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Abstracts 

Interrelations between the local and the global aspects of the stability, continuity, and symmetry 
properties of variational wave-functions are discussed. The spherical limit of one-electron diatomic 
molecules and the Hartree-Fock approximation of the ground state of the two-electron atom are 
shown to exhibit the various concepts involved in an ab initio, yet sufficiently simple, manner. 

On discute certaines relations entre les aspects locaux et globaux des propribtes de stabilitb, de 
continuit6 et de symetrie de fonctions d‘onde variationelles. A titre d’exemple on traite la limite 
spherique des molbcules diatomiques B un blectron et  I’approximation de Hartree-Fock dans I’btat 
fondamental de I’atome ?i deux blectrons. 

Beziehungen zwischen den lokalen und globalen Aspekten der Stabilitats-, Stetigkeits- und 
Symmetrieeigenschaften von Variationswellenfunktionen werden diskutiert. Die verschiedenen Beg- 
riffe werden mit zwei Beispielen iltustriert: die spharische Grenze zweiatomiger Molekule mit einem 
Elektron und die Hartree-Fock-Naherung im Grundzustande des Zweielektronenatoms. 

1. Introduction 

The Euler-Lagrange equation derived from the variation principle is the 
Schroedinger equation, provided that the variation is allowed within the whole 
relevant Hilbert space. If, however, the space within which variations are allowed 
is restricted in some arbitrary manner, the resulting Euler-Lagrange equation 
turns out to be nonlinear. Consequently, the solutions obtain various nonphysical 
features. This is so unless the restricted subspace coincides with the natural 
subdivision of the complete Hilbert space induced by the symmetry properties of 
the Harniltonian. 

Let us denote by V the subspace within which variations are made and by U 
the subspace belonging to a particular symmetry species (irreducible representa- 
tion) with respect to the Schroedinger group (i.e., the symmetry group of the 
Hamiltonian). V consists of all functions satisfying some shape restriction, such as 
being a single-determinant, spherically shaped, etc. One can perform either 
unrestricted variation within V or restricted variation within the intersection of V 
and U, V n  U. If unrestricted variation is attempted, a broken symmetry solution, 
belonging to the relative complement of V with respect to U, v\U, may result, 
which is lower in energy than the restricted solution within Vfl U. This is the 
situation referred to by Lowdin [l] as the symmetry dilemma. 

* Based on a section of a thesis to be submitted by N. M. to the Senate of the Technion-Israel 
Institute of Technology, in partial fulfilment of the requirements for the D.Sc. degree. 
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The symmetry adapted solution is the absolute minimum in V n  U. If a lower 
energy, symmetry broken solution exists in V, the symmetry adapted solution, 
which satisfies the Euler-Lagrange equation, is in either a local minimum or in a 
saddle point within the variational space V. This has been shown in the context of 
the Hartree-Fock approximation by Delbruck [2], Roothaan [3], and Lowdin [4]. 
To show that the symmetry adapted absolute minimum is stationary with respect 
to symmetry breaking variations in the general case, we note that if @ is symmetry 
adapted and a@ is a symmetry breaking variation such that 

@ E U  and ~ @ , E V \ U  

then 

(a 1 a@) = 0 = (@ 1 HI a@) 
hence 

so that 

The symmetry dilemma thus provides one example of the occurrence of 
multiple solutions of the variational problem [5],  some of which correspond to 
local minima and the others to maxima or to saddle points [6]. 

Further complications arise if the solution is studied as a function of some 
physical parameter appearing in the Hamiltonian. The number of solutions of the 
variational problem, their local nature (i.e. minimum, maximum, or saddle point), 
as well as their global role (i.e. being the absolute minimum), may change in a 
manner which is necessarily discontinuous. A symmetry broken solution may 
become the absolute minimum in a manner involving a discontinuity in either the 
first derivative of the energy (first-ord,er transition), in the second derivative 
(second-order transition), or in a higher derivative [7]. Discontinuities of this type 
are not by any means restricted to transitions between a symmetry adapted and a 
symmetry broken solution. Rather, they can occur between two symmetry 
adapted or between two symmetry broken solutions just as well. In this latter case 
the situation does not involve a symmetry dilemma but rather a continuity 
dilemma: The physically plausible requirement of having a solution which 
depends in a continuous manner on the parameters involved is in conflict with the 
requirement of choosing the absolute minimum as the actual approximate solu- 
tion. The choice of either one of the two possible solutions may have far reaching 
consequences from the point of view of the quality of the description of the system 
under study. 

