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Abstract

Complex scaling enables one to associate the resonance phenomenon, as it appears in atomic, molecular, nuclear
physics and in chemical reactions, with a single square integrable eigenfunction of the complex-scaled Hamiltonian,
rather than with a collection of continuum eigenstates of the unscaled hermitian Hamiltonian. In this report, we illustrate
the complex-scaling method by giving examples of simple analytically soluble models. We describe the computational
algorithms which enable the use of complex scaling for the calculations of the energy positions lifetimes and partial
widths of atomic and molecular autoionization resonance states, of small polyatomic molecules and van der Waals
molecules in predissociation resonance states, of atoms and molecules which are temporarily trapped on a solid surface
and of atoms and molecules which ionized/dissociate when they are exposed to high intensity laser field. We focus on the
properties of the complex scaled Hamiltonian and on the extension of theorems and principles, which were originally
proved in quantum mechanics for hermitian operators to non-hermitian operators and also on the development of the
complex coordinate scattering theory. ( 1998 Elsevier Science B.V. All rights reserved.

PACS: 31.15.!p
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Preface

In his book on scattering theory Taylor considered the resonances as the “most striking
phenomenon in the whole range of scattering experiments”. Resonances are associated with
metastable states of a system which has sufficient energy to break up into two or more subsystems.

Complex scaling (known also as the complex-coordinate method or as the complex-rotational
method) enables one to associate the resonance phenomenon, as it appears in atomic, molecular,
nuclear physics and in chemical reactions, with a SINGLE square integrable eigenfunction of the
complex-scaled Hamiltonian, rather than with a collection of continuum eigenstates of the
unscaled hermitian Hamiltonian.

For excellent reviews of the method see Reinhard [23]; Junker [24] and Ho [25]. An updated
bibliography is given at the end of the present report.

In this report we will illustrate the complex-scaling method by giving examples of simple
analytically soluble models which describe scattering of an electron from a negative ion and
transition from reactants to products through a potential barrier in three atomic collinear chemical
reactions. We will focus on the properties of the complex scaled Hamiltonian and on the extension
of theorems and principles, which were originally proved in quantum mechanics for hermitian
operators to non-hermitian operators. We will focus also on the development of the complex
coordinate scattering theory and on computational algorithms which enable the use of complex
scaling for the calculations of the energy positions lifetimes and partial widths of atomic and
molecular autoionization resonance states, of small polyatomic molecules and van der Waals
molecules in predissociation resonance states, of atoms and molecules which are temporarily
trapped on a solid surface and of atoms and molecules which ionized/dissociate when they are
exposed to high intensity laser field. The computational algorithms which will be discussed here
enabled also the calculations of the rotational vibrational distribution of diatoms obtained in the
photodissociation process; for the calculations of specular and non-specular transition probabilit-
ies that are obtained in scattering of atoms and molecules from flat and corrugated surfaces; for
calculating above-threshold-ionization (ATI), above-threshold-dissociation (ATD) and harmonic
generation (HG) spectra of atoms and molecules which interact with a strong laser field. The
complex-scaling theory and computational algorithms described in this report also enable the
calculations of energies and lifetimes of transition state resonances in reactive scattering collision
experiments, cumulative reaction probabilities, and quantum mechanical thermal rate constants
for chemical reactions.

1. Resonances — Why complex scaling?

1.1. Resonances in full collision experiments

Let us consider an experiment in which a “particle” is scattered from a “target”. The “particle”
can be, for example, an electron, an elementary particle, an atom or a molecule and the “target” can
be a nucleus, an atom, a molecule, a flat or a corrugated solid surface. In an elastic scattering
experiment the energy of the “particle” is conserved. In a non-elastic scattering experiment there is
an energy exchange between the “particle” and intrinsic degrees of freedom of the “target”, and the
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Fig. 1. Three different possible scattering orbits.

final energy of the “particle” in its “out” asymptote limit can be smaller or larger than the initial
energy of the “particle” in its in asymptote limit. In a reactive scattering experiment the “particle”
and the “target” undergo a change during the rearrangement collision and become different species.
Even in the simple case of elastic scattering three possibilities may be considered [1].

The first possibility, presented in Fig. 1a, is that of a particle which comes in from infinity, gets
trapped by the target and never emerges out of the attractive potential well. As time passes the
potential energy of the trapped particle drops down to !R whereas the kinetic energy increases
to #R. This “black hole” phenomenon is avoided when the interaction potential at the origin is
less attractive than »(r)"!r~2. In order to obtain a free particle in the “in” and “out”
asymptotes,»(r) should fall off quicker than r~3 at infinity. A direct scattering event is illustrated in
Fig. 1b. In Fig. 1c we illustrate the third possibility, where, due to multiple-scattering events, the
particle is temporarily trapped by the target. When the lifetime of the particle—target system in the
region of interaction is larger than the collision time in a direct collision process we call the
phenomenon a resonance phenomenon. A resonance state is defined as a long-lived state of a system
which has sufficient energy to break-up into two or more subsystems. In elastic and inelastic scattering
experiments the subsystems are associated with the scattering particle and the target.

1.2. Lifetime of shape and Feshbach-type resonances from motion of wavepacket calculations

Probably the most well-known spherically symmetric potential which supports resonances, »(r),
is the potential describing decay of radioactive nuclei or of unstable particles [2]. Naturally, we
shall refer to the nucleus as the target in this case. An illustrative plot of »(r) in that case is given in
Fig. 2 where r is, for example, the distance between an a particle and the nucleus. E

0
and

E
1

represent bound and resonance energies, respectively.
The lifetimes of the resonance states, DE

1
T, (also known as Gamow or Siegert states) can vary

from a few seconds to millions of years (4.5]109y for the decay of the 238U isotope to Thorium).
A very similar potential can describe both the molecular interaction in a diatom for which the total
angular momentum, j, is much larger than zero and gives rise to a centrifugal potential barrier [3],
and the scattering of an electron from a neutral diatom [4]. In such cases, the lifetime of the
metastable resonance states (i.e. predissociation states of rotationally excited diatoms which are
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Fig. 2. Schematic representation of the interaction potential between an a particle and the nucleus.

Fig. 3. Gaussian wave packet scattering from a potential barrier. (v(x)"0 if x(6.7n, v"R if x(0, v"1 if x56.7n).
(a) the mean energy of the wave packet is below the resonance energy; (b) the mean energy of the wave packet is equal to
the resonance energy; (c) the mean energy of the wave packet is above the resonance energy.

formed by the temporary trapping of the two atoms inside the potential well in the scattering
experiment, and autoionization states of the negative charged molecular ion) can vary from
milliseconds to femtoseconds (about 10~15 s for the autoionization of H~

2
in its ground state). In all

these cases the temporarily trapping of the “particle” inside the potential well is a quantum
phenomenon which is known as the tunneling phenomenon. The quantum equations of motion are
reduced to the classical one as +P0. While + is taken to zero, the penetration probability of the
quantum particle through the potential barrier (into the well or out of it) is reduced and in the limit
of +"0 no resonance states will be observed. These kinds of resonances are known in the literature
as shape-type resonances. The temporarily trapping of the particle inside the potential well can
occur also when the energy of the particle is larger than the height of the potential barrier or even in
the absence of a potential barrier (one example is of a Gaussian wave packet scattered from a finite
square well for example). In Fig. 3 we show the results obtained for a scattering of a Gaussian wave
packet from a potential barrier [5].
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Fig. 4. Schematic representation of two coupled adiabatic potentials.

As one can see from Fig. 3b, unlike the cases where the mean energy of the packet is off
resonance, when the mean energy of the Gaussian wave packet is equal to the resonance energy
then the wave packet is trapped above the potential barrier for a long period of time q"56.8 s. Any
small variation in the resonance energy will reduce the lifetime q.

Let us consider a special case where the internal modes of the scattered particle and the internal
modes of the target are not coupled to the relative motion between the particle and the target. In
this case, when the interaction potential between the “particle” and the “target” is not spherical
symmetric it may happen that a bound state of the particle—target system in a fixed orientation (i.e.
a square integrable eigenfunction of the one-dimensional time-independent Schrödinger equation
H(r, h

0
, /

0
) where h

0
and /

0
are the polar coordinates of the particle relative to the target which are

held fixed) is embedded in the continuum of the system in another orientation when h"h
1

and
/"/

1
. The two adiabatic potentials are schematically presented in Fig. 4.

Due to the coupling of the r-coordinate with the angles h and / the bound state which is
“pushed” up into the continuum becomes a resonance state. These kind of resonances are known as
Feshbach-type resonances and can also be obtained in classical calculations. Unlike the shape-type
resonances, the lifetime of the Feshbach metastable states get finite values as + is taken to the limit
of +"0. A simple illustrative example is of a rigid rotor (stands for a non-vibrating diatomic
molecule) scattered from a flat solid surface [6]. The interaction potential between the scattered
“particle” (the diatom) and the “target” (the solid surface) depends on the angle, a, between the
molecular axis and the normal to the surface and on the distance of the center of mass of the diatom
from the surface. If the potential energy terms which couple a and z are neglected then the bound
vibrational states of the free-rotor (diatom with the rotational kinetic energy B

305
( j#1)) are

embedded in the continuum of the non-rotating diatom which vibrates above the surface. The
potential coupling terms “mix” the bound states of the rotating diatom with the continuum states
of the non-rotating molecule and predissociation, which is associated with the resonance phenom-
enon, takes place.

In Fig. 5 the results obtained for a Gaussian wave packet, representing an HD molecule
scattered from an Ag(111) surface, are shown [7]. In the off-resonance case, the initially unrotated
( j"0) diatom is excited to its first rotational state, j"1, due to the collision with the flat silver
surface. In the resonance case, one can see from Fig. 5b that the HD molecule spends about 0.5 ps
close to the Ag(111) surface and as time passes desorption occurs. In the out asymptote limit the
probability to observe HD in the j"1 and j"0 rotational states is almost equal.
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Fig. 5. Scattering of Gaussian wave packet which represents an HD molecule from a flat Ag(111) surface: The rotational
probability densities o

j
(z, t) as a function of z (!3(z(142 a.u.) are shown, where j is the rotational quantum number.

Each row corresponds to a specific time which is marked on the top right corner (in a.u.). The left column represents
o
0
(z, t) (non-rotating HD molecule); the middle column represents o

1
(z, t); and the right column represents o

2
(z, t). (a)

Direct scattering. The initial scattering energy is 18.97meV. (b) Resonance scattering. The initial scattering energy is
22.69meV shows very strong trapping at j"2). (c) as in (b) for !3(z(15.
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Fig. 6. The density of states o(E) as function of the energy E. o
N
(E) stands for the box normalized density of states where

o
N
"o(E)!¸/2JE and ¸ is the box size.

1.3. Resonance lifetime from time-independent calculations of density of states

In the above analysis, the lifetime of a resonance state was obtained from time-dependent
calculations. It is possible, however, to estimate the resonance lifetime from time-independent
calculations. By solving the time-independent Schrödinger equation for the potential barrier
described in the caption of Fig. 3 the density of states, o, was calculated (note that, when box
normalization is used the density of states is obtained by counting number of states with energies
between E to E#dE)(8). The results of the time-dependent calculations are presented in Fig. 6.

In Fig. 6b the background of the density of states, 1/JE, which results from the use of box
normalization condition is removed. The local maxima in the density of states are associated with
the resonances. The widths of these Lorenzian peaks, C

n
"*E

n
; n"1, 2,2, are the inverse

lifetimes of the resonances states. That is,

C
n
"+/q

n
. (1.3.1)
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The value of q
n

obtained from Fig. 6b using Eq. (1.3.1) is in a good agreement with the estimate
of q

n
which was obtained from the time-dependent calculations presented in Fig. 6b. That is

C
2
"1/q

2
"0.0176 a.u.

1.4. Association of the resonance phenomena with the complex poles of the scattering matrix

We will show now that the widths of the shape and Feshbach-type resonance peaks, C
n
, in the

plots of density of states given in Fig. 6, are associated with the poles of the S-matrix. For the sake
of simplicity let us assume that » is a short-range potential and »P0 (i.e. the threshold energy
E
5
"0) as the “reaction” coordinate rPR. In such a case an eigenfunction of the time-

independent Schrödinger equation at rPR is given by

/(rPR)"A(k)e~*kr#B(k)e`*krKe~*kr#S(k)e`*kr, E"(+k)2/2k , (1.4.1)

The S-matrix is defined as the ratio between the amplitude of the out-going plane wave and the
in-coming wave. The S-matrix has a pole in two cases:

(1) In the first case when B(k) has a pole. These are “false” poles which are not associated with the
resonance phenomenon. “False” poles are independent of the potential, »"jv(r), and exist even
when j approaches zero(9).

(2) When the amplitude, A(k), of the in-coming wave vanishes. When these poles are concentrated
on the positive imaginary axis of k they are associated with bound states, which are not relevant to
the dynamics in a scattering process. As will be shown, the poles which are embedded in the
fourth-quarter of the complex k-plane (i.e. Re(k)'0, Im(k)(0) are associated with the resonance
phenomenon. Near the nth simple isolated pole S(k) can be written as [10,11]

S(k)J1/(k!k
n
) (1.4.2)

and

dlnS(k)/dk"!1/(k!k
n
) , (1.4.3)

where k
n
is a complex pole such that

Re(k
n
)'0, Im(k

n
)(0 . (1.4.4)

Considering a closed contour of integration, C, in the complex k-plane then following the residue
theorem

N"

1
2p iQC

­lnS(k)
­k

dk , (1.4.5)

where N is the number of poles in the fourth-quarter of the complex k-plane. When all the poles of
S(k) are embedded in a bounded region in the complex k-plane (i.e. all of them are in a finite
distance from the real k-axis as shown in Fig. 7) the closed contour of integration C can be replaced
by a contour along the real k-axis (k varies from 0 to R) and, consequently, ­N/­k is defined as

­N/­k"­lnS(k)/2pi­k . (1.4.6)

Since the density of states o is given by

o,dN/dE"­N/­k ­k/­E ,
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Fig. 7. Schematic representation of a closed contour of integration C in the complex k-plane where “x” denotes the
complex poles of the S-matrix.

then

o"
k

2pi+2k
­lnS(k)

­k
"

1
2pi

­lnS(E)
­E

. (1.4.7)

By substituting Eq. (1.4.3) into Eq. (1.4.7), one can see that when k"Re(k
n
), the local maxima of

the density of states is obtained for the value of o"o
.!9

, where

o
.!9

(k"Re(k
n
))"(k/2p+2)[!Re(k

n
)Im(k

n
)]~1"[!2p Im(E

n
)]~1 (1.4.8)

and the complex “energy” is given by

E
n
!E

5
"(+k

n
)2/2k (1.4.9)

with E
5
being the threshold energy. The peaks in the density of states presented in Fig. 6 have

a Lorenzian shape. The full-width half-maximum of the nth Lorenzian peak, C
n
, is given by

C
n
"1/po

.!9
. (1.4.10)

By substituting Eq. (1.4.8) into Eq. (1.4.10), the connection between the widths of the peaks in o(E),
C
n
, and the imaginary part of the complex poles of the S-matrix is established, such that,

C
n
"!2Im(E

n
) . (1.4.11)

From this analysis, one can see that the resonance phenomenon as obtained in a scattering
experiment is mainly controlled by poles of the scattering matrix. As it will be shown in Section 1.5
the resonance poles are complex eigenvalues of the Hamiltonian,

HK (r)/3%4
n

(r)"E
n
/3%4

n
(r), E

n
"e

n
!(i/2)C

n
, (1.4.12)

where e
n
is the resonance position above the threshold, C

n
is the width (inverse lifetime) as defined in

Eqs. (1.4.9) and (1.4.11) and the eigenfunction /3%4
n

(rPR) as given in Eq. (1.4.1) is reduced to
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exp(ikn) since S(k
n
)"R as one can see from Eq. (1.4.2). Eq. (1.4.12) is the basic equation in the

resonance theory for time-independent Hamiltonians. The resonances are associated with complex
eigenvalues of the (unscaled !) Hamiltonian which describes the physical system. Usually, one may
expect that the Hamiltonian should be hermitian. That is, in the one-dimensional case

P
=

~=

f (x)HK (x)g(x) dx"P
=

~=

g(x)HK *(x) f (x) dx . (1.4.13)

By carrying out integration by parts one can see that this equation is satisfied provided

g(x)K
df (x)
dx K

=

~=

!f (x)K
dg(x)
dx K

=

~=

"0 . (1.4.14)

Consequently, the hermitian property of HK (x) depends on the boundary condition of f (x) and g(x).
When, for example, f (x) and g(x) are in the Hilbert space, then f ($R)"0, g($R)"0. Conse-
quently, Eq. (1.4.14) is satisfied and HK (x) is an hermitian operator. In the more general case,
Eq. (1.4.14) is satisfied and HK (x) is hermitian when f (x) and g(x) are bounded functions (NOT
necessarily bound states). When f (x) and g(x) are bounded functions then D f (x)D(C

1
and

Dg(x)D(C
2

where C
1

and C
2

are two finite valued constants (such as the continuum-type functions
for example). When f (x) or g(x) exponentially diverges as /3%4

n
does, Eq. (1.4.14) is not satisfied and

HK (x) is not hermitian!

1.5. The role of complex scaling in the calculations of the resonance poles of the scattering matrix

Let us now consider the properties of the eigenfunctions associated with these complex eigen-
values of the Hamiltonian. The physical Hamiltonians are hermitian only when they operate on
bounded functions (not necessarily square integrable) or, when box normalization is used, on
a functional space of all possible square integrable functions (i.e. Hilbert space). Therefore, it is
obvious that /3%4 which are associated with complex eigenvalues are not in the hermitian domain of
the Hamiltonian (i.e. not in the Hilbert space). For finite range potentials it is clear from Eqs. (1.4.9)
and (1.4.12) that the complex wave vector is given by k

n
"Dk

n
De~*rn, where

u
n
"arctan(C

n
/[2(e

n
!E

5
)]) (1.5.1)

with E
5
being the threshold energy. By substituting Eq. (1.4.13) into Eq. (1.4.1), one can see that the

resonance eigenfunctions (associated with the poles of the S-matrix) diverge exponentially,

/3%4
n

(rPR)"B(k
n
)e`*@kn@%~*rnr

"B(k
n
)e*anre`bnrPR , (1.5.2)

where

a
n
"(2k)1@2(e2

n
#(C

n
/2)2)1@4 cosu

n
/+ ,

b
n
"a

n
tan e

n
'0 ,

u
n
"arctan(C

n
/2e

n
) .

The physical interpretation of the divergence property of /
3%4

is that at r"R one observes the
“particles” (subsystems as defined above) which were formed an infinitely long time ago [12].
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As usual, the solutions of the time-dependent Schrödinger equation for time-independent
Hamiltonian are given by

t3%4
n

(r, t)"/3%4
n

(r)e~*Ent@+ (1.5.3)

and, therefore, the probability density

Dt3%4
n

(r, t)D2"D/3%4
n

(r)D2e~C
nt@+ (1.5.4)

decays to zero as time passes at a constant r. Therefore, the “particles” disappear from any given
point in the coordinate space. Due to the exponential divergence of /3%4 the number of particles is
conserved only when both the reaction coordinate, r, and the time, t, approach the limit of infinity.

Most of the computational algorithms in quantum mechanics have been developed for hermitian
operators (as discussed above, the physical Hamiltonians are hermitian only when they operate on
bounded functions which get finite values as any point in the coordinate space). For example,
variational methods which were successfully used to solve many-body problems in physics and
chemistry are not applicable and cannot be used to solve Eq. (1.4.12) even for the one-dimensional
case. As we will show, here, an extension of the variational principle and of other well-known
theorems in quantum mechanics to non-hermitian operators can be made by carrying out
similarity transformations SK which make the resonance functions, /3%4, square integrable functions.
That is,

(SK HK SK ~1)(SK /3%4
n

)"(e
n
!(i/2)C

n
)(SK /3%4

n
) (1.5.5)

such that

SK /3%4
n

P0 as rPR (1.5.6)

and SK /3%4
n

are in the Hilbert space although /3%4 are not. The complex-scaling operator to be defined
below is only one example of a possible similarity transformation for which Eq. (1.5.6) is satisfied
[13].

