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ABSTRACT:An electronic structure method is said to be size-consistent if the energy of noninteracting fragments is the samewhen
the fragments are treated in a supermolecule approach or are treated in isolation. Size consistency is often violated by Hartree�Fock
when symmetries of the exact wave function are imposed on the Hartree�Fock determinant. Relaxing the requirement that the
Hartree�Fock wave function be a spin eigenfunction leads to unrestricted Hartree�Fock, which is often (but not always) size-
consistent. In this Perspective, we discuss the usually forgotten fact that imposing none of the exact symmetries in what is known as
generalized Hartree�Fock allows Hartree�Fock to always be size-consistent and allows size extensive correlated methods such as
coupled cluster theory to also be size-consistent. Furthermore, with all symmetries broken, dissociation curves connect the molecule
to the fragments better than with symmetries imposed, although the curves are not smooth and show derivative discontinuities akin
to unphysical phase transitions. In many cases, correlated dissociation curves based on this generalized Hartree�Fock reference are
discontinuous.

1. INTRODUCTION

The past three decades have not been kind to the variational
principle in quantum chemistry. Typical state-of-the-art cor-
related calculations employ some variant of coupled cluster
theory,1�4 which has many strengths but which in practice
requires us to abandon the variational principle altogether.
Typical mean-field calculations, on the other hand, use some
form of Kohn�Sham density functional theory with an approx-
imate exchange-correlation functional; though the variational
principle does not hold for these functionals, we blithely apply
it nonetheless. Meanwhile, such genuinely variational methods
as Hartree�Fock (HF) and configuration interaction have all
but disappeared from the computational toolkit, at least in
practice.

On the other hand, it should not be forgotten that even in the
case of Hartree�Fock, we have not historically taken the
variational principle too seriously. That is, we have chosen to
constrain the variation inHartree�Fock by requiring theHartree�
Fock determinant to display at least some of the symmetries of
the exact wave function, thereby abandoning full variational
flexibility in favor of obtaining more qualitatively correct wave
functions. Thus, the restricted Hartree�Fock (RHF) wave
function is chosen to be an eigenfunction of the spin operators
Ŝ2 and Ŝ3, as well as the time-reversal operator Θ̂ and generally
the point-group operators P̂. The wave function is also usually
taken to be real (that is, it is an eigenfunction of the complex
conjugation operator K̂). The price we pay for preserving these
symmetries is that RHF cannot dissociate a closed-shell molecule
to the correct open-shell fragments. By this, we mean that RHF is
not generally size-consistent, i.e., the energy of a dissociated
molecule is not generally equal to the sum of the energies of the
dissociation fragments. In unrestricted Hartree�Fock (UHF),
we allow the wave function to break symmetry under Ŝ2 and P̂ but
not under Ŝ3 (in other words, we allow for spin contamination
and spatial symmetry breaking, but we fix the number of spin-up
and spin-down electrons). In simple cases, UHF is size-consistent,

but it is not a panacea. The UHF dissociation limits for O2 and
CO2, for example, are not size-consistent. Generally, UHF
correctly dissociates a molecule to UHF fragments only if the
open-shell electrons on a given fragment all have the same spin.
Occasionally, wemust allow the wave function to be complex, i.e.,
for the density matrix and the orbital coefficients to be complex,
although the basis functions may remain real.

Our concern here is with generalized Hartree�Fock (GHF),
in which we take the variational principle at face value and impose
none of the correct symmetries on the Hartree�Fock wave
function. The purpose of this paper is to remind the community
that if we are willing to sacrifice all symmetries of the wave
function by using GHF, then we can dissociate any molecule to
GHF fragments. The GHF wave function of the dissociated
molecule is just the product of the GHF wave functions of the
fragments, and the dissociation curve is size-consistent. General-
ized Hartree�Fock has seen only limited use, presumably
because the wave functions it delivers can be qualitatively
unreasonable and good quantum numbers are difficult to recover
once lost. On the other hand, achieving size consistency while
preserving the symmetries of the wave function is a difficult
task.5�8 Thus, there is a trade off as to what else one wants to do
with these wave functions, and for many properties, it is better to
keep some symmetries. For molecular dissociations, GHF allows
us, in essence, to connect one UHF potential energy curve with
another, thus obtaining an energetically reasonable zeroth-order
dissociation curve for all bond lengths. The qualitative deficien-
cies in the GHF wave function can then in principle be corrected
by the application of post-GHF correlated methods such as
coupled cluster theory, though such corrections are not, as we
shall see, without their own problems.
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2. GENERALIZED HARTREE�FOCK AND SYMMETRY