It is of considerable interest to examine these phenomena in the context of the 
Hartree-Fock scheme, which is the most commonly used approximation involving 
a shape restriction of the wave-function. This has been attempted by Koutecky 
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[8], &ek and Paldus [9], Pople [lo], Gregory [ l l ] ,  and many others, following 
essentially the pioneering work of Thouless [12] and Adams [13]. However, all 
these treatments have been carried out within the restrictions of some semiemphi- 
cal model system. Therefore, one is probably justified in suspecting that at least 
certain aspects of the results may depend on the particular approximations made 
on top of using a Hartree-Fock type wave-function. Furthermore, most of these 
systems are too complicated to allow an exhaustive treatment. 

The symmetry dilemma has been encountered in a physically very significant 
context in a study of hole states in 0: by Bagus and Schaefer [14]. The situation 
encountered in that system is very closely related to the much simpler model 
consisting of the spherical limit of H l [  15].* In the present contribution we extend 
the study of this model in a number of ways, so as to exhibit certain novel features 
of the general problem. In particular, we discuss the connection between local and 
global properties of solutions, which is shown to make the somewhat hopeless 
problem of obtaining the absolute minimum amenable to systematic study. We 
further show the existence of a continuity dilemma in the corresponding 
heteronuclear molecule, thus clearly exhibiting the existence of difficulties 
associated with multiple solutions not involving a breakdown of symmetry. 

We then turn our attention to the Hartree-Fock problem for the ground state 
of the helium sequence, which exhibits many of the variational features discussed. 
Both the fundamental similarities and the somewhat superficial differences 
between the two systems discussed turn out to be of interest. 

2. The Symmetry Dilemma in the Spherical Limit of H l  

The spherical limit of H;[16], i.e., the best spherically shaped wave-function 
of that system, has been shown in Part I to exhibit a symmetry dilemma associated 
with the existence of multiple minima, as well as instabilities (see also Ref. [17]). 
The spherical wave-function is + ( r ;  R, d) ,  where r is the electronic distance from a 
point on the molecular axis at  a distance d from the midpoint of the molecule, and 
R is the internuclear distance. It was shown by means of straightforward varia- 
tional computations that for R < 2.2 a.u. the symmetry adapted solution, with 
d = 0, is the only extremum, but at R = 2.2 a.u. a new local minimum emerges 
with d = 0.8 a.u., along with a corresponding maximum. This broken symmetry 
minimum becomes the absolute minimum at R = 2.35 a.u., as a consequence of 
which a discontinuity in the first derivative of the energy with respect to R occurs. 
Curves a and c in Figure 1 and the curve corresponding to H; in Figure 2 
constitute a transparent and comprehensive presentation of the results, most of 
which were discussed in Part I. 

It is of some interest that on representing the spherical wave-function in terms 
of a single optimized Gaussian one obtains a second-order transition, i.e., the 
broken symmetry minima bifurcate from the symmetry adapted one so that the 
symmetry breakdown is associated with a discontinuity in the second rather than 

* Reference [15] represents an earlier work by one of the authors (J. K) on which the current study 
is based. It will hereafter be referred to as Part I. 
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Figure 1 .  Energy us. internuclear distance for the various spherical limit minima. 
(a) symmetry adapted (d = 0); (b) imaginary d ;  (c) real d .  
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Figure 2. dus. internuclear distance for the energy extrema of the homo- and 
heteronuclear molecules: (-) local minimum; (- - - -) local maximum. Positive 
d corresponds to the expansion center being nearer to 2,. C.P. denotes the 

first-order transition point. 

first derivative of the energy with respect to the internuclear distance. A very 
similar result is obtained on using a single Slater function [18]. 