The complex-scaling operator is given by

SK "e*hr »@»r (1.5.7)

such that

SK f (r)"f (re*h) (1.5.8)

for any analytical function f (r). By substituting Eqs. (1.5.7) and (1.5.2) into Eq. (1.5.6) (this is
equivalent to scaling r by exp(ih) in Eq. (1.5.2)), one obtains

SK t3%4
n

(rPR)"B(k
n
)e`*@kn@%91(*(h~rn)r)"B(k

n
)e*anre~ bnr , (1.5.9)

where

k
n
"Dk

n
De~*rn ,

a
n
"a

n
(cos h!tanu

n
sin h) ,

b
n
"a

n
(sin h!tanu

n
cosh) ,

u
n
"arctan (C

n
/2e

n
) .
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One immediately sees from Eq. (1.5.9) that for a sufficiently large value of the rotational angle h the
exponential factor b

n
gets a positive value and thereby the scaled resonance wave function becomes

square integrable. In other words, when

h5h
#
, (1.5.10)

where the critical angle h
#
is given by [14,15]

h
#
"u

n
, arctanC

n
/2(e

n
!E

5
) (1.5.11)

with e
n
, C

n
and E

5
being, respectively, the real and imaginary part of the complex energy and the

threshold energy (E
5
was taken to be zero in our studied example) then,

SK /3%4
n

(rPR)P0 . (1.5.12)

Note, by passing, that the bound states of the unscaled Hamiltonian are a special case of Eq. (1.5.9)
where c"0 (i.e. C

n
"0) and a

n
"iDa

n
D. Therefore, the critical angle h

#
for the bound state is h

#
"0.

Here we proved that by scaling the “reaction” coordinate the resonance wave function becomes
square integrable and, consequently, the number of particles in coordinate space is conserved.
Therefore, complex scaling has the advantage of associating the resonance phenomenon with the
discrete part of the spectrum of the complex-scaled Hamiltonian. Moreover, the resonance state is
associated with a SINGLE square integrable function, rather than with a collection of continuum
eigenstates (see the peaks in the density of states presented in Fig. 6) of the unscaled hermitian
Hamiltonian. Complex scaling may be viewed as a procedure which “compresses” information
about the evolution of a resonance state at infinity into a small well-defined part of space. The tail
in spatial space of a single, time-independent, square integrable resonance wave function contains
all the information about the system, including information on partial width and on the way in
which the system evolves as the separation between the “particle” and the “target” increases to
infinity. The complex eigenvalues of the complex-scaled Hamiltonian (see Eq. (1.5.5)) which are
associated with the resonance phenomenon are h-independent. The imaginary part of the reson-
ance complex eigenvalues has been shown to be the widths of the Lorentzian peaks, C

n
, in plots of

the probability density of states vs. the energy, and through Eq. (1.3.1) one can associate C
n
with the

rate of decay and with the inverse lifetime of the “particle—target” system. The resonance complex-
scaled eigenfunctions are, however, h-dependent. We may interpret h as a control parameter which
“brings” the information of the decay process from infinity to a finite region in space whose size
depends on the value of h. As h is increased, the information about the decay process is compressed
into a smaller part of the coordinate space. However, h cannot exceed a critical value as it will be
discussed in Section 2.

1.6. Complex scaling and resonances in half collision experiments

The resonance wave function which becomes square integrable upon complex scaling can be
regarded as the dominant intermediate state in the scattering process. This statement can be
explained as follows. The transition probability to get from the in-asymptote to the out-asymptote,
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which are denoted by u
i
and u

f
respectively, is given by

P(E)"DSu
f
D¹K (E)Du

i
TD2 , (1.6.1)

where E is the total energy of the particle—target system; the ¹-matrix is defined as usual by

¹"»(x, y, z)#»(x@, y@, z@)G
E
(x@, y@, z@;x, y, z)»(x, y, z)

and the Green operator G
E
"(E!H)~1, provides the probability amplitude to get from (x, y, z) to

(x@, y@, z@) at a given energy E. » is the interaction potential between the free particle and the target.
The Su

f
D»Du

i
T term in Eq. (1.6.1) describes the direct scattering events whereas the Su

f
D»G»Du

f
T

term describes the multiple scattering events. The spectral representation of the Green operator is
given by

G
E
"+

i

D/
i
TS/

i
D

E!E
i

, (1.6.2)

where the intermediate states, D/
i
T, are the eigenfunctions of the Hamiltonian, H, which describes

the particle—target system. The energy spectrum is discrete due to the use of box normalization. By
rotating the contour of integration from the real axis into the complex plane, the intermediate
states and energies are replaced by the eigenfunctions and complex eigenvalues of the complex-
scaled Hamiltonian, respectively. For an isolated resonance E

n
"e

n
!1

2
C

n
, which is sufficiently

narrow, i.e. very small C
n
, there is a single dominant term in the series expansion of the Green

operator given in Eq. (1.6.2) when E"e
n
. We shall show that a resonance is considered as

sufficiently narrow when C
n
;!Im[e

n
exp(!2ih)]. Consequently, when the total energy of the

particle—target system is about equal to the position of a narrow resonance, Eq. (1.6.1) — the
transition probability to get from “reactants” to “products” — is reduced to a Breit—Wigner-type
expression [1,16],

P(E)"
DSu

f
D»D/3%4

n
TS/3%4

n
D»Du

i
TD2

(E!e
n
)2#(C

n
/2)2

J

(C
n
/2)

(E!e
n
)2#(C

n
/2)2

. (1.6.3)

The main conclusion from Eq. (1.6.3) is that when the lifetime of the “particle—target” system is
sufficiently large we may say that the “particle” is trapped by the “target” at a single resonance
state, /3%4

n
. In such a case, we can distinguish between the mechanism which brings the system to the

resonance state, and the decay process from the metastable resonance state to the products (“out”
asymptote in the scattering experiment). The decay process can be considered as a half collision
process. A typical half collision process is the decay of an excited state DE

1
T following a laser

excitation of a bound state, DE
0
T, to a r esonance state, DE

1
T, (see, for example, Fig. 2). One such

example is the infra red excitation of a highly rotational excited diatomic molecule from its
vibrational ground state to a vibrational state laying just below the top of the centrifugal potential
barrier. An example for a Feshbach-type resonance obtained in a half collision experiment is the
predissociation of van der Waals complexes [17]. Let us consider, for instance, the predissociation
of the van der Waals complex NeICl. The NeICl complex in the B electronic excited state is stable.
When the ICl vibration is excited the complex NeICl (B, l"2) gets into a metastable resonance
state [18,19]. The lifetime of an excited NeICl molecule is about 2.5 ns and as time passes free ICl
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molecules, in the first excited vibrational state and in rotational states which vary from j"0 to
about j"32, are obtained.1

Another example is the autoionization of the helium atom [20] are the two electrons were
excited from the doubly occupied 1s orbital to the 2s orbital. The energy of He(2s)2 is smaller than
the energy of He`(2s) but greater than the energy of He`(1s). The (2s)2 state is embedded in the
continuum of the He`(1s) ion.2 Due to the electronic correlation one electron moves from the 2s
orbital to the 1s ground state orbital and thereby proves the energy which is required for the
ionization of the second electron: He(2s)2PHe`(1s)#e~2. The kinetic energy of the free Auger
electron [21] is about equal to the position of the resonance state above the 1st threshold energy
(the real part of the complex resonance eigenvalue), and the rate of decay (inverse lifetime) is the
resonance width (the imaginary part of the complex resonance energy).

1.7. Resonances in multiphoton ionization/dissociation experiments by complex scaling

In Section 1.5 we proved that the complex-scaled resonance eigenfunctions are square integrable
(see also Ref. [22]). The proof based on the assumption that the asymptote of the Siegert resonance
wave function is an outgoing plane wave. This assumption holds for finite range potentials for
which the cut-off approximation is taken into consideration (i.e. »"0 for r'r

0
). Balslev and

Combes [14] and Simon [15] have shown that also for the infinite range, Coulombic potential the
complex-scaled resonance wavefunctions are square integrable (see also the reviews of Reinhardt
[23], Junker [24] and Ho [25]). It is entirely clear that the cut-off potential argument cannot be
taken into consideration when the interaction between “scattered particle” and the “target” does
not vanish as rPR. This is exactly the case when the “scattered particle” is an atom/molecule and
the “target” is an electromagnetic field. In this case, the interaction potential is proportional to the
dipole moment operator kL . In the interaction of an atom with an dc field the time-independent
Hamiltonian is given by

HK (r)"HK
0
(r)#e

0
ez , (1.7.1)

where e
0

is the field intensity, HK
0

is the atomic field-free Hamiltonian and kL "zL . In the interaction
of atom/molecule with a high intense ac field (where the perturbational methods break down and
cannot be used) the time-dependent Hamiltonian is given by

H(r, t)"H
0
(r)#e

0
k(r) f (t) (1.7.2)

when, for example, a monochromatic electromagnetic field is used, then f (t)"coswt where w is the
frequency of the cw laser.

1The predissociation of NeICl when ICl is in its l"2 vibrational excited state is considered as a Feshbach-type resonance
phenomenon since the energy of NeICl (l"2) is smaller than the energy of ICl (l"2, j"0) and hence dissociation due to the shape type
resonance mechanism does not occur, i.e., NeICl (l"2);Ne#ICl (l"2, j"0). However, since the energy of NeICl (l"2) is higher
than the energy of ICl (l"1; j"0, 1, 2,2, 32 the dissociation occurs due to the coupling between the internal modes of NeICl.

2The ionization due to the Shape-type resonance mechanism, does not occur, He(2s)2;He`(2s)#e~, since the energy of He(2s)2 is
smaller than the energy of He`(2s). The autoionization due to the Feshbach-type resonance mechanism is an example of the electron
correlation effect.
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Reinhardt, Chu and coworkers studied extensively this problem, and showed numerically that
even in these cases, when kPR as xPR, the complex-scaled resonance wave functions are
square integrable [26]. Here we shall prove that upon complex scaling of a general time-dependent
Hamiltonian (given in the length gauge representation)

HK "(pL
x
)2/2m#»(x)#k(x) f (t) , (1.7.3)

where

»(x)P0 as xPR (1.7.4)

and

lim
x?=

k(x)"e
0
x , (1.7.5)

the resonances are isolated from the other states in the continuum and are associated with square
integrable functions. The proof will be given in three steps:

(I) Transformation of the Hamiltonian from the length-gauge to the momentum gauge
By substituting Eq. (1.7.3) into the time-dependent Schrödinger equation

HK t"i+ ­t/­t (1.7.6)

where

t"e~*k(x):f (t) $t@+/(x, t) , (1.7.7)

one can get that

C
(pL

x
!k@(x): f (t) dt)2

2m
#»(x)D/(x, t)"i+

­/(x, t)
­t

, (1.7.8)

where

k@(x),­k(x)/­x . (1.7.9)

Using the condition given in Eq. (1.3.1) it is clear that

k@(x)Pe
0

(1.7.10)

as xPR.

(II) Transformation of the Hamiltonian from the momentum gauge to the acceleration gauge
Following Kramers—Henneberger transformation [27] the complex-scaled wave function /(x, t),

/(x, t)"e~*b(t)/I (x, t) ,

/I (x, t)"e*a(t)pL xs(x, t) ,
(1.7.11)
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where

b(t)"
e2
0

2m+PF2(t) dt ,

a(t)"
e
0

m+PF(t) dt ,

F(t)"P f (t) dt

(1.7.12)

is substituted into Eq. (1.7.8). Since we are interested here in the property of the resonance wave
functions in its asymptotic limit, we shall assume that k@(x)"e

0
for any value of x. The conclusion

obtained on the basis of this assumption holds in the more general case where lim
x?=

k@(x)"e
0
. As

a result one gets that

C
(pL

x
)2

2m
#»I (x, t)Ds(x, t)"i+

­s(x, t)
­t

, (1.7.13)

where

»I (x, t)"e~*pL a(t)»(x)e`*pL a(t) . (1.7.14)

By noticing that

e`*pL as(x, t)"s(x#a, t) (1.7.15)

e~*pL a[»(x)s(x#a, t)]"[»(x!a)s(x, t)] . (1.7.16)

One can get that

»I (x, t)"»(x!a) (1.7.17)

and, therefore,

C
(pL

x
)2

2m
#»Ax!

e
0

m+PP f (t) dtBDs(x, t)"i+
­s(x, t)

­t
. (1.7.18)

(III) Multiphoton ionization/dissociation resonance wave functions are square integrable
From Eq. (1.7.8) one can see that for any given time t, »I "»(x!a(t))P0 as xPR conse-

quently, the coupling of between the atomic/molecular Hamiltonian and the ac field vanishes as
xPR and as time passes a free particle (an electron or a molecular fragment) will be obtained.
For time periodic Hamiltonians, the resonance Floquet quasi-energy state is given by

s
3%4

(x, t)"e~*E3%4t@+U
3%4

(x, t) (1.7.19)

U
3%4

(x, t)"U
3%4

(x, t#2p/w) (1.7.20)

and the resonance complex quasi-energy, E
3%4

, and the time-periodic function U
3%4

(x, t) are, corres-
pondingly, the eigenvalue and eigenfunction of the Floquet Hamiltonian

A!i+
­
­t
#

(pL
x
)2

2m
#»Ax!

e
0

m+PP f (t) dtBBU3%4
(x, t)"E

3%4
U

3%4
(x, t) , (1.7.21)
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where

E
3%4
"e!i/2C , (1.7.22)

U
3%4

(x, t)"
=
+

n/~=

e*wntu
n
(x) . (1.7.23)

For the open Floquet channels, n(0, (here we assume that the resonance state is in the n"0
Brillouin zone which implies that !+w(e(0) and within the framework of the cut-off approxi-
mation (i.e. »(x'x

0
)"0)

u
n:0

(DxD'x
0
)PJm/+k

n
e*knx (1.7.24)

(+k
n
)2/2m"e!(i/2)C!+wn (1.7.25)

provided n gets a sufficiently large value such that Real (+k
n
)2'0. u

n
becomes square integrable

when

x"x@e*h (1.7.26)

and x@ is a real variable (for a detailed discussion see Section 1.5). For long-range potential such as
the coulombic potential, v(x!a(t)), the complex-scaled resonances are square integrable functions
following the Balslev—Combes theorem.

From Eqs. (1.7.7), (1.7.11), (1.7.19), (1.7.23), (1.7.24) and (1.7.25) one can see that since the
resonance state s(x, t) is a square-integrable function then /(x, t) and, therefore, t(x, t) are the
complex-scaled square-integrable resonance wave function.

We can summarize the discussion by saying that here we prove that the complex-scaled
resonance wave function calculated either in the length-gauge; momentum-gauge, or acceleration-
gauge representation of the Hamiltonian are square-integrable functions regardless of the fact that
k(x) may get an infinite large value as xPR. The proof holds provided that k(x)/x approaches
a constant value as xPR. The proof can be extended to time-dependent Hamiltonians which are
not necessarily time periodic (this is the case when short pulse high intense lasers are used) by the
(t, t@) method recently introduced by Peskin and Moiseyev [28].

2. From complex-scaled Hamiltonians to resonance positions and widths

As was discussed in Section 1, the long-lived states of a system which has sufficient energy to
break-up into two or more subsystems are associated with the complex poles of the S-matrix. The
resonance positions and widths are, respectively, associated with the real and imaginary part of
the complex eigenvalues of the time-independent non-scaled [13] Hamiltonian (see Eq. (1.4.12)).
The resonance eigenfunctions diverge exponentially as it is shown in Eq. (1.4.13) and therefore they
cannot be in the hermitian domain of the Hamiltonian. Consequently, the corresponding reson-
ance eigenfunctions are definitely NOT in the Hilbert space. As it is well known the eigenvalues of
hermitian Hamiltonians are real and cannot get complex values. The hermitian property is not
only a property of the operator but also of the functions on which the operator is acting (see
Section 1.4). As we discussed in Section 1, the resonance eigenfunctions can be taken into the
Hilbert space (which contains all possible square integrable functions) by carrying out a “proper”
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Fig. 8. (a) Two possible integration paths, F(x), in the complex coordinate plane (see Eq. (2.1.30) in the text). For j" the conventional
complex path is obtained, for j"5 and x

0
"6 a.u. a smooth-exterior-scaling path is obtained. In both two cases h"0.75 rad. (b) The

complex »
1
(x) local extremely short-range potential (see Eq. (2.1.21) in the text) which is the coordinate dependent linear factor of the

flux-type term in »K
CAP

(see Eq. (2.1.20)). The path in the complex coordinate plane is F(x) as shown in Fig. 8 for j"5. (c) The complex
»

2
(x) potential which vanishes when the physical potential gets non-zero values (see Eq. (2.1.22) in the text) which is the coordinate

dependent linear factor of the diffusion-like term in »K
CAP

(see Eq. (2.1.20)). The path in the complex coordinate plane is F(x) as shown in
Fig. 8(a) for j"5.

similarity transformation of the Hamiltonian (see Eqs. (1.5.5), (1.5.6), (1.5.7), (1.5.8), (1.5.9), (1.5.10),
(1.5.11) and (1.5.12)). Moiseyev and Hirschfelder [13] suggested the following as “proper” similarity
transformations:

SK & exp[!hf 1@2(r)(­/­r) f 1@2(r)] , (2.0.1)

where f (r) can be any function for which f (r)/rP1 as rPR. In the conventional complex scaling,
as first proposed by Hartree during the Second World War [29] and more recently by Balslev and
Combes [14] and by Simon [15], f (r)"r. In Fig. 8a we represent several illustrative contours, SK r,
in the complex coordinate space.
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The exterior complex scaling [30—32]

SK "G
1 if r(r

0
,

exp[!h(r!r
0
)­/­r if r5r

0

(2.0.2)

was suggested by Simon [32] to avoid the intrinsic non-analyticities of the potential, V, by passing
on the right-hand side of the singularity points of V. We shall represent here several properties of
the complex-scaled Hamiltonians.

2.1. The complex scaled Hamiltonian

2.1.1. “Conventional” complex scaling
For the sake of clarity, and without loss of generality, let us describe the one-dimensional

complex-scaled Hamiltonian. When the potential is dilution analytic, the complex-scaled Hamil-
tonian (in dimensionless units)

Hh"S~1(h)HK SK (h) (2.1.1)

(where SK is the complex scaling operator as defined in Eq. (1.5.7)) is given by

Hh"!

e~2*h
2

­2

­x@2
#»(x e*h) (2.1.2)

where

!R4x@4R (2.1.3)

and the complex rotational coordinate x (shown in Fig. 8a) is given by

x"x@e*h . (2.1.4)

If »(x@) gets a minimal value at x@"x
0
, one may wish (to achieve a rapid numerical convergence

in the solution of the time-independent Schrödinger equation) to define x as

x"(x@!x
0
)e*h#x

0
. (2.1.5)

2.1.2. “Exterior” complex scaling
For non-dilution analytical potential one may use the exterior complex-scaling operator which

is defined in Eq. (2.0.2). The complex rotational coordinate x (shown in Fig. 8a) in this case is given
by

x"G
x@ if x@(x

0
,

e*hx@ if x@5x
0

.
(2.1.6)

Consequently,

­/­x"g(x@)­/­x@ , (2.1.7)
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where

g(x@),
­x@
­x

"G
1, x@(x

0
,

e~*h, x@5x
0

.
(2.1.8)

Therefore,

g@,­g/­x"(e~*h!1)d(x@!x
0
) (2.1.9)

and

­2/­x2"g2 ­2/­x@2#g ) g@ ­/­x@

"g2(x@)­2/­x@2#e~*h(e~*h!1)d(x@!x
0
)­/­x@ . (2.1.10)

From Eqs. (2.1.6), (2.1.7), (2.1.8), (2.1.9) and (2.1.10) one can see that the complex exterior-scaled
Hamiltonian is given by

Hh"!

[g(x@)]2
2

­2

­x@2
!A

e~2*h !e~*h
2 Bd(x@!x

0
)
­

­x@
#»(x) , (2.1.11)

where g(x@) and x are defined above.
By carrying out integration by parts it has been shown by Rom and Moiseyev [33] that the

complex exterior-scaled kinetic matrix is given by

!

1
2T/

iK
­2

­x2K/jU"
1
2P

x0

0
A
d/

i
­x@BA

d/
j

dx@B dx@

#

e~2*h
2 P

=

x0
A
d/

i
dx@

i
BA

d/
j

dx@Bdx@!
1
2
/

i
(x

0
)
d/

j
(x@)

dx@ K
x{/x0

) (1!e~*h) (2.1.12)

when /
i
(x@) and /

j
(x@) are real square integrable basis functions.

2.1.3. “Smooth-exterior” complex scaling
The Moiseyev—Hirschfelder [13] generalization of the complex coordinate method associated

the resonance-poles of the S-matrix, E"E
r
!iE

i
, with the h-independent complex eigenvalues

of HK :

HK W"EW , (2.1.13)

where

HK "!+2/2M­2/­z2#»(z) (2.1.14)

and z"F(x) is a path in the complex coordinate plane such that

z"F(x)Px exp(ih) as xPR . (2.1.15)

In the spirit of Simon’s proposition to avoid the need to carry out analytical continuation of the
potential term in the Hamiltonian into the complex coordinate plane [30—32] Rom, Engdahl and
Moiseyev first proposed to define a smooth-exterior-scaling path which is defined as [34]

f (x)"­F/­x"1#(exp(ih)!1)g(x) , (2.1.16)
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where g(x) is varied from 0 to 1 value around the point x"x
0
. If »(x5x

0
)"0 one can use the

unscaled potential »(x) rather than using the complex potential »(z). Note however, that the path
which defined in Eq. (2.1.16) is very general and is not necessarily limited to the case where
»(z)"»(x) or when »(z)&»(x).