Elementary considerations make it clear that if a Hermitian
operator Λ̂ commutes with the Hamiltonian Ĥ, then eigenstates
|Ψæ of the Hamiltonian are also eigenstates of Λ̂ (or can be
chosen as such in the case of degeneracies). That is, we have

ĤjΨæ ¼ EjΨæ ð1aÞ

Λ̂jΨæ ¼ λjΨæ ð1bÞ
where λ is the eigenvalue of Λ̂ and is a good quantum number. In
the case of the hydrogenic Hamiltonian, for example, the orbital
angular momentum operators L̂2 and L̂3 commute with the
Hamiltonian, as does the spin operator Ŝ3. [We have used L̂3 and
Ŝ3 and not L̂z and Ŝz essentially to indicate that the spatial
direction of angular momentum quantization is irrelevant.] Thus,
in addition to the principle quantum number n, which labels the
energy, we obtain the familiar additional quantum numbers l, ml,
and ms.

Approximate wave functions need not have all the symmetries
of the real wave function (or, in other words, need not have the
same good quantum numbers). Forcing an approximate wave
function |Φæ to be symmetry-adapted introduces constraints
which reduce variational flexibility. One is forced to choose
between finding the variationally optimal wave function and
one which has the right symmetries. L€owdin was the first to point
out this conundrum, which he called the symmetry dilemma.9

A common situation in which one faces the symmetry
dilemma is in the dissociation of closed-shell molecules to
open-shell fragments. If the Hartree�Fock wave function is

optimized by preserving spatial and spin symmetry, then the
predicted potential energy curve does not dissociate to the
correct limit. On the other hand, allowing the Hartree�Fock
wave function to break spatial and spin symmetry enables it to
dissociate to the energetically correct limit with, however, a
qualitatively incorrect wave function. When we can lower the
energy by breaking a symmetry in the Hartree�Fock wave
function, we say that theHartree�Fock wave function is unstable
with respect to that symmetry.

It is useful to classify the different solutions according to the
self-consistent symmetries they preserve, an effort first under-
taken by Fukutome.10 Tomake this classification transparent, we
must first discuss the symmetries of the electronic Hamiltonian.
We note that if there is any symmetry present in the initial guess
of the density matrix, then this symmetry will be preserved
throughout the optimization procedure. That is, symmetries are
self-consistent in the Hartree�Fock equations.

For any molecular system, the wave function |Ψæ must be an
eigenfunction of the particle number operator N̂ . Solutions that
break particle number symmetry are rare in quantum chemistry,
but it is violated by the Bardeen�Cooper�Schrieffer (BCS)
wave function.11 For net repulsive interactions such as the Cou-
lombic 1/r12 repulsion between electrons in quantum chemistry,
the BCS wave function does not yield an energy lower than the HF
wave function.12 The standard electronic Hamiltionian is addition-
ally invariant to spin rotations and time reversal. Finally, the point-
group symmety determined by the nuclear framework is also
preserved in exact solutions to the electronic Schr€odinger equation.

The fact that the Hamiltonian is invariant to spin rota-
tions implies that the exact eigenfunctions of the electronic
Hamiltonian can always be labeled by the s andms quantum num-
bers, corresponding to the spin operators Ŝ2 and Ŝ3. The time
reversal operator Θ̂and the complex conjugation operator K̂ also
commute with the Hamiltonian, but the fact that they are
antiunitary operators precludes their association with good
quantum numbers.13

We will not discuss the group theoretical classification pre-
sented by Fukutome in great detail, but Table 1 does show the
different Hartree�Fock solutions discussed by Fukutome, as
well as the symmetries they preserve. We also include the
designation recently suggested by Stuber and Paldus14 in con-
nection with each of Fukutome’s solutions. We emphasize that
the solutions we present are independent of the point group
symmetry of the molecule; point group symmetry can be
separately imposed on the Hartree�Fock wave function or
not. Additionally, the classification is valid both for closed-shell
and for open-shell wave functions.

