosupersymmetry implies
that the pseudo-Hermitian Hamiltoni&h. —which is generally non-Hermitian—must have a real
spectrum as well. This is not the only way to generate non-Hermitian Hamiltonians with a real
spectrum. In the next section we shall use pseudo-supersymmetry to construct a class of non-
Hermitian Hamiltonians that have a real spectrum.

VI. A CLASS OF NON-HERMITIAN HAMILTONIANS WITH A REAL SPECTRUM

Consider the class of pseudosupersymmetric systems corresponding to the choices:
H.=H=L2%R), #.==P, (35

D=p+f(x)+ig(x), (36)
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wheref andg are real-valued functions. We can express these functions in the form

fO)=F 00+f_ (%), 9(x)=g-(x)+g+(x), (37

wheref, andg, are even functions ok, andf_ andg_ are odd functions. In view of Egs.
(35—(37), (33), and(32), we have

Df=p—f, () +f () +i[g:(x)—g-(x], (39
Ho=3([p+f (012 +0"(x)£g% — 5 =i[2g_ (), () £, (x)]+K), (39
K:=i{g,(x),p}+g, (0)[2if _(x)—g.(x)], (40)

where a prime means a derivative afjjdstands for the anticommutator.
Next, we demand that , is a Hermitian Hamiltonian. The necessary and sufficient condition
for the Hermiticity ofH . and non-Hermiticity ofH _ is

fl(x)
2f.(x)°

9+(x)=0, g_(x)=- (41)

Introducing the even functioi(x) :=In|f . (X)/\| for some\ e R—{0}, and using Eqs(39)—(41),
we have

Hi=3([p+ {001+ 2&' ()%= 3"(x) N\ %X, (42

Ho=3([p+f(0]%= 1€ ()= 3&"(x)— N2 e+ 2i\ ¢ (x)). (43

By constructionH .. are pseudo-Hermitian pseudo-supersymmetric partners. In particular, they are
isospectralH , happens to be a Hermitian operator. This implies that the eigenvalues ofihoth
andH _ are real. Furthermore, fdr_(x)#0, H _ is not P T-invariant. This is a concrete example

of a non-Hermitian Hamiltonian with a real spectrum that fails toPlesymmetric.

Equation (43) provides a large class of non-Hermitian Hamiltonians with a real spectrum
whose members are determined by the choice of functianand &. This class includes Hamil-
tonians with a discrete spectrum. For exampletled) = — (x//)?", wheren is a positive integer
and/ is a positive real parameter with the dimension of length. Then

He=3[p+f (0)]*+V.(x),
V., =1(n2/4ny4n-24 n(on— 1)/72nX2n72_)\2872/_2"x2”),

— _ — _ _ —2n,,2n . _ _ _ ,—2ny2n
V_=%(—n2/ 4nX4n 2+n(2n_1)/ 2nX2n 2—)\26 2/ X" 4inn/ 2nX2n 1e / X )

It is not difficult to see thaH , is a Hermitian Hamiltonian with a discrete spectrum. Therefore,
H_ has a real discrete spectrum as well.

VII. CONCLUSION

In this article, we have introduced the concept of a pseudo-Hermitian operator and showed
that the desirable spectral properties attributedPfb-symmetry are in fact consequences of
pseudo-Hermiticity of the corresponding Hamiltonians. We have derived various properties of
pseudo-Hermitian conjugation and pseudo-Hermitian operators. In particular, we showed how the
defining automorphismy is linked to the eigenvectors of amppseudo Hermitian HamiltoniaH
with a complete biorthonormal eigenbasis. As the corresponding eigenbasis is subject to gauge
transformations, the automorphism with respect to whicls pseudo-Hermitian is not unique.

This raises the question of the classification of the equivalence classes of automorphisms that lead



214 J. Math. Phys., Vol. 43, No. 1, January 2002 Ali Mostafazadeh

to the same notion of pseudo-Hermiticity for a given Hamiltonian. We have given a brief discus-
sion of this problem and showed its connection with symmetries of the Hamiltonian. We have also
developed a generalization of supersymmetry that would apply for general pseudo-Hermitian
Hamiltonians, and used it to construct a class of pseudo-Hermitian Hamiltonians with a real
Sspectrum.

A particularly interesting result of our investigations is that all #&-symmetric Hamilto-
nians that admit a complete biorthonormal eigenbasis are pseudo-Hermitian. In this sense, pseudo-
Hermiticity is a generalization dP T-symmetry.

For a P T-symmetric Hamiltonian, the exactness PT-symmetry implies the reality of the
spectrum. More specifically, if an eigenvect&) is P T-invariant, PT|E)=|E), then the corre-
sponding eigenvaluk is real. A similar condition for a general pseudo-Hermitian Hamiltonian is
not known. Pseudo-Hermiticity is only a necessary condition for the reality of the spectrum, not a
sufficient condition. In contrastP T-symmetry is neither necessary nor sufficient. The exact
PT-symmetry is a sufficient condition. But for a givéhr-symmetric Hamiltonian it is not easy
to determine the exactness®T-symmetry without actually solving the corresponding eigenvalue
problem.

We hope that the concepts developed in this article provide the material for a more rigorous
study of the foundation of pseudounitary quantum mechanics.
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