
J. Chem. Phys. 148, 024109 (2018); https://doi.org/10.1063/1.5010929 148, 024109

© 2018 Author(s).

Hartree–Fock symmetry breaking around
conical intersections
Cite as: J. Chem. Phys. 148, 024109 (2018); https://doi.org/10.1063/1.5010929
Submitted: 27 October 2017 . Accepted: 15 December 2017 . Published Online: 11 January 2018

Lena C. Jake, Thomas M. Henderson , and Gustavo E. Scuseria 

ARTICLES YOU MAY BE INTERESTED IN

On the difference between variational and unitary coupled cluster theories
The Journal of Chemical Physics 148, 044107 (2018); https://doi.org/10.1063/1.5011033

Lowering of the complexity of quantum chemistry methods by choice of representation
The Journal of Chemical Physics 148, 044106 (2018); https://doi.org/10.1063/1.5007779

Single-reference coupled cluster theory for multi-reference problems
The Journal of Chemical Physics 147, 184101 (2017); https://doi.org/10.1063/1.5003128

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1858055942/x01/AIP-PT/MB_JCPArticleDL_WP_0818/large-banner.jpg/434f71374e315a556e61414141774c75?x
https://doi.org/10.1063/1.5010929
https://doi.org/10.1063/1.5010929
https://aip.scitation.org/author/Jake%2C+Lena+C
https://aip.scitation.org/author/Henderson%2C+Thomas+M
http://orcid.org/0000-0002-4358-4312
https://aip.scitation.org/author/Scuseria%2C+Gustavo+E
http://orcid.org/0000-0002-4635-8126
https://doi.org/10.1063/1.5010929
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5010929
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5010929&domain=aip.scitation.org&date_stamp=2018-01-11
https://aip.scitation.org/doi/10.1063/1.5011033
https://doi.org/10.1063/1.5011033
https://aip.scitation.org/doi/10.1063/1.5007779
https://doi.org/10.1063/1.5007779
https://aip.scitation.org/doi/10.1063/1.5003128
https://doi.org/10.1063/1.5003128


THE JOURNAL OF CHEMICAL PHYSICS 148, 024109 (2018)

Hartree–Fock symmetry breaking around conical intersections
Lena C. Jake,1 Thomas M. Henderson,1,2 and Gustavo E. Scuseria1,2
1Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
2Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA

(Received 27 October 2017; accepted 15 December 2017; published online 11 January 2018)

We study the behavior of Hartree–Fock (HF) solutions in the vicinity of conical intersections. These
are here understood as regions of a molecular potential energy surface characterized by degenerate
or nearly degenerate eigenfunctions with identical quantum numbers (point group, spin, and electron
numbers). Accidental degeneracies between states with different quantum numbers are known to
induce symmetry breaking in HF. The most common closed-shell restricted HF instability is related
to singlet-triplet spin degeneracies that lead to collinear unrestricted HF solutions. Adding geometric
frustration to the mix usually results in noncollinear generalized HF (GHF) solutions, identified by
orbitals that are linear combinations of up and down spins. Near conical intersections, we observe the
appearance of coplanar GHF solutions that break all symmetries, including complex conjugation and
time-reversal, which do not carry good quantum numbers. We discuss several prototypical examples
taken from the conical intersection literature. Additionally, we utilize a recently introduced magneti-
zation diagnostic to characterize these solutions, as well as a solution of a Jahn-Teller active geometry
of H+2

8 . Published by AIP Publishing. https://doi.org/10.1063/1.5010929

I. INTRODUCTION

For the past several years, we have been interested in
the development of low-scaling computational methods for
dealing with near-degenerate states, the so-called strong corre-
lation problem.1–3 Accidental degeneracies, by which we mean
degeneracies between states with different quantum numbers,
are ubiquitous. They occur, for example, in most molecular
dissociations to open-shell fragments. At the mean-field level,
these degeneracies are associated with symmetry breaking and
can be detected by examining the eigenvalues of the symme-
try adapted molecular orbital (MO) Hessian where they lead to
well-studied instabilities of singlet, triplet, and complex char-
acters.4,5 Already, we have shown that symmetry projected
methods in their variation after the projection version6–8 are
capable of dealing with accidental degeneracies in a variety of
practical contexts.9–11