Typically, we consider only the real RHF (or ROHF) and real
UHF solutions. Complex solutions are known but are rarely
sought.15 While GHF solutions have been explored by L€owdin16

and others, they are searched for more rarely still, even though
Overhauser showed that in the uniform electron gas, the para-
magnetic (RHF) state is always unstable with respect to the
formation of helical spin density waves (which are GHF states).17

In quantum chemistry, GHF solutions have been found, for
example, in the beryllium atom in some basis sets, in BH, in H4,
and in a few other cases.10,14,16

3. HARTREE�FOCK STABILITY

The essence of Hartree�Fock is to find the single determinant
which minimizes the expectation value of the Hamiltonian.

Table 1. Classification of Hartree�Fock Solutions According
to the Symmetries of the ElectronicHamiltonianThey Preservea

Fukutome

designation

Stuber�Paldus

designation

symmetries

preserved

structure of orbital

coefficient matrix C

TICSb real RHF Ŝ2, Ŝ3 K̂, Θ̂
Cσσ 0
0 Cσσ

 !
,C ∈ R

CCWc complex RHF Ŝ2, Ŝ3
Cσσ 0
0 Cσσ

 !

ASCWd paired UHF Ŝ3 Θ̂
Cσσ 0
0 C

�
σσ

 !

ASDWe real UHF Ŝ3 K̂
Cσσ 0
0 Cσ0σ0

 !
,C ∈ R

ASWf complex UHF Ŝ3
Cσσ 0
0 Cσ0σ0

 !

TSCWg paired GHF Θ̂
Cσσ Cσσ0

� C
�
σσ0 C

�
σσ

 !

TSDWh real GHF K̂
Cσσ Cσσ0

Cσ0σ Cσ0σ0

 !
,C ∈ R

TSWi complex GHF
Cσσ Cσσ0

Cσ0σ Cσ0σ0

 !

aWe include the acronyms suggested by both Fukutome10 and Stuber
and Paldus14 in each of these solutions. The structure of the matrix of
orbital coefficients is also included for clarity along with any constraints
in the matrix elements. bTime-reversal invariant closed-shell. cCharge
current wave. dAxial spin current wave. eAxial spin density wave. fAxial
spin wave. gTorsional spin current wave. hTorsional spin density wave.
iTorsional spin wave.

Pierre-Francois Loos
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In practice, we solve

∂

∂ÆΦj ÆΦjĤjΦæ ¼ 0 ð2Þ

subject to |Φæ being a normalized determinant. This, of course,
guarantees no more than that the energy is stationary. To
determine whether or not the energy is a local minimum, we
must check the second derivative as well.18�20

Determinants can be parametrized in terms of orbital rotations
which mix occupied and virtual orbitals. The stationarity condi-
tion on the energy is simply

ÆϕajF̂ jϕiæ ¼ 0 ð3Þ
where F̂ is the Fock operator and where, here and in the
following, indices i and j will refer to occupied orbitals and a
and b will refer to virtual orbitals. To check the second derivative
of the Hartree�Fock energy, it suffices to check the eigenvalues
of the Hartree�Fock orbital Hessian

H ¼ A B
B
�

A
�

 !
ð4Þ

where

Aia, jb ¼ Æϕiϕbjjϕaϕjæ þ ÆϕbjF̂ jϕaæδij � ÆϕijF̂ jϕjæδab
ð5aÞ

Bia, jb ¼ Æϕiϕjjjϕaϕbæ ð5bÞ
in terms of the usual antisymmetrized two-electron integrals in
Dirac notation. One can restrict the sectors of the Hessian one
includes so as to test only for certain types of instabilities. For
example, spin-adapting the Hessian searches only for so-called
RHF instabilities (instabilities to states which are eigenfunctions
of Ŝ2) and removing spin-flip blocks which mix spin-up occupied
orbitals with spin-down virtual orbitals (and vice versa) tests only
for RHF and UHF instabilities.