It is easy to see that since

­/­z"f~1(x) ­/­x , (2.1.17)

then

­2/­z2"!f ~3(x) ­f (x)/­x ­/­x#f ~2(x)­2/­x2 . (2.1.18)

Consequently, the smooth-exterior-scaled Hamiltonian as derived by Moiseyev is given by [35]

HK "!+2/2M­2/­x2#»[F(x)]#»K
CAP

, (2.1.19)

where

»K
CAP

"1
2
»

1
(x) ­/­x#»

2
(x)­2/­x2 (2.1.20)

and

»
1
(x)"+2/Mf 3(x)­f (x)/­x , (2.1.21)

»
2
(x)"(+2/2M)(1!f ~2(x)) . (2.1.22)

The volume element is given by

dz"f (x) dx . (2.1.23)

As usual one can transform the Hamiltonian in order to simplify the expression of the volume
element to be equal to dz"dx by defining a new function U,

W(x)"f~1@2U(x) . (2.1.24)

Such that

HK
f
"!(+2/2M)+ 2

f
#»[F(x)] , (2.1.25)

where

+ 2
f
"f`1@2(x)(­2/­ z2) f ~1@2(x) .

After some algebraic derivations one gets that U(x) is an eigenfunction of HK
f
,

HK
f
"!+2/2M ­2/­2x#»[F(x)]#»K (f)

CAP
, (2.1.26)

where

»K (f)
CAP

"»
0
(x)#»

1
(x)­/­x#»

2
(x)­2/­x2 . (2.1.27)

The functions»
1
(x) and »

2
(x) are as defined in Eq. (2.1.21) and Eq. (2.1.22) where»

0
(x) is given by

»
0
(x)"+2/4Mf ~3(x)­2f/­x2!(5+2/8M) f ~4(x)(­f/­x)2 . (2.1.28)
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As one can see the price one pays for the simplification of the expression of the volume element is in
the inclusion of an extra term »

0
in the complex absorbing potential (CAP) and in doubling the

weight of the flux-type term.
Without loss of generality, let us define a specific family of integration paths in the complex

coordinate plane by defining g(x) in Eq. (2.1.16) as [144]

g(x)"1#0.5(tanh(j(x!x
0
))!tanh(j(x#x

0
))) . (2.1.29)

By carrying out integration over g(x) the complex paths, F(x), are obtained,

F(x)"x#(exp(ih)!1)[x!x
0
#(1/2j)ln(1#exp(!2j(x!x

0
)))]

!ln(1#exp(!2j(x#x
0
))) . (2.1.30)

Illustrative examples for different possible integration paths are given in Fig. 8a for j"0, 3, 5
and x

0
"6. For j"0, the usual complex coordinate path, z"x exp(ih), is obtained. For large

values of j the smooth-exterior-scaling path is obtained. At the limit of jPR the exterior scaling
path [32] is obtained and

z"G
x if !x

0
4x4x

0
(x!x

0
)e*h#x

0
if x'x

0
(x#x

0
)e*h!x

0
if x(!x

0

. (2.1.31)

The CAP terms can be calculated using the above expression for g(x) and the following analytical
expressions for the first and second derivatives of f (x):

­f/­x"0.5 j(exp(ih)!1) (cosh2(j(x#x
0
))!cosh2(j(x!x

0
))) (2.1.32)

and

­2f/­x2"j2(exp(ih)!1)(tanh(j(x#x
0
))(1!tanh2(j(x#x

0
)))

! tanh(j(x!x
0
))(1!tanh2(j(x!x

0
))2)) . (2.1.33)

In Fig. 8b, c illustrative examples for »
1

and »
2
(x) are given for j"5. As one can see from

Fig. 8b »
1
(x) is an extremely short-range potential for the chosen value of j. Since »

1
(x) looks like

a delta function and since the flux operator is defined as id(x!x
0
)­/­x we refer to the correspond-

ing first term in the CAP which is defined in Eq. (2.1.20) as a flux-type operator. The second term is
a kinetic-type operator which describes the diffusion at x&x

0
. As one can see from Fig. 8c »

2
(x)

vanishes when !x
0
(x(x

0
. The value of x

0
can be chosen such that only within this interval of

x the physical potential gets non-zero values and vanishes elsewhere. It should be stressed that in
the calculations the potential »(x) can remain unscaled due to the properties of the chosen
integration path, F(x), (see Fig. 8a for j"5).

We can summarize it by saying that the use of the universal Flux-diffusion-type CAP which is
constructed from the »

1
and »

2
functions which are presented in Fig. 8b, c, enables us to obtain in

a very high accuracy many resonances (regardless to their widths and being isolated or overlapping
resonances) from a single diagonalization of a complex non-symmetric matrix. Exactly as in the
conventional complex scaling. The use of the fact that for some cases we can choose a path in the
complex coordinate plane that leaves the physical potential unscaled, i.e. »(F(x))"»(x), enables

234 N. Moiseyev / Physics Reports 302 (1998) 211—293



one to construct the unscaled Hamiltonian matrix elements by conventional computational
algorithms and by using available program packages (for example, the Gaussian code by which the
neutral and ionize polyatomic molecular Hamiltonians can be constructed). The complex smooth-
exterior scaling Hamiltonian is obtained by adding to the unscaled Hamiltonian matrix a matrix
which represents the universal »K

CAP
(using the same basis set which has been used to represent HK ).

2.1.4. Comment on the “smooth-exterior” complex scaling and other approaches using
“complex-absorbing-potentials”

In multi-channel problems, one can define an non-local, energy-dependent operator, the so-
called optical potential, that enables the calculation of cross sections for a subset of channels. All
effects caused by the excluded channels are accounted for by the optical potential. “Optical
potentials” has been used in nuclear physics a long time ago [36].

This type of optical potentials should be distinguished from negative-imaginary-short-range
potentials that are added to the Hamiltonian in order to impose absorbing boundary conditions
which provide outgoing waves in the asymptotic limit. In the literature this type of potentials are
sometimes also called optical potentials [37]. To avoid confusion we do not use the term optical
potential here but adopt the more suitable expression CAPs, complex-absorbing-potentials, as
proposed by Riss and Meyer [38] in order to name the artificial potentials introduced to impose
absorbing boundary conditions. In molecular physics the use of CAPS avoids artificial reflections
which result from the use of the finite basis/grid approximation [39] and allows simulations of
large scale strongly coupled scattering problems (such as in four-center reactions) involving
millions of basis functions [40].

In optical simulations the Maxwell equation is solved by using CAPs (see, for example, Refs. [16, 41])
to design wave guides which have specific properties. More recently, Neuhauser presented a new
highly accurate and anomaly free time-independent approach to reactive scattering based on the
use of very short-range imaginary potentials [42]. In a one-dimensional simulation the CAPs
covered only two grid points!

Unlike other methods such as the complex-coordinate method which stays on a solid mathemat-
ical ground given by Balslev and Combes [14] and Simon [15], the use of CAPs was based on
intuition and numerical experience. It has been proved that poles of the scattering matrix are also
the eigenvalues of the complex-scaled Hamiltonian, but it has not been proved that they are the
eigenvalues of the Hamiltonian which is perturbed by a CAP. Rom et al. [43] have shown that
the use of a CAP is similar to the use of the exterior scaling and more precise to the use of the
smooth-exterior-scaling method which was formulated by Rom et al. [34]. Riss and Meyer [38]
addressed themselves also to the question of under what conditions the resonances obtained by the
use of CAPs are indeed the poles of the scattering matrix. Their strategy and derivation was as
follows: the CAPs would provide the exact poles of the S-matrix if they would be reflection-free
potentials. The reflection can be made smaller than any given limit, if the CAP is made weak and
long enough; moreover, they showed that one may minimize the reflections of a short-range CAP
by adding specific energy-dependent terms to the effective Hamiltonian which includes the CAP;
from the requirement that the CAP in the free-reflection modified Hamiltonian will be energy
linearly dependent they obtained a new effective Hamiltonian which consists of smooth-exterior-
scaled kinetic operator and a potential term which is vanished (unlike the usual used CAPs) when
the potential of interaction, », is vanished as well; Their so-called TCAP-method [44] is, in fact,
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very similar to the smooth exterior complex scaling [34] except that they add an extra local
complex potential which is problem-dependent.

The strategy by Moiseyev [35] is in reversed to the one by Reiss and Meyer. Reiss and Meyer
started from the Hamiltonian perturbed by a CAP and end up with a complex-scaled-type
operator. We get out from the Moiseyev—Hirschfelder generalized representation of the complex
coordinate method and end up with the non-scaled Hamiltonian perturbed by a CAP which is
problem independent. As we show above this universal energy-independent CAP is a linear
combination of Flux- and diffusion-type operators. In order to avoid confusion we should stress
that the Flux CAP derived here is not related to the use of reactive flux and CAPs made recently by
Jäkel and Meyer in the formulation of a new modified flux operator formalism for the calculations
of state-to-state transition probabilities [45]. It is also different from the Bloch flux-type CAP
derived by Lipkin, Brändas and Moiseyev [46] from the exterior complex scaling approach [32].
The main difference between the Bloch-type CAP derived by Lipkin and coworkers and the CAP
operator derived here, is in the fact that the Bloch operator is energy-dependent whereas the
CAP presented below (see Eq. (2.1.20)) is energy-independent. Therefore, the use of the Bloch-type
CAP enables the calculations of the resonances one by one and by the use of an iterative numerical
procedure [8], whereas the use of the CAP derived here enables one to get at once many resonances
from a single diagonalization of a complex non-hermitian matrix.

2.2. The complex **energy++ spectrum — Resonance positions, widths and rotating continua

2.2.1. General discussion
Following the Balslev—Combes theorem [14], the complex eigenvalues (defined as the complex

“energy” spectrum) of the complex scaled Hamiltonian, SK (h)HK (x)SK ~1(h), which are associated with
BOUNDED not necessarily square integrable eigenfunctions are given in Fig. 9.

We have already shown in Section 1 that bound states and resonance states are associated with
the discrete part of the energy spectrum. Both the bound states and the resonance states are
associated with square integrable functions and consequently belong to the Hilbert space. For
a simple proof see Eqs. (1.5.7), (1.5.8), (1.5.9), (1.5.10), (1.5.11) and (1.5.12). The continuum, unlike the
bound and resonance states, is affected by the value of the rotational angle h. Following the Balslev
and Combes theorem, the scattering states are rotated into the lower-half of the complex energy
plane by the angle 2h. It is easy to prove this theorem for short-range potentials. In such cases, the
scattering states have the asymptotic behavior given by

/4#!55(rPR)"A(k)e~*kr#B(k)e`*kr (2.2.1)

where

E"(+k)2/2m . (2.2.2)

The energy gets any real positive value (provided that the threshold energy is taken as zero). The
complex-scaled scattering states are given by

/4#!55(r@e*h) P
r{?=

A(k)e~*k%*hr{#B(k)e`*k%*hr{ . (2.2.3)
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Fig. 9. (a) Schematic representation of the eigenvalues (i.e. “energy spectrum”) of the complex coordinate plane scaled
Hamiltonian, Hh, according to the theorem of Balslev and Combes. (b) The complex eigenvalues of the complex-scaled
Hamiltonian which describes the interaction of helium atom with the corrugated Cu(117) surface as calculated by
Engdahl et al. [138]. The first three full circles below the first threshold stand for the vibrational bound states of helium
adsorbed on the surface. The other full circles stands for the selective adsorption resonances. (c) The complex eigenvalues
of the complex scaled Hamiltonian which describes the reaction, NeICl(B, l"2)PNe#ICl(B, l"1) as calculated by
Lipkin et al. [19,139]. (d) The complex eigenvalues of the complex-scaled DVR (discrete variable representation)
HCO(J"0) Hamiltonian which are associated with the HCO molecular predissociation resonances as calculated by
Ryaboy and Moiseyev [94]. (e) The eigenvalues of the complex-scaled Hamiltonian HD/Ag(111) which are associated
with square integrable and continuum-type bounded eigenfunctions (Peskin and Moiseyev in Refs. [6,108]). (f ) The
complex eigenvalues of the complex-scaled Floquet operator, !i+ ­2/­t2!1

2
­2/­x2#»(x, t), were »(x, t) is a time

periodic driven Rosen—Morse potential, as calculated by Moiseyev and Korsch [128]. The full circles which are laying
close to the real axis are the quasi-energy resonances which are defined modulo of +u, where u"1 is taken as the laser
frequency.

From Eq. (2.2.3) one can see that for real values of k (i.e. real positive eigenvalues E) /4#!55 diverges
as r@PR and h(n since the real part of the exponential factor is positive. That is,

Re(!ike*h)"k sin h'0 . (2.2.4)

N. Moiseyev / Physics Reports 302 (1998) 211—293 237



Fig. 9. Continued

The ONLY bounded non-divergent (not square integrable) functions are obtained when k gets
complex values,

k"DkDe~*h (2.2.5)

and therefore (when the threshold is taken as the zero reference energy)

E
4#!55

(h)"DEDe~2*h; DEDe[0,R] (2.2.6)

where E is defined in Eq. (2.2.2).
Consequently, the complex-scaled scattering eigenfunctions have exactly the SAME asymp-

totical behavior as the unscaled states, but are associated, however, with a continuum which is
rotated into the lower-half part of the complex energy plane by the angle 2h. The rotating
one-dimensional continuum is a “white” continuum in the sense that its density of states is varied
monotonously as the energy, DE

4#!55
(h)D, is increased. When the continuum-type wave functions are

box normalized, the density of states of the rotating one-dimensional continuum is expected to be
proportional to DE

4#!55
(h)D~1@2. The deviation from this behavior due to the use of a finite box size in

the normalization procedure has been discussed by Alon and Moiseyev [8].
The schematic representation of the eigenvalues of the complex-scaled Hamiltonian given in

Fig. 9a describes the “energy” spectrum of potentials which support shape-type resonances (see, for
example, Fig. 2). In the case of potentials that support Feshbach-type resonances (see, for example,
Fig. 4) the continuum spectrum splits into several branches which come out of the threshold
energies. See, for example, the eigenvalues spectrum of the complex scaled Hamiltonian, presented
in Fig. 9b—f, which describes the interaction of helium with Cu(117); dissociation of van der Waals
complex NeICl and of HCO; interaction of HD molecules with Ag(111) surface and multiphoton
ionization/dissociation of a model Hamiltonian.

The threshold energies are the bound state energies of the “subsystems” (e.g. the rotational
energy levels of the free HD molecule) which are obtained due to the decay process (e.g.
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predesorption in our illustrative example) of the system (e.g. HD adsorbed on Ag(111)) which was
prepared in a metastable (resonance) state.

In the case of 3D potential energy surfaces it is sufficient to scale only the reaction coordinate.
We (Lipkin, Ryaboy and Moiseyev) developed a code that enables the calculations of the
predissociation resonances of any three atomic molecular system by complex scaling the distance
of the dissociative atom from the center of mass of the diatom. In Fig. 9d we show, for example,
thousands of HCO resonances (HCOPH#CO) which were all obtained from a single diagonal-
ization of the complex-scaled Hamiltonian.

2.2.2. Resonance transition states for analytical models
By using complex-scaling arguments, the h-independent complex eigenvalues which are asso-

ciated with shape-type resonances can be immediately obtained from the bound state spectrum of
analytically solvable model Hamiltonians. Let us assume that for a given system an analytical
expression of the bound state discrete spectrum E(n, j), as a function of the quantum energy level
n and as a function of the potential strength parameter j V(r)"jv(r) is known. For positive values
of j, »(r) has a potential well which supports the bound states. There are two cases where complex
energy spectrum can be immediately obtained from the known analytical expression of the discrete
bound state spectrum. In the first case, a finite number of bound states associated with real
eigenvalues are obtained when n(n

0
. By substituting values for n which are larger than

n
0
, E(n'n

0
, j) gets complex values which are associated with the resonance states. In the second

class of potentials there are either finite or infinite number of bound states (i.e. n
0
"R). By making

the transformation of jP!j the up-side-down potential !»(r) has a potential barrier. If the
new potential !»(r) supports resonance states then E(n,!j) would be a COMPLEX function of
the quantum number n. The real and the imaginary parts of E(n,!j) are, respectively, the
resonance positions and widths. Here we used indirectly the fact that upon complex scaling the
resonance eigenfunctions become square integrable. Let us denote by /(E, j, r) a solution of the
time-independent Schrödinger equation with the original potential well »(r). The eigenfunction
/ reduces to a square integrable function if we let the eigenvalue E get only discrete values assigned
by the quantum number n, E

n
"E(n, j), n"1, 2,2, n

0
. In the first case mentioned above, the

/(E,#j, r) solutions reduce to square integrable functions when E gets only discrete COMPLEX
values, E

n
"E(n,#j), n"n

0
#1, n

0
#2,2, by taking a complex contour r"DrD exp(ih) in the

coordinate space. In the second case, the /(E,!j, r) solutions reduces to a product of an
exponential decaying function and a polynomial (and thereby to a square integrable function) when
E gets only discrete COMPLEX values, E

n
"E(n,!j) by taking the inverse sign of j and by

choosing a complex contour r"D rD exp(ih) in the coordinate space.
The main conclusion from this analysis is that there is a SINGLE expression for the discrete

energy spectrum of a given model Hamiltonian. By varying either the quantum number n or one of
the REAL potential parameters (j in our above discussion), the REAL energies (associated with
bound states) and the COMPLEX “energies” (ONLY when resonance states do exist in the studied
class of potentials) are obtained. To illustrate this use of the complex coordinate method we shall
look at several simple analytically solvable model Hamiltonians.

We will show here for several model Hamiltonians that the expressions of the resonance
positions and widths obtained from the requirement that the resonance complex scaled solutions
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are square integrable are identical to the expressions obtained from the bound state energy spectra
when the simple procedures proposed above are used.

2.2.2.1. ¹he parabolic potential barrier. The eigenfunctions of the well-known harmonic oscillator
potential »(x)"kx2/2 are product of an exponential decaying function and the Kummer func-
tions, M(E/(a/4!2E/(4+Jk/m), a/2, +Jk/mx2), where a"1 for even functions and to a"3 for
odd functions. The Kummer functions reduce to Hermit polynomials when

a/4!E/(2+Jk/m)"!n . (2.2.7)

A parabolic potential barrier is obtained when kP!k. When x is scaled by the complex factor
exp(ih) and from the requirement that M(E/(a/4!2E/(4+J!k/m), a/2, +J!k/mx2 exp(2ih)/+)
would be an n-degree finite polynomial, we get that complex-scaled square integrable eigenfunc-
tions of the complex-scaled Hamiltonian,

HK "!e~2*h+2/2md2/dx2!e`2*h(k/2)x2 (2.2.8)

are associated with the negative “purely” imaginary eigenvalues given by

a/4!(E
n
/2+)(!k/m)1@2"!n , (2.2.9)

where for k'0

(!k/m)`1@2"!i(k/m)`1@2"iu . (2.2.10)

Consequently,

E
n
"!i+u((4n#a)/2)

or

E
n
"!i+u(n#1/2), n"0, 1, 2,2 . (2.2.11)

Using the terminology given in Section 1 we can say that in this case the resonance positions
(i.e. Re(E

n
)) are all equal to zero, (note that the top of the barrier is located at »"0) whereas the

resonance widths are given by

C
n
"2+u(n#1/2), n"0, 1, 22 . (2.2.12)

For a detailed study of this problem see Atabek et al. [47]. In chemical reactions the potential
barrier between the reactants and products is often described by a parabolic potential barrier. In
such cases, the resonances are transition states associated with complex-scaled square integrable
wavefunctions which are located inside the potential barrier. The lifetime, q, of these transition
states is associated with the inverse resonance widths,

q(transition states)"[2u(n#1/2)]~1 . (2.2.13)

2.2.2.2. A model Hamiltonian of an electron scattering from a negative ion. One of the examples
which were given by Landau and Lifshitz [48] for analytically soluble problems is of a particle
moving in a central symmetric field with potential energy »(r)"j(c/r2!1/r). The solution of the
time-independent Schrödinger equation is given by

t"R(r)½
lm

(h, /) , (2.2.14)
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Fig. 10. The potential »(r)"l2/r!c/r2 as function of the radius r.

where ½
lm

(h,/) are the spherical harmonics and R(r) is obtained by solving the following radial
Schrödinger equation,

C
d2R(r)

dr
#

2
r
dR(r)
dr

#

2k
+2AE!

+2

2kr2
l(l#1)B!»(r)DR(r)"0 . (2.2.15)

The solution which is associated with negative energy levels and is finite for r"0 is given by

R(r)"rs exp([!2kE]1@2r/+)F(s#1!j[k/(!2E)]1@2/+, 2s#2, 2(!2kE)1@2r/+) , (2.2.16)

where

s(s#1)"l(l#1)#2kjc/+2 (2.2.17)

The confluent hypergeometric function F reduces to a polynomial of degree n (i.e. square integrable
function) when n obeys the equation

n"jJ(k/!2E)/+!s!1 (2.2.18)

and gets positive integer (or zero) value. Consequently, the bound states energy spectrum is given
by

E
n
"!(2j2m/+2)[2n#1#M(2l#1)2#8mjc/+2N1@2]~2 . (2.2.19)

By making the transformation of

jP!j (2.2.20)

we get the up-side-down potential which is presented in Fig. 10.
This potential is a model for an electron approaching a negative ion (such as H~ for example).