The purpose of the present study is to extend our under-
standing of symmetry breaking and restoration to the situa-
tion of conical intersections (CXs), where degenerate states
share all of the same quantum numbers. These intersections
or near-intersections are necessary for any nonadiabatic pro-
cess, providing a means of traveling between potential energy
surfaces. They play an integral role in excited state dynamics
and radiationless relaxation, explaining photochemical mech-
anisms for internal conversion. Though they have been little
explored, to use the words of Domcke, Yarkony, and Köppel,
their presence seems to be “the rule rather than the exception”
in polyatomic molecules.12

It is convenient to discuss these intersections in terms
of how the degeneracy is lifted. At a genuine CX, one can
define two directions in which the degeneracy is lifted lin-
early, together forming what is known as the branching plane.
These two directions are defined by the gradient difference

(GD) and derivative coupling (DC) vectors, defined, respec-
tively, as

~x1 =
∂(E1 − E2)

∂~R
, (1a)

~x2 = 〈ψ1
∂ψ2

∂~R
〉, (1b)

where E1 and E2 are the energies of the intersecting states,
ψ1 and ψ2 are their wave functions, and ~R are the nuclear
coordinates. The remaining 3N � 8 degrees of freedom will
conserve the degeneracy, making up the “seam” of the two
intersecting hypersurfaces. A consequence of this is that at
least three atoms are necessary for such a crossing to occur.13

In addition to defining the branching plane, ~x1 can be used
to optimize a conical intersection geometry, as it will point
toward the apex of the cone when at a nearby geometry.12,14,15

To the best of our knowledge, the only application of sym-
metry projected Hartree–Fock (PHF) to conical intersections
that has been carried out so far is in ozone,16 where non-
orthogonal configuration interaction (NOCI) in the Hartree–
Fock basis produces a qualitatively correct description of
the relevant states. The limited number of degrees of free-
dom in ozone permits a scan of all degrees of freedom, a
luxury not afforded by the molecules examined here. As
a first step in this process, we explore the Hartree–Fock
(HF) landscape in the branching planes of CXs optimized by
the Complete Active Space Self-Consistent Field (CASSCF)
method.

The description of conical intersections at the Hartree–
Fock level is complicated by the tendency of HF to break
symmetries, which precludes assigning quantum numbers to
states. After all, if we cannot assign quantum numbers, we
cannot meaningfully speak of degenerate states which have
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the same quantum numbers! Symmetry projection, however,
will restore these broken symmetries and make the discus-
sion of conical intersections meaningful again. For now, we
are interested simply in looking at which symmetries break
and how those symmetries break in the vicinity of a CASSCF
conical intersection. Our motivation here is simple: our expe-
rience is that we should deliberately break and projectively
restore those symmetries which might break spontaneously
anyway.

The present work explores the HF landscape when all
symmetries are allowed to break. Future investigations will
examine the picture that emerges when they are restored. In the
branching planes considered here, we observe intersections of
unrestricted Hartree–Fock (UHF) excited states that occur near
the CASSCF CX geometries. Complex coplanar generalized
Hartree–Fock (GHF) solutions are found in the vicinity of UHF
degeneracies, in some cases interpolating between states of
the same (conserved) quantum numbers. In our most detailed
exploration, the branching plane of cyclobutadiene, we find
multiple complex GHF intersections. To complement these
examples of coplanar spin, we present a noncoplanar GHF
solution of tetrahedral H+2

8 .
Before we present our detailed results, however, let us

take a moment to discuss the various kinds of Hartree–Fock
solutions and how we might distinguish between them so that
we can properly decode what kinds of projection operators
we will need in a symmetry restored treatment of conical
intersections.

II. CLASSES OF HARTREE–FOCK SOLUTIONS

The restricted Hartree–Fock (RHF) wave function is
an eigenfunction of both Ŝ2 and Ŝz and is usually also
an eigenfunction of time-reversal (Θ̂), complex conjugation
(K̂), and point-group operators. Unfortunately, RHF fails for
strongly correlated systems, and one expects strong correla-
tion in conical intersections as a matter of course due to the
degeneracy.

