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We demonstrate the presence of parity-time (PT ) symmetry for the non-Hermitian two-state

Hamiltonian of a dissipative microwave billiard in the vicinity of an exceptional point (EP). The shape

of the billiard depends on two parameters. The Hamiltonian is determined from the measured resonance

spectrum on a fine grid in the parameter plane. After applying a purely imaginary diagonal shift to the

Hamiltonian, its eigenvalues are either real or complex conjugate on a curve, which passes through the EP.

An appropriate basis choice reveals its PT symmetry. Spontaneous symmetry breaking occurs at the EP.
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Introduction.—Flat microwave cavities, so-called ‘‘mi-
crowave billiards,’’ are analogues of quantum billiards [1].
They are an experimental test ground for the properties of
the eigenvalues and eigenfunctions of quantum systems
[2]. In the present Letter we demonstrate theoretically
and experimentally that they can also be used to study
dissipative quantum systems which have a parity-time
(PT ) symmetry, that is, are invariant under the simulta-

neous action of a parity operator (P̂) and a time-reversal

operator (T̂) after a suitable width offset.
Strong interest in PT -symmetric quantum systems was

initiated in 1998 by Ref. [3] demonstrating that a non-
Hermitian HamiltonianH has real eigenvalues provided it

respects PT symmetry, i.e., ½P̂ T̂;H � ¼ 0, and has ei-
genvectors that are also PT symmetric. In [4] this state-
ment was generalized to systems invariant under an

antilinear operator T̂0 ¼ Û T̂ , where Û is unitary. The
observations in Refs. [3,4] led to a reconsideration of the
necessity of the Hermiticity axiom for quantum observ-
ables [5]. Depending on external parameters the PT
symmetry of the eigenvectors may be spontaneously bro-

ken; i.e., they cease to be eigenvectors of P̂ T̂ , althoughH
still commutes with P̂ T̂ [3,5]. As a result, the eigenvalues
of H are no longer real, but rather become complex
conjugate pairs. This phase transition occurs at an excep-
tional point (EP) [6] defined as the coalescence of at least
two eigenvalues and the corresponding eigenvectors.

Close to an EP, non-Hermitian but PT -symmetric
Hamiltonians are capable to speed up quantum evolution
processes [7]. During the past years optical waveguide
systems with fine-tuned (PT -symmetrically balanced)
gain and loss regions, i.e., with active (laser pumped) and
absorptive components, have been investigated theoreti-
cally [8]. This led to experimental setups which consist
of one waveguide with absorption and another one which is
either optically pumped (active PT symmetry) [9] or

lossless (passive PT symmetry) [10]. In optical systems
the PT phase transition has been studied theoretically
[11] as well as experimentally [9,10]. Recently it was
observed in a non-Hermitian system with active PT sym-
metry consisting of one amplifying and one attenuating
LRC circuit [12]. Further theoretical studies of PT sym-
metry based effects concern spectral singularities [13],
lasers at threshold [14,15], coherent perfect absorbers
[15], unidirectional invisibility induced by
PT -symmetric periodic structures [16], as well as Bloch
oscillations in PT -symmetric lattice structures [17] and
optical tachyons in PT -symmetric optical graphenelike
structures [18]. The S-matrix formalism for
PT -symmetric systems was analyzed recently [15,19].
Experiment.—We will show that configurations with