The problem we encounter in the first place is a global one; in order to detect a 
first-order transition, such as the one described, in a straightforward manner, one 
has to investigate the global properties of the energy surface. However, the 
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observation of a bifurcation of broken symmetry extrema from the symmetry 
adapted one, at R = 3.1 a.u. (Fig. 2), in some sense reduces the problem to a local 
one. This follows from the fact that a smooth curve connects the bifurcation point 
with the broken symmetry minima. The appearance of the broken symmetry local 
minima is in this way shown to be related to the local behaviour of the symmetry 
adapted solution and therefore predictable from a study of the local properties of 
the latter. The possible emergence of a pair of symmetry broken extrema (a 
minimum and a maximum) which remain forever unconnected with the symmetry 
adapted extremum cannot be excluded in general, though this is not the case in the 
example here studied. The existence of an instability in the symmetry adapted 
solution is, therefore, a sufficient but not a necessary condition for the existence of 
a symmetry broken solution. 

In the neighborhood of the symmetry adapted solution one can write 

E = Eo+iEld2+&E2d4+ * . . (1) 

having explicitly taken advantage of E being an even function of d ,  which follows 
from the symmetry property E ( d )  = E(-d ) .  Hence 

aE 1 
-= Eld  +-E,d3 + . . * 
ad 6 

and 

d2E 1 -- a d z  -El +-Ezd2+ 
2 

The symmetry adapted solution becomes 

vanishes, prior to becoming negative. This is, of course, the point 

. . .  

unstable at the point at which 

determined by the condition El = 0. 
The bifurcation of symmetry broken solutions from the symmetry adapted ode 

implies the existence of extrema with small but nonzero d,  satisfying the equation 
aE/dd = 0. For small d one can neglect all terms beyond the second in the 
expression for aE/ad, obtaining d = *IJ-6E,7E,. Hence, at the value of R 
corresponding to El = 0, at which the symmetry adapted solution becomes locally 
unstable, broken symmetry solutions bifurcate from the symmetry adapted one. 
This point can be obtained from the properties of the symmetry adapted solution 
only. However, it provides an upper bound for the physically more relevant one 
which corresponds to the global instability; in a second-(or higher)-order transi- 
tion the two types of instability coincide, and in a first-order transition the global 
instability occurs prior to the local one, i.e., a symmetry broken solution becomes 
the absolute minimum before the symmetry adapted one becomes a local max- 
imum. In the case in which the broken symmetry solutions remain forever 
unconnected with the symmetry adapted one a global instability may occur at 
some finite value of the parameter corresponding to R of the present example, 



1016 MOISEYEV AND KATRlEL 

though a local instability never occurs. The occurrence of a local instability cannot 
precede that of the global one, but does not necessarily follow it. 

In Part I the Hellmann-Feynman theorem has been applied to the system 
under investigation in an essentially qualitative manner, in order to establish the 
asymptotic behaviour of the solutions at small and large internuclear distances. 
We now extend this application to quantitatively study the intermediate range of 
internuclear distances, which will enable the detection of the bifurcation point. 
From the Hellmann-Feynman theorem applied in the manner mentioned, 

where R ,  = R / 2  f d, and the dependence of + on R and d has been suppressed. 
Expanding in powers of d, one obtains for the leading coefficient 

where +o(r) corresponds to d = 0. The value of R for which El  = 0 is graphically 
obtained in Figure 3, resulting in R” = 3.12 a.u. as the bifurcation point. The 
values of El computed from Eq. (3) agree with the values of a2E/ad21d=o 
evaluated numerically in Part I. 

R (a.u.1 

R 3  
6 4 ~  

Figure 3. =-El us. R for H:. 
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Further insight into the nature of this result can be gained by noting that it can 
also be obtained in the context of (first-order) perturbation theory. This is done by 
writing the symmetry adapted and symmetry broken spherical limit Hamiltonians 

1 ,  2 
2 max (r, R/2) 

- --v-- 
0- (4) 

and 

(5 )  
1 - 1 1 

2 max (r, R,) max (r, R-)  
= --v2 - 

from which V=%P-%'~ is obtained (Fig. 4). The first-order correction to the 
energy is straightforwardly shown to be equal to El in Eq. (3). However, Figure 4 

Figure 4. The symmetry breaking perturbation of the H: spherical limit Hamilto- 
nian: (I) destabilizing region of the symmetry adapted solution; (11) stabilizing 

region. 

indicates the way in which the symmetry adapted solution becomes locally 
unstable. The existence of a region in V which contributes to stabilizing the 
symmetry adapted extremum as well as a region which destabilizes it, is a helpful 
hint with respect to the occurrence and location of the bifurcation point. 