Resonances and bound states are associated with the complex-scaled square integrable eigenfunc-
tions R(r). Therefore by scaling the r coordinate by a complex factor exp(ih) the confluent
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hypergeometric function F,

F(s#1#jJ(k/!2E)/+, 2s#2, 2J(!2kE)re*h/+) (2.2.21)

reduces to a polynomial of degree n"0, 1, 2, 32 when

n"!jJ(k/!2E)/+!s!1 (2.2.22)

and s is defined as in Eq. (2.2.17). Note that Eq. (2.2.22) is obtained also from Eq. (2.2.18) by
making the transformation jP!j.

The corresponding h-independent resonances and bound states discrete spectrum is obtained by
substituting Eq. (2.2.17) into Eq. (2.2.22) or by replacing j by !j in Eq. (2.2.19). For j"1 we
obtain the complex energy levels which are given by

E
n
"#

2j2m
+2

[(2n#1)#iM8mc/+2!(2l#1)2N1@2]~2

"

2j2m
+2

(2n#1)2!D!2i(1n#1)D1@2

[(2n#1)2!D]2#4(1n#1)2D
, (2.2.23)

where

D,8mc/+2!(2l#1)2 .

From Eq. (2.2.23), one can see that shape-type resonances are obtained (i.e. Im(E
n
)(0) when the

attractive part of the potential is strong enough such that C'0 and

c'+2(l#1/2)2/2m, l"0, 1, 2 . (2.2.24)

The resonance eigenvalues and eigenfunctions for the special case of l"0 were first introduced by
Doolen [49], and for the more generalized case where lO0 by Junker [24].

Note by passing that in a very similar way the resonance energies of a barrier potential given by
»(r)"$A/r2!Br2 can be obtained by making the transformation AP!A and BP!B in
the analytical expression of the bound spectrum of !»(r) given by Landau and Lifshitz [48].

2.2.2.3. ¹he Eckart potential — a model for A#BC reactive system. The transition from reactants
to products in an elementary chemical reaction characterized by the presence of a potential barrier.
The symmetric potential barrier presented in Fig. 11 describes the potential energy of H#H

2
(within the framework of the Born—Oppenheimer approximation) as a function of the reaction
coordinate x. The reaction coordinate is defined as the minimum energy path from the reactants’
“valley” to that of the products. For non-homonuclear chemical reactions the potential barrier is
non-symmetric.

The Eckart potential is probably the most commonly used model for the description of
a chemical reaction potential barrier. It has been shown on the basis of semiclassical transition
theory formulated by Miller [50] that the cumulative reaction probability as a function of the
translational energy, N(E), can be calculated only from the contributions of the Siegert poles of the
scattering matrix even when N(E) is structureless [50,51]. Following the strategy to obtain
analytical expressions for the resonance positions and widths (i.e. complex Siegert eigenvalues of
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Fig. 11. Non-symmetric Eckart potential energy curve.

the complex-scaled Hamiltonian) described above, Ryaboy and Moiseyev [52] obtained the
resonance energy levels of a particle moving in the symmetric and non-symmetric Eckart potential
barrier.

(a) Symmetric potential barrier
Here we follow Landau and Lifshitz [53] solution for the Rosen—Morse model Hamiltonian [54]

which supports bound states. Note that V(Rosen—Morse)"!V(Eckart). The Rosen—Morse
model Hamiltonian is given by

HK (x)"!+2/2md2/dx2#»
0
/[cosh2(x/a)] . (2.2.25)

By making the transformation »
0
P!»

0
we get the up-side-down Rosen—Morse potential which

is the symmetric Eckart potential barrier. By choosing in Eq. (2.2.25), a complex contour,
x"x@ exp(ih), where x@3 (!R,#R), and sufficiently large value of h, the resonance eigenfunc-
tions become square integrable. The wave functions t(x) are proportional to hypergeometric
functions F,

t(x)&F[e!s, e#s#1, e#1,x] , (2.2.26)

where

e"(a/+)J!2mE (2.2.27)

and

s(s#1)"!2m»
0
a2/+2 . (2.2.28)

In order to get square integrable functions, F should be truncated to a finite order n-degree
polynomial by following the requirement of:

e!s"n"0, 1, 2,2 (2.2.29)
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Fig. 12. The Siegert transition-state resonance eigenvalues and 2h rotated continuum.

Fig. 13. Symmetric Eckart potential »(x) (solid lines) and five Siegert eigenvalues Re t
n
(x); n"0!4. Two states closest

to the reaction threshold E"0 continuum eigenfunctions are given by dashed lines for comparison.

Therefore,

E"!(+2/8ma2)[!(1#2n)#J1!8m»
0
a2/+2]2

"(+2/8ma2)[(1#2n)!iJ8m»
0
a2/+2!1]2 .

(2.2.30)

Eq. (2.2.30) can be rewritten

E
n
"1/a[u

s
/2!i(n#1/2)]2 , (2.2.31)

where

a"2ma2/+2 and u
s
"J4a»

0
!1 . (2.2.32)

Note that here we choose the positive root of !1, that is, J!1"#i. See, for example, the
Siegert eigenvalues presented in Fig. 12.

As one can see the Siegert states can be counted by their nodes, in the same way as bound state
wave functions. The complex-scaled resonance wave functions are localized within the potential
barrier region. The two closest eigenfunctions to the reaction threshold, E"0, continuum are
given in Fig. 13 for comparison.

(b) Non-symmetric potential barrier
The non-symmetric Eckart potential is given by

»(x)"!»
0
cosh2kMtanh[(x!ka)/a]#tanh(k)N2#»

0
e~2k , (2.2.33)

where the potential barrier height is »
0
e~2k and the two threshold energies are 0 and

!2»
0

sinh(2k), respectively. When k"0 Eq. (2.2.33) reduces to the symmetric potential barrier
that appear in Eq. (2.2.26). Similarly to the derivation of the Siegert eigenvalues for the symmetric
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potential we shall follow here the analytical solution presented by Morse and Feshbach [55]:

»(Morse!Feshbach)"!»(non-symmetric Eckart)

and obtain the complex Siegert eigenvalues which are given by

E
n
"!2b

2
#[b

1
#i(n#1/2)]2#

b2
2

[b
1
#i(n#1/2)]2

"(z#!b
2
/z)2 , (2.2.34)

where

a"2ma2/+ ,

e"aE ,

l"a»
0

,

b
1
"(l cosh2k!1/4)1@2 ,

b
2
"(l sinh 2k)/2 ,

z"#b
1
#i(n#1/2) .

(2.2.35)

2.2.2.4. Resonances of non-dilation-analytical potential by complex translation. This is an example
for the case where the complex resonance eigenvalues are obtained by letting the quantum number
n in the expression for the discrete bound state spectrum to exceed a certain value n

0
. The

Natanzon model Hamiltonian [56] is given by

HK "!d2/dx2#»(x) , (2.2.36)

where

»(x)"!j2l(l#1)(1!y2)#(1!y2)(1!j2)[5(1!j2)y4!(7!j2)y2#2]/4

x"
1

2j2Cln
1#y
1!y

#iclnA
i#cy
i!cyBD"Re(x) ,

c"(j2!1)1@2 ,

(2.2.37)

and

!R(x(#R as !1(y(1 (2.2.38)

j and l are dimensionless parameters describing the shape and number of bound states. The
potential shown in Fig. 14 (for the values of j"26, l"5.5) supports six bound states and
resonances which result from the tunneling through the two symmetrical potential barriers.

There are four singularities at y"$1 and y"$i/c. As pointed out by Certain and coworkers
[57], these singularities avoid a straightforward use of the complex-scaling procedure.

As discussed in Section 1.5, the resonance eigenfunctions diverge asymptotically but upon
scaling the coordinate x by exp(ih),

t(xe*h)P0 as xP$R (2.2.39)
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Fig. 14. The Natanzon non-analytical potential.

when h'h
#

and the critical angle h
#

is given by Eq. (1.5.11). Since in the studied case even the
critical angle h

#
associated with the longest lived resonance is beyond the angle h"tan~1(1/c) at

which the singularity occurs,

h
#
'tan~1(1/c) , (2.2.40)

the complex eigenvectors obtained for h'h
#

do not have the characteristic resonance asymp-
totical behavior of a purely out-going plane wave. In order to avoid singularity points and to
obtain the resonance complex eigenvalues by bound state techniques one can use the exterior-
scaling procedure described above, or, as it will be shown here, to translate into the complex
coordinate plane, rather than dilate, a transformation of the variable y. The transformation of the
variable used by Ginnochio [58],

cos a"jy/[1#(j2!1)y2]1@2 (2.2.41)

reduces the original Schrödinger equation for the Natanzon potential to the Gegenbauer equation,

C!
d2

da2
#Aa#k#

1
2B

2
!A

k2!1
4

sin2a BD f (cos a)"0 , (2.2.42)

where

k"(!e)1@2/j2 ,

a"[1
4
#k2(1!j2)#l(l#1)]1@2!k!1

2

(2.2.43)

and

t"A
j2#(1!j2) cos2 a

sin2a B
1@4

f (cos a) . (2.2.44)
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The Gegenbauer function f (cos(a)) is square integrable if the parameter defined in Eq. (2.2.43) gets
non-negative integer values.

a"0, 1, 2,2, n . (2.2.45)

From Eqs. (2.2.43) and (2.2.45) we get

E
n
"!j2(l#1

2
)2#(j2!2)(n#1

2
)2#(2n#1)[j2(l#1

2
)2#(1!j2)(n#1

2
)2]1@2 , (2.2.46)

where

n4n
0

(2.2.47)

and n
0

is given by

n
0
"j(l#1

2
)/(j2!2)1@2!1

2
. (2.2.48)

This is exactly the algebraic form of the eigenenergies obtained by Ginocchio for bound states.
However, following the above analysis, this expression is valid for resonances as well when

n'n
0

. (2.2.49)

As was shown by Lipkin and Moiseyev [59], the complex translated (not scaled!) eigenfunction
t(a#ih) is a square integrable function when n'n

0
.

Consequently, the complex resonance eigenvalues are given by

E"!j2(l#1
2
)2#(j2!2)(n#1

2
)2

!i(2n#1)Dj2(l#1
2
)2#(1!j2)(n#1

2
)2D1@2, n'n

0
. (2.2.50)

The same analytical expression for the resonances was obtained also by Ginocchio and by
Alhassid et al. [60].

2.3. Restrictions on the complex-scaling parameter

As it was pointed out in Section 1, the resonances are associated with square integrable
eigenfunctions of the complex-scaled Hamiltonian, provided the rotational angle h is larger than
a critical value, h

#
, given in Eq. (1.5.11), where the complex-scaling parameter is given by exp(ih).

The value of the critical angle depend on the ratio between the resonance width and the resonance
position. Here we shall address the question of what are the upper bounds to the rotational angle h.
We shall distinguish between two cases. In the first one the exterior scaling procedure is used to
avoid complex scaling of the SHORT range potential. That is,

H"!1
2
d2/dr2#»(r) when r(r

0
(2.3.1)

and since »(r'r
0
)"0, then

H"!

e~2*h
2

d2/dr2 when r'r
0

. (2.3.2)
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From Eq. (1.5.9), one can see that the scaled resonance function is square integrable when the
exponential factor b"Dk

n
D sin(h!/

n
) is positive. Consequently,

0((h!/
n
)(n . (2.3.3)

By substituting /
n
"h

#
as defined in Eq. (1.5.11), one immediately sees that

h
#
(h(h

#
#n . (2.3.4)

In the second case the “reaction” coordinate is scaled by a complex factor, exp(ih), over the entire
available space. Therefore, the upper limit of the rotational angle h depends on the analytical
properties of the potential.

The upper limit of h results from the inapplicability of the Balslev—Combes theorem to the bound
states (rather than to resonances) when h exceeds a given value which is potential dependent.
Namely, when h gets beyond a critical value the bound states are not associated with real
eigenvalues as they should. Following the work of Moiseyev and Katriel [61] let us consider for
example the bound class of potentials

»(x)"x2m , (2.3.5)

where

m"1, 2,2 . (2.3.6)

The asymptotic behavior of the eigenfunctions of the Hamiltonian

!1
2
d2/dx2#»(x) (2.3.7)

can be easily shown to be (note that for large values of x v(x)!EKv(x) and Ht"0).

/
B

(x) P
x?=

x~m@2 exp[$21@2(m#1)~1xm`1] . (2.3.8)

Here /
~

are square integrable functions but /
`

are not. Note that the square integrable solutions,
/
~

, are associated with the discrete bound states, whereas the non-square integrable solutions, /
`
,

are not associated with resonances (which do not exist in this case) and are known in scattering
theory as anti-bound or virtual states. Upon complex scaling, xPx exp(ih), and the scaled,
/
`

(x e*h) or /
~

(x e*h), are respectively square integrable when

Re exp[i(m#1)h]"cos[(m#1)h] (2.3.9)

is negative or positive. The critical angles, for which cos[(m#1)h]"0 and the eigenfunctions
“jump” from one type of boundary condition (e.g. /

`
P0) to another type (e.g. /

~
P0) are:

h(j)
#
"n/(m#1)( j#1

2
), j"0, 1, 2,2 . (2.3.10)

Writing the complex-scaled Hamiltonian in the form

HK (h)"e~2*hC!
1
2

d2

dx2
#e2*h(m`1)x2mD , (2.3.11)
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we note that for exp[2ih(m#1)]"1, i.e.

h,h
j
"pj/(m#1), j"0, 1,2 (2.3.12)

exists

HK (h
j
)"e~2*hjHK (h"0) (2.3.13)

and, therefore,

E(j)
n
"e~*2jp@(m`1)+iE

n
(h"0), j"0, 1, 2,2, (2.3.14)

where E(j)
n

are the eigenvalues of the complex-scaled BOUND Hamiltonian, (i.e. no continuum
spectrum), and E

n
(h"0) are the eigenvalues of the unscaled Hamiltonian H(x).

Within the range

h(j)
#
(h(h(j`1)

#
, (2.3.15)

the spurious complex energy E(j)
n

as given by Eq. (2.3.14) is h-independent. The changes in the phase
occur abruptly at the critical angles h(j)

#
. ¹he energy spectrum of the bound states remain on the real

energy axis only when h(h(0)
#

. Atabeck and Lefebvre [62] numerically observed a similar phenom-
enon. That is, by rotating the coordinate beyond its critical upper limit, complex eigenvalues of
exponential BOUND potential were obtained. This numerical observation can be understood on
the basis of the analytical results obtained for the xn (note that here n"2m and Eq. (2.3.14) is valid
also for odd values of n). The dominant term, m, in the expansion of the exponential potential

»(x)"Ae`jx"A
=
+
n/0

(jx)n/n! (2.3.16)

in the vicinity of x"x
0

­ln[(jx
0
)n/n!]

­n
Kln(jx

0
)!ln(n)"0 . (2.3.17)

That is, for j"1

nKx
0

. (2.3.18)

Let x
0

be the classical turning point, determined by

»(x
0
)"Aejx0"E . (2.3.19)

Consequently, at the classical turning point the exponential can be approximately represented as
»(x)"x2m; m"x

0
/2. Using Eqs. (2.3.14) and (2.3.15) for n"x

0
and m"n/2 we get

E(j)
n
"e~(4jp@x0`1)*E

n
(h"0), j"0, 1, 2,2 . (2.3.20)

and

arctanA
ImE

n
ReE

n
BK

4nj
x
0
#1

, j"0, 1, 2,2 (2.3.21)
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when x is scaled by a complex factor exp(ih),

p/(x
0
#1)(2j#1)(h(p/(x

0
#1)(2j#2) . (2.3.22)

¹herefore the Balslev—Combes theorem is satisfied (i.e. bound states are associated with real eigen-
values even when the Hamiltonian is complex scaled) only with h(p/(x

0
#1). A similar analysis for

estimating the upper limits of the rotational angle for other analytical given potentials can be
carried out.

2.4. The generalized inner product for complex-scaled Hamiltonians

2.4.1. The c-product for time-independent Hamiltonians
The inner product is defined in quantum mechanics as the scalar product, that is,

S f DgT"P
!-- 41!#%

f *g dq (2.4.1)

where f, g are functions in the Hilbert space.
When f and g are exponentially divergent functions — as the resonance Siegert eigenfunctions of

HK are — they are NOT in the Hilbert space, and they are NOT in the hermitian domain of HK . By
scaling the coordinates in the time-independent Schrödinger equation by a complex factor, the
exponentially divergent resonance states become square integrable. However, in spite of the fact
that the complex-scaled resonance states are in the generalized Hilbert space, they are not
associated with an hermitian operator (HK (xe*h) is non-hermitian) and as we shall show in this
section the scalar hermitian product given in Eq. (2.4.1) should be replaced by a generalized inner
product (the so-called c-product). In the c-product, the complex conjugate of the terms in the
function which are complex not as a result of the complex scaling are taken. In the c-product first
the complex conjugate of the function is taken and only then the coordinates or the momentum are
analytically continued into the complex plan. If, for example, f *

"exp(!ikx) when k is real, then
the complex scaled f * is given by exp(!ik e`*hx). Here e*h can be interpreted as the scaling factor of
x or (when h(0), as the analytically continuation of k into the complex plan such that (+k e*h)/(2k)
is the complex resonance energy and exp(#ik e*hx) is the exponentially diverged Siegert state. The
c-product as it is described below facilitates the discussion of theorems for the complex scaled
(non-hermitian) operator H(h) which are analogous to those for H, and enables the derivation of
the complex-coordinate scattering theory for time-independent and for time-dependent Hamil-
tonians which are discussed in Section 3. Only when the c-product rather than the metric scalar
product is used in the calculation of the spectral representation of the Green operator, a remark-
able agreement between the theoretical and experimental non-specular scattering intensities of
helium atom scattered from corrugated Cu(115) surface were obtained.

Moiseyev, Certain and Weinhold [63] proposed a c-product where ON¸½ the complex conjugate
of the terms in the **bra++ state, which are complex regardless of the use of the complex scaling, should
be taken. This definition is in the spirit of the usual understanding of analytical continuation. One
does not take the complex conjugate of the terms in the wavefunction which become complex only due
to the rotating of the coordinate into the complex plane. If for example, the eigenfunctions of
the unscaled Hamiltonian are real and the COMPLEX eigenfunctions of the complex-scaled
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Hamiltonian are expanded in terms of REAL functions, then the inner product is given by

| f Dg},( f Dg),S f *DgT"P
!-- 41!#%

fg dq . (2.4.2)

For different approaches see “The Letropet Symposium View on a Generalized Inner Product”
[64]. In order to get a generalized definition of the inner product that should be used, let us
represent the differential time-independent Schrödinger equation as a matrix eigenvalue problem,

HwR
i
"E

i
wR
i

, (2.4.3)

where wR is the vector representation of the “ket” state. Without loss of generality, we assume that
H is a symmetry adapted Hamiltonian matrix and the eigenvalue spectrum is non-degenerate. The
inner product is required to satisfy the conditions,

((wL
i
)5DwR

j
)"d

ij
. (2.4.4)

Thus, the set of right and left eigenvectors MwR
i
,wL

j
N forms a complete set of orthonormal functions.

The right-hand eigenvectors of H are defined as the “ket” states. In order to define the “bra” states
the left-hand eigenvectors of the same H should be calculated:

(wL
j
)5H"EI

j
(wL

j
)5 . (2.4.5)

By taking the transpose of Eq. (2.4.5), one gets

H 5wL
j
"EI

j
wL

j
. (2.4.6)

Since the eigenvalues of H 5 are the eigenvalues of H,

E
j
"EI

j
(2.4.7)

then

H 5wL
j
"E

j
wL

j
. (2.4.8)

From Eq. (2.4.8), one can see that wL
j

are the right-hand-side eigenvectors of the transposed of
the Hamiltonian matrix H. Therefore, the inner product is the product of the eigenvectors of the
Hamiltonian matrix, H, and the eigenvector of its transpose, H 5, associated with the same
eigenvalue.