passive PT symmetry, including a PT phase transition,
are observable in a dissipative microwave billiard, whose
shape depends on two parameters. The experiments were
performed in the vicinity of an EP in the parameter plane.
The setup was similar to that used in [20]. There the first
experimental evidence of EPs and of geometric phases was
provided. Recently, these experiments have been extended
to systems with induced T violation [21]. The obtained
data are used for the present work. The experimental setup
(see the inset of Fig. 1), described in [21], consisted of a
flat, 5 mm high microwave resonator of circular shape with
125 mm radius. It was divided into two approximately
equal parts by a 10 mm thick copper bar, with an opening
of 80 mm. The coupling between the electric field modes in
each part via the opening was varied with a copper gate that
had a tilted bottom. It was inserted into the resonator
through a slit in its top and could be moved up and
down. The bottom plate had a notch to enable a complete
closing of the gate. The lifting s defines one parameter,
where 0 (no coupling) � s � 9 mm (maximal coupling).
The second parameter is provided by the displacement �
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(with respect to the cavity center) of a 5 mm high semi-
circular Teflon piece of radius 30 mm inserted into the left
part of the cavity. The parameter plane (s; �) was scanned
with the help of two micrometer stepper motors, which
moved the gate and the Teflon piece in steps of �s ¼
�� ¼ 0:01 mm. Furthermore, a 5 mm high cylindrical
ferrite of radius 2 mm denoted by F in Fig. 1 was inserted
into the right part of the cavity. To induce T violation the
ferrite was magnetized with an external magnetic field B of
strength 0 � B � 90 mT, applied perpendicularly to the
billiard plane [21,22]. Two pointlike wire antennas 1 and 2
reached into the cavity, one into its left, the other into its
right part. A vectorial network analyzer Agilent PNA
5230A emitted microwave power into the resonator via
one antenna a and received an output signal either at the
same or at the other antenna b. It determined the amplitude
and phase of the output signal relative to the input signal,
thus yielding the four complex elements SbaðfÞ, fa; bg 2
f1; 2g, of the scattering matrix SðfÞ. They were measured
for each setting of the parameters (s; �) as a function of the
excitation frequency f in steps of �f ¼ 10 kHz. The
frequency range of 40 MHz was determined by the spread
of the resonance doublet under consideration. In that range
the electric field vector is perpendicular to the top and
bottom plates. Therefore, the Helmholtz equation is mathe-
matically identical to the Schrödinger equation of the
quantum billiard [1,2]. Thus, the results of this Letter
also apply to the associated quantum system. Figure 1
shows two reflection spectra measured for B ¼ 38 mT,
one for s < sEP (solid line) and one for s > sEP (dashed
line). For the former we observe a close encounter of the
resonance positions, for the latter one of the widths. In fact,
we observe this feature of the resonance spectra along a
curve in the parameter space which crosses the EP inde-
pendently of the choice of the external magnetic field.
Exactly at the EP the resonance shape is that of a second
order pole in addition to the first order poles [23]. As
demonstrated in the following, along this curve the effec-
tive Hamiltonian has the form of a PT -symmetric
Hamiltonian after a suitable basis transformation.

Neighboring resonances are situated about 250 MHz
away from the doublet under consideration.
Consequently, the effective Hamiltonian Heff is two di-
mensional. It is determined for every setting of s; �; B by
fitting an analytic expression for the S matrix [22,24]
originally derived in the context of nuclear reaction theory
and extended to microwave resonators in [25],

SabðfÞ¼�ab�2�i
X2

�;�¼1

W?
a�½ðf1�HeffÞ�1���Wb�; (1)

to the measured one. The effective Hamiltonian

Heff
�� ¼ H�� � i�

X
c

Wc�W
?
c� (2)

is obtained by evaluating the integrals entering
Eq. (4.2.20b) of Ref. [24] and Eq. (4) of [22]. The matrix
1 is the unit matrix and H is the Hermitian two-state
Hamiltonian of the closed resonator or, equivalently, the
quantum billiard. It includes the coupling of the ferromag-
netic resonance to the rf magnetic field in the case of a
nonzero external magnetic field B and thus takes account
of the violation of T invariance. The matrix elements
Wa�;Wb� couple the resonator modes � ¼ 1; 2 to the

antenna states fa; bg 2 f1; 2g, and the sum over c includes
the fictitious channels, which describe dissipation in the
walls of the resonator and the ferrite [26,27]. These matrix
elements are real and frequency independent in the con-
sidered range. Thus, for a vanishing external magnetic field
Heff is given by Eq. (2) with real matrix elementsWa� and

a time-reversal invariant H, ½T̂; H� ¼ 0. Here, T̂ is the
antilinear operator of complex conjugation, whence H is
real symmetric. As a consequence, the scattering process is

also time-reversal invariant, T̂ST̂ ¼ Sy [28], and the S
matrix is symmetric, Sab ¼ Sba. T violation is induced
with a nonvanishing B � 0. In this case, the coupling of the
resonator states to the ferromagnetic resonance is complex.
Consequently, the evaluation of the integrals entering
Eq. (4) of Ref. [22] yields a complex and antisymmetric
contribution, leading to a complex Hermitian Hamiltonian

H in Eq. (2), which is not invariant with respect to T̂. Lack
of reciprocity, i.e., Sab � Sba, in the measured spectra is
the signature for T violation [21,22]. In the T -invariant
case Heff is complex symmetric, otherwise it is nonsym-
metric. To simplify notation we express it most generally in
terms of the unit matrix 1 and the Pauli matrices ~� ¼
ð�x;�y; �zÞ as [see Eq. (1) of Ref. [21]],

Heff ¼ e1 þ e2
2

1þ ~� � ~h;

~h ¼ ðHS
12; H

A
12; ðe1 � e2Þ=2Þ:

(3)