When the orbital Hessian has a negative eigenvalue, a lower
energy Hartree�Fock solution exists, which typically displays
lower symmetries. The eigenvector associated with this nega-
tive eigenvalue distorts the wave function in the direction of
the broken symmetry solution. Having followed this eigen-
vector and obtained the self-consistent broken symmetry
solution, we can repeat the stability analysis. At some point,
we will converge to a Hartree�Fock solution which is at least
locally stable within the manifold under consideration (i.e.,
has no negative eigenvalues). This solution will generally be
one of several degenerate solutions which have broken the
same symmetries in different ways. A fact usually unknown in
quantum chemistry is that the Hessian corresponding to the
broken symmetry solution will have zero eigenvalues, with
eigenvectors pointing toward these degenerate solutions,
usually known as Goldstone modes. By forming appropriate
linear combinations of these broken symmetry solutions, one can
restore the symmetry, though not at the single-determinant
level.21,22

As pointed out by Piecuch et al., when the symmetry broken
UHF state is spin projected, the projected wave function contains
information about higher level excitations.23 Presumably, the
same is true in the case of projected GHF.

Closely related to the Hartree�Fock orbital Hessian is the
random phase approximation (RPA), where one diagonalizes

R ¼ A B
�B

� �A
�

 !
ð6Þ

to obtain excitation energies of the system. When the Hartree�
Fock solution is unstable, the RPA will yield some complex
eigenvalues. From the stable but broken symmetry Hartree�
Fock state, the RPA matrix will contain zero eigenvalues asso-
ciated with so-called collective motions that restore the broken
symmetry, as already mentioned above.21

The much thornier question of whether one has obtained not
a local minimum but a global minimum cannot generally be
answered in a practical way.

4. MOLECULAR DISSOCIATION

Consider a molecule AB dissociating to well-separated frag-
ments A and B.We will assume that in isolation, fragment A has a
GHF wave function |ΦAæ with energy EA, and fragment B has a
GHF wave function |ΦBæ and corresponding energy EB. For
the well-separated AB system, we construct the wave function
|ΦABæ = |ΦAΦBæ, which is still of the GHF form. It is not difficult
to show (see the Appendix for details) that the energy corre-
sponding to |ΦABæ is

EAB ¼ EA þ EB þ qAqB
RAB

ð7Þ

when the fragments are sufficiently far apart; here, qA and qB
are the total charges on the two fragments and RAB is the
distance between the center of charges of the two fragments.
Clearly, in the limit of infinite separation, our wave function
|ΦABæ yields the correct dissociation limit, EAB = EA + EB. In
other words, nothing prevents the most general Hartree�
Fock wave function from correctly dissociating to general-
ized Hartree�Fock fragments. Dissociation to multiple
fragments is also shown to be correct by the foregoing,
essentially in a recursive manner (i.e., EABC = EAB + EC =
EA + EB + EC).

That this result does not hold in general for RHF orUHFwave
functions is well-known, and the reason for this failure is quite
simple: the UHF and particularly the RHF wave functions
enforce symmetries which exclude |ΦABæ from the variational
space. In the case of H2 at infinite separation, for example,
|ΦABæ cannot be an RHF wave function because |ΦABæ =
|ΦAΦBæ is not an eigenfunction of Ŝ2. In the case of O2 at
infinite separation, as we shall see, UHF can only obtain the
correct dissociation limit with mS = 0 or mS = (2; neither of
these connect to the UHF ground state wave function at
equilibrium, which has mS = (1. The GHF wave function,
however, simply reduces to the UHF triplet near equilbrium
(mS = (1) and at dissociation to the UHF singlet (mS = 0),
because it does not conserve mS.

5. RESULTS

The RHF, UHF, and GHF calculations shown in this work
have been performed using a development version of the
Gaussian suite of programs.24,25 We have carried out correlated
calculations at second order in perturbation theory (MP2), as
well as with coupled cluster doubles1,2 (CCD) and coupled cluster
singles and doubles26�30 (CCSD). Correlated calculations on
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RHF and UHF references were done usingGaussian, while those
calculations on GHF references were done using an in-house
program which reads the GHF eigenvectors from Gaussian and
which works in the spinorbital basis. We verified the correctness
of this program by comparison to Gaussian’s MP2, CCD, and
CCSD results for RHF and UHF references, as well as for rotated
UHF references (i.e., UHF references in which the wave function
is an eigenfunction of Ŝx rather than of Ŝz).