The main practical significance of this result is that the symmetry adapted 
solution does contain enough information concerning the existence of a broken 
symmetry solution, even in the case of a first-order transition, corresponding to a 
global instability. 

It is tempting to explore the possibility that allowing the parameter d to vary in 
the complex plane may lead to some deeper insight into the nature of the 
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transitions involved. The energy for complex-valued d has been evaluated 
employing a technique discussed by Allison, Handy, and Boys [ 191. The symmetry 
adapted wave-function (dc = dR + idI = 0) is the only minimum of the energy for 
R < 1.4, but at  R = 1.4 a second-order transition to a new broken symmetry 
solution with imaginary d occurs (Fig. 1). No extrema were observed for complex- 
valued d,  i.e., either the real or the imaginary part of d turned out to vanish at the 
extrema. One should note that, whereas for real d the wave-function is real, for 
imaginary d the wave-function is complex, i.e., contains both a real and an 
imaginary nonvanishing term. This implies that the nonexistence of complex d 
extrema cannot be accounted for in terms of Brandas' theorem [20]. In the range 
1.4< R < 2.6 the imaginary d solution is the absolute minimum, but at R = 2.6 a 
first-order transition to the real d broken symmetry solution occurs. 

3. The Heteronuclear Molecule: A Continuity Dilemma 

The variational computations for HeH" presented in Part I exhibit no 
discontinuity in the energy as a function of the internuclear distance. This result, 
which was also obtained by Horak and Siskova [18] in a closely related context, 
seems to suggest that the discontinuity is a consequence of the symmetry break- 
down, which can occur in the homonuclear system only. However, the qualitative 
behavior suggested for an infinitesimal heteronuclear molecule by inspection of 
the H: extrema (Fig. 2) is at variance with this conclusion. The results for H l  imply 
that if one of the nuclear charges is slightly enlarged multiple solutions of the 
variational problem should still exist over a certain range of internuclear dis- 
tances. Consequently, for the heteronuclear molecule one can still observe a 
transition from one local minimum to another. The energy curve, corresponding 
to the absolute minimum, will not be smooth in spite of the fact that no symmetry 
breakdown is involved. On the other hand, in the case of a second-order transition 
even an infinitesimal shift from the symmetrical system results in a smooth 
dependence of the solution on R.  

The results in Figure 2 exhibit the discontinuity in the case of the heteronuc- 
lear molecule and its relation to the homonuclear one. The difference between the 
homonuclear and heteronuclear cases is essentially in the non-existence of the 
branching (bifurcation) point in the latter case. However, the discontinuity is 
shown to be independent of the symmetry breakdown; the symmetry dilemma is 
thus a special case of the continuity dilemma. Whereas the existence of a 
discontinuity associated with a breakdown of symmetry can in many cases be 
anticipated on physical grounds, it is much more difficult to detect the existence of 
a discontinuity within the symmetry adapted or symmetry broken space. 

The results in Figure 2 clarify the fact that in HeH++ a completely smooth 
behavior is observed. They do, however, indicate that discontinuities in single- 
center expansions may be observed in real heteronuclear (as well as homonuclear) 
molecules. For the single Slater [lS] or Gaussian computation, for which the 
homonuclear molecule exhibits a second-order transition, a discontinuity is 
neither expected nor observed in the heteronuclear case. This is, of course, a 
consequence of the order of the transition, rather than of the loss of symmetry. 



VARIATIONAL WAVE-FUNCTIONS 1019 

4. Instabilities in the HartreeFock Solution for Two-Electron Atoms 

The unrestricted Hartree-Fock (UHF) wave-function of the ground state of the 
helium sequence 

@ u H F = x ( ~ ) .  ~ ( 2 )  (6) 

is certainly associated with a lower energy than the restricted Hartree-Fock (RHF) 

one 

@ R H F = 4 ( 1 )  ’ 4(2) (7) 
at  least at the low nuclear charge end of the isoelectronic sequence. The transition 
from the RHF wave-function to the UHF one involves a breakdown of symmetry 
and should, therefore, occur discontinuously. Whereas the mere existence of a 
discontinuity can be inferred almost a priori, its nature and location can be 
determined only by direct computation. 