Where RHF fails, one might use the unrestricted Hartree–
Fock (UHF) formalism instead. By permitting ↑- and ↓-spin
electrons to occupy different spatial orbitals, UHF provides
better energies at the cost of Ŝ2 symmetry. Typically UHF
solutions also break point-group symmetry; they must break
at least one of complex conjugation and time-reversal sym-
metries. Most UHF calculations result in real orbitals and are
hence K̂ eigenfunctions.

Sometimes UHF also breaks down, and one must allow
for a generalized Hartree–Fock (GHF) approach17 in which
Ŝz symmetry breaks in addition to Ŝ2. By breaking Ŝz symme-
try, GHF solutions provide noncollinear spin arrangements. As
with UHF, GHF solutions also usually break point-group sym-
metry and must break at least one of time-reversal and complex
conjugation symmetries. Real GHF solutions which are K̂
eigenfunctions have coplanar spin densities18 while complex
GHF solutions may have coplanar or noncoplanar spin den-
sities. Noncoplanar spin has been seen previously in systems
where high symmetry geometries induce spin frustration18,19

and in model Hamiltonians such as the Hubbard or Ising mod-
els.20,21 Though GHF significantly improves the shortcomings

of RHF and UHF in strongly correlated systems, it has not been
regularly used in the community. A complete table classifying
HF solutions by the symmetries they preserve can be found
in Refs. 17 and 18, though note that this classification was
first carried out by Fukutome22 and has also been discussed
extensively by Stuber.23

As we have alluded to earlier, one can check whether
there is a lower-energy HF solution by considering the eigen-
values of the MO Hessian. A negative eigenvalue indicates
the presence of a more stable solution in the direction of the
corresponding eigenvector. By taking particular blocks of the
Hessian, one can limit one’s testing to consider instabilities
to a particular symmetry block.5 For example, one could test
whether an RHF solution is unstable toward other RHF solu-
tions or toward UHF solutions, i.e., one can look for singlet
or triplet instabilities. Similarly, one can test whether UHF
solutions are unstable toward GHF wave functions, and one
can test for instabilities toward solutions which break complex
conjugation symmetry.

Note that a degeneracy between occupied and virtual
orbitals guarantees a negative diagonal element in the MO
Hessian and therefore an instability, but it is not necessary for
such an instability to exist.24 Symmetry broken solutions in
the branching planes explored here provide further counterex-
amples. Other cases include the noncollinear solutions found
in fullerene molecules,10,18 where large band gaps persist as
RHF succumbs to UHF and ultimately to GHF.

The number of zero eigenvalues can also yield information
regarding symmetry breaking and stability, as a UHF or GHF
solution will acquire improper zero modes as an artifact of
symmetry breaking. The simplest example of this would be the
dissociation of H2, where beyond the Coulson-Fischer point,
UHF yields a more stable solution than the singlet RHF that
is stable at equilibrium bond length. Past this point, the lowest
Hessian eigenvalue of the RHF solution becomes negative,
while the UHF solution has two improper zero modes due to
breaking Ŝx and Ŝy.1 For an equally simple example of a triplet
instability, the interested reader might examine HF solutions
to the Be atom.1,17

III. DETERMINING COPLANARITY

It should be noted that while we have discussed the sym-
metry breaking permitted by different incarnations of HF,
permitting a symmetry to break does not guarantee that it
will. That is to say, a GHF search may still arrive at a UHF
solution. In such a case, the UHF solution may even be an
eigenfunction of spin in some other direction—say, Ŝz—and
it is not immediately obvious how to tell a noncollinear solu-
tion from a rotated UHF solution. Similarly, it is not neces-
sarily simple to tell whether a GHF solution is coplanar or
noncoplanar.