When the Hamiltonian matrix is hermitian

H 5"H* . (2.4.9)

Consequently,

wL
j
"(wR

j
)* (2.4.10)

and the inner product is the ordinary metric scalar product.
When the Hamiltonian matrix is complex and symmetric (for example, when the Hamiltonian

becomes complex only upon complex scaling, and real basis functions are used to construct the
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Hamiltonian matrix), then

H 5"H (2.4.11)

and therefore the two column vectors are identical

wL
j
"wR

j
. (2.4.12)

In the general case, the Hamiltonian matrix is complex because of the use of complex-scaled
coordinate, and because of the use of complex functions as a basis set. In such a case, the right-hand
side eigenvectors of the Hamiltonian matrix and of its transposed should be calculated. If A¸¸ the
right-hand side eigenvectors of H are known, then the left-hand side eigenvectors (i.e. eigenvector
matrix of the transposed Hamiltonian) are obtained by calculating the transpose of the inverse of the
eigenvector matrix of H,

(wL
1
,wL

2
,2)"[(wR

1
, wR

2
,2)~1]5 . (2.4.13)

A complex basis function is a natural choice, for example, when the energies and lifetimes of three
atomic molecules are calculated. To conserve the total angular momentum J, and its projection
M along the laboratory z-axis, the eigenfunction of the complex-scaled Hamiltonian are expanded
in terms of the yJ,M

j, l
basis functions, given by

YJ,M
j, l

(c)"
l

+
ml/~l

j
+

mj/~j

(ljmlmj
DljJM)½

j, mj
(RK )½l, ml

(r̂) (2.4.14)

when J"M"0 then l"j and

YJ,M
j, l

"½
j, 0

(cos c) (2.4.15)

and cos c"RK ) rL where R and r are, respectively, defined as the distance from the dissociative atom
C to the center of mass of the diatom AB and the internuclear distance of the diatom AB;
(l j mlmj

Dl j JM) are the Clebsh—Gordon coefficients and ½
j,0

is the spherical harmonic. When real
basis functions u

n
(R) and s

m
(r) are used, the Hamiltonian matrix elements given by

[H(h)]
(n{, m{, j{, l{), (n, m, j, l)

"Su
n{
s
m{
YJM

j{ l{
DHK (Re*h, r, c)Du

n
s
m
YJM

j, l
T (2.4.16)

are complex even for the case where h"0 (i.e. no rotation of the coordinates to the complex plane)
and JO0. Here the basis functions are defined as

S/
k
(rL , RK ),Du

n
s
m
YJM

j, l
T (2.4.17)

when the index k stands for the collective indices Mn, m, j, lN. The complex-scaled square-integrable
eigenfunctions of H(h) are orthonormal,

|tL
j
DtR

i
},(tL

j
DtR

i
)"e*h P

!-- 41!#%

tL
j
tR

i
dq"d

ij
(2.4.18)

when tR
i

is given by

tR
i
"+

k

(C)
k, i

/
k
(RK , rL ) (2.4.19)
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and tL
j

is given by

tL
j
"+

k

(C~1)5
k, j

/*
k
(RK , rL ) , (2.4.20)

where C is the eigenvector matrix of the complex-scaled Hamiltonian matrix H(h).
A knowledge of the eigenfunctions of the complex-scaled Hamiltonian enables us to calculate the

uncertainty in measuring different dynamical quantities. The COMPLEX expectation value of
a given quantity is given by expressions bi-linear in tR and tL,

|tLDOK (h)DtR},(tLDOK (h)DtR)"
:
!-- 41!#%

tLOK (h )tRdq
:
!-- 41!#%

tLtRdq
, (2.4.21)

where OK is the COMPLEX-scaled operator associated with the measured dynamical quantity. If
OK is, for example, the complex-scaled Hamiltonian, H(h), the expectation value is a complex
number, E"e!(i/2)C. The real part of E, e, is the average measured energy of the system in its
metastable state, whereas the imaginary part, C is the uncertainty of e, even when the standard
deviation of H(h) is zero (i.e. |H(h)2}!|H(h)}2"0). Similarly, the imaginary part of (tLDOK (h) DtR)
can be interpreted as the uncertainty of measuring the quantity of OK when the system is prepared in
a resonance (i.e. metastable) state.

2.4.2. The c-product for time periodic Hamiltonians
The interaction of atoms and molecules in CW lasers is described by time-periodic Hamil-

tonians. However, even in short pulse experiments the time periodic behavior of the Hamiltonian
may be assumed when the field oscillates more than 50—100 times during the pulse “lifetime” [65].

When the Hamiltonian is time periodic

HK (x, t)"HK (x, t#¹) , (2.4.22)

the solutions of the complex-scaled time-dependent Schrödinger equation

HK (xe*h, t)th(x, t)"i+
­th(x, t)

­t
(2.4.23)

for a given initial state th(x, 0) can be described as a linear combination of the quasi-energy
solutions (known also as the Floquet states). The quasi-energy complex-scaled states are given by

th(x, t),tQEa (x, t) ,

tQEa (x, t)"e~*Eat@+/ha(x, t) ,
(2.4.24)

where

/ha(x, t)"/ha(x, t#¹) (2.4.25)

(when box normalization is used then the spectrum is discrete and a"1, 2,2). For dissocia-
tive/ionizing systems the quasi-energies get complex values and the resonance quasi-energies, Ea,
are h-independent:

Ea"ea!(i/2)Ca . (2.4.26)
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The periodic functions, /ha, and the quasi-energies, Ea, are respectively defined as the eigenfunctions
and eigenvalues of the complex-scaled Floquet operator,

HK h/ha"Ea/ha , (2.4.27)

where

HK h"!i+
­
­t
#HK (xe*h, t) . (2.4.28)

The complex-scaled time periodic eigenfunctions /ha can be expanded in a Fourier basis set,

/ha(x, t)"
=
+

n/~=

uh
n, a(x)e*unt (2.4.29)

where u"2p/¹ and uh
n, a are the components of the right eigenvectors of the Floquet Hamiltonian

matrix [66,128],

Hh(x)uha(x)"Eauha(x) (2.4.30)

and

[Hh(x)]
n{, n

"

1
¹P

T

0

e~*wn{tA!i+
­
­t
#H(xe*h, t)Be*wntdt

"

1
¹P

T

0

HK (xe*h, t)e*w(n~n{)tdt#+ud
n, n{

. (2.4.31)

The time-dependent inner product should satisfy the following condition:

|tLa{(QE)DtRa (QE)},(tLa{(QE)DtRa (QE))

"

1
¹P

T

0

dtP
!-- 41!#%

dxtL, QEa{ (xe*h, t) )tR, QEa (xe*h, t)"da, a{ (2.4.32)

Therefore (see Eqs. (2.4.24) and (2.4.29)), the right-hand quasi-energy state is given by

tR, QEa ,e~*Eat@+
=
+

n/~=

uh
n, a(x)e`*wnt, a"1, 2,2 , (2.4.33)

whereas the left-hand quasi-energy state is given by

tL, QEa{ "e`*Ea{t@+
=
+

n/~=

uh, L
n, a{(x)e~*wnt, a@"1, 2,2 , (2.4.34)

where uh, L
n, a are the components of the left eigenvectors of Hh(x). It should be stressed here that one

should NOT take the complex conjugate of the complex quasi-energies Ea . Only when real basis
functions, Ms

i
(x), i"1,2,NN are used to diagonalize the Floquet Hamiltonian matrix Hh(x)

and the Hamiltonian has a time reversal symmetry, then uh,L
n,a"uh

n,a . The uh
n, a(x) functions

254 N. Moiseyev / Physics Reports 302 (1998) 211—293



(components of the vector uha), which are used in Eq. (2.4.33), are given by

uh
n, a(x)"+

i

CR
(n,i),a(h)s

i
(x) , (2.4.35)

where CR
(n, i), a are the components of the right eigenvectors of Hh,

HhCRa (h)"EaCRa (h) , (2.4.36)

where

(H)h
k{,k

"P
!-- 41!#%

dqs*
i{
(x)[HK (xe*h)]

n{, n
s
i
(x) . (2.4.37)

The row and column indices, k and k@, are associated, respectively, with (n, i) and (n@, i@). n defines the
nth Fourier basis function and i defines the ith complex basis function s

i
(x). The uh

n, a{(x) functions
which are used in Eq. (2.4.34) are given by

uh
n, a{(a)"+

i

CL
(n,i),a(h)s*

i
(x) , (2.4.38)

where MCL
(n,i),aN are the components of the left eigenvectors of Hh (as defined in Eq. (2.4.37))

(Hh)5CLa{(h)"Ea{CLa{(h) . (2.4.39)

For example, in the study of multiphoton processes in time-dependent ionizing/dissociative
systems, the use of the inner product as defined in Eqs. (2.4.33), (2.4.34), (2.4.35), (2.4.36), (2.4.37),
(2.4.38) and (2.4.39) is the key point in the evaluation of accurate time-independent expressions for
the probability to obtain high harmonics [65]. The probability to obtain high harmonics, i.e.
radiation with the frequency X"kw, is associated with the Fourier transform of the time-
dependent dipole moment [67],

p(X)JK
1
¹P

T

0

e~*XtD(t) dtK
2

. (2.4.40)

When the system is “trapped” in a long lived resonance quasi-energy state

th
3%4
"e~*E3%4t@+/h

3%4
(x, t) (2.4.41)

and

E
3%4
"e

3%4
!(i/2)C

3%4
.

The complex expectation value of the dipole moment is given by

D(t)"
1
¹P

T

0

dtP
!-- 41!#%

tL,h
3%4

(x, t)xe*htR,h
3%4

(x, t) dx , (2.4.42)

where

1
¹P

T

0

dtP
!-- 41!#%

dxtL, h
3%4

(x, t)tR, h
3%4

(x, t)"1 (2.4.43)
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Using the c-product as defined above in Eqs. (2.4.33) and (2.4.34) Ben-Tal et al. [65] derived the
time-independent expression for the probability of obtaining radiation with the frequency X,

p(X"kw)"K
=
+

n/~=
Puh,L

n`k, 3%4
(x)xuh

k, 3%4
(x) dxK

2
(2.4.44)

where uh
n`k, 3%4

(x) and uh
k, 3%4

(x) are the Fourier components of /h
3%4

(x, t) as defined in Eqs. (2.4.41)
and (2.4.38).

2.4.3. The c-product for a general time-dependent Hamiltonian
The solution of the complex-scaled time-dependent Schrödinger equation for any time-depen-

dent Hamiltonian (not necessarily a time periodic one) can be obtained as [68]

th(x, t)"th(x, t@, t)D
t{/t

, (2.4.45)

where

th(x, t@, t)"e~*@+ HK (%*hx, t{)(t~t0)th(x, t@, t
0
) (2.4.46)

and

th(x, t
0
, t

0
),t(xe*h, t

0
) (2.4.47)

is the initial given state, and HK (xe*h, t@) and HK L(xe*h, t@ ) are the right and left Floquet-type
operators

HK (xe*h, t@)"HK (xe*h, t@)!i+ ­/­t@ , HK L (xe*h#i+ ­/­t@ ) (2.4.48)

The time variable t@ acts as an additional coordinate in a generalized Hilbert space introduced by
Howland [69,70]. This space contains all possible square integrable functions of x and t@, where
box normalization is used for x and for t@ (0(t@(¹).

The eigenfunctions of H(xe*h, t) forms a complete set for the generalized Hilbert space (see the
discussion in Section 2.4.4). The inner product in the generalized Hilbert space is defined as

|/
i
D/

j
},(/

i
D/

j
)"

1
¹P

T

0

dt@P
!-- 41!#%

dx/L
i
(xe*h, t@)/R

j
(xe*h, t@)"d

ij
, (2.4.49)

where

HK (xe*h, t@)/R
j
(e*hx, t@)"Eh

j
/R
j
(e*hx, t@) ,

HK L (xe*h, t@)/L
i
(e*hx, t@)"Eh

i
/L

i
(e*hx, t@) .

(2.4.50)

Assuming that the eigenfunctions of the complex-scaled Floquet Hamiltonian form a complete set,
the unit operator is given by

+
j

D/R
j
}|/L

j
D"1ª . (2.4.51)

By substituting Eq. (2.4.51) into Eq. (2.4.46), one gets that the solution of the time-dependent
Hamiltonian (which describes ionizing or dissociative systems) for the initial state t(x, t

0
) is given

by

th(x, t)"+
j

e~*Eh
jt|/L

j
Dt(t

0
)}/R

j
(xe*h, t) , (2.4.52)
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where

|/L
j
Dt(t

0
)}"

1
¹P

T

0

dt@P
!-- 41!#%

dx/L
j
(xe*h, t@)t(xe*h, t

0
) . (2.4.53)

When complex basis functions s
i
(x) and Fourier basis set, exp(2pti/¹), are used to diagonalize

H(xe*h,$t@) then /L
j

and /R
j

are calculated as described in Eqs. (2.4.29), (2.4.35), (2.4.36), (2.4.37),
(2.4.38) and (2.4.39).

Two cases may be considered. In the first case, the Hamiltonians are NOT time periodic. In such
a case box normalization for x and t@ implies that t(xe*h, t@, t) is a square integrable function of x and
t@. Long time (i.e. t) propagation requires the use of a large box (i.e. ¹ should get sufficient large
value). In the second case time periodic boundary conditions are required although the Hamil-
tonians are NOT time periodic,

t(xe*h, t@, t)"t(xe*h, t@#¹, t) ,

where

04t@4¹ .

The physical solution is obtained when

t@"t mod ¹ .

Solving the complex-scaled time-dependent Schrödinger equation for time-dependent Hamil-
tonians by the (t, t@) method enables the evaluation of time-independent state-to-state transition
probabilities, and the calculation of the time evolution operator as for time-independent Hamil-
tonians (provided the propagated wave packet remains square integrable for t4¹ for ioniz-
ing/dissociative systems [55]).

2.4.4. The turn-over rule
If HK (h"0) is a real and self-adjoint operator, then the complex-scaled Hamiltonian is given by

HK h"SK ~1(h)HK SK (h) (2.4.54)

and obeys

HK `h "HK *
h . (2.4.55)

If f and g are two complex square integrable basis functions (regardless of the fact that hO0) then,

S f DHK hgT"SH`h f DgT"SHK *
h f DgT"Sg*DHK h f *T . (2.4.56)

However, if f and g are complex functions ONLY due to the fact that hO0 as we shall discuss
below (see Section 2.4.1 on the c-product)

( f DHK hg)"S f *DHK hgT"S(HK `h f *)DgT"S(HK *
h f

*)DgT"(HK h f Dg) . (2.4.57)

Therefore, HK h is symmetric and satisfies the turn over rule with respect to the complex product

( f DHhg)"(Hh f Dg)"(gDHh f ) . (2.4.58)
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2.5. Do the eigenfunctions of the complex-scaled Hamiltonian matrix form a complete basis set?

On the basis of Motzkin and Taussky results [71], Moiseyev and Friedland [72] proved that for
very special values of the complex-scaling parameter, g"exp(ih), (where h may get complex values)
an incomplete spectrum of N-dimensional Hamiltonian matrix is obtained. The spectrum is
incomplete in the sense that the eigenfunctions of the complex-scaled Hamiltonian matrix do not
form a complete basis set and the number of non-linear independent eigenvectors of the non-
hermitian matrix is smaller than N. Note, however, that any infinitesimally small variation in h will
make the spectrum to be a complete one.

Within the framework of the finite basis set approximation the time-independent Schrödinger
equation is given by

H(h)wR
i
"E

i
wR

i
and H 5(h)wL

i
"E

i
wL

i
, (2.5.1)

where the complex-scaled Hamiltonian matrix is given by

(H(h))
ij
"Ss

i
DHK (xe*h)Ds

j
T, (i, j)"1, 2,2, N (2.5.2)

and MSs
i
TN are square integrable basis functions. In Section 2.4 we assumed that the eigenfunction

of H(h) forms a complete set. That is, there are N normalizeable independent eigenvectors

(wL
i
DwR

j
)"d

ij
, (i, j)"1, 2,2, N . (2.5.3)

Since the complex-scaled Hamiltonian matrix is not hermitian and

H
ij
(h)OH*

ji
(h) (2.5.4)

it may happen that the N]N Hamiltonian matrix H(h) has N!1 or even less linear independent
eige:nvectors for special values of h. In such a case the eigenvectors of H(h) do NOT form
a complete set for the N-dimensional vectors. For example [72], the complex symmetric 3]3
matrix

H(h)"A
6 e*h !1

e*h 5 2eih
!1 2e*h 1 B (2.5.5)

has only two distinct eigenvectors when h"p/2,

E
1
"6, wR

1
"wL

1
"A

1

i/3

!1/3B , (2.5.6)

E
2
"3, wL

2
"wR

2
"A

0

1

i B . (2.5.7)

It should be stressed here that although the 3]3 matrix given in Eq. (2.5.5) has only 2 eigenvalues
there is no degeneracies in the spectrum. Degeneracy implies two non-linear-dependent eigenvec-
tors which are associated either with E"3 or with E"6. As one can see from Eq. (2.5.6) and
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Eq. (2.5.7) there are no such degenerated states. Since the matrix is complex and symmetric we use
here the c-product rather than the usual scalar product.

The fact that for h"p/2 the spectrum of H(h) is incomplete is reflected in the fact that the second
eigenvector w

2
is not c-normalizable and

(wL
2
DwR

2
)"0 (2.5.8)

w
2

and E
2

are considered, respectively, as a defective eigenvector and eigenvalue of the matrix H.
In such a case E

2
is NOT a simple pole of the resolvent (H!E1)~1. A defective eigenvalue and

eigenvector is obtained at a branch point h
b
"p/2, where

E
2
PE

3
(2.5.9)

and w
2

and w
3

are coalesced,

w
2
Pw

3
(2.5.10)

as

hPh
"
. (2.5.11)

We can summarize it by saying that the eigenvalues E
i
(h) are analytical in h except for a finite

number of complex values of the rotational angle h
"
"h

1
,2, h

q
, which are the branch points for

some eigenvalues. Therefore, some E
i
(h) do not have a Taylor expansion in g"exp(ih) around the

branch points g
b
"exp(ih

"
). However, E

i
(h) does have an expansion in (g!g

"
)1@p (known as

Puiseux series):

E
i
(h)"

=
+
k/0

a
ik
(g!g

"
)k@p#E

i
(h

"
) . (2.5.12)

Here N5p52 is an integer which implies the coalescence of p eigenvectors of H as hPh
"
.

Usually, h
"
gets complex value and, consequently, the absolute value of the complex scaling factor

g"exp(ih) is not equal to unity, i.e. DgDO1. For a computational method to calculate the branch
points h

"
for complex-scaled Hamiltonian matrices see Moiseyev and Certain in Ref. [73]. In

Fig. 15 the complex eigenvalues of a finite Hamiltonian matrix for 1S resonance of Helium as
a function of the complex-scaling parameter g are presented [72], showing a branch point in the
complex “energy” plane at Dg

"
D"1.0837, cosDh

"
D"!0.996432.

2.6. The complex analog to the variational principle: ¹he c-variational principle

The complex analog to the variational principle provides the formal justification to the use of
computational techniques that originally were developed for bound states in the calculation of the
resonance position and widths by the complex coordinate method.

As discussed in Section 2.6 one can assume that the eigenfunctions of HK (h) form a complete
c-normalizable (see Section 2.4) set. In such a case it is easy to verify that the Rayleigh quotient

EM h"(/DHK hD/)/(/D/) (2.6.1)
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Fig. 15. 0-trajectory energy spectrum of the complex scaled Hamiltonian of helium which was calculated with 36
Hylleeraas-type basis functions. The black dot denotes the branch point in which the spectrum of the 36]36
Hamiltonian matrix is incomplete.

provides a stationary approximation to the true complex eigenvalue Eh
k
when / is a c-normalizable

(i.e. (/D/)"1) approximation that is close to the eigenfunction of HK h, t
k
; that is,

/"t
k
#­(e) implies Eh"Eh

k
#­(e2) . (2.6.2)

This complex variational principle [63] is, however, a stationary principle rather than an upper or
lower bound for either the real or imaginary part of the complex eigenvalue. As noted above, even
this stationary property fails if the eigenfunctions are not c-normalizable (i.e. c-normalization
implies that (t

k
Dt

k
)O0 for any value of k).

¸inear c-variational calculations. Let us expand the trial functions / by N orthonormal basis
functions, Ms

i
, i"1,2,NN; that is,

D/T"
N
+
j/1

CR
j
s
j
,

S/D"
N
+
i/1

CL
i
s
i
.

(2.6.3)

By substituting Eq. (2.6.3) into Eq. (2.6.1), one obtains

+
i, j

CL
i
CR

j
(H

ij
(h)!EM d

ij
)"0 , (2.6.4)

where

H
ij
(h)"Ss

i
DHK hDsjT . (2.6.5)
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On the basis of the c-variational principle given in Eqs. (2.6.1) and (2.6.2) and proved by Moiseyev
et al. [63], we require that

­EM /­CL
i
"0 for i"1, 2,2,N . (2.6.6)

Consequently,

N
+
j/1

CR
j
(H

ij
(h)!EM d

ij
)"0 (2.6.7)

or

H(h)CR"EM CR . (2.6.8)

Here we proved that the solutions of the matrix eigenvalue problem are stationary solutions in the
complex variational space, and as NPR the exact solution of the time-independent complex-
scaled Schrödinger equation would be obtained. This theorem is the ground for the c-variational
calculations by which the autoionization, predissociation and other type resonance positions and
widths (inverse lifetimes) were obtained. For the generalized variational theorem (not necessarily
linear variational space) see Moiseyev in Ref. [74].