All entries ofHeff are complex and depend on (s; �) but not
on f in the considered frequency range. Fitting the Smatrix
Eq. (1) to the measured one determines Heff andW1�;W2�

up to common real orthogonal basis transformations. As in

FIG. 1. Two typical spectra jS11ðfÞj2 for B ¼ 38 mT and the
parameter settings ðs; �Þ ¼ ð1:66; 41:79Þ mm (solid line) and
ðs; �Þ ¼ ð1:99; 41:76Þ mm (dashed line), respectively, in the
vicinity of the EP, which is located at ðsEP; �EPÞ ¼ ð1:72�
0:01; 41:78� 0:01Þ mm. Inset: Top view (to scale) of the mi-
crowave billiard. The setup is described in the text.
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[21] we choose the basis such that the ratio of the off-
diagonal elements of Heff equals

HS
12 þ iHA

12

HS
12 � iHA

12

¼ e2i�; � 2 ð��=2; �=2Þ; (4)

with a real T -violation parameter �. Maximal T violation
occurs for � ¼ ��=4. In the T -invariant case HA

12 ¼ 0
[22] one has � ¼ 0. The transformation to this basis is

achieved with Ô0 ¼ ei�0�y where, in terms of the compo-

nents of ~h, tanð2�0Þ ¼ Imðh3=h2Þ=Imðh1=h2Þ. The fitting
procedure was tested thoroughly in [21] via comparison
with the method used in [20] to determine the complex
eigenvalues of Heff . With Eq. (3) the complex eigenvalues
Ej ¼ fj � i�j=2 of Heff are given as

E1;2 ¼ f1 þ f2
2

� i
�1 þ �2

4
�

ffiffiffiffiffi
D

p
;

D ¼ jRe ~hj2 � jIm ~hj2 þ 2iRe ~h � Im ~h:

(5)

At an EP the radicandD vanishes, so that jRe ~hj2 ¼ jIm ~hj2
with jRe ~hj2; jIm ~hj2 nonvanishing, and Re ~h � Im ~h ¼ 0. The
EP was found by proceeding as described in [21]. It was
confirmed by determining the geometric phases gathered
by the eigenvectors of Heff on encircling the EP.

The real parts of the eigenvalues yield the positions, the
imaginary parts the widths of the resonances in the mea-
sured spectra jSabðfÞj2. Since the system is dissipative, the
widths �1;2 > 0 are nonvanishing and, consequently, the

eigenvalues are complex in the whole parameter plane. Yet,
we will demonstrate in the following that there exists a
curve in the parameter plane along which the eigenvalues
E1;2 ¼ E1;2 þ ið�1 þ �2Þ=4 of the non-Hermitian

Hamiltonian H ¼ Heff þ i1ð�1 þ �2Þ=4 are either real
or complex conjugate. This entails [3–5] that H has a
PT symmetry along this curve, which is of so-called
passive type. The situation is similar to that in the experi-
ments with optical waveguides without active laser pump-
ing [10] and in Bose-Einstein condensates with leakage
and without injection [29]. A pair of real eigenvalues
typical for PT -symmetric systems would correspond to
resonances of zero width [13]. It is obtained only after a
suitably chosen width offset. This can be avoided by a
pumping mechanism [9,12,19]. However, the eigenvectors
and thus the physics of PT symmetry and of the phase
transition to spontaneously broken PT symmetry at an EP
are not affected by this shift. Furthermore, the dissipation
and, consequently, the shift depend only marginally on the
parameters s and �, and thus the excitation frequency.
Accordingly, we will consider H instead of Heff . Note

that T̂ does not commute with the non-Hermitian H , not
even when the internal Hamiltonian H is T invariant, as is
the case for B ¼ 0. Yet there is a curve in the parameter
plane on which H is PT symmetric.

Experimental results.—We located the curve in question

by plotting for a given B the difference E1 � E2 ¼ E1 �

E2 ¼ 2
ffiffiffiffiffi
D

p
in the parameter plane. The left and right

panels of Fig. 2 show the distances of the eigenvalues for
B ¼ 0 and B ¼ 38 mT, respectively. The darker the color,
the smaller the respective distance. The color scale was
chosen such that only distances jf1 � f2j< 3 MHz and
j�1 � �2j< 0:35 MHz are shown colored. We observe
that in both panels the distances of the real parts of the
eigenvalues are small to the left side of the EP, i.e., for s <
sEP, those of the imaginary parts for s > sEP and both
vanish at the EP, ðs; �Þ ¼ ðsEP; �EPÞ. Along the curve of
darkest color they are vanishingly small. Figure 3 shows

the three parts ofD defined in Eq. (5), jRe ~hj2, jIm ~hj2, and
Re ~h � Im ~h, separately along this curve, in the left panel for
B ¼ 0 and in the right one for B ¼ 38 mT. Note the
continuity of the curves, which demonstrates the precision
of the measurements and of the determination of Heff . In
fact, each point was obtained from an independent fitting.