In the last few years, means of differentiating between
collinear and noncollinear solutions have emerged. Small,
Sundstrom, and Head-Gordon define a test25 which uses the
fact that if a wave function is an eigenfunction of Ŝn̂ for
some direction n̂, then 〈Ŝ2

n̂〉 − 〈Ŝn̂〉
2 = 0. Thus, if the matrix

〈ŜiŜj〉 � 〈Ŝi〉〈Ŝj〉 has any zero eigenvalues, the solution must
be collinear. This revelation is integral to the diagnostic used
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TABLE I. Characterization of HF solutions.

No. of zero eigenvalues No. of zero eigenvalues
of T of τ Characterization

3 3 Nonmagnetic (RHF)
2 2-3 Collinear (UHF)
0-1 1-3 Coplanar (GHF)
0 0 Noncoplanar (GHF)

here, but its original formulation has the drawback of relying
on the two-particle density matrix. In a recent paper,18 we have
shown a simplified test which is identical to that of Small and
co-workers for single determinants and which can discriminate
between coplanar and noncoplanar solutions.

The density matrix γ can be decomposed into its x, y, and
z spin components as

Mx = γ↑↓ + γ↓↑, (2a)

My = i (γ↑↓ − γ↓↑), (2b)

Mz = γ↑↑ − γ↓↓. (2c)

If spin rotations can make two of these components vanish, the
density matrix is collinear. If spin rotations can make one of
these components vanish, the density matrix is coplanar. We
can check this possibility by diagonalizing the matrix T with
components

Tij = Tr(Mi S Mj S), (3)

where S is the overlap matrix. Collinear determinants corre-
spond to one non-zero eigenvalue of T, while for noncollinear
determinants, T has two or three non-zero eigenvalues.

While this test is identical to that of Small and co-workers
for single determinants, we can generalize it slightly to test for
coplanarity. Noncoplanar density matrices mean that all three
of Mx, My, and Mz must have non-zero real parts. Thus, we
can distinguish coplanar from noncoplanar GHF solutions by
diagonalizing the related matrix τ with components

τij = Tr[Re(Mi) S Re(Mj) S]. (4)

For coplanar GHF solutions, τ has a zero eigenvalue. Our test
is summarized in Table I. Note that we order eigenvalues so

that after rotation, Tzz ≥ Txx ≥ Tyy and similarly for eigenvalues
of τ. More details about this magnetization diagnostic can be
found in Ref. 18.

IV. RESULTS

In its most recent version, the Gaussian suite of programs
only supports CX optimization using the CASSCF method.
The resulting geometry and branching plane are not necessar-
ily the same as those defined by a PHF degeneracy, and it is
not guaranteed that such a degeneracy could be classified as a
CX at all. In this work, we follow HF solutions in the CASSCF
branching plane.

Conical intersection geometries were optimized using
equally weighted state-averaged CASSCF calculations with no
symmetry constraints, as implemented in Gaussian16.26 The
more affordable spin-free Hartree-Waller determinants were
used in CASSCF calculations, and therefore, where singlets
and triplets are shown together, it should be noted that they
come from separate state-averaged calculations. Active spaces
were defined as only the π orbitals and electrons, and all cal-
culations, CASSCF or HF, were carried out in the STO-3G
basis. This minimal basis set was used in an effort to avoid
smearing static correlation effects with those of dynamic cor-
relation. The CXs of aromatic and antiaromatic molecules
are well documented in computational organic chemistry
literature,12,27–30 providing starting points for geometry
optimizations.

A variety of initial guesses yielded many UHF solutions,
which were in turn followed as the geometry was displaced
by a range of weights of the branching plane vectors. Where
we refer to singlet or triplet UHF solutions, we should clarify
that this is in reference to the m quantum number associated
with Ŝz, rather than the s quantum number associated with
Ŝ2. To find GHF solutions, we destroyed Ŝz symmetry with
the application of a Fermi-Contact perturbation to the con-
verged UHF and halted the resulting calculation after several
iterations. This symmetry broken initial guess served as a start-
ing point for a GHF calculation with no perturbation. Direc-
tions for the perturbation were selected from linear combina-
tions of branching plane vectors, with the motivation that the