All GHF solutions reported in this work are real GHF
solutions, and we did not find any complex solutions with lower
energy than the GHF solutions shown. Gaussian does not have
the capability of analyzing the stability of GHF-type wave
functions, though there is the capability to test whether UHF
solutions are GHF-stable. Thus, we cannot guarantee that there
are no GHF solutions other than those we are reporting. We did
generate a variety of different initial guesses in an attempt to
recover as many GHF solutions as possible. In selected cases, we
have tested the stability of GHF solutions using our in-house
program.

Throughout, we have used Dunning’s cc-pvdz basis set31 with
Cartesian d functions. While this basis is of minimal utility for
high-accuracy prediction of molecular properties using corre-
lated wave functions, it should be adequate for our purpose,
which is simply to show the qualitative features of GHF and post-
GHF calculations.
5.1. Dissociation of O2.Let us begin by considering O2. In the

ground state, O2 dissociates through the
3Σg

� surface into two 3P
oxygen atoms. Describing triplet O2 at the UHF level requires us
to have mS =(1, while describing two triplet oxygen atoms with
UHF requires each atom to havemS =(1 and the overall system
to therefore have mS = 0 or mS = (2.
There are, then, three relevant broken symmetry UHF states

for our purposes, shown in Figure 1 along with the symmetry
preserving UHF solution 3Σg

�. The triplet UHF curve at equi-
librium cannot properly dissociate into two triplet atoms. Both
the broken-symmetry singlet (mS = 0) and quintet (mS = (2)
curves are excited states at equilibrium but correctly dissociate to
two triplet atoms, which the singlet approaches from below and

the quintet approaches from above. It is clear that the triplet
curve must cross both the singlet and the quintet. What we might
prefer is to follow the UHF triplet solution near equilibrium and
the UHF singlet near dissociation. This is precisely what GHF
delivers: the lowest energy GHF solution connects the broken
symmetry UHF triplet solution at equilibrium with the broken
symmetry UHF singlet solution for r J 1.5 Å. In this case, the
GHF dissociation curve is differentiable but not smooth. At
dissociation, the orbitals are localized onto the atoms and
become the GHF atomic orbitals, exactly as we would expect
for a product wave function of the form |ΦABæ = |ΦAΦBæ.
Figure 2 zooms in on the region where the UHF triplet and

singlet cross. There is a small region over which a GHF solution
exists, connecting the two surfaces. In Figure 2, we show how the
GHF solution rotates the spin densities on the oxygen atoms
from being parallel for r < 1.42 Å to being antiparallel for r > 1.5
Å, where the GHF solution coincides with the broken symmetry
singlet solution. The expectation value of Ŝ2 goes down until it
merges with the curve corresponding to the spin-contaminated
singlet solution.
In Figure 3, we show the coupled-cluster results for the

dissociation of O2 on the singlet and triplet UHF references
and on the GHF reference, as well as the corresponding reference
dissociation curves. Using the UHF triplet as a reference, coupled
cluster is not size-consistent, but using the GHF curve as a
reference, it is. In the case of CCD (as well as MP2, not shown)
the curves are continuous using a GHF reference. However, the
CCSD curve on the GHF reference appears to be discontinuous.

Figure 1. Dissociation curves of the oxygen molecule computed at the
HF level. The zero of energy has been set at the energy of two triplet
UHF oxygen atoms. We show the lowest energy UHF singlet, triplet,
and quintet solutions, as well as the symmetric UHF triplet. The GHF
curve connects the UHF triplet solution at equilibrium with the UHF
singlet solution for r J 1.5 Å.