2.7. The complex analog to the hypervirial theorem

From the turn-over rule Eq. (2.5.5) for the complex-scaled Hamiltonian, it follows immediately
that commutators of HK h and any given operator KK have vanishing c-expectation values in any
eigenstate t

k
,

(t
k
D[HK h, KK ]tk

)"0 . (2.7.1)

This complex analog to the hypervirial theorem [63] holds for a wide class of operators KK , whether
hermitian or not.

In particular, if KK is chosen to be r )e (or a sum of such terms in a many-particle system), and if
the potential » is a homogeneous function of coordinates of degree m, Eq. (2.7.1) reduces to the
complex virial theorem (KK h is the kinetic energy operator)

(t
k
DD¹hDtk

)"(m/2)(t
k
D»K hDtk

) (2.7.2)

relating the (complex) kinetic and potential “energies”. For example, when atomic autoionizing
resonances are studied then m"1(40). For alternative proofs of the complex analog to the virial
theorem see Froelich and Brandas [75], Wingler and Yarris [76], and Moiseyev [77].

2.8. Cusps, h trajectories and complex-analog Hellmann—Feynman theorem

The Hellmann—Feynman theorem [78] can be extended to the complex-scaled non-hermitian
Hamiltonians [63]. Suppose U depends on a variational parameter C

i
(e.g. C can be taken as the

linear variational parameters as described in Section 2.6). Variationally optimal values of these
parameters must satisfy the relation

­EM /­C
i
"0, i"1, 2,2,N , (2.8.1)
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where

EM "
(/DHK hD/)

(/D/)
(2.8.2)

and Hh contains an embedded parameter f,

Hh"Hh(f) . (2.8.3)

For example, f can be the scaling factor, g"exp(ih), or a physical parameter such as a nuclear
charge, intramolecular distance in the Born—Oppenheimer Hamiltonian, etc.

However, for c-normalized / (i.e. (/D/)"1),

dEM
df

"A/K
­Hh
­f K/B#

M
+
j/1
A

­EM
­C

j
BA

­C
j

­f B . (2.8.4)

Thus, if / is variationally optimal for any given value of f Eqs. (2.3.1) and (2.6.6) is satisfied and
therefore Eq. (2.8.4) reduces to

dEM /df"A/K
­Hh
­f K/B . (2.8.4a)

This is the complex form of the Hellmann—Feynman theorem. When f"exp (ih) the requirement of
dEM /dh"0 (the resonance solution satisfies this condition following the Balslev—Combes theorem)
leads to another derivation of the virial theorem Eq. (2.8.2). Within the framework of the finite
basis set approximation (C are the linear variational parameters) the resonance stationary condi-
tion

K
dEM
dh Kh015"0 (2.8.5)

(f,h in Eq. (2.8.4)) leads to an iterative procedure for calculating the resonances:

Hh"e~2*hT#Vh, (Hh)ij"Ss
i
DH(xe*h)Ds

j
T

HhCR
k
"EM

k
CR

k
, H 5hCL

k
"EM

k
CL

k
, (2.8.5a)

e~2*h"
(CL

k
)5(­Vh/­h)CR

k
2i(CL

k
)5TCR

k

. (2.8.6)

Note that following the Cauchy—Reimann conditions h
015

for which Eqs. (2.8.5) and (2.8.6) are
satisfied will usually get a complex value. Real (h

015
) should satisfy the conditions discussed in

Section 2.3. The Im(h
015

) can get either negative or positive values, that is, the absolute value of the
complex-scaling parameter, g"exp(ih

015
), can be either smaller or larger than unity. For atomic

coulombic potentials Eq. (2.8.5) reduces to the c-virial theorem. Moiseyev, Certain and Weinhold
used this iterative algorithm for calculating the autoionization resonances of Helium [63].
Moiseyev and Corcoran [79] succeeded to avoid numerical difficulties in the first studied molecu-
lar autoionization resonances in H~

2
and H

2
due to the fact that Im h

015
was found to be negative in

their calculations.
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Cusps and h-trajectories. Doolen et al. [80] proposed a graphical method of solving Eq. (2.8.4)
(known as h-trajectory), in which EM (h) is plotted as function of Re(h), holding Im(h) fixed. The
stationary points along the trajectories which provide the minimal (not necessarily zero value) of
DdEM /dhD have been assumed to correspond to resonances [81]. Moiseyev et al. [82] proved that the
stationary solution where dEM /dh"0 at h"h

015
is associated with a cusp in h-trajectory plot. The

proof is as follows: in the neighborhood of a stationary point the complex energy, EM , can be
expanded in powers of (g!g

015
), (Puiseux expansion). Where the first two terms are

EM "E
0
#a(g!g

015
)k#2 (2.8.8)

g"e*h"ae*hR, g
015

"e*h015"a
015

e*h(0)R
h"h

R
#ih

I
, h

015
"h(0)

R
#ih(0)

I
a"e~hI, a

015
"e~h(0)I

(2.8.9)

and k is a positive rational number.
For small enough (g!g

0
) along the h-trajectory

g"a
015

e*hR (2.8.10)

and, therefore, we can write

g!g
015

"ig
015

x , (2.8.11)

where

x"h
R
!h(0)

R
. (2.8.12)

Consequently, for x50 (i.e. approaching the cusp from “above”)

EM
`
"E

0
#a(ig

015
)kDxDk#2 (2.8.13)

while, for x40 (i.e. approaching the cusp from “below”)

x"!DxD"DxDe*n (2.8.14)

and

EM
~
"E

0
#a(ig

015
)kDxDke*nk2 . (2.8.15)

One thus sees that a cusp exists between the two branches EM
`

and EM
~

at the stationary point, h"h
015

,
with a cusp angle pk.

A smooth curve (cusp angle"n) will be observed at the stationary point when k is an odd
integer (3, 5, 7,2).

A schematic representation of such an example is given in Fig. 16a, where it is seen that the
h
R
-trajectory “slows down” at the stationary point, but yet there is no cusp. It should be

remembered, however, that the h
R
-trajectories for non optimum Dg

015
D (i.e. non-optimal value of

Im(h
015

)) are smooth also. This case (i.e. no cusp) has been observed numerically by McCurdy [83]
in calculations of shape-type resonances of the v"r2 exp (!0.61r) potential.

A zero cusp angle will be observed at the stationary point when k is an even integer (2, 4, 6,2).
This case which is shown schematically in Fig. 16b is the most common case. For example, see the
zero-angle cusps obtained in the calculations of H

2
(1pu)2 and He(2s)2 resonances [79,84].
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Fig. 16. h
R

trajectory when a is held fixed at a"a
015

. The arrows show the motion of complex “energies” as h is varied.
The open circles denote the stationary solutions that are obtained from g"h

R
"h(0)

R
, (a) k"3, 5, 7,2 (b) k"2, 4, 6,2

(c) k"3/2, 7/22.

An interesting case occurs for rational k"n/m'1, where n and m are coprime, since here the
cusp angle is neither zero nor n. A fractional n is the result of the coalescence of at least
m eigenvalues (and also the corresponding eigenvectors!) of the complex Hamiltonian matrix at the
stationary point h"h

015
. As discussed in Section 2.5, EM (h

015
) in such a case is a defective eigenvalue.

This case which is shown schematically in Fig. 16c, for k"3
2
, apparently has not been observed

so far in resonance calculations. Presumably, this is due to the very special conditions at which
a defective eigenvalue is obtained.

This cusp conditions has been used also by Peskin and Moiseyev [85] for calculating the optimal
scattering transition probability amplitude, ¹

4#!55
(h). The optimal condition

K
­¹

4#!55
­h Kh015"0 (2.8.16)

has been found to be the key point in the successful application of the complex-coordinate
scattering theory (Section 3) to long-range potentials.

2.9. The hermitian representation of the complex coordinate method:
ºpper and lower bounds to the resonance positions and widths

The c-variational principle presented in Section 2.6 is a stationary principle rather than an upper
or lower bound for either the real or imaginary part of the complex eigenvalue. On the basis of the
hermitian representation of the complex coordinate method developed by Moiseyev [86], it has
been proved that

DE(exact)!EM D5j , (2.9.1)

where j2 is the lowest real and positive eigenvalue of the complex, yet hermitian, operator HK 2

H2(EM , EM *)/"j2/ (2.9.2)

H2,(HK h!EM )*(HK h!EM ) (2.9.3)

264 N. Moiseyev / Physics Reports 302 (1998) 211—293



and

EM ,eN!(i/2)CM . (2.9.4)

If / is a trial given function, then by using the Hellman—Feynman theorem, one can show that the
minimal expectation value, S/DH2D/T/S/D/T, is obtained for

EM "S/DHK hD/T/S/D/T . (2.9.5)

By carrying out an iterative calculation, EM as obtained from Eq. (2.9.5) is substituted in Eq. (2.9.2)
to get a new estimate for /. Here we assume that the ground state of the hermitian operatorH2 can
be accurately obtained from numerical computations (see, for example, Refs. [64—66,87—89]).

Eq. (2.9.1) can be used to obtain an error estimate of EM obtained from c-variational calculations:

EM "
(/DHhD/)

(/D/)
,

|/DHhD/}
|/D/}

. (2.9.6)

Note that in Eq. (2.9.6) the c-product is used rather than the scaler product which has been used in
Eq. (2.9.5). In such a case by combining Eq. (2.9.1) with the bounds to resonance eigenvalues
evaluated by Davidson et al. [90] it is obtained that E (exact) is embedded in an annular ring centered
at EM , where the inner and outer radii are, respectively, the lowest eigenvalue of H2(EM ,EM *) and the
complex-variance of H2(EM , EM *).

Dp
C
D4DE(exact)!EM D4j (2.9.7)

and

Dp
C
D4p

H
DS/D/TD1@2 (2.9.8)

provided DS/Dt(exact)TD2'1
2
, and S/D/T"1. p

C
and p

H
are, respectively, the complex and

Hilbert-space variances given by [90—92]

p2
C
"

(/D(Hh!EM )2D/)
(/D/)

, (2.9.9)

p2
H
"

S/DH2(EM , EM *)D/T
S/D/T

. (2.9.10)

Note that / is a complex normalized function (/D/)"1, and therefore S/D/T'1.
An illustrative numerical example for the model Hamiltonian

H"!1
2
d2/dx2#(x2/2!0.8)e~0.1x2

#0.8 (2.9.11)

is presented in Fig. 17.
Proof of Eq. (2.9.1): DE(exact)!EM D5j

HK ht"E(exact)t (2.9.12)

H2(EM , EM *) is an hermitian operator and j2 is its lowest, real, and positive eigenvalue. Therefore,
following the conventional variational principle:

StDH2(EM , EM *)DtT
StDtT

5j2 . (2.9.13)

N. Moiseyev / Physics Reports 302 (1998) 211—293 265



Fig. 17. Bounds of the estimate complex-coordinate resonance eigenvalues EM , obtained for N even-parity harmonic
oscillator basis functions. EM are indicated by the signs “#” and the exact value E by a dot. The dashed areas give an
optimal estimate of the resonance location. The upper and lower bounds of the estimate shape-type complex-coordinate
resonance eigenvalue, obtained for N"2, 3, 4 even-parity harmonic oscillator basis functions [64].

Since,

StDH2DtT"SsDsT , (2.9.14)

where

s"(Hh!EM )t"(E(exact)!EM )t , (2.9.15)

therefore,

StDH2DtT"DE(exact)!EM D2StDtT . (2.9.16)

By substituting Eq. (2.9.16) into Eq. (2.9.13), one gets that

DE(exact)!EM D25j2 . (2.9.17)

Proof of Eq. (2.9.7): DE(exact)!EM D4Dp
C
D

Here we shall use the Lanczos recursion procedure [93] to construct a three-diagonal complex-
scaled Hamiltonian matrix,

Hh"A
a
0

b
0

b
0

a
1

b
1

b
1

a
2

b
2

} } }B , (2.9.18)

where s
0
,/ is a given wave function which describes well enough the exact eigenfunction

t(exact), and

a
0
,EM "(/DHK hD/) , (2.9.19)
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b
0
,p2

C
"(s

1
Ds

1
)1@2 , (2.9.20)

s
1
"(HK h!a

0
)/

0
. (2.9.21)

Similarly for n51,

a
n
"(s

n
DHK hDsn

) , (2.9.22)

s
n`1

"(HK h!a
n
)s

n
!b

n~1
s
n~1

, (2.9.23)

b
n
"(s

n`1
Ds

n`1
)1@2 . (2.9.24)

By diagonalizing the three-diagonal Hamiltonian matrix Hh the exact eigenfunction is obtained

t(exact)"
=
+
n/0

C
n
s
n
(x) (2.9.25)

where C is an eigenvector of Hh,

HhC"E(exact)C (2.9.26)

and s
n

are the Lanczos recursive functions

(s
n
Ds

n{
)"d

n, n{
(2.9.27)

as defined in Eq. (2.9.23).
By substituting Eq. (2.9.18) into Eq. (2.9.26), one gets

a
0
C

0
#b

0
C

1
"EM (exact)C

0
. (2.9.28)

Since a
0
"EM (see Eq. (2.9.19)) and b

0
"p2

C
(Eq. (2.9.20)) then from Eq. (2.9.28) one immediately

obtains that

DE(exact)!EM D2"Dp
C
D2DC

1
/C

0
D2 . (2.9.29)

If s
0
"/ is the dominant function in the Lanczos basis set expansion then DC

0
D2'1

2
,

DC
1
/C

0
D2(1 (2.9.30)

and, consequently,

DE(exact)!EM D24Dp
C
D2 . (2.9.31)

3. Complex scaling of ab initio molecular potential surfaces

When the potential »(x) is known analytically its analytic continuation, »(x exp(ih)), is also
known analytically. The problem is, however, that the molecular potentials are calculated on
a finite grid in the conventional unscaled coordinate space. To overcome this difficulty several
numerical procedures were proposed (see Section 2.2 in Ref. [94]). Moiseyev and Corcoran [95]
studied the H~

2
and excited H

2
autoionization resonances by using an analytic continuation of the

Hamiltonian matrix elements to the complex plane rather than of the Hamiltonian operator.
Therefore, one can fit an ab initio potential to a given order polynomial, calculate analytically the
potential matrix elements as function of the basis set parameters (such as box-size or scale
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parameter), and finally carry out analytic continuation of the potential matrix elements into the
complex plane. This approach was used by Lipkin and coworkers [96] in their study of resonances
for piecewise potentials and more recently in the study of certain atmospheric conditions by which
downwind at the mountains is formed [97]. A preferable method, however, is the one for which
there is no need to fit the ab initio potential to any finite order polynomial or to any other analytic
form in order to calculate the complex-scaled potential energy matrix elements. Lipkin et al. [98]
suggested to carry out similarity transformation of the hermitian Hamiltonian matrix where the
transformation matrix is an overlap between the complex scaled and the unsealed basis functions.
More recently, Ryaboy and Moiseyev [94] used another approach. The y calculated the HCO and
DCO predissociation resonances by carry out numerical integration along the real axis when the
basis functions were scaled by exp(!ih) whereas the ab initio potential remained unscaled. All the
methods described above, use basis functions in the reaction coordinate which is scaled by
a complex factor.

Starting from the theoretical work of Moiseyev and Hirschfelder [13] Mandelshtam and
Moiseyev [99] developed a method which avoid the need of using the basis set approach along the
reaction coordinate. Namely the complex-scaled potential can be generated on the same grid as

»(x
n
exp(ih))"+

k

S
n, k

»(x
k
) , (3.1)

where the matrix S represents the complex-scaling operator (conventional scaling or smooth
exterior scaling) which is given by

SK "e~*h@2ehWK , (3.2)

where ¼K is given by

¼K e**f1@2(x)(»@»x)f1@2(x)+ , (3.3)

and f (x) is a smooth function of x. When f (x)"x the x coordinate is rotated by h into the complex
plane as in the conventional complex scaling [so-called the CCM (complex coordinate method)].
To illustrate how the complex-scaling operator SK can be defined on a grid we shall consider here the
case of f (x)"x. In such a case ¼K is a hermitian unbounded operator,

¼K "(xPK
x
#PK

x
x)/2 , (3.4)

where P
x
"i ­/­x is identical with the momentum operator.

The difficulty to carry out such a transformation can be illustrated by analyzing the Fourier
transform of »(x

n
):

»(x)"+
n

C
n
exp(2pnxi/¸) , (3.5)

where ¸ is the size of the grid. From the first glance the complex-scaled potential can simply be
given by

»(xe*h)"
`=
+

n/~=

C
n
exp(2pnx exp(ih)i/¸) , (3.6)
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However, this expansion will not be stable because of the exponentially diverging terms when
nxP#R.

The choice of basis functions is crucial when a finite basis set approach is taken to represent the
complex scaling operator SK "exp(h¼K ). It is easy to see it when SK is introduced by using the spectral
representation of ¼K . That is,

S
n, k

"e~*h@2
N
+
*/1

ehjiC(n)*
i

C(k)
i

, (3.7)

where C
i
and j

i
are, respectively, the eigenvectors and eigenvalues of the matrix W which represent

¼K .
For example, if one uses sin(pnx/¸) basis functions (i.e. particle-in-a-box basis functions)

infinitely many terms should be taken to correctly describe eigenfunctions of ¼K since the frequency
of their oscillations is continuously changing from infinity (at small x) to zero (at large x). An
alternative seemingly more stable expansion could be obtained if local basis functions are used.

Such local basis functions are the sinc-DVR basis functions (see Refs. [8—10,100—102]) defined as

/
n
(x)"(1/JD) sinc[p(x/D!n)] . (3.8)

In this basis the off-diagonal matrix elements of ¼K can be approximated as

¼
n, m

"S/
n
D¼K D/

m
T+(!1)(n~m)

i(n#m)
(n!m)

, (3.9)

and the diagonal matrix elements are

¼
n, n

"0 .

Even though the sinc-DVR basis functions are an approximation for the Dirac d-functions,

d(x!nD)+/
n
(x) , (3.10)

they are not quite localized in space leading to a very slow decay of the off-diagonal matrix
elements of ¼K . On the other hand, the operator ¼K is local and therefore its grid representation
could be made local by damping the elements ¼

n, m
with large Dn!mD,

¼
n, m

+(!1)(n~m)
i(n#m)
(n!m)

e~p(n~m)2 . (3.11)

Such an ansatz which has been checked numerically [99] can also be understood by analyzing the
relation:

[¼K f ](x)"Pdx@SxD¼K Dx@Tf (x@)+Pdx@SxD¼K Dx@Te~(p@D)(x~x{)2f (x@) . (3.12)

For a sufficiently small p this is a good approximation due to the local nature of the operator ¼K .
The Mandelshtam—Moiseyev method [99] has been used by Narevicius and Moiseyev [103] in

the calculations of thousands of broad and overlapping ArHCl resonances for 3D potential energy
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surface which has been calculated on a finite grid. In a very similar way, one can use the
smooth-exterior scaling approach. It should be stressed that it is sufficient to scale the reaction
coordinate and there is no need to scale by a complex factor all degrees of freedom. This method
enables the study of the dynamics and resonance phenomena in polyatomic molecular systems for
which the potential energy surface is available only on a grid.

4. The complex coordinate scattering theory: From complex-scaled Hamiltonians
to partial-widths and cross sections

4.1. General discussion

The complex coordinate time-independent scattering theory [104—112] enables one to calculate
cross sections, partial widths and state-to-state transition probabilities even for time-dependent
Hamiltonians.

There are three key points in the derivation of the complex-coordinate scattering theory:
(1) The state-to-state, /

i
P/

f
, transition probability amplitude matrix elements,

¹"S/
f
D»(1#GK »)D/

i
T, are calculated when the integration is carried out along a complex

contour in the coordinate space. The complex spatial contour is obtained by scaling the cartesian
coordinates by a complex factor exp(ih). Scaling the “reaction coordinate” only by a complex
factor, where the other coordinates remain unscaled, has numerical advantages. The “reaction
coordinate” may be considered as the distance between the center of mass of the scattered particle
and the center of mass of the target.