The existence of a first-order transition involving the RHF local minimum 
becoming the absolute minimum while the UHF solution is still locally stable has 
been observed by Kaplan and Kleiner [2 13 in a computation employing a minimal 
basis set of STO’S. However, expressing the inner and outer orbitals in terms of two 
sets, each of N primitive (1s) even-tempered STO’S, which differ by a scaling 
parameter /3, we have observed a second-order transition for N >  1. This is 
indicated in Figure 5 by the energy having a discontinuity in the second rather than 

-0.03, 

Figure 5. The energy difference between the UHF and RHF approximations in the 
ground state of the helium sequence, for different basis sizes. 

first derivative, and in Figure 6 by the variational parameter /3 exhibiting a 
discontinuity on the first derivative rather than in the parameter itself. The nature 
of the transition was confirmed by the fact that no local UHF minimum was 
detected beyond the transition point. In the present example the nature of the 
transition changes from first- to second-order on enlarging the basis set, whereas a 
change from a second- to a first-order transition has been observed for the 
spherical approximation to H:. 
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Figure 6. Behavior of the relative scale parameter of the inner and outer orbitals in 
the UHF approximation for the ground state of the helium sequence. 

The manner in which the outer electron becomes unbound on decreasing the 
nuclear charge has attracted some attention over the past few years [22,23]. The 
RHF solution penetrates the continuum at Z = 1.03 but remains locally stable and 
normalizable even below Z =  1. The exact solution is known to be bound at 
2 = l(H-), and the critical binding value of the nuclear charge has been estimated 
to be 2, -0.894 [22]. However, the UHF energy touches the continuum in a 
tangential manner at Z =  1, below which the UHF wave-function is not even 
locally bound. This fact is of straightforward relevance to Stillinger’s discussion of 
the existence of bound states in the continuum, specifically his “counterargu- 
ment” [24, 251. 

The symmetry property violated by the UHF solution is, of course, the 
electronic permutational symmetry. Consider now a two-particle Hamiltonian 
without permutational symmetry, such as 

If the transition involved in the permutation-symmetric case (ql  = q2 = 1) is of 
second order, one should expect an altogether smooth behavior for q1 # q2. This 
is, however, not the case if the transition is of first order, in which case a 
discontinuous behavior is expected for the lowest (UHF) solution for the nonsym- 
metric system as well, at least in some neighborhood of the symmetric system. 

These expectations, analogous to those discussed with respect to the existence 
of discontinuities in the solution for the heteronuclear one-electron molecule, 
were examined for the relevant case, i.e. a minimal basis set of STO’S. The 
wave-function studied is 

and the symmetry breaking parameter S = (a  -p) /Ja . p was defined. The 
results, shown in Figure 7, confirm the expected behavior. The two minima 
correspond to the smaller charge “electron” being the outer and the inner 
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Figure 7.  6 us. 1/Z for the energyextrema of the “two-electron atom” 

electron respectively. The value of 2 at which the outer orbital fades into the 
continuum is, in the UHF level, equal to the charge of the inner electron, i.e., 2 = 1 
for the absolute minimum and 2 = 0.995 for the higher energy local minimum. 

5. Conclusions 

The two main conclusions concern the role of symmetry and the local 
detectability of global discontinuities. The role of symmetry in a first- us. higher- 
order transition (in a sense, in a global us. local instability) is clearly exhibited by 
the heteronuclear molecule. The results suggest that in certain cases it may be 
advantageous to shift one’s attention to the continuity properties of the solution 
with respect to some parameters appearing in the Hamiltonian. 

The possibility of studying the occurrence of bifurcation points is a partial 
solution of the seemingly hopeless problem of detecting all the minima so as to 
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guarantee that the absolute minimum is actually obtained. This is a further 
advantage of studying the system over a wide enough range of the relevant 
physical parameters. It is not only the existence of additional, lower energy, 
solutions, but also the existence of an instability in a related system which may be a 
warning as well as a useful practical indication of the location of the additional 
solution sought. 