For both values of B, Re ~h � Im ~h (triangles) is vanishingly
small; that is, the radicand D is approximately real along

the dark curves in Fig. 2. The curves jRe ~hj2 (crosses) and
jIm ~hj2 (circles) cross at the EP. For s > sEP the former is

larger than the latter; consequently,
ffiffiffiffiffi
D

p
and thus the

eigenvalues of H are real. They change into a pair of
complex conjugate eigenvalues for s < sEP. The transition
takes place at the EP. This behavior is reminiscent of that of
a PT -symmetric Hamiltonian complemented by a spon-
taneous breaking of the PT symmetry of its eigenvectors
at the EP.
Interpretation of the experiment.—To reveal the PT

symmetry ofH along the curve Re ~h � Im ~h ¼ 0, we search
for the basis transformation which yields the parity opera-

tor as P̂ ¼ �x. Most generally, in this basis a Hamiltonian

that commutes with P̂ T̂ can be written in the form

HPT ¼ Aþ iB Cþ iD
C� iD A� iB

� �
with A;B;C;D2 R: (6)

The eigenvalues of HPT are real when its eigenvectors also

commute with P̂ T̂ , complex conjugate otherwise. If T

FIG. 2 (color online). Differences of the complex eigenvalues
E1;2 ¼ f1;2 � i�1;2=2 in an area of the parameter plane (s; �)
around the EP located at ðsEP; �EPÞ ¼ ð1:68� 0:01; 41:19�
0:01Þ mm for B ¼ 0 (left panel) and at ðsEP; �EPÞ ¼
ð1:72� 0:01; 41:78� 0:01Þ mm for B ¼ 38 mT (right panel).
The darker the color, the smaller the respective difference.
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invariance is violated, HA
12 in Eq. (3) and � in Eq. (4) are

nonvanishing. TheT -violation parameter � varies with the
parameters s and �, because the wave functions [20,30]
and thus the electromagnetic field at the position of the
ferrite change with the opening size s of the slit and the
position � of the Teflon piece. In Fig. 4 we show for B ¼
38 mT its change along the curve characterized by Re ~h �
Im ~h ¼ 0. On this curveH can be brought into the form of
Eq. (6). The transformation

Û ¼ e�ið�=2Þ�z ¼ expð�i�=2Þ 0

0 expði�=2Þ

 !

turns H into a complex symmetric matrix. For a

T -invariant scattering process � ¼ 0 and Û ¼ 1, because
thenH is already complex symmetric [see Eq. (3)]. If and

only if D is real, i.e., Re ~h � Im ~h ¼ 0, there is a basis

transformation that brings ÛH Ûy to the form of Eq. (6).
This is achieved with the real orthogonal transformation

Ô ¼ ei��y , where tanð2�Þ ¼ Imh1=½Imh3 cos��. The
transformation yields Eq. (6) with A ¼ ðf1 þ f2Þ=2, B ¼
Imh1=½sinð2�Þ cos��, C ¼ Reh1=½cosð2�Þ cos��, and
D ¼ 0.

Conclusions.—We experimentally identified a curve in
the parameter plane along which the eigenvalues ofH are
either real or complex conjugate. There, the radicand D is

real, i.e., Re ~h � Im ~h ¼ 0. This relation is independent of

the basis representation ofH . We have specified the basis
transformation, which brings H to the form of Eq. (6)
along the curve. In that basis,PT symmetry corresponds

to invariance with respect to P̂ T̂ . If the scattering system is
T invariant, that is for B ¼ 0, the basis change is achieved

with the real orthogonal transformation Ô, i.e.,

½P̂ T̂; ÔH ÔT� ¼ 0. In distinction to previous experiments
[9,10,12], the present data include T violation of the
scattering process, induced with an external magnetic field

B � 0. In that case, the unitary basis transformation Ô Û
brings H to the form of Eq. (6); that is,

½P̂ T̂; Ô ÛH ÛyÔT� ¼ 0. Thus, H is invariant under the

antilinear operator Û0T̂, where Û0 ¼ ÛyÔTP̂ Ô Ûy is uni-
tary, in accordance with [4]. As predicted, the change from
real eigenvalues for s > sEP to complex conjugate ones for
s < sEP is accompanied by a spontaneous breaking of PT
symmetry of the eigenvectors of Ô ÛH ÛyÔT at the EP;

that is, they cease to be eigenvectors of P̂ T̂ [3,5].
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