(2) The Green operator, GK , is defined as (E!Hh)~1 when Hh is the complex-scaled Hamiltonian
of the system. Consequently, the energy contour of integration becomes complex when GK in the
spectral representation is calculated. Since this is a crucial point in the derivation of the complex
coordinate scattering method, we shall discuss it with some more details:

The Green operator GK (E) provides the probability amplitude to get from x to x@ at a given energy
E. GK in the spectral representation is given by

G
E
(x@, x)"PdE@o(E@)

t
E{
(x@)t

E{
(x)

E!E@
, (4.1.1)

where t
E{

are the eigenfunctions of the full Hamiltonian and o(E@) is the density of states. As one
can see from Eq. (4.1.1) G

E
has a branch cut along the real energy axis. Consequently, large

numerical errors are expected in a brute force application of Eq. (4.1.1), due to the vanishing of
the energy denominator. This is a very serious technical problem, which can be avoided by rotating
the energy contour of integration from the real axis into the complex plane. The energy contour of
integration becomes complex when the relevant spatial contour is rotated into the complex plane,
as discussed in Sections 1 and 2. The wave functions t

E{
and the energy E@ in Eq. (4.1.1) are

replaced by the eigenfunctions and eigenvalues of the complex-scaled Hamiltonian Hh.
The eigenfunctions of the complex-scaled Hamiltonian are associated with the discrete resonance
spectrum, E3%4

n
"e

n
!(i/2)C

n
, where t3%4

n
; n"1, 2,2 are square integrable functions, and with
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the rotating continua, t
Ejh

where Ejh"e exp(!2ih)#E5)3%4
j

, e is varied from 0 to R and
E5)3%4
j

; j"1, 2,2 are the (real) threshold energies. The complex-scaled Green operator in the
spectral representation is given by (see Refs. [2—6,105—109], Rescigno and Reinhardt [113],
Johnson and Reinhardt [117], Rescigno and McCurdy [118], and Froelich and coworkers [119]),

Gh(E)" +
n(3%4)

t3%4
n

(x@)t3%4
n

(x)
E!E3%4

n

# +
j(5)3%4)

PdEjho(E(j)h )
t

E(j)h
(x@)t

E(j)h
(x)

E!E(j)h
. (4.1.2)

Here we assume that the wave functions are complex only resulting from the complex scaling.
When the eigenfunctions of the complex-scaled Hamiltonian are variationally obtained with
complex basis functions one should use the left and the right eigenstates of Hh as defined in
Section 2. o(E(j)h ) in Eq. (4.1.2) is the density of states. Due to the complex scaling the resonances are
isolated and separated from the other states in the continuum. Consequently, o(E(j)h ) does NOT
depend on the potential interaction and depends ONLY on the dimension of the studied problem.
For a d-dimensional continuum o is proportional to e(d@2~1) where e,DEjh!E5)3%4

j
D. When box

normalization is used the integrals in Eq. (4.1.1) and in Eq. (4.1.2) are replaced by summations over
the discrete quasi-continuum and, respectively, o(E@) and o(E(j)h ) are replaced by 1.

(3) The transition probability amplitude, ¹(E), gets complex values and is in principle h-
independent. In the numerical calculations when finite grid or finite basis set methods are used ¹(E)
is h-dependent. The optimal values of ¹ are associated with the stationary solutions for which
d¹/dh"0. Since ¹ is complex h should be allowed to get complex values and to be optimized to
satisfy the two Cauchy—Riemann conditions:

K
­Re¹(h)
­Re h Kh015"0 and K

­Im¹(h)
­Re h Kh015

or

K
­Re¹(h)
­Im (h) Kh015"0 and K

­Im¹(h)
­Im h Kh015"0 . (4.1.3)

The fact that the optimal rotational angle h
015

may get complex values can be introduced as the
result of using a complex scaling factor

g"e*h"ae*h{ , (4.1.4)

where a and h@ are real and a is not necessarily equal to one. The optimal values of a and h@ are those
for which ­¹/­a"0 and ­¹/­h@"0. Peskin and Moiseyev [111] have shown that the optimiza-
tion of the complex scaling factor n (i.e. h@"h

015
, a"a

015
) enables the application of the complex

coordinate scattering theory to long range potentials, and avoids the serious singularities and
convergence problems due to the exponential divergence of the complex scaled “in”-asymptote D/

i
T

or “out”-asymptote S/
f
D which were explored by Rescigno and Reinhardt [111], Baumel et al.

[114], Johnson and Reinhardt [115], by Rescigno and McCurdy [116], and by McCurdy et al.
[120].
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4.2. Time-independent Hamiltonians

The probability to get from the initial state /
i
to the final one /

f
is given by the S-matrix element,

P
f0i

"DS
f, i

D2 . (4.2.1)

In the case of a one-dimensional “reaction coordinate” the scattering matrix is given by

S
f, i

"1!¹
f, i

(4.2.2)

if the scattering process is an elastic one and if the sign of the wave vector in the reaction coordinate
is unchanged during the collision; i.e. k

i
"k

f
. In non-elastic scattering and in elastic scattering

when k
i
"!k

f
(as in the case of atom (molecule)/surface scattering),

S
f, i

"¹
f, i

, (4.2.3)

¹
f, i

is the energy normalized complex-scaled ¹ matrix element

¹
f, i

(E)"(1/+)|/
f
D»#»GK

E
»D/

i
} , (4.2.4)

where »K (x@, r)"» describes the interaction potential of the scattered particle and the target; MxN
are the internal (or target) coordinates; r is the reaction coordinate and GK

E
"(E!H)~1. The

Hamiltonian is given by

HK "HK
0
#»K (4.2.5)

where

HK
0
"!(+2/2k)D

r
#hK (x) , (4.2.6)

D
r
stands for the Laplacian operator with respect to the coordinates of the scattered particle and

hK (x) is the Hamiltonian of the target. In this step of the representation we will carry out an
analytical continuation of H,»,/

i
, /

f
and H

0
and GK by scaling the reaction coordinate by

a complex factor. That is,

r"r@e*h (4.2.9)

where r@ gets real values only and,

»h"»(r@e*h, x) ,

Hh"HK (r@e*h, x) ,

GK h"1/(E!HK h) .

(4.2.10)

The energy normalized initial and final states are eigenfunctions of the complex-scaled H
0

Hamil-
tonian

D/
i
}"S

k
+2Dk

i
De*h

e~*k*%*hr{ ) s
mi
(x) (4.2.11)
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and

|/
f
D"S

k
+2Dk

f
De~*h

e*kf%*hr{ ) s*
mf

(x) , (4.2.12)

where s
m

are given by

hK (x)s
mi
(x)"E5)3%4

mi
s
mi
(x) ,

hK (x)s
mf

(x)"E5)3%4
mf

s
mf

(x) .
(4.2.13)

If the reaction coordinate is radial, !2i sin(kehr@) replace the exp(!ike*hr@) in Eqs. (4.2.11)
and (4.2.12). The initial and final wave vectors are defined such that the total energy of the
“particle—target” systems is conserved:

E"

(+k
i
)2

2k
#E5)3%4

mi
"

(+k
f
)2

2k
#E5)3%4

mf
. (4.2.14)

The right and left eigenfunctions of the complex scaled Hamiltonian can be obtained by the
diagonalization of the Hamiltonian matrix Hh when Ms

m
N are used as a basis function:

WR, h
n

"+
m

/R, h
m, n

(r@)s
m
(x) ,

WL, h
n

"+
m

/L, h
m, n

(r@)s
m
(x)

(4.2.15)

when

Hh/R, h
n

"Eh
n
/R, h

n
,

H 5h/L, h
n

"Eh
n
/L, h
n

,

[Hh]m{, m
"Ss

m{
DHK (x, r@e*h)Ds

m
T .

(4.2.16)

By using the complex eigenvalues and eigenfunctions given in Eqs. (4.2.15) and (4.2.16) to
construct the complex-scaled Green operator (see Eq. (4.1.2)), the complex coordinate ¹-matrix
element is obtained (See Eq. (4.2.4))

¹h
f, i

(E)"
k

+2JDk
i
DDk

f
DPPdr@dMxNs*

mf
(x)e~*kfr{»(r@, x)s

mi
(x)e~*kir{

# e*h+
n
(E!Eh

n
)~1]CPPdr@dxs*

mf
(x)e~*kf%*hr{»(e*hr@, x)tR, h

n
(r@, x)D

]CPPdr@dxs
mi
(x)e~*k*%*hr{»(e*hr@, x)tL, h

n
(r@, x)D , (4.2.17)

where the summation +
n

is over all resonances and rotated continua solutions (which are
associated with a discrete spectrum due to the use of finite number of basis functions).

Since the integral in the first term is unaffected by the value of h (provided »(r@,x) is an analytical
function) we choose here to carry this integral along the real r"r@-axis.
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Note by passing that Eq. (4.2.17) can be simplified if the exterior scaling procedure rather than
the commonly used complex scaling is used. If r"r@ when r@4r

0
; r"(r@!r

0
)e*h#r

0
when r@'r

0
and »(r@'r

0
, x)"0, then the initial and final states and the interaction potential » remain

unscaled. The only complex functions used in this case in Eq. (4.2.17) are the left and the right
eigenfunctions of the exterior-complex-scaled Hamiltonian Hh, and the only complex numbers in
Eq. (4.2.17) are the corresponding complex eigenvalues of Hh.

Eq. (4.2.17) provides an expression for the ¹-matrix element that does not suffer from the
numerical disadvantages of ¹(h"0): The continuous spectrum of HK is discretizised and the
complex eigenvalues, Eh

n
, avoid the vanishing of the energy denominators in the Green operator (see

Eq. (4.1.1)), such that the energy integral in Eq. (4.1.2) for summation in Eq. (4.2.17) converges.
Another benefit is the inclusion of the resonance states (poles of the S-matrix) into the spectrum of
HK , where one resonance eigenstate represents a large number of scattering eigenstates of the
non-scaled Hamiltonian. The price we pay for these benefits is the need to confirm the stability of
the calculated complex ¹-matrix in terms of the size of the basis set and the need to look for the
optimal value of the scaling parameter g"exp(ih), for which

K
­¹h

f, i
­Re(h)Kh015

"0 and K
­¹h

f, i
­Im(h)Kh015"0 . (4.2.18)

The complex coordinate method for time-independent Hamiltonians has been successfully used
to calculate the specular and non-specular intensities of gas atom and molecules scattered from
corrugated and smooth solid surfaces. See the remarkable agreement between the experimental
results obtained for helium diffraction from Cu(115) which is shown in Fig. 18a and the theoretical
(no fitting parameters) results presented in Fig. 18b which we obtained by using Eq. (4.2.30) for
calculating the cross sections. The method is suitable also for the calculations of state-to-state
transition probabilities in chemical reactions resulting from reactive scattering experiments.

4.2.1. The complex coordinate scattering theory and the Kohn variational principle
On the basis of the c-variational principle as proved in Section 2, the eigenfunctions of the

complex-scaled Hamiltonian can be expanded in terms of N square integrable basis functions, /
n
,

Dtha}"

N
+
n/1

Ch
n, aUn

, |thaD"
N
+
n/1

Dh
n, aUn

(4.2.19)

The linear variational parameters C and D are, respectively, the right and left eigenvectors of the
complex-scaled Hamiltonian matrix Hh,

HhC ha"EhaC ha ,

H 5hDha"EhaDha ,
(4.2.20)

where

[Hhh]n{, n"SU
n{
DHK (r@e*h)DU

n
T .

Since the Hamiltonian is non-hermitian (due to the complex scaling) the c-product should be
used as an inner product rather than the usual scalar product. Consequently,

D5C"1 . (4.2.21)
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Fig. 18. (a) The experimental non-specular intensity as measured by Perreau and Lapujoulade [140], in scattering of He
from Cu(115) corrugated non-symmetrical surface. (b) The theoretical transition probabilities as a function of the incident
angle c as calculated by Peskin and Moiseyev [109] from Eq. (4.2.30) in the text.

The spectral representation of the Green operator in terms of the variational eigenfunctions of the
complex-scaled Hamiltonian matrix

G
E
"+

a

Dtha} |thaD
(E!Eha)

(4.2.22)

is valid if and only if the eigenfunctions of HK h form a complete set. As discussed in Section 2, for any
given finite number of basis functions, N, one can always find well-defined complex values of h for
which the spectrum is incomplete. In such cases, the number of the non-linear dependent (i.e.
“orthogonal”) eigenvectors of Hh is smaller than N. Since under very small variation of h the
spectrum becomes complete this possibility can be ignored (see the relevant discussion on the
generalized inner product in Section 2).

By substituting Eqs. (4.2.19), (4.2.20), (4.2.21) and (4.2.22) into Eq. (4.2.4), one can get

¹"S/
f
D»K D/

i
T#e`2*h(m

f
)5(CA~1D5)m

i
, (4.2.23)

where A is defined as

Aa, a{"(E!Eha)da, a{ (4.2.24)
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and

[m
f
]
n
"|/h

f
D»K (r@e*h)DU

n
} ,

[m
i
]
n
"|U

n
DVK (r@e*h)D/h

i
} .

(4.2.25)

Since

A"D5[E1!H(h)]C (4.2.26)

then, by using Eqs. (4.2.22), (4.2.23) and (4.2.26), we get

¹"S/
f
D»K D/

i
T#e`2*h(m

f
)5[E1!H(h)]~1m

i
. (4.2.27)

Let us denote the matrix elements of

[E1!H(h)]~1 (4.2.28)

by

M[E1!H(h)]~1N
n, n{

"[|U
n
DE!HK (r@e*h)DU

n{
}]~1 . (4.2.29)

Then, by substituting Eq. (4.2.29) into Eq. (4.2.28) we obtain

¹"S/
f
D»K D/

i
T

#e2*h +
n, n{

|/h
f
D»K (r@e*h)DU

n
}[|U

n
DE!HK (r@e*h)DU

n{
}]~1|U

n{
D»K (r@e*h)D/h

i
} . (4.2.30)

This is exactly the result obtained from the Kohn ¹-matrix variational principle by Nuttall and
Cohen [104]. Here we followed Peskin and Moiseyev’s [110] proof that the complex coordinate
scattering theory gives the Kohn variational solution for the ¹ matrix when the “reaction”
coordinate is analytically continued into the complex plane. Eq. (4.2.30) can be obtained from the
following expression:

¹"S/
f
D»K D/

i
T#e2*h[|/h

f
D»K (r@e*h)Ds}

#|s@D»K (r@e*h)D/h
i
}!|s@DE!HK (r@e*h)Ds}] , (4.2.31)

where s and s@ are square integrable functions (note that the c-product is used rather than the
“usual” inner product, as discussed in Section 2) in the space spanned by the MU

n
; n"1,2NN basis

functions and are written as

s"
N
+
n/1

a
n
U

n
, s@"

N
+
n/1

b
n
U

n
. (4.2.32)

By substituting s and s@ in Eq. (4.2.31) and by the requirement of

­¹/­a
n
"0, ­¹/­b

n
"0; n"1,2, N , (4.2.33)

one can get that

a
n
"

N
+
j/1

[|U
n
DE!HK hDUj

}]~1|U
j
D»K hD/h

i
} ,

b
n
"

N
+
j/1

[|U
n
DE!HK hDUj

}]~1|/h
f
D»K hDUj

} .
(4.2.34)
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By substituting Eqs. (4.2.32) and (4.2.34) into Eq. (4.2.33) the complex transition probability
amplitude given in Eq. (4.2.30) is obtained.

Another variational basis set method which satisfies the Kohn variational principle was de-
veloped by Miller and coworkers [121,122].

4.3. Resonance scattering: Partial widths

Partial widths represent the probability per unit time of getting a specific reaction product in
a well-defined quantum state in a full scattering or half-collision experiments. The resonance-
scattering-theory enables the calculations of partial widths from the “tail” (i.e. asymptote) of
a single, time-independent, square integrable resonance wave function. This method has been used,
so far, in the calculations of the rotational distribution of a diatom in a specular and non-specular
scattering of the diatom from a solid surface; the rotational distribution of a diatom obtained in
a photodissociation of a van der Waals complex; and of the probability for ionizing an atom or
dissociate a diatom resulting from the absorption of n-photons in the presence of very strong
electromagnetic fields.

Within the framework of the resonance-scattering-theory, as developed by Moiseyev and Peskin
[105], one assumes that the dynamics of the studied system is controlled by a single intermediate
narrow resonance state, and

C
f0i

"D¹h
f, i

(E)D2 , (4.3.1)

where the complex scaled ¹-matrix element is approximately given by

¹h
f, i

(E)"|/h
f
D»h#»hGh(E)»hD/h

i
}

K

|/h
f
D»hDth

R%4
}|th

3%4
D»hD/h

i
}

E!E
3%4

,

(4.3.2)

where

Hhth
3%4
"E

3%4
th

3%4
,

E
3%4
"E

r
!(i/2)C .

(4.3.3)

This approximation holds provided that the contribution of the direct scattering event to the cross
section is small relative to the contribution of the multipole-scattering events (i.e. the »G

E
» terms),

provided that EKE
r
and provided that the resonance is narrow and is located in the complex

energy plane much closer to the real energy axis than the rotating continuum, that is,

2(E
r
!E5)3%4

m
)tan(2h)<C , (4.3.4)

where E5)3%4
m

is the mth threshold energy which is defined as the discrete mth bound state energy of
the HK

0
Hamiltonian given in Eq. (4.2.6).

The assumption made above that the complex-scaled resonance state is the single intermediate
state in the scattering process, implies that here we assume that

/h
i

!RQt

Q th
3%4

tPR

P /h
f

(4.3.5)
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or

|th
3%4

}"(1#Gh(E)»h)D/h
i
} ,

|th
3%4

D"|/h
f
D(»hGh(E)#1) .

(4.3.6)

Eqs. (4.3.5) and (4.3.6), however, cannot be satisfied since /
i
and /

f
are associated with “in” and

“out” going plane wave with a real momentum (+k
i
) and real (+k

f
). From the asymptotic behavior

of the resonance wave function given in Eq. (1.5.2) one can see that Eqs. (4.3.5) and (4.3.6) can be
satisfied if, and only if, (+k

i
) and (+k

f
) will be complex as required in Eq. (1.4.9). Consequently, the

assumption that the dynamics is controlled by a single complex-scaled resonance state lead us to
postulate that in the complex-coordinate resonance scattering theory the complex energy is conserved
and we introduce the complex momentum for the final state which is determined by [105]

(+k(m)
f

)2/2k"E
r
!(i/2)C!E5)3%4

m
. (4.3.7)

From the same initial state several different final states can be obtained. That is,

D/
i
TPG

D/
f
(k(m)

f
)T,D/

m
T ,

D/
f
(k(m{)

f
)T,D/

m{
T ,

D/
f
(k(m{{)

f
)T,D/

m{{
T .

(4.3.8)

From Eqs. (4.3.8), (4.3.1) and (4.3.2) one gets the branching ratio

C
m

C
m{

"K
|/h

m
D»(r@e*h)Dth

3%4
}

|/h
m{

D»(r@e*h)Dth
3%4

}K
2

. (4.3.9)

Eq. (4.3.9) is the expression proposed by Noro and Taylor [123] for the calculation of branching
ratios. We omit here the label “i” from C

f 0i
which is defined in Eq. (4.3.1) (“f ” is associated with

the final complex momentum (+k(m)
f

)) since the derivation of Eq. (4.3.9) from Eq. (4.3.2) shows that
during the scattering process the initial state has been “forgotten”. This is probably true in
a half-collision process when the system is initially prepared in a resonance state.

In the radial case r@3[0,R], |/h(m)D"0 for r@"0 and yet

|/h
m
DPS

k
+2k(m)

f

e~*k(m)
f r{%*h as rPR . (4.3.10)

Therefore, in the radial case

|/h
m
D,/L

m
(re*h)"!2iS

k
+2k(m)

f

sin(k(m)
f

r@e*h) (4.3.11)

and k(m)
f

is defined as in Eq. (4.3.7). Eq. (4.3.9) can be rewritten by carrying out integration by parts
as described by Moiseyev and Peskin in Ref. [105] to provide another formula for the branching
ratio,

C
m

C
m{

" lim
r{?= K

/L
m
(r@e*h)

dUh
m
(r@)

dr
!Uh

m
(r@)

d/L
m
(r@e*h)
dr

/L
m{

(r@e*h)
dUh

m{
(r@)

dr
!Uh

m{
(r@)

d/L
m{

(r@e*h)
dr K

2

(4.3.12)
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/L
m

and /L
m{

are the divergent complex-scaled incoming plane waves (defined in Eq. (4.3.11)) with
a complex momentum defined in Eq. (4.3.7). Uh

m
and Uh

m{
are the right square integrable functions

obtained from the variational solution of the complex-scaled Schrödinger equation and are
associated with resonance complex eigenvalue E

r
!(i/2)C. See Eq. (4.3.3). That is,

th
3%4
"+

m

s
m
(x)Uh

m
(r@) , (4.3.13)

where Ms
m
N are the bound state eigenfunctions (associated with the eigenvalues E5)3%4

m
) of the HK

0
(x)

Hamiltonian given in Eq. (4.2.6). The Moiseyev—Peskin expression [105] for the partial widths
given in Eq. (4.3.12) appears to be more compact (in dimensionality) than the first one
[Noro—Taylor expression [123] given in Eq. (4.3.9)] and thus avoids the need to integrate over the
target coordinates. By noticing that as r@PR

|Uh
m
(r)DPa

m
/L
m
(r@e*h) ,

DUh
m
(r)}Pa

m
/R
m
(r@e*h) ,

(4.3.14)

where /L
m

is defined in Eq. (4.3.10) and /R
m

is defined as

/R
m
(re*h)PS

k
+2k(m)

f

e`*k(m)
f r@e*h as r@PR , (4.3.15)

such that

/L
m
)/R

m
"

k
+2k(m)

f

.