FIG. 1. The cyclobutadiene CX geom-
etry (center; top and bottom) and CX
displaced by ~x1 (top) and ~x2 (bottom)
with weights of ±2 (left and right).
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FIG. 2. Energies for the displacement
of the cyclobutadiene CX by the
DC vector ~x2, plotted as a func-
tion of displacement weight w2. Left:
CASSCF(4,4) energies. Right: HF ener-
gies with regions of noncollinear spin
indicated by dashed lines. Collinear
solutions are labeled by the m quan-
tum number associated with Ŝz . Not pic-
tured is the stable HF solution, which is
collinear with m = 0.

directions that lift degeneracy should also make convergence
to a new, symmetry broken solution more likely than conver-
gence back to either of the intersecting collinear surfaces.

A modified development version of Gaussian31 carried
out the collinearity test of Small and co-workers. Once a solu-
tion was identified as noncollinear, an in-house code was used
to determine the coplanarity by diagonalization of τ of Eq. (4).
Another modified development version of Gaussian31 calcu-
lated the GHF Hessian to determine stability. The number
of Hessian zero modes, in addition to reflecting the sym-
metry breaking we show with the magnetization diagnostic,
will also be used to detect degeneracies, near-degeneracies, or
symmetric invariances. Where we present molecular geome-
tries, these figures have been created using the X-Window

FIG. 3. HF band gap, 〈Ŝ〉, and eigenvalues of τ [Eq. (4)] for the displace-
ment of the cyclobutadiene CX by the DC vector ~x2, plotted as a function
of displacement weight w2. Line style and color scheme are consistent with
Fig. 2.

Crystalline Structures and Densities software.32 Below, we dis-
cuss HF in the branching plane of four different CXs, with a
focus on that of cyclobutadiene. We observe intersecting UHF
states near the CASSCF CX in all cases, and in cyclobutadi-
ene, we see complex coplanar GHF solutions cross as well.
In each branching plane, we converged to complex coplanar
GHF for geometries around UHF intersections.

A. Cyclobutadiene

A CX was optimized between the first two singlets of
cyclobutadiene, resulting in a loosely defined Cs geometry
(Fig. 1) where the ring has been bent to a 25◦ dihedral angle
and the hydrogen atoms pulled out of plane.27 At this geometry,
the CASSCF energy difference between these two states is 0.2
kcal/mol.

Motion along the DC vector~x2 corresponds to shortening
and lengthening of alternate C–C bonds, resulting in dissocia-
tion into different C2H2 fragments in the positive and negative
directions (Fig. 1). Along ~x2, the CASSCF excitation energy
remains linear until weights of about ±1.25, and the intersect-
ing states are symmetric about the CX (Fig. 2). Along the
GD vector ~x1, displacement from the CX geometry results
in a more bent dihedral angle in the four carbons and an
increase in alternating bond angles of the ring (Fig. 1). Motions
in the positive and negative directions have less symmetric
effects on the CASSCF energy than seen along the DC vector,
and the excitation energy becomes nonlinear before weights
of ±0.5.

As the CX geometry is displaced along~x2 (Fig. 2), two sin-
glet UHF states intersect at a geometry very near the CASSCF
CX, with a triplet UHF solution about 2 kcal/mol above them.

FIG. 4. Energies of two intersecting UHF solutions in the branching plane of
cyclobutadiene, plotted as the difference from the energy at their intersection.
The color scheme is consistent with that of Figs. 2 and 3.
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FIG. 5. Left to right: The benzene,
styrene, and fulvene CX geometries.

Complex coplanar GHF solutions interpolate between each
of the singlet states and the triplet, intersecting 0.3 kcal/mol
below the UHF singlets. At the point of intersection, other
properties of the GHF solutions coincide as well (Fig. 3).
Another coplanar GHF, not pictured in Fig. 2 or 3, branches
off of the UHF triplet and vanishes before rejoining the UHF
singlet. A fourth complex coplanar GHF solution, plotted in
green, exists only for a small range of w2 around the CX geom-
etry, another 0.3 kcal/mol below the GHF intersection. While
this appears at first glance to interpolate between the singlet
UHF states, it vanishes before reaching either. In all cases
where these GHF disappear, spin properties change dramat-
ically as this geometry is approached, seeming to signal the
convergence failure to come. None of the Hartree–Fock states
described thus far is the ground state; the stable solution is
collinear with m = 0 and 16 kcal/mol lower, giving all states
at least one negative Hessian eigenvalue.