Figure 2. Top panel: Zoom-in of the region of the dissociation curve
of O2 where a GHF solution is lower than either of the UHF solutions.
Middle panel: Expectation value of Ŝ2 for the broken symmetry UHF
singlet, UHF triplet, and GHF solutions. Note that ÆŜ2æ diminishes for
the GHF solution when it goes from the triplet UHF solution and
merges into the spin-contaminated singlet solution. Bottom panel:
Mulliken atomic densities of the two oxygen atoms (left and right) as
a function of the bond length for the GHF solution. Observe how the
spin densities rotate from being parallel for r < 1.42 Å to being
antiparallel for r > 1.5 Å.
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This can be readily understood in the following way: The effect of
single excitations is simply to rotate the orbitals.18 In the region
of the potential energy curve where GHF is distinct from the
UHF triplet, the single excitations will thus rotate the GHF
reference toward the UHF triplet reference (and indeed, we see
very little difference in their energy). Where the GHF joins
the UHF singlet, however, the standard initial guess for the single
excitation amplitudes forces CCSD to preserve mS = 0. Since the
CCSD curves based on the UHF singlet and triplet do not
intersect at the same point as do the reference Hartree�Fock
curves, we therefore see a discontinuity in the CCSD curve. The
discontinuities in the CCSD curve appear to be, in other words,
essentially due to abrupt changes in the character of the reference
determinant and not due to the existence of multiple solutions to
the CCSD equations per se. It may be that with a sufficiently
clever initial guess that rotates the UHF singlet toward the UHF
triplet, the CCSD curve can be made continuous, though we
cannot guarantee this. The results of Li and Paldus32 suggest that
configuration interaction based on the GHF curve would quite
probably be smoother, though no longer size-consistent. Because
we use the lowest energy UHF solution as a reference at every
geometry, the CCD and MP2 curves behave somewhat errati-
cally where the UHF solution bifurcates.
If we were to continue to increase the level of correlation, the

coupled-cluster curve based on the UHF triplet would improve,
particularly near dissociation. Presumably the coupled-cluster
curve based on the GHF reference would do likewise, provided
with the correct initial guess. In Figure 4, we show the
CCSD(T)33 curves using the singlet and triplet UHF references.

The curve marked as using the GHF reference in fact uses one of
the two UHF states as a reference in the region where the GHF
and UHF states are identical. We have not included data from the
region where GHF is distinct from UHF, as we do not have a
genuine GHF-based CCSD(T) implementation. Qualitatively,
there is little distinction between the CCSD and CCSD(T)
results, which is to be expected, though we note that indeed the
difference between the singlet and triplet dissociation limits for
CCSD(T) is less than the corresponding difference for CCD or
CCSD. Eventually, as we reach full configuration interaction, the
UHF-based and GHF-based coupled cluster curves would coin-
cide. Finally, we point out that while GHF does go to the right
limit, it does so with an artificial barrier to the formation of the
bond in O2. This is much in analogy with the behavior of UHF in
N2, which likewise goes to the proper limit but with an unphysical
bump. Adding explicit correlations, as expected, eliminates
the bump.

Figure 3. Top Panel: Coupled-cluster doubles and Hartree�Fock
curves for the dissociation of O2. Bottom Panel: Coupled-cluster singles
and doubles and Hartree�Fock curves for the dissociation of O2. The
zero of energy has been set at the energy of two triplet oxygen atoms.

Figure 4. Hartree�Fock and CCSD(T) curves for the dissociation
of O2. The zero of energy has been set at the energy of two triplet oxygen
atoms. Comparison with Figure 3 shows that CCSD(T) andCCSDhave
no qualitative differences in this case. The curve marked as the GHF-
based CCSD(T) uses the UHF triplet as a reference for small R and the
UHF singlet as a reference for large R.

Figure 5. Dissociation curves of the CO2 molecule into a carbon atom
and a pair of oxygen atoms, computed at theHF level. The zero of energy
has been set at the energy of UHF triplet atoms. We show the lowest
energy UHF singlet, triplet, and septet solutions as well as the RHF
solution and two GHF solutions. There are two kinks in the lowest
energy GHF curve, as can be seen more clearly in Figure 6.
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5.2. Symmetric Dissociation of CO2. Now, we turn to the
description of the atomization of CO2 by symmetric stretching of
the CdO bonds. The ground state dissociation occurs through
the 1Σg surface into two

3P oxygen atoms and a 3P carbon atom.
At the UHF level, the appropriate dissociation limit can then only
be reached withmS =(3 andmS =(1, though at equilibrium the
system must clearly have mS = 0.
Dissociation curves computed at the HF level are shown in