Eq. (4.3.12) is reduced to Peskin—Moiseyev—Lefebvre formula for the branching ratios [124]:

C
m
/C

m{
"Da

m
/a

m{
D2 , (4.3.16)

where Da
m
D2 provides the probability to decay into the open channel m. By taking into consideration

Eq. (4.3.14) and the fact that Uh
m

are energy normalized functions, one can see that Da
m
D2 is the

probability flux of Uh
m
(r@) as r@PR and provides the number of particles at the quantum state

m detected at r"R per unit time per unit area. a
m

can be easily obtained by carrying out an
asymptotic analysis of the resonance wave function,

a
m
" lim

r?=
A

Uh
m
(r@)

/R
m
(r@e*h)B . (4.3.17)

By substituting Eq. (4.3.16), Eq. (4.3.17) into Eq. (4.3.15) the branching ratio as proposed by
Peskin et al. [124] is obtained

C
m

C
(m{)

" lim
r?=

K
(k(m{)

f
)1@2Uh

m
(r)

(k(m)
f

)1@2Uh
m{

(r)
e*(km{

f~k(m)
f)r%*h K

2
(4.3.18)

In this section three different formulas for the branching ratio are given in Eqs. (4.3.9), (4.3.12) and
(4.3.18). As shown here, following Moiseyev and Peskin proof [105], the three formulas are related
to one another in a simple manner. Consequently, in the limit of infinite-basis-set variational
calculations the three formulas should provide the same results for the partial widths. The
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Fig. 19. (a) The experimental rotational distribution of ICL as measured by Lester and co-workers [141], in photodis-
sociation of NeICl. (b) The theoretical rotational distribution of ICL as calculated from the tail of the complex-scaled
square integrable NeICl resonance wave function by Lipkin et al. [19,139], in photodissociation of NeICl.

complex-coordinate-resonance-scattering approach has been successfully used in the calculation of
partial widths in photodissociation of van der Waals molecules. In such experiments the partial
widths provide the rotational distribution of the diatomic molecule obtained by exciting the
vibrational mode of the diatom in the atomic van der Waals complex. In Fig. 19 we show
a comparison between the experimental and the theoretical (obtained by calculating the partial
widths from the asymptotic analysis of a single square integrable complex-scaled resonance wave
function) rotational distribution of ICl which is obtained when NeICl complex is vibrationaly
excited.

4.4. Time-dependent Hamiltonians by the (t, t@) method

Before describing the (t, t@) method and the complex coordinate time-independent scattering
theory for time-dependent Hamiltonians, we should mention the fact that quasi-energy resonance
positions and widths have been calculated by complex-scaling long time before the development of
the (t, t@) method. Reinhardt and coworkers [125], and Howland [126] studied the ac Stark
Hamiltonians in the dipole approximation, k

0
x cos(ut). Chu [127] has extended it to molecular

time-dependent Hamiltonians in the dipole approximation. Moiseyev and Korsch [128] extended
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Fig. 20. The complex eigenvalues of the complex scaled time evolution operator of H`
2

in time periodic field (wavelength
of 329.7 nm and laser intensity of 2.5]1013Wcm~2) as calculated by Moiseyev et al. [142]. The almost degenerated
spirals are the two rotating continua and their ‘rate’ of convergence to the unit circle is h-dependent. The 9 isolated circles
are associated with the multiphoton quasi-energy resonances and are stable to small variation of the scaling angle h.

the work of Chu and Reinhardt to any periodic field. Since the real part of the quasi-energies (eigen
values of the complex-scaled Floquet operator which will be defined later in Eq. (4.4.1)) are defined
modulo of +u, it is more natural to represent them as the eigenvalues of the complex-scaled time
evolution operator, j"exp(!iE

QE
t/+). See, for example, Fig. 20 where the complex eigenvalues of

the time evolution operator are shown for the case where the bound ground electronic
H`

2
potential energy curve is coupled to the repulsive first excited electronic curve via cw laser.

The time-independent scattering theory has been developed for time periodic Hamiltonians by
Peskin and Moiseyev [111]. As they have shown [112], it is possible to extend the time-
independent scattering theory to general time-dependent cases where the Hamiltonians are not
necessarily time periodic. This scattering theory enables the derivation of time-independent
expression for state-to-state transition probabilities.

The time-independent scattering theory for time-dependent Hamiltonians enables one to propa-
gate analytically a given initial state to t"R. For example, the above-threshold-ionization (ATI),
the “breathing” above-threshold-dissociation of Cl~

2
, and the high harmonic generation spectra of

Xe model Hamiltonian were accurately obtained by the time-independent scattering theory which
will be described below [112,129].

The time-independent scattering theory for time-dependent Hamiltonians is based on the
assumption that as time passes a free particle (e.g. an electron or a molecular species) is obtained
[112]. This assumption provides two kinds of limitations on the time-dependent Hamiltonians:

(1) The “bare” (i.e. field-free) atomic or molecular potential should be a non-coulombic potential.
It can be a finite, short- or long-range potential. This is definitely not a serious restriction in the
study of dissociation of molecules where the atom—atom potential interaction decays as R~3 when
R is the distance between the two atoms. Moreover, due to the correlation effect of the inner shell
electrons, the effective potential which describes the interaction of the ionizing electron and the ion
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is often taken as a short-range potential. In the study of multiphoton ionization phenomena in
hydrogenic like atoms the time-independent scattering theory can be used only within the
framework of the cut-off approximation where the potential is finite and »(x'x

0
)"0.

(2) The interaction of the atom/molecule with the time-dependent field, »(x, t), should vanish
as xPR. This condition is satisfied if the acceleration gauge is used rather than the length gauge
(see the discussion in Section 1.7).

4.4.1. State-to-state transition probabilities and time evolution operator by the complex scaled
(t, t@) method

Let us define H(x, t@) as

H(x, t@)"!i+ ­/­t@#H(x, t@) , (4.4.1)

where H(x, t@) is the given time-dependent Hamiltonian and !i+­/­t@ can be described as the
momentum operator of the “photon” particle. Here t@ acts as an additional coordinate. Using box
normalization condition t@e[0,¹], the inner product of the functions f (x, t@) and g(x, t@) in the
generalized Hilbert space is defined by

| f Dg}"

1
¹P

T

0

dt@P
=

~=

dxf *(x, t@)g(x, t@) . (4.4.2)

For ionizing or dissociative systems complex scaling is used and f *(x, t@) is replaced by f (x@e`*h,!t@)
and g(x, t@) by g(x@e`*h, t@) assuming g(x@, 0) and f (x@, 0) as real functions. The reason for replacing the
complex conjugate by t@P!t@ is due to the fact that we wish to take the complex conjugate of the
terms in the function which are complex NOT resulting from the use of complex scaling. Upon
complex scaling x"x@e*h is substituted in the Hamiltonian when x@ is varied along the real axis.

The solutions of the time-dependent Schrödinger equation

H(x, t)W(x, t)"i+
­W(x, t)

­t
(4.4.3)

for the initial state t(x, t
0
) is given by

W(x, t)"/(x, t@, t)D
t{/t

"

1
¹P

T

0

dt@/(x, t@, t)d(t@!t) , (4.4.4)

where /(x, t@, t) is obtained by solving the following equation

HK (x, t@)/(x, t@, t)"i+
­/(x, t@, t)

­t
(4.4.5)

or

/(x, t@, t)"e~*HK (x, t{)(t~t0)@+/(x, t@, t
0
) . (4.4.6)

For time periodic Hamiltonians we use the periodic boundary condition

W(x, t)"W(x, t,#¹) ,

t@"tmod¹ .
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It is an excellent approach when, for example, the time-dependent Hamiltonian describes the
interaction of an atom or molecule with a pulse laser whose pulse envelope evolves oscillates over
50—100 optical cycles [129]. This periodic boundary condition can be used, however, even for
non-periodic Hamiltonians.

By substituting Eq. (4.4.6) into Eq. (4.4.4) and by noticing that at t"t
0
, /(x, t@, t

0
)"t(x, t

0
), the

time evolution wave function is given by

t(x, t)"[e~*HK (x, t{)(t~t0)@+t(x, t
0
)]

t{/t

"

1
¹P

T

0

dt@d(t@!t)[e~*H(x, t{)(t~t0)@+t(x, t0)] . (4.4.7)

The solution of the time-dependent Schrödinger equation for a general time-dependent Hamil-
tonian is obtained from Eq. (4.4.7) by calculating the time evolution operator exp(!iHK t) where
HK (x, t@) is a Floquet-type operator and 04t@4¹ acts like an additional coordinate. Since HK is
t-independent, the need to calculate time-ordering operators (such as first-, second- or high-order
terms in the Magnus series expansion) is avoided.

From Eq. (4.4.7), one can see that the time evolution operator is given by

UK (tDt
0
)"

1
¹P

T

0

dt@d(t@!t)e~*HK (x, t{)(t~t0)@+ (4.4.8)

and

UK (t
0
Dt)"

1
¹P

T

0

dt@d(t@!t
0
) e~*HK (x, t{)(t0~t)@+ . (4.4.9)

Since

lim
t?=

UK (tDt
0
)W(x, t

0
)"lim

t?=

UK
0
(tDt

0
)t

f
(x, t

0
) , (4.4.10)

where t(x, t
0
) is the solution of the time-dependent Schrödinger equation given in Eq. (4.4.3) and

the final energy normalized state is given by

t
f
(x, t)"UK

0
(tDt

0
)s

f
(x, t

0
)

"e~*HK 0(x, t{)(t~t0)@+S
k

+2k
f

e*kfx"e~*Ef(t~t0)@+S
k

+2k
f

e*kfx , (4.4.11)

where HK
0

is the free particle Hamiltonian which consists of the kinetic operator (pL
x
)2/2k of the free

ionized/dissociated particle and the operator pL
t{

of the momentum of the “photon”.

HK
0
(x, t@)"!+2/2k ­2/­x2!i+ ­/­t@ , (4.4.12)

E
f
"(+k

f
)2/(2k) . (4.4.13)
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By substituting Eq. (4.4.11) into Eq. (4.4.10) the solution of the time-dependent Schrödinger
equation which provides as tPR the final state t

f
(x, t) is obtained:

W(x, 0)" lim
t?=

UK (0Dt)UK
0
(tD0)t

f
(x, 0)

" lim
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1
¹P

T

0

dt@d(t@)e*H(x, t{)t@+e~*HK 0(x, t{)t@+t
f
(x, 0) (4.4.14)

"

1
¹P

T

0

dt@d(t@)A1#P
=

0

dt
­
­t

e*H(x, t{)t@+e~*H0(x, t{)t@+Btf
(x, 0) , (4.4.15)

t
0
"t"0 is taken as the time the atomic/molecular system interacts with the time-dependent field.

Illustrative schematic representation is given by

A
t"t

0
t

i
(x, t) describes

the initial state of

the system before the

interaction with the

time-dependent field
Bt

0
Pt

PA
t"0

W(x, 0) describes

the “particles” (e.g.

electrons/atoms/molecules)

interacting with the

electromagnetic field (laser)
BtPR

P A
t"#R

t
f
(x, t) describes

free “particles” B .

When a sudden interaction of the system with the fields occurs we may assume that t
0
"0.

Following a similar derivation made by Taylor for time-independent Hamiltonians, one can get
that [112]

W(x, 0)"
1
¹P

T

0

dt@d(t@)(1#G
Ef

(x, t@)»(x, t@))t
f
(x, 0) , (4.4.16)

where

»(x, t@)"HK (x, t@)!HK
0
(x, t@) , (4.4.17)

G
Ef

(x, t@)"
1

E
f
!HK (x, t@)

. (4.4.18)

The state-to-state [t
i
(x, t

0
)Pt

f
(x, t) as tPR] transition probability, P(E

f
), is given by the

overlap integral between the initial time-independent scattering state t
i
(x, t

0
"0) and the solution

of the full time-dependent problem, t(x, 0), which provides as tPR the final state t
f
(x, t):

P(E
f
)"DSt

i
(0)DW(0)TD2 . (4.4.19)

4.4.2. Above-threshold-ionization (A¹I) or above-threshold-dissociation (A¹D) spectra
In multiphoton ionization/dissociation experiments the initial scattering state, t

i
(x, 0), is the

bound state of the field-free atomic/molecular Hamiltonian,

t
i
(x, 0)"W

"
(x) . (4.4.20)
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By substituting Eq. (4.4.11) and Eqs. (4.4.16) and (4.4.17) into Eq. (4.4.19) one gets the time-
independent expression for the state-to-state transition probability

P(E
f
)"D|U

i
(t"0)D1#G

Ef
(x, t@)»(x, t@)DU

f
(t"0)}D2 , (4.4.21)

where

|U
i
(t"0)D"W

"
(x)d(t@)"

=
+

n/~=

e*wnt{t
"
(x) , (4.4.22)

DU
f
(t"0)}"S

k
+2k

f

e*kfx (4.4.23)

and

w"2p/¹ . (4.4.24)

Eq. (4.4.21) provides the probability to detect a free electron (in ATI experiment) or a free
atom/molecules (in ATD experiment) with a kinetic every (+k

f
)2/2k. As it was observed in

experiments and also in theoretical calculations (see Ref. [111] and references therein) the ATI
spectra of atoms consists of a sequence of isolated peaks, separated by one photon energy.

4.4.3. Harmonic generation spectra by the complex-scaled (t, t@) method
Kulander [131] associated the harmonic generation spectra with the Fourier transform of the

time-dependent dipole moment,

p
HG

(X)"P
=

0

dte~*XtSt
"
(t)DxDt

"
(t)T (4.4.25)

where t
"
(t) is the time-dependent solution obtained from Eq. (4.4.7) which stands for the initial

bound state of the field-free Hamiltonian, t(x, t
0
)"W

"
(x). By substituting Eq. (4.4.7) into

Eq. (4.4.25) when the eigenfunctions of H(x, t@) are used as basis functions, the time-independent
formula for the harmonic generation (HG) spectra has been derived:

p
HG

(X)"K
=
+

m/0

+
a, a{

dX,*(ea{~ea)@+`mw+

=
+

n/~=

(W
"
Dsa{(t"0)) ) (sa(t"0)DW

"
)K

]D(ua{, n~m
DxDua, n)D2 , (4.4.26)

where w is defined as in Eq. (4.4.24); Msa(x, t@)N and MeaN are, respectively, the eigenfunctions and
eigenvalues of the complex-scaled Floquet-type operator H(x, t@); Mua, nN are the Fourier compo-
nents of sa(x, t@); and (2D2) stands for the c-product. a and a@ get discrete values when box
normalization is used for x. The high harmonics for which X"mw; m"1, 3, 5,2 (for the
conditions at which only odd harmonics are obtained see Ref. [127]) Eq. (4.4.26) is reduced to

p
HG

(X"mw)"K
=
+

m/0

+
a

dX, mw

=
+

n/~=

(t
"
Dsa(t"0))2(ua, n~m

DxDua, n)K
2

. (4.4.27)
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Here we assume that the t
"

and sa are complex functions only due to the use of complex scaling,
x"x@exp(ih), where x@ is a real variable. Usually, t

"
is a real function and therefore

(t
"
Dsa(t"0))"St

"
DsaT.

4.4.4. The resonance approach
As in the resonance scattering theory described in Section 3 we assume here that the dynamics of

the field-atom/molecule system is controlled by a single intermediate narrow resonance state. The
use of complex scaling enables one to associate the metastable state of the time-periodic Hamil-
tonian (which describes the semiclassical interaction between radiation and matter) with a single
square-integrable eigenfunction,

W
3%4

(x, t)"e~*E3%4ts
3%4

(x, t), x"x@e*h (4.4.28)

where s
3%4

and E
3%4

are correspondingly the eigenfunction and the h-independent complex eigen-
value of the complex scaled Floquet operator HK (x, t). Note by passing that usually we used
different notation for the complex-scaled eigenfunction. That is, th

3%4
(x@, t) instead of t

3%4
(x, t) or

sh
3%4

(x@, t) instead of s
3%4

(x, t). Since s
3%4

(x, t) is time periodic s
3%4

can be written as

s
3%4

(x, t)"
=
+

n/~=

e*wntu3%4
n

(x) (4.4.29)

when for the open channels, n(0, (here we assume that the resonance is located at the n"0
Brillouin zone and !+w(Re(E

3%4
)(0 while the threshold of the field-free potential is taken as

zero reference energy).

u3%4
n

(x)Pa
nS

k
+2k

n

e*knx as xPR (4.4.30)

and

(+k
n
)2

2k
"E

3%4
#+wn (4.4.31)

4.4.4.1. Harmonic generation spectra within the framework of the resonance approximation. Within
the framework of the resonance approximation Eq. (4.4.27) can be simplified by assuming that the
dynamics is controlled by a single intermediate narrow resonance state. When a

0
is associated with

the longest-lived resonance state, then Eq. (4.4.27) is reduced to Ben-Tal et al. [130] expression for
HG, spectra

p3%4
HG

(X"mu)"K
=
+

n/~=

(ua0, n~m
DxDua0, n)K

2
, (4.4.32)

where (2D2) stands for the c-product. If real basis set are used then

(ua0, n~m
DxDua0, n

)"Su*
a0, n

DxDua0, n
T , (4.4.33)

where S2D2T stands as usual for the scalar product. Note that Eq. (4.4.27) is reduced to
Eq. (4.4.32) when Tt

"
Dsa0(t"0)TK1.
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Fig. 21. The experimental harmonic generation spectra of helium in 5 eV KrF laser (full circles) as measured by Sarukura
and co-workers [143], and the theoretical ab initio spectra as calculated by Moiseyev and Weinhold (Ref. [135]) from
a single complex-scaled resonance Floquet state.

By analyzing the symmetry properties of p3%4
HG

(X) Ben-Tal et al. [133] provided a non perturbative
proof for field-free Hamiltonians which support discrete and continuum spectra, which shows that
under specific well-defined symmetric conditions only odd harmonics are obtained. Moiseyev et al.
[134] have shown that for mononuclear diatomic molecule only odd harmonics are obtained
regardless of the symmetry properties of the electronic potential surfaces.

The fact that a single complex-scaled Floquet state describes the atom/molecule even in high
intensity fields has been used by Moiseyev and Weinhold [135] in their calculations of the high
harmonic generation spectra of He in KrF laser. The remarkable agreement of the theoretical HG
spectra with the experimental results even for the very high harmonics first has been shown that
high harmonics can be obtained by neutral atoms. See the experimental vs. the theoretical
harmonic generation spectra of helium in Fig. 21. This is due to the dynamical electronic
correlation which “push” apart the two electrons to the opposite sides of the nucleus, thus
“decreasing” the nuclear charge and thereby avoid ionization.

4.4.4.2. ¹he A¹I/A¹D spectra within the framework of the resonance approximation. As Moiseyev
et al. [134,132] pointed out Da

n
D2 which are given in Eq. (4.4.30) are the partial widths, C

n
, which

provide the probability for ionization/dissociation resulting from absorbing n number of photons
and, therefore,

C
n
"

+2Dk
n
D

k
lim
x?=

Du3%4
n

(x@e*h)e~*knx{%*hD2 . (4.4.34)

Within the framework of the resonance scattering theory two assumptions can be made to simplify
the expressions of the state-to-state transition probability (e.g. the expressions of the above-
threshold-ionization (ATI), the above-threshold-dissociation (ATD) and the high harmonic genera-
tion spectra):
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1. The Green operator in the spectral representation is given by
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!E

3%4

"

Ds
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3%4

. (4.4.35)

2. The projection of the resonance state on the bound initial state is almost time-independent,

|W
"
Ds

3%4
(t)}"|W

"
Du3%4

0
}K1 . (4.4.36)

By substituting Eqs. (4.4.34), (4.4.35) and (4.4.36) into Eq. (4.4.21) Bensch, Korsch and Moiseyev
received a simple expression for the isolation peaks in the ATI/ATD spectra [137]:

P(E
f
)K +

n:0

C
n

DE
f
!(E

3%4
#+wn)D2

(4.4.37)

which explains the experimental evidence that the isolated peaks in the ATI/ATD spectra (e.g. of
Xe as shown in Ref. [136] are separated by +w; all of them have the same width (i.e. C"2Im(E

3%4
));

and their relative heights are the branching ratio C
n
/C

n{
, as obtained from Eq. (4.4.34) by carry-

ing out calculations which combine Floquet theory and complex scaling. As an example we repre-
sent in Fig. 22 the ATI spectra for a driven Rosen—Morse model Hamiltonian as obtained by

Fig. 22. The ATI spectra for a driven Rosen—Morse model Hamiltonian as obtained by Bench et al. [137] by using the
complex scaling approach for calculating the quasi-energy resonance position, width and partial widths.

Fig. 23. The “breathing ATI spectra” of Cl~ in ArF excimer-laser as calculated by Peskin and Moiseyev [112] using the
complex coordinate time-independent scattering theory for time-dependent Hamiltonians.
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Bench et al. [137] by using the complex scaling approach for calculating the quasi-energy
resonance position, width and partial widths.

In Fig. 23 The “breathing ATI spectra” of Cl~ in ArF excimer-laser field as calculated by Peskin
and Moiseyev [112] using the complex coordinate time-independent scattering theory for time-
dependent Hamiltonians they developed. The “breathing ATI spectra” describes a phenomenon
where the atoms are stabilized (i.e. the quasi-energy resonance lifetime is increased) at high intensity
fields.
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