It is worth noting that for a range of weights, the low-
est energy GHF has four Hessian zero modes. Three can be
attributed to symmetry breaking, while the fourth indicates
a quasi-symmetric invariance that we have not been able to
fully identify. This unaccounted for zero-mode emphasizes the
need for future work investigating HF around this CX. Another
interesting trait of this GHF solution is its MO structure. For
each of the UHF solutions, orbital energies occur in degenerate
pairs around the CX. While the intersecting GHF solutions do
not reflect the loose Cs symmetry of the CX geometry in the
same way, this lowest energy GHF does.

While the CASSCF degeneracy is lifted along the GD vec-
tor, both the UHF and GHF solutions seen intersecting along~x2

remain nearly degenerate as they are followed along~x1 (Fig. 4),
a clear deviation from the branching plane behavior we would
expect. Rather than restoring Ŝz symmetry for negative w1, the
GHF solutions remain noncoplanar. The GHF solutions that
vanish along ~x2 also vanish for negative displacements along
~x1, at a weight of just over w1 = �0.25. All GHF solutions con-
tinue in the positive direction and restore collinearity before w1

= 0.5. It seems that while degeneracies of HF states occur very
near the CASSCF CX geometry, the motions corresponding to
the CASSCF branching plane vectors do not lift the degenera-
cies of HF states in quite the same way. This suggests that the
CASSCF and projected Hartree–Fock branching planes will
be distinct.

B. Benzene, fulvene, and styrene

CXs between singlets in benzene28,33 and styrene29,33

share similar geometries with loose Cs symmetry such that one
atom of the ring is pushed out of the plane to a pre-fulvene-
like puckered ring (Fig. 5). For each, the displacement along

the DC vector ~x2 results in pushing the out-of-plane moiety
either further out of or into the plane of the ring, depending on
the direction of displacement. Neither CX is the ground state,
each being less than 30 kcal/mol above the stable CASSCF
triplet.

Exploring Hartree–Fock along this vector reveals inter-
secting UHF singlets above a complex coplanar GHF ground
state in each case (Fig. 6). In benzene, the GHF solution
interpolates between the UHF singlets, while in styrene the
GHF solution interpolates between one of the UHF singlets
and a UHF triplet that crosses the singlets nearby (Fig. 7).
Attempts to follow this UHF singlet fail after a sudden change
in spin properties, as seen in the vanishing solutions of
cyclobutadiene.

The CX geometry in fulvene (Fig. 5) is achieved by
twisting the methylene group approximately 30◦30,33 from the
planar ground state geometry. Displacement along the GD vec-
tor ~x1 results in pulling the two carbons opposite the ring’s
substituent close together and pulling the methylene group
away from the ring. UHF singlets intersect near the CASSCF
CX, one of which fails to converge for larger positive weights.
A complex coplanar GHF interpolates between these, though
along the other branching plane vector the solution never joins
UHF and remains noncollinear.

C. Td H+2
8

While the GHF solutions found in the branching planes
discussed here break all symmetries of the Hamiltonian, spin

FIG. 6. HF energy and eigenvalues of τ [Eq. (4)], for fulvene along the GD
vector ~x1, plotted as a function of displacement weight w1.
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FIG. 7. HF energy and eigenvalues of τ [Eq. (4)] for the displacement of the CX by the DC vector ~x2, plotted as a function of displacement weight w2. Left:
benzene. Right: styrene.

remains coplanar in all cases. To observe noncoplanar spin,
we turn to the Jahn-Teller active H+2

8 (Fig. 8). Here, we have
taken the tetrahedral H4 model and decorated each surface of
the tetrahedron with an additional hydrogen atom, resulting in
a structure that is also tetrahedral. Examining the MO structure
of the lowest energy real RHF solution, the neutral species
has a triply degenerate HOMO due to point-group symmetry.
Removing two electrons results in a ground state degeneracy
that is eliminated upon distortion to lower symmetry point
groups.