Figure 5. This figure includes the symmetric RHF solution 1Σg,
which has a triplet instability for r > 1.6 Å, yielding the singlet
UHF solution. Several broken symmetry triplet solutions were
found, the lowest energy of which is included in the figure, as is
the broken symmetry septet solution. The lowest energy GHF
solution has two kinks, as explained below.
In Figure 6, we zoom in on the region of the potential energy

curve where the various UHF solutions cross each other. Three
different GHF solutions were found. The first (dashed in
Figure 6) crosses the RHF solution near r = 1.5 Å; we can
continue to follow this solution to r≈ 1.46 Å, but no further. This
same GHF solution crosses the UHF triplet near r = 1.64 Å and
can be followed until r ≈ 2.1 Å. The second GHF solution
(dashed-dotted in Figure 6) connects to the UHF broken-
symmetry triplet and crosses the first GHF solution near
r = 1.64 Å. A third solution can also be found in this vicinity,
but it is slightly higher in energy.
While we can continuously follow various GHF curves from

the RHF solution at equilibrium to the UHF triplet at dissocia-
tion, the result is not differentiable due to the kinks mentioned
above. We looked for other GHF solutions near these kinks, to
smooth the transition from one curve to another, but were unable
to find any. Stability analyses every 0.005 Å between 1.5 Å and
1.65 Å revealed no GHF instabilities in our solutions. We have
used a quadratically convergent algorithm34 to follow solutions as
far as possible.
In Figure 7, we show the results from MP2 based on the GHF

reference. While the MP2 curve on the GHF reference is
continuous inO2, it is discontinuous here. This is simply because,
unlike in O2 where the GHF solution merges with the UHF
triplet and UHF singlet, here in CO2 the GHF solutions, as we

have already noted, continue past the points where they cross the
RHF and UHF triplet curves. Thus, unlike in O2, the orbitals and
orbital energies on the lowest-energy Hartree�Fock reference
change abruptly at the curve crossings, and the MP2 becomes
discontinuous. Coupled cluster will inherit these same deficiencies.
5.3. Asymmetric Dissociation of CO2. The last example we

consider corresponds to the asymmetric dissociation of the CO2

into an oxygen atom and CO. In the ground state, this process
occurs through the 1Σ surface dissociating into a 3P oxygen atom
and a 1Σ+ COmolecule. Thus, only a triplet solution will yield the
right dissociation limit at the Hartree�Fock level.
Dissociation curves computed at the HF level are shown in

Figure 8. We show the symmetric RHF solution 1Σ along with a
broken symmetry singlet UHF solution. Figure 8 also shows the
lowest energy triplet UHF solution, which is unbound but which
goes to the energetically correct dissociation limit. Finally, we
include twoGHF solutions. The lowest energy GHF curve shows
a kink near r = 1.8 Å, where the triplet and UHF singlet cross.
Note that there is another solution which is bound and has lower
energy for small interatomic separations.

Figure 6. Zoom-in of the region of the symmetric dissociation curve
of CO2 where GHF solutions are lower than any of the UHF solutions.
Three different GHF solutions were found in the interval 1.4 Å < r <
1.7 Å. None of the solutions connect smoothly with the RHF/UHF
curve. We have succeeded in following the GHF solutions a short way
past the point where they cross various UHF solutions.

Figure 7. Second-order and Hartree�Fock curves for the dissociation
of CO2. The zero of energy has been set at the energy of isolated atoms.
The GHF-based MP2 curve connects the two UHF-based curves, with a
jump where the GHF and UHF singlet solution merge.

Figure 8. Dissociation curves of CO2 molecule into an oxygen atom
and the CO molecule, computed at the HF level. One of the C�O
distances has been kept constant at r= 1.1621 Å.We show the symmetric
RHF curve, the broken-symmetry UHF singlet and triplet, and twoGHF
solutions.