These considerations are of immediate and straightforward relevance to the 
very many approaches based on a partitioning of the Hamiltonian in a non- 
symmetrical form in the context of perturbation theory. The success or failure of 
such an approach is intimately associated with the properties of the zero-order 
solution. If this zero-order solution is obtained in an approximate manner, one 
should allow for the possible occurrence of instabilities which do not involve a 
symmetry breakdown in the zero-order system investigated but are associated 
with such symmetry breaking instabilities in the higher symmetry system of actual 
interest. 

Acknowledgment 

One of the authors (J. K.) is grateful to Dr. John Ockendon (Mathematical 
Institute, Oxford) for very useful discussions. Part of the work of this author was 
done during a stay in the Theoretical Chemistry Department, Oxford, which was 
enabled by a Royal Society-Israel Academy of Science award. 

This work is a part of a research project supported by the U.S. Israel 
Binational Science Foundation. 

Bibliography 

[l] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 

[lo] 
[ll] 
[12] 
[13J 
[14] 
[15] 
[161a) T. C. Chen, J. Chem. Phys. 29, 347 (1958). 

P. 0. Liiwdin, Rev. Mod. Phys. 35,496 (1963). 
M. Delbriick, Proc. Roy. SOC. (London) A129,686 (1930). 
C. C. J. Roothan, Rev. Mod. Phys. 32, 179 (1960). 
P. 0. Liiwdin, J. Appl. Phys. Suppl. 33, 251 (1962). 
R. E. Stanton, J. Chem. Phys. 48,257 (1968). 
A. Hibbert and C. A. Coulson, J. Phys. B 2, 458 (1969). 
J. Katriel and E. Domany, Int. J. Quantum Chem. 8,559 (1974). 
J. Koutecky, J. Chem. Phys. 46, 2443 (1967). 
J. &ek and J. Paldus, J. Chem. Phys. 53, 821 (1970). 
J. A. Pople, Int. J. Quantum Chem. 5S, 175 (1971). 
A. R. Gregory, Chem. Phys. Lett. 11, 271 (1971). 
D. J. Thouless, Nucl. Phys. 21, 225 (1960). 
W. H. Adams, Phys. Rev. 127, 1650 (1962). 
P. S. Bagus and H. F. Schaefer, J. Chem. Phys. 56,224 (1972). 
J. Katriel, Int. Quantum Chem. 6, 541 (1972). 

b) R. Gaspar, Acta Phys. Hung. 11, 295 (1960). 
c) M. &hen and C. A. Coulson, Proc. Cambridge Phil. SOC. 57,96 (1961). 
d) P. Hauk and R. G. Parr, J. Chem. Phys. 43, 548 (1965); 
e) N. W. Winter and V. McKoy, J. Chem. Phys. 49,4728 (1968); 
f) W. C. Mackrodt, J. Chem. Phys. 54,2952 (1971). 

[17] M. K. Ali and W. J. Meath, Int. J. Quantum Chern. 6,949 (1972); 8, 119 (1974). 



VARIATIONAL WAVE-FUNCTIONS 1023 

[18] 
[ 191 
[20] 
1211 
[22] 
[23] 
[24] 
1251 

Received September 8, 1975 
Revised December 8, 1975 

2. J .  Horak and J. Siskova, J .  Chem. Phys. 59,4884 (1973). 
D. J. Allison, N. C. Handy, and S. F. Boys, Mol. Phys. 26, 7 15 (1  973). 
E. Brandas, J. Mol. Spectry. 27, 236 (1968). 
T. A. Kaplan and W. H. Kleiner, Phys. Rev. 156, 1 (1967). 
F. H. Stillinger, J .  Chem. Phys. 45, 3623 (1966). 
E. Brandas and 0. Goscinski, Int. J. Quantum Chem. 4, 571 (1970); 65 59 (1972). 
F. H. Stillinger and T. A. Weber, Phys. Rev. A 10, 1122 (1974). 
N. Moiseyev and J .  Katriel, Theoret. Chim. Acta 41, 321 (1976). 