Thus, there is a Jahn-Teller mandated CX in this tetra-
hedral H2+

8 for every H–H bond length. Unlike our previous
examples, the stable solution here is complex and noncoplanar.
The high symmetry leads to a density matrix structured such
that Mx = My = Mz. This is reflected in the eigenvalues of τ for

FIG. 8. Geometry of tetrahedral H2+
8 .

TABLE II. Eigenvalues of τ for the stable GHF of H+2
8 .

Element Value

τxx 1.147
τyy 1.147
τzz 1.147

a H–H bond length of 1.67 Å, seen in Table II. While removing
just one electron would also result in a Jahn-Teller active ion,
for H+

8 , the stable solution is collinear. It seems that having a
different number of ↑- and ↓-spin electrons interferes with the
spin frustration introduced by the tetrahedral geometry.

V. DISCUSSION

In the branching planes of conical intersections, we
observe HF solutions that break all symmetries, including
those not represented by quantum numbers (K̂ and Θ̂). The use
of a recently developed magnetization diagnostic revealed that
all GHF solutions found in these branching planes are coplanar.
The same diagnostic identified a noncoplanar GHF solution in
the Jahn-Teller active tetrahedral geometry of H+2

8 . It seems
that while the spin frustration introduced by this highly sym-
metric geometry will lead to noncoplanar spin in HF, the strong
correlation around a CX will not. Our work here suggests that
we will need to deliberately break and projectively restore
both Ŝ2 and Ŝz symmetries as well as point group and complex
conjugation or time reversal.

While the spontaneous symmetry breaking seen here pre-
cludes the use of Hartree–Fock in the description of conical
intersections, it is encouraging for projected Hartree–Fock
methods. Even the simple projection after variation formal-
ism will restore good symmetries and should allow for the
description of conical intersections reasonably well. Even bet-
ter is to use the variation after the projection approach, in
which the mean-field determinant is optimized in the pres-
ence of the symmetry projector rather than in its absence.
Either way, symmetry projection by means of a NOCI will
lead to multireference wave functions obtained with loosely
mean-field computational cost in the vicinity of a CX. This
seems to be a logical consequence of the breakdown of
the Born-Oppenheimer approximation and our mean-field
attempt to describe dynamics on multiple potential energy
surfaces.

While the present results show some of the qualitative
features of the CASSCF branching plane reflected in HF
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potential energy surfaces, there are some inconsistencies.
Namely, it seems our CASSCF definition of the branching
plane in cyclobutadiene only lifts the HF degeneracy along
one of its defining vectors. This suggests but does not guar-
antee that we will see a different branching plane at the PHF
level. If symmetry breaking and restoration is to be considered
an affordable alternative to the CASSCF or Full Configuration
Interaction (FCI) levels of theory, a necessary step is to con-
firm that HF excited states will exhibit the same phenomena,
such as CXs, that we are able to observe these higher levels
of theory. Throughout, we have been cautious in the language
used to describe HF degeneracies.

As our symmetry broken solutions do not have good quan-
tum numbers, they cannot define a CX or CX seam. The
symmetry restored solutions, however, could potentially be
optimized to CX geometry. The characteristic of a CX is
the appearance of an observable geometric phase known as
the Berry phase, whose existence is reliant on the preserva-
tion of time-reversal Θ̂. This effect is not exclusive to con-
ical intersections; it emerges in any situation where there is
coupling to variables, in this case nuclear degrees of free-
dom, that have been excluded from the Hilbert space of the
eigenvalue problem. It is nonlocal and can be observed in
any wave function that traverses a closed loop containing the
CX.20,21,34 The projection of Θ̂ and calculation of this observ-
able for a PHF CX provide an interesting future direction of this
work.

There is clearly some work to be done, but the current
results are promising: it may be possible to tap into the poten-
tial of symmetry breaking and restoration in HF as an FCI
alternative with mean-field computational scaling.
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G. E. Scuseria, J. Chem. Phys. 139, 154107 (2013).
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