2673 dx.doi.org/10.1021/ct200345a |J. Chem. Theory Comput. 2011, 7, 2667–2674

Journal of Chemical Theory and Computation PERSPECTIVE

Figure 9 zooms in on the region of the potential energy surface
where GHF connects the singlet and triplet UHF states. Of our
two GHF solutions, one connects to the singlet and the other to
the triplet. These two solutions intersect at r ≈ 1.78 Å, and we
were unable to find other GHF solutions which connect them
smoothly. Stability analysis of the lowest energy GHF solution
every 0.005 Å between 1.77 Å and 1.80 Å revealed no GHF
instabilities.

6. DISCUSSION

As we have seen, relaxing all of the symmetry constraints
allows for Hartree�Fock to reach the energetically correct
dissociation limit for several molecules for which RHF and
UHF are not size-consistent. The price we pay for having the
right behavior at equilibrium and size-consistent dissociation is
that the GHF dissociation curve is not always smooth or even
always differentiable. This is in analogy with UHF instabilities,
where the wave function need not have continuous derivatives,
but the situation appears to be somewhat exacerbated in GHF.
We point out that due to the nonlinearity of the Hartree�Fock
equations, this same phenomenon may exist in following the
lowest energy RHF or UHF solution at each geometry. It is also
worth noting that often one can find myriad GHF solutions
which, however, cannot always be followed from one nuclear
configuration to another. In other words, GHF is a rather tricky
method. We point the interested reader to work by Fukutome35

and Mestechkin36 on the properties of the potential energy
surface near a Hartree�Fock instability threshold and to work
of Fukutome37�39 on molecular dissociation.

Post-GHF correlated calculations inherit the same problems
as does GHF. Worse, when GHF solutions cross rather than
merge with higher symmetry solutions, correlated curves using
the GHF reference may be discontinuous. Additionally, the
inclusion of single excitations may be problematic, and one
presumably needs a fairly clever initial guess to force solutions
which carry the wave function from one symmetry to another
(for example, changing the value of mS from 0 to 1 in the dis-
sociation of O2). Configuration interaction may not inherit these

same problems, simply because rather than solving nonlinear
equations one merely diagonalizes the Hamiltonian in a re-
stricted space which can be chosen to include spin flips. On
the other hand, truncated configuration interaction is not size-
extensive, and for all of their qualitative weaknesses, it should not
be forgotten that size-extensive correlated techniques such as
many-body perturbation theory or coupled cluster theory in
combination with a size-consistent reference such as GHF result
in size-consistent correlated methods, which is not generally the
case when these same techniques are applied to a reference which
is not size-consistent.

’APPENDIX A. GHF AND SIZE CONSISTENCY

Let us return to our GHF-type wave function for the well-
separated AB system, |ΦABæ = |ΦAΦBæ, where we recall that
|ΦAæ and |ΦBæ are the GHF wave functions for the isolated
fragments A and B, respectively. The total energy of the system,
including the nuclear�nuclear repulsion energy, is then

EAB ¼ EnucAB þ EnucA þ EnucB þ ∑ÆϕAjhjϕAæ

þ∑ÆϕBjhjϕBæ þ 1
2∑ÆϕAϕA0 jjϕAϕA0æ

þ 1
2∑ÆϕBϕB0 jjϕBϕB0æ þ ∑ÆϕAϕBjjϕAϕBæ ð8Þ

where EA
nuc, EB

nuc, and EAB
nuc are, respectively, the nuclear repulsion

energy within fragment A within fragment B and between
fragments A and B, and where ϕA and ϕB are molecular orbitals
occupied in |ΦAæ and |ΦBæ. h = t + vA + vB, where vi represents
interactions with the nuclei in fragment i, the total energy
becomes simply

EAB ¼ EA þ EB þ EnucAB þ ∑ÆϕAjυBjϕAæ
þ∑ÆϕBjυAjϕBæþ∑ÆϕAϕBjjϕAϕBæ ð9Þ

The exchange energy between the two fragments vanishes since
the orbitals do not overlap, and the remaining integrals can all be
evaluated using the multipole expansion. The result is

EAB ¼ EA þ EB þ ðZA �NAÞðZB �NBÞ
RAB

þ O
1

R2
AB

� �
ð10Þ

where Zi andNi are, respectively, the total nuclear charge and the
total number of electrons in fragment i. Recognizing Zi�Ni = qi
gives us eq 7.
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